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North Atlantic controls on 
wintertime warm extremes and 
aridification trends in the Middle 
East
Kondapalli Niranjan Kumar1,4, Annalisa Molini1, Taha B. M. J. Ouarda1,2 & Madhavan Nair 
Rajeevan3

The Middle East is one of the most water stressed regions in the world, receiving the majority of its 
hydrological input during the winter, in the form of highly variable and scattered precipitation. The 
persistence of wintertime anticyclonic conditions over the region can deflect storm tracks and result in 
extended spells of exceptionally hot weather, favoring prolonged droughts and posing a major threat 
to the already fragile hydrological equilibrium of the Middle East. Despite their potential impacts 
on water-security, winter warm spells (WWS’s) have received far less attention than their summer 
counterparts, and the climatic drivers leading to WWS’s onset are still largely unexplored. Here, we 
investigate their relationship with the internal modes of variability in the Atlantic Ocean, already 
known to influence winter circulation and extremes in Eurasia and Northern America. We show that the 
occurrence of WWS’s is strongly correlated with Atlantic variability over decadal time scales. To explain 
this correlation, we propose a teleconnection mechanism linking Atlantic variability to WWS’s via the 
propagation of Rossby waves from the North Atlantic pool, and the mediation of the Mediterranean 
circulation – thereby providing a basis to better predict future warming and aridification trends in the 
Middle East.

The Middle East is a predominantly water-scarce region that encompasses very diverse aridity levels and climatic 
conditions, ranging from the hot deserts of the Arabian Peninsula to the cool highlands of mountain ranges in 
Turkey and Iran. From an historical prospective, conflicts, diffuse political instability and, more recently, fast pop-
ulation growth have further aggravated the endemic water scarcity of this region1, thus exacerbating its vulnera-
bility to climate change and climate variability in general2,3. Paradoxically the climate of the Middle East has been 
considered for a long time insensitive to anthropogenic climate change due to different masking effects associated 
with internal climate variability4–6 that are now better understood7. Only in recent years, climate projections 
and regional climate model simulations have revealed a consistent warming trend over the Middle East and the 
Eastern Mediterranean8–10, accompanied by a prevalent drying of the region2,11,12. Model results are widely sup-
ported by observational studies at the regional and sub-regional scales13,14, pointing in particular to the increasing 
frequency and intensity of hot extremes15–17, and underscoring the need to improve seasonal prediction skills over 
the region.

The core of these studies is centered on the summer months, due to the strong societal impacts that extreme 
temperatures are expected to produce during the hot season, especially when associated with elevated values 
of relative humidity and atmospheric pollution18. However, the majority of Middle Eastern countries already 
possesses an elevated degree of resilience to high temperatures, which during the summer can yet peak at as 
high as 45–50 °C in the Persian Gulf Region, Southern Iraq and Southwestern Iran10,19. Winter warm extremes, 
in contrast, have attracted a more limited attention in the literature, despite their potential impacts on the sur-
face energy budget and the already precarious hydrological regime of the region20. Winter warm spells (WWS’s) 
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affect the hydroclimatology of the Middle East both at synoptic and local scales, being strongly associated with 
quasi-stationary anticyclonic systems able to deflect Mediterranean cyclones tracks, and influence local hydro-
climatic patterns alike.

In addition to this climatic forcing, the rapid soil desiccation that accompanies WWS’s exerts a limiting effect 
on evapotranspiration, potentially enhancing summer heat waves through intraseasonal feedbacks21.

Consequently, if summer heat waves better fit the classic definition of extreme event – producing sudden and 
intense societal impacts and higher absolute temperatures9 – WWS’s hold a more prominent role in regulating 
the exchange of energy and water at the interface between land and atmosphere. Also, they can modulate the 
hydrologic regime of the region, with a greater potential for shaping the longer-term aridification patterns and 
socio-political resilience of Middle Eastern countries22–24. From here the necessity to better understand the cli-
mate processes causing and sustaining WWS’s in arid and hyperarid regions like the Middle East.

We focus on the connection between the WWS’s and North Atlantic variability, one of the main drivers for 
climate in the Northern Hemisphere, whose role in the Middle Eastern hydroclimatology is, however, still poorly 
understood. Till now, in fact, the link between winter extremes in the Northern Hemisphere and North Atlantic 
variability has been mainly explored focusing on a different category of extreme events, i.e. the cold extremes in 
Europe and in the continental U.S.25,26. At the same time, some authors pointed out how major winter extremes 
like the 2009–2010 and 2010–2011 cold waves in Europe, Russia, and the U.S. coincided with the more extended 
and intense winter warm extremes affecting the Eastern Mediterranean, Middle East and Southwest Asia20,26. This 
connection between winter warm-extremes and prominent modes of natural climate variability is however largely 
unexplored, and classic predictors of cold weather in the Northern Hemisphere’s mid-latitudes such as the North 
Atlantic Oscillation (NAO) could have a more marginal role in the genesis of winter hot-weather20.

In this contribution, we show that the slow – interannual to decadal – scales of variability of WWS’s in the 
Middle East are strongly correlated with observed multidecadal modes of variability in the Atlantic. To explain 
this coupling, we propose a simple physical mechanism linking the WWS’s to the Atlantic variability through the 
subseasonal propagation of Rossby waves and the modulation of the Mediterranean circulation at sub-decadal 
scales. Given the still limited skills of climate models in reproducing the slow modes of climate variability, like the 
Atlantic multidecadal variability (AMV) and the relative contribution of internal and external forcing27,28, we base 
our analysis on analyzed fields from the NCEP-NCAR reanalysis over the period 1948–2016. Although a similar 
observational approach presents a number of limitations – and firstly the limited temporal span covered by the 
data set – it still represents the most robust approach to diagnose possible long term couplings between the AMV 
and the onset of WWS’s. Further details on the analyzed data-sets and diagnostic/statistical methods are provided 
in the Materials and Methods Section.

Defining winter warm spells
Our analysis is based on a regional climatology of WWS’s over the Middle East from NCEP-NCAR reanalysis 
fields29. Reanalysis temperatures are tested against an analogous climatology extracted from the Global Historical 
Climatology Network (GHCN) land-based observations for the period of maximum station coverage over the 
study region (1979–2016)30. The goal of this preliminary intercomparison is to assess whether statistics inferred 
from the reanalysis fields, including extreme value statistics, are consistent with the ones obtained from station 
data to further extend our analysis throughout the entire NCEP-NCAR reanalysis operational period (1948–
2016). Station time series were selected among the ones with maximum temporal coverage (at least 75%) over the 
entire observational period (1979–2016).

The study region – comprising North-eastern Africa, the Eastern Mediterranean, the Arabian Peninsula and 
Persia – is identified based on the first two principal components of NCEP-NCAR and GHCN temperatures 
(Fig. 1a, black crosses) as the homogeneous area for which the first two principal components of winter tem-
perature explain at least 60% of the total variance (see Materials and Methods). The spatial variability of winter 
temperatures over the Middle East is yet well represented by the the first principal component (PC1) of NCEP/
NCAR temperature fields (Fig. 1a, shaded contours), and displays a sharp North-South gradient over the Arabian 
Peninsula, highly consistent with previous studies reporting a similar winter North to South positive gradient 
for both maximum (TX) and minimum (TN) temperatures3. Also, both the NCEP/NCAR and GHCN temporal 
PC1s obtained by projecting the eigenvectors into the spatially weighted anomalies of the study region (Fig. 1b) 
display a sharply increasing linear trend, significant at the 99% confidence level and an overall regional trend 
of 2.14 °C for GHCN observations, and 1.05 °C for NCEP/NCAR data. These trends in the winter temperatures 
are in agreement with previous observational studies14, also reporting a tendency to warming in daily TX and 
TN over the period 1950–2003, and with regional coupled model projections and ensemble results from CMIP5 
climate models9 predicting a significant increase (2.0 °C to 3.1 °C) of mean winter temperatures over the Middle 
East by middle 21th century.

In order to focus on winter warm extremes, we identify the WWS’s across the two data-sets based on a simple 
over-threshold quantile criterion, the duration, and the spatial extension of the extremes. Days for which both TX 
and TN – averaged over the homogeneous study region in Fig. 1a – fall within the upper 5%-percentile of the local 
climatology for the base period (1948–2016 for NCEP/NCAR and 1979–2016 for GHCN) are labeled as winter 
(NDJFM) warm extremes, and become part of a WWS (see Materials and Methods). Figure 1c and d portray 
the regional WWS’s (red area) for winter 2009/10, as extracted from NCEP/NCAR reanalysis and GHCN data 
respectively. Winter 2009/10 is considered one of the hottest and driest winters on record for the Middle East31, 
and five distinct hot-spells of different duration can clearly be identified in both the reanalysis and land-based 
observations. Over the Middle East, the brevity of observations and their sparse character make a comprehen-
sive validation of reanalysis data with observations difficult32. However, there are strong qualitative similarities 
between observations and reanalysis fields in terms of main features, intensity and frequency of the hot spells, 
pointing to the fact that the main characteristics of WWS’s are realistically reproduced in the reanalysis. These 
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consistent results across the two data-sets encourage us to extend our analysis to the entire operational period of 
the NCEP/NCAR reanalysis (1948–2016).

Results
Interannual and decadal variability of WWS’s.  We first explore the temporal evolution of WWS’s over 
interannual to decadal scales, and their possible connection with the internal variability modes of the Atlantic 
Ocean. Interannual temperature variability over the Middle East has been previously associated with the states 
of the North Atlantic Oscillation5,33. However, NAO is considered a weak predictor of the Middle Eastern tem-
perature regime over longer, decadal scales5,20. The long-term variability of the WWS’s is here quantified in terms 
of density of occurrence of the extreme temperatures (number of occurrences per season) and duration (total 
number of days above threshold per season; as detailed in the Materials and Methods Section).

Between winter 1948 (ND48–JFM49) and winter 2015 (ND15–JFM16), both frequency and duration of the 
WWS’s (Fig. 2a) show a strong interannual variability with a sharp decreasing trend between the 50’s and the 70’s, 
an intermittent low-phase between the 70’s and the 90’s, and a significant increasing trend after 1990. This dec-
adal variability pattern seems to support the existence of a prevailing masking effect of natural climate modes on 
anthropogenic climate change over the region, before the early 90’s5. In contrast, the increasing trend after 1990 
corresponds to a period of climate change amplification, manifesting itself both in terms of extremes and average 
temperature regime in the Middle East7 (see Fig. 1b).

The increasing trend in both the frequency and the duration of WWS’s through the last three decades is fur-
ther reflected in the co-occurrence of two important mega-droughts (1998–2002 and 2007–2009 circa) impacting 
the entire study region31 (Fig. 2a, bottom), in that both local and regional droughts seem to be preceded by anom-
alously hot and dry winters. Also keeping in mind that data on the frequency and duration of intense droughts 
in the Middle East are sparse31,34, the apparent increasing intensity, duration and spatial extent of Middle Eastern 
droughts in the last decades is documented in a number of studies23,24,31, and the period 1998–2012 has been 
recently described as the most intense mega-drought of the last 900 years in the Levant, based on the Old World 
Drought Atlas (OWDA) tree ring reconstruction35.

Also, the decadal trends we observe in both the occurrence and duration of WWS’s appear to be signifi-
cantly correlated with multidecadal variability in the Atlantic Ocean (AMV, also known as Atlantic Multidecadal 
Oscillation, AMO36), displaying a strong positive phase between the 30 s and the 60 s, followed by a negative 
phase (1965–1985 circa) and a new positive phase after 1990 (Fig. 2b). The winter AMV index is computed here 
by averaging monthly sea surface temperature (SST) anomalies over the North Atlantic [75–7 W; 25–60 N] from 
December to March, and detrended by subtracting global SST anomalies37. Also, all three time series shown 

Figure 1.  Winter temperature climatology and WWS’s in the Middle East as defined from NCEP/NCAR and 
GHCN data. (a–b) Spatial patterns and temporal trends of average winter temperatures over the Middle East: 
(a) First principal component (PC1) of the mean winter (NDJFM) temperature (1948–2016) from NCEP/
NCAR reanalysis (contours) and spatial distribution of meteorological stations (GHCN, orange/red dots). (b) 
Normalized PC1 from reanalysis (blue) and meteo-stations (red) for 1979–2016 winters with the corresponding 
trends and confidence bands at the 95% confidence level. (c–d) Winter 2009–2010 warm spells as obtained from 
reanalysis (c) and station (d) data. Thick black lines indicate the mean daily 95th percentile of TX and TN over 
the study area; warm spells are indicated by red shading.
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in Fig. 2b (AMV, WWS occurrence and duration) are smoothed for visualization purposes through a Lanczos 
low-pass filter to remove high frequency variability, and rescaled through a simple normalization procedure (see 
Materials and Methods).

The signature of the slow modes of variability of the North Atlantic Ocean is also evident in the wavelet 
power-spectrum of the unsmoothed detrended WWS occurrences (Fig. 2c). Spectral power peaks falling within 
the 95% confidence region (black contour) are identified through a classic point-wise significance test against a 
red background noise based on statistical bootstrap38,39. Here we can detect two main spectral signatures: one 
decadal (significant spectral power at scales greater than 10 years), weaker but yet significant, and one subdec-
adal (localized within the 2–7 years band), displaying a stronger characteristic signature. The relative role of of 
these two spectral components is discussed in the following sections in the contest of the decadal and subdecadal 
dynamics of WWS’s.

Atlantic modulation of the winter circulation over the Middle East.  WWS’s are associated with 
extended winter blocking systems that can both alter the dynamics of regional storm tracks by controlling the 
propagation of stationary waves40, and sustain the enhancement of land-atmosphere interactions such as the soil 
moisture-temperature coupling41,42. The mechanisms through which persistent anticyclonic patterns can favor the 
genesis of the WWS’s is reveled by the composites of mid-troposphere (500 hPa) geopotential height anomalies 

Figure 2.  Co-evolution of Atlantic SSTs and Middle Eastern WWS’s over interannual to decadal scales. 
(a) Number and duration (days) of the WWS’s over the period 1948–2016 (top) and occurrence of major 
historical droughts in the region (local and global) from EM-DAT database34 and Barlow et al.31 (bottom). 
(b) Comparison between the temporal evolution of the WWS’s (occurrence and duration) over the study 
period and winter (NDJFM) Atlantic Multidecadal Variability (AMV)36,37 after normalization and rescaling. 
(c) Wavelet power spectrum of the WWS’s frequency of occurrence in (a) after detrending. Black contours 
identify pointwise significant wavelet coefficients at the 95% confidence level39 [See Materials and Methods]. 
(d) Spatial correlation of the occurrence of WWS’s with global SSTs. Panel (d) only shows values significant 
at the 95% confidence level. (e) Spatial patterns of the North Atlantic SST leading mode obtained from 
principal component analysis. (f) Morlet wavelet spectrum of North Atlantic PC1 time series after detrending. 
Significance test as in (c).
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during the WWS’s as contrasted with synoptic conditions in absence of WWS’s (Fig. 3). Figure 3a–b, show the 
geopotential composites for the 2009–2010 WWSs (a) versus the composite of average winter weather days, while 
panels c–d report the composite for the entire study period (1948–2016) for hot spells (c) and average winter 
conditions (d). In both cases, sharp anticyclonic patterns centered on the Northern part of the Arabian Peninsula 
characterizes the days associated with the WWS’s, while non-extreme days show the absence of any synoptic 
characteristic signature.

To provide further insight into the co-evolution of North Atlantic SSTs and WWS’s in the Middle East, it is 
therefore crucial to investigate the possible connections between SST anomalies and the development of the 
extended and persistent anticyclonic patters over the region. Coherent, large-scale SST anomalies are known to be 
closely related with quasi-stationary anticyclonic patterns and atmospheric blocking43,44, and with heat waves and 
warm extremes in general. A prominent example of this connection is provided by the Central Europe mega-heat 
wave of summer 2003, which a number of authors linked to the dynamics of SSTs in the Indian Ocean and the 
Mediterranean45, and to the effect of anomalous diabatic heating in the tropical Atlantic44. Similarly, the Russian 
heat wave of 2010 has been associated with the evolution of SSTs in the Northern Indian Ocean46 and with inter-
nal atmospheric variability47.

To investigate the connection between WWS’s and SST anomalies we analyze the correlation between the 
occurrence of the winter extremes over the Middle East and global SST data from HadISST48 after detrending and 
averaging over the winter season.

The resulting correlation map (Fig. 2d) shows the areas where correlation values are statistically significant at 
the 90% confidence level based on a Student t-test. SST anomalies over the North Atlantic and the Mediterranean 
show a strong correlation with the winter warm spells. Additionally, Fig. 2d reveals the typical tripole structure 
over the Atlantic with significant correlation in the subpolar region and in the tropical Atlantic Ocean and neg-
ative correlation in between. This tripolar SST pattern predominantly emerges during the boreal winter, and is 
characterized by three action centers of alternative polarity in the subpolar-tropical Atlantic49–51. The SST tripole 
is belived to respond to atmospheric forcing associated with the NAO50, although the tripole itself can induce a 
NAO-like atmospheric response52. However, the winter SST tripole is essentially a leading mode of low frequency 
SST variability, as can be easily shown by decomposing the signal into its dominant modes. At this goal, we 
applied empirical orthogonal function (EOF) decomposition to the region encompassing 0–70 N and 80–0 W 
(partially overlapping the AMV region, but without detrending with respect to global average temperatures37) for 
the period 1948–2016. The spatial pattern of the EOF1 is shown in Fig. 2e. It displays a clear tripole structure sim-
ilar to the one discussed above and explains nearly 34% of the total variance. Also, the wavelet power spectrum of 
the detrended EOF1 time series averaged over the North Atlantic (0–70 N and 80–0 W, Fig. 2f) displays a signif-
icant power in two distinct bands centered at 18 years and 8 years respectively. The 18 years band is also present 
in the WWS’s occurrence power spectrum (Fig. 2c) and is determined by the alternation between positive (50’s 
to 60’s and starting in the 90’s) and negative (between the 70’s and the 90’s) oscillations characterizing both the 

Figure 3.  Mid-troposphere anomalies of geopotential heights associated with WWS’s as compared to average 
winter conditions. (a–b) 2009–2010 winter composites of daily 500 hPa geopotential height anomalies during 
warm spells (a) and average winter conditions (b). (c–d) Same as (a–b) but for the entire study period (1948–
2016 composite).
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tripole mode and WWS’s. Additionally the WWS’s in the Middle East are also significantly linked with anomalous 
SSTs in the Mediterranean and the Black Sea, giving rise to a further bipolar structure over the Mediterranean 
basin (Fig. 2d).

The role of the Mediterranean Sea.  The coupling between the WWS’s and the decadal variability in the 
North Atlantic could either originate from a large scale atmospheric forcing or more local sea-atmosphere inter-
action processes. The tripolar correlation structure in the Atlantic, and the bipolar structure in the Mediterranean 
(Fig. 2d) seem indeed to indicate a joint action of synoptic (originating in the Atlantic) and more regional (from 
the Mediterranean) sea surface-atmosphere interaction mechanisms. North Atlantic conditions are known to 
exert a strong influence on the evolution of Mediterranean SSTs53. In this context Mediterranean SST spatio-
temporal variability has been previously connected to the increased temperature of the Atlantic inflow54, while 
Mediterranean SST multidecadal variations are known to be highly correlated with the state of the North Atlantic 
indices54–56. In particular, it has been hypothesized that multidecadal variability in the Atlantic Ocean is transmit-
ted to the Mediterranean Sea via atmospheric processes56.

A similar mechanism could also explain the synchronization between the slow-modes of North Atlantic var-
iability and the occurrence of WWS’s, through the mediation of Mediterranean SSTs excited at both decadal and 
subdecadal scales by the AMV. At multidecadal scales (>40 years) Atlantic and Mediterranean SSTs are consid-
ered highly coherent56. Additionally, their co-spectrum has been found to display significant secondary coher-
ence peaks at around period ~18 years and in the 2–7 years spectral band56. The significant spectral power band 
centered around 18 years seems also a robust feature of both AMV and WWS’s spectral signatures (Fig. 2c,f). We 
thus postulate that this slow mode of variability could be passed across from the North Atlantic to the Middle 
East through the filter of the Mediterranean basin. While the AMV does not show any significant spectral peak 
at subdecadal scales other than ~8 years, the North Atlantic Oscillation seems capable of exciting the anoma-
lous Mediterranean SST modes within the 2–7 years spectral band56. Therefore, the subdecadal spectral peaks 
at 2–7 years characterizing the occurrence of WWS’s (Fig. 2c) may be linked to higher-frequency responses of 
Mediterranean SSTs to the Atlantic forcing. In support of this thesis, the composite Mediterranean SST anom-
alies for the years displaying a significant spectral signature in the 2–7 years band (1950–1965, 1975–1980, and 
2005–2013, Fig. 4a) show a clear bipolar structure (similar to the correlation pattern in Fig. 2d) with a cooler 
Western Mediterranean and an exceptionally warm Eastern Mediterranean. This bipolar pattern, in contrast, is 
absent from the composite of the years not forced in the 2–7 years band (Fig. 4b). Therefore, the observed warm-
ing of Eastern Mediterranean (Fig. 4a) seems to have a strong link with the subdecadal dynamics of WWS’s over 
the Middle East.

Elevated land surface temperatures in combination with the warming of the surface of the Eastern 
Mediterranean sea would be expected to increase latent and sensible heat fluxes. At the same time, the increased 
stability of the atmospheric conditions associated with the occurrence of WWS’s (Fig. 3) tends to restrict verti-
cal heat fluxes to the lower part of the boundary layer, further trapping warm air masses within the lowermost 

Figure 4.  Mediterranean SSTs modulation of WWS’s. (a) Composite winter SSTs during the warm episodes of 
1950–1965, 1975–1980, and 2005–2013, corresponding to the significant spectral power peaks observed in the 2–7 
years period band of Fig. 2c. (b) Same as (a) but for winter conditions not forced within the 2–7 years band. (c–d) 
Spatial patterns and time evolution of the PC2 of winter Mediterranean SSTs during the period 1948–2016.
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atmosphere due to reduced mixing42. The EOF1 component of the Mediterranen SSTs is not subject to any sea-
sonal effect and it mainly responds to the forcing at interdecadal scales57.

In contrast, the interannual variability of the Mediterranean SSTs is mainly explained by their EOF2, and pre-
vious studies have highlighted how the spatial EOF2 is characterized by a zonally oriented dipole with oppositely 
directed changes in the western and eastern Mediterranean Sea57. The spatial EOF2 of the winter Mediterranean 
SSTs over the study period (1948–2016) also shows a marked bipolar structure (Fig. 4c), while the temporal evo-
lution of the EOF2 averaged over the Mediterranean basin (Fig. 4d) appears to be strongly variable at interannual 
scales (comparable with the variability within the 2–7 years period band). Consequently, warmer SSTs over the 
Eastern Mediterranean, enhanced evaporation, and the strong anticyclonic structures prevailing over the Eastern 
Mediterranean and Middle East, all contribute to suppress deep convection and trigger and sustain the WWS’s. 
The Mediterranean EOF2 hence appears to be a robust predictor of WWS’s at interannual scales.

Linking subseasonal planetary waves to Middle Eastern WWS’s.  We have seen that Atlantic and 
Mediterranean SSTs could play a major role in controlling WWS’s over the Middle East. Large and persistent 
Atlantic SST anomalies seem in fact to modulate the occurrence of the WWS’s at interannual and decadal scales 
through the mediation of the Mediterranean SSTs, creating the conditions for the development of extended 
and persistent anticyclonic structures over the region. In turn, anticyclonic anomalies observed during warm 
extremes are often part of global-scale stationary Rossby wave trains44,58–60, so that the physical explanation of 
the teleconnection between modes of variability in the Atlantic and Middle Eastern climate during the evolution 
of warm spells could be found in the propagation of planetary wave trains from the North Atlantic pool down 
to the latitudes of the Middle Eastern jet stream. To better explore this thesis, we analyze the meridional wind 
anomalies at 200hPa (v200hPa) across the study period, considered good indicators of the Rossby wave activity. 
Previous studies linked the equatorial Pacific SSTs with the Middle Eastern winter climate through the Rossby 
wave propagation61–63. We construct here the composite v200hPa anomalies for all the WWS’s (131 events, corre-
sponding to 840 warm days) during the study period, and we overlap it with the zonal wind composite at 200hPa 
(u200hPa, Fig. 5). A marked Rossby wave train pattern originating in the North Atlantic Ocean and encountering 
the Middle East jet stream in the subtropics, is clearly emerging from the composite of the WWS’s in Fig. 5. Here, 
planetary waves show a wide amplitude (large meridional component) and a dominant wave number of 6 across 
the diverse warm events (see supplementary Fig. S1), similarly to the quasi-resonant Rossby waves that have been 
associated with extreme events in the Northern Hemisphere60. The teleconnection between the North Atlantic 
modes of variability and the winter warm extremes in the Middle East could hence be explained by the Atlantic 
forcing on Rossby waves, leading to the onset of a wave train of disturbances and resulting in a strong teleconnec-
tion downstream of the local heat source. It is also interesting to note that, during the winter, the subtropical jet 
stream can act as a wave-guide for the planetary waves in the Northern Hemisphere64. Through this wave-guide, 
Rossby waves can further propagate downstream to East Asia and the North Pacific Ocean along the subtropical 
jet stream.

Figure 5.  Rossby waves developing in the North Atlantic during winter warm-spells as they merge into the 
Middle Eastern jet stream. Composite meridional wind (m/s, filled contour) and zonal winds (m/s, orange 
contour) anomaly at the 200 hPa pressure level for the 1948–2016 winter warm events over the Middle East.

http://S1
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Discussion and Conclusions
Our results suggest that both Rossby wave subseasonal patterns and the high frequency variability in the 
Mediterranean SSTs can provide a strong basis for the seasonal prediction of WWS’s in the Middle East, helping 
to better understand future warming and aridification trends in the region. Our findings are based on the Middle 
Eastern winter temperature climatology extracted from the NCEP-NCAR reanalysis fields and covering the 
period 1948–2016. Whether the span of the available observations/reanalysis fields32 could limits our long-term 
prognostic skills, the dependence of WWS’s from the slow modes of climate variability in the Atlantic Ocean 
appears as a robust feature of the Middle East climatology, and poses the bases for an improved seasonal predic-
tion of winter warm extremes. A further expansion of this analysis could explore the future long-term dynamics 
of WWS’s in climate model projections, although with a caveat. Climate model skills in reproducing slow modes 
of climate variability like AMV are in fact still limited, and a number of concerns have been recently raised for 
example, on the capability of the member of the CMP5 ensemble to simulate the relative magnitude of internal 
variability and external forcing components, and their coupling27,28,65. For this reason, reanalysis and observa-
tions, although limited in prognostic scope, can be currently considered one of the most robust tools to investi-
gate the link between winter warm spells in the Middle East and multidecadal variability in the Atlantic Ocean.

Materials and Methods
Observations.  Temperatures in the Middle East.  Data used in this analysis consist of daily maximum and 
minimum temperatures (TX and TN) extracted from the NCEP-NCAR reanalysis surface air temperature fields29 
for the months of November to March (extended winter season). They span the period 1948–2016 and are availa-
ble on a Gaussian T62 grid. The latitudinal grid spacing varies while preserving equal areas and is approximately 
equal to 1.9°, while longitudinal spacing is 1.875°. In order to evaluate how WWS’s are reproduced in the reanal-
ysis, we also obtained TX and TN daily observations from the National Climatic Data Center (NCDC) Global 
Historical Climatology Network30 (GHCN). The GHCN dataset contains TX and TN for nearly 80,000 stations 
around the globe30, from which we selected the subset of stations located in the Middle East (see Fig. 1a) whose 
records fall within the period 1979–2016. The 1979–2016 time span corresponds in fact to the highest network 
density over the Middle East. GHCN air temperature data have been extensively quality controlled66 and have 
been analyzed in a variety of different studies67.

Synoptic conditions during the WWS’s.  Composite synoptic conditions (mean conditions and anomalies) char-
acterizing the onset and evolution of WWS’s over the Middle East are quantified based on NCEP/NCAR rea-
nalysis data29. For this purpose, we obtained the daily zonal and meridional wind fields, vertical velocity, and 
geopotential height, at standard pressure levels available with a 2.5° × 2.5° horizontal resolution, for the period 
1948–2016. The daily anomalies were calculated by subtracting the climatological daily mean for the reference 
period 1981–2010 during the winter season.

Sea surface temperatures and dominant modes of variability in the Atlantic Ocean.  Persistent sea-surface tem-
perature (SST) anomalies are known to be linked to large-scale circulation patterns, like the ones leading to 
synoptically extended geopotential anomalies, although the exact connection between SST anomalies and warm 
extremes is not completely understood – especially in the Middle East. The role of Atlantic and Mediterranean 
SSTs in controlling extreme heat conditions during the Middle Eastern winter is here assessed based on the 
Hadley Centre Sea Ice and SST dataset (HadISST)48. Monthly 1° × 1° resolution global SST data from 1870 
onward are available from the HadISST repository. The dataset is constructed using a reduced spatial optimal 
interpolation procedure from the measured SST values compiled from the International Comprehensive Ocean 
Atmosphere Data Set (ICOADS) database and the Met Office Marine Data Bank. Here, sea ice data are obtained 
from a variety of sources including digitized sea ice charts and passive microwave retrievals. Also wintertime 
Atlantic multidecadal variability (AMV) is constructed using the HadISST dataset over the period 1948–2016. 
The monthly SST anomalies are determined with respect to the 1981–2010 climatology, then the winter AMV 
index is computed by averaging the monthly SST anomalies over the North Atlantic [75–7 W; 25–60 N] from 
December to March (DJFM)68. SST global anomalies are subtracted from the index to remove the global warming 
trend and the influence of tropical oceans, as previously suggested by other authors37,69. A Lanczos low-pass filter 
with 21 total weights and a threshold of 10 years is applied to the AMV and to the WWS occurrence and duration 
time series plotted in Fig. 2b to remove high-frequency variability. End points of each time series are reflected to 
avoid data losses69.

Identification of the WWS’s.  Absent an accepted standard for defining heat extremes/heat waves70, we 
adopt here a simple procedure based on the spatial and temporal variability of temperature to identify WWS’s, 
as well as their duration and frequency of occurrence. WWS’s are identified based on the local winter (NDJFM) 
climatology over the base period 1948–2016. Both maximum (TX) and minimum (TN) temperatures are used in 
our assessment (i.e. temporal and spatial constraints need to be consistently met for both TXs and TNs). The same 
procedure is applied to reanalysis data (NCEP/NCAR) and observational data (GHCN).

Regional winter heat spells are then defined based on the following three steps.  (a) Spatial extension: The WWS’s 
are defined as regional extremes, and over-threshold values are estimated based on the daily TXs and TNs aver-
aged over the selected study region. Analogously, the local 95th percentile thresholds (TX95 and TN95) used to 
extract over-threshold values (see point (b) in this section) are defined at the regional scale (entire study area). The 
study area which includes North-eastern Africa, the Eastern Mediterranean, the Arabian Peninsula and Persia, 
is selected by applying principal component analysis (PCA) to winter (NDJFM) mean temperatures comprising 
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the region 10°–45°N and 20°–65°E over the period 1948–2016. Pixels/station points for which the first two PCs 
explain more than 60% of the total variance are included in the study area (identified by black asterisks in Fig. 1a).

(b) Temperature threshold: A hot day is defined as the day where daily regional TX and TN values exceed 
the climatological (1948–2016) daily upper 95th percentile for both maximum and minimum temperatures. The 
daily regional 95th percentile is computed for each day D using temperature data over the entire climatology (68 
years) between D -7 days and D +7 days. For example, to compute the 95th percentile for December 8th, we use the 
temperature climatology between December 1st and 15th. This method follows closely the approach adopted in a 
number of studies on warm extremes and heat waves identification71,72.

(c) Temporal extension: The minimum temporal extension of the regional WWS’s over the Middle East is of 3 
consecutive days, during which both TX and TN must exceed daily TX95 and TN95.

Patterns identification and spectral methods.  The spatial and temporal modes of variability charac-
terizing different climatic modes and the winter temperature regime of the Middle East are identified through the 
use of the Empirical Orthogonal Function (EOF) decomposition (a.k.a. Principal Components Analysis, PCA). 
Spatial EOFs are obtained by computing the eigenvalues and eigenvectors of the covariance matrix of the different 
field variables73. Analogously, the time series of each mode are estimated by projecting the derived eigenvectors 
onto the anomalies of winter temperatures spatially weighted over the study region73,74.

Wavelet power spectra are obtained from detrended time series through the continuous convolution of the 
analyzed signal with a Morlet wavelet basis function with central frequency ω0 = 6. Areas of significant spectral 
power (at the 95% confidence level) are identified through a classic point-wise significance test against a red back-
ground noise based on statistical bootstrap38,39.

Data availability.  All the data used in this analysis are publicly available. NCEP-NCAR reanalysis fields 
can be obtained from the NOAA repository at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.
html. Daily temperature data from the Global Historical Climatology Network-Daily database are available from 
http://www1.ncdc.noaa.gov/pub/data/ghcn/daily. Monthly values for the Atlantic Multidecadal Variability index 
between 25–60 N and 75–7 W can be obtained from the KNMI data explorer at http://climexp.knmi.nl. HadSST3 
(version 3.1.1.0) SSTs are available from Metoffice at http://www.metoffice.gov.uk/hadobs/hadsst3/data/down-
load.html.
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