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Abstract 23 

 24 

Near-real-time flood maps are essential to organize and coordinate emergency services' 25 

response actions during flooding events. Thanks to its capacity to acquire synoptic and detailed 26 

data during day and night, and in all weather conditions, Synthetic Aperture Radar (SAR) 27 

satellite remote sensing is considered one of the best tools for the acquisition of flood mapping 28 

information. However, specific factors contributing to SAR backscatter in urban environments, 29 

such as shadow and layover effects, and the presence of water surface–like radar response 30 

areas, complicate the detection of flood water pixels. This paper describes an approach for 31 

near-real-time flood mapping in urban and rural areas. The innovative aspect of the approach is 32 

its reliance on the combined use of very-high-resolution SAR satellite imagery (C-Band, HH 33 

polarization) and hydraulic data, specifically flood return period data estimated for each point of 34 

the floodplain. This approach was tested and evaluated using two case studies of the 2011 35 

Richelieu River flood (Canada) observed by the very-high-resolution RADARSAT-2 sensor. In 36 

both case studies, the algorithm proved capable of detecting flooding in urban areas with good 37 

accuracy, identifying approximately 87% of flooded pixels correctly. The associated false 38 

negative and false positive rates are approximately 14%. In rural areas, 97% of flooded pixels 39 

were correctly identified, with false negative rates close to 3% and false positive rates between 40 

3% and 35%. These results highlight the capacity of flood return period data to overcome 41 

limitations associated with SAR-based flood detection in urban environments, and the relevance 42 

of their use in combination with SAR C-band imagery for precise flood extent mapping in urban 43 

and rural environments in a crisis management context.  44 

 45 

Keywords: Flood mapping; Synthetic Aperture Radar, C-Band; Flood return period 46 

 47 
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1. Introduction 48 
 49 

The capacity of spaceborne Synthetic Aperture Radar (SAR) remote sensing for near-real-time 50 

flood detection and mapping has been demonstrated by numerous studies over the last decade 51 

(Henry et al., 2006, Greifeneder et al., 2014, Schumann et al., 2011; Schumann et al., 2012; 52 

Pulvirenti et al., 2014). Many civil protection organizations now use airborne and satellite SAR 53 

imagery to support the development of assistance plans to reduce human and material 54 

consequences of flooding events (Bhatt et al., 2016 ; Boni et al., 2009 ; Kussul et al., 2014 ; 55 

Martinis et al., 2015 ; Pulvirenti et al., 2013 ; Zhang et al., 2002).  56 

Accurate flood detection is of the utmost importance in urban areas, where high population 57 

concentrations and critical infrastructures often make the economic and social impacts of a flood 58 

event very high. However, specific factors contributing to SAR backscatter hamper flood water 59 

detection in built-up environments. In particular, the side-looking nature of SAR sensors can 60 

cause objects such as buildings and tall vegetation, oriented parallel or roughly parallel to the 61 

satellite track, to produce shadow and layover effects (Soergel et al., 2010). The magnitude of 62 

these geometric distortions, which may hide important sections of the ground from the sensor, is 63 

a function of wavelengths, radar look angle, and polarization (Mason et al., 2014; Schumann et 64 

al., 2009). In addition, large, permanent, specular-like reflection surfaces typical of urban areas, 65 

such as roads and parking lots, may be confused with open water regions, thereby increasing 66 

flood detection errors (Mason et al., 2010). 67 

In order to limit the impact of these effects on flood detection accuracy, the methods that have 68 

been developed for flood detection in urban areas using SAR imagery have taken advantage of 69 

a variety of tools and sources of ancillary information. For instance, in the algorithm for near-70 

real-time flood detection in urban areas using TerraSAR-X images presented by Mason et al. 71 

(2010; 2012), a SAR end-to-end simulator (Speck et al., 2007) was run in conjunction with high-72 
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resolution LIDAR data of the urban area of Tewkesbury (UK) to generate a map of shadow and 73 

layover effects. Masking these effects during near-real-time processing enabled 75% of the 74 

unmasked flooded pixels to be correctly classified in urban areas. Furthermore, in Mason et al. 75 

(2014), the same SAR simulator and high-resolution LIDAR data were successfully used in a 76 

double-scattering strength measurement method for flood detection in the layover regions of the 77 

same TerraSAR-X image. 78 

In Giustarini et al. (2013), areas affected by shadow effects, permanent water surfaces, and 79 

other surfaces characterized by specular-like reflections are identified by detecting changes in 80 

backscatter intensities between a high-resolution TerraSAR-X flood image and a non-flooded 81 

reference image. These areas are then masked out from the final flood map to reduce false 82 

alarms. 83 

In addition, Chini et al. (2012) and Pulvirenti et al. (2015) demonstrated that combining the 84 

complex coherence information extracted from COSMO-SkyMed interferometric pairs with 85 

intensity information can greatly assist in the detection of flooded areas in both urban and rural 86 

environments and reduce flood detection omissions produced by approaches based solely on 87 

intensity analysis.  88 

These algorithms enable flood water detection in urban areas with reasonable accuracy, but it is 89 

worth mentioning that the use of shadow and layover masks results in non-identification of the 90 

flooding status of a significant part of the flooded urban areas (e.g., 39% in the study by 91 

Giustarini et al. (2013)). Moreover, the availability of an adequate non-flooded SAR reference 92 

image (identical orbit track and polarization, similar state of vegetation, etc.), required by a 93 

change-detection approach, of a SAR simulator, or of adequate SAR interferometric pairs, is not 94 

always guaranteed.  95 
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Simple hydraulic considerations have also been used in several image-processing algorithms to 96 

guide the detection of flooded pixels in urban and rural areas (see Pierdicca et al., 2008 ; 97 

Pulvirenti et al., 2011 ; Mason et al., 2012 or Schumann et al., 2011). In this approach, 98 

information from surface elevation data, which have the advantage of being available for most 99 

rivers worldwide, is exploited. However, such algorithms restrict the integration of hydraulic 100 

considerations to simple elevation and proximity analysis. To our knowledge, no example can 101 

be found in the recent literature of the explicit integration of hydraulic data within SAR image-102 

processing algorithms for flood detection in urban and rural areas. Such data, which could 103 

include information about a river’s flooding pattern or the specific hydraulic characteristics of a 104 

floodplain, could be of great use in areas where SAR-based flood detection remains a 105 

challenge. 106 

Therefore, the objective of the present study is to demonstrate how a combination of very high 107 

resolution SAR imagery and hydraulic data can yield effective near-real time flood delineation in 108 

urban areas. More specifically, we rely on the use of the flood return period, estimated at each 109 

point of the floodplain. Note that the flood return period, which can be defined here as the 110 

average number of years between two flood occurrences of the same magnitude, will be 111 

referred to as “RP” in the following sections. The underlying hypothesis is that this parameter, 112 

which relates to the hydrologic and hydraulic characteristics of the floodplain and the flooding 113 

event, might allow the identification of flooded pixels, even in areas where SAR remote sensing 114 

is limited. In order to confirm this hypothesis, an innovative approach was developed and 115 

evaluated by using two very-high-resolution RADARSAT-2 images (C-Band, HH polarization) 116 

acquired during the 2011 Richelieu River flood (Canada) with different acquisition parameters 117 

and water surface conditions. 118 

 119 
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2. Methodology 120 
 121 

The proposed method (depicted in the flowchart in Fig. 1) provides near-real-time flood extent 122 

mapping in urban and rural areas using a high-resolution SAR C-Band HH-polarized flood 123 

image as input data. Horizontal polarization is preferred over vertical polarization or cross 124 

polarization as it generally yields the highest contrast between open water and upland locations 125 

(Brisco et al., 2008). The SAR image must be speckle-filtered (Senthilnath et al., 2013), 126 

geocoded, and calibrated to obtain backscatter values.  127 

RP data estimated for each point of the study area are also required. These values are 128 

generally estimated using one dimensional (1D) or two-dimensional (2D) hydraulic modelling. If 129 

such data is not available for the study area, an alternative method for RP estimation at each 130 

point of the study area is described in section 2.1. This estimation should be carried out prior to 131 

near-real-time operations.   132 
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 133 

Fig. 1: Flowchart of the proposed approach. 134 
 135 

The first step in near-real-time operations is the detection of open water flooded areas on SAR 136 

flood image using an approach that combines object-oriented segmentation, calibration of the 137 
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statistical distribution of “open water” objects’ mean backscatter values, and thresholding-based 138 

fuzzy classification. This initial classification of “open water” objects is then refined using the 139 

degree of membership of each object in the “open water” set and its maximum RP. Following 140 

this classification refinement, the RP associated with the maximum extent of the refined “open 141 

water” classification is extracted. Finally, floodplain points for which the RP is less than or equal 142 

to this maximum RP are selected to create the final flood map. These near-real-time processing 143 

steps will be described in detail in the following sections. 144 

 145 

2.1 Method for flood return period estimation 146 

 147 

RPs are usually computed, for some selected RPs, using a 1D or 2D hydraulic model forced by 148 

statistically estimated hydrological inputs. Hydrological and hydraulic models, set up for a given 149 

area, are generally not available for the public. However, their outputs in terms of RP shorelines 150 

or extents are publicly released, for some selected RPs. Between 3 and 5 RP shorelines are 151 

usually made available, depending on the country or region, and are widely used as risk criteria 152 

for land use planning. Therefore, the RP of most points of the floodplain remain unknown. 153 

Running a hydraulic simulation can be complex and time consuming. We hereby propose a 154 

simple and efficient method to estimate the RP at each point of the floodplain, based on the 155 

available RP shorelines in the study area and on topographic elevation data. A flowchart of this 156 

method is presented in Fig. 2. 157 
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 158 

Fig. 2: Flowchart of the flood return period raster map estimation.  159 

 160 

The inputs to this method are:  161 

1. Available RP shorelines for the river. The positions of such shorelines along the river are 162 

estimated using 1D or 2D hydraulic modelling, and they are often made available in the 163 

form of polygons or polylines. A minimum of three different RP floodplain shorelines are 164 

required to estimate consistent RP at each point of the floodplain.  165 

2. Water height values at the river centreline associated with each RP shoreline available. 166 

The water-surface elevations at the river centreline are also estimated by using either a 167 

1D hydraulic model (in which case one value of water height at the river centreline 168 

coincides with the values of water height of the given section) or a 2D hydraulic model 169 



10 
 

(in which case a water height value is available for each cell of the model at the river 170 

centreline, including one value for each cell located along the river centreline).  171 

3. A high-resolution digital elevation model (DEM) of the ground elevations in the area. In 172 

order to allow extraction of accurate water levels along the RP shorelines, this DEM 173 

should be the same as the one used to estimate the position of these shorelines. If this 174 

DEM is not available, a DEM with identical vertical and horizontal accuracies must be 175 

used. Also, the user must ensure that no major changes in ground elevations occurred 176 

between the time the flood return shorelines were estimated and the time the alternative 177 

DEM was produced. It should be noted that the higher the vertical and horizontal 178 

accuracies of the DEM used are, the more precise the RP estimation at each point of the 179 

floodplain should be. 180 

 181 

RP estimation at each point of the floodplain follows three steps. In order to facilitate 182 

understanding of this procedure, its different elements are gathered in a single figure (see Fig. 183 

3), which also presents an example of RP of a point in the floodplain. 184 
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 185 

Fig. 3: General scheme of RP estimation at a given point in the floodplain. 186 

 187 

First, the elevations of the water surface associated with each RP are generated, using a spatial 188 

interpolation technique. This involves the creation and aggregation of the points used for the 189 

generation of each water surface. To do so, each RP shoreline is converted into feature points 190 

and the elevations of these points are extracted from the DEM. For each RP available, a set of 191 

points is created by grouping the water height feature points at the river centreline with the 192 

feature points along the RP shoreline. Then, a 150 m-buffer is created around the shorelines of 193 

the highest RP available, and its outer boundaries are converted into feature points. These 194 

points represent the extrapolation area limits, which allow to estimate the RP for the points of 195 

the study area located outside the highest RP available. These points are added to each RP set 196 

of points. By doing so, we ensure that all the RPs water surfaces will have the same number of 197 

rows and columns. The elevation of each point located along the extrapolation area is estimated 198 

using the k-nearest neighbour regression method (Altman, 1992), based on the elevation of the 199 

100 nearest points located along the RP shoreline. Finally, each RP water surface is spatially 200 
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interpolated from its set of points, which is now composed of the river centreline points, along 201 

the RP shoreline and the outer limits of the extrapolation area. The interpolation is done using a 202 

natural neighbour interpolation technique (Sibson, 1981). The RPs water surfaces created are 203 

raster surfaces with the same number of rows and columns, in which cell values represent the 204 

water surface elevation, for a given RP. Their spatial resolution is set to be the same as the 205 

spatial resolution of the DEM used.  206 

Second, for each cell common to all the RP raster water surfaces previously created, the 207 

relationship between water height at the cell location and the RPs associated with these water 208 

heights is estimated. For instance, if 3 RPs water surfaces with the same number of rows and 209 

columns have been generated, this relationship will be estimated for each cell using 3 water 210 

heights and 3 RPs. This relationship is expressed by the following non-linear regression 211 

function: 212 

ܪ = ఉܴߙ  (1) 

                                                           213 

where ܪ is the water surface elevation at the cell position (in metres), extracted from the water 214 

surface raster, and ܴ is the RP associated with that water surface (in years). ߙ and	ߚ are the 215 

non-linear regression parameters to be estimated.  216 

Lastly, RP is estimated for each point of the floodplain using the elevation of the cell and the 217 ߙ 

and	ߚ parameters specific to that cell. RPs are estimated using the following equation: 218 

	ܴ = ൬
ܼ
ߙ
൰
ଵ
ఉ
  (2) 

                                                                                                                                                219 

where ܼ is the elevation of the cell, extracted from the high-resolution DEM of the area, and 220 ߙ 
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and	ߚ are the parameters of the non-linear regression previously estimated for the cell.	ܴ is the 221 

RP of the cell, in years, and represents the return period at which the area represented by the 222 

cell should be flooded.  223 

The results are stored in a raster map, which will be designated as the “flood return period map” 224 

in the following steps of the method. The spatial resolution of this raster map must be the same 225 

as the spatial resolution of the DEM used. The estimated RPs are expressed per cell, in years. 226 

It is worth mentioning that even if the use of an extrapolation technique is essential to estimate 227 

the RP of the points located above the shoreline of the highest RP available, as well as between 228 

the shorelines of the lowest and highest RP available, it also leads to less reliable RP 229 

estimations. This can be considered as a limitation of this method. However, and this is an 230 

important point, the RPs estimated at each point of the floodplain using this method are relative 231 

values, which are not considered as representative of the water discharge needed to flood this 232 

point. These values should rather be regarded as indicators of the potential RP of a cell, 233 

considering its position and elevation in the floodplain with respect to the characteristics of the 234 

RP shorelines available. 235 

 236 

2.2 Segmentation of the SAR image 237 

 238 

High-resolution SAR data enables precise detection of individual features on the earth’s surface, 239 

but the use of high spatial resolution also results in significant within class backscatter variances 240 

and therefore, high inter-class spectral confusion (Voigt et al., 2008; Martinis et al., 2011). This 241 

makes high-resolution SAR image processing with traditional per-pixel methods challenging, 242 

and the generated results may be affected by inherent speckle noise of SAR imagery (Esch et 243 
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al., 2006). If the application of speckle filters helps to reduce this effect, speckle noise remains 244 

at least partially present (Senthilnath et al., 2013). An alternative to per-pixel methods is object-245 

based classification. Objects are created by the sequential merging of neighbouring pixels 246 

based on similarity criteria, such as their spectral characteristics, their shape, or their texture. 247 

This results in non-overlapping homogeneous objects that correlate with real-world objects 248 

(Blaschke et al., 2014). One of the advantages of the object-based approach is that it provides a 249 

preliminary delineation of open water areas, through objects readily usable for classification 250 

(Blaschke et al., 2010). 251 

Segmentation of high-resolution SAR flood images into objects is performed by using the multi-252 

resolution segmentation module of the eCognition Developer 8 software. This algorithm has 253 

already proved successful at segmenting rural open water areas in a high-resolution TerraSAR-254 

X image, in a study by Mason et al. (2012). This image segmentation algorithm is a bottom-up 255 

segmentation method based on a pairwise region-merging technique (Definiens AG, 2011). 256 

Segmentation begins with single-pixel objects, which are iteratively merged with neighbouring 257 

pixels until the object’s growth exceeds the maximum allowed heterogeneity criterion set by the 258 

user through a scale parameter. The object homogeneity criterion is defined by a combination of 259 

spectral values (or colour) and shape properties, based on smoothness and compactness 260 

criteria. As open water areas are generally characterized by dark tones and irregular shapes, 261 

the shape criterion is set low to increase the relative contribution of spectral values in the 262 

homogeneity criterion, and the compactness value is set medium to limit over-segmentation of 263 

open water objects due to local variations in backscatter values. After trial-and-error 264 

experimentation with the segmentation procedure, a shape value of 10% and a compactness 265 

value of 50% were selected. The scale parameter was set to 5, to enable estimation of the 266 

statistical distribution of “open water” on a large amount of data representatives of the class. 267 

 268 
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2.3 Statistical estimation of "open water" object backscatter 269 

 270 

Next, the probability density function (PDF) of the mean backscatter values of the SAR image 271 

objects associated with open water must be estimated. This method was successfully applied in 272 

Matgen et al. (2011) and in Giustarini et al. (2013) for open water area detection on ENVISAT 273 

and TerraSAR-X flood images, respectively. In these two studies, the statistical distribution of 274 

“open water” backscatter values was estimated using a gamma PDF to extract the parameters 275 

of a region-growing approach. The choice of a gamma PDF was based on previous work by 276 

Ulaby et al. (1986), who ascertained that the PDF of homogeneous surfaces with backscatter 277 

variability, which is mainly due to speckle, is of the gamma type. Alternative PDF types, such as 278 

the K-distribution and the RiIG distribution functions, were tested by Giustarini et al. (2013) and 279 

found not to provide more precise empirical distribution-fitting than a gamma function.  280 

The gamma probability density function used for estimating the mean statistical distribution of 281 

open water object backscatter can be expressed as follows: 282 

(ߠ,݇|଴ߪ)݂ =
଴ߪ) − ଵ଴)௞ିଵ	ߪ

(݇)௞Γߠ
	 . ݁ି

൫ఙబିఙభబ൯
ఏ  (3) 

                                                                   283 

Where ߪ଴ represents the backscatter value of each pixel in the SAR image, expressed in dB; ݇ 284 

is the shape parameter of the gamma distribution, and ߠ is the scale parameter. As gamma 285 

distribution is computable only for positive values, the backscatter values are shifted to positive 286 

for the entire range of empirical values. Therefore, the parameter ߪ	ଵ଴ represents the minimum 287 

backscatter value of the SAR image, in dB.  288 

 289 
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The following formula of the gamma distribution mode was used to facilitate the fitting procedure 290 

(Matgen et al., 2011): When ݇ ≥ 1,  291 

௠଴ߪ = (݇ − ߠ.(1 + ଵ଴	ߪ . (4) 

 292 

The gamma probability density function can thus be expressed as: 293 

݂ఙ೘బ (݇|଴ߪ) = ൫ఙబିఙ	భబ൯
ೖషభ

ቆ൫഑೘
బ ష഑	భ

బ൯
ೖషభ ቇ

ೖ
.୻(௞)

݁
ି
ቀ഑బష഑	భ

బቁ.(ೖషభ)

൫഑೘బ ష഑	భ
బ൯ . (5) 

 294 

Therefore, for a given value of ߪ௠଴  (in dB), only the ݇ value has to be optimized to determine 295 

݂ఙ೘బ . A local maxima estimator, which searches for the mode value with the highest probability 296 

density in the lowest backscatter values, is used to automatically set a first-guess value for the 297 

௠଴ߪ  parameter. Then, for all plausible values close to ߪ௠଴ , the ݇ parameter is iteratively optimized 298 

using a non-linear least square fitting process. Note that the search interval at each iteration is 299 

automatically set by the non-linear least square regression fitting process, based on the Port 300 

algorithm for non-linear least squares (Fox et al., 1977). For each set of ߪ௠଴  and ݇ parameter 301 

values, the Root Mean Square Error (RMSE) between the theoretical density function ݂ and the 302 

empirical density function is estimated. The values of the ߪ௠଴  and ݇ parameters providing the 303 

lowest RMSE are set as the optimum parameters for the estimation of the gamma PDF of the 304 

open water object mean backscatter values. 305 

If part of the open water area on the SAR flood image is affected by wind or rainfall, the 306 

histogram of image objects mean backscatter values might not be bimodal. In such cases, the 307 

algorithm is automatically directed towards an alternative option. The algorithm estimates the 308 

first derivative of the cubic smoothing spline fitted on the experimental PDF of the mean 309 
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backscattering values of the SAR image objects. The first local positive minimum of the first 310 

derivative, which represents the first point where the spline stops increasing or reaches a 311 

plateau, is set as a first-guess value for the ߪ௠଴  parameter. The optimal ߪ௠଴  and ݇ parameters 312 

are then estimated using the previously described method. However, the proposed approach is 313 

not applicable if the image object’s histogram of mean backscatter values is strictly unimodal. 314 

This may happen if the SAR image is dominated by water or land surfaces, if most open water 315 

surfaces of the SAR image are affected by wind, or if the open water areas are small. This is a 316 

limitation of this approach. 317 

 318 

2.4 Fuzzy rule–based classification of “open water” objects 319 

 320 

The fourth step is the classification of “open water” objects in the SAR flood image (Fig. 1). To 321 

account for potential overlap of the backscatter values of open water surfaces and those of 322 

other land use types, a fuzzy rule–based classification method is used (Macina et al., 2006). 323 

Like traditional classification using a single threshold, fuzzy set theory eventually results in a 324 

binary classification. However, one of the advantages of fuzzy set theory is that it also enables 325 

estimation of the degree of membership of the elements of a fuzzy set (in this case, SAR image 326 

objects) in a given class. A standard Z-shaped fuzzy membership function is used to assess the 327 

SAR image object’s membership to the “open water” class (Pulvirenti et al., 2013). According to 328 

this function, the lower the image object’s backscatter value, the higher its membership degree 329 

to the class. The standard Z-shaped fuzzy membership function is expressed by: 330 
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(ଶ଴ߪ,ଵ଴ߪ,௫଴ߪ)݂ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ௫଴ߪ																												,1			 ≤ ଵ଴ߪ

	1− 2ቆ
௫଴ߪ − ଵ଴ߪ

ଶ଴ߪ − ଵ଴ߪ
ቇ
ଶ

ଵ଴ߪ						, ≤ ௫଴ߪ ≤
ଵ଴ߪ + ଶ଴ߪ

2

																						2ቆ
௫଴ߪ − ଶ଴ߪ

ଶ଴ߪ − ଵ଴ߪ
ቇ
ଶ

,										
ଵ଴ߪ + ଶ଴ߪ

2
≤ ௫଴ߪ ≤			 												ଶ଴ߪ

௫଴ߪ																												,0				 ≥ ଶ଴ߪ

 (6) 

 331 

where ߪ௫଴ is the mean backscatter value (in dB) of the object for which the membership degree 332 

is estimated and ߪଵ଴ and ߪଶ଴ are the fuzzy threshold parameters of the membership function, and 333 

are expressed in dB. 334 

The parameters ߪଵ଴ and ߪଶ଴ of the fuzzy set are automatically extracted from the theoretical 335 

values of the gamma probability density function fitted on the open water object mean 336 

backscatter values. Parameter ߪଵ଴ is set as the mode parameter of the theoretical “open water” 337 

gamma distribution. This is considered the maximum backscatter value at which no overlap 338 

between open water and other land use type backscatter values should happen. Parameter ߪଶ଴ 339 

is set as the 99th percentile of the theoretical “open water” gamma distribution (Matgen et al., 340 

2011). This high percentile value may induce some over-detection, as the tail of the “open 341 

water” gamma distribution may largely overlap with the backscatter values of the other land use 342 

types. However, it should also enable the inclusion of open water objects whose mean 343 

backscatter values are affected by protruding vegetation or small-scale anthropogenic elements. 344 

This first level classification is defined as the initial classification of “open water” objects.  345 

 346 

 347 

 348 
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2.5 Refinement of “open water” object classification 349 

 350 

Next, the classification of “open water” objects is refined in order to reduce over-detection of 351 

open water areas (see Fig.1). This refinement will have no impact on the under-detections 352 

resulting from the application of the fuzzy rule-based classification, as objects whose mean 353 

backscatter is higher than the value of parameter ߪଶ଴ are definitively excluded from “open water” 354 

classification. 355 

Two characteristics of the objects classified as “open water” are used for classification 356 

refinement: their membership degree to the “open water” class and their RP value, extracted 357 

from the flood return period map. Before proceeding with the refinements steps, objects located 358 

outside the area covered by the RP map (that is, beyond the limits of the extrapolation area), 359 

are automatically excluded from “open water” classification, as their location is considered too 360 

far from the main river channel to be flooded. 361 

The first classification refinement step uses the object’s membership degree to the “open water” 362 

class. Objects whose membership degree is superior or equal to 0.5 are selected. Then, objects 363 

whose membership degree is inferior to 0.5, but whose border has a connection of at least one 364 

pixel with the border of an object whose degree of membership is superior or equal to 0.5, are 365 

also included in the selection. Despite the low membership degree of these objects to the “open 366 

water” class, the spatial connection between these objects and objects with a high degree of 367 

membership in the class indicates a high probability of being actually flooded. It is worth 368 

mentioning that hedgerows or wind-affected water surfaces should not be included in adjacent 369 

flooded objects by this rule. Indeed, the diffuse surface scattering of wind-affected surfaces and 370 

the diffuse volume scattering of hedgerows result in objects with high mean backscattering 371 

values. These values should be notably higher than the value of parameter ߪଶ଴, which 372 
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determines the higher threshold of the Z-shaped fuzzy membership function used for open 373 

water fuzzy logic classification. Therefore, these objects have a membership value of “0” to the 374 

“open water” class and are permanently rejected from the classification. 375 

The second classification refinement step uses the RP of “open water” objects. Then, the 376 

maximum RP of each object selected in the previous classification refinement step is calculated 377 

using the flood return period map. To limit non-water pixels from being erroneously included in 378 

the objects during the multi-resolution segmentation, the 99th percentile of the RP of the object 379 

is considered as the maximum RP. 380 

Objects corresponding to permanent water surfaces, such as the main river channel, lakes, and 381 

reservoirs may be numerous, and the very low RP of these objects is likely to influence the 382 

results of the final classification refinement step. Therefore, objects for which the RP’s 99th 383 

percentile is less than one year are removed from the selection.  384 

Next, all the selected “open water” objects are merged together to create one single “open 385 

water” object. The maximum RP of this object is extracted from the flood return period map. To 386 

limit the influence of misclassified pixels on the RP estimate, the 99th percentile of the 387 

maximum RP is used. 388 

Finally, the objects classified as “open water” in the initial fuzzy logic classification but whose 389 

RP’s 99th percentile is inferior or equal to the previously computed maximum RP are included in 390 

the final “open water” refined classification.  391 

 392 

 393 

 394 
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2.6 Creation of the flood map in urban and rural areas 395 

 396 

Flood map creation for both the urban and the rural areas relies on two reasonable 397 

assumptions. The first is that classification of the “open water” areas enables detection of the 398 

maximum extent of the flood. The second is that an object whose RP is less than or equal to 399 

that of the maximum extent of the flood can logically be considered flooded.  400 

The method used for the final flood extent mapping in urban and rural areas follows two steps. 401 

First, the maximum RP of the refined “open water” classification is estimated using the flood 402 

return period map. To limit the impact of non-water pixels erroneously included in the “open 403 

water” objects, the 99th percentile of the RP is used again. Every cell of the flood return period 404 

raster map whose RP is inferior or equal to this maximum RP are then selected. The selected 405 

cells represent the maximum extent of the flood in urban and rural areas at the time of SAR 406 

image acquisition.  407 

 408 

3. Case study  409 

 410 

3.1 Flooding event 411 

 412 

The data used to test the proposed method were acquired during the 2011 Richelieu River 413 

flood, in southern Quebec, Canada. This river flows from south to north in the Saint Lawrence 414 

lowlands, an area characterized by low relief and gentle slopes. From mid-April to the end of 415 

June 2011, the Richelieu River was subject to major flooding that resulted from the melt of large 416 

quantities of snow accumulated during the winter and unusually heavy and continued rainfalls 417 
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between mid-April and May. The river exceeded its bankfull discharge (1064 m³/s; 27.07 m in 418 

gauged level, relative to sea level, at the Rapid Fryers gauging station) on April 17th, when the 419 

flow increased to 1080 m³/s (27.58 m in gauged level). Water levels continued to rise and 420 

reached their peak on May 6th, with a discharge of 1550 m³/s (30.21 m in gauged level). The 421 

water level began to decrease only on June 2nd, and it took three more weeks, until June 22nd, 422 

for the Richelieu River to return to below bankfull. This major event resulted in the flooding of 423 

numerous urban and residential areas located along the river and of large areas of rural land. 424 

More than 2500 buildings were flooded, and around 1600 people were forced to evacuate their 425 

homes (OSCQ, 2013). 426 

The majority of the buildings in this area are one or two stories high, with basements. Some 427 

industrial warehouses and shopping centers, featuring large parking lots, are located in the area 428 

of interest. Streets are organized in a grid pattern, which makes this area rather representative 429 

of typical medium-sized towns in Canada. 430 

 431 

3.2 RADARSAT-2 images 432 

 433 

Two RADARSAT-2 (C-Band) images are available to assess the performance of the proposed 434 

method. Their characteristics are summarized in Table 1. The first image is an Ultra-Fine Mode 435 

Scene acquired on May 1, 2011 at 07:14 am local time, in HH polarization, during a descending 436 

orbit pass (Fig. 4A). This image is a SAR Georeferenced Fine (SGF) product, with 1.5 x 1.5 m 437 

pixel spacing (3 x 3 m after pixel resampling) and a mean incidence angle of 23°. No rainfall 438 

was recorded in the 72 hours preceding the time of image acquisition, resulting in unsaturated 439 

soil conditions in the non-flooded areas. Wind speed was moderate (7 km/h, blowing from east), 440 

but the steep incidence angle (23°) of this SAR image makes it sensitive to Bragg resonance 441 
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effects. Bragg resonance leads to increased backscatter from open water surfaces, which can 442 

be seen in Fig. 4C.  443 

Table 1: Characteristics of the RADARSAT-2 flood images used to test the proposed method 444 

Acquisition 
date and 

time (local 
time) 

Acquisition 
type 

Polarization Track Pixel 
Spacing 

(m) 

Ground 
Resolution 

(m) 

Product 
type 

Average 
mean 

incidence 
angle (°) 

Wind speed at 
the time of 
acquisition 

May 1, 2011 
06:14 am 

Ultra-Fine HH Descending 1.56x1.56 3 SGF 22.5 7 km/h 

May 7, 2011 
06:59 pm 

Fine HH-HV Ascending 4.7x5.1 8 SLC 48 11 km/h 

 445 

The second SAR image is a Fine Mode Scene acquired on May 7 at 06:59 pm local time, in HH-446 

HV polarization, during an ascending orbit pass (Fig. 4B). Only the HH polarization was used. 447 

This image is a Single Look Complex (SLC) product, with 4.7 x 5.1 m pixel spacing (8 x 8 m 448 

after pixel resampling) and a mean incidence angle of 48°. Significant rainfalls (> 70 mm) were 449 

recorded in the four days before image acquisition, resulting in wet soil conditions in the non-450 

flooded areas. Winds were blowing at 11 km/h from northeast.  451 
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 452 

Fig. 4: (A) RADARSAT-2 (HH) Ultra Fine Mode image acquired on May 1, 2011. (B) 453 

RADARSAT-2 (HH-HV) Fine Mode image acquired on May 7, 2011; location of the Rapid Fryers 454 

gauging station indicated. Red boxes represent the areas covered by the SAR sub-images and 455 

by their associated validation data. (C) Open water areas affected by wind disturbance. 456 

 457 

To decrease the contribution of speckle, a Gamma-Map filter (Lopes et al., 1993) with a window 458 

size of 5 x 5 pixels was applied. This adaptive speckle filter preserves the edges of the features, 459 

which is advantageous for the object-oriented segmentation step of the proposed method. To 460 

reduce processing time associated with the object-oriented segmentation of the images, 461 

subsets of the RADARSAT-2 scenes were created. Each sub-image covers an area identical to 462 

that covered by its associated validation data (red boxes in Fig. 4). 463 
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 464 

3.3 Validation dataset 465 

 466 

Two very-high-resolution multispectral images were used to validate the flood extent maps 467 

produced by the algorithm. Their characteristics are summarized in Table 2. On May 1, 2011, 468 

the GeoEye-1 satellite overpassed the Richelieu River at 01:09 pm local time during clear-sky 469 

conditions, providing pan-sharpened multispectral scenes of the flooded areas with a spatial 470 

resolution of 0.6 m. At the time of acquisition, the water level recorded at the Rapid Fryers 471 

gauging station was 27.47 m (relative to sea level), identical to the water level recorded at the 472 

time of the RADARSAT-2 Ultra-Fine Mode acquisition earlier that day. The limits of the flood 473 

should thus be similar in the two scenes. The mosaic of GeoEye-1 scenes covers only a small 474 

part of the area imaged by the RADARSAT-2 scene (red box in Fig. 4A). Therefore, validation of 475 

the final flood extent map was possible only for a 13.5 km stretch of the Richelieu River. 476 

However, despite its reduced size, this section contains a wide range of flooded land cover 477 

types, including built-up areas, fields, forested areas, and other vegetation. 478 

Table 2: Characteristics of the very-high-resolution multispectral GeoEye-1 and IKONOS-2 pan-479 

sharpened images used to validate RADARSAT-2–derived flood extent maps. 480 

Reference 
images for 
validation 

Acquisition Date 
and Time (local 

time) 
Sensor Mode 

Pan-sharpened 
Spatial 

Resolution 
(m) 

Cloud Cover (%) Average Nadir 
angle (°) 

GeoEye-1 
May 1, 2011 

10:59 
PAN/MS1 0.6 0 5 

IKONOS-2 
May 8, 2011 

10:56 
PAN/MS1 1 6 9 

 481 

The image used to validate the flood extent map generated from the RADARSAT-2 Fine Mode 482 

image acquired on May 7, 2011 consists of a mosaic of pan-sharpened IKONOS-2 images with 483 
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1 m spatial resolution acquired on May 8, 2011 at 10:56 am local time, during almost clear sky 484 

conditions (cloud cover ˂6%). Despite the delay of almost 27 hours between acquisition of the 485 

RADARSAT-2 image and that of the IKONOS-2 image, the water levels measured at the Rapid 486 

Fryers gauging station were very similar (27.57 m and 27.53 m, respectively). Thus, this delay 487 

should not lead to important differences between the SAR-derived flood extent map and the 488 

validation map. The mosaic of IKONOS-2 images covers the entire portion of the river that was 489 

severely impacted by the flood, enabling us to test the algorithm on a section of the river more 490 

than 29.5 km long (red box in Fig. 4B). This section contains large areas of flooded fields and 491 

vegetation, and numerous flooded built-up areas. 492 

Special care was paid to geocorrection of the pan-sharpened images in order to ensure their 493 

precise overlap with the RADARSAT-2 flood images. For both SAR images, sub-pixel precision 494 

was achieved. The flood extent was manually delineated on both pan-sharpened images (Fig. 495 

5). The very high resolution of these images, minimal cloud cover presence, and linear shape of 496 

the study area and of the flooded areas made delineation of the open water rather easy in most 497 

locations. However, the delineation task was more complex in urban areas. It was indeed 498 

particularly difficult to visually detect, and therefore to delineate, the limit of the flood around 499 

each building in residential areas, because of the important presence of garden arrangements 500 

and vegetation. Also, the distinction between flooded and unflooded lawns, which colours are 501 

rather similar on the pan-sharpened images, was not always obvious. Therefore, decision has 502 

been made to consider the buildings around which the limit of the flood could not be clearly 503 

seen as flooded, as well as buildings having at least one side in contact with the flood. 504 

Conversely, buildings around which the flood could easily be delineated were considered 505 

unflooded. Some difficulties also arose during flood delineation inside vegetated areas located 506 

along the river, such as woods and wetlands. Most of these areas were entirely flooded due to 507 

their close proximity to the river channel, but small areas within them were protected from water, 508 
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due to higher ground elevations. These small areas are often partially masked by vegetation, 509 

and their manual delineation was challenging. Therefore, some of them may have been 510 

considered as flooded in the validation datasets. Lastly, the limit between flooded and water-511 

saturated but non-flooded soils was not always obvious in certain flooded fields, and was made 512 

more complex by the presence of wind. 513 
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 514 

Fig.5: (A) Zoom into the flood validation map obtained from manual delineation on the very-high-515 

resolution IKONOS-2 image of the Richelieu River acquired on May 8, 2011; (B) Location of the 516 

zoomed area on the RADARSAT-2 Fine Mode flood image acquired on May 7, 2011. 517 
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3.4 Flood return period data 518 

 519 

The Digital Elevation Model (ground surface elevations) for the Richelieu River basin; the 2-, 20-520 

and 100-year RP shorelines available for the river; and the water heights at the river centreline 521 

for each RP were used to produce the flood return period map for the Richelieu River floodplain. 522 

The shorelines are polyline features and the water heights at the river centreline are point 523 

features, with water height values attached in a geodatabase. The three RP standards used for 524 

floodplain mapping in the province of Quebec are 2, 20 and 100 years. These RP shorelines 525 

were generated by the Centre d’Expertise Hydrique du Québec (CEHQ), the governmental 526 

agency in charge of their production in Quebec. This data, as well as that of more than 600 527 

other river stretches throughout the province, are available on demand from the CEHQ,  528 

The data for the river stretch at study was updated in 2006 by the CEHQ. Data from the Rapid 529 

Fryers gauging station (located in Fig. 4) was used to perform the statistical analysis necessary 530 

to estimate the discharge associated with each RP (CEHQ, 2006). A Log-Pearson type III 531 

distribution was adjusted on 28 annual maximum discharge values recorded at this station 532 

between 1972 and 2000 (minimum of 579 m³/s and maximum of 1260 m³/s). The Chi-square 533 

goodness of fit test applied to the distribution shows a p-value of 0.0576. 534 

A stage-discharge relation method was used to estimate the water level associated with each 535 

RP for 29 sections positioned along the river according to its geomorphological characteristics. 536 

Water levels and their simultaneous discharge values were first recorded at each section during 537 

several field surveys. Then, stage-discharge relations were defined for four reference sections. 538 

Water levels and their simultaneous discharge values were recorded during field surveys, and 539 

statistically estimated RP discharge values were used to determine the water levels associated 540 

with each RP for these four reference sections. Each reference section was then used to 541 
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estimate the RP water levels of several upstream or downstream sections. This was done by 542 

identifying a stage-stage relation between the water levels recorded at these sections and the 543 

water levels recorded at the reference station. This stage-stage relation was used to determine 544 

the water level associated with each RP for each section of the Richelieu River. Then, RP water 545 

surfaces were generated using an interpolation procedure. Specifically, the HEC-GeoRAS 546 

software was used to simulate the RP water surfaces, through Inverse Distance Weighting 547 

spatial interpolation of the RP water levels estimated at each section. Ground elevation values 548 

were then subtracted from the interpolated water surfaces, to obtain the polygons of RP 549 

floodplains, from which the polylines of the floodplain shorelines were derived. These ground 550 

elevation values of the area were derived from LIDAR data acquired in 2006 with a point density 551 

of 1 point per metre and 0.15 m horizontal and vertical accuracy. Unfortunately, we were not 552 

able to obtain information on the accuracy of these RP shorelines. 553 

The DEM used in this case study to produce the flood return period map for the river stretch at 554 

study is not the one used by the CEHQ for 1D hydraulic modelling. Indeed, LIDAR data 555 

acquired in 2006 was limited to a narrow band exceeding the 100-year RP shoreline for a few 556 

metres only. It was not appropriate for RP estimation of the points located beyond the 100-year 557 

RP shoreline. Therefore, LIDAR data from April 2013, with a point density of 1 point per metre 558 

and 0.15 m horizontal and vertical accuracy acquired over the entire Richelieu watershed, was 559 

used to produce a DEM for the portion of the river under investigation. The spatial resolution of 560 

this DEM, which represents ground surface elevations, was set to 1 m. An analysis of 561 

differences in ground elevations between the 2006 and 2013 LIDAR-derived DEMs has shown 562 

that these differences are limited. Therefore, the use of this data should not generate major 563 

errors in the flood return period map of the Richelieu River floodplain. This map is presented in 564 

Fig. 6. Note that the horizontal striations in the south-east of Fig. 6 are caused by the presence 565 
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of drainage channels which locally decrease the elevation of the ground and therefore change 566 

the RP of the cells. 567 

 568 

Fig. 6: (A) Location (green rectangle) on the RADARSAT-2 Fine Mode flood image acquired on 569 

May 7, 2011 of the area of interest (red rectangle in panel (B)); (B)  Flood return period map of 570 

the Richelieu River superimposed on the IKONOS-2 reference image from May 8, 2011 571 

(southern part of the city of Saint-Jean-sur-Richelieu depicted). The red rectangle indicates the 572 

location of the zoomed area presented in panel (C); (C) Details of the RPs in a section of the 573 

urban area.  574 

 575 
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4. Results  576 

 577 

4.1 Detection of open water areas 578 

 579 

Figure 7 displays the optimized gamma PDFs fitted to the empirical image histograms of the 580 

RADARSAT-2 Ultra-Fine Mode (Fig. 7A), and RADARSAT-2 Fine Mode (Fig. 7B) image 581 

objects, together with the fuzzy thresholds ߪଵ଴ and ߪଶ଴ used for the classification of “open water” 582 

objects. Table 3 reports the estimated values and standard errors of the ݇	parameter and the 583 

fuzzy thresholds 	ߪଵ଴ and ߪଶ଴ for the optimized gamma PDFs for the Ultra-Fine and Fine Mode 584 

flood images.  585 

The contingency matrices corresponding to the accuracy of the “open water” classification steps 586 

are reported in Table 4. The values in the matrices were computed by comparing the number of 587 

pixels identified as open water on the optical high-resolution–derived validation maps against 588 

the number of pixels contained in the “open water” objects classified by the image processing 589 

algorithm. The contingency maps resulting from the final “open water” refined classification are 590 

presented in Fig. 8. To enable precise visualization of the classification results, zooms into 591 

areas containing under- and over-detection errors are provided.  592 

Table 3: Estimated values and standard errors for the ݇ parameters and fuzzy thresholds 	ߪଵ଴ 593 

and ߪଶ଴ for the optimized gamma PDFs for the RADARSAT-2 Ultra-Fine Mode and Fine Mode 594 

flood images. 595 

 
RADARSAT-2 Ultra-Fine Mode RADARSAT-2 Fine Mode 

Estimated Value Standard Error Estimated Value Standard Error 
 0.007 0.048 0.008 0.010 ࢑
 ૚૙ -20.03 dB 0.057 -21.70 dB 0.012࣌
 - ૛૙  -14.76 dB - -16.76 dB࣌
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 596 

 597 

Fig. 7: Optimized gamma PDF superimposed on the empirical image histograms of the 598 

RADARSAT-2 Ultra-Fine Mode (panel A) and RADARSAT-2 Fine Mode (panel B) image 599 

objects. The fuzzy thresholds ߪଵ଴ and ߪଶ଴ used for the classification of “open water” objects are 600 

also shown. 601 
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Table 4: Quantitative evaluations of RADARSAT-2–derived “open water” detections 602 

 Open water 
classification steps 

% correctly 
classified* 

% under 
detection* 

% over 
detection* 

RADARSAT-2 
Ultra-Fine 

Mode 

Initial 
classification 65 35 30 

Refinement using 
membership degree 64 36 18 

Refinement using RP 64 36 1 

 

RADARSAT-2 
Fine Mode 

Initial 
classification 88 12 10 

Refinement using 
membership degree 87 13 5 

Refinement using RP 87 13 2 

* % of pixels identified as open water on the validation data sets 
 603 
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 604 

Fig. 8: Contingency maps of the final refined classification of “open water” objects deriving from 605 

the application of the method to the RADARSAT-2 Ultra-Fine and Fine Mode flood images. 606 

 607 

4.1.1 Analysis of “open water” under-detection 608 

From Table 4, it can be observed that the ability of the fuzzy thresholds ߪଵ଴ and ߪଶ଴ to correctly 609 

classify “open water” objects varies between the two SAR images. While 88% of the flooded 610 

pixels were correctly identified on the Fine Mode flood image using these fuzzy thresholds, only 611 
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65% of the flooded pixels were accurately identified on the Ultra-Fine Mode flood image. The 612 

high rate of "open water" under-detection in the Ultra-Fine Mode case study can be explained 613 

by the significant presence of waves and ripples on the open water surfaces. This produced an 614 

important increase in backscatter values of the “open water” areas and a substantial overlap 615 

between mean backscatter values of “open water” and other land-use types. This overlap is 616 

particularly obvious when looking at the empirical histogram of the mean backscatter of the 617 

objects in the SAR image, displayed in Fig. 7A. 618 

The 12% under-detection associated with the RADARSAT-2 Fine Mode “open water” object 619 

classification occurred mainly along the borders of inundated fields in rural areas, and along the 620 

edges of the main river channel and small tributary rivers (panels D to F in Fig. 8). The 621 

difference in spatial resolution between the Fine Mode image and the IKONOS-2 image (the 622 

source of the validation data) partly explains this under-detection. However, it is also imputable 623 

to the presence of vegetation along the edges of open fields and the river, which tends to 624 

increase the SAR signal return due to double-bounce scattering between the soil and the 625 

vegetation layers. This effect is also responsible for part of the under-detection on the Ultra-Fine 626 

Mode flood image (see panels B and C in Fig. 8). Thus, not all of the under-detection errors are 627 

imputable to the image processing algorithm; some result from the inherent limitations of the 628 

SAR C-Band imaging technique.  629 

According to Matgen et al. (2011), backscatter values between -24 dB and -10 dB can be 630 

considered appropriate for open water pixels for most currently available sensors. Analysis of 631 

the backscatter values of the under-detected “open water” pixels in the two case studies shows 632 

that many pixels with backscatter values typical of open water were excluded from the “open 633 

water” classification because they belonged to objects with mean backscatter values that were 634 

higher than the fuzzy membership degree defined for open water (see Fig. 9). Thus, in spite of 635 

the attention that was paid to the selection of optimal parameter values for the multi-resolution 636 
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segmentation procedure, image segmentation inaccuracies remained locally present. However, 637 

the impact of these inaccuracies on the classification results was moderate, as they were 638 

responsible for only 4% and 0.4% of the under-detections on the Ultra-Fine Mode and Fine 639 

Mode images, respectively.  640 

 641 

Fig. 9: Boxplot of the mean backscatter values of objects containing under-detected “open 642 

water” pixels, and the backscatter values of under-detected pixels, for the Ultra-Fine Mode and 643 

Fine Mode flood images. 644 

 645 

4.1.2 Analysis of “open water” over-detection 646 

Most of the over-detections in the initial “open water” classification on the Ultra-Fine Mode 647 

image were located in urban areas, on unflooded surfaces characterized by specular-like 648 

reflection, such as roads parallel to the orbit track and parking lots; areas affected by the 649 

shadow effect were also a source of over-detections. Conversely, on the Fine Mode image, 650 

which did not have sufficient spatial resolution to detect such fine-scale urban elements, the 651 

over-detections were located in rural areas, on bare, smooth fields. These errors can be 652 
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explained by the high soil moisture at the time the image was acquired, which resulted in low 653 

backscatter values from bare soils (Ulaby et al., 1986). 654 

In both case studies, the benefit of using both the objects’ membership degree in the “open 655 

water” class and the RP data to refine the "open water" classification is obvious, with large 656 

decreases produced in the rates of “open water” over-detection (see Table 4). Classification 657 

refinement based solely on the membership degree of objects enables a significant reduction in 658 

over-detections, but at rates that cannot guarantee extraction of an accurate RP for flood extent 659 

mapping in urban and rural areas. Classification refinement based on the classified objects’ RP 660 

is thus also essential. For information purposes, the RPs used for “open water” classification are 661 

of 609 years in the Ultra-Fine mode case study and of 540 years in the Fine mode case study. 662 

As shown in Table 4, the over-detections of “open water” areas were reduced to 2% for the Fine 663 

Mode image and to 1% for the Ultra-Fine Mode image. In both case studies, the decrease in 664 

classification accuracy associated with the classification refinement was only 1%. Therefore, 665 

and as presumed in section 2.5, the use of the objects’ membership value and their spatial 666 

connection to objects with a high membership degree in the “open water” class does not result 667 

in the inclusion of objects containing hedgerows or wind-affected water surfaces in the “open 668 

water” class. This tends to validate the “superior or equal to 0.5” membership degree rule and 669 

the use of RPs for refining the “open water” classification.  670 

After these two classification refinement steps, most of the remaining over-detection is located 671 

at the upper boundaries of the flooded fields and in vegetated flooded areas (see panels B, E, 672 

and F in Fig. 8). Over-detection at the upper boundaries of the flooded fields was more 673 

important in the Fine Mode image case study than in the Ultra-Fine Mode case study. Again, 674 

this can be related to the difference between the spatial resolution of the Fine Mode image and 675 

the IKONOS-2 scene used as evidence of the flooding extent. An additional factor is that the 676 

flood was receding by the time these images were acquired, and visually distinguishing between 677 
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the water-saturated soils and the flooded soils was locally laborious at the extremities of open 678 

water areas. This may have led to local inaccuracies in the IKONOS-2–derived validation flood 679 

map.  680 

The remaining over-detections due to specular backscatter from unflooded areas (parking lots, 681 

shadow areas around buildings, etc.) were trivial in both case studies. Only one non-flooded 682 

parking lot located beside the river was classified as "open water" on the Fine Mode flood image 683 

(see Fig. 8D), while no error of this type is to be found on the Ultra-Fine Mode image (see Fig. 684 

8A). These results demonstrate the very good capacity of the proposed method to deal with 685 

such areas, which are considered a significant impediment to precise flood detection in urban 686 

areas using high-resolution SAR imagery.  687 

Most of the under-detections were caused by the presence of wind on water surfaces or by 688 

double bounces from vegetation. Thus, modification of the fuzzy threshold ߪଶ଴ toward higher 689 

backscatter values would not result in a significant reduction of under-detections and would 690 

come at the cost of increased over-detections of “open water” areas. Conversely, modification of 691 

the fuzzy threshold towards a lower percentile of the gamma distributions would reduce over-692 

detection, but it would also result in increased under-detections of open water areas. 693 

 694 

4.2 Accuracy of flood mapping in urban and rural areas 695 

 696 

The maximum RP extracted from the “open water” classification was 186 years for the 697 

RADARSAT-2 Ultra-Fine Mode flood image and 219 years for the RADARSAT-2 Fine Mode 698 

flood image. These RPs are not and should not be considered representative of the actual RP 699 

corresponding to the discharges or to the water levels registered at the gauging station at the 700 

time of the SAR image acquisitions. They should rather be considered indicators related to the 701 
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maximum extent of the flooded areas identified with certainty, enabling identification of the 702 

flooding status of the floodplain cells with inferior or equal RP values. 703 

For each case study, the accuracy of the flood extent map that resulted from application of the 704 

extracted RP across the entire floodplain is reported in the contingency matrices shown in Table 705 

5. The values of the contingency matrices were computed by comparing the number of pixels 706 

identified as flooded on the validation maps to the number of pixels classified as flooded in the 707 

flood extent maps. The results are considered separately for urban and rural areas, which were 708 

distinguished using 1:20 000 scale land cover data provided by the Canadian National 709 

Topographic Data Base (NRC, 2015). To enable qualitative evaluation of the method's 710 

performance, the results are displayed as contingency maps in Fig. 10. 711 

Table 5: Quantitative evaluation of the RADARSAT-2–derived flood extent maps in urban and 712 

rural areas 713 

 Area types % correctly 
classified* 

% under-
detection* 

% over- 
detection* 

RADARSAT-2 
 Ultra-Fine Mode 

Urban flooded 
areas 86 14 13 

Rural flooded 
areas 97 3 35 

  

RADARSAT-2  
Fine Mode 

Urban flooded 
areas 87 13 14 

Rural flooded 
areas 98 2 3 

* % of pixels identified as flooded on the validation data sets 

 714 
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 715 

Fig. 10: Contingency maps of the final flood extent maps in urban and rural areas. The left-hand 716 

panel shows the contingency map for the May 1, 2011, case study superimposed on the 717 

GeoEye-1 image, with zooms into areas of interest shown in panels A, B, and C. The right-hand 718 

panel shows the contingency map for the May 7, 2011, case study superimposed on the 719 

IKONOS-2 image, with zooms into areas of interest shown in panels D, E, and F.  720 

From Table 5, it can be seen that 86% and 97% of the flooded pixels were correctly identified in 721 

the urban and rural areas, respectively, in the May 1, 2011, case study. The extraction of a RP 722 

allowing urban and rural flooded areas to be precisely mapped was unlikely, as the rate of 723 

correctly detected open water flooded areas was low on the Ultra-Fine Mode image. However, 724 

the combination of accurate detection of most “open water” objects located at the outer 725 
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boundaries of open water flooded areas (Fig. 8) and a low rate of open water over-estimations 726 

enabled extraction of an accurate RP. The associated over-detection was 13% in urban areas 727 

and 35% in rural areas. The causes of this high rate of over-detection will be analyzed in detail 728 

in a following section. The results obtained in the May 7, 2011, case study were almost 729 

identical, although the “open water” objects classification was significantly better: 87% of the 730 

urban flooded pixels and 97% of the rural flooded pixels were correctly identified by the 731 

algorithm. The associated over-detection was 14% in the urban areas and 3% in the rural areas. 732 

This first overview of the flood extent mapping results suggests that accurate classification of all 733 

“open water” objects on a SAR flood image is not strictly required to extract RP values precise 734 

enough for flood extent mapping needs. SAR flood images that include water surfaces 735 

roughened by wind can thus be used as inputs to this method.  736 

 737 

4.2.1 Analysis of under-estimations of flooding extent 738 

From Fig. 10C, one can see that two flooded residential areas (labelled U1 and U2) located by 739 

the riverside were classified as unflooded by the algorithm in the two case studies. The analysis 740 

of the RP of the cells located in these two areas revealed values two to eight times higher 741 

(between 2,000 years and 16,000 years) than the RP used for flood extent mapping in the two 742 

case studies. These over-estimations of the RP had two sources. First, due to the very similar 743 

elevations of the 20-year and 100-year floodplain limits in these areas, the differences between 744 

the 20-year and 100-year RP water surface elevations were very low. Therefore, small 745 

variations in ground surface elevation resulted in very large increases in RP, as shown in Fig. 746 

11A. Also, it can be seen that the 20-year RP water surface has higher local elevations than the 747 

100-year RP water surface, which results in important inaccuracies in the RP estimates (Fig. 748 

11A). This error is due to the fact that the elevation points along the 100-year RP shoreline used 749 

for interpolation of the associated water surface were less numerous and were unequally 750 
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spatially distributed in these two areas, unlike the points used for interpolation of the 20-year RP 751 

water surface. This lent greater influence to more distant points in the interpolation of the 100-752 

year RP water surface, leading to local inaccuracies in water surface elevations.  753 

The aforementioned errors only concern a moderate proportion of the overall under-detections 754 

in the urban areas. Most of the under-detections in the urban areas are located around 755 

buildings, and form small individual areas (Fig. 10B and Fig. 10E). The analysis of ground 756 

elevations in these areas revealed slight increases around the buildings, which results in RP 757 

increases. To illustrate this phenomenon, an example extracted from the area identified as U3 in 758 

Fig. 10E is provided in Fig. 11B. These increases in ground elevations around buildings are 759 

typical of the presence of basements, which seems to have prevented the buildings from being 760 

flooded. Considering the difficulties associated with manual delineation of the flooding around 761 

each building, it appears that these under-detections reveal the presence of zones that were 762 

actually non-flooded. This underlines the ability of the method to precisely define the flooding 763 

status of most of the buildings in urban areas as long as high-resolution, high-precision 764 

elevation data are available for the production of the RP map. Finally, in both case studies, 765 

under-detection was very low in rural areas, and was concentrated at the upper boundaries of 766 

flooded fields (Fig. 10F). Errors in the validation maps can explain such inaccuracies, as flooded 767 

and water-saturated but non-flooded soils were often difficult to distinguish in these areas.  768 

 769 

 770 
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 771 

Fig. 11: Analysis of flood extent mapping under-detection (panels A and B) and over-detection 772 

(panel C) for different zones of the study area. The left panels allow the analysis of the values 773 

and the spatial tendencies of the ground elevations and of the water surfaces elevations in 774 

areas where flood mapping inaccuracies were located. The right panels allow the analysis of the 775 

values and of the spatial tendencies of the RPs in these areas. 776 

 777 
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4.2.2 Analysis of over-estimations of flooding extent 778 

A very large proportion (88%) of the over-estimations in rural areas of the May 1 case study was 779 

due to misclassification of a single unflooded field located in the southern part of the study area 780 

(Fig. 10C). Insofar as the 2-year RP floodplain limit is located in the middle of this field and the 781 

surrounding fields were almost entirely flooded on this date, it was reasonable to expect that this 782 

field should also be flooded. Indeed, the IKONOS-2 image shows that it was almost entirely 783 

flooded six days later, on May 7. A thorough visual analysis of the GeoEye-1 scene reveals that, 784 

on May 1, work was being conducted on the embankment that surrounds three of the four sides 785 

of this field. In the later IKONOS-2 scene, two large breaches that were not visible on the 786 

GeoEye-1 image are present in the embankment, enabling the water to flood the field. It 787 

appears that an attempt to reinforce the embankment was made during the rising phase of the 788 

flood in order to protect the field and habitations located on its eastern side, but that these 789 

mitigation efforts were ultimately unable to withstand the water level rise. 790 

The remaining over-estimations are mainly located at the urban and rural flooded area edges, 791 

and are connected. Two examples of flood extent over-estimations are displayed in Fig. 10A 792 

and Fig. 10D. Both are located in areas where the ground surface elevation gently varies but 793 

stays close to the elevation of the 100-year RP water surface. Thus, the RP does not undergo 794 

significant variation and remains low, within a range of values that does not exceed 200 years. 795 

This phenomenon can clearly be seen in Fig. 11C. In such cases, over-estimation by just a few 796 

years of the RP extracted from the objects classified as "open water" on the SAR flood image 797 

can lead to over-estimation of the maximum flood extent. This phenomenon is common when 798 

considering water levels above bankfull stage, in large and rather flat floodplains such as the 799 

Richelieu river floodplain, and should therefore be frequently observed. Conversely, in 800 

floodplains with more pronounced topography, a small increase of water level should lead to a 801 

small increase of the flooded area, and therefore to less abrupt increases in RP. The presence 802 
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of connected areas of over-estimation along the edges of the correctly identified flooded areas 803 

indicates that this method for extracting the RP from the objects classified as “open water” on 804 

the SAR image tends to slightly over-estimate the RP. However, the resulting over-estimations 805 

remain low and should not lead to major issues in terms of flood crisis management. 806 

 807 

5. Discussion 808 

 809 

Despite some local inaccuracies, mostly due to errors in the RP estimated for each point of the 810 

floodplain, the method presented here enabled correct identification of the flooding status of 811 

most pixels in the areas of interest in both May 1 and May 7, 2011 Richelieu River flood case 812 

studies. These initial results show the consistency of this innovative method and demonstrate 813 

that it competes well with existing algorithms in terms of urban and rural flood extent mapping 814 

precision. Indeed, from Table 6, which reports the results of urban and/or rural flood extent 815 

mapping obtained with other methods, it can be seen that best urban flood mapping accuracy 816 

reported to date was obtained by Giustarini et al. (2013), who correctly identified around 82% of 817 

urban water pixels on a TerraSAR-X flood image acquired in HH polarization mode. Rural flood 818 

extent mapping was not considered in that study. However, in cases such as the Richelieu River 819 

flood, accurate rural flood extent mapping is also essential, as many small rural residential 820 

areas and private cottages located on the riverside are at high risk of flooding and may end up 821 

isolated because their access roads are exposed to flooding. To our knowledge, the best flood 822 

detection accuracy in rural areas was obtained by an algorithm developed by Martinis et al. 823 

(2009), which proved capable of detecting ∼ 95% of rural flooded pixels on a TerraSAR-X 824 

image with an associated false positive rate of 1% (see Table 6). According to the authors, the 825 
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algorithm does not perform well in urban areas, and is affected by double bounce effect, side-826 

lobes strong reflectors etc. 827 

Table 6: Summary of relevant research conducted in SAR-based urban and rural flood extent 828 

mapping. In the “Key results” column, code (1) refers to urban flood mapping accuracy; (2) rural 829 

flood mapping accuracy; (3) key aspects of the method or of the results. 830 

Study Data used Approach Key results 

1. Matgen et al. 2011 
ENVISAT & 

RADARSAT-1 / 

Automated histogram 
thresholding, combined 
with region growing 
algorithm  

Change detection is included as an additional step that 
limits over-detection of inundated areas, but results 
show that considering pre- or post- flood image gives 
the same performances as optimized manual 
approaches.  
84.5% of pixels correctly detected in rural areas, 6% 
over-detection, 9.6% under-detection. 
Urban areas not analyzed 

2. Guistarini et al. 2013 TerraSAR-X 

Backscatter 
thresholding combined 
with region growing and 
change detection 

Areas in shadow and with permanent water surface-
like radar response are masked from the final flood 
map, to reduce over-detections. 
82% of pixels correctly detected in urban areas, 2.6% 
over-detections, 15.6% under-detections. 
Rural areas not analyzed 

3. Martinis et al. 2009 TerraSAR-X 

Tile-based automatic 
thresholding 
approaches, and 
refinement using 
topography 

Algorithm performs very well in rural areas, with an 
overall accuracy of ∼ 95%, 1% over-detections and 4% 
under-detections.  
Does not perform well in urban areas, due to double 
bound effects, side-lobes strong reflectors etc.  

4. Martinis et al. 2011 TerraSAR-X 

Change detection using 
Tile-based parametric 
thresholding applied on 
a normalized change 
index data, combined 
with Markov image 
modeling 

Integration of spatial-contextual information in the 
classification using noncausal Markov Random Field 
modelling increases classification accuracy.  
Experimental results confirm the effectiveness of the 
approach, with an overall error of ∼7.5% (∼92.5% 
classification accuracy). Urban and rural areas are not 
differentiated.  

5. Mason et al. 2010 TerraSAR-X 

Snakes conditioned by 
SAR and LIDAR data in 
rural areas; Region 
growing guided by rural 
flood heights in urban 
areas    

Areas of radar shadow and layover are estimated 
using a SAR end-to-end simulator and LIDAR data, 
and are masked out in the processing stages. 
76% of flooded pixels correctly detected in urban 
areas, 25% over-detections, 24% under-detections. 
If all urban water pixels are considered, results fell to 
58% of correctly detected pixels with an associated 
positive rate of 19%.  

6. Mason et al. 2012 TerraSAR-X 

Image segmentation 
combined with 
thresholding-based 
classification for urban 
areas; Region growing 
guided by rural flood 
heights in urban areas. 

Areas of radar shadow and layover are estimated 
using a SAR end-to-end simulator and LIDAR data, 
and are masked out in the processing stages.  
89% of pixels correctly detected in rural areas, 6% 
over-detections, 11% under-detections 
75% of pixels correctly detected in urban areas, 24% 
over-detections, 25% under-detections. 
If all urban water pixels are considered, results fell to 
57% of correctly detected pixels with an associated 
positive rate of 18%. 
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7. Mason et al. 2014 

 
 

TerraSAR-X 

Estimation of double 
scattering strengths 
using a SAR image and 
a high resolution LIDAR 
data height map  

Observations of double scattering strengths compared 
with predictions from an electromagnetic scattering 
model. Successful detection of double scattering 
curves due to flooding in a single-image case (100% 
classification accuracy) and of un-flooded curves (91% 
classification accuracy).  
Same figures achieved using change detection 
between flooded and un-flooded images. 

8. Pierdicca et al. 2008 ERS-1 

Fuzzy-based 
classification, integration 
of SAR measurements 
and of land-cover map 
for backscatter analysis, 
and of DEM to include 
simple hydraulic 
considerations 

Use of land cover information and of simple hydraulic 
consideration derived from DEM data helps at 
improving open water detection. 
Urban and rural areas are not differentiated. 
87% of correctly detected pixels, 5% over- detections 
and 8% under-detections.  
 

9. Pulvirenti et al. 2015 COSMO-SkyMed 

Analysis of coherence 
data and of intensity 
data trends, coupled 
with manual 
classification and a 
region growing 
technique 

First successful attempt to detect flood in urban areas 
using inSAR theory. 
Visual analysis of results and analysis of coherence 
and intensity data trends.  
Multi-temporal trend of Coherence useful for the 
interpretation of SAR data and fundamental to reduce 
omission errors. Post-event coherence useful to 
observe the persistence of water. Interferometric data 
helps distinguishing zones where water receded from 
areas where it persisted for a longer time. 

10. Chini et al. 2012 COSMO-SkyMed 

Complex coherence and 
intensity information 
combined in a RGB 
composite image, 
followed by visual 
interpretation 

Visual interpretation of the RGB color composite image 
and validation using a couple of optical images used 
as benchmarks. 
The high resolution of the images used (3m) and the 
interferometric coherence underline the presence of 
flood water in urbanized areas.  
The temporal analysis of intensity information allows 
detecting rural flooded areas, receding of flood water 
and moving of debris along the flooded fields.  

11. Tanguy et al. RADARSAT-2 

Combination of SAR-
based open water 
detection and of RP 
data 

First successful attempt to combine SAR data and RP 
data for urban flood mapping. 
In urban area, ∼ 87% of pixels correctly identified, with 
under-and over-detections ∼ 14%.  
In rural areas, 97% of flooded pixels correctly 
identified, with under-detection ∼ 3% and over-
detection between 3% and 35%. 

 831 

 832 

The method presented by Guistarini et al. (2013) seeks to minimize the risk of flood extent over-833 

detections by masking permanent smooth areas from the final flood map. A similar technique 834 

has also been used by Mason et al. (2010, 2012) to mask areas affected by shadow and 835 

layover effects. In both cases, the mask covered a significant part of the area of interest ∼20% 836 

in Guistarini et al. (2013) and 39% in Mason et al. (2012), which means that the flooding status 837 

of a non-negligible part of the urban areas was not identified. By contrast, the method presented 838 
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here does not require such masks, and seeks to detect water pixels in urban areas using 839 

hydraulic data and topography. The final results of this method are not affected by permanent 840 

water surface-like radar response areas or layover and have the advantage of considering all 841 

the pixels of the area of interest in the flood extent maps. From Table 6, it can also be seen that 842 

combined intensity and coherence information analysis methods presented by Chini et al. 843 

(2012) and Pulvirenti et al. (2015) also appear promising. However, in the absence of 844 

quantitative information about the precision of these methods, it is not possible to compare their 845 

performance to the one hereby presented. Both methods rely on the availability of SAR 846 

interferometric pairs to analyze multi-temporal trends of coherence information, which may limit 847 

their wide application. However, future improvements in satellite constellations like Sentinel 848 

(ESA) and RADARSAT should provide users with more useful data. 849 

The availability issue of the aforementioned data highlights one of the limits of the method 850 

presented here. A recent report by Public Safety Canada (Public Safety Canada, 2014) 851 

confirmed that the RP shorelines required by the method are available for most rivers equipped 852 

with hydrometric gauging stations in several countries, such as Canada, UK, USA, France, 853 

Germany, Switzerland, Australia and New Zealand. The proposed approach should thus be 854 

transferable to a very large number of rivers prone to flooding. However, we are aware that 855 

these data are not available for all the rivers in the world, especially for those not equipped with 856 

hydrometric gauging stations. Therefore, in some cases, the method will not be applicable.  857 

Analysis of the over-estimations of flooding extent, section 4.2.2, has also underlined the 858 

necessity to use recent or up-to-date RP shorelines to minimize flood extent mapping errors due 859 

to land-use and land-cover changes. As the example given in section 4.2.2 demonstrates, local 860 

modifications of ground elevations or recent developments that may have an impact on water 861 

flow, such as embankments or walls, can’t be taken into account by the method for RP 862 

estimation at each point of the floodplain. If they have not been integrated into the RP 863 
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shorelines, they will lead to inaccurate RP estimations and therefore to significant errors of the 864 

flood extent maps. The use of recent and up-to-date data is thus strongly recommended, but it 865 

is obvious that RP shorelines and topographic height data are not updated yearly. Therefore, 866 

the user should check if developments or activities leading to modifications of the ground 867 

elevations took place in the area after RP shorelines definition, in order to ensure that the flood 868 

extent map will be relevant. In the same vein, the effects of temporary measures to protect 869 

buildings and streets, such as sand bags or mobile dams, cannot be accounted for by this 870 

method. The impact of such measures on subsequent flooding is restricted to small areas, but it 871 

may cause local over-estimations of the extent of the flooding.  872 

In the case studies presented here, the availability of RP shorelines generated by using very 873 

high horizontal and vertical accuracy LIDAR-derived DEM elevations has enabled us to produce 874 

coherent RP estimates at each point of the floodplain and precise flood mapping in both urban 875 

and rural environments, with fine-scale details. The use of very high accuracy LIDAR data such 876 

as the one exploited in this study (15 cm vertical accuracy and 1 m horizontal accuracy) is 877 

recommended with this method. This type of data is increasingly available in some countries 878 

such as Canada, although they are not available for all flood-prone areas and are still rare in 879 

some countries. The use of low quality, coarser-resolution DEM elevations data (i.e 10 m or 880 

20 m resolution) makes hydraulic modelling less efficient at replicating flow processes and 881 

reduces its relative accuracy (Jarihani et al., 2015). It leads to less precise RP shoreline 882 

estimations, and therefore to less coherent RP estimates at each point of the floodplain. Even if 883 

this point has not been demonstrated here with a tangible example, it should be clear that the 884 

use of coarser-resolution DEM data will result in less precise urban and rural flood extent maps.  885 

It is also worth underlining that the estimation of RPs and shoreline position can be affected by 886 

errors and uncertainties from different sources (number and quality of hydrologic observations 887 

used for RP estimation, quality of the data used for hydraulic model construction, structural 888 
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modeling assumptions, etc.). An interesting aspect of the method hereby proposed is that 889 

remotely sensed open water areas constrain RPs derived from hydraulic modeling and help 890 

reducing uncertainties related to model predictions. To illustrate this point, we offer an example 891 

from the 2011 river Richelieu flooding. The statistical analysis used to estimate the RPs of the 892 

river section under study has been based on 28 annual maximum river flows registered between 893 

1973 and 2000 (see section 3.4). The highest annual maximum flow included in the frequency 894 

analysis was of 1260 m³.s-1, whereas the maximum discharge registered on May 7 was of 895 

1530 m³.s-1. According to the results of the statistical analysis, the RP corresponding to this 896 

discharge is of almost 10,000 years. Using this RP alone to map urban and rural flooded areas 897 

may have caused important over-estimations of the flooding extent. This over-estimation has 898 

been estimated to be of 52% in urban areas and 20% in rural areas. This example tends to 899 

confirm the relevance of combining SAR-derived open water information and RP data for 900 

precise flood extent mapping. 901 

However, it may happen that the rainfall pattern of the extreme event being studied differs from 902 

the rainfall pattern in the catchment integrated to the hydraulic model when defining the flood 903 

return period shorelines. For instance, this phenomenon may occur when considering the 904 

flooding of a town at the confluence of two rivers. The pattern of flooding in this town will 905 

probably be different if one river is flooded rather than the other, due to greater-than-normal 906 

rainfalls over one river catchment and not over the other. In that case, the flood map 907 

constructed from the maximum RP extracted from SAR-derived open water areas will be in 908 

error, and will tend to overestimate the flooding extent on one side of the town. Also, the method 909 

presented in this paper does not account for the temporal aspect of flood spread over the 910 

floodplain or for the potential presence of areas where water is naturally retained after a 911 

decrease in the water flow. Again, this phenomenon may be the cause of over-estimations of 912 
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the flooding extent. These two important aspects should be considered in further improvements 913 

of the method. 914 

 915 

For the case studies presented in this paper, it took five hours to produce the RP map, which 916 

covers an area of ∼ 90 ha (∼ 0.32 square miles), with a spatial resolution of one metre. The 917 

production time of the RP map depends on the size of the study area considered and the spatial 918 

resolution required by the users: the larger the study area and the finer the spatial resolution, 919 

the longer the production time will be. However, such maps can be produced in advance for 920 

areas known to be flood-prone, or while waiting for reception of the SAR flood image. They can 921 

also be re-used for other flood scenarios in the same area as long as land use and land cover 922 

remain unchanged. Finally, the overall time required for the near-real-time processing operation 923 

is very short: for the study area considered in the May 7 case study, the running time of the 924 

near-real-time process was less than 25 min on an Intel ® Core ™ i5 CPU (2.40 GHz and 925 

6.00 GB RAM). 926 

These characteristics confirm that the proposed method for flood extent mapping in urban and 927 

rural areas is suited for near-real-time operations and has the potential to be a valuable tool for 928 

emergency management during flooding. However, the method has not yet been automated 929 

and still requires user interactions for the segmentation of the SAR image. Even if the 930 

parameters of the scale, shape and compactness criteria of the multi-resolution segmentation 931 

module of the eCognition Developer 8 software might not change much from one SAR flood 932 

image to another, they will have to be set manually. If the user is satisfied with the segmentation 933 

results obtained with the parameter values identified in this paper, the latency should be short (a 934 

few minutes). However, manually setting different parameter values can greatly increase 935 

latency. Therefore, in order to make method entirely compatible with emergency management 936 

requirements and to reduce the latency resulting from this manual step, the development of an 937 
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alternative option for automatic segmentation of the SAR images must be considered. Further 938 

research will focus on this point.  939 

Improvements of the method for RP data at each point of the study area, which proved to be the 940 

source of many misclassifications in urban and rural areas, will also be considered. In particular, 941 

a method to check the consistency of water elevations at the points along shorelines will be 942 

integrated in the method, in order to avoid inconsistencies as the one identified in Fig. 11A. 943 

Moreover, the proposed method assumes linear transition between RP water elevations points. 944 

This type of transition was selected because it is a very common method of estimating the 945 

relationship between RP and water levels, and because it often provides a good estimation of 946 

this relationship (Vogel et al., 2011). It also has the advantage of being simple to implement. 947 

However, we are aware that it may not be applicable for all river floodplains. Therefore, it would 948 

be worth integrating an option for non-linear transition between RP water elevations points in 949 

the method for flood return period map generation. 950 

It is also worth mentioning that the method was tested on a flooding event with constant linear 951 

floodplain geometry and in an urban area with a simple pattern (building of limited heights, 952 

streets organized in a grid pattern and no large parking lots close to the river channel). 953 

Therefore, in order to verify its robustness, the method needs to be tested in urban areas with 954 

contrasting patterns, with different floodplain geometries and more complex flooding dynamics. 955 

Finally, to further improve the method and to make it applicable to a large number of flooding 956 

events with varying characteristics, a technique to deal with non-bimodal histograms of image 957 

objects mean backscatter values should be developed.  958 

 959 

 960 

 961 
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6. Conclusion 962 

 963 

In this study, an innovative approach for near-real time flood mapping in urban and rural areas, 964 

combining the capacity of SAR satellite imagery (C-band, HH polarization) for open water 965 

detection and RP data, was presented. The aim was to demonstrate that hydraulic data, which 966 

has never been combined with SAR imagery in a method for flood mapping, enables the 967 

detection of flooded pixels to be deducted in areas where SAR remote sensing has limitations. 968 

The proposed method was applied to two very high resolution RADARSART-2 images (C-band, 969 

HH polarization) with different acquisition parameters and water-surface conditions acquired 970 

during the 2011 Richelieu River flood (Canada). Classification accuracies achieved in urban and 971 

rural areas proved that this method precisely detects flooded areas, even when SAR-derived 972 

open water classification —from which RP is extracted— is affected by waves and ripples. The 973 

method also addresses the problem of over-detections due to the shadow effect and permanent 974 

water surface-like radar response areas, by efficiently removing areas with such characteristics 975 

from open water classification using their RP information and their degree of membership to the 976 

“open water” set. These results demonstrate that the presented method competes with existing 977 

algorithms in terms of urban and rural flood mapping precision. They also highlight the 978 

relevance of integrating explicit hydraulic data in a SAR-based flood extent mapping approach. 979 

However, further improvements and tests with different flooding scenarios are still necessary to 980 

make the method entirely automatic and compatible with emergency management 981 

requirements. 982 

 983 

 984 
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