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Abstract: 24 

Probabilistic regression approaches for downscaling daily precipitation are very useful. 25 

They provide the whole conditional distribution at each forecast step to better represent 26 

the temporal variability. The question addressed in this paper is: How to simulate 27 

spatiotemporal characteristics of multisite daily precipitation from probabilistic 28 

regression models? Recent publications point out the complexity of multisite properties 29 

of daily precipitation and highlight the need for using a non-Gaussian flexible tool. This 30 

work proposes a reasonable compromise between simplicity and flexibility avoiding 31 

model misspecification. A suitable nonparametric bootstrapping (NB) technique is 32 

adopted. A downscaling model which merges a vector generalized linear model (VGLM 33 

as a probabilistic regression tool) and the proposed bootstrapping technique is introduced 34 

to simulate realistic multisite precipitation series. The model is applied to data sets from 35 

the southern part of the province of Quebec, Canada. It is shown that the model is capable 36 

of reproducing both at-site properties and the spatial structure of daily precipitations. 37 

Results indicate the superiority of the proposed NB technique, over a multivariate 38 

autoregressive Gaussian framework (i.e. Gaussian copula). 39 

Keywords: Statistical downscaling, Vector generalized linear model, Multisite daily 40 

precipitation, Copula, Multivariate autoregressive Gaussian field, Binary entropy, Non 41 

parametric bootstrapping.  42 
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Introduction 43 

Atmosphere–ocean general circulation models (AOGCMs) are very useful for assessing 44 

the evolution of the earth’s climate system. However, the spatial resolution of AOGCMs 45 

is too coarse for regional and local climate studies. The above limitation has led to the 46 

development of downscaling techniques. These techniques include dynamical 47 

downscaling which includes a set of physically based limited area models (Eum et al. 48 

2012), and statistical downscaling which identifies a statistical link between large scale 49 

atmospheric variables (predictors) and local variables (predictands) (Benestad et al. 50 

2008). Among a number of weather variables, precipitation poses the largest challenges 51 

from a downscaling perspective because of its spatio-temporal intermittence, its highly 52 

skewed distribution and its complex stochastic dependencies. In several hydro-climatic 53 

studies, precipitation is shown to be the most dominating weather variable to explicitly 54 

affect water resources systems, since it plays an important role in the dynamics of the 55 

hydrological cycle. Precipitation data is generally collected at various sites, and 56 

downscaling techniques are required to adequately reproduce the observed temporal 57 

variability and to maintain the consistency of the spatiotemporal properties of 58 

precipitation at several sites. Properly reproducing the temporal variability in 59 

downscaling applications is very important in order to adequately represent extreme 60 

events. Furthermore, maintaining realistic relationships between multisite precipitations 61 

is particularly important for a number of applications such as hydrological modelling. 62 

Indeed streamflows depend strongly on the spatial distribution of precipitation in a 63 

watershed (Lindström et al. 1997). 64 
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Several statistical downscaling techniques have been developed in the literature. These 65 

methods can be divided into three main approaches: stochastic weather generators (Wilks 66 

and Wilby 1999), weather typing (Conway et al. 1996) and regression methods (Hessami 67 

et al. 2008, Jeong et al. 2012). Classical regression methods are commonly used because 68 

of their ease of implementation and their low computational requirement but they have 69 

several inadequacies. First and most importantly, they generally provide only the mean or 70 

the central part of the predictands and thus they underrepresent the temporal variability 71 

(Cawley et al. 2007).  Second, they do not adequately reproduce various aspects of the 72 

spatial and temporal dependence of the variables (Harpham and Wilby 2005).  73 

In this regard, probabilistic regression approaches have provided useful contributions in 74 

downscaling applications to accurately reproduce the observed temporal variability. 75 

Probabilistic regression approaches include: the Bayesian formulation (Fasbender and 76 

Ouarda 2010), quantile regression (Bremnes 2004, Friederichs and Hense 2007, Cannon 77 

2011) and regression models where outputs are parameters of the conditional distribution 78 

such us the vector form of the generalized linear model (VGLM), the vector form of the 79 

generalized additive model (VGAM) (Yee and Wild 1996, Yee and Stephenson 2007) 80 

and the conditional density estimation network (CDEN) (Williams 1998, Li et al. 2013). 81 

Probabilistic regression approaches enable the definition of a complete dynamic 82 

univariate distribution function. In the case of VGLM, VGAM and CDEN, the output of 83 

the model is a vector of parameters of a distribution which depends on the predictor 84 

values. In addition to the location parameter (namely the mean), the scale and shape 85 

parameters can vary according to the updated values of atmospheric predictors and thus 86 

allowing for a better control and fit of the dispersion, skewness and kurtosis. Therefore, 87 
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simulation of downscaled time series with a realistic temporal variability is achieved by 88 

drawing random numbers from the modeled conditional distribution at each forecast step 89 

(Williams 1998, Haylock et al. 2006). In this respect, the problem that arises is how to 90 

extend probabilistic regression approaches to multisite downscaling tasks. 91 

Operationally, the multi-site replicates of the field predictands are readily obtained in the 92 

simulation stage. Generally, generating from a probabilistic regression model can be 93 

achieved by drawing random numbers from the uniform distribution and then applying 94 

the inverse cumulative distribution function of the parent distribution obtained from the 95 

probabilistic regression model. We must keep in mind that, the parameters of the parent 96 

distribution change at each forecast step based on the updated values of large-scale 97 

atmospheric predictors. To obtain spatially correlated simulations using probabilistic 98 

regression models, we need to simulate uniform random variables that are correlated. 99 

Thus, generating from a multivariate distribution on the unit cube (i.e, with uniform 100 

margins) could solve the issue. Such a multivariate distribution is called a copula. Copula 101 

functions allow describing the dependence structure independently from the marginal 102 

distributions and thus, using different marginal distributions at the same time without any 103 

transformations. During the last decade, the application of copulas in hydrology and 104 

climatology has grown rapidly. An introduction to the copula theory is provided in Joe 105 

(1997) and Nelsen (2013). The reader is directed to Genest and Chebana (2015) and 106 

Salvadori and De Michele (2007) for a detailed review of the development and 107 

applications of copulas in hydrology including frequency analysis, simulation, and 108 

geostatistical interpolation (Bárdossy and Li 2008, Chebana and Ouarda 2011, Requena 109 

et al. 2015, Zhang et al. 2015). In recent years, copula functions have been widely used to 110 



6 
 

describe the dependence structure of climate variables and extremes (AghaKouchak 111 

2014, Guerfi et al. 2015, Hobæk Haff et al. 2015, Mao et al. 2015, Vernieuwe et al. 112 

2015). 113 

To extend the probabilistic regression approach to multisite and multivariable 114 

downscaling, Ben Alaya et al. (2014) proposed a Gaussian copula procedure. 115 

Nevertheless, this approach does not take into account cross-correlations lagged in time 116 

and thus it cannot reproduce the short term autocorrelation properties of downscaled 117 

series such us the lag-1 cross-correlation. To solve this issue Ben Alaya et al. (2015) 118 

employed a multivariate autoregressive field as an extension to the Gaussian copula to 119 

account for the lag-1 cross-correlation. On the other hand, a careful examination of the 120 

dependence structure in hydrometeorological processes using copula reveals that the 121 

meta-Gaussian framework is very restrictive and cannot account for features like 122 

asymmetry and heavy tails and thus cannot realistically simulate the multisite 123 

dependency structure of daily precipitation (El Adlouni et al. 2008, Bárdossy and Pegram 124 

2009, Lee et al. 2013). 125 

To exploit this knowledge for precipitation simulation, Li et al. (2013) and Serinaldi 126 

(2009) considered copulas to introduce non-Gaussian temporal structures at a single site.  127 

Bargaoui and Bárdossy (2015) employed a bivariate copula to model short duration 128 

extreme precipitation. For multisite precipitation simulation, Bárdossy and Pegram 129 

(2009) and AghaKouchak et al. (2010) introduced non-Gaussian spatial tail dependency 130 

structures by simulating precipitation from a v-transformed normal copula proposed by 131 

Bárdossy (2006). Other theoretical models of copula can also be used to reproduce this 132 
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spatial tail dependency such as metaelliptical copulas (Fang et al. 2002) or using vine 133 

copula (Gräler 2014).  134 

In the case of precipitation simulation it would be useful to implement a spatiotemporal 135 

flexible copula that allows simultaneously modelling both temporal and spatial 136 

dependency. To our best knowledge, such a copula has not been exploited in the 137 

hydrometeorological literature including for downscaling, except for the multivariate 138 

autoregressive meta-Gaussian copula. Nevertheless, in the statistical literature Smith 139 

(2014) employed a vine copula to achieve this end. In the last decade, vine copulas 140 

emerged as a new efficient technique in econometrics. Vine copula use pair copula 141 

building blocks offering a flexible way to capture the inherent dependency patterns of 142 

high dimensional data sets, with regard to their symmetries, strength of dependence and 143 

tail dependency. On the other hand, the full specification of a vine copula model is not 144 

straightforward, since it requires the choice of a tree structure of the vine copula, the 145 

copula families for each pair copula term and their corresponding parameters (Czado et 146 

al. 2013). In addition, the application for spatial and temporal structure dependency 147 

greatly increases the number of parameters which would unquestionably make the model 148 

less parsimonious and increase the associated uncertainty. 149 

In order, to avoid any model misspecification, information about the data dependence 150 

structure can be reproduced in the simulation step by resampling using the data ranks 151 

(Vinod and López-de-Lacalle 2009, Vaz de Melo Mendes and Leal 2010, Srivastav and 152 

Simonovic 2014). Indeed the data ranks are the statistics retaining the greatest amount of 153 

information about the data dependence structures (Oakes 1982, Genest and Plante 2003, 154 

Song and Singh 2010). In this respect, the aim of the present paper is to propose a new 155 
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approach to maximize the amount of information about the dependence structure that is 156 

preserved in the simulation step from a probabilistic regression downscaling model. 157 

Hence, instead of using a flexible copula, a simple non-parametric bootstrapping 158 

technique is employed. The procedure consists in generating uniform random series 159 

between 0 and 1 and then sorting them according to their observed ranks. The resulting 160 

multisite precipitation downscaling model involves a new hybrid procedure merging a 161 

parametric probabilistic regression model (the VGLM) and a non-parametric 162 

bootstrapping (NB) technique. The introduced bootstrapping technique represents a fair 163 

compromise between simplicity and flexibility to generate realistic multisite properties of 164 

precipitation from a probabilistic regression model.  165 

Since traditional multisite resampling techniques are closely related to observed data, 166 

they suffer from the inability to generate values that are more extreme than those 167 

observed. In this respect, the main advantage of the proposed non parametric resampling 168 

approach compared to traditional non-parametric techniques, is its ability to mimic only 169 

the observed ranks without affecting the univariate marginal properties. Indeed the 170 

proposed VGLM-NB model takes advantage of the probabilistic regression component to 171 

allow univariate margins to be dynamic and thus varying in the future according to the 172 

large scale atmospheric predictors. This attractive characteristic helps to preserve the 173 

dependence structure without tying the simulations too close to observed data. 174 

The paper is structured as follows: after this introduction, the proposed hybrid multisite 175 

VGLM-NB model is described. An application to a case study of daily data sets from the 176 

province of Quebec is carried out. The model validation is done using statistical 177 

characteristics such as mean, standard deviation, dependence structure (both spatial and 178 
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temporal), precipitation indices and an entropy-based congregation measure. Obtained 179 

results are compared to those corresponding to a VGLM-MAR which is a VGLM 180 

combined with multivariate autoregressive (MAR) Gaussian field. Finally discussions 181 

and conclusions are given.   182 

2. Study area and data 183 

Observed daily precipitations from nine Environment Canada weather stations located in 184 

the province of Quebec (Canada) are used in this study (see Figure 1). The list of stations 185 

is presented in Table 1. Predictor variables are obtained from the reanalysis product 186 

NCEP/NCAR interpolated on the CGCM3 Gaussian grid (3.75 ° latitude and longitude). 187 

Six grids covering the predictand stations area are selected (see Figure 1), and 25 NCEP 188 

predictors are available for each grid (see Table 2). Thus, a total of 150 daily predictors 189 

are available for the downscaling process. To reduce the number of predictors, a principal 190 

component analysis (PCA) is performed. The first principal components that preserve 191 

more than 97% of the total variance are selected. The data sets cover the period 192 

between January, 1st 1961 and December, 31st 2000. This record period is divided into 193 

two periods for the calibration (1961-1980) and the validation (1981-2000).  194 

3. Methodology  195 

In this section, the proposed VGLM-NB model is presented. The corresponding 196 

probabilistic framework is presented with a description of the conditional Bernoulli-197 

Generalized Pareto regression model and the proposed nonparametric bootstrapping 198 

technique. 199 

 200 
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3.1. Vector generalized linear model 201 

The precipitation amount distribution, at a daily time scale, tends to be strongly skewed, 202 

and is commonly assumed to be gamma distributed (Stephenson et al. 1999, Giorgi et al. 203 

2001, Yang et al. 2005). In a regression perspective, the generalized linear model (GLM) 204 

extends classical regression to handle the normality assumption of the model output. Here 205 

the output may follow a range of distributions that allow the variance to depend on the 206 

mean such us the exponential distribution family and particularly the Gamma distribution 207 

(Coe and Stern 1982, Stern and Coe 1984, Chandler and Wheater 2002). Nevertheless, 208 

recent findings suggest that the gamma distribution can be unsuitable for modeling 209 

precipitation extremes since it is very restrictive and cannot account for features like 210 

heavy tails. Therefore, to treat this issue, other options have been proposed in the 211 

literature, particularly the generalized Pareto (GP) and the reverse Weibull (WEI) 212 

distributions (Ashkar and Ouarda 1996, Serinaldi and Kilsby 2014). However, due to the 213 

fact that the variance does not depend on the mean, these two distributions cannot be used 214 

in a GLM. Vector generalized linear models (VGLMs) have been developed to handle 215 

this inadequacy (Yee and Stephenson 2007). Instead of the conditional mean only, 216 

VGLM provides the entire response distribution by employing a linear regression model 217 

where the outputs are vectors of parameters of the selected conditional distribution 218 

(Kleiber et al. 2012). Moreover, in downscaling applications, VGLM has a particular 219 

advantage since it allows reproducing a realistic temporal variability of the downscaled 220 

results by drawing values from the obtained conditional distribution at each forecast step. 221 

The structure of the proposed model allows considering a suitable distribution for each 222 

station. Among several options proposed in the literature, Gamma, mixed exponential, 223 
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GP and reverse WEI are the most commonly used and are therefore considered in the 224 

current work to represent the precipitation amount on wet days (days with positive values 225 

of precipitation amounts, when precipitation falls). However, for the sake of simplicity, 226 

only one distribution that provides a good overall fit for all stations is selected. In our 227 

study, the examination of the Q-Q plots presented in Figure 2 reveals that all these 228 

distributions fit fairly well the precipitation amounts. However, the GP distribution is 229 

chosen since it is more successful in reproducing the upper tails. The expression of the 230 

zero adjusted GP distribution is given by: 231 

 232 

1

( ) 1 1 ; 0
y

f y y








 
    

 
    (1) 233 

 234 

where y is the precipitation amount, ( 0)   and   (where1 0y   ) are 235 

respectively the scale and the shape parameters of the zero-adjusted GP model. 236 

Therefore, a mixed Bernoulli–GP distribution with a vector of parameters ( , , )p    is 237 

considered to represent the whole precipitation distribution that includes both occurrences 238 

and amounts in a single distribution. The vector of parameters includes the probability of 239 

precipitation  which is the parameter of the Bernoulli process, and the scale ( 0)  240 

and shape   (where1 0y  
 and y represents the precipitation values) are 241 

parameters of the zero adjusted GP distribution. Hence, the proposed precipitation model 242 

can be considered as a mixture of Dirac mass on zero (representing the probability on 243 
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zero) and GP distribution for precipitation amounts (representing positive values of 244 

precipitation amounts).  Using the VGLM, these parameters are considered to vary for a 245 

given day t according to the value of large-scale atmospheric predictors ( )x t . However, 246 

only the shape parameter   is fixed to guarantee the convergence of the maximum 247 

likelihood estimates. For the parameter of the probability of precipitation occurrences we 248 

adopt a logistic regression which is expressed as: 249 

1
( )

1 exp ( )T
t

a x t
 

   

     (2) 250 

where a  is the coefficient of the logistic model. The scale parameters ( )t are modeled 251 

using an exponential link written as: 252 

( ) exp ( )Tt b x t          (3) 253 

where b is the coefficient of the model. Thus, the conditional Bernoulli-GP density 254 

function for the precipitation ( )y t  on a day t  is expressed as: 255 

1

1
1 if        ( ) = 0

1 exp ( )

[ ( ) | ( )]
1 ( )

1 1 if        ( ) > 0
1 exp ( ) exp ( )

T

t

T T

                     y t
a x t

f y t x t
y t

       y t    
a x t b x t








    


    
     
              

256 

 (4) 257 

The coefficients a , b  and   are obtained following the method of maximum likelihood 258 

by minimizing the negative log predictive density (NLPD) cost function (Haylock et al. 259 

2006, Cawley et al. 2007, Cannon 2008): 260 
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1

log ( ) | ( )
T

t

t

f y t x t


L          (5) 261 

via the simplex search method of Lagarias et al. (1999). This is a direct search method 262 

that does not use numerical or analytic gradients. 263 

Now, consider a calibration period of length T and precipitation series at several sites264 

1,2, ,j m . While in the current case study 9m   sites, the proposed methodology is 265 

very general and can also be conducted using large number of sites. The proposed VGLM 266 

regression can be trained separately for each precipitation variables
jy at the site j , and 267 

thus to obtain the estimated parameters ˆ ( )jp t  and the conditional distributions 268 

ˆ ( | ( ))tj jf y x t for each day 1,2, ,t T . Figure 3a shows the steps involved for estimating 269 

the parameters of the VGLM models. 270 

3.2. Non parametric bootstrapping technique 271 

These dynamic marginal distributions obtained from the VGLM models can be coupled 272 

with a random field with uniform margins. Thus, in simulation, generation of the multi-273 

site replicates of the precipitation field is readily achieved by generating properly 274 

associated multivariate variants between 0 and 1 with uniform margins, which are back-275 

transformed to synthetic field predictands by applying the inverse cumulative distribution 276 

function. To address this point, hidden multivariate variants  1( ) ( ), , ( )du t u t u t=277 

uniformly distributed between 0 and 1 are extracted where ( )ju t  for 1, ,j m  are 278 

obtained from the following equation: 279 
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ˆ( ) ( ( ))j tj ju t F y t
           (6)

 280 

where ˆ
tjF  is the cumulative distribution function at time t for site j obtained from the 281 

VGLM model. Figure 3b shows the steps involved in obtaining the hidden multivariate 282 

variants over the calibration period. First, the VGLM can be evaluated during the 283 

calibration period separately for each station. This will allow obtaining the entire 284 

conditional distribution for each day from the calibration period. Then the obtained 285 

conditional CDFs can be applied to their corresponding predictand values to express 286 

precipitation as a probability of non-exceedances ranging from 0 to 1. In order to map 287 

( )ju t  onto the full range of the uniform distribution between 0 and 1, the cumulative 288 

probabilities ( ( ))tj jF y t  are randomly drawn from a uniform distribution on [0,1 ( )t ] 289 

for dry days. The resulting data matrix ( )u t represents values between 0 and 1 that 290 

contain the unexplained information by the VGLM model including spatial dependence 291 

structures and long term and short term temporal structures.  292 

The question that should be addressed in this step is: "how to extract information about 293 

the data dependence structure from the data matrix ( )u t , and how to preserve this 294 

information in the simulation step?”. This information is contained in the ranks matrix R 295 

of the data matrix ( )u t  (Oakes 1982, Genest and Plante 2003, Song and Singh 2010). 296 

Hence, if the ranks of the data matrix ( )u t are preserved in the simulation, the data 297 

dependence structure will be preserved as well. Recall that copula functions allow 298 

modelling the data ranks in order to model the data dependence structure. Thus, the rank 299 

matrix R can be modeled using a multivariate copula. In the case of precipitation 300 
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simulation it would be useful to simulate from a flexible multivariate copula model that 301 

preserves both temporal and spatial dependence structures. However achieving such 302 

flexibility may require an increasing number of parameters which would makes the 303 

copula model less parsimonious and increases the associated uncertainty without ensuring 304 

that the ranks of the data will be preserved. In this respect, to avoid any model 305 

misspecification, the rank matrix R can be used in the simulation to preserve a great 306 

amount of information about the data dependence structure. The idea consists in 307 

generating multivariate random variables from the uniform distribution with the same 308 

dimension as the matrix R, and then ordering each column according to the 309 

corresponding column in R. 310 

Finally the synthetic precipitation series during the validation period can be obtained 311 

from the VGLM-NB model using the following three steps. 312 

(i) Randomly generate multivariate random variables from the uniform 313 

distribution with same dimension as the matrix R during the validation 314 

period.  315 

(ii) Sort each column of the obtained matrix in step (i) according to the 316 

corresponding column in R. 317 

(iii) Apply the inverse cumulative Bernoulli-GP distribution expressed in Equation 318 

(3) for each site j and for each forecast day t from the validation period to the 319 

sorted matrix obtained in step (ii). 320 
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Let us now consider the univariate variant ( )ju t  at a site j  and the same variant 321 

( )ju t h lagged by h  days. Since the rank column 
jR  on this site j  is preserved, the 322 

ranks matrix 
h

jR  of the data matrix [ ( ), ( )]j ju t u t h  will be preserved as well. This 323 

implies that the proposed approaches can be expected to preserve the temporal correlation 324 

at individual sites during the simulation. The proposed NB approach is similar to a 325 

copula, since both are based on the generation of uniformly distribution random variables 326 

that are correlated, except that copula allows modelling the ranks matrix whereas the 327 

proposed approach mimics the data ranks rather than modeling them. 328 

As discussed by Serinaldi and Kilsby (2014), taking into account the spatial correlation 329 

and the short term autocorrelation in a probabilistic regression model can be introduced 330 

in two ways: (i) by introducing the precipitation at previous time steps as an additional 331 

covariate, or (ii) by using a random field with uniform marginals and a suitable spatio-332 

temporal structure. The first way implies a sequential simulation; it can be used for cases 333 

involving a small number of sites (Serinaldi 2009, Kleiber et al. 2012). In the second 334 

way, multisite characteristics and temporal autocorrelation are introduced in the 335 

simulation stage using correlated random numbers with uniform marginal distributions. 336 

This second way is adopted in the current work. This technique avoids a sequential 337 

simulation conditioned on the simulation of the precipitation at the previous time steps 338 

and can be adapted for a large number of sites. In the proposed approach the probabilistic 339 

regression component uses a single discrete-continuous distribution and thus avoids the 340 

split between occurrence process (the transition between wet and dry days) and 341 

precipitation amount process (positive precipitation values in wet days). In this way, the 342 

number of the random field substrates to be used in the simulation stage is reduced from 343 
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two (one for the occurrence process and one for the amount process) to one, thus making 344 

the model more parsimonious. 345 

3.3. Quality assessment of downscaled precipitation 346 

To assess the performance of the proposed VGLM-NB model, we compare it to VGLM-347 

MAR which is a downscaling model using the same mixed Bernoulli-Generalized Pareto 348 

distribution and extended to multisite tasks using a first order multivariate autoregressive 349 

random field framework (Ben Alaya et al. 2015). 350 

3.3.1. Quality assessment of univariate characteristics 351 

Two approaches are considered for the quality assessment of univariate characteristics of 352 

the VGLM-NB model. The first approach is based on a direct comparison between the 353 

estimated and observed values using statistical criteria, while the second approach is 354 

based on calculating climate indices. In the two validation approaches, the VGLM-NB 355 

model results are compared to those obtained using the VGLM-MAR. 356 

In the first validation approach, four statistical criteria are used for model validation. 357 

These criteria are: 358 

           
1

1
t t

n

obs est

t

ME y y
n 

       (7) 359 

           
2

1

1
t t

n

obs est

t

RMSE y y
n 

       (8) 360 

2 2( ) ( )obs estD y y       (9) 361 
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a
FAR

b
      (10) 362 

where n  denotes the number of observations, 
tobsy  refers to the observed value, 

testy  is 363 

the estimated value, t  denotes the day,   is the standard deviation, a  the number of 364 

false alerts for observed dry days, and b  is the total number of observed dry days.  365 

The first criterion is the mean error (ME) which is a measure of accuracy. The second 366 

criterion is the root mean square error (RMSE) which is given by an inverse measure of 367 

the accuracy and must be minimized, and the third criterion D  measures the difference 368 

between observed and modeled variances, this criterion evaluates the performance of the 369 

model in reproducing the observed variability. The last criterion, the false alarm rate 370 

(FAR), is the fraction of false alerts associated with observed dry days and must be 371 

minimized.   372 

In a second validation approach, a set of several precipitation indices that reflect 373 

precipitation variability on a seasonal and monthly basis are considered. Five indices 374 

related to precipitation amounts are considered: the mean precipitation of wet days 375 

(MPWD), the 90th percentile of daily precipitation (Pmax90), the maximum 1-day 376 

precipitation (PX1D), the maximum 3-day precipitation (PX3D), and the maximum 5-day 377 

precipitation (PX5D). In addition, three other indices are considered for precipitation 378 

occurrences: the maximum number of consecutive wet days (WRUN), the maximum 379 

number of consecutive dry days (DRUN) and the number of wet days (NWD). All 380 

indices are calculated on a monthly time scale, whereas the P90max is calculated on a 381 

seasonal time scale. 382 
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3.3.2. Quality assessment of multisite characteristics 383 

Multisite characteristics are verified using scatter plots of observed and modeled lag-0 384 

and lag-1 cross-correlations and log odds ratios (LOR). Lag-0 cross correlations 385 

correspond to cross correlations between all pairs of data (not lagged in time) whereas 386 

Lag-1 cross correlations correspond to cross correlations between all pairs of data lagged 387 

by 1 day.  388 

A log-odds ratio between a pair of stations i and j is expressed as: 389 

, ,

,

, ,

00 11
ln

10 01

i j i j

i j

i j i j

p p
LOR

p p

 
  

  

,      (11) 390 

Where , , , ,00 , 11 , 10 , 01i j i j i j i jp p p p  are the joint probabilities of no rain at either one of the 391 

two stations, rain at both stations, rain at station i and no rain at station j, and finally no 392 

rain at station i and rain at station j, respectively. The log odds ratio provides a measure 393 

of the spatial correlation between precipitation occurrences at each pair of stations where 394 

higher values indicate better defined spatial dependence (Mehrotra et al. 2004, Mehrotra 395 

and Sharma 2006). 396 

The dynamics of flood events are strongly related to the simultaneous occurrence of 397 

extreme precipitation at several sites. A pairwise correlation is often used for the 398 

specification of multisite precipitation models (this is the case of the VGLM-MAR). On 399 

the other hand multisite properties of extreme precipitation could be related to higher-400 

order correlations than a traditional pairwise correlation (Serinaldi et al. 2014). In this 401 

respect, a diagnostic based on higher order correlations between extreme precipitations is 402 

necessary but often ignored. To this end,  Bárdossy and Pegram (2009) introduced the 403 
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binary entropy as a measure of dependence in a given triplet. This measure overcomes a 404 

pairwise validation in order to look effectively at the high-order dependence properties. 405 

The entropy theory was first formulated by (Shannon 1948) to provide a measure of 406 

information contained in a set of data. To calculate the binary entropy, we first fix a given 407 

quantile threshold to divide each precipitation series into binary sets by allocating 0 to the 408 

lower partition defined by the threshold and 1 otherwise. At each day, the eight possible 409 

states of a given binary triple can be defined using the set  , ,i j k  for , , 0,1i j k  . Then, 410 

the eight binary probabilities ( , , )p i j k , for , , 0,1i j k   can be calculated over all days 411 

from the validation period. For example, (1,1,1)p  represents the probability that all three 412 

binary sets on a given day are simultaneously equal to 1, and (0,0,0)p  that they are all 413 

equal to 0. The binary entropy H  can be computed as  414 

1

, , 0

( , , ) ln( ( , , )).
i j k

H p i j k p i j k


       (12) 415 

Hence, the lower the entropy is, the stronger will be the association between the variables 416 

at a given threshold. 417 

4. Results 418 

The VGLM-NB model was trained for the calibration period (1960-1980), using 419 

precipitation data series from the nine stations and the 40 predictors obtained by the PCA. 420 

Once the parameters of the conditional Bernoulli-GA distribution ( ( ), ( )j jt t  and ( )j t ) 421 

have been estimated for each day t  and for each site j  over the calibration period, all the 422 

obtained conditional marginal distributions were used to obtain the hidden variables ( )u t  423 
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and then to calculate the rank data matrix R. Finally, for each of the nine sites, 1000 daily 424 

precipitations series were generated during the validation period (1981-2000) using 425 

VGLM-NB described in Section 3 and the VGLM-MAR for comparisons. We assume 426 

that 1000 simulations are sufficiently enough to provide stable estimates of precipitation 427 

characteristics. Figure 4 shows an example of one precipitation simulation obtained using 428 

the VGLM-NB model at Cedars station during the year 1981. Based on the simulated 429 

series, VGLM-NB seems to be able to preserve at site properties of the natural process of 430 

both precipitation amounts and precipitation occurrences. 431 

For the evaluation of the univariate characteristics of VGLM-NB and VGLM-MAR using 432 

statistical criteria, the RMSE and ME where calculated using the conditional means of 433 

1000 realisations, whereas the differences between observed and modeled variances 434 

where calculated using the mean variance values of the 1000 simulations. Table 3 shows 435 

values of the obtained criteria. Generally, the two compared models give similar results 436 

in terms of RMSE, ME and D. This result is expected since both VGLM-NB and VGLM-437 

MAR have the same probabilistic regression component. For precipitation occurrences, in 438 

terms of FAR results show that VGLM-NB has fewer FAR over all stations. This result 439 

shows that, although both VGLM-NB and VGLM-MAR are trained using the same 440 

probabilistic regression component (the Bernoulli-generalized Pareto regression model), 441 

the non-parametric bootstrapping technique leads to better at-site results than the MAR 442 

approach. In addition, by the evaluation of univariate characteristics using precipitation 443 

indices, the RMSE values of these indices (presented in Table 4) show that VGLM-NB 444 

performs better than VGLM-MAR for all indices, except for the 90
th

 percentile of daily 445 

precipitation. This result demonstrates that the VGLM-NB is more able to represent 446 
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precipitation variability on a monthly basis than the VGLM-MAR. To evaluate the ability 447 

of both VGLM-NB and VGLM-MAR to simulate short term autocorrelation, Figure 5 448 

shows observed and modeled lag-1 autocorrelation for precipitation series at the nine 449 

stations during the validation period. It can be seen from Figure 5 that VGLM-NB 450 

preserves more adequately the lag-1 autocorrelation at a single site. 451 

To evaluate the ability of the models to simulate spatially realistic precipitation fields, 452 

Figure 6 compares the distribution of observed and downscaled daily average 453 

precipitations over the 9 stations for VGLM-NB, VGLM-MAR and univariate VGLM 454 

without multisite extension. The comparison with the univariate VGLM is beneficial to 455 

identify the real gain contributed by the two multisite components of VGLM-NB and 456 

VGLM-MAR. The observed and modeled CDFs are presented in Figure 6.a and the Q-Q 457 

plots for quantiles corresponding to non-exceeded probabilities ranging between 0.01 and 458 

0.99 with a step of 0.01 in Figure 6.b. Results indicate that the performance of VGLM-459 

NB in reproducing the distribution of daily average precipitation is satisfactory compared 460 

to VGLM and VGLM-MAR. Both VGLM and VGLM-MAR underestimate the higher 461 

precipitation amounts and overestimates the lower precipitation amounts. Although 462 

VGLM-NB slightly overestimates observed quantiles, it tends to fairly well reproduce 463 

low and high values. This overestimation may be explained by the fact that VGLM-NB 464 

supposes that the rank matrix of the variants ( )u t  remain the same during the validation 465 

period.  466 

Figure 7 shows scatterplots between observed and modeled lag-0 and lag-1 cross-467 

correlations for all station pairs considering only wet days during the validation period. 468 

Lag-0 cross-correlation is presented in Figure 7.a and lag-1 cross-correlation in Figure 469 
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7.b. The correlation values for each model are obtained using the mean of the correlation 470 

values calculated from the 1000 realisations. For lag-0 cross-correlation, the points 471 

correspond to all 36 combinations of pairs of stations, while for lag-1 cross-correlation 472 

points correspond to all 81 combinations because lag-1 cross-correlations are generally 473 

not symmetric. Figure 7.a shows that observed values of lag-0 cross-correlation range 474 

between -0.02 and 0.65. VGLM-NB gives better preservation of lag-0 cross-correlation 475 

than both VGLM-MAR and traditional VGLM. Because VGLM is not a multisite model, 476 

it gives the poorest performances and generally underestimates lag-0 cross-correlations. 477 

Figure 5b indicates that, for the lag-1 cross-correlation, observed values range between -478 

0.1 and 0.28. For VGLM-NB the performance in reproducing lag-1 cross correlation is 479 

less good than the on corresponding to lag-0 cross correlation. However, this 480 

performance seems to be always better than the two other models. 481 

To further evaluate the multisite performance, Figure 8.a presents observed and modeled 482 

log odds ratios for the VGLM-NB, VGLM-MAR and univariate VGLM at all stations. 483 

Results indicate that the VGLM-NB model provides very close correspondence with 484 

observed log odds ratios and gives better results than the two other models. VGLM-MAR 485 

outperforms the univariate VGLM but its results are less accurate than VGLM-NB, 486 

especially when the observed correlations are high.  487 

Figure 9 shows scatter plots of observed and modeled binary entropy for precipitation 488 

occurrences (Figure 9a) and at three quantile thresholds: 0.75 (Figure 9.b), 0.90 (Figure 489 

9.c) and 0.975 (Figure 9.d). Points correspond to all combinations of stations triplets. It 490 

can be seen from Figure 9.a that simulated precipitation occurrences using both VGLM 491 

and VGLM-MAR data exhibit higher binary entropy values than observed data. Similar 492 
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results were found for binary entropy corresponding to the quantile thresholds 0.75, 0.90 493 

and 0.95. This result indicates that the Gaussian dependence structure is not enough to 494 

capture the stronger association of extreme precipitation. It is clear that the VGLM-NB is 495 

closer to the data across the range of the binary entropy H than the VGLM-MAR model, 496 

indicating that non-parametric bootstrapping simulation is an improvement over the 497 

multivariate autoregressive Gaussian framework. In reality, this result is expected, since 498 

the VGLM-MAR captures the spatial structure by modeling a combination of bivariate 499 

relationships using the Gaussian copula. Improving the capture of spatial structure using 500 

parametric models requires the application of high-dimensional copulas such us a vine 501 

copula. 502 

5. Discussions 503 

Unlike the VGLM-MAR, an attractive characteristic of the proposed VGLM-NB is that 504 

pairwise correlations are not used for the model definition. Indeed, the employed non-505 

parametric bootstrapping technique does not model dependency structures but mimics the 506 

observed data ranks to preserve the unexplained multisite properties by the VGLM. As it 507 

is the case for most resampling methods (Ouarda et al. 1997, Buishand and Brandsma 508 

1999, Buishand and Brandsma 2001, Mehrotra and Sharma 2009, Lee et al. 2012), this 509 

approach is data driven, non-parametric and thus avoiding any model misspecification 510 

when preserving multisite properties. However, while resampling models suffer from the 511 

inability to generate values that are more extreme than those observed, the probabilistic 512 

regression component of the proposed hybrid model allows overcoming this drawback. 513 

Indeed, regression methods and resampling techniques can be combined to take 514 

advantage of their strengths for downscaling tasks. For this purpose, a widely used 515 
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approach consists in using resampling or randomisation methods to address the inability 516 

of the traditional regression component to preserve the temporal variability and multisite 517 

properties (Jeong et al. 2012, Jeong et al. 2013, Khalili et al. 2013). These hybrid 518 

approaches are based on a static noise observed during the calibration of the regression 519 

component. Therefore, the part of the variability which is explained by the randomization 520 

component does not depend on the predictors, and thus, it is supposed to be constant in a 521 

changing climate. For this reason, this traditional hybrid structure may not represent local 522 

change in the temporal variability in a climate change simulation. Hence, the hybrid 523 

structure employed here to describe the VGLM-NB (as well as the VGLM-MAR), allows 524 

the temporal variability to be reproduced in the regression component (using the VGLM 525 

component) and thus it may change in the future according to the large scale atmospheric 526 

predictors. 527 

Although the proposed non parametric approach allows preserving the multisite 528 

dependence structure at gauged sites, this dependence structure is still unknown. In 529 

regionalization applications where simulations at ungaged locations are required it is 530 

imperative to know the structure of the spatial dependence. In such a situation, a spatial 531 

model is required and thus modelling the data ranks through copulas would be more 532 

advantageous. Another limitation of the proposed approach is that the data rank matrix of 533 

the hidden variants ( )u t  is supposed to be the same (i.e. stationary) in the future. In this 534 

respect, allowing the dependence to be dynamic requires also a parametric modelling. 535 

It should be mentioned that a very important point that has not been considered in this 536 

work is the selection of predictor variables. The selection of predictor variables in the 537 

development of statistical downscaling models requires comprehensive considerations. In 538 
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the case of precipitation, the best description of the conditional distribution may require 539 

the use of different subsets of predictor variables for precipitation amounts and 540 

precipitation occurrences. Predictor variables must be physically sensible, realistically 541 

modeled by the AOGCM, and able to fully reflect the climate change signal. In the 542 

current work, NCEP/NCAR data are used for calibration and validation in order to assess 543 

the potential of the proposed approach, although the final objective is to use AOGCM 544 

outputs. Even if NCEP data are complete and physically consistent they are still subject 545 

to model biases (Hofer et al. 2012). NCEP variables which are not assimilated (such as 546 

precipitation), but generated by the parameterizations based on dynamical model can 547 

significantly deviate from real weather. The use of such variables for the calibration and 548 

validation of empirical downscaling techniques may not be a good idea, since it may 549 

induce a significant deviation of the modeled relationships predictors/predictands from 550 

the reality which makes evaluation of downscaling techniques more difficult. 551 

The downscaling problem as is tackled in this paper can be viewed as a regression 552 

problem, where we try to predict climate variables at small scale from climate variables 553 

at synoptic scale. However, due to the large literature that addresses the precipitation 554 

modelling in general, the downscaling issue may be viewed as an adjustment of existed 555 

precipitation models to account for large scale climate drivers (GCM precipitation, SLP, 556 

wind speed, etc.). Wilks (2010) suggested that these adjustments can be accomplished in 557 

two ways: (i) through imposed changes in the corresponding monthly statistics, (ii) or by 558 

controlling the precipitation model parameters by daily variations in simulated 559 

atmospheric circulation. In this context, the VGLM component of the proposed model 560 

focuses on the second way in the adjustment procedure. Indeed, through the VGLM 561 
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component, large scale climate drivers are employed as exogenous variables to describe 562 

parameters of the mixed Bernoulli-GP distribution.  563 

6. Conclusions 564 

A VGLM-NB model is proposed in this paper for simultaneously downscaling AOGCM 565 

predictors to daily multisite precipitation. The VGLM-NB relies on a probabilistic 566 

modeling framework in order to predict the conditional Bernoulli-Generalized Pareto 567 

distribution of precipitation at a daily time scale. A non-parametric bootstrapping 568 

technique is proposed to preserve a realistic representation of relationships between sites 569 

at both time and space. This rank-based sampling method is easy to implement and does 570 

not model the dependency structures, but mimic the observed historical characteristics of 571 

multisite precipitation and thus avoids any model specification error. However, it should 572 

be mentioned that it cannot be used for simulations at ungagged locations. Indeed, in such 573 

a situation, modeling the data ranks through spatial copulas would be more appropriate. 574 

The developed model was then applied to generate daily precipitation series at nine 575 

stations located in the southern part of the province of Quebec (Canada). Model 576 

evaluations suggest that the VGLM-NB model is capable of generating series with 577 

realistic spatial and temporal variability. The developed model can be easily applied to 578 

other variables such as temperature and wind speed making it a valuable tool not only for 579 

downscaling purposes but also for environmental and climatic modelling, where often 580 

non-normally distributed random variables are involved.  581 

  582 
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Table 1. List of the 9 stations used in this study. 851 

No. Site Name of station Latitude (°N) Longitude (°W) 

1 7031360 Chelsea 45.52 -75.78 

2 7014290 Cedars 45.3 -74.05 

3 7025440 Nicolet 46.25 -72.60 

4 7022160 Drummondville 45.88 -72.48 

5 7012071 Donnacona 2 46.68 -71.73 

6 7066685 Roberval A 48.52 -72.27 

7 7060400 Bagotville A 48.33 -71 

8 7056480 Rimouski 48.45 -68.53 

9 7047910 Seven Island A 50.22 -66.27 

 852 
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Table 2. NCEP predictors on the CGCM3 grid. 854 

No Predictors No Predictors 

1 mean pressure at the sea level 14 Divergence at 500 hPa 

2 Wind speed at 1000 hPa 15 Wind speed at 850 hPa 

3 Component U at 1000 hPa 16 Component U at 850 hPa 

4 Component V at 1000 hPa 17 Component V at 850 hPa 

5 Vorticity at 1000 hPa 18 Vorticity at 850 hPa 

6 Wind direction at 1000 hPa 19 Geopotential at 850 hPa 

7 Divergence at 1000 hPa 20 Wind direction at 850 hPa 

8 Wind speed at 500 hPa 21 Divergence at 1000 hPa 

9 Component U at 500 hPa 22 Specific humidity at 500 hPa 

10 Component V at 500 hPa 23 Specific humidity at 850 hPa 

11 Vorticity at 500 hPa 24 Specific humidity at 1000 hPa 

12 Geopotential at 500 hPa 25 Temperature at 2m 

13 Wind direction at  500 hPa 

 855 
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 858 

Table 3. Quality assessment of the estimated series for the validation period (1981–2000) 859 
for VGLM-NB and VGLM-MAR. Statistics are ME and RMSE, Differences between 860 

observed and modeled variances (D) and false alarm ratio FAR. 861 

Number of 

station 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

RMSE 
VGLM-NB 7.34 7.17     7.29 5.53 6.06 5.49 5.49 5.49 6.47 

VGLM-MAR 7.37 7.22 6.91 5.18 6.28 5.60 5.60 5.36 6.29 

ME 
VGLM-NB 0.02 -0.29 -0.31 -0.46 -1.03 -0.30 -1.05 -0.24 0.13 

VGLM-MAR 0.43 -0.27 -0.30    -0.41 -1.04 -0.30 -0.90 -0.28 0.48 

D 
VGLM-NB -19.55 7.58 -1.05 5.13 19.28 8.19 18.15 2.81 -9.52 

VGLM-MAR -17.41 8.66 2.23 8.21 18.34 7.84 17.45 3.38 -7.23 

FAR 
VGLM-NB 0.35 0.356 0.31 0.31 0.33 0.37 0.33 0.36 0.37 

VGLM-MAR 0.39 0.37 0.34 0.33 0.35 0.41 0.37 0.41 0.41 

Bold character means better result. 862 
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Table 4. RMSE of precipitation indices for the validation period (1981–2000) for both 864 

VGLM-NB and VGLM-MAR.  865 

 Indices VGLM-NB VGLM-MAR 

Precipitation 

amount 

PX1D (mm) 23.25 33.40 

PX3D (mm) 21.31 35.85 

PX5D (mm) 21.59 34.63 

Pmax90 (mm) 3.71 3.44 

MWD (mm) 1.47 1.99  

Precipitation 

occurrences 

WRUN (days) 1.96 2.10 

DRUN (days) 3.32 4.41 

NWD (days) 4.09 4.65 

Bold character means better result. 866 
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 891 

Figure 1. The locations of precipitation stations and CGCM3 grid. 892 
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 894 

Figure 2. Q–Q plot of observed and modeled quantiles for Gamma distribution (stars), 895 
Reverse WEI distribution (x-mark), GP distribution (circles) and mixed Exponential 896 

distribution (plus). 897 
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 899 

Figure 3. Steps  involved for estimating the VGLM prameters (a) and obtaining the rank 900 

matrix (b). 901 
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 903 

Figure 4. Example of one precipitation simulation using VGLM-NB at Cedars station 904 

during 1981. 905 
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 907 

Figure 5. Observed and modeled lag-1 autocorrelation for precipitation series at the nine 908 

stations during the validation period. 909 
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 911 

Figure 6. Observed and predicted daily average precipitation over the nine stations. The 912 

CDF is presented in (a) and the Q-Q plots in (b). 913 
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 917 

Figure 7. Scatter plots of observed and modeled lag-0 cross-correlation (a) and lag-1 918 

cross-correlation during the validation period. Correlation values are obtained using the 919 

mean of the correlation values calculated from 100 simulations. 920 
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 923 

Figure 8. Scatter plots of observed and modeled log odds ratios (a) and lag-1 log odds 924 

ratios during the validation period. Values are obtained using the mean values from 100 925 

simulations. 926 
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 930 

Figure 9. Scatter plots of observed and modeled binary entropy for precipitation 931 

occurrences (a), and at three quantile thresholds: 0.75 (b), 0.90 (c) and 0.95 (d). Points 932 

correspond to all combinations of triplets of stations. 933 
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