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Abstract 
 
Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the 

basic information on planning, design and management of hydraulic and water resources 

systems under the assumption of stationarity. However, with increasing evidence of climate 

change, it is possible that the assumption of stationarity, which is prerequisite for traditional 

frequency analysis and hence, the results of conventional analysis would become 

questionable. In this study, we consider a framework for frequency analysis of extremes based 

on B-Spline quantile regression which allows to model data in the presence of non-stationarity 

and/ or dependence on covariates with linear and non-linear dependence. A Markov Chain 

Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior 

distributions. A coefficient of determination and Bayesian information criterion (BIC) for 

quantile regression are used in order to select the best model, i.e. for each quantile, we 

choose the degree and number of knots of the adequate B-spline quantile regression model. 

The method is applied to annual maximum and minimum streamflow records in Ontario, 

Canada. Climate indices are considered to describe the non-stationarity in the variable of 

interest and to estimate the quantiles in this case. The results show large differences between 

the non-stationary quantiles and their stationary equivalents for an annual maximum and 

minimum discharge with high annual non-exceedance probabilities. 
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INTRODUCTION 

Understanding the temporal variability of hydrological processes and their associated statistics is 

essential for better water resource management. Frequency analysis of extreme hydrologic data has 

been widely used for problems related to engineering design, flood risk management, river 

navigation planning and water quality management. Generally, current methods of hydrological 

frequency analysis have been most often based on the assumption of stationarity. Indeed, classical 

frequency analysis is based on the assumption of underlying independent and identically distributed 

(i.i.d.) random variables. The last assumption is not valid in non- stationary circumstances. In the 

context of hydrological processes, non-stationarity is often present because of seasonal effects, 

perhaps due to different climate patterns in different months, or in the form of trends, possibly due to 

long-term climate changes (e.g., Stocker et al., 2013; Bates et al., 2008). Basically, strict-sense 

stationarity means that the distribution remains constant over time. From a practical point of view, 

hydrologists assume second-order stationarity, which implies that the first two moments (mean and 

variance) do not vary over time.  Several tests are used to detect non-stationarity in time series 

including the KPSS test (Kwiatkowski et al., 1992), the Leybourne-McCabe test (Leybourne and 

McCabe, 1994) and the Mann Kendall test (Mann, 1945). The last one is the most commonly used 

one in hydro-climatological studies (e.g., Dry and Wood, 2005; Cunderlik  and Burn, 2002; Cunderlik 

and Ouarda, 2009; Nasri et al., 2013; Fiala et al., 2010; Khaliq et al., 2009). The frequency analysis 

of a non-stationary series calls for a different understanding than the conventional approach 

involving stationarity. In fact, in the context of climate change, the distribution parameters and the 

distribution of hydrological extremes were likely to be modified. As a consequence, the exceedance 

probability used to estimate the return period also varies over time. Recently, several methods are 

proposed to take into account, at least partially, non-stationarity in the context of frequency analysis.  

The most popular approach is the frequency analysis with covariates method.  

The idea underlying the covariates approach is to incorporate the covariates into the distribution 

parameters (e.g., Coles, 2001; Olsen et al., 1999; Vrac and Naveau, 2007; Aissaoui-Fqayeh et al., 

2009; Cannon, 2010; Ouarda and Adlouni, 2011; El Adlouni and Ouarda, 2009). Two distributions 

are generally used in this case: The Generalized Extreme Value  (GEV) (e.g., Fisher and Tippett,  
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1928; Jenkinson, 1955; Hundecha et al., 2008; El Adlouni et al., 2007) and the Generalized Pareto 

Distribution (GPD) for a Peaks Over a Threshold (POT) approach (Pickands, 1975; Ehsanzadeh et 

al., 2007). In the case of stationary data, these distributions are based on limit results of extreme 

value theory (TVE) (e.g., Fisher and  Tippett, 1928; Pickands, 1975).  The use of GEV and GPD for 

non-stationary data proposed by (Coles, 2001) are not based on the extreme value theory. In the 

fact, it is a ”natural” extension of the two models (GEV and GPD) where the stationarity hypothesis 

is not satisfied.  Introducing covariates in one of these distributions can    be done through any 

parameter. The effect of a covariate can be modeled by making one or more parameter linearly 

(e.g., Coles, 2001; Cannon, 2010) or nonlinearly (e.g., Chavez-Demoulin and Davison, 2005; Nasri 

et al., 2013; Neville et al., 2011) dependent on the covariate. The covariate method is largely 

developed and has been used in the literature to understand the variation in hydrological time 

series.  Climate indices are commonly used as covariates. This approach works well in the case of 

linear or quadratic dependence and in the case of one covariate. However, it suffers from several 

disadvantages in the case of several covariates: (i) the introduction of several covariates in this 

model increases the number of hyper-parameters, which decreases the model parsimony and 

potentially increases estimation errors (ii) the interactions of the predictors make the model much 

more complicated because it requires multivariate function modelling. For this reason, some recent 

studies (e.g., Nasri et al., 2013, 2015) suggest to use the quantile regression method, which was 

introduced by (Koenker and Bassett, 1987).  Quantile regression provides the conditional quantiles 

of the response variable for a fixed value of covariates rather than only the conditional mean. This 

model can be a good alternative to overcome the problems of convergence raised by the covariate 

method. Some recent studies in the hydroclimatology context have used linear quantile regression 

to estimate non-stationary extreme events (e.g.,Cannon,2011; Tareghian and Rasmussen, 

2013). The linear quantile model assumes that the relationship between the variable of interest 

and covariates is linear. However, in hydroclimatology, the dependence between covariates and 

variables of interest can take different structures. For this reason, we should investigate the use 

of a quantile regression model with a more general form of dependency. The nonparametric 

quantile model allows the assumption of linearity to be relaxed. This model aims to identify the 
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best function according to the data distribution, rather than imposing a restrictive parametric 

model.Several nonparametric quantile methods have been proposed in the literature (e.g., 

Koenker et al., 1994; Hendricks and Koenker, 1992). The most popular is a smoothing 

regression (or splines regression). Briefly, splines regressions are obtained by joining smoothed 

polynomial functions separated by a sequence of knots. A larger number of knots lead to a more 

flexible curve and hence, a better fit. Splines regressions for quantile smoothing have been 

introduced by (Hendricks and Koenker, 1992). Several variants have been suggested by 

(Koenker et al., 1994) who proposed to use natural polynomial splines. This nonparametric 

quantile regression method is also used in hydrology, (see Donner et al. (2012)). Recently 

(Nasri et al., 2013) proposed to use B-splines to model nonlinear dependencies. Indeed, B-

spline functions are linear combinations of non-negative piecewise polynomials (real functions). 

This type of functions has some advantages: B-splines do not depend on the response variable, 

or the variable of interested, but depend only on: (1) the support of the covariates, (2) the 

number and position of knots and (3) the degree of the B-spline function (De Boor, 2001). The 

objective of the present study is to use B-Spline quantile regression for modelling non-stationary 

hydrological extreme events (floods and drought) for some rivers located in the province of 

Ontario (Canada). This province has undergone a number of extreme events over the past two 

decades.  For  instance,  in 2001:  the aggregate   level of the Great Lakes plunged to its lowest 

value in more than 30 years, with lakes Superior and Huron displaying near record lows 

(Mitchell, Septembre,2002; Ashkar and Ouarda, 1996) and in 2005:  heavy rainfall  and 

associated flooding resulted in CAD 500 million $ in insured damages (Sandink, 2013). 

Hydrologic extreme events are often linked to atmospheric circulation patterns. In fact, several 

recent studies in North America have modelled the non-stationarity of precipitation and 

streamflow using climate indices. The most used climate indices in this context are El Nino 

Southern Oscillation (ENSO) (e.g., Regonda et al., 2005; Cannon, 2010; Nasri et al., 2013), 

Pacific Decadal Oscillation (PDO) (e.g., Brabets and Walvoord, 2009; Khaliq and Gachon, 2010; 

Cannon, 2010; Nasri et al., 2013), Atlantic Multi-decadal Oscillation (AMO) (Teegavarapu et al., 

1969) and North Atlantic Oscillation (NAO) (Hurrell and Van Loon, 1997). To our knowledge, no 
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studies have previously studied streamflow extremes using nonparametric quantile regression 

incorporating B-Spline functions. In the next section, the theoretical background of the 

nonparametric quantile regression model and its estimation are provided. Data are then 

presented in Section 3 and results are presented in Section 4. Section 5 provides a conclusion. 

1. THEORETICAL BACKGROUND 

1.1. Linear Quantile Regression Model 

Linear quantile regression is related to linear least-squares regression in that both are used to study the 

linear relationship between a response variable and one or more independent or explanatory variables. 

However, whereas the least-squares regression is concerned with modelling the conditional mean of the 

response variable, quantile regression provides a model of the conditional pth quantile of the response 

variable, for some value of ] [0,1p∈ . For example, the conditional median corresponds to 0.5p = . 

For a vector ( )1, , ny y y= … , the sample mean ŷ , solves the least squares problem: 

 
( )2
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arg min .
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i
i

yµ µ∈
=

−∑

 

In many situations, the responseY , the conditional mean of Y  depends on some covariates 

( )1, , dX X= …X  (Example: Y  can be the maximum annual precipitation or discharge and X  can be a 

covariate, such as a climate index.). Based on sample ( ),i iy x , where ( )1 , ,i i dix x= …x
, for the linear 

regression model, we suppose that 
'

0i iy α α ε= + +x , where ( )1, , dα α= …α
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( )|var X cε =
. An estimate of 0α  and α  is obtained by minimizing the following quantity: 

 
( )2

0
1

' .
n

i
i

y α
=

− −∑ ix α
 

For quantile regression, we suppose that '
0i iy α α ε= + +x ., where the p th quantile of  iε x∣  is defined as:  

( ){ }( ) inf | : | 0 p i i iQ x F x pε ε ε≡ ≥ =x∣ .  Quantile regression can be derived in a similar manner by 
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specifying the p th conditional quantile as ( ) ( ) ( )0 |pQ Y X p pα α= +X
 and estimating  ( )pα

 and ( )0 pα
 

as the solution to 

 

( )'
0

1
arg min .

n

p i i
i

y xµ ρ α α∈
=

− −∑    (1) 

where ρp (z) is a loss function defined as: 

 

( ) ( )1 0;
.p

z p if z z
z

zp otherwise
ρ

 − < ∈
= 



    (2) 

In the case of the linear ordinary regression, the loss function can be written as ρ (z) = z2. 

Figure 1 gives a simulation example to show the difference between the linear regression and 

linear quantile regression with their loss function. 

1.2. Nonparametric Quantile Regression with B-Spline Functions 
 
Nonparametric regression allows the assumption of linearity to be relaxed (Fox, 2000), and it 

restricts the analysis to smooth and continuous functions. The aim of nonparametric 

regression is to identify the best regression function according to the data distribution, rather 

than estimating the parameters of a specific model. 

Let us consider the simplest regression case of one explanatory variable: 

 

y = f (x) + ε. (3) 

 

In nonparametric regression, the function f is not specified and it is commonly assumed that 

the errors are independent and identically distributed with mean equal to zero. Also, we 

assume that the errors are independent of the covariate. In the framework of nonparametric 

quantile regression, several methods are proposed in the literature. In this work, the B-spline 

quantile regression is proposed. B-splines, in this case, will be used to approximate the 

function f . A B-spline is a piecewise polynomial function of degree k and is defined over a 
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domain x ∈ [t0, tm], where m is integer. The points where x = tj for j = 1 . . . m are known as 

knots. A B-Spline of degree k is a linear combination of basis B-Splines, Bi,k (x), of degree k 

and is given by: 

( ) ( ) [ ], 0
1

, , .
m

i i k m
i

f x B x x t tβ
=

= ∈∑     (4) 

 
 
 
The βi are called control points and the integer m is the number of knots.  Expressions for 

the polynomial pieces, Bi,k (x), can be derived by means of a recursive formula following the 

definition of the initial  polynomial: 

( ) ( )1
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1 0 1
0 .

i i
i

if t x t i m
B x

otherwise
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In this case, B-Spline quantile regression will be described as follows: 
 

( ),
1

.
m

i i k
i

y B xβ ε
=

= +∑    (5) 

 
 

1.3. Parameter Estimation 
 
The classical approach to estimate parameters β = (β1, . . , βm) is to use the simplex methods or 

the interior point methods described in (Koenker, 2005). In the literature, other methods for 

estimating the β have been developed such as the Bayesian method of (Yu and Moyeed, 

2001). In this work, a Bayesian framework is used to estimate β parameters for the B-Spline 

quantile regression model. The Bayesian approach provides the full distribution for estimators 

of the parameters based on the likelihood function and a prior distribution. 

For the prior density of β, we consider a multivariate normal distribution (see Green and 

Silverman (1994), pp. 51-52, for a discussion about the use of multivariate normal density as 

prior in this context). Unfortunately, in the multivariate case, we do not have a large choice. In 
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the literature, four multivariate parametric distributions are considered: Student, Normal, 

Gamma and Lognormal. Multivariate Lognormal and Multivariate Gamma distributions are 

defined for positive random vectors (Rm
+), while the normal and the student distributions are 

defined for random vectors with real support (Rm). Therefore, it seems natural to consider 

normal or student distributions. In the present study, we take the multivariate normal 

distribution. For more flexible distribution the copula function can provide a good alternative. 

Our prior probability density distribution for β in this study is therefore defined by means of the 

multivariate normal density: 

 

1
, /2 1/2

1 1( ) exp ( ) ( )
(2 ) | | 2mπ µ µ
π

− ′= − − Σ − Σ  
μ Σ β β β   (6) 

 

where µ is the mean of β, Σ is the variance-covariance matrix of β and m is the number of 

parameters. 

The final step in our Bayesian approach is to define the likelihood of (xi, yi). The proposed 

approach is in accordance with (Yu and Moyeed, 2001) and (Thompson et al., 2010). In these 

papers, the authors show that the minimization of the loss function is exactly equivalent to the 

maximization of a likelihood function formed by combining independently distributed 

asymmetric Laplace densities. Let us recall the properties of the asymmetric Laplace 

distribution. A random U is said to follow the asymmetric Laplace distribution if its probability 

density is given by: 

 

( ) ( ) ( )1 exp{ }; ]0,1[p pL u p p u u and pρ= − − −∞ < < +∞ ∈  

 
Substituting u by  . The resulting likelihood takes the form: 
 
 

  

 

 

 
where ρp is the standard quantile regression loss function defined in (2). For more information 
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concerning the Laplace distribution in this case, please see Appendix A. 

Combining πµ,Σ(β) and L (y|β) , we can write the posterior density function of β as: 
 

π (β|y) ∝ L (y|β) π (β) . (8) 
 
We now simulate realizations of β for the posterior density using a Monte Carlo Markov Chain 

(MCMC) approach implemented through the Metropolis-Hastings (M-H) algorithm. Our 

inference is based on these posterior realizations. In particular, we use the posterior mean of β 

to produce our estimated quantile regression. Our algorithm can be summarized as follows: 
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The first step is to initialize the sample value for parameter vector β (this value is often sampled 

from the parameter’s prior distribution). The main loop of the M-H algorithm consists of three 

components: (1) Generate a proposal sample β∗ from the proposal distribution Φ (βi|βi−1); (2) 

Compute the acceptance probability via the acceptance function based upon the proposal 

distribution and the full joint density π(.); (3) Accept the candidate sample with probability α, the 

acceptance probability, or reject it with probability 1 − α. 

Proposal Distribution: The M-H algorithm starts with simulating a ``candidate`` sample β from 

the proposal distribution Φ (.). Note that samples from the proposal distribution are not accepted 

automatically as posterior samples. These candidate samples are accepted probabilistically 

based on the acceptance probability α. In the literature, the proposal distribution is often the 

same as the prior distribution (e.g., Gelman et al., 1995; Gilks et al., 1996).  In our study, we 

choose the multivariate normal distribution as a proposal distribution function. 

1.4 Criteria to choose the best model 
 

The B-spline functions depend on two parameters: number of knots (m) and degree (k).  

When (m, k) = (1, 1), the B-spline quantile regression model is exactly the linear quantile 

regression model. And when (m, k) = (1, 2), the B-Spline quantile regression model is exactly 

the quadratic quantile regression model. To select the “Best” model, two performance methods 

are used: (i) the “coefficient of determination” based on the quantile and (ii) the Bayesian 

information criterion (BIC) for quantile regression. 

 
1.4.1 Coefficient of determination for quantiles 
 

The coefficient of determination for quantiles was proposed in the first time by (Donner et 

al., 2012) and developed by (Noh et al., 2012). This coefficient aims to quantify the goodness of 

fit measures in the framework of quantile regression. This coefficient aims to compare the 

mean of residual error between two models. (Noh et al., 2012) defined this performance metric 

as follows: 
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where, for fixed 0  <  p  < 1. f  is  the  nonparametric  conditional  pth  quantile  of  Y   given  X  and 

𝑓  �is the conditional pth quantile of Y given X for the comparative parametric model (e.g. linear 

or quadratic). R (p) can be positive, negative or null. When it takes positive values, it means that 

the nonparametric model is better than the comparative model and when it takes negative 

values, it means that the comparative model is better. Otherwise the two models are equivalent. 

 
1.4.2 Bayesian information criterion for  quantiles 
 

The BIC is a criterion for model selection among a finite set of models; the model with the 

lowest BIC     is preferred.  It is based, in part, on the likelihood function.  When fitting models, 

it is possible to increase the likelihood by adding parameters, but leads to overfitting 

estimation. To overcome this problem, the BIC introduces a penalty term depending on the 

number of parameters in the model. The BIC was developed, in the first time, by (Schwarz, 

1978). The BIC criterion can be written as follows: 

( )( ) ( )2log | logBIC L p n= − +y β    (10)  

 

where 𝐿(𝒚|𝜷) is the estimator of the likelihood function and it is the same function given in 7, p 

is the number parameters and n denotes sample size. In quantile regression, several 

references are studied for this criterion (Nishii, 1984; Wu and Zen, 1999; Zhang et al., 2010). 

For a review of literature on the usage of BIC, see (Lee et al., 2014) where they give the BIC 

form of the linear and nonlinear quantile regression. In hydroclimatology works, we can see the 

application of this criterion in (Donner et al., 2012) as well as (Koenker and Schorfheide, 1994). 

2. Data 
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This study is based on two applications.  These applications respectively focus on (a) annual 

maximum and (b) minimum streamflow records in Ontario, using climate indices to model non-

stationarity. For each application, we selected 5 stations. The data from each station were 

checked, in particular to look for obvious shifts, outlier values and missing data. The stations 

that were selected have more than 30 years of complete daily data with identified non-

stationarity and they are correlated with at least one climate   index. 

For this study, we tested the dependence between the variables of interest and the following 

covariates: Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), North 

Atlantic Oscillation (NAO) and El Nino Southern Oscillation (ENSO) indices (see Appendix B for 

definitions). Ultimately, only the covariates that have significant dependence with the variables 

of interest were kept, which are AMO and PDO indices. AMO and PDO were found to have, 

respectively, significant dependence with maximum and minimum streamflow time series. The 

dependence in this case is estimated by using the Kendall rank correlation coefficient (Kendall, 

1948). Streamflow data come from the HYDAT database of Environment Canada 

ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/. Climate indices data come from NOAA 

(National oceanic and atmospheric administration Earth System Research Laboratory) 

website http://www.esrl.noaa.gov. Figure 2 illustrates the geographic location of all 

stations selected for each application. Table 1 gives a summary of the description of the 

selected stations with long precipitation records, the results of Kendall’s tau rank correlation 

coefficients and the stationary quantile estimation for 2 and 10 return periods, for 

applications (a) and (b). Figures 3 and 4 show the variations of maximum and minimum 

annual streamflows at each station. Figures 5 and 6 show, respectively, the variation of 

maximum and minimum streamflows against AMO and PDO oscillation for each station.

 
 
3. RESULTS 

 
 

For model development, the following functions are first fitted: 
 

• Maximum annual streamflowi = f1i (AMO) + ε ; i = 1, ..., 5 
 

ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
http://www.esrl.noaa.gov/
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• Minimum annual streamflowi = f2i (PDO) + ε; i = 1, .., 5 
 
f1 and f2 are estimated by the B-spline approach. To select the degree k and the number of knots 

m, we calculate the determination coefficient and BIC criterion for several values of the couple 

(k, m). For each application in each station, we choose the couple (k, m) that maximizes (resp. 

minimizes) the determination coefficient (resp. the BIC criterion). The following paragraph 

shows the results of the determination coefficient and the best model of each station. The next 

one describes quantile estimation. 

For application (a), these criteria are calculated for quantiles 0.5 and 0.9, which correspond to 

return periods of 2 years and 10 years and for application (b), these coefficients are calculated 

for quantiles 0.1 and 0.5, which correspond to return periods of 10 years and 2 years. Tables 2 

and 3 show, the determination coefficient, for different values of the couple (m, k), for 

application (a) and application (b) respectively. Tables 4 and 5 show, the BIC criterion, for 

different value of (m, k), for application (a) and application (b) respectively. From Table 2, it can 

be noticed that the best model chosen using the determination coefficient is the model with 3 

knots and 3 degrees for all stations.  From Tables 3, we can notice that the best model is model 

with 2 knots and    2 degrees for all stations except for station 02HC029, where the model with 

3 knots and 3 degrees is selected. Different results are provided using BIC criterion. In fact, for 

all the studied cases and for both application, we can conclude that the models selected using 

the BIC criterion have less degrees and number of knots than those chosen using the coefficient 

of determination. For both applications, the values of the degrees and knots are less or equal to 

(2,3). This result was expected, as the BIC criterion penalizes for the number of parameters to 

estimate and favors parsimony. In contrast, the coefficient of determination only considers 

estimation errors. For this reason, quantiles estimation will be done by using the models 

selected by the BIC criterion. 

Figures 7 and 8 show the estimated 2 and 10-year return period maximum and minimum 

streamflow quantiles, respectively as function of the covariates AMO and PDO. It can be seen 

that generally, quantiles take different values as the covariate values change. Non-stationary 
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quantiles can take much larger values than stationary quantiles. For example, the results for 

station 02AC001 show that the stationary median is equal to 48 (m3/s). However, the non-

stationary median can reach 140 (m3/s). This difference between stationary and nonstationary 

quantiles becomes very large for high quantile levels. In fact, for station 02AC001, the 0.9 

stationary quantile is equal to 96.9 (m3/s), but the 0.9 nonstationary quantile can reach 250 

(m3/s).  For stationary quantile, please see Table 1. We can see similar results for all stations in 

both applications which confirm the importance of considering the nonstationary quantiles for 

better water resource management practices. 

 

4. DISCUSSION AND CONCLUSION 
 

The two last decades have witnessed the development of a large number of statistical 

modelling approaches for extreme value variables in the presence of non-stationarity or 

dependence on covariates. In this study, we present the B-spline quantile model, a nonlinear 

and nonparametric approach which model nonlinear conditional quantiles or quantile with 

covariates and offers great flexibility and smoothing for quantile estimation. Estimating the 

parameters of the proposed model is carried out using the Bayesian approach. It combines 

observed and prior information, estimates the entire posterior distribution of the parameters 

and quantiles and allows giving better or similar estimation results than the frequentist 

approach (similar results, in the case of non-informative prior and better if we have a prior 

information concerning the parameters). 

Despite the advantages of the nonparametric model, this kind of model is often criticized in the 

literature for the possibility of over-parameterization, leading to a parsimony problem. Some 

studies suggested to use classical models such as a linear or quadratic quantile models to 

avoid this problem. In this study, we propose to adapt a performance criterion for quantiles that 

allows the comparison of B-Spline approach with classical models, by using a coefficient of 

determination for quantiles and BIC criterion for quantiles. However, only the BIC criterion 
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allows to select the best performing model with fewer parameters. 

In this work, two case studies are proposed to show the model performance. The first one is 

focused on maxi- mum annual streamflow quantiles for five stations in Ontario using the AMO 

oscillation index, and the second one estimates the quantiles for minimum annual streamflow 

at five other stations in Ontario, using the PDO oscillation index. Our results show that: 

 
1. Different covariates can influence different metrics of one variable of interest in the same 

study area.  In this case, we have the PDO index that influences the minimum annual 

streamflow while it does not affect the annual maximum streamflow and conversely for the 

AMO index. Looking at the time series of PDO and AMO oscillations, we noticed that the 

relationship between the AMO and PDO are negative between the period of 1942-1965 and 

between 1968-1998 (Rowan and Daniel, 2005). That can explain the influence of AMO for 

maximum annual discharge and PDO for minimum annual flow values.  

2. Moreover, it can be noticed that, although the shape of the relationship between AMO and 

floods is similar for all five studied stations, it is not the case for low flows and PDO. Two of 

the five stations, located further north show a negative relationship between low flows and 

PDO, while for the three stations located in southern Ontario, this relationship is positive. 

Looking at the daily datasets of flows in these stations, we noticed that minimum discharge 

values in the northern stations are most often observed late in the winter, generally between 

March and April. However, the minimum flow values at the other stations are often observed 

during the summer or autumn period, especially between July and November. This can 

explain the difference in signs (+ or -) of Kendall’s tau. 

 
3. The quantile regression model was used in a framework that includes nonparametric 

smoothing B-spline functions. These functions can capture linear and nonlinear dependence 

between covariates (e.g climate indices) and the variables of interest (annual minimum and 

maximum streamflows). For both case studies, conditional quantiles are calculated for two 

return periods T = 2 years and 10 years. Quantiles for higher return periods (e.g.   T = 50,  T 
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= 100 years) could be calculated if we disposed of longer data sets.  The proposed model 

allows to modulate conditional quantile estimation as a function of low frequency 

atmospheric patterns and in some cases, this can lead to quantile estimations that are much 

higher than those obtained in a stationary framework. For nonstationary quantiles, several 

values are possible for a given return period, depending on the value of the covariate. Also, 

we see that nonlinear quantile values are superior to linear quantile values and to stationary 

quantile values for all stations. 

 

4. The proposed model shows several advantages and some drawbacks. Indeed, according to 

the results described above, we can easily conclude that it is a relatively complex model for 

describing the linear and nonlinear quantiles in the presence of covariates. However, it is a 

flexible model that allows to reach more extreme values than classical models like linear and 

quadratic quantile regression models. However, this model also has some disadvantages. 

Indeed, the optimal number of knots and degrees of smoothing for the B-spline functions are 

always based on the calculation of a specific criterion (coefficient of determination and BIC 

criterion in this case), which can take much computing time and some programming skill. 

5. In this work, a Bayesian framework is used to estimate β parameters for the B-Spline 

quantile regression model. The Bayesian approach provides the full distribution for 

estimators of the parameters. Posterior distributions are calculated for each β, in each 

station, and each probability level. In the paper, we excluded the posterior distribution to 

reduce the size of paper. We give an example of the MCMC results for one station 04JF001 

and for one quantile level = 0.5. Please see figure 9. 

6. Two criteria are used to choose the best model with less parsimony. The first criterion is the 

determination coefficient of quantiles and the second one is the BIC criterion. Both criteria 

are applied for several combination of number of knots and degree of smoothing. These 

criteria gave different results. In the fact, the best models selected by the BIC criterion 

contained fewer coefficients than the best model selected by the determination coefficient 
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for quantiles. The results of the BIC show the advantage of using non- linear functions in 

this context. Indeed, error estimation decreases with the use of degree greater than 2. This 

indicates the usefulness of the proposed model. 

7. All the BIC results were confirmed by the MCMC confidence interval. In fact, we can notice 

from Figure 9  that if all the β are different than 0, then the MCMC confidence interval does 

not contain 0.  And  we can notice from the results of BIC criterion that, the best selected 

model for 04JF001 station are the model with degree equal to 2 and the number of knots 

equal to 1. The same results are shown for all the other stations. 

 
8. In this study, we propose another way to estimate conditional quantile (or nonstationnary 

quantile). This method is based on the estimation of coefficient of regression model which is 

easier than the classical model based on the GEV (GPD) with covariates. The results of 

this work give the return streamflow quantile for each value of covariate (here, we have a 

range of values of AMO and PDO). In the future and knowing the values of AMO and 

PDO, we can easily predict the return streamflow quantile. However, this type of model 

allows the description of the impact of covariates on the variable of interest and cannot be 

used for predictions outside the interval values of covariate. Indeed, outside this interval, 

we can never guess how the variable of interest varies depending on the covariate. 

 
In this study, we used a single covariate to explain the temporal variations of the maximum and 

minimum flows. This unique covariate partially explained these variations. The introduction of 

more covariates may allow for better quantile estimation. Hence, future efforts may deal with the 

introduction of additional covariates. In the context of climate change studies, additional 

covariates could include GCM/RCM outputs or NCEP / NCAR reanalysis predictors to better 

explain the temporal variation of the flow in relation to c l imate. 
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Tables 
 

 
Table 1: Description of the selected stations with length of discharge records for application (a) and (b). The 

five first stations are station chosen for application (a) and the five last stations are the stations chosen for 

application (b). QT =2 and QT =10 correspond to the stationary quantiles, respectively, for 2 and 10 years return 

period estimated by using the inverse of cumulative distribution function. 

  

  

Station 
 

Length of data 
 

Latitude 
 

Longitude 
 

Kendall’s tau 
 

QT =2 

 

QT =10 

 
02AC001 1971-2010 48.821 -88.534 AMO (-0.25) 48.9 96.6 

 02HB012 1965-2010 43.301 -79.869 AMO (-0.24) 11.5 18.1 

 02HD012 1975-2010 43.991 -78.3282 AMO (-0.26) 28.4 52.5 

 02LA007 1969-2010 45.249 -75.7906 AMO (-0.27) 79.2 133.0 

 04LM001 1972-2010 50.585 -82.091 AMO (-0.29) 1880.0 2796.0 

 02FB007 1959-2010 44.522 -80.930 PDO (0.4) 0.4 0.6 

 02HC009 1959-2010 43.790 -79.584 PDO (0.39) 0.1 0.2 

 02HC029 1964-1996 43.757 -79.345 PDO (0.42) 0.4 0.5 

 04FA001 1970-2010 51.823 -89.602 PDO (-0.35) 15.3 20.8 

 04JF001 1980-2010 50.658 -86.532 PDO (-0.24) 13.3 16.5 



 

Table 2: Coefficient of Determination for B-spline quantile regression model vs linear 

quantile model (l) and quadratic quantile model (q) for application (a). 
 

02AC001 02HB012 02HD012 02LA007 04LM001 
(Degree, Knots) 

p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 

(1,1)l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(1,1)q 0.04 -0.41 0.28 0.05 0.10 -0.13 -0.22 0.03 -0.37 -0.17 

(1,2)l -0.09 0.17 -0.63 -0.37 0.61 -0.56 0.09 -0.02 0.12 0.07 

(1,2)q -0.09 0.28 -0.63 -0.37 0.61 -0.56 0.26 -0.02 0.34 0.07 

(1,3)l -0.09 -0.06 -0.63 -0.13 0.60 0.02 0.12 -0.02 0.04 0.28 

(1,3)q -0.09 0.27 -0.63 -0.13 0.60 0.02 0.26 -0.02 0.38 0.28 

(2,1)l -0.04 0.29 -0.39 -0.06 -0.11 0.12 0.18 -0.03 0.27 0.15 

(2,1)q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(2,2)l 0.20 0.16 -0.46 -0.01 -0.05 -0.31 0.69 0.01 0.38 0.20 

(2,2)q 0.20 0.42 -0.46 -0.01 -0.05 -0.31 0.20 0.01 -0.22 0.20 

(2,3)l 0.26 0.11 0.10 -0.25 0.60 0.09 0.32 0.06 0.37 0.35 

(2,3)q 0.26 0.43 0.10 0.13 0.60 0.19 0.33 0.06 0.40 0.35 

(3,1)l 0.09 0.04 -0.62 -0.15 0.59 0.01 0.10 -0.07 0.04 0.28 

(3,1)q 0.09 0.33 -0.62 -0.15 0.59 0.01 0.23 -0.07 0.38 0.28 

(3,2)l 0.29 0.12 -0.50 0.13 0.46 0.01 0.02 0.12 0.22 0.28 

(3,2)q 0.29 0.50 -0.50 0.13 0.46 0.01 0.20 0.12 0.43 0.28 

(3,3)l 0.34 0.31 0.17 0.13 0.95 0.20 0.48 0.20 0.38 0.45 

(3,3)q 0.34 0.54 0.17 0.13 0.95 0.20 0.50 0.20 0.49 0.45 

(3,4)l 0.15 0.13 0.02 0.03 0.60 0.17 0.30 0.02 1.29 0.29 

(3,4)q 0.14 0.39 0.00 0.04 0.33 0.13 0.28 0.04 0.27 0.22 

           



  

 
 
 
 
 

Table 3: Coefficient of Determination for B-spline quantile regression model vs linear 

quantile model (l) and quadratic quantile model (q) for application (b). 
 

02FB007 02HC009 02HC029 04FA001 04JF001 
(Degree, Knots) 

p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 

(1,1)l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(1,1)q 0.17 0.00 -0.11 -0.07 0.29 -0.47 0.15 0.16 -0.32 0.08 

(1,2)l -0.74 0.06 0.01 0.11 -0.05 -0.08 0.87 -0.11 0.33 0.12 

(1,2)q -0.45 0.06 -0.09 0.05 0.25 -0.59 0.89 0.06 0.11 0.19 

(1,3)l -1.92 0.06 -0.15 0.13 0.63 0.12 0.03 1.12 0.98 1.12 

(1,3)q -1.43 0.06 -0.27 0.07 0.74 -0.30 0.18 1.10 0.97 1.11 

(2,1)l -0.20 0.00 0.10 0.06 -0.41 0.32 -0.18 -0.18 0.24 -0.09 

(2,2)l 0.30 0.08 0.27 0.14 0.60 0.12 0.69 0.29 0.79 0.16 

(2,2)q 0.42 0.08 0.19 0.08 0.71 0.30 0.74 0.40 0.72 0.23 

(2,3)l 0.69 0.14 -0.16 0.01 0.19 0.10 0.62 0.11 0.39 0.11 

(2,3)q 0.75 0.14 -0.28 -0.05 0.43 -0.32 0.68 0.25 0.19 0.18 

(3,1)l -0.61 -0.01 0.07 0.07 -0.36 0.32 0.54 -0.26 -0.51 0.02 

(3,1)q -0.34 -0.01 -0.03 0.01 0.04 -0.01 0.61 -0.06 -1.00 0.10 

(3,2)l -1.45 0.17 0.14 0.12 0.54 0.11 0.34 0.11 -0.93 0.11 

(3,3)l 0.48 0.20 -0.32 0.11 0.18 0.08 0.32 0.09 0.24 0.08 

(3,3)q 0.56 0.20 -0.46 0.05 0.42 -0.35 0.42 0.23 0.00 0.15 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: BIC results for different couple of degree and knots in the B-Spline quantile model 

for the application (a). The results in the table are ∗100 

02AC001 02HB012 02HD012 02LA007 04LM001 
(Degree, Knots) 

p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 

(1,1) 252.60 223.40 789.60 346.90 195.36 158.74 273.82 164.18 554.46 488.73 

(1,2) 253.60 223.50 793.10 358.10 207.53 157.83 279.10 171.40 559.12 483.90 

(1,3) 253.70 223.90 914.20 356.30 209.74 157.91 277.40 169.10 557.48 479.52 

(2,1) 252.20 223.20 755.60 353.30 197.70 156.29 273.90 167.06 550.63 473.10 

(2,2) 240.60 210.20 853.00 277.20 204.69 162.77 280.41 175.13 550.91 476.80 

(2,3) 251.60 222.11 733.20 275.80 194.96 148.89 272.20 163.45 555.00 479.84 

(3,1) 252.60 223.11 876.50 310.70 205.72 161.44 280.82 173.58 558.98 483.31 

(3,2) 258.56 226.85 917.10 317.70 209.62 163.72 285.01 177.77 562.83 487.26 

(3,3) 262.68 226.75 957.00 356.10 211.14 161.65 284.19 182.12 565.67 481.60 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: BIC results for different couple of degree and knots in the B-Spline quantile model 

for the application (b). The results in the table are ∗100 

02FB007 02HC009 02HC029 04FA001 04JF001 
(Degree, Knots) 

p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 p = 0.5 p = 0.9 

(1,1) -280.53 -386.01 -359.32 -464.85 -326.43 -397.23 -241.20 -541.80 -184.10 -478.50 

(1,2) -268.86 -366.45 -359.06 -452.84 -328.02 -405.39 -502.65 -632.83 -446.78 -555.52 

(1,3) -271.28 -373.30 -349.47 -443.26 -313.80 -383.12 -263.94 -549.12 -278.00 -543.01 

(2,1) -277.18 -377.78 -370.17 -466.85 -323.51 -394.97 -518.20 -652.40 -460.60 -572.70 

(2,2) -291.25 -396.22 -360.28 -456.97 -338.17 -417.93 -272.10 -566.10 -286.60 -559.80 

(2,3) -279.67 -384.85 -347.09 -462.71 -314.13 -387.95 -227.40 -579.10 -337.10 -547.20 

(3,1) -277.18 -374.36 -347.10 -462.91 -310.05 -382.84 -424.10 -516.40 -395.00 -520.90 

(3,2) -269.70 -374.62 -358.66 -462.33 -311.31 -378.48 -423.70 -621.70 -366.60 -489.30 

(3,3) -269.87 -378.03 -354.92 -466.34 -306.19 -374.87 -449.30 -615.30 -365.70 -449.40 



  

Figures 
 
 

 
Figure 1:  Example of linear regression and linear quantile regression with their Loss function. 



  

 
 

 
 
 

Figure 2:  Geographic location of all stations for application (a) and application   (b) 



  

 
 

 
 

Figure 3:  Variation of maximum annual streamflows for each station- Application (a) 



  

 
 

 
 

Figure 4:  Variation of minimum annual streamflows for each station- Application (b) 



  

 
 

 

 
Figure 5: Annual maximum streamflows vs AMO oscillation 



  

 
 

 
 
 

Figure 6: Annual minimum streamflows vs PDO oscillation 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  0.5 and 0.9 quantile results estimated by using the B-spline quantile regression model -Application   (a) 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8:  0.1 and 0.5 quantile results estimated by using the B-spline quantile regression model-Application   (b) 



  

 
 

 

 
Figure 9: MCMC results for 04LM001 station for p = 0.5 

 



  

APPENDIX A. 
 
The pth linear regression quantile (0 < p < 1) is defined as any solution,𝛼(𝑝),𝛼(𝑝)�  to the quantile regression 

minimization problem 

 

where ρp (z) is a loss function defined as: 
 

 
Minimization of the loss function ρp (z) is equivalent to the maximization of a likelihood function formed by 

combining independently distributed asymmetric Laplace densities 

 

This equivalence is due simply to the fact that the exponential function is strictly increasing. 
 
 
 
APPENDIX B. 

.1.  North Atlantic Oscillation (NAO) 

NAO is an irregular fluctuation of atmospheric pressure over the North Atlantic Ocean that has 

a strong effect on winter weather in Europe, northeastern North America, North Africa, and 

northern Asia (Hurrell and Van Loon, 1997). 

.2.  El Nino Southern Oscillation (ENSO) 

ENSO is a naturally occurring phenomenon that involves fluctuating ocean temperatures in the 

equatorial Pacific. For North America and much of the globe, the phenomenon is known as a 

dominant force causing variations in regional climate patterns (Bjerknes, 1969).



  

 

.3.  Pacific Decadal Oscillation (PDO) 

PDO is a pattern of Pacific climate variability similar to ENSO in character, but which varies over 

a much longer time scale. The PDO can remain in the same phase for 20 to 30 years, while 

ENSO cycles typically only last 6 to 18 months (Nathan and Hare, 2002). 

.4.  Atlantic Multi-decadal Oscillation (AMO) 

AMO is a fluctuation in the sea surface temperature in the North Atlantic Ocean. It seems to 

occur with a period of roughly 70 years (Teegavarapu et al., 2013). 
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