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1 INTRODUCTION

Due to the growing evidence of climate change, the common assumption of stationarity
of hydrologic phenomena no longer holds. Several recently published works point out
shifts or trend changes in hydrologic time series [e.g. Salinger, 2005; Woo et Thorne,
2003; Burn et Elnur, 2002]. Possible reasons of change in statistical characteristics of
observed data series include natural or anthropogenic actions on the physical
environment (deforestation, construction of hydraulic structures, pollution, etc.), and

modifications in measurement equipment or protocol.

To deal with these non-stationary data sets, changepoint analysis in hydrologic time
series is regularly revisited using various assumptions on the data model, on the
parameter that exhibits a change as well as on the type of change. Most of the
published methodologies use classical statistical methods to detect changes in slopes
or intercept of linear regression models [Solow, 1987; Easterling and Peterson, 1995;
Vincent, 1998; Lund and Reeves, 2002; Wang, 2003]. Other curve fitting methods are
used in some rare cases [e.g. Sagarin and Micheli, 2001; Bowman et al., 2004].

The changepoint problem was also addressed in Bayesian statistics: Gelfand et al.
[1990] discussed Bayesian analysis of a variety of normal data models, including
regression and ANOVA-type structures, where they allowed for unequal variances.
Barry and Hartigan [1993] developed a Bayesian analysis for a multiple changepoint
problem. The multiple changepoint component was introduced by a normal random
variable that can be added anytime to the mean of the series, but only with a certain
probability. Stephens [1994] implemented Bayesian analysis of a multiple changepoint
problem where the number of changepoints is assumed known, but the times of
occurrence of the changepoints remain unknown. Other authors emphasized on the
single changepoint problem. We cite for example Carlin et al. [1992] who applied a

three-stage hierarchical Bayesian analysis to a simple linear changepoint model for
normal data: ¥, 00 N[a, +5x,5], t=1,..,7, ¥ 0 N[a, +b,x,,62], t =7 +1,...,n. Perreault et
al. [2000a; 2000b] gave Bayesian analyses of several changepoint models of univariate

normal data. All of these authors implemented their analyses using Gibbs sampling.

Rasmussen [2001] considered a single changepoint in a simple linear regression model
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with noninformative priors and derived the exact analytical posterior distribution of the
regression parameters. His model assumes that the changepoint occurred with
certainty, and does not allow a clear diagnosis of the existence of the change. Perreault
et al. [2000c] developed an exact analytical Bayesian analysis of a changepoint in the

mean of a series of multivariate normal random variables.

The model presented in this paper allows simultaneous changepoint analysis of several
time series, each time series being modeled as a linear combination of a set of
explicative variables. It generalises the model of Rassmussen [2001] to cases where
there is more than one response variable, to cases where the changepoint does not
occur with certainty and to cases where informative priors on the regression parameters
are required. It also improves on the models of Perreault et al. [2000a, b, c¢] which are
all special cases of the model presented in this paper. Unfortunately, the solution is no

longer analytic and inference is performed using Monte-Carlo Markov Chain simulation.

The outline of this paper is as follows: the general changepoint model is presented in
Section 2. Section 3 presents the Monte-Carlo Markov Chain integration methods that
will be used in this paper, with special attention to Gibbs sampling. Section 4 presents
the technical developments that enable MCMC sampling of the parameters of the
multivariate regression model. The methodology is adapted in Section 5 to account for
missing data in the response variables and/or in the design matrices. The methodology
is then generalized to segmented multivariate regression in Section 6. Based on this
generalization, the final remarks in Section 7 discuss the wide scope of potential
applications of the procedure described in this work. The method described in this paper
provides a practical approach to highly complicated problems, such as switching models

or segmented regression.




2 THE GENERAL CHANGEPOINT MODEL

Carlin et al. [1992] present a general formulation of the changepoint problem. Let
Y=(Y,..,Y,) be a sequence of random vectors which displays a changepoint at an
unknown time of change re{l,..,n}. The simplest formulation for the changepoint
model assumes that the random vector Y, has a probability density function (pdf) s for
t=1,.,r and pdf g for =7r+1..,n. The case r=y stands for the absence of a
changepoint. It follows that the likelihood of 7 is

L) =[]r¥)]] £¥) [1]

t=r+1

with ﬁg(.)=1, if r=n.For known pdf's f and g, the maximum likelihood estimate

t=n+1
(MLE) for  can be directly obtained by calculating the likelihood [1] for each
re{l,2,..,n}. When we consider parametric families f(.|&) and g(-|¢), the likelihood

becomes

&6 =T/ 10T 50416 2

Although estimates of 7, £ and ¢ could possibly be derived from the likelihood, writing

a reliable routine to obtain MLE’s is often hard in practice, especially for problems
involving a large number of unknown parameters. A Bayesian formulation of the
changepoint problem gives an alternate approach to inferring on the parameters.
Assuming a prior p(r,£,¢) for the parameters, the joint distribution of data and

parameters is

L(z,6,6 1Y) p(7,6,¢), (3]




which is proportional to the joint posterior distribution of 7, £ and ¢ . Obtaining the

exact posterior marginal distribution of the parameter  requires the integration of [2]

with respect to £ and (. However, this might not be practical in high-dimensional

problems. In such cases, we prefer to approximate the posterior distribution using

Markov chain Monte Carlo methods as will be discussed later.

We now present the model that is developed in this work. We assume that the (rx1)

vector Y, is related to the (rxm") matrix X by

Yt = Xt957)+0t [33]
where
0 = B, 1<t<rw, [3b]
S T<t<nm,
under the constraints
B, =(B,B,) and B,=(B,.B,)" [3c]

The dimensions of the vectors 0, B, B B,» B, B, are respectively (m*x1), (m"x1),
(m*x1), (myx1), (m x1) and (m’ x1). Of course, equation [3.c] implies that m" =m] +m’ .
It is also assumed that error terms {v,} are independent and identically distributed

following N[0,Z)].

Model [3a] assumes a changepoint in the (m*x1) vector ¢{” from the (m; x1) subvector
B, to the (m x1) subvector g.. The (m; x1) subvector g is assumed to remain part of

;" throughout the observation series. This feature allows to model, as a special case,

a changepoint in the intercept parameter.

By defining ¢ = (8,8,.8,) and




S, (=g, 0

1

0 0 I

.
my

AP =

2

where I . and I . are the identity matrixes of dimension m,and m, , and

5O = 1, t<1,
) =
0, t>7,

model [3.a] can be written more simply as

Y, = X, A8+, [4]

Hence, with the knowledge of the time ¢ of the changepoint, the changepoint structure
can be modelled as a single multivariate regression equation. This fact greatly simplifies

the analytical developments for parameter estimation. The general model

Y, =F0+ v, [5]

where F, is any (rxm) design matrix, will be studied in Section 4. Models [3] and [4]
correspond to the special case F, =X A . Note that when there is a continuity

constraint at the changepoint, the expressions of 8 and A are different. These

expressions are given in appendix 1 for the case of two linear relationships before and
after the changepoint, and the case of a linear relationship followed by a constant mean,

assuming that the mean is continuous at the changepoint.




3 MONTE CARLO MARKOV CHAIN

To make inference on a parameter of a Bayesian model, it will be necessary to integrate
the joint posterior probability with respect to all the other parameters. Except in very
simple cases where the solution is analytical, this integration is carried out through
computer simulation. The idea of studying the stochastic properties of a random
variable through computer simulation is not recent (see Metropolis and Ulam, 1949).
Contributions from Metropolis et al. [1953] and Hastings [1970] led to a general method
nowadays referred to as the Metropolis-Hastings algorithm. When all conditional
distributions are known, Gibbs sampling [Geman and Geman, 1984] is preferred to the
Metropolis-Hastings algorithm because it leads to less numerical problems. The power
of the Metropolis-Hastings algorithm and the Gibbs sampler is undeniable. They allow
Bayesian analysis of highly complicated models even when exact closed-form solutions

are theoretically impossible to obtain.

3.1 THE METROPOLIS-HASTINGS ALGORITHM

This is an algorithm that allows us to simulate from any distribution for which the pdf

p(-) is known up to a multiplicative constant: there is no need to know the normalizing

constant since the algorithm depends on the pdf only through ratios of the form

p(a)/p(a,), Where ¢ and o, are sample points. A comprehensive introduction to the

Metropolis-Hastings algorithm is presented in Chib and Greenberg [1995]. A summary

of the algorithm is presented herein. First define a candidate generating distribution

g(a,a”) which selects a random value " from any given starting point o . Assuming a

starting point o, repeat the following for ;=1,. N
Generate a candidate " from ¢(¢”,.) and ; from the uniform U(0,1) distribution.

Calculate g(a”,a") by

.| pla’)gla’ @) . .
(a.a’)= mm{—_p(a)q(a,a*) ,1], if p(a)q(a,a )>0,

1, otherwise.




Define

P . ; *
LU _{ a, ifu<a(@?”,a’),

a, otherwise.

Under the reasonably general regularity conditions of irreducibility and aperiodicity, the

process converges to the target density p(.). These conditions mean that, if o and ¢
are any possible values of the random structure (@yerer @) s it must be possible to move

from o to ¢, in a finite number of iterations and the number of iterations required for

such move is not necessarily a multiple of some integer. The first generated values

should be discarded to allow the series to reach convergence to the target density.

3.2 GIBBS SAMPLING

Research in Bayesian analysis using Gibbs sampling is exploding nowadays. Gibbs
sampling is a method that allows simulation of a multivariate distribution for which all
conditional distributions are known. The procedure was first introduced by Geman and
Geman [1984]. Like the Metropolis-Hastings algorithm (see above), Gibbs sampling can
be used to estimate the joint posterior distribution of parameters. The method ultimately
generates random variables from the joint posterior distribution. Casella and
George [1992] gave a comprehensive introduction of the Gibbs sampler. See also the
pioneering papers of Geman and Geman [1984], Tanner and Wong [1987], and Gelfand
and Smith [1990]. To summarize the method, suppose we want to generate from the
joint distribution of », potentially multivariate random variables a,,...,a, - Gibbs sampling
consists of sequentially updating the sampled values of these variables by generating
from plegHa,, i = 1) pley|{a;,j#2}) s o pla, |{a,,j#m}). This sequence is then
repeated until the appropriate sample size is reached. The first generated values (or
burn-in) of Gibbs sampling should be discarded to allow the process to reach
convergence to the joint distribution. See Ritter and Tanner [1992] for some solutions to
burn-in issues and problems with the generating distributions. The process converges to

the joint distribution of {a;} under the regularity conditions of irreducibility and




aperiodicity stated in the preceding paragraph, Gibbs sampling is an important special
case of the Metropolis-Hastings algorithm. Because Gibbs sampling does not require
the choice of a candidate distribution to sample from, it is usually preferred to the
Metropolis-Hastings algorithm when the full conditional distributions are available and

easy to sample from.




4 POSTERIOR DISTRIBUTIONS OF PARAMETERS

In this section, we list the posterior distributions needed to implement the Gibbs sampler
for model [5]. In Section 4.1, under a normal prior, the conditional posterior distribution

of ¢ given y,  will be provided. In Section 4.2, we obtain the conditional posterior
distribution of T, given g. There will be no restriction on the prior for T, but conjugate

priors will also be considered, namely the inverse-Wishart prior and the case of
independent data. These conditional distributions are useful for performing Gibbs

sampling from the joint posterior of ¢ and T, -

To simplify the developments, an approach similar to the one proposed by Gelman et al.
[1995] is adopted: model [5] is expressed into the equivalent univariate multiple

regression representation by stacking the observed Y,’s in a single vector y*. Hence,

we define

Y '=(Y1,Y2,..,Y%),

0 =W p0W

where Y is the (nrx1) vector of observations, F is the (nrxm) matrix of explanatory
variables, and 4" is the (nrx1) multivariate normal vector of residuals with zero mean.

The covariance structure of ,* assumes independence over time, that is,

Var(v") =1,83%,.

where ®is the kronecker product operator. For instance, if A=(a;) and B=(b,) then
A®B=(q,B).
Model [5] is then simply expressed as the univariate regression model

Y ' =F0+y"
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Under the assumption of normality of the residual vector ,,", it follows that

Y'|F,0,5,~ N[Fo,I, ®3,] [7]

The prior distributional assumptions for the Bayesian context are defined in the following

section of the paper.
4.1 CONDITIONAL POSTERIOR OF g GIVEN 3,

Under model [5] with normal prior

9 | FaZyN N[BO)EQ])

conditional inference of y* and ¢ given the design matrix F and the variance matrix

HES NN

3, is a consequence of

where

f =Fo,,
Q:In®2y+F29F', [9]

S =3

From [8], it follows from normal theory that

6|Y,F,s,~ N[m,C],

where

m =@, +SQ"(Y" - f),
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C=3,-SQ'S [10a]

= (7' +F (@, ®3;)F)". [10b]

If a proper prior for ¢ is selected, [10a] is well defined. However, if |3, |- «, then [10a]

may be computationally undefined, so [10b] should be used when y:! is easily obtained

and 125 | is finite. Since Q is (nrxnr), Q' should be calculated as

Q'=(1,8%;)-(1, ®5;)FCF(, ®;), (]

with ¢ obtained from [10b], rather than by directly inverting [9]. The advantage of (11) is

that y-! is only (rx ) and C is only (mxm) in contrast to the (nrxnr) matrixQ-.
Conditional Posterior of 5 given ¢

We shall make use of the convenient notation that, for any parameter ¢, p(¢) denotes

the pdf of £ . In general, we have

P, Y, F,0) < p(z,|F,0)p(Y'|F,0,5,),
< p(z, |F,0)[ [ p(Y,|F.0,5,)
t=1

< p(z,|F,0)| 2, exp(-tr(n$,5;")/2),

where

iy = n_lz VWwsL =Y, — Fte- [12]

t=1

Hence, under model [12] and the assumption of inverse-Wishart prior

z, |F,8~ WA,
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the conditional posterior distribution of Z» is

Zy | Y’ F’e = Wu_:n (Ay + Uiy)'

A description of the inverse-Wishart is presented with a sampling algorithm in

Appendix 4. The noninformative case corresponds to y - -1 and | A, 0 [Gelman et

al., 1995]. However, the sample size ; must be sufficiently large in order to ensure a
proper posterior. A careful approach would be to consider reasonably vague but proper

priors.

In the case when 5 =5’ , where 1, is a known positive definite matrix, a conjugate

inverse-gamma prior

5> |F,0 ~G™'(a,b).

is assumed. (See Appendix 3 for a description of the inverse-gamma distribution.) The

corresponding conditional posterior for 52 is

5*|Y,F,0~G™ (a +%,b+%tr(niy1“;‘)).

The noninformative case corresponds to imposing 4—0 and »— 0. Again, this
improper prior should be used only if the sample size , is sufficiently large. Finally, the
important case of independent response variables corresponds to r,=1,. In such case,

we have

5*|Y,F,0~G™ (a+i’2-’-,b+—;-tr(ngy)).

14



5 CHANGEPOINT INFERENCE

In this section, we focus on the changepoint inference part of the problem. As noted in
the introduction, any changepoint in a regression model can be modelled by a plain
regression model conditioned on the time of changepoint. It is then a matter of

“rewriting” the design matrices {X} as a single matrix F given ¢ and obtaining a

conditional posterior for the time of changepoint.

For any prior p(r|{X,},0,%,) « p(F,0,5,) under model [5] with F =X A(” depending on

r, we have
r(r|Y,{X,},0,3,) < p(F,0,2,]Y)
o p(F,0,2,)p(Y"|F,0,5))

« p(F,0,5,) |, exp(-tr(ng 5;1)/2), [16]

where 5, is obtained from (72). This result can be used to sample  under any prior
assumption on ¢, ¥, and the missing values. Equation [16] is the “regression” version

of [2]: it is the exact posterior density of all unknown parameters. Hence, this equation
would remain valid for any structure built in F. This feature will be further exploited in
Section 7. The use of the Metropolis-Hastings algorithm with [16] provides a general

method to generate from the joint posterior of {F,0,%,}, although this may be

computationally difficult in practice, which explains why direct Gibbs sampling with

conjugate priors is often preferred.

Although Gibbs sampling of ; from [16] is always possible (provided that the regularity
conditions of Section 3.1 are satisfied), it is possible to do better under further prior
assumptions. In Section 4.1, we have assumed a normal prior for ¢ . With this additional

assumption, we can integrate [16] with respect to ¢ and we have

Y, {X,},2,) < p(F,2,]Y)

15



« p(F,z,)p(Y'|F,%,), [17]

where

Y'|F,z, ~NI[f,Q]

is directly obtained from [8]. Since the parameters ; and ¢ may be strongly dependent,
the use of (17) as opposed to[16] has the desirable feature of reducing the
dependencies in the series of Gibbs samplers. Therefore, the use of [17] would improve
mixing and would speed up convergence to the joint posterior of all parameters. Ideally,

we should integrate [17] with respect to ¥, as well, but our prior assumptions render

this task very difficult. Perreault et al [2000c] performed successfully a similar

integration under a simpler model with more restraining priors.

When choosing the prior for , since the particular event 7=n stands for the absence
of a changepoint, it might be appropriate to place more or less prior probability mass on
this event, depending on the question of interest or on the prior knowledge of the data.

In their application example, Carlin et al. [1992] used the discrete uniform on {1,2,....n}

as a prior pmf for ;.
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6 EXTENSION TO MISSING DATA

In practice, the data set could contain missing values. Bayesian methods cope with this
problem elegantly by simply replacing the missing values by unknown parameters that
are updated in the Gibbs sampling routine the same way it is done for the parameters of
interest. In order to update a missing value through Gibbs sampling, we need its

conditional distribution given all other parameters and data. This section presents the

conditional distributions that allow Gibbs sampling of missing values in Y' or F.

The case where missing values are presentin Y’ is examined. For any given matrix (or

vector) a, let 3 be the matrix (or vector) composed of the values in 3 corresponding
()

to the set of indices . Hence, define y'  to be the vector of missing values in v,

(M)
where M is the set of indices corresponding to the missing values in Yy, and define

Y5, to represent the vector of observed values in Y, where (O is the set of indices

corresponding to the observed values.

From [7], the posterior distribution of the missing values in YV is

Yin | Yoy, F, 2, ~N(f (M)’Q(MxM))’

where

f(M) = f(M) + Q(MxO)(Q(OxO))—l (Y(VO) - f(O))

and

~ -1
Quran = Q(MxM) - Q(MxO) (Q(0xo)) Q(OxM)’

If F have missing data, it can also be generated by Gibbs sampling. With this approach,
the model for F cannot be ignored and prior distributional assumptions on F must be
considered. For instance, in the case of model [4], the prior must account for the

changepoint structure F, = X A" . We present a solution for this special case.
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Define X7 by stacking the columns of X into a single column vector. Inference on

missing data will be obtained from the conditional joint distribution of y and Xx*. These

two components are related by model [4], which can also be written as

Y, = (0" ®1)X! +u, [18]

Let x;,...X'} be independent with

X:/ I/ux’Qx“‘N[,ux,Qx]s t:19"'7n7

and define for a given time ; when some values are missing

From [18], it follows that

Zt I 7’-’9’ Z}U :ux’ Qx ~ N[gt’ Rt ]’

where

(e(r)®1r .
g,=( CeLIkL

My

R = (Zy +(0®L)Q,(0”®1L,) (0 ®1,)Q,
t Qx(ﬂgr) ® Ir) Qx

From model assumptions, {Z,,...,Z,} are independent. Hence, the posterior distribution

of the missing values in Z, is directly obtained by normal theory, that is,

Zt(M) I Zt(O)’T’O’ Zys Moo Qx ~ N[gt(M)’ Rt(MxM)]’

18



where

gy(M) = gt(M) + Rt(MxO) (Rt(Oxo))_] (ZI(O) - gt(O))’ [1 98]

ﬁt(MxM) = Rt(MxM) - Rt(MxO)(Rt(OxO) )_1 Rt(OxM)' [1 9b]

However, (R -1 'may not be strictly positive definite, but only nonnegative definite.

z(0><0))
This will happen if, for example, an intercept parameter is part of model [5]. It can be

shown that (14) remains valid if the g-inverse (generalized inverse) (R - is used

t(OxO))

instead of (R . The g-inverse of a matrix A is denoted by A™ and can be

~1
t(OxO))

calculated by A"=TA™T" where T is a column orthonormal matrix of eigenvectors
corresponding to the s non-zero eigenvalues A =diag(4,,..,4,) of A. A more general

definition of the g-inverse is reviewed in Mardia et al. [1979].

To provide an estimation tool for the parameters u, and o , we consider the conjugate

normal-inverse-Wishart prior
Q. ~ W, (Vo), [20a]

1€~ N, Q.7 1 | [20b]

From Gelman et al. [1995], the conditional posterior is

Q{X}~ W, ' (V)
# HX 3 00~ Nlp,, Q1K ]

19



where

1 _
Hy= k_(koﬂo+nx)>

k,=k,+n,

v, =0, +n,

kn — = ,
v, =V0+S+kL(X—,u0)(X—y0),

and

Pl
I

= S |-
-
i

~
|
—_

We can easily obtain samples from this joint posterior by first sampling ¢ |{X,} and
then sampling 1, _|{X,},Q, - See Appendices A.1 and A.3 for sampling from multivariate
normal and inverse-Wishart distributions. The noninformative multivariate Jeffreys’ prior

density for {4 0.} IS

I—(rm'+1)/2

L1, Qu] o Qs

This is the limiting case of the normal-inverse-Wishart prior in [15] when k —o0,
v, >-1 and |V, |- 0. The posterior distribution {; ,0,|{X,}} for this case can be

written as

Q.X})  ~  WL6S),
Hy l {Xt}’ Q, ~ N[X’ Qx/n]’

in which we find the sample estimators of the parameters ;, and ¢ .

20



7 FURTHER GENERALIZATIONS

This paper presented a method of analysis for a single changepoint in a multivariate
regression model. However, the same idea can be exploited for more complicated
models, including a muitiple changepoint model or the more general segmented

multivariate regression. The latter is formally described as

Y, =X,B,+v, if x, €la,_,,a,],

for t=1,..,n and je{l,...[}. The (»x1) observations {y,} are modeled as piecewise
regressions depending on the covariates {x}. {X,} are (rxm) design matrices, {g}
are (mx1) regression parameters, and {y} are (rx1) residual vectors. A natural
approach for the analysis of this model is to obtain estimation equations for the ﬂi’s
separately. However, this problem is greatly simplified if the model is written as its

equivalent multivariate regression form. Define the (1x/) row vector

i

—N .
59=(0,0,...,0,1,0,...,0), if x, € (a,_,,, ]

With ¢’ = B'p-sB) the segmented multivariate regression is equivalent to

Y, =X,(5V®1,)0+v,.

Under the appropriate assumptions on the residuals {,}, results of Sections 4 and 5
are immediately applicable. With F, =X,(s"®1 ), the conditional posterior [16] (or [17]

if @ has a normal prior) can be used to obtain the conditional posterior of the

parameters {o} and perform their Gibbs sampling. There is no doubt that the same

idea can be used to obtain a practical solution for a wide variety of switching modeis.
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8 CONCLUSIONS

This paper has provided a simple implementation of Bayesian analysis for multivariate
regression via Gibbs sampling. The method was extended to the inclusion of missing
values and to the inclusion of a changepoint structure in the model. . An attractive
feature of the approach presented in this paper is can be applied to cases that can’t be
analysed with recently published changepoint detection methodologies such as
Rasmussen [2001] and Perreault et al. [2000a,b,c]: it can readily be applied to cases
where the changepoint simutaneousely occur in several response variables, to cases
where the change does not occur with certainty and to cases where informative priors
are appropriate. Several applications that highlight these features are presented in
Seidou et Ouarda [2005].

An interesting future development would be to relax the assumption of constant residual
variance over time and the one of normality. A potential approach for this would be to
introduce dependencies in the variance evolution over time, hence allowing for variable
variance estimation. The scope of possibilities for the developed approach goes beyond
the analysis of the single changepoint problem. The case of multiple changepoints could
also be easily treated using the idea in Section 7. Potential applications of this model
include not only changepoint models, but also other switching models such as
segmented multivariate regression or shifting-level models. Such generality is made

possible by the fact that the design matrices {F} can be structured in accordance to

such models. This opens the door for a practical approach to analyzing these models
and applying them in the field of water resources.
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Appendixes




APPENDIX 1: DESIGN MATRIX F WHEN THERE IS A CONTINUITY
CONSTRAINTS AT THE CHANGEPOINT

When there is a continuity constraint at the changepoint, the expression of the design
matrix F is slightly different of that presented at Section 2. We give here its expression

for two practical cases.

A.1.1. CONTINUITY CONSTRAINT AT THE CHANGEPOINT

v - XB, +v,if t<t
t (Xt _Xf)ﬂ; +Xrﬁ; TV, ift>’l'

X; =(X,X,)

6=(B,.p,)

A = (H(S}I (1_@5;DIM
<) {{ie))-

F = XA;

Note that in this special case, if X has a column with constant values, the coefficient of

the first element of B, is always null, thus this parameter should not be updated in the

MCMC computations.
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A.1.2 LINEAR RELATIONSHIP BEFORE THE CHANGE, CONSTANT
MEAN AFTER THE CHANGE, AND CONTINUITY OF THE MEAN
MODEL AT THE CHANGEPOINT

o _[XBrvirese
X BV ift>T

X=X, X))

h}q}#

727

A} =
= T16 1|2,
727 ‘
0=
F = XA}

Y, =Ff+v
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APPENDIX 2: SAMPLING FROM A MULTIVARIATE NORMAL

The target distribution is a p -dimension normal N(.,S) with density

1
(2p)?"”?

J®= S exp (—%(X—#)'S"(X-ﬂ))-

1. Obtain a matrix A such that AA'=S (using the eigenvalue decomposition, for

example).

2. Generate Z=(Zp---,Z,,)" a vector consisting of 7 independent draws from a

standard normal distribution.

3. X=u+Azll N(4S)

35



APPENDIX 3. SAMPLING FROM AN INVERSE-GAMMA

The target distribution is G'(4,6), >0, b>0, with density

£O)=L e 950
I'(a)

1. Simulate 7 from a G(q,b) distribution with density

f(x)= flza—)x“'le'b",x > 0.

2. 9=1/y0G"(a,b). The expectation and variance are respectively

E(0) = b/(a—1) fora >1,

and

2
Var@) =——2  foras2,
(a-1)*(a-2)
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APPENDIX 4. SAMPLING FROM AN INVERSE-WISHART

The target distribution is W '[S] where S is a (kxk) symmetric positive definite matrix

and v e {k,k+1,k+2,..} . The density function is

| Aoki2 L k(k-1)/4 d v+1-i B
f(Z)—(Z P (2 D

i=1

A ol ez

where ¥ is symmetric and positive definite. The following algorithm was first proposed
by Odell and Feiveson [1966].

1. Simulate an->an, v independent samples from a k-dimension multivariate

normal distribution N(O,I)  Define the (¢x1) matrix @ =(av--»an),

2. Obtain a matrix A such that AA'=S (using the eigenvalue decomposition, for

example).

3. Z=A(aa)'A'OW,)'(S)

The expectation of an Inverse-Wishart is

EZX)=S/(v-k-l)forvo=>k+2.
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