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Abstract  18 

This study focuses on the evaluation of daily precipitation and temperature climate indices and 19 

extremes simulated by an ensemble of twelve Regional Climate Model (RCM) simulations from 20 

the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the 21 

Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, 22 

JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential 23 

for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly 24 

distributions of indices over the 1980-2004 dataset overlap period.   25 

The results showed that RCM and reanalysis performance varied with the climate variables 26 

being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to 27 

mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of 28 

the Yukon region where models displayed the largest biases related to topographic effects. Overall 29 

performance was generally poor for indices related to cold extremes. Likewise, only a few RCM 30 

simulations and reanalyses were able to provide realistic simulations of precipitation extreme 31 

indicators. The multi-reanalysis ensemble provided superior results to individual datasets for 32 

climate indicators related to mean air temperature and hot extremes, but not for other indicators. 33 

These results support the use of reanalyses as reference datasets for the evaluation of RCM mean 34 

air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation 35 

indices. 36 

 37 

Keywords: precipitation climate indices, temperature climate indices, regional climate model 38 

evaluation, CORDEX experiment, daily precipitation, Canadian Arctic. 39 

 40 

1. Introduction 41 

Trends in temperature and precipitation and their extremes in observations and Global Climate 42 

Models (GCMs) have been a subject of extensive study over the past decade because of the 43 

potential impacts on human society and ecosystems (e.g. Alexander et al. 2006; Kharin et al. 2007, 44 

2013; Sillmann and Roeckner 2008; Donat et al. 2013; Sillmann et al. 2013a, 2013b). There are a 45 

number of challenges in carrying out these studies (e.g. Zwiers et al. 2013; Alexander 2016) 46 
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especially over data sparse regions such as the Canadian Arctic which is the focus of this study. In 47 

addition to limited surface observations, a key challenge in model evaluation is the scale mismatch 48 

(e.g. Booij 2002; Fowler et al. 2005; Zhang et al. 2011) between surface observations and climate 49 

models with resolutions ranging from ~25-50 km for the Regional Climate Models (RCMs) to 50 

~100-300 km for the GCMs participating in the Coupled Model Intercomparison Project Phase 5 51 

(CMIP5; Taylor et al. 2012). Generally, higher precipitation intensities are recorded at station 52 

(especially for more intense precipitation) than reported on gridded datasets since simulated 53 

gridded products are usually interpreted as mean values over the grid (for a discussion of this point 54 

see e.g. Chen and Knutson 2008). Consequences of scale mismatch are especially obvious for 55 

GCMs and reanalyses with coarse resolution. Different interpolation methods have been proposed 56 

in order to aggregate station information to the GCM scale. However, these methods can only be 57 

used with some confidence in regions with good spatial coverage. The Canadian Arctic (which 58 

includes the Yukon Territory, Northwest Territories and Nunavut) is a vast region covering 59 

approximately 3 600 000 km2 of land. The number of stations reporting daily precipitation and 60 

daily temperature over extended  periods of time in this region is very limited (see Section 2.3). 61 

Northern Canada is also a region of complex topography with a large number of lakes and 94 62 

major islands. Interpolating information to common grids over this region of complex topography 63 

and ice/water boundaries can have a huge impact on the resulting fields, especially for extremes 64 

(e.g. Hofstra et al. 2010; Gervais et al. 2014). One approach for dealing with the scale-difference 65 

issue is to dynamically downscale GCM simulations using high-resolution RCM simulations. This 66 

has been shown to provide more realistic simulations of precipitation and precipitation extremes, 67 

with intensities and frequencies comparable to those recorded at surface stations (Chan et al. 2013).   68 

The Arctic Coordinated Regional Downscaling Experiment (ARCTIC-CORDEX: Giorgi et al. 69 

2009; Jones et al. 2011; Gutowski et al. 2016; http://www.climate-70 

cryosphere.org/activities/targeted/polar-cordex/arctic) is part of the CORDEX initiative and there 71 

are three experimental streams consisting of: (1) RCM simulations driven by the European Centre 72 

for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERAI) reanalysis (Dee et al. 73 

2011), (2) RCM historical simulations and (3) RCM projections driven by GCMs participating in 74 

the CMIP5 program. The RCM simulations obtained in the ARCTIC-CORDEX domain have not 75 

previously been evaluated over the Canadian Arctic, and previous RCM studies of Arctic climate 76 

have tended to focus on individual models (e.g. Saha et al. 2006; Matthes et al. 2010; Gutowski 77 
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2014a, 2014b; Koenigk et al. 2015). The spatial coverage of the multi-model ensemble of the North 78 

American Regional Climate Change Assessment Program (NARCCAP; Mearns et al. 2009) only 79 

partially covered the Canadian Arctic, which makes this analysis of the CORDEX multi-model 80 

ensemble novel. 81 

The main motivation for this study was the need to provide decision-makers in northern Canada 82 

with information about the ability of current RCMs and reanalysis to simulate a range of commonly 83 

used temperature and precipitation indices. The need for this information is underscored by the 84 

rapid warming observed over the Arctic in the past several decades (Hansen et al. 2010; Vincent 85 

et al. 2015), which recent studies  suggest may be  underestimated (Way et al. 2016; Cowtan and 86 

Way 2014). Climate extremes are expected to change more rapidly than mean warming (Fischer 87 

and Knutti, 2015) with non-linear impacts that can pose challenges for adaptive capacity (Knutti 88 

et al. 2016). This study represents an important addition to previous regional climate based change 89 

projections provided for the Canadian Arctic (Allard and Lemay 2012, Stern and Gaden, 2015) 90 

which did not include any analysis of climate extremes. 91 

 The aim of the present study is to evaluate the ability of CORDEX regional climate models to 92 

simulate key temperature and precipitation-based climate indices over the Canadian Arctic land 93 

areas. Fifteen temperature and ten precipitation climate and extremes indices were selected based 94 

on Arctic climate characteristics. Both the historical CMIP5 GCM- and ERAI-driven CORDEX 95 

simulations were evaluated. This allowed us to assess the RCM structural biases as well as the 96 

effect of GCM errors on the RCM simulations (Šeparović et al. 2013; Laprise et al. 2013). The 97 

evaluation was carried out by comparing simulated values to station records across the Canadian 98 

Arctic. In spite of their limitations (see Section 2.3), station observations remain the most reliable 99 

and the primary source of information for the historical climate of the region and are located where 100 

most human-related activities take place. This also avoids introducing potential errors into the 101 

evaluation from interpolation associated with gridded surface datasets, or from the numerous 102 

sources of errors associated with reanalyses. A second goal of the study was to evaluate how well 103 

recent reanalyses perform at reproducing the observed climate indices, and to determine if they 104 

can be used in model evaluation to complement station data in data-sparse regions.  105 

The remainder of the paper is organized as follows: The RCMs, reanalyses and observed 106 

datasets used in the model evaluation are described in Section 2, while the evaluation methodology 107 



5 
 

(i.e. computation of climate indices and evaluation metrics) is presented in Section 3. Section 4 108 

presents the results of evaluating the reanalysis and GCM-driven simulations over a reference 109 

period of 25 years, while Section 5 presents the comparison of the GCM-driven and ERAI-driven 110 

simulations over a common period of 17 years. The final section (Section 6) summarises results 111 

and presents conclusions. 112 

2. Dataset descriptions  113 

2.1 RCMs 114 

This study used four RCMs (AWI-HIRHAM5, CCCma-CanRCM4, SMHI-RCA4 and UQAM-115 

CRCM5) that are part of the ARCTIC-CORDEX experiment (http://www.climate-116 

cryosphere.org/activities/targeted/polar-cordex/arctic). Table 1 provides information on the RCM 117 

simulations, their characteristics and relevant references for each model with the ARCTIC-118 

CORDEX domain shown in Figure 1. The simulations are driven by CMIP5 GCMs over a 119 

historical period, mainly from 1951 to 2005 and by ERAI over a more recent period, mainly from 120 

1989 to 2008. Some models used spectral nudging while others did not. For SMHI-RCA4 both 121 

configurations, with (identified as SMHI-RCA4SN) and without (identified as SMHI-RCA4) 122 

spectral nudging, were considered. The CCCma-CanRCM4 simulations were provided on a rotated 123 

grid at two horizontal grid spacings, 0.44° and 0.22°, while the other model simulations were only 124 

available at the 0.44° (about 50 km) horizontal resolution. The CORDEX-ARCTIC ensemble was 125 

supplemented with three 0.44° horizontal-resolution simulations carried out with the UQAM-126 

CRCM5 model over a North America domain, which completely covers Canada (Fig. 1), unlike 127 

the North America CORDEX simulations. These three simulations are identified as UQAM-128 

CRCM5NA (NA for North America) to differentiate them from the runs carried out over the 129 

CORDEX-ARCTIC domain. The CCCma-CanRCM4 simulations at 0.22° are identified as 130 

CCCma-CanRCM4-022. In total this provided twelve GCM-driven simulations and six ERAI-131 

driven simulations for analysis. The analysis was carried out over the Canadian Arctic land areas 132 

contained in the ARCTIC-CORDEX domain represented in Fig. 1 by the dark green shading. 133 

2.2 Atmospheric reanalyses and gridded surface observations 134 

The second goal of the study was to evaluate how well reanalyses and gridded surface 135 

observation datasets capture the observed local climate from station records to determine if they 136 

can be used in model evaluation to complement the observed station data. Six datasets were 137 



6 
 

considered comprising four recent reanalyses (CFSR, ERAI, JRA55, MERRA), and one product 138 

that corrects the NCEP-R1 reanalysis with observed temperature, precipitation and radiation 139 

(GMFD). Dataset descriptions and relevant references are presented in Table 2. For the Arctic 140 

region and the period used in this study, the temperature observations used by GMFD are mainly 141 

from the CRU TS3.0 gridded (0.5° x 0.5°) dataset, precipitation is corrected for undercatch and is 142 

downscaled based on relationships developed with the Global Precipitation Climatology Project 143 

daily product. Corrections were also made to high-latitude wintertime rain day statistics to remove 144 

a spurious wavelike pattern (Sheffield et al. 2006). The gridded surface observation dataset 145 

(NRCan) was included in the study to investigate the potential impacts of interpolating data from 146 

sparse surface observations on climate indices. The NRCan dataset provides daily precipitation 147 

and temperature from Environment and climate change Canada stations gridded on a horizontal 148 

grid of ~ 10 km using the thin plate smoothing spline implemented in the ANUSPLIN climate 149 

modelling software (Hutchinson et al. 2009). A two-stage approach was applied for interpolating 150 

daily precipitation by estimating the spatial domain where precipitation occurred prior to carrying 151 

out the interpolation of observed precipitation amounts. Trace precipitation amounts for solid 152 

precipitation were assigned values from 0.03 to 0.07 mm that varied inversely with latitude 153 

following Mekis and Vincent (2011).  154 

CFSR, MERRA and ERA-Interim monthly mean temperature and precipitation data were 155 

previously evaluated over the Canadian Arctic by Rapaić et al. (2015) and over the entire Arctic 156 

by Lindsay et al. (2013). Both papers indicate that MERRA and ERA-Interim have relatively small 157 

warm and wet biases compared to other reanalyses, while CFSR was found to have particularly 158 

large positive precipitation biases. 159 

2.3 Surface observations: 160 

As previously mentioned, the number of stations with long-term daily temperature and 161 

precipitation records across the Canadian Arctic remains small. The interpolation errors in gridded 162 

products based on sparse station networks can be high, especially for extremes and climate indices 163 

(e.g. Hofstra et al. 2010; Contractor et al. 2015; Way et al. 2016). As a consequence, climate model 164 

evaluations over such regions are often carried out using station observations or reanalyses (e.g. 165 

Lindsay et al. 2014; Glisan and Gutowski 2014a and 2014b; Matthes et al. 2010; Matthes et al. 166 

2015; Wilson et al. 2012). In this study, we use surface observations of mean, minimum and 167 
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maximum daily temperature (Tmean, Tmin and Tmax, respectively) and daily precipitation (Pr) 168 

from the climate stations included in the National Climate Data and Information Archive at 169 

Environment and Climate Change Canada (http://ccds-dscc.ec.gc.ca/index.php?page=download-170 

obs) that have at least 15 valid years in the 1980-2004 validation period of GCM-driven RCM 171 

simulations. Where stations were adjusted and corrected for known systematic errors, we used the 172 

corrected station data from the Adjusted Historical Canadian Climate Data set (AHCCD; Vincent 173 

et al. 2002, Vincent et al. 2012, Mekis and Vincent 2011). The AHCCD takes account of 174 

systematic errors from changes in observing programs, instrumentation and station moves (the 175 

latter for temperature data only), and also includes station joining to produce longer records. 176 

Precipitation records in the AHCCD have undergone rigorous quality control and adjustments to 177 

account for known measurement issues such as wind-induced undercatch, evaporation loss, and 178 

adjustments for trace observations that are particularly important for the frozen and light 179 

precipitation regimes that dominate the Canadian Arctic (Devine and Mekis 2008; Mekis 2005). 180 

The water equivalent of the snowfall was adjusted based on climatological estimates of fresh 181 

snowfall density obtained from stations where both Nipher gauge (solid precipitation) and snowfall 182 

were measured (Mekis and Brown, 2010). Trace snowfall amounts were assigned values between 183 

0.03-0.07 mm that varied inversely with latitude.  184 

This resulted in a total of 47 stations for the air temperature indices evaluation and 78 stations 185 

for the precipitation indices evaluation, with the spatial distribution shown in Figure 2. For the 186 

1989-2005 period used in the comparison of the GCM-driven and ERAI-driven simulations, these 187 

conditions were relaxed to at least 10 valid years, which led to similar numbers of stations: 48 188 

stations for temperature and 79 for precipitation. Details concerning the station selection criteria 189 

for climate indices computation are provided in Section 3.  190 

It is important to note that none of the reanalyses considered in this study assimilated surface 191 

precipitation data and that CFSR, MERRA, and JRA55 do not assimilate surface air temperature. 192 

Surface air temperatures from Canadian synoptic stations are assimilated in ERA-Interim through 193 

an analysis based on the Optimal Interpolation procedure, while GMFD is using a post-processing 194 

procedure based on the CRU TS3.0 gridded (0.5° x 0.5°) monthly dataset that contains Canadian 195 

climate station data. Consequently, surface air temperature fields from ERA-Interim and GMFD 196 

are not completely independent from the temperature field of the AHCCD dataset.  197 
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3. Methodology 198 

The five reanalyses and the GCM- and ERAI-driven simulations cover different periods of 199 

time. In the first part of this study, the reanalyses and GCM-driven simulations were evaluated 200 

over a common reference period of 25 years (1980-2004) while, in the second part, GCM- and 201 

ERAI-driven RCM simulations were evaluated over a common period of 17 years (1989-2005).  202 

3.1 Climate indices computation 203 

The Expert Team on Climate Change Detection and Indices (ETCCDI; Klein Tank et al. 2009) 204 

proposed a large number of climate indices that characterize many aspects (not only extremes) of 205 

daily temperature and precipitation distributions relevant for climate change detection and climate-206 

related applications. Also the ArcticNet Network of Centres of Excellence of Canada has identified 207 

several climate indices relevant for climate change impacts and adaptation studies in the Canadian 208 

Arctic (Allard and Lemay 2012; Stern and Gaden 2015). The reported indices were selected based 209 

on regional interests after due consultation of local representative involved in natural, health, 210 

social, and Inuit organizations, northern communities and federal and provincial agencies. In our 211 

study, fifteen daily temperature and ten daily precipitation climate indices associated with key 212 

characteristics of the precipitation and temperature regimes of the Arctic region were selected from 213 

those proposed by the ETCCDI and Arctic impacts-relevant indices provided by the Canadian 214 

ArcticNet program (Table 3).  215 

It was however, necessary to adapt the nomenclature of certain ETCCDI indices to take account 216 

of Arctic conditions. A large portion of the analysis domain is located north of the Arctic Circle 217 

(66°32'N) that experiences polar days and nights with a less distinct diurnal cycle. Because the 218 

notion of night and day is different for the Arctic, the term “day” will be used to denote a calendar 219 

day of 24 hours and not the period of sunlight, and the indices were named as in Table 3. The 220 

annual “cool” temperature indices were related only to the variable “daily minimum temperature” 221 

(TNn, TN10 and TN10p), while the annual “warm” temperature indices are related only to the 222 

variable “daily maximum temperature” (TXx, TX90 and TX90p). 223 

While total precipitation is generally low over much of the Canadian Arctic (the Arctic islands 224 

being known as Arctic desert (Serreze and Barry 2005, Stern and Gaden 2015), increases in 225 

extreme precipitation events and precipitation intensity have been observed over the Arctic (Cohen 226 

et al. 2014, Ye et al. 2015, Wan et al. 2015) and further increases are expected in response to 227 
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warming and increasing atmospheric humidity from reductions in sea ice extent.  Therefore part 228 

of this paper is devoted to evaluating model skill in simulating the upper-tail of daily-precipitation 229 

annual distributions (Rx1day, Rx5day, R95ptot and R99ptot) and one related to the number of wet 230 

days (R1mm), with a wet day defined as a day with precipitation ≥ 1 mm/day as these may be 231 

impacted by climate change.  232 

Some annual indices were defined using thresholds associated to percentiles computed over a 233 

reference period (e.g. TN10p, TX90p, R95ptot and R99ptot). The 1980-2004 period (25 years) 234 

was used as reference period for stations, reanalysis and GCM-driven simulations. For the 235 

comparison of GCM- and ERAI-driven simulations, these indices were estimated over the 17-year 236 

period 1989-2005.  237 

In addition to these ETCCDI indices, annual, summer (June, July and August) and winter 238 

(December, January and February) mean daily precipitation, annual, summer and winter mean 239 

daily temperatures, heating degree days (HDD), growing degree days (GDD), freezing degree days 240 

(FDD), thawing degree days (TDD) and number of winter thaw events (Nthaw) were also 241 

estimated. 242 

The GDD index is important in the Arctic for studies related to the growth, timing of vegetation 243 

green-up onset, insect development and migration (Herms 2004, Sridhar and Reddy 2013), which 244 

are key variables for caribou population, a major resource for local communities (Moerschel and 245 

Klein 1997, Stern and Gaden 2015). The TDD index is closely related to snow melt processes, the 246 

depth of the permafrost active layer and the initialisation of snowpack ablation (Stern and Gaden 247 

2015), while the FDD index is related to ice growth and the depth of ground frost penetration 248 

(Stern and Gaden 2015) which are relevant for transportation (e.g. ice roads) and infrastructure. 249 

The Nthaw index is related to the production of ice layers within or under the snowpack that may 250 

limit caribou access to forage.  251 

The climate indices were computed at each point of the original grid for each 252 

simulation/reanalysis as suggested in Diaconescu et al. (2015). For stations, annual indices were 253 

computed only for years with less than 20% missing values, defined as a valid year. 254 

3.2 Evaluation metrics 255 
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Evaluation of models and reanalyses is usually carried out by comparing area-averaged 256 

statistics (e.g. mean values, variances) or by comparing the distributions of values of co-located 257 

pairs. The latter approach is difficult in our situation due to the limited number of years of data. 258 

Hansen et al. (2012) and Hansen and Sato (2016) proposed to pool data from different stations 259 

within a region into a single sample in order to increase the sample size. This approach is 260 

reasonable as long as the value of interest over that region can be considered homogeneous, i.e. 261 

that the local values can be described by a unique distribution. A similar method was adopted by 262 

Alexander et al. (2006) in the analysis of global climate annual indices from a subset of 200 263 

temperature and 350 precipitation stations across the globe. Donat and Alexander (2012), Hansen 264 

et al. (2012), and Hansen and Sato (2016) used probability density distributions of temperature 265 

anomalies over specific regions rather than absolute-value distributions because the anomalies 266 

have a higher spatial correlation, while absolute mean temperatures can vary over short spatial 267 

scales (Hawkins and Sutton 2016). Consequently, even a few stations can capture the temporal 268 

characteristics of anomalies over a large region. We therefore chose to use this approach and 269 

pooled the anomalies to compare the distributions. 270 

Consequently, each local climate index value 𝑌(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡) was decomposed into the local 271 

climatological mean, 𝑌(𝑙𝑜𝑛, 𝑙𝑎𝑡), and the local anomalies 𝑌′(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡):  272 

𝑌(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡) = 𝑌(𝑙𝑜𝑛, 𝑙𝑎𝑡) + 𝑌′(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡)      Eq. 1 273 

The local climatological mean corresponds to the mean value over the reference period at a specific 274 

site. The local anomalies were obtained by subtracting the local climatological mean from the local 275 

annual index value. The spatial distribution of the climatological mean and the distribution of 276 

anomalies were then estimated. Model and reanalysis skill in simulating the spatial patterns of the 277 

climatological mean were evaluated (Section 4.1.1) as well as the distribution of anomalies 278 

(Section 4.1.2). 279 

For the spatial pattern evaluation, the Mean Squared Skill Score (MSSS; see e.g., Murphy 280 

1988; Murphy and Epstein 1989) was used. It compares the Mean Square Error (MSE) of a forecast 281 

(a given RCM simulation or reanalysis) with respect to the observations (f;o) to the MSE of a 282 

selected reference dataset with respect to the observations (r,o): 283 

𝑀𝑆𝑆𝑆 = 1 −
𝑀𝑆𝐸(𝑓,𝑜)

𝑀𝑆𝐸(𝑟,𝑜)
         Eq. 2 284 
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A positive value indicates that the forecast has a greater skill than the reference, with MSSS = 285 

1 indicating a perfect forecast skill and MSSS ~ 0 similar forecast and reference skills. For instance 286 

if the forecast values more closely match observed values than the reference dataset then MSE(f,o) 287 

< MSE(r,o) and 0 < MSSS ≤ 1 (otherwise MSSS ≤ 0).  288 

In this study, two versions of the MSSS were used to evaluate reanalysis and RCM skill in 289 

simulating the spatial patterns of climatological mean of indices over the Canadian Arctic: 290 

1) MSSS with reference to the variance of observations also known as the Reduction of 291 

Variance (RV) metric. For a given climate index, this score compared the MSE between 292 

the mean for a given dataset (RCM simulation or reanalysis) to the spatial variance of the 293 

climatological mean of observations over the region (𝑠𝑜
2 =

1

𝑁
∑ (�̅�𝑖 − 〈�̅�〉)2𝑁
𝑖=1 ): 294 

𝑅𝑉𝑘 = 1 −
𝑀𝑆𝐸(𝑘,𝑂)

𝑠𝑜
2 = 1 −

∑ (𝑌𝑘𝑖−𝑂𝑖)
2𝑁

𝑖=1

∑ (𝑂𝑖−〈𝑂〉)
2𝑁

𝑖=1

                                                                Eq. 3 295 

with 𝑌𝑘𝑖   
representing the climatological mean of dataset k (a RCM simulation or a 296 

reanalysis) at the grid point closest to station i, 𝑂𝑖 the recorded observational climatological 297 

mean at station i, 〈𝑂〉 the spatial mean over the analysis region (see Fig. 1) of observational 298 

climatological mean at stations and N the number of stations in the region. The 299 

model/reanalyses MSE is computed with respect to observations (𝑀𝑆𝐸(𝑘, 𝑂) =300 

1

𝑁
∑ (�̅�𝑘𝑖 − �̅�𝑖)

2𝑁
𝑖=1 ). A value of RVk > 0 means that dataset k has a smaller MSE value than 301 

the spatial variance in observations. 302 

2) Another version of the MSSS compares the MSE of the index climatological mean of a 303 

given dataset to the MSE value averaged over all reanalyses: 304 

𝑀𝑆𝑆𝑆𝑘 = 1 −
𝑀𝑆𝐸(𝑘,𝑂)

1

5
∑ 𝑀𝑆𝐸𝑟
5
𝑟=1

        Eq. 4 305 

with MSE(k,O) representing the MSE of a given dataset k (either model simulation or 306 

reanalysis) and MSEr representing the MSE of reanalysis r. The denominator sum in 307 

Equation 4 is over all five reanalysis datasets. This version is particularly useful because it 308 

compares individual RCM performance to mean reanalysis performance (a value of MSSSk 309 

> 0 means that dataset k outperformed the mean reanalysis performance). It also provides 310 
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information regarding the use of reanalyses as reference datasets for model evaluation in 311 

the Arctic region.  312 

Evaluation of anomaly distributions, for each given index, was performed by pooling all annual 313 

anomalies at stations and corresponding grid-point values over the Canadian Arctic Region. 314 

Corresponding empirical distributions were then constructed.  315 

The ability of reanalyses and models in simulating station anomaly distributions was assessed 316 

with the Kuiper goodness-of-fit metric (Kuiper 1960) and the Perkins metric (Perkins et al. 2007). 317 

The two metrics were considered to check whether they provided consistent conclusions. Both 318 

metrics have the advantage of not depending on the shape of the underlying distribution and they 319 

can be applied to any variable.  320 

The Kuiper metric, inspired from the Kolmogorov-Smirnov test, is one of the most commonly 321 

used methods to compare distributions from two samples (Smirnov 1939; Stephens 1970). It 322 

measures the distance between the two empirical cumulative distributions and is defined as the 323 

sum of the absolute values of the maximum positive and negative distances between the two 324 

empirical cumulative distributions: 325 

𝐷𝐾 = max
−∞<𝑥<∞

[𝐸𝐶𝐷𝐹𝑘(𝑥) − 𝐸𝐶𝐷𝐹𝑜(𝑥)] + max
−∞<𝑥<∞

[𝐸𝐶𝐷𝐹𝑜(𝑥) − 𝐸𝐶𝐷𝐹𝑘(𝑥)]               Eq. 5 326 

with ECDFk and ECDFo representing the empirical cumulative distributions of dataset k and of 327 

recorded datasets respectively. DK values range between zero and one, with zero indicating a 328 

perfect overlap of the two distributions while a value of one corresponds to no overlapping 329 

distributions.  330 

The Perkins metric is defined as the overlap between the two empirical probability density 331 

functions (EPDF) and has been used in evaluating temperature and precipitation series simulated 332 

by GCMs (Perkins et al. 2007; Maxino et al. 2008; Pitman and Perkins 2009; Perkins 2009; Perkins 333 

et al. 2012) as well as RCMs (Kjellstrom et al. 2010; Kabela and Carbone 2015; Boberg et al. 334 

2010). Here we extend its use by evaluating climate index anomaly distributions. Normalised 335 

histograms of indices from reanalyses and simulations were compared with corresponding index 336 

histograms from recorded datasets. The size of the bin used for each index is presented in Table 3. 337 

The bins were selected to cover the whole range of values of both datasets. The common area 338 

between the two distributions was computed as: 339 
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𝑃𝑆𝑆𝑘 = ∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝐸𝑃𝐷𝐹𝑘(𝑥), 𝐸𝑃𝐷𝐹𝑂(𝑥))
𝑛
𝑥=1      Eq. 6 340 

where n is the number of bins used to calculate the normalised histograms, EPDFk (x) is the 341 

frequency in bin x for the dataset k, EPDFO(x) is the corresponding frequency for the recorded 342 

dataset in bin x. PSS values range from zero to one, a zero value corresponding to no overlap 343 

between the two histograms and one to identical histograms. To ease the comparison with Kuiper 344 

metric, the (1-PSS) metric will be used in the following.   345 

 In summary, the RV and MSSS metrics were used to compare the performance of the 346 

climatological mean, while the Kuiper and Perkins metrics were used to compare the performance 347 

of the distribution of annual anomalies (i.e. the annual departures from the climatological mean). 348 

 349 

4. Evaluation of GCM-driven RCM and reanalyses indices 350 

4.1 Climatological means 351 

Index climatological means are presented first at stations over the Canadian Arctic (Section 352 

4.1.1). Next the skill of models and reanalyses at reproducing the observed values are evaluated 353 

using the RV metric, biases and the MSSS metric (Sections 4.1.2 to 4.1.4). 354 

4.1.1 Observed climatological means 355 

The spatial coherence of the observed climate indices at stations was first examined visually 356 

(see Figs. 3 and Fig. 4 for the climatological means of selected indices). Most of the temperature 357 

indices showed important spatial gradients over the Arctic, consistent with the radiative forcing. 358 

The only exception was the annual coldest temperature (TNn; Figure 3k), which is influenced by 359 

local scale factors such as proximity to open water and topography that influence inversion layer 360 

formation (Rapaić et al. 2015).  361 

For precipitation indices, the entire domain is characterised by relatively small amounts of 362 

precipitation, with most stations having mean annual precipitation rates of less than 1.0 mm/day 363 

(Figure 4a). More precipitation arrives in the summer period than winter (Figs. 4b and c) because 364 

warmer temperature in summer and the presence of ice-free water (lakes and Arctic Ocean) 365 

increase atmospheric moisture. The fraction of total precipitation falling in solid form is varying 366 

from 30% to 90% over the region (Fig. 4d). Solid precipitation (PRSN/PR between 60% and 367 

100%) dominates in the north where the mean annual precipitation is very low (less than 1 368 

mm/day), while liquid precipitation is more important over the southern regions (PRSN/PR 369 

between 40% and 20%) where mean annual precipitation has values between 1.2 mm/day and 2.8 370 
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mm/day. Analysis of daily-precipitation distributions shows that higher intensity daily 371 

precipitation can occur especially in the southern part of the domain and in some coastal regions 372 

with open water during the summer. Also, in summer, extratropical cyclones can penetrate further 373 

north and can reach the Hudson Bay, in winter such trajectories are unlikely (Reitan 1974). 374 

Consequently, precipitation is generally less extreme over the northern regions of the study area 375 

(RX1day/RX5day less than 20/30 mm/day; R99pTOT less than 16 mm and R95pTOT less than 376 

45 mm) and more extreme over southwestern regions and south of Baffin Island (RX5day between 377 

30 mm/day and 70 mm/day and R99pTOT with values between 20 mm and 40 mm).  378 

4.1.2 RV metric 379 

The performance of the models and reanalysis in simulating the spatial patterns of the 380 

climatological means of the precipitation and temperature indices was first evaluated using the RV 381 

metric (Eq. 3), which was computed using the station records as a reference as described in Section 382 

2.3 and presented in Section 4.1.1. Heat maps in Figure 5 summarize the estimated RV values with 383 

columns representing the indices, and rows the datasets. The last two columns denoted “All T” 384 

and “All Pr” present the average performance of each data set in simulating all temperature indices 385 

(All T) and all precipitation indices (All Pr), and corresponds to the mean RV value over all 386 

temperature or precipitation indices of the corresponding dataset. The top two rows of Figure 5 387 

present the RV of the ensemble mean of reanalyses (identified as REM and corresponding to the 388 

RV values of the corresponding index averaged over all five reanalyses) and of the model ensemble 389 

mean (identified as MEM and corresponding to the RV values of the corresponding index averaged 390 

over all simulations). In the following, for ease of interpretation, ‘good skill’ (or ‘good 391 

performance’) will be associated with positive RV values (blue boxes in Figure 5), for which the 392 

squared differences between model/reanalysis and station indices were smaller than the recorded 393 

spatial variance among stations, while ‘poor skill’ (or ‘poor performance’) will be associated with 394 

negative RV values (red boxes in Figure 5), for which the MSE of a model/reanalysis were greater 395 

than the spatial variance among stations. 396 

Figure 5 shows that the overall model and reanalysis performance was better for the 397 

temperature indices (first fourteen columns) than for the precipitation indices (last eight columns). 398 

Ten of the temperature indices (Annual Tmean, DJF Tmean, JJA Tmean, Nthaw, TDD, FDD, 399 

HDD, GDD, SU15 and TX90) were well simulated by all reanalyses and almost all RCM 400 

simulations. The reanalyses demonstrated a good ability at simulating the FD and TXx indices 401 
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(only ERAI has a negative RV for TXx), while many RCM simulations were less effective for 402 

these two indices. The TNn index was poorly reproduced by most of the reanalysis and RCM 403 

simulations. The reanalyses’ performance was better than the RCMs for eleven of the fourteen 404 

temperature indices, as also indicated by the REM and MEM performances. For Nthaw and TN10, 405 

MEM was better than REM, while for TNn both MEM and REM had negative RV values.  406 

The climatological means of DJF Pr (16th column of Fig 5), RX1day (19th column of Fig 5) 407 

and RX5day (20th column of Fig 5) indices were well reproduced by most reanalysis and by the 408 

CCCma-CanRCM4 and UQAM-CRCM5 simulations. The ability to reproduce these indices was 409 

also reflected by the positive RV of REM and MEM. Only two reanalysis (GMFD and MERRA) 410 

and the UQAM-CRCM5 simulations were capable of reproducing the climatological mean of 411 

R95pTOT (21th column of Fig 5) and R99pTOT (22th column of Fig 5). Also, all reanalysis and 412 

most RCM simulations showed poor performance for Annual Pr (15th column of Fig 5), JJA Pr 413 

(17th column of Fig 5) and R1mm (18th column of Fig 5) indices. Therefore, the reanalyses and 414 

some models were able to effectively reproduce the annual extremes of daily precipitation (R1days 415 

and RX5days) but show poor performance for the annual and summer mean of daily precipitation 416 

(Annual Pr and JJA Pr) and the annual number of wet days (R1mm) indicating a frequency bias in 417 

the occurrence of precipitation. While RCMs have similar skill in simulating the DJF Tmean and 418 

JJA Tmean, reanalyses show better skill for the summer mean temperature. Almost all RCMs and 419 

reanalyses have better scores in simulating DJF Pr than JJA Pr. 420 

Figure 5 also compares the performances of different configurations of the same RCM. For the 421 

SMHI-RCA model, configurations with (SMHI-RCASN) and without (SMHI-RCA) spectral 422 

nudging were evaluated and show that the configuration without spectral nudging had superior 423 

skill for some temperature indices, while performances were similar for precipitation indices.  424 

For the CCCma-CanRCM4 model, simulations with two spatial resolutions were compared. 425 

Figure 5 shows that the model configuration at 0.22° resolution (CCCma-CanRCM4-CanESM2-426 

022) had better performance than the 0.44° configuration (CCCma-CanRCM4-CanESM2) for DJF 427 

Tmean, FDD, GDD, SU15, FD, Annual Pr, DJF Pr, RX5day and R95pTOT indices. Conversely, 428 

the other indices had similar performances.  429 

4.1.3 Biases 430 

To examine the potential influence of geography in model performance, the spatial patterns of 431 

the differences in climatological mean values between MEM/REM and observations for the DJF 432 



16 
 

Tmean, JJA Tmean and RX1day indices are presented in Figure 6. These patterns are 433 

representative of most RCMs and reanalysis and most indices: DJF Tmean for cold and winter 434 

temperature indices (Nthaw, DJF Tmean, TN10, TNn), JJA Tmean for warm temperature and 435 

degree-day indices, and RX1day for precipitation indices. The analysis of the spatial distribution 436 

of the RCM/reanalysis - observations differences for all temperature indices showed different 437 

patterns for cold and winter-time indices and all other temperature indices. Most reanalyses and 438 

especially RCMs present a larger bias over the Yukon high-topography region for the warm indices 439 

and the annual daily degree indices (Fig. 6a and 6b), while the cold indices don’t display any 440 

particular pattern (Fig. 6c and 6d). The larger negative errors observed over the mountain region 441 

in indices incorporating the summer temperatures (Fig. 6a and 6b) can be due to the difference in 442 

topographic elevation in RCMs/reanalyses and stations, stations being usually located in valleys. 443 

Consequently, RCMs/reanalysis temperatures are usually colder than temperatures recorded at 444 

stations since mean grid-point elevations of RCMs/reanalysis are typically higher than station 445 

elevations.  446 

These results suggest that some bias correction based on the temperature climatological lapse 447 

rate for this region should be applied to correct station temperatures. However, the difference 448 

between station altitude and corresponding RCM/reanalysis mean grid-point elevation doesn’t 449 

seem to affect cold and winter indices (Figs. 6c,d), for which no structured spatial distribution of 450 

differences was observed. In Fig. 6, mean temperature from reanalyses are warmer than observed 451 

ones (Fig. 6d) while models simulate colder mean temperatures over most part of the Arctic (Fig. 452 

6c). This difference in spatial pattern of the bias between warm and cold temperature indices can 453 

be explained by the high frequency of surface and upper tropospheric temperature inversions 454 

during the cold period (December to March) caused by the radiative surface cooling or by the 455 

warmer air advection over the arctic cold air masses (Lovatt 2009, Serreze and Barry 2005, 456 

Przybylak 2016). Important «semi-permanent» inversions are present especially in the deep 457 

valleys of the Yukon and the Alaska mountainous regions (Lovatt 2009, Przybylak 2016). 458 

Consequently, local processes have a high impact on cold indices and a bias correction based on 459 

the climatological lapse rate would not be appropriate to correct cold daily temperature series. 460 

Statistical methods or more complex physical methods that incorporate local processes 461 

conditioning the seasonal evolution of the local lapse rate would be needed to adequately correct 462 

daily minimum, maximum and mean temperature indices over this specific region. Precipitation 463 
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indices do not present a particular pattern in the bias (see for example RX1day bias in Fig. 6e and 464 

Fig. 6d) with the exception of higher bias values for more southerly points and those close to the 465 

Pacific Coast (especially for Annual Pr and R1mm indices – not shown) where mean and extreme 466 

precipitation amounts are larger (see Fig. 4).   467 

In summary, for temperature indices, reanalyses and RCMs generally performed well in 468 

simulating the climatological means of mean-daily and maximum-daily temperature indices over 469 

most Canadian Arctic. The bias is generally larger over the Yukon region in indices based on 470 

summer temperatures. RCMs and reanalyses were less effective at simulating the TNn index. 471 

Regarding precipitation indices, most reanalyses and some RCMs were able to reproduce 472 

climatological means of DJF Pr, RX1day and RX5day indices effectively, but were less effective 473 

in simulating the Annual Pr and the R1mm indices.  474 

Violin plots (Hintze and Nelson 1998; computed using the Seaborn Python package: 475 

https://stanford.edu/~mwaskom/software/seaborn/index.html) were used in Fig. 7 to examine the 476 

climatological mean biases of TNn, R1mm (that were poorly represented by reanalyses and 477 

models) and RX1day (that was well simulated by most reanalyses and RCMs). Violin plots show 478 

the density of the distribution of biases over the Canadian Arctic based on a kernel smoother.  The 479 

more “squashed” the violin and the closer the median (white dot) is to zero, the closer the values 480 

are to the observations. The first violin of each graph corresponds to the NRCan dataset and shows 481 

the biases between grid-point index values and corresponding values at the closest stations. The 482 

next three violins, in green, capture the range of results from the reanalyses i.e. the reanalysis with 483 

the lowest RV metric (left),  the reanalysis ensemble mean (REM) (middle), and the reanalysis 484 

with the largest RV value (right). The range in RCM simulations is similarly represented by the 485 

three magenta violins.   486 

For the TNn index, the interpolation process in NRCan smoothed the minimum daily 487 

temperature values resulting in an overall small positive bias on most of the grid points close to 488 

stations, with the median bias equal to 0.63° C. All reanalyses displayed an overall warm bias in 489 

agreement with previous studies (e.g. Rapaić et al. 2015) with a median bias of +3.4°C for REM. 490 

Contrary to reanalyses, RCMs had a cold bias in TNn with MEM bias of approximately -2.8°C. A 491 

warm bias in reanalyses and a cold bias in simulations was also observed for the 10th percentile of 492 

minimum daily temperatures (TN10 index), but with smaller amplitude than for the TNn index 493 

(not shown). The poor performance of RCMs and reanalyses in simulating the cold extremes, is 494 
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attributed in part to a lack of local-scale information related to inversion layer development. The 495 

representation of atmospheric humidity profiles and clouds in models/reanalyses would also play 496 

roles in radiative cooling. 497 

Four of the five reanalyses and all RCM simulations displayed positive R1mm biases, and 498 

therefore a larger number of wet days than recorded at the stations, with maximum biases in the 499 

southwestern region of the domain characterised by high topography (see Figure 2). Small negative 500 

biases were observed for the northern regions. An exception was the GMFD product with a smaller 501 

number of wet days than observations over a large part of the domain (median bias of -20 days per 502 

year) and the UQAM-CRCM5-MPI-ESM-LR simulation, which had the smallest model-and-503 

reanalysis median bias (approximately 7 days per year) similar to the NRCan median bias 504 

(approximately 6 days per year).  505 

The interpolation procedure has an important impact on the estimated NRCan RX1day index 506 

(see Figure 7c; Hutchinson et al. 2009). The interpolation process introduces a smoothing of daily 507 

precipitation that results in a negative bias for RX1day (underestimation of RX1day values 508 

estimated from recorded series) for almost all NRCan grid points next to stations (only two stations 509 

in the north had positive biases and these stations were probably not integrated with the NRCan 510 

product).  NRCan biases ranged from -9.9 mm/days to +1.0 mm/day with a median bias of -4.0 511 

mm/day, a value larger than the REM (-0.9 mm/day) and MEM median biases (-1.9 mm/day). 512 

REM good performance was also illustrated by the RV metric presented in Figure 5, REM has a 513 

greater RV value than NRCan for this index. The best reanalysis performance for this index was 514 

obtained for JRA55 with a median bias of -1.6 mm/day. This value was larger than the REM 515 

median bias, the good REM performance being in part due to bias compensation in the average 516 

process across the five reanalyses (positive and negative biases compensating each other). The best 517 

performance for RX1day index was obtained by UQAM-CRCM5NA-MPI-ESM-LR simulation 518 

that has a median bias of -0.79 mm/day, which was better than all five reanalyses and the NRCan 519 

dataset. Overall, the median biases for REM and MEM were similar and close to the best 520 

RCM/reanalyses value. 521 

4.1.4 MSSS metric 522 

The skillfulness of the RCMs and reanalyses simulations were also compared by using the 523 

mean MSE of reanalyses as a reference dataset in the MSSS metric (Eq. 4). The corresponding 524 

heat maps are plotted in Figure 8 where, as in Figure 5, each row corresponds to a dataset and each 525 
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column to an index. The top two lines compare REM and MEM MSE to the mean MSE of the five 526 

reanalyses, while the last two columns show the average value of the MSSS metrics for all 527 

temperatures (‘All T’) and precipitation (‘All Pr’) indices for a given dataset. The positive MSSS 528 

values, in blue, signify that the dataset outperformed the mean reanalysis performance.  529 

The performances of the RCM simulations were below the mean performances of reanalyses 530 

for all temperature indices (negative values for MSSS metric), except for the Nthaw and the cool 531 

extreme indices TNn and TN10. For the mean-temperature and maximum-temperature indices (the 532 

first 12 columns), all reanalyses demonstrated good performances (e.g. Figure 5), with GMFD 533 

performance well above the mean reanalysis value (positive values for MSSS metric), CFSR 534 

performance close to the mean reanalysis performance, and ERAI and MERRA performances 535 

generally below the mean reanalysis value.  536 

The overall excellent RV scores obtained for the reanalyses in Figure 5 suggest that these can 537 

be used as reference dataset for RCM evaluation for mean and maximum temperature indices. 538 

However, most reanalyses were not effective in simulating the TNn and TN10 indices. Moreover, 539 

Figure 8 shows that most RCM simulations have errors smaller than or similar to the mean 540 

reanalysis MSE for these indices.  541 

For precipitation indices, the performances of the five reanalyses were similar, with GMFD 542 

displaying an overall higher performance and with CFSR and ERAI having performances below 543 

the average reanalysis value. The five simulations with CCCma-CanRCM4 and UQAM-CRCM5 544 

had simulation performances superior to the reanalysis average. This suggests that reanalyses 545 

should not be used as reference datasets for RCM evaluation for precipitation indices over the 546 

Arctic. 547 

As for the individual models, the performance of the MEM for the warm and mean temperature 548 

extremes was below the average reanalysis performance, while for the cold extremes (TNn and 549 

TN10), the Nthaw, the R1mm, R95pTOT and R99pTOT indices, it was above. Bias compensation 550 

was more effective for REM presenting positive MSSS metric for all indices. Nevertheless, the 551 

performances of UQAM-CRCM5 simulations were better than the REM performance for TNn, 552 

Mean Pr, R1mm, R95pTOT and R99pTOT. 553 

In summary, reanalyses outperformed RCM simulations for mean and warm daily temperature 554 

indices and the best performances were obtained by GMFD and CFSR. This suggests that they 555 

could be used as a reference in the RCM evaluation of daily temperature indices over the region. 556 
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However, for daily precipitation indices, the performances of reanalyses were lower and some 557 

RCM simulations even outperformed all reanalyses. Caution is therefore recommended when 558 

using reanalyses as reference datasets when evaluating RCM performance for daily precipitation 559 

indices. 560 

4.2 Anomaly distributions   561 

Empirical distributions of anomalies from RCMs/reanalyses and surface observations were 562 

compared to determine the skill of reanalyses and models in simulating the observed distributions. 563 

Anomalies from all station records in the Canadian Arctic were pooled and ECDF and EPDF were 564 

computed. The skills of reanalyses and models in simulating the observed distribution were 565 

evaluated using Kuiper metric (D; Eq. 4) and Perkins skill scores (PSS; Eq. 5). The values obtained 566 

for each climate index and for each dataset are plotted in Figure 9 using a diagram inspired by the 567 

Performance Portrait diagram of Gleckler et al. (2008).  568 

Figure 9 shows that the two metrics gave similar results in all cases (as a reminder a value of 569 

zero corresponds to a perfect match of the two distributions). Reanalyses and RCMs were very 570 

effective in simulating the anomalies’ distribution for most indices. Lower scores were obtained 571 

by RCM simulations for GDD and SU15 indices and by RCM simulations and reanalyses for the 572 

R99p index. Among the RCM simulations, the AWI-HIRHAM5-MPI-ESM-LR simulations 573 

poorly reproduced anomaly distributions for R99p, Rx1day, Rx5day and SU15 indices, but had 574 

excellent scores for DJF Tmean, NThaw, FDD, TXx, TX90p, TNn and R1mm indices. Figure 10 575 

presents an example of the observations (in blue) and AWI-HIRHAM5-MPI-ESM-LR (in red) 576 

Rx1day and TNn anomaly ECDFs and EPDFs. The figure highlights the similarity of simulated 577 

and observed anomaly distributions for TNn index, characterised by a Kuiper distance of 0.05 and 578 

(1-PSS) value of 0.06 (Figure 10b). For the RX1day index, the range of values of model anomalies 579 

is smaller than that of observations, resulting into a smaller inter-annual variability. This is added 580 

to an already poor performance for the climatological mean RX1day index (12th column in Figure 581 

5).   582 

When anomalies from all reanalyses or all simulations were pooled together (top two rows of 583 

Figure 9), the resulting distributions resembled closely the recorded anomaly distributions (D < 584 

0.1 and 1-PSS < 0.1) for a majority of the indices. Therefore, for reanalyses and RCM climate 585 

indices over the Canadian Arctic, the main errors are related to bias in the mean index values, 586 

while these datasets showed an overall good performance in simulating the anomaly distribution 587 
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over the region. These results suggest that, once the climatological mean of indices have been bias 588 

corrected, some datasets, displaying good performance in reproducing the observed anomalies 589 

over the Arctic region for a given index, can be used to assess its mean value over the Arctic, but 590 

also its inter-annual variability.  591 

 592 

5. Comparison of GCM-driven and ERAI-driven simulations 593 

The skill of GCM-driven and ERAI-driven RCMs in simulating climate indices were compared 594 

over a common period of 17 years (1989-2005). Most of the published RCM evaluation studies 595 

have been conducted using RCM simulations driven by reanalyses, which presumably represents 596 

the most realistic lateral boundary conditions. However, GCM-driven simulations are used to 597 

develop climate projections and therefore the errors introduced by GCMs in these simulations 598 

should be assessed. The comparison of errors in simulations driven by GCM with those driven by 599 

reanalyses provides some information on the contributions of RCM structural bias and GCM bias 600 

to the total errors.  601 

Figure 11 presents the results of this comparison for six RCM configurations (CCma-602 

CanRCM4 at 0.22° and at 0.44° resolution; UQAM-CRCM5 over Arctic and North-America 603 

domains; SMHI-RCA with and without spectral nudging). Some RCM configurations where 604 

driven only by one GCM (CCCma-CanRCM4; CCCma-CanRCM4_022; UQAM-CRCM5), while 605 

some others were driven by two GCMs (UQAM-CRCM5NA, SMHI-RCASN) or four GCMs 606 

(SMHI-RCA). Figure 11 compares, for each RCM configuration, the mean performance of the 607 

GCM-driven simulations to that of the ERAI-driven simulation. The upper-left triangle in Figure 608 

11 presents the mean performance for all simulations from a given RCM configuration driven by 609 

GCMs, while the bottom-right triangle represents the performance of the same RCM configuration 610 

driven by ERAI. The effectiveness of simulating the climatological mean (Figure 11a) was 611 

measured using the Reduction of Variance as in the previous section, while the performance in 612 

simulating the anomaly distribution (Figure 11b) was measured using Kuiper distance.  613 

Figure 11 shows that differences in performance between GCM- and ERAI-driven simulations 614 

were globally more pronounced for climatological means than for anomalies. In general, anomaly 615 

distributions were very well reproduced by RCMs whether they were driven by GCMs or by ERAI 616 

(in most cases D was smaller than 0.2). For a majority of indices, ERAI-driven simulations showed 617 

better performance at simulating climatological means. SMHI-RCA4 and SMHI-RCA4SN had 618 
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negative RV metrics for TXx, FD and RX1day when driven by GCMs, but positive values when 619 

driven by ERAI. These two RCM configurations poorly simulated TNn, Annual Pr, JJA Pr, R1mm, 620 

R95pTOT and R99pTOT mean indices even when driven by ERAI. Note that ERAI did not 621 

effectively simulate either of the latter indices (see Figure 5).  622 

Negative RV values were also obtained for the CCCma-CanRCM4 simulations for TNn, 623 

Annual Pr, JJA Pr and R1mm indices when driven by GCM or ERAI. Nevertheless, for R95pTOT 624 

and R99pTOT indices, CCCma-CanRCM4_022, CCCma-CanRCM4, UQAM-CRCM5 and 625 

UQAM-CRCM5NA, driven by GCMs and by ERAI, performed well, while ERAI did not (see 626 

Figure 5 for RV of ERAI). Surprisingly, UQAM-CRCM5 and CCCma-CanRCM4 produced better 627 

simulations when driven by a GCM than when driven by ERAI for these two precipitation indices. 628 

This suggests that the simulated fields within the domain can be improved by these RCMs, 629 

therefore adding value to the representation of ERAI for these indices.  630 

The RCM-added value, with respect to ERAI, can also be assessed through the ratio of RCM 631 

MSE and ERAI MSE as presented in Figure 12 for each mean climate index. CCCma-632 

CanRCM4_022, CCCma-CanRCM4, UQAM-CRCM5, and UQAM-CRCM5NA produced 633 

smaller MSE than ERAI for precipitation indices. The better representation of precipitation indices 634 

by some RCMs is probably due to a better representation of the physics in these models as well as 635 

to their higher spatial resolution. The comparison of the CCCma-CanRCM4_022 MSE with the 636 

CCCma-CanRCM4 MSE also demonstrated that, for the Annual Pr, DJF Pr, JJA Pr, R1mm, 637 

R95pTOT and R99pTOT indices, the higher resolution simulation provided a better simulation of 638 

mean climate values.  639 

Added value was also observed in GCM-driven and ERAI-driven UQAM-CRCM5 and 640 

UQAM-CRCM5NA simulations of Nthaw, TNn and TN10 indices compared to ERAI. For SU15, 641 

TXx and TX90, slightly better scores were obtained by some ERAI-driven RCMs than for ERAI. 642 

For these indices, the RCM’s higher resolution may explain the slight improvement with respect 643 

to ERAI. The fact that the corresponding GCM-driven simulations had lower performance than 644 

ERAI for SU15, TXx and TX90 indices, is explained by the presence of larger errors in GCM 645 

temperature fields than in the ERAI fields applied at the RCM lateral boundary conditions. 646 

As expected, the overall performance in reproducing temperature indices depended on lateral 647 

boundary datasets, ERAI-driven RCMs tending to have generally better scores than GCM-driven 648 

RCM for these indices.  649 
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 650 

6. Summary and conclusions  651 

The present study used climate station observations across the Canadian Arctic to evaluate five 652 

daily precipitation and ten daily temperature indices simulated by (1) an RCM ensemble of twelve 653 

GCM-driven simulations and six ERAI-driven simulations participating in the CORDEX 654 

experiment, (2) five reanalyses products (GMFD, CFSR, MERRA, JRA-55 and ERAI) and (3) one 655 

high-resolution gridded observational product (NRCan). The reanalysis and GCM-driven 656 

simulations were first evaluated over a reference period of 25 years (1980-2004). Records from 47 657 

stations for temperature and 78 stations for precipitation were used. Climatological means and 658 

annual anomaly distributions were evaluated separately for each index and compared to 659 

corresponding index values estimated from recorded datasets. The impact of lateral boundary 660 

conditions was also analyzed by comparing the GCM-driven simulations to the corresponding 661 

ERAI-driven simulations over a common period of 17 years (1989-2005). In this case, records 662 

from 48 stations for temperature and 79 stations for precipitation were used. 663 

The analysis of mean climate indices over the reference period showed that: 664 

- The RCMs, and especially the reanalyses, demonstrate good performance at simulating the 665 

mean and warm daily temperature indices over most Canadian Arctic. 666 

- Few RCMs and reanalyses performed well in simulating the TN10, RX1day, RX5day, 667 

R95pTOT and R99pTOT indices. UQAM-CRCM5 simulations outperformed the five 668 

reanalyses for these precipitation indices. 669 

- Most RCM simulations and reanalyses performed poorly for the TNn, Mean Pr and R1mm 670 

indices. 671 

- The gridded product NRCan showed similar values to observations (for grid points next to 672 

stations) for temperature indices, but the interpolation procedure appeared to have an 673 

impact on precipitation indices. The most impacted index was RX1day for which NRCan 674 

had biases similar to those of reanalyses and some RCM simulations. 675 

The evaluation of the spectral nudging impact on SMHI-RCA4 simulations has shown that the 676 

configuration without spectral nudging had better performances for most temperature indices. 677 

However, both configurations poorly performed for the precipitation indices. Similar results were 678 

obtained for the climatological means of mean daily temperature and precipitation in agreement 679 

with Berg et al. (2013).  680 
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The impact of increasing the spatial resolution from 0.44 to 0.22 was analysed for CCCma-681 

CanRCM4. Some improvement was observed for the GDD, SU15, FD and RX5day indices in 682 

higher-resolution simulation. In a recent analysis of daily precipitation indices using CCCma-683 

CanRCM4 simulations at 0.22° and 0.44° resolutions, but integrated over the North-America 684 

CORDEX domain, Diaconescu et al. (2016) also found that the simulation at 0.22° resolution was 685 

more effective for some summer-time indices over Canada south of 60°N, but not for winter-time 686 

indices, the skill in simulating the winter indices being already good in the 0.44° version of the 687 

model. Prein et al. (2016) also showed that added value can be obtained in higher resolution 688 

simulations for regions with complex orography.  689 

Empirical anomaly distributions from RCMs/reanalyses and recorded series were compared 690 

using two metrics: the Kuiper and Perkins metrics. Anomalies from all station records and 691 

corresponding grid-points in the Canadian Arctic were pooled and corresponding empirical 692 

distributions were computed. Kuiper and Perkins metrics produced similar results and 693 

demonstrated, for most reanalyses and RCM simulations, very good agreement between simulated 694 

and recorded empirical anomaly distributions for most indices  (metrics values smaller than 0.2). 695 

Comparing the relative performances of RCM/reanalysis in simulating climatological mean of the 696 

selected indices and their anomaly distribution suggests that the main errors are associated with 697 

mean climate estimation of indices. Therefore a simple bias correction (post-treatment) of the 698 

mean of indices could result in a good representation of the analysed indices across the Arctic. It 699 

must be noted that this conclusion concerns only the indices presented in the study. Also, since 700 

metrics that were used to compare annual index anomaly distributions (i.e. Kuiper and Perkins 701 

metrics) are not tailored to assess specifically the performance in distribution tails, a more detailed 702 

analysis would be needed to assess the performance for more extreme index values (e.g. anomalies 703 

associated with large return periods). 704 

The present study also demonstrates that the temperature indices were impacted by the type of 705 

lateral boundary conditions, ERAI-driven RCM having in general better performances than GCM-706 

driven RCM for these indices. For precipitation indices, the comparison of UQAM-CRCM5, 707 

UQAM-CRCM5NA, CCCma-CanRCM4 and CCCma-CanRCM4_022 simulations to ERAI 708 

demonstrated that these RCMs, driven by ERAI or GCM, outperformed ERAI. The accuracy of 709 

the simulated precipitation indices depend on the RCM physics and added value can be obtained 710 

in some simulations by improving the precipitation representation. Some ERAI-driven RCMs have 711 
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also slightly better scores than ERAI for SU15, TXx and TX90 indices. This added value may be 712 

attributed to the higher resolution of RCM compared to ERAI, RCM resolution being closer to the 713 

point resolution of observations then ERAI. 714 

In conclusion, the very good performance of reanalyses for mean and warm temperature indices 715 

supports their use as reference dataset for RCM evaluation. However, the performance of 716 

reanalyses for the TN10, Mean Pr and R1mm indices was poor and some RCM simulations even 717 

produced better scores than reanalyses in simulating extreme precipitation. Therefore, we do not 718 

recommend that reanalyses be used as a reference dataset in RCM evaluations of these indices. 719 

Additionally, given the observed impact of the interpolation procedure on estimated NRCan 720 

indices and especially extreme indices even at grid-points adjacent to stations, we do not support 721 

the use of this dataset as a reference for data-sparse regions such as the Arctic. 722 
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Tables 1074 

Table 1 Main characteristics of CORDEX and RCM simulations used in this study.  1075 

 Regional 

climate model  

(reference) 

Simulation name 

Lateral 

boundary 

conditions 

(reference) 

Period Main characteristics  

AWI-

HIRHAM5 

(Christensen et 

al. 2007; 

Dethloff et al. 

1996) 

AWI-HIRHAM5-

MPI-ESM-LR 

MPI-M-MPI-

ESM-LR 

(Giorgetta  et al. 

2013) 

1949-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

CCCma-

CanRCM4 

(Scinocca et al. 

2016)  

CCCma-CanRCM4-

CanESM2-022  

CCCma-

CanESM2  

(Arora et al. 

2011) 

1950-

2005 

0.22° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

CCCma-CanRCM4-

CanESM2 

CCCma-

CanESM2  

(Arora et al. 

2011) 

1950-

2005 

0.44° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

CCCma-CanRCM4-

ERAI-022 

ERA-Interim  

(Dee et al. 

2011) 

1989-

2009 

0.22°  resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

CCCma-CanRCM4-

ERAI 

ERA-Interim  

(Dee et al. 

2011) 

1989-

2009 

0.44° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

UQAM-

CRCM5 

(Takhsha et al. 

2017) 

UQAM-CRCM5-

MPI-ESM-LR 

MPI-M-MPI-

ESM-LR 

(Giorgetta  et al. 

2013) 

1949-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

UQAM-CRCM5-

ERAI 

ERA-Interim  

(Dee et al. 

2011) 

1979-

2014 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

UQAM-

CRCM5NA 

(Martynov et al. 

2013; Šeparović 

et al. 2013) 

UQAM-

CRCM5NA-MPI-

ESM-LR  

MPI-M-MPI-

ESM-LR 

(Giorgetta  et al. 

2013) 

1949-

2005 

0.44° resolution without 

spectral nudging; North 

America domain 

UQAM-

CRCM5NA-

CanESM2 

CCCma-

CanESM2  

(Arora et al. 

2011) 

1949-

2005 

0.44° resolution without 

spectral nudging; North 

America domain 
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UQAM-

CRCM5NA-ERAI 

ERA-Interim  

(Dee et al. 

2011) 

1979-

2014 

0.44° resolution without 

spectral nudging; North 

America domain 

SMHI-RCA4 

(Samuelsson et 

al. 2011) 

SMHI-RCA4-

CanESM2 

CCCma-

CanESM2  

(Arora et al. 

2011) 

1951-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4-

NorESM1-M 

NCC-

NorESM1-M  

(Bentsen et al. 

2013) 

1951-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4-EC-

EARTH 

ICHEC-EC-

EARTH 

(Hazeleger et 

al. 2012) 

1951-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4-MPI-

ESM-LR 

MPI-M-MPI-

ESM-LR 

(Giorgetta  et al. 

2013) 

1951-

2005 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4-ERAI 

ERA-Interim  

(Dee et al. 

2011) 

1980-

2010 

0.44° resolution without 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-

RCA4SN  

(Berg et al. 

2013) 

SMHI-RCA4SN-

EC-EARTH 

ICHEC-EC-

EARTH 

(Hazeleger et 

al. 2012) 

1951-

2005 

0.44° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4SN-

MPI-ESM-LR 

MPI-M-MPI-

ESM-LR 

(Giorgetta  et al. 

2013) 

1951-

2005 

0.44° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

SMHI-RCA4SN-

ERAI 

ERA-Interim  

(Dee et al. 

2011) 

1980-

2010 

0.44° resolution with 

spectral nudging; 

ARCTIC-CORDEX 

domain 

 1076 
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Table 2 Main characteristics of reanalyses and gridded observation datasets used in this study.  1078 

Dataset (reference) Download Period 

Type of 

dataset and 

spatial 

resolution 

Global Meteorological 

Forcing Dataset for Land 

Surface Modeling (GMFD; 

Sheffield et al. 2006) 

http://rda.ucar.edu/d

atasets/ds314.0/ 
1948-2008 

Reanalysis 

0.25° (~ 28 

km) 

National Centers for 

Environmental Prediction 

(NCEP) Climate Forecast 

System Reanalysis (CFSR; 

Saha et al.  2010) 

http://rda.ucar.edu/d

atasets/ds093.1/ and 

http://cfs.ncep.noaa.

gov/cfsr/ 

1979-2010 

Reanalysis 

T382 (~ 38 

km) 

Japanese 55-year 

Reanalysis (JRA55; 

Kobayashi et al. 2015) 

http://rda.ucar.edu/d

atasets/ds628.0/ 
1958-2010 

Reanalysis 

TL319 (~ 60 

km) 

Modern Era Reanalysis for 

Research and Applications 

(MERRA; Rienecker et al. 

2011) 

http://gmao.gsfc.nas

a.gov/merra/ 
1979-2010 

Reanalysis 

0.667° 

longitude x 

0.5° latitude (~ 

65 km) 

ECMWF ERA-Interim 

Reanalysis (ERAI; Dee et 

al. 2011) 

http://apps.ecmwf.int

/datasets/data/interi

m-full-

daily/levtype=sfc/ 

1979-2010 

Reanalysis 

T255 (~ 79 

km) 

Natural Resources Canada 

gridded surface data 
(NRCan; Hutchinson et al. 

2009) 

ftp://ftp.nrcan.gc.ca/

pub/outgoing/canada

_daily_grids 

1950-2013 

Gridded 

observations 

~ 10 km 

  1079 
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Table 3 Definition of annual climate indices and bin sizes used for the estimations of the Perkins 1081 

skill score (see Section 3.2). 1082 

Climate 

index 
Name (Description) Unit Bin size 

Annual 

Tmean 
Annual mean of daily mean temperature ºC 0.5 ºC 

DJF 

Tmean 

December, January and February mean daily 

temperature 
ºC 0.5 ºC 

JJA 

Tmean 

June, July and August mean daily temperature 
ºC 0.5 ºC 

Nthaw Winter thaw events (number of days with Tmax > 0°C 

during a winter period defined by -5°C crossing dates 

from a 40-day centered moving average of daily Tmean) 

days 1 day 

TDD Thawing degree days (annual cumulative sum of  daily 

degrees of Tmean above  0°C) 
°C 50°C 

FDD Freezing degree days (annual cumulative sum of daily 

degrees of Tmean below 0°C, over a winter-centred 

year) 

°C 100°C 

HDD 
Heating degree days (annual cumulative sum of Tmean 

daily degree days below 17° C) 
°C 300°C 

GDD 
Growing degree days (annual cumulative sum of Tmean 

daily degree days above 5° C) 
°C 20° C 

SU15 
Arctic summer days (annual count of days with Tmax 

>15° C) 
days 1 day 

TXx 
Warmest annual temperature (annual maximum value of 

Tmax) 
ºC 0.5 ºC 

TX90 90th percentile of Tmax over the year ºC 0.5 ºC 

TX90p 

Warm days (annual percentage of time when Tmax is > 

90th percentile of Tmax, which is calculated for a 5-day 

window centered on each calendar day of the reference 

period) 

% 1% 
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FD Frost days (annual number of days with Tmin < 0° C) days 2 days 

TNn 
Coldest annual temperature (annual minimum value of 

Tmin) 
ºC 0.5 ºC 

TN10 10th percentile of Tmin over the year ºC 0.5 ºC 

TN10p 

Cold days (annual percentage of time when Tmin is < 10th 

percentile of Tmin, which is calculated for a 5-day 

window centered on each calendar day in the reference 

period) 

% 1 % 

Annual Pr Annual mean of daily precipitation mm/day 
0.2 

mm/day 

DJF Pr 
December, January and February mean daily 

precipitation 
mm/day 

0.2 

mm/day 

JJA Pr June, July and August mean daily precipitation mm/day 
0.2 

mm/day 

R1mm 
Wet days (annual count of days when daily precipitation 

is ≥ 1 mm/day) 
days 5 days 

RX1day 
Maximum 1-day precipitation amount (annual 

maximum of daily precipitation) 
mm/day 2 mm/day 

RX5day 
Maximum 5-day precipitation amount (annual 

maximum of 5-day accumulated precipitation) 
mm/day 3 mm/day 

R95pTOT 

Precipitation due to very wet days (annual total 

precipitation from days with daily precipitation > 95th 

percentile of wet-day precipitation over the reference 

period) 

mm 20 mm 

R95p 

Very wet days (annual number of  days with daily 

precipitation > 95th percentile of wet-day precipitation 

over the reference period) 

days 0.6 day 

R99pTOT 

Precipitation due to extremely wet days (annual total 

precipitation from days with daily precipitation > 99th 

percentile of wet-day precipitation over the reference 

period) 

mm 20 mm 
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R99p 

Extremely wet days (number of annual days with daily 

precipitation > 99th percentile of wet-day precipitation 

over the reference period) 

days 0.6 day 
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Figures 1084 

Figure 1. Spatial domains for the UQAM-CRCM5NA simulations (in light green) and ARCTIC-1085 

CORDEX simulations (in cyan). The Canadian Arctic analysis domain is shown in deep green. 1086 

Figure 2 Topography and location of stations with at least 15 valid years over the 1980-2004 1087 

period. The blue points show stations used in precipitation indices evaluation, while the red points 1088 

show the location of stations used in temperature indices evaluation.   1089 

Figure 3. Climatological mean of some daily temperature indices at stations over the 1980-2004 1090 

period. 1091 

Figure 4. Climatological mean of daily precipitation indices at stations over the 1980-2004 period. 1092 

In order to improve the readability of the map, the stations in the South-West region are represented 1093 

by smaller dots than the stations in the North. 1094 

Figure 5. Heat map showing the Reduction of Variance metric for the mean temperature and 1095 

precipitation indices over the 1980-2004 period for the Canadian Arctic. MEM stands for the 1096 

Model Ensemble Mean, while REM corresponds to the Reanalysis Ensemble Mean. All T 1097 

corresponds to the RV value averaged over all temperature indices and All Pr to the RV value 1098 

averaged over all precipitation indices. The RV metric is computed against the station observations 1099 

described in Section 2.3 and presented in Fig. 3 and Fig. 4. 1100 

Figure 6. Differences between the model ensemble mean (a, c and e) and reanalysis ensemble 1101 

mean (b, d and f), and observations for climatological mean of JJA Tmean in °C (a and b), DJF 1102 

Tmean in °C (c and d) and RX1day in mm/days (e and f) over Arctic. 1103 

Figure 7. Violin plots showing mean bias kernel distributions of selected reanalysis and models 1104 

over the 1980-2004 period for the Canadian Arctic for: a) TNn, b) R1mm, and c) RX1day indices. 1105 

Each horizontal line on the violins represents the bias at one station, while the envelope of the 1106 

violin represents the kernel density estimation of the underlying bias distribution at all stations. 1107 

Violin plots in green correspond to the reanalyses and in magenta to the RCMs. Mean, minimum 1108 

and maximum values recorded over all stations are presented on the top left corner of each graph. 1109 

Box plots inside the violin plots (in gray) display the 1st and 3rd quartiles of the bias distribution 1110 

as well as the median values (white dot).   Each violin is scaled to have the same width. 1111 
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Figure 8. Heatmap showing the MSSS metric for mean temperature and precipitation indices over 1112 

the 1980-2004 period for the Canadian Arctic. MEM stands for the Model Ensemble Mean, while 1113 

REM corresponds to Reanalysis Ensemble Mean. All T and All Pr as defined in Figure 5. 1114 

Figure 9. Heatmaps showing the Kuiper distance values (upper-left triangles) and the (1-PSS) 1115 

values (bottom-right triangles) between RCM or reanalysis anomaly distributions and the observed 1116 

anomaly distributions for the Canadian Arctic over the 1980-2004 period. The central part of the 1117 

figure presents results obtained for the individual datasets. The ‘Combined simulations’ (top row) 1118 

and ‘Combined reanalysis’ (second top row) correspond to the cases where the anomaly 1119 

distributions were constructed by pooling the index anomalies from all simulations or all 1120 

reanalyses. All T and All Pr as defined in Figure 5. 1121 

Figure 10. Comparison of the ECDFs and EPDFs for AWI-HIRHAM5-MPI-ESM-LR simulation 1122 

(in red) and observations (in blue) for RX1day (a) and TNn (b) indices for the Canadian Arctic 1123 

over the 1980-2004 period. The dashed lines appearing in the EPDF graphs highlight the common 1124 

area of the two EPDFs.  1125 

Figure 11. Heat maps comparing the mean performance of RCMs driven by GCM simulations 1126 

(upper-left triangles) with the performance of RCM driven by ERAI simulation (bottom-right 1127 

triangles) for: a) climatological mean of indices based on the RV metric; and b) anomaly 1128 

distribution over Canadian Arctic based on the Kuiper distance (D). The equations are presented 1129 

on the right-hand side diagram. The period of analysis is 1989-2005.  K, next to simulation names, 1130 

corresponds to the number of GCMs used as lateral boundary conditions for each RCM 1131 

configuration. 1132 

Figure 12. RCM added-value diagram for the climatological mean of indices over Canadian Arctic. 1133 

The upper-left triangles correspond to the mean MSE of RCM simulations driven by GCMs 1134 

(MSERCM-GCMk) divided by the MSE of ERAI (MSEERAI), with the corresponding equation in the 1135 

upper-left triangle of the right-hand side diagram. The corresponding bottom-right triangles 1136 

correspond to the MSE of the corresponding RCM driven by ERAI (MSERCM-ERAI) divided by the 1137 

MSE of ERAI, with the corresponding equation in the bottom-right triangle of the right-hand side 1138 

diagram. The period of analysis is 1989-2005 (only valid years are considered). K as defined in 1139 

Figure10. 1140 
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Figures 1 
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Figure 1. Spatial domains for the UQAM-CRCM5NA simulations (in light green) and ARCTIC-3 

CORDEX simulations (in cyan). The Canadian Arctic analysis domain is shown in deep green. 4 
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 6 

Figure 2 Topography and location of stations with at least 15 valid years over the 1980-2004 7 

period. The blue points show stations used in precipitation indices evaluation, while the red 8 

points show the location of stations used in temperature indices evaluation.   9 

  10 



3 
 

 11 

Figure 3. Climate mean of some daily temperature indices at stations over the 1980-2004 period. 12 
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 14 

Figure 4. Climate mean of daily precipitation indices at stations over the 1980-2004 period. In 15 

order to improve the readability of the map, the stations in the South-West region are represented 16 

by smaller dots than the stations in the North. 17 
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 19 

Figure 5. Heat map showing the Reduction of Variance metric for the mean temperature and 20 

precipitation indices over the 1980-2004 period for the Canadian Arctic. MEM stands for the 21 

Model Ensemble Mean, while REM corresponds to the Reanalysis Ensemble Mean. All T 22 

corresponds to the RV value averaged over all temperature indices and All Pr to the RV value 23 

averaged over all precipitation indices. The RV metric is computed against the station 24 

observations described in Section 2.3 and presented in Fig. 3 and Fig. 4. 25 
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 27 

Figure 6. Differences between the model ensemble mean (a, c and e) and reanalysis ensemble 28 

mean (b, d and f), and observations for climate mean of JJA Tmean in °C (a and b), DJF Tmean 29 

in °C (c and d) and RX1day in mm/days (e and f) over Arctic. 30 

  31 
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 32 

Figure 7. Violin plots showing mean bias kernel distributions of selected reanalysis and models 33 
over the 1980-2004 period for the Canadian Arctic for: a) TNn, b) R1mm, and c) RX1day 34 
indices. Each horizontal line on the violins represents the bias at one station, while the envelope 35 

of the violin represents the kernel density estimation of the underlying bias distribution at all 36 
stations. Violin plots in green correspond to the reanalyses and in magenta to the RCMs. Mean, 37 
minimum and maximum values recorded over all stations are presented on the top left corner of 38 
each graph. Box plots inside the violin plots (in gray) display the 1st and 3rd quartiles of the bias 39 
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distribution as well as the median values (white dot).   Each violin is scaled to have the same 40 

width. 41 

 42 

Figure 8. Heatmap showing the MSSS metric for mean temperature and precipitation indices 43 

over the 1980-2004 period for the Canadian Arctic. MEM stands for the Model Ensemble Mean, 44 

while REM corresponds to Reanalysis Ensemble Mean. All T and All Pr as defined in Figure 5. 45 
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 47 

Figure 9. Heatmaps showing the Kuiper distance values (upper-left triangles) and the (1-PSS) 48 

values (bottom-right triangles) between RCM or reanalysis anomaly distributions and the 49 

observed anomaly distributions for the Canadian Arctic over the 1980-2004 period. The central 50 

part of the figure presents results obtained for the individual datasets. The ‘Combined 51 

simulations’ (top row) and ‘Combined reanalysis’ (second top row) correspond to the cases 52 

where the anomaly distributions were constructed by pooling the index anomalies from all 53 

simulations or all reanalyses. All T and All Pr as defined in Figure 5. 54 
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 56 

Figure 10. Comparison of the ECDFs and EPDFs for AWI-HIRHAM5-MPI-ESM-LR simulation 57 

(in red) and observations (in blue) for RX1day (a) and TNn (b) indices for the Canadian Arctic 58 

over the 1980-2004 period. The dashed lines appearing in the EPDF graphs highlight the 59 

common area of the two EPDFs.  60 
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 62 

Figure 11. Heat maps comparing the mean performance of RCMs driven by GCM simulations 63 

(upper-left triangles) with the performance of RCM driven by ERAI simulation (bottom-right 64 

triangles) for: a) climate mean index values based on the RV metric; and b) anomaly distribution 65 

over Canadian Arctic based on the Kuiper distance (D). The equations are presented on the right-66 

hand side diagram. The period of analysis is 1989-2005.  K, next to simulation names, 67 

corresponds to the number of GCMs used as lateral boundary conditions for each RCM 68 

configuration. 69 
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 71 

 72 

Figure 12. RCM added-value diagram for the climate mean indices over Canadian Arctic. The 73 

upper-left triangles correspond to the mean MSE of RCM simulations driven by GCMs 74 

(MSERCM-GCMk) divided by the MSE of ERAI (MSEERAI), with the corresponding equation in the 75 

upper-left triangle of the right-hand side diagram. The corresponding bottom-right triangles 76 

correspond to the MSE of the corresponding RCM driven by ERAI (MSERCM-ERAI) divided by 77 

the MSE of ERAI, with the corresponding equation in the bottom-right triangle of the right-hand 78 

side diagram. The period of analysis is 1989-2005 (only valid years are considered). K as defined 79 

in Figure10. 80 
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