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METHODOLOGY

The approaches to measuring the 
potential spatial access to urban health services 
revisited: distance types and aggregation‑error 
issues
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Abstract 

Background:  The potential spatial access to urban health services is an important issue in health geography, spatial 
epidemiology and public health. Computing geographical accessibility measures for residential areas (e.g. census 
tracts) depends on a type of distance, a method of aggregation, and a measure of accessibility. The aim of this paper 
is to compare discrepancies in results for the geographical accessibility of health services computed using six distance 
types (Euclidean and Manhattan distances; shortest network time on foot, by bicycle, by public transit, and by car), 
four aggregation methods, and fourteen accessibility measures.

Methods:  To explore variations in results according to the six types of distance and the aggregation methods, cor‑
relation analyses are performed. To measure how the assessment of potential spatial access varies according to three 
parameters (type of distance, aggregation method, and accessibility measure), sensitivity analysis (SA) and uncertainty 
analysis (UA) are conducted.

Results:  First, independently of the type of distance used except for shortest network time by public transit, the 
results are globally similar (correlation >0.90). However, important local variations in correlation between Cartesian 
and the four shortest network time distances are observed, notably in suburban areas where Cartesian distances 
are less precise. Second, the choice of the aggregation method is also important: compared with the most accurate 
aggregation method, accessibility measures computed from census tract centroids, though not inaccurate, yield 
important measurement errors for 10% of census tracts. Third, the SA results show that the evaluation of potential 
geographic access may vary a great deal depending on the accessibility measure and, to a lesser degree, the type 
of distance and aggregation method. Fourth, the UA results clearly indicate areas of strong uncertainty in suburban 
areas, whereas central neighbourhoods show lower levels of uncertainty.

Conclusion:  In order to accurately assess potential geographic access to health services in urban areas, it is par‑
ticularly important to choose a precise type of distance and aggregation method. Then, depending on the research 
objectives, the choices of the type of network distance (according to the mode of transportation) and of a number of 
accessibility measures should be carefully considered and adequately justified.

Keywords:  Accessibility of health services, GIS, Sensitivity analysis, Uncertainty analysis, Cartesian distance, Network 
distances
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Background
The geographical accessibility of services (e.g. health ser-
vices, food stores, etc.) is an important issue in health 
geography, spatial epidemiology and public health. Since 
the 2000s, moreover, a growing number of articles have 
been published on this topic (Fig.  1). In the wake of the 
seminal article by Penchansky and Thomas [1], it has 
generally been agreed that the concept of access is multi-
dimensional and can be defined in terms of affordability, 
acceptability, availability and spatial accessibility. Other 
scholars also note that this notion can be defined accord-
ing to two dimensions: potential or revealed, and spatial or 
aspatial [1–4]. Potential accessibility considers the prob-
able utilization of services, given the population size and 
its demographics, while revealed accessibility concerns the 
actual use of services. Spatial access analyzes the impor-
tance of spatial separation between supply and demand as 
a barrier or a facilitator, and aspatial access focuses on non-
geographical barriers or facilitators [2, 5]. Consequently, 
the notion of access to health services encompasses four 
major categories: revealed spatial access, revealed aspa-
tial access, potential spatial access, and potential aspatial 
access [1]. This study focuses on potential spatial access, 
which refers to the ease with which residents of a given 
area can reach services and facilities [6].

The deployment of potential spatial access measures 
requires the specification of a set of four parameters, 
namely: (1) a spatial unit of reference for the population, 
i.e. a definition of residential areas (e.g. census tracts); (2) 
an aggregation method, i.e. to account for the distribu-
tion of population in the residential area; (3) a measure 
of accessibility; and (4) a type of distance to be used in 
computing the accessibility measures selected [6]. As 
shown in a previous study [6], the choice of these param-
eters is likely to generate different results, which could 

potentially lead to significant measurement errors. For 
example, for the Montreal metropolitan area, this study 
has shown that potential spatial access varies a great deal 
for 10% of census tracts, and mainly for those located in 
suburban areas, according to the type of distance used, 
and according to the aggregation method [6]. However, 
no study has attempted to simultaneously evaluate the 
impact of these various parameters in order to identify 
their respective importance in the evaluation of potential 
spatial access; this is what we now propose to do, with 
the help of sensitivity and uncertainty analyses.

Concretely speaking, the objective of this paper is to 
revisit that previous study [6] by adding three important 
improvements. It is first a matter of revisiting the com-
parison of the types of distance by including four new 
time-distances according to the mode of transportation 
used: walking, cycling, public transit and car. Indeed, 
since the advent of general transit feed specification 
(GTFS) files, more and more studies on the access to 
services have been based on shortest network time (by 
public transit) [7–13]. Other recent research, although 
rarer, also looks at bicycle accessibility [14]. The second 
improvement involves evaluating aggregation errors by 
including another aggregation method based on the uti-
lization of a land use map. Thirdly, other accessibility 
measures that have been proposed in recent years, such 
as the two-step floating catchment area (2SFCA) method 
and its variants, have been added.

Evaluating potential spatial access to services and facilities 
in residential areas: specifying four parameters
Spatial unit of reference and aggregation methods
Selecting the appropriate spatial unit of analysis, i.e. the 
operational definition for residential areas, is critical 
for minimizing aggregation errors [6, 15]. Aggregation 

Fig. 1  Number of journal articles published related to geographical accessibility, 1980–2015
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error arises from the distribution of individuals around 
the centroid of spatial units [15]. In the urban context, 
as spatial units vary in size from smaller areas, such as 
census blocks, to larger ones, such as census tracts, the 
accessibility measured for smaller units is less subject to 
aggregation error than that measured for larger spatial 
units [15].

As indicated by Hewko et  al. [15], the census tract is 
often selected for several reasons. First, detailed socio-
economic, socio-demographic, and housing data are 
available at the census tract level, which is not always the 
case at finer levels such as dissemination areas or census 
blocks. So, if we want to place accessibility measures in 
relation to socioeconomic variables, by using either clas-
sic or multilevel regressions, the census tract remains a 
highly relevant choice. Secondly, census tracts include on 
average about 5000 inhabitants and are relatively homo-
geneous on the socioeconomic level and from the point 
of view of housing. They consequently represent a divi-
sion at the neighbourhood level that is widely used by 
urban planners and public health experts. Nonetheless, 
using the census tract requires that we then apply aggre-
gation methods so as to limit errors in the measurement 
of potential spatial access.

To evaluate the potential spatial access to a health ser-
vice for a population living in a residential area, e.g. a 
census tract, several methods can be used [6, 15, 16]. 
The first method consists in computing the distance 
between the centroid of the census tract and the ser-
vice (Fig. 2a). This method shows the inappropriateness 
of ignoring the spatial distribution of the population 
inside the census tract. The second method consists in 
calculating the population-weighted mean centre of the 
census tract (Eq.  1) and then evaluating the distance 
between this new location and the service. Toward this 
end, smaller spatial units entirely contained within the 
census tracts can be used, such as dissemination areas, 
census blocks, postal codes or buildings. This method 
accounts for the spatial distribution of the population 
inside the census tract in order to minimize aggregation 
error.

where wb represents the total population of spatial unit 
b completely within census tract i (i.e. dissemination 
area or census block or postal code) and xb, yb are the 
Cartesian coordinates of the spatial unit b.

The third method consists in computing the distance 
between the services and each centroid of spatial units 
completely within census tracts, and then calculating the 
average of these distances weighted by the total popula-
tion of each unit. For example, this operation is shown 

(1)
(

xi, yi
)

=

(∑

b∈i wbxb
∑

b∈i wb
,

∑

k∈i wbyb
∑

b∈i wb

)

based on dissemination areas and blocks contained 
within census tracts in Fig. 2b, c.

The latter approach enhances the preceding one. It is 
a matter of calculating the accessibility measures on the 
level of blocks contained within census tracts, and then 
computing the average weighted by the population. How-
ever, the centroids of the blocks are first adjusted by using 
dasymetric mapping methods designed to locate the 
areas where the population in a given spatial unit lives 
(e.g. census tract, dissemination area, block) [16, 17]. 
This approach requires the use of either satellite images 
[16], or land use or cover maps [17]. The basic principle 
involves creating a binary mask separating residential 
areas (1) from non-residential areas (0). For example, as 
illustrated in Fig.  2d, a land use map was employed to 
identify the residential portion of each block (the cat-
egory in yellow). A comparison of Fig.  2c, d shows that 
the location of the block centroids is then more precise. 
Compared with the previous methods, this latter method 
is more accurate because it more exactly accounts for the 
distribution of the population inside the census tract.

Accessibility measures
Since 2000, a number of literature reviews have been 
published on the accessibility of health services [6, 18–
22]. They show that the five most commonly used meas-
ures of the accessibility of health services are: (1) the 
distance to the closest service [e.g. 23–25]; (2) the num-
ber of services within n metres or minutes [e.g. 26, 27]; 
(3) the mean distance to the n closest services [e.g. 28]; 
(4) gravity models [e.g. 2, 29, 30]; and (5) two-step float-
ing catchment area (2SFCA) methods [2, 31–34]. Table 1 
synthesizes various approaches for conceptualizing 
and measuring different dimensions of potential spatial 
access [5, 28, 35].

The first three measures are only based on the supply 
of services. The most often used measure is clearly the 
distance to the closest health service (e.g. nearest hospital 
or medical clinic). It allows one to evaluate the immedi-
ate proximity to the health services. If the most accurate 
aggregation method detailed above is selected, i.e. an 
aggregation method based on the population-weighted 
mean of the accessibility measure for block centroids 
(adjusted with the land use map) within census tracts, 
this accessibility measure can be written as:

where a weaker value of Ai
a implies better accessibility, 

wb is the total population of census block b completely 
within census tract i and dbs is the distance between cen-
sus block b and service s.

(2)Aa
i =

∑

b∈i wb

(

min
∣

∣dbs
∣

∣

)

∑

b∈i wb
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Fig. 2  Choosing the spatial unit of reference for calculating distances and error aggregation. a Census tract. b Census tract versus dissemination 
area. c Census tract versus block. d Census tract versus block centroid adjusted with the land use map. Note Number in parenthesis indicates the 
number of spatial units

Table 1  Approaches for conceptualizing and measuring the potential spatial access to services and facilities for residen-
tial areas. Adapted from [5, 28, 35]

Conceptualization Accessibility measures

Immediate proximity or minimum travel time or distance The distance between a location and the closest facility

Availability provided by the immediate surroundings or cumulative opportunity The number of facilities within a given distance from a point of origin

Average cost to reach all destinations The average distance between a location and all facilities

Average cost to reach diversity The average distance between a location and n facilities

Accessibility according to proximity and availability Gravity models, two-step floating catchment area (2SFCA) methods
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The second accessibility measure—the number of ser-
vices within n metres or minutes—refers to the cumu-
lative opportunity, or, in other words, to the availability 
provided by the immediate surroundings:

where a larger value of Ai
b implies better accessibility, wb 

is defined as previously indicated, S represents all ser-
vices in the study area, and Sj is the number of services 
within n metres or minutes of census block centroid b 
(with Sj = 1 where dbs ≤ n and Sj = 0 where dbs > n).

To evaluate the average cost to reach diversity, the 
mean distance to the n closest services is generally used. 
For example, in a study on food deserts [36], the mean 
distance to the three closest different chain-name super-
markets is used as a proxy of variety in terms of food and 
prices. For this measure, a weaker value implies better 
accessibility:

where wb is defined as previously indicated, dbs represents 
the distance between spatial unit centroid b and service s 
(dbs is sorted in ascending order), and n is the number of 
closest services to be included in the measure.

However, the three measures described above are only 
based on the supply of services. Now, as mentioned by 
several authors, as mentioned by several authors [2, 29, 
30], the potential spatial access to health care depends on 
both the location of the supply of health services and the 
residential location of potential health users (demand). 
Two types of measures allow for take these two dimen-
sions into account (supply and demand): i.e. gravity mod-
els [e.g. 2, 29, 30] and two-step floating catchment area 
(2SFCA) methods. In including an accurate aggregation 
method, the gravity models can be written as:

where Ai
d is the mean value of potential gravity for census 

tract i (a larger value implies better accessibility), n and s 
are respectively the number of census blocks and of ser-
vices in the study area, Sj is the weight given to service s 
such as its size (e.g. number of beds in a hospital) (“sup-
ply side”), Vj is the potential population (“demand side”), α 
represents the friction parameter (usually 1, 1.5 or 2), and, 
finally, ni is the number of blocks within census tract i.

(3)Ab
i =

∑

b∈i wb

∑

j∈S Sj
∑

b∈i wb
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b∈i
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j=1

Sjd
−α
bj

Vj

ni
with Vj =

m
∑

b

wbd
−α
bj ,

The 2SFCA method is a fairly recent one; it was pro-
posed in 2003 by Luo and Wang [2, 37], based on the 
work of Radke and Mu [38]. As its name indicates, it 
includes two steps. The first step assigns an initial ratio to 
each health service, which takes the following form:

where Rj represents the supply-to-demand ratio within 
catchment area d0, dkj is the distance between spatial 
unit census tract centroid k and health service j, d0 is 
the threshold distance or travel time (e.g. one kilometre 
or 30  min), Sj and Pk are respectively the supply capac-
ity (e.g. number of medical clinics or number of beds in 
a hospital) at location j and the demand at location k that 
falls within catchment area j. Note that Pk/1000 could 
also be used in order to obtain an initial ratio for 1000 
inhabitants within the catchment area.

In the second step, for each demand location i (census 
tract centroid), we search all supply locations j within the 
threshold distance d0 from i and sum up the initial sup-
ply-to-demand ratios Rj:

where a larger value of Ai
e implies better accessibility for 

census tract i.
Many authors have suggested improvements to the 

2SFCA method in order to remedy two limitations [4, 
5, 8, 31, 33, 39–42]. Firstly, in its initial form, the 2SFCA 
method assumes that the population (Pk) inside the 
catchment area (where dkj < d0) has the same accessibil-
ity regardless of the distance separating this population 
from the health service. Secondly, beyond the thresh-
old distance (d0), the accessibility is null. Luo and Qi 
[31] have thus proposed the enhanced two-step floating 
catchment area (E2SFCA) method, which is now widely 
used [42–51]. These authors then divide the catchment 
area into three zones: 0–10 min (d1), 10–20 min (d2), and 
20–30 min (d3) (Eqs. 8, 9). For each of these three zones, 
it is then possible to apply a weighting (Wk) calculated by 
using a Gaussian function:

(6)Rj =
Sj

∑

k∈
{

dkj≤d0
} Pk

(7)

Ae
i =

∑

j∈{dij≤d0}

Rj =
∑

j∈{dij≤d0}

(

Rj =
Sj

∑

k∈
{

dkj≤d0
} Pk

)

(8)

Rj =
Sj

∑

k∈
{

dkj∈Dr

} PkWr

=
Sj
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} PkW1 +
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k∈
{

dkj∈d2
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where W1, W2, W3 = 1.00, 0.68 and 0.22 with a slow step-
decay function or 1.00, 0.42 and 0.09 with a fast step-
decay function. Also, some authors add a fourth zone 
of 30–60  min, especially when the study area includes 
rural areas [39, 52]. The weightings are then: W1, W2, W3, 
W4  =  1.00, 0.80, 0.55 and 0.15 with a slow step-decay 
function or 1.00, 0.60, 0.25 and 0.05 with a fast step-
decay function. Note that the values of the radii can be 
modified according to the geographical context. For 
example, Dewulf et al. [23]—who analyze the accessibility 
of primary health care not in an urban context but on the 
scale of an entire country (Belgium)—use radii of 1, 2, 5 
and 10 km.

As mentioned by McGrail [32], some scholars criti-
cize the fact that the weightings are constant within each 
radius and advocate using a continuous weighting func-
tion: W = 1 for the first radius (0–10 min, for example); 
W = 0 when the distance is >60 min; and W = ((60 − d)/
(60  −  10))1.5 for the radius of 10–60  min. Finally, to 
reduce aggregation errors, Bell et  al. [33] recommend 
a 3SFCA: it is a matter of calculating the 2SFCA or the 
E2SFCA at a fine scale (e.g. dissemination areas and 
blocks within census tracts), and then calculating the 
mean per census tract. Consequently, by applying the 
most accurate aggregation method, the E2SFCA can 
thus be formulated with four radii or with a continuous 
weighting function:

(9)

Ae
i =

∑

j∈{dij≤dr}

Rj

=
∑

j∈{dij∈d1}

RjW1 +
∑

j∈{dij∈d2}

RjW2 +
∑

j∈{dij∈d3}

RjW3

if dij  <  10 then Wbj =  1; if dij  >  10 and dij ≤  60 then 
Wbj = ((60 − d)/(60 − 10))1.5; if dij > 60 then Wbj = 0.

Types of distance
Six types of distance can be used to calculate accessibility 
measures: Euclidean distance (straight-line), Manhattan 
distance (distance along two sides of a right-angled tri-
angle opposed to the hypotenuse), and shortest network 
time distances according to the mode of transportation 
used (on foot, by car, by bicycle, or by public transit) 
(Fig. 3) [28, 31].

Study objectives
In this paper, we investigate differences in results when 
the geographical accessibility of selected health care ser-
vices for residential areas (census tracts) is computed 
by using three parameters: (1) six types of distance, (2) 
four aggregation methods, and (3) fourteen accessibil-
ity measures. The specific objectives are to: (1) Compare 
the types of distance; (2) Estimate aggregation errors for 
several accessibility measures; and (3) Measure how the 
assessment of potential spatial access varies according to 
these three parameters.

Data and methods
Study area and health services
This study focuses on the territory served by the regional 
transit authority for the Montreal area, which had a pop-
ulation of about 3.8 million in 2011. The extent of this 
territory is very similar to that of the Montreal census 
metropolitan area (CMA). The study area is divided into 
904 census tracts, 6167 dissemination areas and 27,126 
blocks with respective average population sizes of 4170, 

(10)

Rj =
Sj

∑

b∈
{

dbj∈d1
} PkW1 +

∑

b∈
{

dbj∈d2
} PkW2 +

∑

b∈
{
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} PkW3 +

∑

b∈
{
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} PkW4

or

Rj =
Sj

∑

b∈
{

dbj≤d0
} PkWbj

(11)
Ae
i =

∑
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j∈
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} RjW1

ni
+

∑

b∈i

∑

j∈
{

dbj∈d2
} RjW2
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+

∑

b∈i

∑

j∈
{

dbj∈d3
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ni

+

∑

b∈i

∑

j∈
{

dbj∈d4
} RjW4

ni
or

∑

b∈i

∑

j∈
{

dbj≤d0
} Rj

ni

where ni is the number of blocks within the census tract; 
W1, W2, W3, W4 = 1.00, 0.80, 0.55 and 0.15 with a slow 
step-decay function or 1.00, 0.60, 0.25 and 0.05 with a 
fast step-decay function; and Wbj is the weight for block 
j with a continuous weighting function. This last param-
eter can be calculated as follows:

611 and 139 inhabitants, as defined by Statistics Can-
ada. A total of 594 health services grouped into twelve 
categories were integrated into geographic information 
systems (ArcGis) (Figs.  4, 5). Note that a street address 
can include several categories of health services. In the 
end, this ultimately produces 535 geographical locations 
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for these health services; they have all been precisely 
geocoded from the centroid of the building. This spatial 
dataset was provided by the Quebec Ministry of Health 
and Social Services. 

Computing the six types of distance
Cartesian distances
Euclidean and Manhattan distances can easily be com-
puted by using geographic coordinates:

where xi, yi, xj, yj are the Cartesian coordinates of points i 
and j with a plane projection.

Shortest network distance (by car)
To calculate trips as though made by car, we used the 
Adresses Québec (AQ Directions) [53] road network—
which includes the speed limits and directions of traffic 
for all road and street segments in the province of Que-
bec. Based on the length of the road or street segment 

(12)dij =

√

(xi − xj)2 + (yi − yj)2,

(13)dij =
∣

∣xi − xj
∣

∣+
∣

∣yi − yj
∣

∣,

and the speed limit on that road or street, the cost in 
minutes to travel over each segment of the road network 
can then be calculated [54]:

where Tmn is the cost in minutes to travel over the road or 
street segment, Lft and Lm are the length of the segment 
in feet and metres respectively, and Smph and Skmh are the 
speed limits in miles/h and km/h.

Shortest network distance (on foot)
The modeling of the network for travel on foot is also 
based on the Adresses Québec road network. Compared 
with the modeling of the network by car, a restriction was 
added on segments of highway where pedestrians are not 
allowed, whereas the direction of traffic was not used as 
a restriction. Moreover, the elevation of each junction of 
the network was extracted from a digital elevation model 
at a resolution of 3 m. Based on these elevation data for 
the junctions, it is then possible to calculate the walking 
speed over the road or street segment (Wkmh) by using 
the classic Tobler’s hiking function [55]:

(14)Tmn =
Lft ∗ 60

Smph ∗ 5280
or Tmn =

Lm ∗ 60

Skmh ∗ 1000
,

Fig. 3  Types of distance. a Cartesian distances. b Network distances
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Fig. 4  Categories of health services for the Montreal CMA, 2015. a Psychiatric care hospitals (N = 14). b General and specialized care hospitals 
(N = 62). c Long-term care facility (N = 176). d Local community service centre (N = 90). e Child and youth protection centre (N = 29). f Rehabilita‑
tion center for persons with intellectual disabilities (N = 67). g Rehabilitation center for hearing impaired persons (N = 10). h Rehabilitation center 
for physically impaired persons (N = 20) Source Quebec Ministry of Health and Social Services
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where dh is the difference in elevation between the start 
and end nodes of the road or street segment, and dx is 
the segment’s length. When the slope is equal to 0 (flat 
terrain), the walking speed is equal to 5 km/h (Fig. 6). By 
applying Eqs. (14) and (15) as described above, it is then 
possible to estimate the cost in minutes of foot travel for 
each segment from the start node to the end node, and 
vice versa.

Shortest network distance (by bicycle)
The cycling network was modeled by combining several 
sources of data on bicycle paths obtained from the 
municipalities of Montreal, Longueuil and Laval and 
OpenCycleMap. This network was then merged with the 

(15)Wkmh = 6e
−3.5

∣

∣

∣

dh
dx
+0.05

∣

∣

∣

Fig. 5  Categories of health services for the Montreal CMA, 2015. a Rehabilitation center for visually impaired persons (N = 8). b Rehabilitation 
center for young people with adaptation difficulties (N = 81). c Rehabilitation center for young mothers with adaptation difficulties (N = 12). d 
Rehabilitation center for alcohol, drug and other dependencies (N = 25). Source Quebec Ministry of Health and Social Services

Fig. 6  Walking speed according to Tobler’s hiking function
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Adresses Québec road network. Elevation data were 
again used to calculate the slope for each segment of the 
network. There is currently no consensus on cyclists’ 
average travel speed in urban areas. For example, Jensen 
et al. [56] found an average speed of 14.5 km/h for cyclists 
in Lyon (France), whereas Parkin and Rotheram [57] in 
Leeds (UK) obtained an average speed of 21.6  km/h. 
However, other studies regularly suggest values of about 
16  km/h [58–61], the average value used by Google 
Maps,1 which was also selected for this study. Other 
authors have shown that speed varies according to the 
slope, length of segment, type of cycling infrastructure 
and type of bicycle. With the help of a regression model, 
Parkin and Rotheram [57] have thus estimated the impact 
of slope on travel speeds: that is, 0.86 km/h for each per-
centage of downhill gradient and −1.44  km/h for each 
percentage of uphill gradient. El-Geneidy et  al. [58] 
looked at the impact of infrastructures on cyclists’ travel 
speeds in Minneapolis (USA). They concluded that, all 
other things being equal, only off-street bicycle paths 
have a significant and positive impact on speed 
(1.14  km/h) and that each kilometre of the segment 
length is associated with a 0.32 km/h increase in speed. 
Consequently, we modeled cyclists’ travel speeds (Ckmh) 
on each segment as follows:

where si is the percentage of slope on the segment from 
the start to the end node or vice versa, li is the seg-
ment length in kilometres, and ti is the type of cycling 
infrastructure.

1  http://www.betterbybicycle.com/2014/09/how-accurate-are-google-maps-
cycling.html.

(16)

Ckmh = 16+

{

(|si| ∗ −1.44) if si > 0

(|si| ∗ 0.86) if si < 0
+ li ∗ 0.32

+

{

1.14 if ti = off street
0 otherwise

Shortest network distance (by public transportation)
As done by Faber et al. [62] and Hadas [63], general tran-
sit feed specification (GTFS) files are used to calculate 
travel times with public transit. GTFS data covering all of 
our study area were obtained from the Agence Métropol-
itaine de Transport (AMT) (regional transit authority for 
the bus, metro and commuter train network). These data 
were integrated into ArcGIS and combined with the 
pedestrian network by using the Add GTFS to a Network 
Dataset2 tool. Since travel times can vary according to the 
time of departure, especially in outlying municipalities 
where commuter trains and buses run far less frequently 
than in central neighbourhoods, we calculated 13 dis-
tance matrices: that is, for Monday departures every 
10 min from 7:00 a.m. to 9:00 a.m. We then selected the 
minimum travel time for each of the 13 trips between 
census spatial units (census tracts, dissemination areas 
and blocks) and health services. This ensured that the 
travel times would not be overestimated, especially for 
trips to or from the suburbs.

Comparing distance types
To explore variations in results according to distance type 
(Objective 1), we calculate the six distance types—Euclid-
ean, Manhattan, and shortest network time distances (on 
foot, by car, by bicycle, or by public transit)—between 
the 535 health services and the centroids of census tracts 
(n  =  904), dissemination areas (n  =  6167) and blocks 
(n = 27,126) and block centroids adjusted with a land use 
map. In total, close to 197 million distances are computed 
(Table 2), with a Python code for Euclidean and Manhat-
tan distances, and with the Network Analyst Extension of 
ArcGIS (version 10.3) for the four shortest network time 
distances.

Once these distance types are computed, correlation 
analyses are performed globally and locally across all 
the census tracts, dissemination areas and blocks matri-
ces. First, the global analysis, which yields one value for 
the study area as a whole, allows us to assess the degree 

2  http://transit.melindamorang.com/.

Table 2  Distances calculated between health services and spatial units

a  Euclidean, Manhattan, shortest network time (on foot), shortest network time (by car), shortest network time (by bicycle), and shortest network time (by public 
transit)

Spatial units (origins) Health services (destinations) Types of distancea Distances calculated

Type N

Census tract centroids 904 535 6 2,901,840

Dissemination area centroids 6167 535 6 19,796,070

Block centroids 27,126 535 6 87,074,460

Block centroids adjusted with the land use map 27,126 535 6 87,074,460

Total 61,323 535 6 196,846,830

http://www.betterbybicycle.com/2014/09/how-accurate-are-google-maps-cycling.html
http://www.betterbybicycle.com/2014/09/how-accurate-are-google-maps-cycling.html
http://transit.melindamorang.com/
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of correlation between the four distance types. Then, 
we examine correlations between the four distances for 
each spatial unit centroid and the 535 health service loca-
tions. This local analysis stage yields one mappable value 
for each census tract, dissemination area and block and 
allows us to identify spatial variation in the degree of cor-
relation between the six distance types.

Evaluating aggregation errors when measuring potential 
geographic access
The same approach, i.e. global and local analyses, was 
used to evaluate aggregation errors for several accessi-
bility measures at the census tract level (Objective 2). To 
do this, we calculated 14 accessibility measures (Table 3), 
using six types of distance and four aggregation meth-
ods, for a total of 336 measures. Although accessibility 
was computed for each of the twelve categories of health 
services, for purposes of conciseness, results are reported 
only for the accessibility of general and specialized care 
(i.e. hospitals; n = 62) for census tracts. It is worth noting 
that similar patterns of correlation were observed for the 
other health services.

The global analysis involves calculating correlations 
between four aggregation methods: (1) the census tract 
centroid (CTC); (2) the population-weighted mean of the 
accessibility measure for dissemination areas within cen-
sus tracts (WDAC); (3) the population-weighted mean of 
the accessibility measure for blocks within census tracts 
(WBL1); and (4) the population-weighted mean of the 

accessibility measure for blocks (adjusted with the land 
use map) within census tracts (WBL2).

The local analysis consists in simply calculating the 
absolute differences for each of the 14 accessibility meas-
ures obtained with the least accurate aggregation method 
(CTC) and the most accurate method (WBL2). It is then 
possible to calculate the univariate statistics and to map 
these differences.

Sensitivity analysis (SA) and uncertainty analysis (UA)
Sensitivity and uncertainty analyses are mainly used to 
test the robustness of composite indicators [64, 65].

During these analyses, a number of methodological 
choices in fact intervene and modify the final index indi-
cator values. So it is important to determine how sensi-
tive the indicator is to these choices. A very unstable (i.e. 
highly uncertain) indicator is problematic, as it can be 
strongly influenced by specific methodological choices 
(a particular weighting, for example). Conversely, a very 
rigid indicator is not necessarily desirable either, because 
methodological choices are supposed to help to construct 
the index indicator, to give it meaning.

This type of analysis applies when one has a final score, 
obtained with the help of a model, which itself depends 
on several parameters. These parameters are called 
uncertainty factors because they can take on several dif-
ferent values that will alter the final score. This descrip-
tion makes clear the parallel with our study. Indeed, 
our final score is an indicator of potential spatial access, 
obtained by using a model that includes three uncertainty 
factors: the type of distance (6 choices), the aggregation 
method (4 choices), and the accessibility measure (14 
choices). This model can then take 336 different forms; in 
other words, in the context of this study, there are 336 dif-
ferent ways of calculating a potential spatial access score 
for each census tract. To our knowledge, this method has 
never been used in this context, so that this is an original 
application. Indeed, by using a sensitivity analysis (SA), 
we can explain how each of the three parameters leads 
to variation in the levels of accessibility for the entire 
study area (Objective 3). Also, the use of an uncertainty 
analysis (UA) allows us to identify and map census tracts 
for which the 336 accessibility indicators vary the most 
according to the three parameters.

Before performing these two analyses, the 336 indica-
tors need to be transformed so that they are expressed 
in the same units. The most common transformations 
are normalization on a scale of 0–1 (Eq. 17), the z-score 
standardization (Eq. 18), or the use of ranks (Eq. 19) [66].

(17)Iq,c =
xq,c −min

(

xq
)

range
(

xq
)

Table 3  List of measures of accessibility computed

a  The catchment area is divided into three zones: 0–500 m or 0–10 min, 
500–1000 m or 10–20 min, and 1000–2000 m or 20–30 min

Distance type

1. Minimum distance

2. Average distance to all hospitals

3. Average distance to three closest hospitals

4. Average distance to five closest hospitals

5. Number of hospitals within 500 m or 10 min

6. Number of hospitals within 1000 m or 20 min

7. Number of hospitals within 2000 m or 30 min

8. Potential gravity model (friction parameter = 1)

9. Potential gravity model (friction parameter = 1.5)

10. Potential gravity model (friction parameter = 2)

11. Two-step floating catchment area (2000 m or 30 min)

12. Enhanced two-step floating catchment area with a slow step-
decay functiona

13. Enhanced two-step floating catchment area with a fast step-decay 
functiona

14. Enhanced two-step floating catchment area with a gradient func‑
tion
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To measure the uncertainty for each census tract, we 
simply calculate the coefficient of variation (CV = STD/
Mean) of the 336 values of the previously transformed 
accessibility indicators. So, for a census tract, the higher 
the value of the CV is, the greater the uncertainty is, or, in 
other words, the more the methodological choices locally 
impact the assessment of potential geographic access.

For the sensitivity analysis, a reference indicator must 
first be chosen from among the 336 indicators. We chose 
the least complex indicator, calculated with the follow-
ing parameters: Euclidean distance, the CTC aggregation 
method and the closest hospital as the accessibility meas-
ure. For each of the 336 indicators, it is then possible 
to calculate the average of the absolute differences with 
respect to the reference indicator:

where n is the number of census tracts.
One can then calculate the first order sensitivity indices 

(Si), proposed by Sobol [64, 67], i.e. the proportion of the 
total variance attributable to each factor (distance types, 
aggregation methods and accessibility measures). This 
method is based on Sobol’s equation of variation decom-
position and is particularly suited for non-linear models. 
In our case, the uncertainty factors do not have a non-
linear, which justifies the use of this method [68]:

where Vi = variance explained by the uncertainty factor 
Xi; V(Y) = total variance; X = uncertainty factors; Y = the 
overall mean shift with the reference; Ex−i(Y|Xi) =  the 
expected value (mean) of Y for all combinations of the 
indicator with factor Xi fixed to a particular modality; 

(18)Iq,c =
xq,c −mean

(

xq
)

std
(

xq
)

(19)Iq,c = rank
(

xq,c
)

(20)Rs =

∑n
c=1

∣

∣Ireference,c − Iq,c
∣

∣

n

(21)Si =
Vi

V (Y )
=

Vxi(Ex−i(Y |Xi))

V (Y )

Vxi(Ex−i(Y |Xi)) = the variance of these means for all pos-
sible modalities of Xi.

One can then further decompose the variance by add-
ing second order indices that measure the proportion 
of the variance attributable to interactions between two 
parameters:

For example, one could evaluate the proportion of the 
variance that is explained by the interaction of the type of 
distance factor with the factor of the accessibility meas-
ure. Finally, the total effect sensitivity index for a factor is 
the sum of the first order and second order indices:

where ST1, ST2, ST3 are the total effects for the type of 
distance, the aggregation method and the accessibility 
measure respectively. More detailed information on sen-
sitivity and uncertainty analyses can be found especially 
in the work of Sobol [67], Nardo et al. [66] and Saisana 
et al. [64].

Results
Correlations between the six types of distance
Before exploring the correlations, it is relevant to analyze 
a few statistics for the different types of distance calcu-
lated between the 535 destinations and the 904 census 
tracts (n =  483,640) (Table  4). For Cartesian distances, 
the mean values are 19.7  km for Euclidean distance 
compared with 25.2  km for Manhattan distance, i.e. a 
significant difference of 5.5 km (P = 0.01) (Fig. 7). Since 
Manhattan distance is the length of the two sides of a 
right-angled triangle opposed to the hypotenuse—with 
the latter representing Euclidean distance—(Fig.  3a), it 

(22)

Sij =
Vij

V (Y )
=

Vxixj

(

Ex−ij

(

Y |Xi,Xj

)

)

− Vi − Vj

V (Y )

(23)ST1 = S1 + S12 + S13

(24)ST2 = S2 + S12 + S23

(25)ST3 = S3 + S13 + S23

Table 4  Univariate statistics for the distances calculated between health services and census tracts

P10 10th percentile, Q1 lower quartile, Q2 median, Q3 upper quartile, P90 90th percentile

Distance type Mean P10 Q1 Q2 Q3 P90

Euclidean distance (km) 19,663 5565 9922 17,304 27,023 37,480

Manhattan distance (km) 25,184 7004 12,517 21,756 34,369 48,587

Shortest network time (on foot) (min) 291.99 83.80 149.67 262.20 400.96 550.37

Shortest network time (by bicycle) (min) 94.53 27.20 48.22 84.33 130.65 177.92

Shortest network time (by public transit) (min) 79.09 32.57 48.92 72.30 101.16 131.89

Shortest network time (by car) (min) 23.10 8.83 14.40 21.84 30.54 38.89
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is therefore evident that all the univariate statistics are 
higher for Manhattan distance.

Regarding the shortest network times, it is no sur-
prise that the statistics show that the means of the 
trips are greater on foot (mean  =  292  min), followed 
by trips by bicycle (mean  =  95  min), public transport 
(mean  =  79  min) and car (mean  =  23  min) (Table  4; 
Fig.  7). In other words, compared with trips by car, the 
trips are, on average, 12.6 times longer on foot, 4.1 times 
longer by bicycle and 3.4 times longer by public transit. 
Another interesting result is that the value of the 10th 
percentile for bicycle travel times is lower than the value 
for public transit (27.20 vs. 32.57 min). This means that, 
for 10% of the fastest trips, the bicycle is 5 min faster than 
public transport. To put it another way, the bicycle is a 
very good alternative to public transit for short trips.

Global correlations
Table 5 presents results for global correlation coefficients 
between the six types of distance computed for all health 
service locations (n = 535). From the correlation matri-
ces, three main results can be highlighted. First, at the 
metropolitan scale, independently of the type of distance 
used except for shortest network time by public transit, 
the results are globally similar as indicated by high cor-
relation coefficient values (>0.90). Second, in compari-
son with Manhattan distance, Euclidean distance is most 
strongly correlated with all the shortest network time 
distances. This means that if it is impossible to compute 
network distances in a study focusing on geographical 

accessibility in the Montreal CMA, Euclidean distance 
seems preferable to Manhattan distance. Third, the cor-
relations between the three shortest network times—
on foot, by car, by bicycle—are very high (>0.95), but 
the correlations of the shortest network time (by public 
transit) with all other types of distance are much weaker 
(between 0.76 and 0.82).

Local correlations
Although the global correlations are high, they are not 
perfect (the values differ from one). For this reason, local 
variations at the intra-metropolitan scale must exist and 
should be examined in detail. Local Pearson correlations 
have been calculated from the centroids of census tracts, 
dissemination areas, and blocks. For purposes of sim-
plification, we are only presenting the results for census 
tracts. Note that the results show similar spatial patterns 
for the three spatial scales.

Firstly, Fig.  8a–d presents local Pearson coefficients 
between Euclidean distance and the four shortest net-
work time distances (on foot, by car, by bicycle and by 
public transit). The maps show that with increasing dis-
tance from the central business district, local correla-
tions are reduced between Euclidean distance and the 
four shortest network time distances. For all spatial units 
in the centre of the Island of Montreal, the correlations 
are higher. For spatial units located on the periphery of 
the CMA, notably on the North and South shores, which 
are characterized by suburban areas, the correlations are 
weaker. It is not surprising that these results are in line 

Fig. 7  Boxplot of Cartesian and network distances between health services and census tracts. Note Tukey test for comparison of the mean values. 
*Significant difference at P = 0.01
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with those of the previous study [6]. They also show that 
the local correlations between Euclidean distance and 
the shortest network time distance by public transit are 
much lower. Indeed, the strongest local correlations are 
mainly found in the central portion of the Island of Mon-
treal, where public transit is much more highly devel-
oped, especially due to the presence of the metro lines.

Secondly, it is possible to analyze the local correla-
tions between the four shortest network time distances 
(Figs.  8e, f, 9a–d). The local correlations are generally 
fairly strong between the shortest network time dis-
tances by car, on foot and by bicycle. On the other hand, 
the local correlations are much weaker with distances by 
public transit (Fig. 9a, c, d).

In sum, the results of the local correlations allow us to 
highlight two important findings. On the one hand, for a 

study covering the entire Montreal region, it is preferable to 
use network distances because Cartesian distances (espe-
cially Euclidean distances) are less accurate in suburban 
areas (the North and South shores). On the other hand, the 
distance by public transport is very different from the other 
types of distance (on foot, by bicycle, by car), particularly 
in parts of the region where the public transit system is less 
dense (in the eastern and western portions of the Island of 
Montreal and on the North and South shores).

Aggregation errors
Global errors
The global analysis of aggregation errors is performed by 
means of Spearman’s rank correlations between the four 
methods of aggregation used to calculate 14 accessibility 
measures at the census tract level (Table 6). Due to lack 

Table 5  Global Pearson correlations between alternative types of distance

All coefficient values are significant at the p < 0.0001 level

Distance Cartesian system Shortest network time distances

Euclidean Manhattan On foot By car By bicycle By public transit

Distances between census tracts and health services (N) 483,640 483,640 483,640 483,640 483,640 483,640

 Euclidean distance 1.0000

 Manhattan distance 0.9851 1.0000

 Shortest network time (on foot) 0.9719 0.9497 1.0000

 Shortest network time (by car) 0.9416 0.9148 0.9626 1.0000

 Shortest network time (by bicycle) 0.9457 0.9257 0.9716 0.9517 1.0000

 Shortest network time (by public transit) 0.7711 0.7512 0.8215 0.7978 0.8029 1.0000

Distances between dissemination areas and health services (N) 3,299,345 3,299,345 3,299,345 3,299,345 3,299,345 3,299,345

 Euclidean distance 1.0000

 Manhattan distance 0.9842 1.0000

 Shortest network time (on foot) 0.9696 0.9462 1.0000

 Shortest network time (by car) 0.9386 0.9101 0.9612 1.0000

 Shortest network time (by bicycle) 0.9407 0.9194 0.9691 0.9493 1.0000

 Shortest network time (by public transit) 0.7610 0.7411 0.8115 0.7873 0.7893 1.0000

Distances between blocks and health services (N) 14,512,410 14,512,410 14,512,410 14,512,410 14,512,410 14,512,410

 Euclidean distance 1.0000

 Manhattan distance 0.9826 1.0000

 Shortest network time (on foot) 0.9627 0.9373 1.0000

 Shortest network time (by car) 0.9329 0.9034 0.9594 1.0000

 Shortest network time (by bicycle) 0.9333 0.9106 0.9641 0.9459 1.0000

 Shortest network time (by public transit) 0.7377 0.7210 0.7948 0.7635 0.7670 1.0000

Distances between block centroids adjusted with the land use 
map and health services (N)

14,512,410 14,512,410 14,512,410 14,512,410 14,512,410 14,512,410

 Euclidean distance 1.0000

 Manhattan distance 0.9826 1.0000

 Shortest network time (on foot) 0.9627 0.9374 1.0000

 Shortest network time (by car) 0.9330 0.9036 0.9594 1.0000

 Shortest network time (by bicycle) 0.9334 0.9106 0.9641 0.9460 1.0000

 Shortest network time (by public transit) 0.7390 0.7227 0.7958 0.7634 0.7676 1.0000
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Fig. 8  Comparing alternative types of distance between spatial units and health services using local Pearson correlations. a Euclidean distance 
versus shortest network time (on foot). b Euclidean distance versus shortest network time (by car). c Euclidean distance versus shortest network 
time (by bicycle). d Euclidean distance versus shortest network time (by public transport). e Shortest network time (on foot) versus shortest network 
time (by car). f Shortest network time (on foot) versus shortest network time (by bicycle)
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of space, we only report the correlation for two types of 
distance (Euclidean distance and shortest network time 
on foot). Note that similar patterns of correlation are 
observed for the other types of distance.

Correlations between the four aggregation meth-
ods are high (>0.9) for all accessibility measures except 
for the number of hospitals within 500 and 1000  m or 
within 10 and 20 min. For example, correlation between 
the least and most accurate aggregation methods (CTC 
and WBL2) is 0.704 for the number of hospitals within 
500  m and 0.740 for those within 10  min on foot. This 
means that if we want to assess service provision in a 

close-proximity area around a census tract, it is prefera-
ble to use an aggregation method that precisely accounts 
for the distribution of population within it; if not, the risk 
of error may be considerable.

Local errors
A second stage of comparison of aggregation methods 
consists in assessing the absolute difference between the 
geographical accessibility results obtained with the CTC 
and WBL2 aggregation methods. The descriptive statis-
tics for local errors are reported in Table 7 for hospitals. 
Not surprisingly, the local errors are on the whole quite 

Fig. 9  Comparing alternative types of distance between spatial units and health services using local Pearson correlations. a Shortest network time 
(on foot) versus shortest network time (by public transport). b Shortest network time (by car) versus shortest network time (by bicycle). c Shortest 
network time (by car) versus shortest network time (by public transport). d Shortest network time (by bicycle) versus shortest network time (by 
public transport)
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Table 6  Spearman’s rank correlations between measures of the accessibility of hospitals by aggregation method

Accessibility measure Aggregation 
method

Accessibility measures using 
Euclidean distance

Accessibility measures 
using shortest network 
time (on foot)

CTCa WDAb WBLc CTCa WDAb WBLc

Minimum distance CTCa – –

WDAb 0.994 – 0.992 –

WBL1c 0.992 0.999 – 0.988 0.997 –

WBL2d 0.991 0.998 0.999 0.988 0.997 0.999

Average distance to all hospitals CTCa – –

WDAb 0.999 – 0.999 –

WBL1c 0.999 1.000 – 0.999 1.000 –

WBL2d 0.999 1.000 1.000 0.999 1.000 1.000

Average distance to three closest hospitals CTCa – –

WDAb 0.998 – 0.997 –

WBL1c 0.998 1.000 – 0.995 0.999 –

WBL2d 0.997 1.000 1.000 0.995 0.999 1.000

Average distance to five closest hospitals CTCa – –

WDAb 0.999 – 0.998 –

WBL1c 0.998 1.000 – 0.998 1.000 –

WBL2d 0.998 1.000 1.000 0.998 0.999 1.000

Number of hospitals within 500 m or 10 min CTCa – – 0.792 0.749

WDAb 0.753 – 0.792 – 0.935

WBL1c 0.716 0.940 – 0.749 0.935 –

WBL2d 0.704 0.923 0.985 0.740 0.921 0.962

Number of hospitals within 1000 m or 20 min CTCa – –

WDAb 0.856 – 0.899 –

WBL1c 0.819 0.954 – 0.875 0.967 –

WBL2d 0.809 0.942 0.984 0.878 0.963 0.985

Number of hospitals within 2000 m or 30 min CTCa – –

WDAb 0.956 – 0.950 –

WBL1c 0.950 0.992 – 0.940 0.983 –

WBL2d 0.949 0.991 0.998 0.935 0.982 0.994

Potential gravity model (friction parameter = 1) CTCa – –

WDAb 0.995 – 0.996 –

WBL1c 0.996 0.999 – 0.995 0.999 –

WBL2d 0.995 0.999 1.000 0.995 0.999 0.999

Potential gravity model (friction parameter = 1.5) CTCa – –

WDAb 0.988 – 0.980 –

WBL1c 0.989 0.998 – 0.975 0.993 –

WBL2d 0.988 0.997 0.998 0.981 0.995 0.996

Potential gravity model (friction parameter = 2) CTCa – –

WDAb 0.972 – 0.952 –

WBL1c 0.979 0.990 – 0.931 0.960 –

WBL2d 0.981 0.986 0.995 0.962 0.984 0.974

Two-step floating catchment area (2000 m or 30 min) CTCa – 0.977 0.976 –

WDAb 0.977 – 0.996 0.883 –

WBL1c 0.976 0.996 – 0.863 0.976 –

WBL2d 0.976 0.996 0.999 0.864 0.978 0.992
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small, though not insignificant: for example, compared 
with the most accurate method, the census tract centroid 
method misestimates the distance to the closest hospital 
by an average of 236 m (Euclidean distance) and 4.17 min 
(on foot). Up to the third quartile (75%), the local errors 
are still quite small: for 75% of census tracts, the error 
associated with the census tract centroid approach is 
<218 m or 3.65 min. However, in 10% of cases, the error 
is >649 m and 10.22 min, and in 5% of census tracts the 
error is >1.1 km and 17 min (Table 7). Despite the high 
correlations, significant errors in the measurement of 
geographical accessibility can occur in a small number of 
cases.

Absolute differences between aggregation methods for 
the closest hospital computed using Euclidean distance 
and shortest network time (on foot) are further mapped 
in Fig. 10a, b. Again, stronger absolute aggregation errors 
are observed in suburban areas on the South and North 
shores of the CMA; errors remain smaller in central areas 
of the Island of Montreal. Moreover, the use of the local 
Getis–Ord Gi* statistic clearly shows that hot spots in 
aggregation errors are located on the North and South 
shores (Fig. 10c, d). This shows that, in suburban areas, 
where the surface area of census tracts is greater than in 
central neighbourhoods, it is preferable to use an accu-
rate aggregation method to prevent significant measure-
ment errors.

Sensitivity analysis (SA) and uncertainty analysis (UA)
The sensitivity analysis was performed by using three 
transformations (z-score standardization, normaliza-
tion on a scale of 0–1, and use of ranks). Table 8 reveals 
several interesting findings. First, the uncertainty factor 
generating the most variance is the accessibility meas-
ure, with 74–86% of the total variance, depending on the 
transformation used (first order sensitivity index). When 
placed in interaction with the type of distance, the acces-
sibility measures also explain 10–20% of the total vari-
ance (second order sensitivity index) for a total sensitivity 
index of over 90.

The second most important uncertainty factor is the 
type of distance, with 3–6% of the total variance (first 
order sensitivity index); 10–20% of the variance when 
placed in interaction with the accessibility measure (sec-
ond order sensitivity index); and a value for the total sen-
sitivity index of 13.55–23.12. Thirdly, the impact of the 
aggregation method is much more limited: <1% for the 
first order sensitivity index; and a value for the total sen-
sitivity index of between 0.18 and 2.40.

The UA results, mapped in Fig.  11a, b, clearly indi-
cate areas of strong uncertainty on the North and 
South shores, whereas central neighbourhoods show 
lower levels of uncertainty. In other words, the choices 
made regarding the three parameters—distance types, 
accessibility measures and aggregation methods—have 

Table 6  continued

Accessibility measure Aggregation 
method

Accessibility measures using 
Euclidean distance

Accessibility measures 
using shortest network 
time (on foot)

CTCa WDAb WBLc CTCa WDAb WBLc

Enhanced two-step floating catchment area with  
a slow step-decay function

CTCa – –

WDAb 0.918 – 0.908 –

WBL1c 0.908 0.986 – 0.897 0.976 –

WBL2d 0.908 0.986 0.997 0.889 0.972 0.991

Enhanced two-step floating catchment area  
with a fast step-decay function

CTCa – –

WDAb 0.916 – 0.905 –

WBL1c 0.906 0.986 – 0.894 0.975 –

WBL2d 0.907 0.986 0.997 0.887 0.971 0.991

Enhanced two-step floating catchment area with  
a gradient function

CTCa – –

WDAb 0.917 – 0.907 –

WBL1c 0.908 0.987 – 0.895 0.975 –

WBL2d 0.909 0.987 0.997 0.887 0.972 0.991

a  Aggregation method based on census tract centroid (the least accurate method)
b  Aggregation method based on the population-weighted mean of the accessibility measure for dissemination areas within census tracts
c  Aggregation method based on the population-weighted mean of the accessibility measure for blocks within census tracts
d  Aggregation method based on the population-weighted mean of the accessibility measure for block centroids (adjusted with the land use map) within census 
tracts (the most accurate method)
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relatively little impact in the development of the assess-
ment of potential geographic access in central neigh-
bourhoods, unlike the case on the North and South 
shores.

Discussion
The SA results allowed us to show that the evaluation 
of potential geographic access may vary a great deal 
depending on the accessibility measure and, to a lesser 
degree, the type of distance and aggregation method. This 
is not surprising, as the 14 accessibility measures selected 
refer to conceptualizations of potential geographic access 
that are very different from one another. The choice of 

this parameter should thus be given considerable atten-
tion and have a specific justification as it helps to make 
the results vary substantially. It is then relevant to calcu-
late several measures that enable potential geographic 
access to be described in all its complexity. For example, 
measures based on both supply and demand dimensions 
(2SFCA and gravity models) are better adapted to gen-
eral, large-size services (e.g. hospitals), whereas meas-
ures of immediate proximity or cumulative opportunities 
are more suited to describing less common, specialized 
services (specialized centres). Moreover, these cumula-
tive opportunity measures are especially well adapted to 
describing the supply of services within an immediate 

Table 7  Aggregation errors in measures of the accessibility of hospitals at the census tract level

a  Aggregation method based on census tract centroid (the least accurate method)
b  Aggregation method based on the population-weighted mean of the accessibility measure for block centroids (adjusted with the land use map) within census 
tracts (the most accurate method)

Absolute difference between accessibility  
measure obtained from CTCa  
and WBL2b aggregation methods

Mean Percentiles (%)

5 10 25 50 75 90 95

Euclidean distance (m)

 Minimum time distance 236.35 5.24 11.17 33.29 88.44 218.39 649.26 1104.88

 Average distance to all services 202.62 2.05 4.01 13.41 42.99 146.13 617.01 1022.88

 Average distance to three closest services 189.97 3.01 6.15 16.40 47.73 159.28 527.03 963.20

 Average distance to five closest services 184.45 3.05 5.42 15.31 46.69 140.41 530.94 997.41

 Number of services within 500 m 0.05 0.00 0.00 0.00 0.00 0.00 0.17 0.43

 Number of services within 1000 m 0.10 0.00 0.00 0.00 0.00 0.04 0.37 0.59

 Number of services within 2000 m 0.17 0.00 0.00 0.00 0.00 0.25 0.56 0.82

 Potential gravity model (friction parameter = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Potential gravity model (friction parameter = 1.5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Potential gravity model (friction parameter = 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 2SFCA (2000 m or 30 min) 0.22 0.00 0.00 0.01 0.06 0.23 0.57 1.09

 E2SFCA with a slow step-decay function 1.93 0.00 0.00 0.00 0.02 1.47 5.73 9.53

 E2SFCA with a fast step-decay functiona 4.07 0.00 0.00 0.00 0.19 2.54 10.05 16.20

 E2SFCA with a gradient function 1.97 0.00 0.00 0.00 0.08 1.41 5.91 9.73

Shortest network time (on foot) (min)

 Minimum time distance 4.17 0.10 0.25 0.67 1.61 3.65 10.22 17.17

 Average distance to all services 3.49 0.05 0.12 0.34 1.00 2.72 9.37 16.48

 Average distance to three closest services 3.55 0.07 0.15 0.40 1.18 3.05 8.97 15.62

 Average distance to five closest services 3.44 0.07 0.14 0.36 1.05 2.86 8.30 15.48

 Number of services within 10 min 0.06 0.00 0.00 0.00 0.00 0.00 0.24 0.45

 Number of services within 20 min 0.12 0.00 0.00 0.00 0.00 0.11 0.46 0.68

 Number of services within 30 min 0.17 0.00 0.00 0.00 0.00 0.22 0.58 0.83

 Potential gravity model (friction parameter = 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Potential gravity model (friction parameter = 1.5) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 Potential gravity model (friction parameter = 2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 2SFCA (2000 m or 30 min) 0.92 0.00 0.00 0.00 0.00 0.56 2.59 4.83

 E2SFCA with a slow step-decay function 1.70 0.00 0.00 0.00 0.01 1.06 3.95 7.67

 E2SFCA with a fast step-decay functiona 3.29 0.00 0.00 0.00 0.04 1.85 7.33 13.20

 E2SFCA with a gradient function 2.27 0.00 0.00 0.00 0.01 1.22 4.71 10.38
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environment (within one mile, for example). That is why 
they are often used in health studies on food deserts [e.g. 
28, 69, 70] or the food environments around schools [e.g. 
71–73]. It should also be remembered that these acces-
sibility measures produce variables that may be either 

continuous or discrete, which may result in a particular 
one being chosen in keeping with the study design.

Although the choice of the type of distance has less 
impact on the results obtained, it clearly interacts to 
a certain extent with the measure of accessibility. The 

Fig. 10  Evaluating local aggregation errors
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interactions between these two sources of uncertainty 
generate more variation than the method of aggregation 
alone. For example, in 2SFCA methods, the catchment 
areas may be either larger or smaller depending on the 
type of distance chosen (car travelers can go further than 
pedestrians), and the same goes for measures that count 
the number of services within a specific radius. So this 

choice also requires careful consideration, in taking into 
account possible interactions with the latter measure.

Moreover, although Cartesian distances (Euclidean and 
Manhattan) are strongly correlated with the four net-
work distances, local variations are nonetheless observed, 
notably in suburban areas. Given that it has become 
much easier to calculate network distances—because of 
free access to geographical data and highly effective tools 
(GIS or online services)—the use of Cartesian distances 
in urban areas is no longer preferable today. Indeed, the 
time required for the computation of numerous network 
distances is no longer a limitation.

Another aspect should be mentioned concerning the 
comparison of the types of distance. The correlations 
have been shown to be weaker between public transit 
and other network distances. This can be explained by 
the unequal distribution of public transport (especially 
the subway) across the study area. The same remark also 
applies, although to a lesser extent, to cycling infrastruc-
ture. We also found strong correlations between network 
distances on foot, by bicycle and by car, which might lead 
one to believe that using one or the other of these types 
of distance comes down to applying a simple multiplying 
factor, which is not the case. The impact of topography on 
pedestrians’ or cyclists’ speeds is much greater than for 
car drivers. In a city with a more pronounced topography 

Table 8  Results of sensitivity analysis (Sobol’s indexes)

Transformation Z-score 0–1 Ranks

First order sensitivity index

 Distance type (n = 6) 3.34 6.05 3.12

 Aggregation method (n = 4) 0.01 0.10 0.83

 Accessibility measure (n = 14) 86.00 79.91 74.17

Second order sensitivity index (interaction)

 Distance type versus aggregation method 0.02 0.01 0.24

 Distance type versus accessibility measure 10.19 13.52 19.76

 Aggregation method versus accessibility 
measure

0.15 0.31 1.33

Total explained variance 99.71 99.89 99.44

Total sensitivity index

 Distance type 13.55 19.58 23.12

 Aggregation method 0.18 0.41 2.40

 Accessibility measure 96.34 93.73 95.25

Fig. 11  Results of uncertainty analysis. a Spatial distribution of uncertainty. b Spatial clusters of uncertainty
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(e.g. San Francisco, La Paz), these correlations would 
certainly have been weaker. Finally, the correlations with 
Cartesian distances were also weaker for peripheral areas 
than for central areas. In the Montreal context, this is in 
part explained by the presence of the bridges that link the 
Island to the North and South shores. In comparison, if 
we had conducted the study in the New York City area, 
the local correlations between Cartesian versus network 
types of distance would probably have been very high for 
census tracts on the island of Manhattan, and weaker for 
those located in Brooklyn, Queens, Staten Island and Jer-
sey City because of the bridges.

Finally, although the influence of the aggregation 
method is fairly marginal globally, we have nonethe-
less shown that errors in accuracy caused by the lack of 
an aggregation method can be important locally, espe-
cially in suburban areas, where census tracts mostly 
have lower population densities and where land use 
is largely non-residential. Because the accessibility of 
health services may be more problematic in suburban 
areas than in more central urban areas, geographi-
cal accessibility studies should be based on the most 
accurate aggregation method. The question of the use 
of an aggregation method is especially important when 
accessibility measures calculated on the level of census 
tracts are introduced as dependent variables into mod-
els for predicting health outcomes. Consider the classic 
example of a multilevel model with individual vari-
ables (level 1), socioeconomic variables and measures 
of the accessibility of health services or health-related 
resources at the census tract level (level 2). If the acces-
sibility measures are not calculated by using an aggre-
gation method—in other words, if they are obtained by 
only using the census tract centroids—that could lead 
to errors or lack of precision in the estimation of the 
impact of the accessibility of health services or health-
related resources on health.

Conclusion
This article evaluates the potential geographic access to 
urban health services using 14 accessibility measures, six 
types of distance and four aggregation methods. Based 
on these three parameters, 336 indicators of geographic 
access at the census tract level have been obtained. A 
sensitivity analysis has shown that the parameters that 
create the greatest variation in the evaluation of potential 
geographic access are, in descending order: the accessi-
bility measures and, to a far lesser extent, the type of dis-
tance and the aggregation method used. An uncertainty 
analysis also made it possible to show that inaccuracies in 
the evaluation of geographic access are much greater in 
the suburbs than in central neighbourhoods.

In sum, in order to accurately assess potential geo-
graphic access to health services in urban areas, it is par-
ticularly important to choose a precise type of distance 
and aggregation method so as to limit inaccuracies in 
measurements. Then, depending on the research ques-
tion and/or research objectives, the choices of the type of 
network distance (according to the mode of transporta-
tion) and of a number of accessibility measures should be 
carefully considered and adequately justified.
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