Accepted Manuscript

Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes

Sampa Maiti, Gorka Gallastegui, Gayatri Suresh, Saurabh Jyoti Sarma, Satinder Kaur Brar, Patrick Drogui, Yann LeBihan, Gerardo Buelna, Mausam Verma, Carlos Ricardo Soccol

PII:	S0960-8524(17)31697-8
DOI:	https://doi.org/10.1016/j.biortech.2017.09.132
Reference:	BITE 18960
To appear in:	Bioresource Technology
Received Date:	20 June 2017
Revised Date:	18 September 2017
Accepted Date:	19 September 2017

Please cite this article as: Maiti, S., Gallastegui, G., Suresh, G., Sarma, S.J., Brar, S.K., Drogui, P., LeBihan, Y., Buelna, G., Verma, M., Soccol, C.R., Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes, *Bioresource Technology* (2017), doi: https://doi.org/10.1016/j.biortech.2017.09.132

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	Hydrolytic pre-treatment methods for enhanced biobutanol production from agro- industrial wastes
3 4 5 6 7 8	Sampa Maiti ^a , Gorka Gallastegui ^{a,b} , Gayatri Suresh ^a , Saurabh Jyoti Sarma ^a , Satinder Kaur Brar ^{a,1} , Patrick Drogui ^a , Yann LeBihan ^c , Gerardo Buelna ^b , Mausam Verma ^d , Carlos Ricardo Soccol ^e
10 11 12	^a Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec(QC), Canada G1K 9A9
13 14 15 16	^b University of the Basque Country (UPV/EHU). Department of Chemical and Environmental Engineering. University College of Engineering of Vitoria/Gasteiz. Nieves Cano 12. 01006 Vitoria/Gasteiz, Spain
17	^c Centre de recherche industrielle du Québec (CRIQ), Québec(QC), Canada
18 19 20	^d CO ₂ Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	^e Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, Usina Piloto B, CEP 81531-990 Curitiba, Paraná, Brazil
41 42 43 44 45 46	¹ Corresponding author, Phone: 1 418 654 3116; Fax: 1 418 654 2600; E-mail: <u>satinder.brar@ete.inrs.ca</u>

Abstract

2	Brewery industry liquid waste (BLW), brewery spent grain (BSG), apple pomace solid
3	wastes (APS), apple pomace ultrafiltration sludge (APUS) and starch industry wastewater
4	(SIW) have been considered as substrates to produce biobutanol. Efficiency of hydrolysis
5	techniques tested to produce fermentable sugars depended on nature of agro-industrial
6	wastes and process conditions. Acid-catalysed hydrolysis of BLW and BSG gave a total
7	reducing sugar yield of 0.433g/g and 0.468 g/g respectively. Reducing sugar yield from
8	microwave assisted hydrothermal method was 0.404 g/g from APS and 0.631 g/g from
9	APUS, and, 0.359 g/g from microwave assisted acid-catalysed SIW dry mass. Parameter
10	optimization (time, pH and substrate concentration) for acid-catalysed BLW hydrolysate
11	utilization using central composite model technique produced 307.9 g/kg glucose with
12	generation of inhibitors (5-hydroxymethyl furfural (20 g/kg), furfural (1.6 g/kg), levulinic
13	acid (9.3g/kg) and total phenolic compound (0.567 g/kg)). 10.62 g/L of acetone-butanol-
14	ethanol was produced by subsequent clostridial fermentation of the substrate.
15	
16	Keywords: Agro-industrial wastes; pre-treatment; microbial inhibitors; central composite
17	design; kinetic modelling; ABE fermentation.
18	
19	6
20	

1 1. Introduction

2 Increasing global energy demand, unstable and expensive petroleum resources, and 3 concern over global climate changes have boosted the development of renewable energy sources, which, in turn, have driven scientific research towards the utilization of 4 5 lignocellulosic biomass resources as a renewable feedstock for the production of energy 6 and fuels. The demand for renewable resources to replace substantial amounts of nonrenewable fossil fuels and minimize greenhouse gas (GHG) emissions largely rests on 7 most abundant renewable biomass (He & Zhang, 2011). However, fermentation substrate 8 9 has proven itself as one of the most important parameters influencing the final cost of produced biofuels. In this context, liquid biofuel produced from lignocellulosic waste 10 biomasses could be a promising renewable energy source for a country with abundant 11 biomass resources, such as Canada. 12 Agro-based industries, especially apple processing industries, brewery industries, and 13 starch processing industries are experiencing a surge in their growth around the globe 14 (Dhillon et al., 2013). About 60–70 % of food and beverage processing industry residues 15

are discharged in the environment without any treatment and the reminder's potential is
only tapped by means of anaerobic digestion (Maiti et al., 2016a). North America, one of
the largest agro-industrial waste producers (Canada is indeed the second overall supplier
of wood lignocellulosic biomass), retrieves only 20 % of the agro-industrial food wastes
for animal feed. The rest is used for landfilling, incineration or composting, which
contributes to about 10 % of the country's greenhouse gas emissions (Nigam & Pandey,
2009).

The efficient reuse of the residues generated from such activities a major logistical, financial and environmental issue. Due to their chemical properties, agro-industrial biomass wastes have the potential to become an innovative carbon source, which could be fermented to alcoholic compounds through environment friendly biochemical methods. Amongst the possible biochemically produced alcohols, biobutanol has been defined as a promising alternative due to its superior fuel properties as compared to ethanol (Naik et al., 2010).

The conversion of complex biomass into biobutanol requires effective utilization of 8 9 C5 and C6 sugars present in hemicellulose, cellulose and starch, by processing these fractions either together or individually after separation (Gürbüz et al., 2012). Most of the 10 naturally abundant clostridia are still not able to hydrolyse lignocellulosic based agro-11 industrial waste efficiently. The use of genetically modified strains has been suggested as 12 a possible alternative to the use of the clostridia, however, it would greatly increase the 13 final cost of biobutanol production, and has still not been implemented successfully in the 14 large scale production of biofuels. Since acetone-butanol-ethanol (ABE) fermentation is 15 naturally carried out by clostridial strains, an alternative solution to work with these 16 strains is based on the partial hydrolysis of recalcitrant lignocellulosic material present in 17 agro-industrial waste biomass to simple sugars in order to facilitate and increase the 18 efficiency of clostridial fermentation. 19

Hydrolysis can be achieved enzymatically or via physicochemical methods.
Enzymatic hydrolysis is considered an environmentally friendly process with broad
prospects in the conversion of lignocellulose to biofuel. However, information on the
optimal conditions of enzymatic hydrolysis in literature is limited. Commonly, product

1	inhibition, estimated running time etc. lead to addition of large amounts of expensive
2	commercial enzymes, which increases the biobutanol production cost and hinders its
3	commercialization (Wang & Chen, 2011). It has been reported that a highly selective and
4	efficient enzymatic hydrolysis can contribute up to 16-20 % of the total production cost
5	of butanol from lignocellulosic biomass (Montano, 2009). Additionally, enzymatic
6	hydrolysis at high total solids concentrations (an unavoidable prerequisite for many
7	feedstocks to achieve a large-scale production of biofuels, such as ethanol or butanol)
8	could lead to a decrease in substrate conversion, referred to as the "solids effect" (Puri et
9	al., 2013).
10	Physicochemical pre-treatment methods are less selective, and microbial inhibitors,
11	such as furan derivatives, weak acids, and phenolic compounds are also produced in
12	addition to the desired monosaccharaides (Maiti et al., 2016a). It has been reported that
13	these inhibitory compounds could have a significant detrimental effect on microbial
14	performance even at very low concentrations due to the synergistic inhibition effects
15	(Baral & Shah, 2014).
16	Since substrate cost has the highest influence on butanol price (Qureshi & Blaschek,
17	2000), this work focused on the use of inexpensive, renewable agro-industrial wastes for
18	the fermentative production of butanol using Clostridium beijerinckii. The potential use
19	of apple processing industry wastes, brewery industry wastes and starch industry
20	wastewater as the substrates for growth and butanol production by C. beijerinckii was
21	systematically investigated. Hence, the objectives of these studies were: (1) to investigate
22	the efficiency of different hydrolysis methods (namely chemical treatment, microwave
23	assisted treatment, nano spray-dryer particles catalysed treatment, mechanical treatment

1	and hydrothermolysis) to enhance fermentable sugar production; (2) to identify inhibitors
2	of butanol fermentation produced in agro-industrial wastes hydrolysates upon each
3	hydrolysis method; (3) to optimize different process parameters of acid hydrolysis for
4	using brewery industry liquid waste (BLW) as feedstock in order to increase the RSC
5	(reducing sugar compound) concentration minimizing the presence of any microbial
6	inhibitor; (4) to determine a kinetic model for the hydrolysis process; and (5) to ascertain
7	the ability of C. beijerinckii NRRL B-466 to utilize BLW hydrolysate as substrate for
8	ABE fermentation.
9	2. Materials and methods
10	2.1. Substrate selection and characterization
11	Brewery industry wastes (BLW and brewery spent grain (BSG)) used in the present
12	investigation were obtained from La Barberie (Quebec, Canada). Starch industry
13	wastewater (SIW) was obtained from ADM Ogilvic (Candiac, Quebec, Canada) and the
14	apple industry wastes (apple pomace sludge (APS), and apple pomace ultrafiltration
15	sludge (APUS)) were obtained from Lassonde Inc. (Rougemont, Montreal, Canada).
16	2.1.1. Brewery industry wastes
17	BSG is the waste resulting after the lautering process (separation of wort or mash
18	filtration). BLW mainly consist of residual substances from production (a complex
19	mixture of surplus yeast and plant residues, remaining fine spent grains and hops, etc.)
20	and leachates from the cleaning of fermentation and storage tanks, as well as vat and
21	bottle rinsing (Olajire, 2012). BLW has a high concentration of free RSCs,
22	polysaccharide plant residues and yeast proteins.
23	2.1.2. Apple industry wastes

1	Both APS and APUS are rich sources of carbohydrates, minerals, vitamins and dietary
2	fibres. Unlike the wastes from the brewery industry, apple pomace wastes had a higher
3	concentration of fructose. Cellulose was the main polysaccharide in APS, which implied
4	a higher concentration of aldohexoses in comparison with aldopentoses. No
5	hemicellulose was found in APUS sample. The pH of the waste suspension before
6	hydrolysis was lower (pH < 3.5) in comparison with other samples due to presence of
7	organic acids (Kosseva & Webb, 2013).
8	2.1.3. Starch processing wastes
9	The extraction of starch is accompanied many liquid and solid carbon-rich wastes.
10	Starch, an α 1-4 glycosidic linkage polysaccharide, is the energy reserve in plants, and it
11	is widely present in waste residues produced from the processing of plant raw materials.
12	Unlike cellulose (a β 1-4 glycosidic linkage polysaccharide), starch has been reported to
13	be more susceptible to partial and total hydrolysis (Martin, 2012).
14	Three of the feedstock (BLW, SIW and APUS) were received as suspension in water,
15	while BSG and APS were in solid state. The dry weight of all biomass has been
16	considered to compare the efficiency of the hydrolysis techniques under study. The
17	biomass was dried at 65 ± 1 °C for 72 h.
18	The presence of residual ethanol, which is reported as a microbial inhibitor (at a
19	concentration above 40 g/L) (Lee et al., 2008), is an additional challenge in concentrated
20	BLW samples for biobutanol production. The heating process carried out to dry the
21	samples allowed the reduction of original ethanol content below the inhibitory level.
22	Following this step, the dried BSG and APS was ground to particles of a smaller size (<
23	20 mm). The physicochemical characterization of the five agro-industrial wastes was

1	performed as given in Table 1. The measured values agree with values typically found in
2	literature (Dhillon et al., 2011; Olajire, 2012; Verma et al., 2007). The initial
3	concentration of free reducing sugars in APUS, APS and BLW was higher than that of
4	BSG and SIW.
5	2.2. Pre-treatment of waste biomass
6	The choice of hydrolysis treatment for pre-treatment of biomass and its severity
7	differed based on the heterogeneity and complexity of the substrate. In this study, the
8	following hydrolysis techniques were applied to carry out the required pre-treatment of
9	selected dried waste biomasses:
10	Chemical treatment
11	I. Brønsted acid catalysed hydrolysis (0.1 M H_2SO_4 , pH~1.2 ± 0.2) at 121 ± 1 °C for 40
12	min in autoclave (16 ± 0.2 psi).
13	II. H ₂ O ₂ (30 v/v, 0.05 mL) catalysed acid hydrolysis (pH~3) at 121 \pm 1 °C for 40 min in
14	autoclave (16 \pm 0.2 psi).
15	III. Alkali catalysed hydrolysis (1M NaOH, pH~10) at $121 \pm 1^{\circ}$ C for 40 min in autoclave
16	$(16 \pm 0.2 \text{ psi}).$
17	Microwave assisted treatment
18	IV. Microwave-assisted (1000 W) Brønsted acid catalysed hydrolysis (0.1 M H ₂ SO ₄ ,
19	pH~1.2 \pm 0.2) at 121 \pm 1 °C for 25 min.
20	V. Microwave-assisted (1000 W) alkali catalysed hydrolysis (1 M NaOH, pH~10) at 121
21	± 1 °C for 25 min.

22 • Nano- spray dryer particle (NSPs) catalysed treatment

1	Ca and Fe NPs (Nanoparticles) were prepared by using a nanospray dryer B-90 (Buchi,
2	Switzerland). Solutions of 10 g/L CaCO ₃ and 100 g/L Fe(OAc) ₂ were prepared using
3	distilled water and fed to the nanospray dryer at the liquid flow level of 3 (nearly 20
4	mL/h) with a constant air flow rate of 120 L/min at 120 °C (Sarma et al., 2014). The
5	mesh hole size of the operating spray cap was about 4.0 mm. Nanoparticles were
6	collected from the internal surface of the collecting electrode using the manual particle
7	scraper and preserved in airtight glass container.
8	For the NPs catalyzed hydrolysis, the liquid was composed of water and (15 ± 2.5) % of
9	NPs per gram of dry biomass sample was used (Zhang et al., 2011) under the following
10	conditions:
11	VI. Fe NPs catalysed hydrolysis (pH~3) at 121 ± 1 °C for 40 min in autoclave (16 ± 0.2
12	psi).
13	VII. Ca NPs catalysed hydrolysis (pH~10) at 121 ± 1 °C for 40 min in autoclave (16 ± 0.2
14	psi).
15	VIII. Both Ca and Fe NPs catalysed hydrolysis at 121 ± 1 °C for 40 min in autoclave (16 ±
16	0.2 psi).
17	Before fermentation, Fe NPs were removed by magnetic filtration and Ca NPs were
18	removed by Ca ₃ (PO ₄) ₂ precipitation (Zhang et al., 2011; Lee et al. 2014).
19	Mechanical treatment
20	IX. Ultra-sound assisted hydrolysis was carried out using an ultrasonication bath (Elma
21	Hans Schmidhauer GmbH & Co. KG, Singen, Germany) for 24 h (20-400 kHz) without
22	any pH adjustment.

23 • Hydrothermolysis

1 X. H₂O (pH~7) in autoclave (16 ± 0.2 psi).

2 XI. Microwave-assisted (1000 W) hydrolysis (H₂O, pH~7) in autoclave (16 ± 0.2 psi).

H₂SO₄ was selected as Brønsted acid as it is less volatile, less corrosive to the 3 equipment and is economically more feasible (García Martín et al., 2013). The 4 5 combination of the substrate and pre-treatment method achieving the most promising results during the pre-screening process was subsequently optimized by means of 6 response surface methodology (RSM) for hyper-production of reducing sugar compounds 7 (RSCs) and minimisation of inhibitory compounds (section 2.3). RSCs encompass total 8 9 reducing sugar (TRS), glucose, fructose, galactose and xylose, while inhibitors group comprises furfural, 5-HMF (5-hydroxymethyl furfural), levulinic acid and total phenolic 10 compounds (TPCs). All these chemicals (vanillin, vanillic acid, feluric acid, furfural, 5-11 HMF, acetic acid, levulinic acid, syringaldehyde, glucose, xylose, galactose and fructose 12 were purchased from Sigma Aldrich (USA). All standards were of analytical grade. 13 2.2.3. Experimental design and RSCs production optimization through RSM 14 15 Central composite design was applied to optimize the production of RSCs and minimize the release of inhibitory compounds (dependent variable) for a BLW sample 16 hydrolysed via Brønsted acid catalysis (selected combination), as a function of three 17 independent variables: reaction time, pH and feedstock concentration. Experimental 18 design construction made with the aid of Design-Expert[®]-7 software (Stat-Ease Inc., 19 20 Minneapolis, USA) resulted in a set of 20 experiments, comprising 3 central points and

21 three different code levels (low (-1), middle (0) and high (+1)) (Table 2).

A quadratic polynomial equation (Eq. 1) was proposed to interlink the effects of the
 three independent variables on reducing sugars as well as different inhibitors production
 as follows:

4 (*Reducing sugar/Inhibitor*)
$$_{production} = X_0 + \sum_{i=1}^n X_i Y_i + \sum_{i=1}^n X_{ii} Y_i^2 + \sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij} Y_i Y_j$$
 (Eq.1)

where (Reducing sugar/Inhibitor) $_{\text{production}}$ is the dependent variable; Y_i and Y_i are the 5 independent variables (n = 3 (time, pH and feedstock concentration)); X_0 is the intercept 6 constant and X_i, X_{ii} and X_{ii} correspond to the regression coefficients. The same software 7 (Design-Expert[®]-7) employed for test-matrix design was used to check the experimental 8 responses obtained. An analysis of variance (ANOVA report) was performed to fit the 9 quadratic polynomial equations for the selected LA hyper-producing substrate(s). Final 10 values of code factors (time, pH, feedstock concentration, time pH, time feedstock 11 concentration, pH feedstock concentration, time², pH², feedstock concentration²) were 12 13 considered to be statistically significant at p < 0.05. The quality of the model fit was evaluated by the coefficient of determination (R^2) and the adjusted coefficient of 14 determination (R^{2}_{Adi}). 15

16 **2.3. Biobutanol production**

17 2.3.1. Detoxification of agro-industrial waste hydrolysate

Detoxification of previously selected agro-industrial waste hydrolysate (BLW) was carried out using a modified over-liming method (Martinez et al., 2001). The pH of the hydrolysate was adjusted to 10 with Ca(OH)₂ and kept at 30 °C for overnight. The hydrolysate was mixed with 1 g/L Na₂SO₃ and the mixture was heated at 90 ± 1°C for 1 h. Subsequently, the precipitate of metal hydroxides was separated by centrifugation at 7650 x g (30 ± 1°C) for 30 min. Precipitate formed was discarded. The supernatant was

1	neutralized to pH 6.7 \pm 0.1 with 1 M H_2SO_4 and centrifuged at 30 \pm 1°C for 30 min at
2	7650 x g in order to separate the precipitate. The clear supernatant was used as a carbon
3	source to carry out the fermentation studies.
4	2.3.2. Microorganism and culture media
5	C. beijerinckii NRRL B-466, the microorganism selected for biobutanol production
6	purposes, was obtained from the Agricultural Research Station, USDA (USA). The
7	microorganism was grown and maintained in peptone-yeast extract-glucose (PYG) media
8	under anaerobic condition for 17 h at 35 \pm 1 °C and 150 rpm (Maiti et al., 2016b). The
9	medium (g/L) comprised: glucose (10); yeast extract (10); peptone (5); tryptone (5);
10	cysteine-HCl (0.5); K ₂ HPO ₄ (2.04); KH ₂ PO ₄ (0.04); FeSO ₄ ·7H ₂ O (1.1·10 ⁻³); CaCl ₂
11	(8×10 ⁻³); MgSO ₄ ·7H ₂ O (0.0192); NaCl (0.08); and NaHCO ₃ (0.4). Serum bottles of 125
12	mL with working volume of 50 mL were used as anaerobic batch reactors for both the
13	inoculum development and the butanol production (Maiti et al., 2016b). Anaerobic
14	conditions were maintained by sparging N_2 for 10 minutes and the bottles were
15	immediately sealed by aluminium crimp seal containing silicone septum (Fisher scientific
16	Canada) by using a hand-operated crimping tool (E-Z Crimper TM , VWR, Ontario,
17	Canada). Prior to culture development, the medium was sterilized for 20 min at 121 ± 1
18	°C. About 10 % (v/v) (dry cell weight 35 mg/mL) of microbial culture in its exponential
19	phase of growth ($OD_{600nm} = 1.3-1.5$) was used as inoculum for all the experiments
20	conducted in this investigation.
21	Chemicals such as glucose, urea, MgSO ₄ ·7H ₂ O, NaOH, FeSO ₄ ·7H ₂ O, CaCl ₂ , cysteine-
22	HCl, NaCl, NaHCO ₃ , Ca(OH) ₂ , Na ₂ SO ₃ , H ₂ SO ₄ HCl, <i>n</i> -butanol, acetone, acetic acid,
23	butyric acid, ethanol were purchased from Fisher Scientific (Ontario, Canada). Casein

1	peptone, tryptone, K_2HPO_4 and KH_2PO_4 were purchased from VWR (Ontario, Canada)
2	and the yeast extract was a kind gift from Lallemand, Canada.
3	2.3.3 Batch fermentation
4	Batch fermentation was performed in 125 mL serum vials (working volume 50 mL) at
5	pH 6.7 \pm 0.1. As already described for inoculum development, the medium was sterilized
6	and anaerobic conditions were established. The fermentation was started by inoculating
7	C. beijerinckii 10% (v/v) (17 h in vegetative growth). All experiments were performed at
8	$37 \pm 1^{\circ}$ C with shaking at 150 rpm for 72 h in triplicates (Maiti et al., 2015).
9	Fermentation experiments were carried out separately using modified P2 medium taking
10	following solutions: (1) 52 g/L of glucose as control sample; (2) Brønsted acid pre-
11	treated BLW hydrolysate to check the simultaneous effect of total reducing sugars and
12	inhibitory compounds in butanol production; and (3) detoxified BLW hydrolysate to
13	attain the highest conversion efficiency of the BLW biomass to biobutanol.
14	Modified P2 media used in the present investigation was composed of different
15	ingredients (buffer: KH ₂ PO ₄ 50 g/L, K ₂ HPO ₄ 50 g/L, NH ₄ CH ₃ CO ₂ 220 g/L; minerals:
16	MgSO ₄ ·7H ₂ O 20 g/L, MnSO ₄ ·H ₂ O 1 g/L, FeSO ₄ ·7H ₂ O 1 g/L, NaCl 1 g/L; vitamins:
17	thiamin 0.1 g/L, biotin 0.001 g/L). Since brewery industry liquid wastes are already
18	enriched with yeast protein, neither peptone nor yeast protein were added to P2 media.
19	From each batch of fermentation, 1 mL of culture broth was harvested at definite
20	intervals (12h) and used for metabolite analysis. Data presented herein are average value
21	from duplicate runs for triplicate samples.
22	2.4. Analytical procedure

2.4.1 Reducing sugars and inhibitors analysis by LC/MS-MS method 23

1	Along with several reducing sugars (i.e., glucose, fructose, galactose and xylose), a
2	complex mixture of microbial inhibitors (i.e., furfural, 5-HMF, acetic acid, levulinic acid,
3	vanillin, vanillic acid, feluric acid and syringaldehyde) were also produced as a result of
4	the pre-treatment step carried out in section 2.1.2 to break down hemicellulose, cellulose
5	and starch present in agro-industrial wastes. To analyse different reducing sugars,
6	hydrolysate samples were collected at 10-15-minute intervals and analysed using Liquid
7	Chromatography-Mass Spectrometry (LC-MS) equipped with a 5μ m, 150 mm ID, 4.6
8	mm df column where D_6 glucose was used as internal standard. Likewise, previously
9	mentioned inhibitors produced during hydrolysis were analysed by Liquid-
10	Chromatography-Tandem Mass Spectrometry (LC-TMS) (ZORBAX Carbohydrate,
11	Agilent Technologies, USA) equipped with a biobasic-18 column (5µm, 250 mm ID, 4.6
12	mm df) of Agilent Technologies (USA). Phenylethanol-D5 was used as internal standard
13	using samples collected in each 10-15 min interval.
14	Before injection for product analysis, samples were centrifuged for 5 minutes at 7650
15	x g and the supernatant was filtered by 0.45 μ m syringe filter. Methanol:water (8:2, v/v)
16	and acetonitrile:water (8.5:1.5, v/v) were used to dilute the samples before analysing
17	inhibitors and carbohydrate (Maiti et al., 2016b). All data presented are average values
18	from duplicate runs for duplicate samples. Standard deviation for each data has been
19	calculated with respect to the average (mean) value from duplicate runs for duplicate
20	samples.
21	2.4.2 Carbohydrate analysis by standard DNSA (dinitrosalicylic acid) method

TRS concentration during the fermentation was determined by DNSA method usingglucose as the standard (Miller, 1959). The amount of TRS extracted from hydrolysed

1 samples was determined by UV-visible spectrophotometer (Cary-50, Varian) using 3,5-

2 dinitrosalicylic acid as the reagent (DNS method) at 540 nm.

3 2.4.3 Metabolite measurements

ABE and additional metabolites (e.g., butyric acid, acetic acid) produced during 4 5 fermentation process were monitored by means of gas chromatography (GC7890B, 6 Agilent Technologies, USA) equipped with FID detector, along with a HP-INNOWax 7 column (30m, 0.25mm ID and 0.25µm df). The GC conditions comprised: helium carrier gas at a flow rate of 1 mL/min with a temperature cycle (initial temperature 50 $^{\circ}$ C; 10 8 °C/min increase up to 150 °C; 20 °C/min increase up to 250 °C) for a total method run 9 time of 16 min. Before injection, the liquid samples were centrifuged for 5 min at 7650 x 10 g and the supernatant was filtered by 0.45 µm syringe filter. Isobutanol was used as the 11 internal standard (Maiti et al., 2015). Reducing sugar yield based on the dry weight of 12 raw material was calculated as (Eq. 2): 13

14 *Yield of reducing sugar* (%)=100 $x \frac{Reducing \ sugar \ produced \ (g)}{Amount \ of \ substrate \ (g)}$ (Eq. 2)

15 3. Results and Discussion

16 **3.1 Comparison of different hydrolysis techniques to produce fermentable sugar**

- 17 compounds from agro-industrial wastes
- 18 **3.1.1** Brewery industry wastes

Due to the lignocellulosic composition of the wastes, (in which outer lignin entirely
covers and bounds the inner polysaccharide content), Brønsted acid catalysed hydrolysis
was expected to be more promising over other employed techniques to significantly
reduce recalcitrant nature of brewery industry wastes. Solubilisation of hemicellulose is
favoured under low pH, as acidic conditions facilitate the breakdown of glycosidic bonds.

1	To enhance fermentable sugars, different hydrolysis techniques, such as chemical,
2	hydrothermal, mechanical and nanoparticle application have been employed. In the
3	current study, acid (0.1 M H_2SO_4) catalysed hydrolysis of BSG and BLW achieved a
4	conversion of 0.468 g $_{TRS}$ /g and 0.433 g $_{TRS}$ /g of dry substrate, respectively (Table 4,
5	Figure 1). Moreover, higher abundance of aldohexoses in BLW hydrolysate (i.e., glucose
6	content), made it more promising for biofuel production compared to BSG. Other
7	hydrolysis treatments tested showed poor performance (Table 4, Figure 1). In comparison
8	to acid catalysed hydrolysis using autoclave, the microwave assisted acid hydrolysis
9	promoted the emergence of undesired side products (Figure 1).
10	Physical or chemical pre-treatment methods in combination with enzymatic hydrolysis
11	have been reported in literature. For example, Ravindran et al. reported a TRS yield of
12	0.228 g/g for BSG treated with microwave assisted alkali treatment followed by
13	enzymatic hydrolysis (Ravindran et al., 2017), and White et al. reported glucose yield of
14	0.278 g/g from BSG treated with dilute acid and enzyme (White et al., 2008). Though the
15	yield in these cases is more than that obtained in the current work (0.176 g/g), albeit the
16	use of enzymes would increase the cost of the pre-treatment process. As already
17	mentioned, authors preferred the utilization of acidic conditions rather than alkali
18	utilization.

19 **3.1.2** Apple industry wastes

The degradation of cellulose (main polysaccharide in apple pomace wastes) is described as an acid-catalysed and thermally accelerated chain scission mechanism. The process consists of two steps, an initial fast hydrolysis of the more solvent accessible amorphous region of cellulose, and a later, much slower hydrolytic attack on the

1 crystalline portion of cellulose (Hu & Ragauskas, 2012). The susceptibility of cellulose over different pH ranges has been reported to be dissimilar and more efficient at lower 2 pH, when sugar monomer release from biomass is more effective over further conversion 3 of different side products (Hu & Ragauskas, 2012). Bearing this in mind, dilute acid 4 5 catalysed hydrolysis was expected to be more promising over other methods. 6 However, microwave assisted hydrothermal method proved to be more efficient, and 7 0.404 g $_{\text{TRS}}$ /g and 0.631 g $_{\text{TRS}}$ /g of dry substrate were obtained from APS and APUS samples respectively, which resulted in a slight improvement of 3-7 % over acid 8 9 catalysed hydrolysis in autoclave (Table 4, Figure 1). Hydrothermolysis results reported in the literature have been lower than those obtained with dilute acid or alkali catalysed 10 hydrolysis (Liu et al., 2015), but its use has been recommended based on the absence of a 11 catalyst (acid or base) and easier reactor maintenance due to low corrosion potential 12 (Alvira et al., 2010). NSPs catalysed hydrolysis, which was previously reported to be 13 successful in crystalline cellulose hydrolysis (Feng & Fang, 2013), was not effective in 14 this case (Table 4, Figure 1). Alkaline hydrolysis, a pre-treatment method typically used 15 in delignification processes to enhance the accessibility of cellulose to hydrolytic 16 17 enzymes (enzymatic hydrolysis) (Arreola-Vargas et al., 2015) also rendered good results in APS and APUS (the samples with highest lignin content), resulting in 0.244 g_{TRS}/g 18 and 0.628 g_{TRS}/g , respectively. 19

20 **3.1.3 Starch industry wastes**

The assistance of microwave radiation improved the performance of Brønsted acid catalysed hydrolysis by 9–24 % (0.359 g_{TRS}/g and 0.246 g _{glucose}/g *vs* 0.330 g_{TRS}/g and 0.197 g _{glucose}/g). The results obtained were more satisfying in comparison with previous

1	works. Srinorakutara et al. (2006) reported that acid ($0.6 \text{ M H}_2\text{SO}_4$) catalysed hydrolysis
2	of starch industry waste (cassava waste) only produced about 0.122 g $_{TRS}$ /g (Srinorakutara
3	et al., 2006), while the TRS yield by acid hydrolysis was 0.122g/g for Sarchamo and
4	Rehmann, and 0.678 g/g for Hernoux-Villière et al (Sarchami & Rehmann, 2015;
5	Hernoux-Villière et al., 2013).
6	The production of fermentable sugars, and more specifically glucose, was observed to be
7	higher in starch and brewery industry wastes (Table 4).
8	3.2 Comparison of different hydrolysis techniques to produce microbial inhibitors
9	from five different agro-industrial wastes
10	Several substances are often formed during lignocellulosic feedstock pre-treatment
11	which inhibit microbial fermentation. Thus, prior to fermentation, a thorough
12	investigation on the capacity of the hydrolysis techniques under study to produce these
13	inhibitors is compulsory as its influence was reported to be very significant (Baral &
14	Shah, 2014). Inhibitors production pathway is based on cellulose and hemicellulose
15	hydrolysis to carbohydrates and subsequent selective dehydration and rehydration to
16	various organic compounds, such as furfural, 5-hydroxy methyl furfural, levulinic acid
17	and formic acid, among others (Assary et al., 2012). Table 5 summarizes the undesired
18	microbial inhibitors produced alongside with fermentable sugars for the different
19	hydrolysis methods tested.
20	3.2.1. 5-Hydroxy methyl furfural and furfural

Furfural and 5-HMF are predominantly obtained from acid catalysed hydrolysis and
have been reported to adversely affect metabolite promoting enzymes, inhibit DNA and
protein synthesis and decrease cell permeability (Baral & Shah, 2014; Ezeji et al., 2007;
Zhang et al., 2012b).

1	Fructose is the most effective carbohydrate for 5-HMF synthesis, since it presents
2	higher reactivity (presence of five membered rings) in comparison to the naturally
3	abundant glucose (Palmqvist & Hahn-Hägerdal, 2000). Thus, 5-HMF production by
4	means of dilute acid catalysis was higher in APS and APUS samples (45.5 g/kg and 37.5
5	g/kg, respectively) compared to BLW, SIW and BSG (21.3 g/kg, 3.17 g/kg and 2.68
6	g/kg) due to higher abundance of fructose (Table 5). Microwave assisted treatment was
7	detrimental in all cases (e.g., an increase in 5-HMF concentration of ~15 % for apple
8	pomace substrates was observed) under the current experimental condition (Rosa et al.,
9	2014).
10	Furfural production was favoured in hemicellulose rich biomass samples, such as
11	BSG, resulting in a maximum inhibitor production of 48.65 g/kg in microwave assisted
12	acid catalysed conditions. The lower activation energy for conversion of aldopentose
13	monosaccharides to furfural compared to aldohexoses led to more abundance of furfural
14	in waste hydrolysates (Enslow & Bell, 2012).
15	3.2.2 Organic acids
16	Presence of organic acids (e.g., acetic acid, formic acid and levulinic acid) in the
17	hydrolysate reduces the pH of the medium, causing plasma disruption, cell rupture and
18	termination of ABE fermentation (Wang & Chen, 2011). In the case of levulinic acid, the
19	inhibitory effects on microbial glucose consumption, cell growth and biofuel production
20	were not observed in the presence of less than 5 g/L (Lee et al., 2015).
21	Further transformation of furan derivatives and, to a lesser extent, reducing sugars led
22	to the formation of organic acids in acid catalysed hydrolysis. Therefore, the methods
23	producing higher amounts of 5-HMF and its sister chemical furfural, were also the main
24	generators of levulinic acid. Dilute acid catalysed thermal hydrolysis (with or without

1 assistance of microwave radiation) method was the main responsible of levulinic acid

2 production (76–92 % of the total inhibitor concentration) in all cases.

3 3.2.3 Phenolic compounds

In contrast to furan derivatives and organic acids, very low concentrations of phenolic 4 5 compounds have been associated with disruption of ABE fermentation. Mechanism of 6 inhibition of phenolic compounds has been based on their partitioning into biological membranes with the subsequent loss of membrane integrity (Maiti et al., 2016a). 7 Hydrolysis of lignin can produce phenolic compounds. Since lignin is more susceptible to 8 9 low pH values, alkaline treatments were discarded as they could be a source of phenolic compounds (Table 5). Again, dilute acid catalysed thermal hydrolysis produced the 10 highest concentrations of inhibitors, vanillin being the most abundant compound in all 11 feedstocks. Vanillin has been considered the strongest inhibitor amongst typical phenolic 12 compounds, such as syringaldehyde or hydroxybenzoic acid (Li et al., 2014), so its 13 elimination or detoxification for efficient fermentation was compulsory, as it is 14 demonstrated in section 3.5. Unlike other wastes, phenolic inhibitors were not detected in 15 SIW, due to its structural composition (Table 5). 16

Therefore, even if achieving the maximum production of easily fermentable sugars is the goal, in fermentative butanol synthesis, the formation of unintended by-products (microbial inhibitors) in an unavoidable outcome during these pre-treatments that must not be neglected. Efficiency of each pre-treatment is marked by both factors. A brief summary of efficiencies of different pre-treatment process has been illustrated in Figure 1 (TRS vs By-products). It has been observed that the best process condition for the release of higher concentration of easily fermentable sugars and lower by-products were different

1 for each industrial waste biomass. Thus, release of easily fermentable sugars as well as by-products typically depended on both nature of the substrate and pre-treatment process. 2 Based on the initial characterization of the for agro-industrial wastes, BLW was 3 selected as an optimal substrate due to its high initial concentration of RSCs. This, 4 5 coupled with the greater availability of BLW over other feedstocks, converted this waste in the most promising substrate for biobutanol production purposes. In addition, BLW 6 was already enriched with yeast protein and other essential micronutrients, and presented 7 higher total solids concentration in comparison with other valid options, such as SIW 8 (Table 1). In this case, dilute acid hydrolysis gave the highest conversion of TRS/g dry 9 substrate as compared to the other methods. However, acid hydrolysis pre-treatment was 10 also shown to produce higher concentrations of microbial inhibitors (such as phenolics), 11 and therefore, RSM was used to optimize parameters to enhance TRS concentration and 12 13 reduce inhibitor concentration for acid hydrolysis of BLW. 3.3 Optimization of process parameters to enhance fermentable sugar production 14 from BLW using RSM 15 The ranges of the variables investigated and responses of the previously selected 16 substrate samples in terms of TRS and inhibitors production are given in Table 3. Results 17 of central composite design which consists of experimental data for studying the effect of 18 three independent variables (reaction time, pH, feedstock concentration) on fermentable 19 20 sugar production and inhibitory compounds generation when dilute acid hydrolysis was 21 applied to a BLW sample have been presented. The data was fitted in a quadratic polynomial equation for all the desired and undesired compounds and the analysis of 22 variance described in Table 6 indicated that the model was significant (p < 0.005) in all 23

1	cases. Corresponding equations to predict fermentable sugars production and inh	ibitors
2	production using BLW (Eq. 3-10) in terms of code factors were as follows:	
3	Fermentable sugars:	
4	$TSR = (+89.74 + 7.81 \cdot Con + 5.95 \cdot Time + 306.24 \cdot pH - 9.73 \cdot 10 - 3 \cdot Con \cdot Time^{-1})$ 0.35 \cdot Con \cdot pH - 0.04 \cdot Time \cdot pH - 0.08 \cdot Con^{2} - 0.07 \cdot Time^{-2} - 312.05 \cdot pH^{-2})	me +
5		(Eq. 3)
6	$Glu \cos e = (-85.98 + 9.28 \cdot Con + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 230.33 \cdot pH - 0.02 \cdot Con \cdot Time + 6.88 \cdot Time + 6$	0.63.
0	$Con \cdot pH + 0.27 \cdot Time \cdot pH - 0.11 \cdot Con^2 - 0.08 \cdot Time^2 - 197.92 \cdot pH^2)$	
7	$Galactose = (-4.84 + 0.69 \cdot Con + 0.49 \cdot Time + 21.22 \cdot pH - 2.49 \cdot 10 - 4 \cdot Con \cdot 10^{-1})$	(Eq. 4) <i>Time</i> +
8	• $0.06 \cdot Con \cdot pH = 0.03 \cdot Time \cdot pH = 9.11 \cdot 10 = 3 \cdot Con^2 = 5.54 \cdot 10 = 3 \cdot Time^2 = 20$	$(05 \cdot nH^2)$
9		(Eq. 5)
5	$Xylose = (-13.55 + 0.75 \cdot Con + 1.10 \cdot Time + 20.18 \cdot pH - 1.02 \cdot 10 - 3 \cdot Con \cdot The second second$	(Lq. 5) ime +
10	$0.20 \cdot Con \cdot pH - 0.01 \cdot Time \cdot pH - 0.011 \cdot Con^2 - 0.01 \cdot Time^2 - 24.88 \cdot pH^2)$	
11		(Eq. 6)
12	Inhibitors:	
12	$5 - HMF = (+64.82 - 0.86 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 24.69 \cdot pH + 6.09 \cdot 10 - 3 \cdot Con - 0.38 \cdot Time - 20 \cdot 10 + 0.09 \cdot 10 - 3 \cdot Con - 0.09 \cdot 10 + 0.09 \cdot 1$	on · Time
14	• $+0.41 \cdot Con \cdot pH + 0.25 \cdot Time \cdot pH + 1.19 \cdot 10 - 3 \cdot Con^2 - 1.90 \cdot 10 - 3 \cdot Time$	$^{2}-8.90.$
	pH^2)	
15		(Eq. 7)
16	$Furfural = (+3.20 - 0.05 \cdot Con + 0.29 \cdot Time - 5.11 \cdot pH + 1.19 \cdot 10 - 4 \cdot Con \cdot Time - 5.11 \cdot pH + 1.19 \cdot 10 - 5 \cdot Con \cdot Time - 5.11 \cdot pH + 1.19 \cdot 10 - 5 \cdot C$	ne + 0.03
10	$\cdot Con \cdot pH + 0.01 \cdot Time \cdot pH + 5.14 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 4 \cdot Time^2 - 1.54 \cdot 10 - 5 \cdot Con^2 - 6.03 \cdot 10 - 5 \cdot Con^2 - 5 \cdot Con^2 - 6.03 \cdot 10 - 5 \cdot Con^2 - 5 \cdot$	pH^2)
17		(Eq. 8)
18	Levulinic $acid = (+20.13 - 0.57 \cdot Con + 0.25 \cdot Time + 4.86 \cdot pH - 1.26 \cdot 10 - 3 \cdot Con + 0.25 \cdot Time + 0.25$	Con · Time
10	$+0.06 \cdot Con \cdot pH - 0.15 \cdot Time \cdot pH + 5.98 \cdot 10 - 3 \cdot Con^{2} - 9.58 \cdot 10 - 5 \cdot Time^{2} - 9.58 \cdot 10$	$-10.25 \cdot pH^2$)
19		(Eq. 9)
20	$TPC = (+3822.05 - 106.66 \cdot Con + 22.99 \cdot Time - 2112.98 \cdot pH - 0.15 \cdot Con \cdot Time - 2$	ne + 34.93 ·
	$Con \cdot pH - 4.56 \cdot Time \cdot pH + 0.75 \cdot Con^2 - 0.08 \cdot Time^2 - 117.68 \cdot pH^2$	
21		(Eq.10)
22	The goodness of the model adjusted for the renge of verichles need was shee	kad by
23	The goodness of the model adjusted for the range of variables posed was chec	Keu Dy
24	the determination coefficient (R^2). In both models, R^2 values higher than 0.85 inc	licated

that 85% variations in fermentable sugars production can be well explained by the model(Table 6).

BLW hydrolysis using 40 g substrate/L, pH of 0.76 and 40 min produced the maximum 3 amount of reducing sugar compounds (TRS, glucose, galactose and xylose), a parameter-4 5 combination quite interesting compared to literature reports, since an elevated substrate 6 concentration has been linked to a decreasing reaction rate due to inhibition processes by 7 other compounds, such as sugar-derived inhibitors, insufficient mixing (mass transfer limitations) or other effects related to the increased content of insoluble solids 8 9 (Kristensen et al., 2009). Even if maintaining high substrate concentrations throughout the hydrolysis and subsequent conversion process from biomass to biobutanol is 10 important for the energy balance and economic viability of biobutanol production, most 11 of the hydrolysis processes of different feedstocks utilize comparatively lower substrate 12 concentrations as shown in Table 5. In this case, a lower substrate concentration favoured 13 the conversion of reducing sugar compounds into inhibitors. This effect could be 14 reinforced by the accumulation of free reducing sugar compounds already present in the 15 untreated (not hydrolysed) biomass (Table 1). Glucose represented the 84% of the total 16 BLW-derived carbohydrates - a promising result considering that glucose is the preferred 17 carbon source for clostridia cultures (Sarchami & Rehmann, 2015). 18 Besides, an increase in time from 40 to 60 min or more led to lowering of RSC 19 20 concentration as the hydrolysis process had enough time to reach the activation energy to

- 21 produce further unwanted by-products, especially TPC and levulinic acid. The synthesis
- 22 of latter inhibitor also benefited from precursors, such as 5-HMF and furfural (Morone et

1 al., 2015), which suffered a drop in their concentration above 20 and 40 min,

2 respectively.

3 3.4 Kinetic modelling of acid catalysed hydrolysis of BLW

The models proposed in literature to explain dilute acid hydrolysis are generally based
on pseudo homogeneous irreversible first-order reactions, such as Seaman's model and
two-fraction model (Aguilar et al., 2002). These models can be generalized as in Eq. 11: *Substrate* (S) —^{k₁} → *Product* (P) —^{k₂} → *Decomposition byproducts* (Eq. 11)
where k₁ is the rate of the generation reaction and k₂ is the rate of the decomposition
reaction (min⁻¹). Solving the differential equations, TRS concentration can be predicted
through Eq. 12:

11
$$P = P_0 x e^{-k_2 t} + S_0 \frac{k_1}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$
 (Seaman's model) (Eq. 12)

where S and P are concentrations of substrate (BLW) and product (TRS) expressed in 12 g/L, t is time (min) and subscript 0 indicates initial conditions. It can be inferred that 13 larger the value of k₁, the higher the rate of TRS formed and the lower the process time 14 15 required for maximizing production yield. On the contrary, the higher the value of k_2 , the greater the rate of inhibitor production. Two-fraction model goes forward one more step 16 and distinguishes between readily reacting lignocellulosic biomass fraction and not 17 18 reaction susceptible fraction. The ratio between them is the parameter α (g/g) and Eq.12 is modified as follows (Eq. 13): 19

20
$$P = P_0 x e^{-k_2 t} + \alpha S_0 \frac{k_1}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t})$$
 (Two-fraction model) (Eq. 13)

21 Once optimal conditions have been established in this study to obtain the maximum 22 amount of RSC with the lowest concentration of inhibitors, it is interesting to compare

1	the results obtained with commonly applied kinetic methods useful for economical
2	estimations in order to check the validity of the results (Lenihan et al., 2011). In our case,
3	Eq. 13 was used to fit the data by means of non-linear regression analyses and values of
4	0.031 min ⁻¹ , 0.014 min ⁻¹ and 0.60 g/g were achieved for k_1 , k_2 and α , respectively. The
5	most desirable operating conditions will result in a high value of k_1 and a low value of k_2 .
6	Comparing the values of k_1 and k_2 , it can be observed that the kinetic coefficient of the
7	TRS formation is 2.2-fold higher than that of the degradation reaction. The value of k_1 is
8	in accordance with the previously reported values (Aguilar et al., 2002; Jiang et al., 2012;
9	Sarkar & Aikat, 2012). Nevertheless, the relatively high k_2 value confirms the significant
10	influence of the time factor, which confirms that beyond the optimized value (40 min),
11	accumulation of degradation by-products could happen. About 60% of the substrate was
12	susceptible to dilute acid hydrolysis, which is in the common range for lignocellulosic
13	feedstock (Aguilar et al., 2002).
14	3.5 Biobutanol and ABE production using BLW as substrate
15	Once operational variables of pre-treatment stage were evaluated and optimized by
16	means of RSM, this section focused on the production of biobutanol by C. beijerinckii
17	NRRL B-466 using BLW as raw material. Butanol fermentation by clostridia is
18	characterized by synthesis of butanol along with by-products acetone and ethanol in the
19	ratio 6:3:1. In control batch fermentation, using modified P2 medium containing 52 g/L
20	glucose solution, C. beijerinckii NRRL B-466 produced 14.46 g/L of ABE in 72 h
21	(Figure 2A). In this run, ABE yield reached 0.41 g $_{ABE}/g$ $_{glucose}$ (74% of the glucose was
22	efficiently utilized) and productivity was 0.15 g/L.

1	In the second batch experiment, the efficacy of the strain to exploit the nutrient and
2	free RSC content (52 g/L) present in the raw BLW hydrolysate was studied. Batch
3	fermentation of undetoxified BLW performed in P2 media resulted in no ABE
4	production. Although the residual sugar concentration was high enough for solventogenic
5	phase development, the presence of different microbial inhibitors within the hydrolysate
6	solution (furfural 0.64 g/L, 5-HMF 1.12 g/L, levulinic acid 0.24 g/L, acetic acid 1.56 g/L
7	and total phenolic compounds 0.31 g/L) prevented the transformation of intermediate
8	products in butanol.
9	Clostridial strains have the ability to metabolize low concentration of inhibitors, such
10	as furfural or 5-HMF, improving ABE fermentation in terms of cell concentration and
11	solvents production (Gao & Rehmann, 2016). However, synergistic detrimental effect of
12	weak acids, furan derivatives and phenolic compounds have been reported to either halt
13	or slow down reaction rates of the fermentation (Jönsson et al., 2013). Thus, an extra
14	detoxification step was required to achieve successful fermentation.
15	Detoxification by the modified over-liming method gave a sugar reduction of less than
16	10%. Using detoxified BLW hydrolysate for ABE fermentation (Figure 2B), an ABE
17	yield of 0.30 g ABE/g glucose was produced by C. beijerinckii NRRL B-466, resulting in a
18	total ABE concentration of 10.6 g/L, which means that the culture performed much better
19	than it did in the previous test. The TRS concentration reduced from 52.9 ± 0.8 g/kg to
20	15.4 ± 0.1 g/kg. The results obtained are consistent with those reported by other authors.
21	Zhang et al. (2012) observed that sugar utilization ratio increased by 27 % when whether
22	corncob residue hydrolysate was detoxified with Ca(OH) ₂ (Zhang et al., 2012a).
23	Similarly, Liu et al. (2015) increased butanol formation from 0.4 g/L to 5.5 g/L when the

pH of switchgrass hydrolysate was adjusted to 6 and 4 g/L of CaCO₃ were added prior to
fermentation stage (Liu et al., 2015).

3 4. Conclusion

This study demonstrated that hydrolytic pre-treatment enhanced production of 4 5 fermentable sugars from complex biomass. However, increased production of microbial 6 inhibitors counter balanced biobutanol production potential. Hydrolysis pre-treatment 7 step makes detoxification process another unavoidable necessity to enhance biobutanol production, increasing biofuel production cost. In any case, the ability to produce high 8 9 value industrial solvents, such as ABE, from the inexpensive agro-industrial wastes could have positive effects on bioenergy production as well as on waste management, uplifting 10 the agribusiness and employment in agro-industrial sector. 11 E-supplementary data of this work can be found in online version of the paper 12 Acknowledgements 13 This work was supported by the Natural Sciences and Engineering Research Council of 14 Canada (NSERC, Discovery Grant), MAPAQ (No. 809051), Ministère des Relations 15

16 Internationales du Québec (coopération Paraná-Québec 2010–2012; Quebec-Vietnam

17 2012-2015) and the Centre de Recherche Industrielle du Québec (CRIQ).

18

1920 References

21

1. Aguilar, R., Ramırez, J., Garrote, G., Vázquez, M. 2002. Kinetic study of the acid

23 hydrolysis of sugar cane bagasse. *Journal of Food Engineering*, **55**(4), 309-318.

24 2. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M. 2010. Pretreatment technologies

for an efficient bioethanol production process based on enzymatic hydrolysis: a review.

26 *Bioresource technology*, **101**(13), 4851-4861.

27 3. Arreola-Vargas, J., Razo-Flores, E., Celis, L.B., Alatriste-Mondragón, F. 2015. Sequential

28 hydrolysis of oat straw and hydrogen production from hydrolysates: role of hydrolysates

29 constituents. *International Journal of Hydrogen Energy*, **40**(34), 10756-10765.

- 1 4. Assary, R.S., Kim, T., Low, J.J., Greeley, J., Curtiss, L.A. 2012. Glucose and fructose to
- 2 platform chemicals: understanding the thermodynamic landscapes of acid-catalysed
- 3 reactions using high-level ab initio methods. *Physical Chemistry Chemical Physics*,
- 4 **14**(48), 16603-16611.
- 5 5. Baral, N.R., Shah, A. 2014. Microbial inhibitors: formation and effects on acetone-
- butanol-ethanol fermentation of lignocellulosic biomass. *Applied microbiology and biotechnology*, **98**(22), 9151-9172.
- 7 Diolectitiology, **98**(22), 9151-9172.
- 8 6. Dhillon, G.S., Brar, S.K., Verma, M., Tyagi, R.D. 2011. Utilization of different agro-
- 9 industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger.
- 10 Biochemical Engineering Journal, **54**(2), 83-92.
- 11 7. Dhillon, G.S., Kaur, S., Brar, S.K. 2013. Perspective of apple processing wastes as low-
- cost substrates for bioproduction of high value products: A review. *Renewable and Sustainable Energy Reviews*, **27**, 789-805.
- 14 8. Enslow, K.R., Bell, A.T. 2012. The kinetics of Brønsted acid-catalyzed hydrolysis of
- hemicellulose dissolved in 1-ethyl-3-methylimidazolium chloride. *RSC Advances*, **2**(26),
- 16 10028-10036.
- 17 9. Ezeji, T., Qureshi, N., Blaschek, H.P. 2007. Butanol production from agricultural
- 18 residues: impact of degradation products on Clostridium beijerinckii growth and butanol
- 19 fermentation. *Biotechnology and bioengineering*, **97**(6), 1460-1469.
- 20 10. Feng, G., Fang, Z. 2013. Solid-and nano-catalysts pretreatment and hydrolysis
- 21 techniques. in: *Pretreatment Techniques for Biofuels and Biorefineries*, Springer, pp.
- 22 339-366.
- 11. Gao, K., Rehmann, L. 2016. Combined Detoxification and In-situ Product Removal by
- a Single Resin During Lignocellulosic Butanol Production. *Scientific Reports*, **6**.
- 12. García Martín, J.F., Sánchez, S., Cuevas, M. 2013. Evaluation of the effect of the
- dilute acid hydrolysis on sugars release from olive prunings. *Renewable Energy*, **51**, 382387.
- 13. Gürbüz, E.I., Wettstein, S.G., Dumesic, J.A. 2012. Conversion of hemicellulose to
- 29 furfural and levulinic acid using biphasic reactors with alkylphenol solvents.
- 30 *ChemSusChem*, **5**(2), 383-387.
- 14. He, J., Zhang, W. 2011. Techno-economic evaluation of thermo-chemical biomass-to-
- 32 ethanol. Applied Energy, **88**(4), 1224-1232.
- 15. Hernoux-Villière, A., Lassi, U., Hu, T., Paquet, A., Rinaldi, L., Cravotto, G., Molina-
- 34 Boisseau, S., Marais, M.-F., Lévêque, J.-M. 2013. Simultaneous microwave/ultrasound-
- assisted hydrolysis of starch-based industrial waste into reducing sugars. ACS
 Sustainable Chemistry & Engineering, 1(8), 995-1002.
- 16. Hu, F., Ragauskas, A. 2012. Pretreatment and lignocellulosic chemistry. *Bioenergy Research*, 5(4), 1043-1066.
- 17. Jiang, C.W., Bai, C.C., Xiao, H. 2012. Hydrolysis Kinetics of Straw Biomass Catalyzed
- 40 by Diluted Sulphuric Acid in the Present of Fe2+. *Advanced Materials Research*. Trans
- 41 Tech Publ. pp. 484-487.
- 42 18. Jönsson, L.J., Alriksson, B., Nilvebrant, N.-O. 2013. Bioconversion of lignocellulose:
- 43 inhibitors and detoxification. *Biotechnology for Biofuels*, **6**(1), 1.

- 1 19. Kosseva, M., Webb, C. 2013. *Food industry wastes: assessment and recuperation of* 2 *commodities*. Academic Press.
- 3 20. Kristensen, J.B., Felby, C., Jørgensen, H. 2009. Yield-determining factors in high-
- 4 solids enzymatic hydrolysis of lignocellulose. *Biotechnology for Biofuels*, **2**(1), 1.
- 5 21. Lee, H., Hamid, S., Zain, S. 2014. Conversion of lignocellulosic biomass to

6 nanocellulose: structure and chemical process. The Scientific World Journal, 2014.

- 7 22. Lee, S.J., Lee, J.H., Yang, X., Kim, S.B., Lee, J.H., Yoo, H.Y., Park, C., Kim, S.W. 2015.
- 8 Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,
- 9 3-butanediol production by Enterobacter aerogenes. *Biotechnology journal*, **10**(12),
- 10 1920-1928.
- 12 23. Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S. 2008. Fermentative
- 12 butanol production by Clostridia. *Biotechnology and bioengineering*, **101**(2), 209-228.
- 13 24. Lenihan, P., Orozco, A., Mangwandi, C., Rooney, D., O'Neill, E., Walker, G., Ahmad,
- 14 M. 2011. Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. INTECH
- 15 Open Access Publisher.
- 16 25. Li, Y., Qi, B., Wan, Y. 2014. Inhibitory effect of vanillin on cellulase activity in
- 17 hydrolysis of cellulosic biomass. *Bioresource technology*, **167**, 324-330.
- 18 26. Liu, K., Atiyeh, H.K., Pardo-Planas, O., Ezeji, T.C., Ujor, V., Overton, J.C., Berning, K.,
- 19 Wilkins, M.R., Tanner, R.S. 2015. Butanol production from hydrothermolysis-pretreated

switchgrass: Quantification of inhibitors and detoxification of hydrolyzate. *Bioresource technology*, **189**, 292-301.

- 22 27. Maiti, S., Gallastegui, G., Sarma, S.J., Brar, S.K., Le Bihan, Y., Drogui, P., Buelna, G.,
- 23 Verma, M. 2016a. A re-look at the biochemical strategies to enhance butanol
- production. *Biomass and Bioenergy*, **94**, 187-200.
- 25 28. Maiti, S., Sarma, S.J., Brar, S.K., Le Bihan, Y., Drogui, P., Buelna, G., Verma, M. 2016b.
- 26 Agro-industrial wastes as feedstock for sustainable bio-production of butanol by
- 27 Clostridium beijerinckii. *Food and Bioproducts Processing*, **98**, 217-226.
- 28 29. Maiti, S., Sarma, S.J., Brar, S.K., Le Bihan, Y., Drogui, P., Buelna, G., Verma, M.,
- 29 Soccol, C.R. 2015. Novel spectrophotometric method for detection and estimation of
- 30 butanol in acetone–butanol–ethanol fermenter. *Talanta*, **141**, 116-121.
- 30. Martin, A.M. 2012. *Bioconversion of waste materials to industrial products*. Springer
- 32 Science & Business Media.
- 33 31. Martinez, A., Rodriguez, M.E., Wells, M.L., York, S.W., Preston, J.F., Ingram, L.O.
- 34 2001. Detoxification of dilute acid hydrolysates of lignocellulose with lime.
- 35 *Biotechnology progress*, **17**(2), 287-293.
- 36 **32.** Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing 37 sugar. *Analytical chemistry*, **31**(3), 426-428.
- 38 33. Montano, D. 2009. Process design and evaluation of butanol production from
- 39 lignocellulosic biomass. Energy research Centre of the Netherlands ECN.
- 40 34. Morone, A., Apte, M., Pandey, R. 2015. Levulinic acid production from renewable
- 41 waste resources: Bottlenecks, potential remedies, advancements and applications.
- 42 *Renewable and Sustainable Energy Reviews*, **51**, 548-565.

- 35. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K. 2010. Production of first and second 1
- 2 generation biofuels: a comprehensive review. Renewable and Sustainable Energy
- 3 Reviews, 14(2), 578-597.
- 36. Nigam, P.S.-N., Pandey, A. 2009. Biotechnology for agro-industrial residues 4
- 5 utilisation: utilisation of agro-residues. Springer Science & Business Media.
- 6 37. Olajire, A.A. 2012. The brewing industry and environmental challenges. Journal of 7 cleaner production.
- 8 38. Palmqvist, E., Hahn-Hägerdal, B. 2000. Fermentation of lignocellulosic hydrolysates.
- 9 II: inhibitors and mechanisms of inhibition. *Bioresource Technology*, **74**(1), 25-33.
- 10 39. Puri, D.J., Heaven, S., Banks, C.J. 2013. Improving the performance of enzymes in
- hydrolysis of high solids paper pulp derived from MSW. Biotechnology for biofuels, 6(1), 11 1.
- 12
- 40. Qureshi, N., Blaschek, H. 2000. Economics of butanol fermentation using hyper-13
- 14 butanol producing Clostridium beijerinckii BA101. Food and bioproducts processing,
- 15 **78**(3), 139-144.
- 41. Ravindran, R., Jaiswal, S., Abu-Ghannam, N., Jaiswal, A.K. 2017. A comparative 16
- 17 analysis of pretreatment strategies on the properties and hydrolysis of brewers' spent 18 grain. Bioresource Technology.
- 42. Rosa, R., Ponzoni, C., Leonelli, C. 2014. Direct energy supply to the reaction mixture 19
- 20 during microwave-assisted hydrothermal and combustion synthesis of inorganic 21 materials. *Inorganics*, **2**(2), 191-210.
- 22 43. Sarchami, T., Rehmann, L. 2015. Optimizing Acid Hydrolysis of Jerusalem Artichoke-
- 23 Derived Inulin for Fermentative Butanol Production. BioEnergy Research, 8(3), 1148-24 1157.
- 25 44. Sarkar, N., Aikat, K. 2012. Kinetic study of acid hydrolysis of rice straw. ISRN
- 26 biotechnology, **2013**.
- 45. Sarma, S.J., Das, R.K., Brar, S.K., Le Bihan, Y., Buelna, G., Verma, M., Soccol, C.R. 27
- 2014. Application of magnesium sulfate and its nanoparticles for enhanced lipid 28
- 29 production by mixotrophic cultivation of algae using biodiesel waste. Energy, 78, 16-22.
- 30 46. Srinorakutara, T., Kaewvimol, L., Saengow, L.-a. 2006. Approach of cassava waste
- pretreatments for fuel ethanol production in Thailand. J. Sci. Res. Chula. Univ, 31(1), 77-31 32 84.
- 33 47. Verma, M., Brar, S.K., Tyagi, R., Surampalli, R., Valéro, J. 2007. Starch industry
- 34 wastewater as a substrate for antagonist, Trichoderma viride production. Bioresource
- 35 technology, 98(11), 2154-2162.
- 36 48. Wang, L., Chen, H. 2011. Increased fermentability of enzymatically hydrolyzed
- 37 steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process biochemistry, 46(2), 604-607. 38
- 39 49. White, J.S., Yohannan, B.K., Walker, G.M. 2008. Bioconversion of brewer's spent
- 40 grains to bioethanol. FEMS Yeast Research, 8(7), 1175-1184.
- 50. Zhang, F., Deng, X., Fang, Z., Zeng, H., Tian, X., Kozinski, J. 2011. Hydrolysis of 41
- 42 microcrystalline cellulose over Zn-Ca-Fe oxide catalyst. Petrochemical Technology, 40(1),
- 43-48. 43

51. Zhang, W., Liu, Z., Liu, Z., Li, F. 2012a. Butanol production from corncob residue

- using Clostridium beijerinckii NCIMB 8052. Letters in applied microbiology, 55(3), 240-
- 246.

52. Zhang, Y., Han, B., Ezeji, T.C. 2012b. Biotransformation of furfural and 5-

- hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol
- fermentation. New biotechnology, 29(3), 345-351.

- **Figure captions**

Figure 1. Effect of different pre-treatments on total reducing sugars (TRS) and by-products formation from different agro industrial wastes such as BLW: brewery industry liquid waste, BSG: brewery spent grain, APS: apple pomace solid waste, APUS: apple pomace ultrafiltration sludge, SIW: starch industry wastewater where I : H₂SO₄/autoclave, II : H₂O₂/autoclave, III : NaOH/autoclave, IV: H₂SO₄/microwave, V : NaOH/ microwave, VI : Ca NSPs, VII : (Fe+ Ca) NSPs, VIII : Fe NSPs, IX : Ultra-sonication, $X : H_2O$ /autoclave, $XI : H_2O$ /microwave.

1	
2	Figure 2 ABE production in P2 media with 52 g/L of glucose (control sample) (A), and a
3	detoxified BLW hydrolysate sample (B) by means of C. beijerinckii NRRL B-466. No
4	ABE production was observed in the raw (undetoxified) BLW hydrolysate sample.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	Tables

Table 1. Physicochemica	l characterization of agro-industrial w	astes.
-------------------------	---	--------

Commonweat	Brewery I	Industry waste		Apple Industry waste					
Components	BSG	Surplus yeast	Spent hops	APS	APUS	SIW			
pH	5.2 ± 0.1	5.4 ± 0.1	5.1 ± 0.1	3.2 ± 0.1	3.4 ± 0.1	3.3 ± 0.2			
Total solid (g/L)	-	229.4 ± 1.5	-		384.5 ± 2.4	16.4 ± 0.2			

Ash content (%)	7.79 ± 0.65	8.9 ± 1.3	-	4.71 ± 0.53	2.55 ± 0.78	3.55 ± 0.94
Extractive (%)	3.53 ± 0.42	5.7 ± 0.6	-	3.12 ± 0.78	2.85 ± 0.23	1.24 ± 0.74
Carbohydrates (dry weight) (%)	-	36.4 ± 1.5	40.0 ± 0.5	66.0 ± 1.7	56.2 ± 1.3	C
Crude fiber (%)	-	3.0 ± 1.5	26.5 ± 2.4	33.45 ± 3.4	- 0	_
Cellulose (dry weight) (%)	17.1 ± 1.0	-		13.2 ± 1.3	11.8 ± 1.8	-
Hemicellulose (dry weight) (%)	32.5 ± 1.5	-		0.8 ± 0.1	-	-
Lignin (dry weight) (%)	13.4 ± 1.9	-		23.5 ± 2.1	20.6 ± 2.6	-
Free reducing sugar (g/kg)	22.7 ± 5.3	102.8 ± 4.7	-	155.1 ± 2.1	175.4 ± 5.9	21.6 ± 1.0
Glucose (g/kg)	1.6 ± 0.1	55.8 ± 1.3		35.5 ± 1.0	40.4 ± 1.8	1.25 ± 0.1
Fructose (g/kg)		-		32.7 ± 1.7	30.7 ± 2.7	-
Galactose (g/kg)	-	5.9 ± 0.9		3.9 ± 0.7	-	-
Xylose (g/kg)	-	5.7 ± 0.9	-	3.1 ± 1.0	-	-
1						
2						
3	<u> </u>					
4	X					
5						
6 Table 2. Central	composite de	esign ranges of	the three var	iables consider	ed for present	t
7 investigation.						
Serial Variab number	le	Coded level	S			
		-α	Low	Middle High	n +α	
1 Conce	ntration (g/L)	6.36	20	40 60	73.64	

	Variables			Respon	ise						
Run	Concent ration (g/L)	Time (min)	рН	TRS (g/kg)	Glucose (g/kg)	Galactose (g/kg)	Xylose (g/kg)	5-HMF (g/kg)	Furfural (g/kg)	Levulinic acid (g/kg)	TPR (g/kg)
1	20.0	60.0	1.20	203.5	164.5	8.3	6.7	10.6	0.3	0.9	256.8
2	40.0	40.0	0.76	433.3	307.9	23.9	26.9	20.0	1.7	9.5	560.3
3	40.0	40.0	0.76	433.3	307.9	23.9	26.9	20.0	1.7	9.5	560.3
4	60.0	60.0	1.20	239.7	185.4	9.3	6.5	14.9	0.6	< 0.1	46.9
5	20.0	20.0	1.20	209.3	167.7	8.9	7.6	12.5	0.5	< 0.1	124.6
6	6.4	40.0	0.76	332.8	218.5	17.1	15.8	33.1	2.9	25.2	2767.6
7	40.0	73.6	0.76	367.6	240.7	22.1	17.4	16.1	1.0	14.6	1062.8
8	40.0	40.0	0.76	433.3	307.9	23.9	26.9	20.0	1.7	9.5	560.3
9	40.0	40.0	1.80	168.5	156.0	8.4	6.9	7.9	0.3	< 0.1	124.9
10	20.0	60.0	0.32	345.1	175.9	16.2	19.0	20.7	1.8	21.9	2150.3
11	60.0	60.0	0.32	364.5	161.6	15.8	9.6	13.9	0.9	17.8	598.8
12	40.0	40.0	0.76	433.3	307.9	23.9	26.8	20.0	1.7	9.5	560.3
13	40.0	40.0	0.76	433.3	307.9	23.9	26.8	20.0	1.7	9.5	560.3
14	60.0	20.0	0.32	384.5	198.9	15.6	11.7	15.0	1.3	13.7	539.9
15	40.0	16.4	0.76	387.8	226.8	18.0	12.5	24.1	1.6	8.5	264.0
16	73.6	40.0	0.76	395.1	175.9	14.9	17.4	14.1	1.2	11.7	456.6
17	20.0	20.0	0.32	345.1	175.9	16.2	17.4	35.1	2.2	14.5	1745.3
18	60.0	20.0	1.20	256.8	200.2	10.8	7.1	10.7	0.4	< 0.1	36.8
19	40.0	40.0	0.02	409.6	281.5	22.3	24.9	26.9	2.0	12.0	1257.7
20	40.0	40.0	0.76	433.3	307.9	23.9	26.9	20.0	1.7	9.5	560.3
	1										

Table 3. Experimental design and the responses obtained for parameter optimisation for dilute acid hydrolysis for BLW substrate

Hydrolysis technique Chemical NPs catalysed Mechanical Hydrothermal	Turneturent	BLW (g/kg)		BSG (g/kg)			APS (g/kg)			APUS (g/kg)		SIW (g/kg)		
	Ireatment	Total RS	Glucose	Xylose	Total RS	Glucose	Xylose	Total RS	Glucose	Xylose	Total RS	Glucose	Total RS	Glucose
	H ₂ SO ₄ /autoclave	433.1	307.2	14.0	468.2	175.6	128.1	375.1	104.5	19.5	611.0	275.2	329.9	197.0
	H ₂ O ₂ /autoclave	75.3	41.1	5.7	53.9	32.3	22.5	290.9	85.6	1.0	378.5	190.9	56.0	20.7
Chemical	NaOH/autoclave	68.0	30.0	3.8	37.5	26.2	18.4	244.4	78.3	0.3	628.1	202.8	152.5	88.4
	H ₂ SO ₄ /microwave	302.1	239.9	8.3	413.4	146.9	97.5	360.7	122.2	10.6	336.8	143.9	359.3	246.2
	NaOH/microwave	132.7	119.1	4.9	59.9	34.8	12.7	199.7	84.6	1.1	299.6	78.1	62.0	39.0
	Ca NSPs	153.1	134.1	5.7	122.2	64.4	38.6	255.4	106.0	0.5	335.2	56.2	71.8	43.3
NPs catalysed	(Fe+Ca) NSPs	98.8	150.9	ND	57.9	28.7	19.6	295.2	4.2	1.7	353.7	63.5	64.6	37.7
	Fe NSPs	67.1	15.9	ND	36.1	16.8	15.7	132.0	7.8	0.2	256.6	43.7	38.3	22.5
Mechanical	Ultra- sonication	80.6	22.5	ND	180.6	82.5	56.8	333.8	100.5	5.7	520.1	197.1	50.6	35.5
TT 1 1 1	H ₂ O/autoclave	32.5	16.6	ND	32.5	22.6	1.2	230.0	71.3	0.4	597.9	199.6	32.5	16.6
Hydrothermal	H ₂ O/microwave	48.2	33.2	ND	88.2	33.2	5.7	404.5	162.5	21.3	631.3	286.8	28.0	13.2
36														

Table 4. Influence of hydrolysis technique on fermentable RS production from agro-industrial wastes

						Hydrolysis t	echniqu	ies used				
	Inhibitor			Chemica	ıl		(Catalyzed N	Ps	Mechanical	Hydro	othermal
	concentration	H2SO4/ autoclave	H2O2/ autoclave	NaOH/ autoclave	H2SO4/ microwave	NaOH/ microwave	Ca NSP	(Fe+ Ca) NSP	Fe NSP	Ultra- sonication	H2O/ autoclave	H2O/ microwave
	5-HMF	21.3	16.9	0.2	29.7	ND	ND	0.8	0.5	ND	ND	ND
	Furfural	1.7	0.7	0.4	1.8	0.1	0.1	0.7	0.4	0.2	ND	0.3
(b	Levulinic acid	9.5	0.4	0.4	12.0	0.1	ND	ND	0.4	0.4	ND	0.4
7 (g/	Syringaldehyde	47.5	ND	ND	62.4	ND	ND	ND	ND	3.4	12.4	10.8
BLV	Ferulic acid	57.3	ND	ND	80.1	ND	ND	ND	ND	8.7	26.1	12.5
	Vanillin	280	ND	ND	322	ND	ND	ND	ND	40.5	18.3	13.7
	Vanillic acid	101	ND	ND	132	ND	ND	ND	ND	6.4	ND	ND
	5-HMF	3.2	0.2	0.2	13.6	0.3	0.6	0.7	0.4	ND	ND	ND
	Furfural	11.5	0.4	0.4	48.6	0.2	2.4	0.5	0.1	0.2	ND	0.3
g/kg)	Levulinic acid	2.8	0.4	0.4	3.9	<0.1	0.1	0.4	0.1	0.4	ND	0.4
SG(£	Syringaldehyde	70.8	ND	ND	102	ND	ND	ND	ND	9.2	2.4	2.6
B	Ferulic acid	97.9	ND	ND	147	ND	ND	ND	ND	14.8	9.1	15.1
	Vanillin	357	ND	ND	319	ND	ND	ND	ND	18.0	8.3	12.3
		PC PC	<u>c</u>								31	7

Table 5. Influence of hydrolysis techniques on production of inhibitory compounds from agro-industrial wastes

	ACCEPTED MANUSCRIPT											
	Vanillic acid	134	ND	ND	190	ND	ND	ND	ND	ND	ND	ND
APS (g/kg)	5-HMF	45.5	2.9	0.3	52.4	ND	0.1	0.1	0.1	ND	0.3	1.7
	Furfural	3.1	0.6	0.4	4.6	0.4	< 0.4	< 0.4	< 0.4	0.1	0.4	6.7
	Levulinic acid	13.9	0.4	0.4	0.4	0.1	0.4	1.0	2.2	ND	0.4	ND
	Syringaldehyde	34.3	ND	ND	47.6	ND	ND	ND	ND	11.6	30.6	43.4
	Ferulic acid	111	ND	ND	169	ND	ND	ND	ND	22.8	49.6	19.2
	Vanillin	123	ND	ND	168	ND	ND	ND	ND	24.8	57.4	22.3
	Vanillic acid	105	ND	ND	133	ND	ND	ND	ND	9.2	11.5	5.3
	5-HMF	37.5	2.6	0.9	43.2	ND	0.2	0.4	<0.4	3.8	ND	12.4
APUS (g/kg)	Furfural	1.3	0.4	2.8	0.1	0.4	<0.4	<0.4	< 0.4	2.3	< 0.1	1.2
	Levulinic acid	19.3	0.4	0.4	ND	0.1	<0.4	0.5	0.1	0.4	ND	ND
	Syringaldehyde	22.2	ND	ND	33.8	ND	ND	ND	ND	9.3	13.2	10.8
	Ferulic acid	87.8	ND	ND	94.5	ND	ND	ND	ND	36.5	34.7	54.2
	Vanillin	124	ND	ND	180	ND	ND	ND	ND	32.5	83.4	94.7
	Vanillic acid	133	ND	ND	134	ND	ND	ND	ND	4.7	4.4	7.9
(g	5-HMF	2.7	ND	0.6	3.6	ND	ND	ND	ND	ND	ND	ND
/ (g/k	Furfural	1.6	0.7	0.4	6.1	0.2	1.1	5.6	0.1	0.2	ND	0.3
MIS	Levulinic acid	< 0.1	0.2	0.2	0.2	ND	0.3	ND	ND	< 0.1	ND	ND
												38

Table 6. Analysis of variance (ANOVA) for the fitted quadratic polynomial model for fermentable sugar compounds (glucose, galactose and xylose) and inhibitors (5-HMF, furfural, levulinic acid and TPC).

Sources	Sum of squares	Degrees of freedom	Mean squares	R-Squared	F value	P value
Glucose	60230.40	9	6692.27	0.8578	6.70	0.0032 (significant)
Galactose	592.42	9	65.82	0.9000	10.00	0.0006 (significant)
Xylose	1157.61	9	128.62	0.9179	12.42	0.0002 (significant)
5-HMF	873.74	9	97.08	0.9180	12.45	0.0002 (significant)
Furfural	8.45	9	0.94	0.8913	9.11	0.0009 (significant)
Levulinic acid	825.48	9	91.72	0.8637	6.00	0.0049 (significant)
TPC	$9.082 \cdot 10^6$	9	$1.009 \cdot 10^{6}$	0.9075	10.90	0.0004 (significant)

C

Highlights

- Study of waste pre-treatments to enhance reducing sugars and reduce inhibitors
- ✤ Total reducing sugar yield of 0.433 g/g BLW with acid-catalysed hydrolysis
- ◆ Parameter optimization by RSM to enhance sugar and minimize inhibitors from BLW
- * Development of kinetic modeling to enhance reducing sugar for scale-up

✤ Production of 10.2g/L ABE by clostridial fermentation of substrate