
Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

215 

Current Account Balances, Exchange 
Rates, and Fundamental Properties of 
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This paper addresses theoretical aspects of global multinational trade models of the 
computable general equilibrium (CGE) type. We define and discuss the concepts of 
model homogeneity, model closure rules, and consistency in calibration. We examine 
and illustrate these issues using a highly simplified skeleton model derived from the 
PEP-w-1 CGE world model, to represent the essential structure of world trade 
models. Model closure issues, including how to correctly fix current account 
balances, are scrutinized. We also consider the role of nominal exchange rates in 
Walrasian “real” CGE models (without money), which can be, and often are written 
without exchange rates. But when exchange rates are present, we show that a model 
can be solved equivalently by exogenously fixing either exchange rates (FE) or 
regional price indexes (FP), and we weigh the advantages of either closure for 
economic interpretation of simulation results. The model is implemented in GAMS 
and is made available to readers as a supplementary download. 

JEL codes: C68, D58, F47 

Keywords: Computable general equilibrium models (CGE); Global trade models; 
CGE model closures; Current account balance; Exchange rate. 

1. Introduction 

There is an abundant literature on macro-economic closures for single country, 
open-economy models (Decaluwé et al., 1988; Delpiazzo, 2010 contains a recent 
comprehensive review; Dewatripont and Michel, 1987; Rattsø, 1982; Sen, 1963). In 
the present paper, however, we are not concerned with closures in single-economy 
models, but rather with issues that arise in the context of global multinational 
models, typically, trade models. In addition to model closures, we explore a few 
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related issues that are rarely dealt with explicitly in CGE multinational modeling: 
model homogeneity, the role of exchange rates, calibration neutrality and 
consistency, and testing for calibration consistency and model homogeneity.  

Indeed, there seems to be a void in the literature regarding these issues, each of 
which will be addressed in turn.  

Closures: Global models, as opposed to single-country, open-economy models 
or multiregional non-global models, are “closed” systems, in that there is no “Rest 
of the world”. It follows that the worldwide sum of current account balances, 
when expressed in a common currency, must be zero. This rules out the 
unconstrained flexible current account closure sometimes used in non-global 
models. As a matter of fact, exogenous trade balances (which ensure the zero-sum 
constraint) are a common form of closure in global models, but the constraint is 
seldom explicitly stated or its form motivated.1 We also extend the formal 
discussion of closures to systematically examine other possibilities, only to 
conclude that they are not feasible. This underlines the fact that selecting closure 
rules cannot be reduced to the simple counting of equations and variables. 

Exchange rates: Another feature of global models is that the economic reality 
they represent involves multiple currencies. Data sources such as the GTAP 
database convert all monetary values to a common currency, and many global 
models are implemented without exchange rates, for example GTAP (Hertel 1997), 
or MIRAGE (Bchir et al., 2002a, 2002b; Decreux and Valin, 2007). In most Walrasian 
CGE world models that do have exchange rates, their nominal values are fixed 
(one exception is the Globe model: McDonald and Thierfelder, 2016). Here we 
propose endogenous nominal exchange rates, with fixed regional numéraires, as 
a model design which facilitates interpretation of results. 

Calibration: Calibration procedures, including the implications of 
price × volume factoring, are generally not discussed.2 Here, the concepts of 
homogeneity, closure and calibration neutrality and consistency are defined, and 
then related to practical issues of model specification, in a single integrated 
exposition. This third set of issues relates to any CGE model, not only global ones.  

To examine and illustrate the issues we tackle, we develop a highly simplified 
skeleton model derived from the PEP-w-1 worldwide CGE model (Lemelin, 

                                                           

1 The topic of endogenous current account balances, often discussed under the heading of 
“international capital mobility”, is not addressed in this paper. Indeed, capital is 
internationally mobile and current account balances are endogenous in several global CGE 
dynamic models: the current version of GTAP and GTAP-Dyn (Ianchovichina and 
McDougall, 2001; Ianchovichina et al., 2000); the G-Cubed model (McKibbin and Stoeckel, 
2009; McKibbin and Wilcoxen, 1999); the DART model (Hübler, 2011; Springer, 2003); the 
PEP-w-t-fin model (Lemelin, Robichaud, and Decaluwé, 2013, 2014). 
2 McDonald and Thierfelder (2016, p.19) state their normalization rule explicitly, but do 
not discuss it. 
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Robichaud, Decaluwé & Maisonnave, 2013), but which represents the essential 
structure of several world trade models. It should be mentioned that our skeleton 
model has been elaborated using a SAM (Social Accounting Matrx)-based 
approach and has been implemented in GAMS. It follows that some technical 
points may not be relevant to other approaches (such as models implemented in 
GEMPACK), but the principles discussed are generally applicable to CGE 
modeling. 

In Section 2, we present the basic concepts: model homogeneity, model closure, 
and calibration consistency. The theoretical model is presented in Section 3 (Model 
1). In Section 4, the model is simplified, and redundant equations are identified 
and deleted (Model 2). Closure rules are first discussed in reference to Model 2 
(Section 5). Next (Section 6), the role of exchange rates is clarified; the model is re-
written in terms regional currencies, and nominal exchange rates are introduced 
(Model 3). Closure rules are revisited, detailing the choice between fixed exchange 
rates (FE) or fixed regional price (FP) closures; and calibration consistency is 
discussed. A brief conclusion wraps up the paper.  

The implementation of Model 3 in GAMS is presented in Appendix K, and all 
of the GAMS programs and files are provided with this paper as supplementary 
online material. Readers are strongly encouraged to use the GAMS programs to 
test some of the ideas raised in the paper and thus gain a more hands-on 
understanding. 

2. Concepts 

2.1 Model homogeneity and Walras’ Law 

Model homogeneity derives from microeconomic theory. The theory states that 
supply and demand functions derived from optimizing are homogenous of degree 
zero in prices and income (or more generally prices and nominal values). 
Formally, a CGE model is a set of simultaneous equations relating variables, some 
of which are endogenous (determined within the model), the rest being 
exogenous. The core of a CGE model consists of equations representing consumer 
and producer optimizing behavior, and market equilibrium. A CGE model 
solution is a Walrasian competitive general equilibrium: all optimizing economic 
agents meet their (first-order) optimality conditions, subject to their budget 
constraints, and all markets are in equilibrium. Without money, the set of 
equations which constitute the model is homogenous of degree zero in prices.  

To formalize the definition of homogeneity and generalize it a little, let us 
distinguish the three types of variables a model may contain: volume variables, 
price variables, and nominal variables. Some nominal variables are the product of 
a volume and a price, but others cannot be factored into volume and price. They 
just represent payments made from one agent to another, such as transfers. With 
that distinction in mind, a model solution may be characterized as a triplet of 
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vectors  npq ,, , containing volume (q), price (p), and nominal (n) variables. In a 

homogenous model, if  npq ,,  is a solution to the model, then  npq  ,,  is also a 

solution, for any  > 0. In other words, multiplying all prices and nominal values 
by a constant doesn’t disturb the equilibrium, because it leaves relative prices 
unchanged. This is the principal implication of homogeneity: only relative prices 
matter. Prices are determined only up to a factor of proportionality and their 
absolute level is indeterminate. 

The absolute level of prices is indeterminate because model homogeneity 
implies that one equation is redundant: there is one more price variable than the 
number of independent market equilibrium equations. This is generally referred 
to as Walras’ Law (Léon Walras, 1834-1910). Consider an economy where 
producers maximize their profits subject to their production function, and 
consumers own all factors of production, receive all factor income, and maximize 
their utility subject to their budget constraint.3 For every good (factor or 
commodity), excess demand is defined as the sum of demands by all agents, minus 
the sum of supplies by all agents, for some price vector.Denote the vector of excess 

demands as  p . In equilibrium, demand equals supply, and  

  *p , where *p  is the equilibrium price vector. Walras’ Law states that for any 

p (equilibrium or not), the total value of excess demands is zero:    pp  . This is 

a straightforward consequence of respecting budget constraints: since  pp   is the 

sum of all expenditures and incomes of all agents, if all budget constraints are 
satisfied, then that sum must be zero. A corollary of Walras’ Law is that, if all 
markets but one are in equilibrium for some price vector, then the remaining 
market must also be in equilibrium, because the value of excess demand on that 
market cannot be different from zero. It follows that in a model with N markets, 

there are only N–1 independent market equilibrium equations, and the Nth is 
redundant. 

That leaves one degree of freedom, and the model is completed by exogenously 
fixing the price of one good, which plays the role of numéraire. The value assigned 
to the price of the numéraire determines the level of prices, and all other prices 
and nominal values in the model are expressed in terms of the price of the 
numéraire.4 

                                                           

3 This implies that all profits are distributed to consumers. Walras’ Law can be 
demonstrated in a less restrictive setting, but our objective here is to put forth the principle 
behind Walras’ Law, and so we keep its exposition as simple as possible. 
4 Strictly speaking, the word numéraire designates the commodity relative to the price of 
which the prices of all other commodities are expressed. But for convenience, we take the 
shortcut of using the word “numéraire” to designate the price of the numéraire commodity. 
This allows us to say, for example, that all prices are expressed in terms of the numéraire 
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Homogeneity has two implications regarding the choice of a numéraire and of 
its value. First, although it may be convenient to set the numéraire at 1, the value 
assigned to the numéraire is arbitrary. That is quite obvious from the definition of 

homogeneity: if  npq ,,  is a solution to the model when the numéraire is set at 1, 

then  npq  ,,  is also a solution, when the numéraire is set at any  > 0. A second 

implication is that the choice of numéraire is arbitrary. Suppose that commodity i 

is chosen as the numéraire, with its price ip  set at 
ip ; then changing the numéraire 

for commodity j and setting its price at 
jp  is equivalent to changing from solution 

 npq ,,  to  npq  ,,  with  jj pp , where 
jp  is the value of price j when the 

numéraire is commodity i. 
In other words, if a model is truly homogenous, the solution values of real 

(volume) variables and all price and nominal value ratios are supposed to be: 
independent of which commodity is taken as the numéraire; independent of which 
region is taken as the reference region when the numéraire is a regional 
commodity (a particular case of the preceding); and independent of the particular 
value given the price of the numéraire, whatever commodity plays that role. 

Of course, not all CGE models are “purely” Walrasian. But most non-monetary 
CGE models nevertheless retain the property of model homogeneity. In any case, 
if a model is not homogeneous, it should be by purpose, not by accident or by 
mistake. So it is useful to check for model homogeneity. 

It is easy enough to check simple models for homogeneity, but it may be tricky 
with complex models. With simple models, one can check for homogeneity 
analytically, by examining the equations. Homogeneity can also be verified 

numerically, by transforming a  npq ,,  simulation solution into a  npq  ,,  

solution, and then verifying whether the model equations are satisfied. Another 
approach, somewhat more demanding, is to compare simulation solutions 
obtained with different values of the numéraire or with different numéraires and 

verify that the alternate solutions  npq ,,  and  npq  ,,  satisfy the relationship 

 npq  ,,  =  npq  ,,  for some  > 0. 

The latter approach is more demanding, because it requires that the model 
equations be written in such a way as to adjust to an arbitrary value of an arbitrary 
choice of numéraire (this is illustrated in the homogeneity tests outlined in Section 
6.3).5 Moreover, the model closure must be formulated with care to avoid the many 

                                                           

– much more concise and comprehensible than the first sentence of this footnote! In 
addition, it should be mentioned that in some models, prices are expressed relative to some 
global price index, in which case the numeraire good is an aggregate. 
5 I understand that in GEMPACK, model homogeneity is automatically checked by 
shocking the numéraire. 
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pitfalls of inadvertantly de-homogenizing the model. Regarding our skeleton 
model, we shall see, in particular, that, under fixed exogenous current account 
balance closures, the way current account balances are fixed is critical (Section 4.2).  

2.2 Model closure 

With a CGE model, as with any system of simultaneous equations, the number 
of independent equations must be equal to the number of endogenous variables 
for the model to have a solution (the model must be square).6 If there are more 
equations than variables, the model is overdetermined; if there are fewer equations 
than variables, the model is underdetermined. The issue of model closure concerns 
the theoretical foundations and meaning of the choices made by the modeler to 
make the number of equations and the number of variables equal. 

In a way, taking into account Walras’ Law to discard a redundant equation, and 
defining a numéraire to make the model square, can be viewed as one aspect of 
model closure. But the issue of model closure is broader and more substantive. 

The discussion of macroclosures in single-economy models was initiated by Sen 
(1963) in relation to the debate on income distribution. Essentially, Sen showed 
that competing views of the economy could be characterized by the choice of 
which equation to eliminate in an overdetermined model (this is nicely 
summarized in Rattsø, 1983). In contrast, contemporary CGE models are usually 
underdetermined, left open to different views of the economy. It is up to the model 
user to choose which equation or constraint to add to the model in order to “close” 
it and to make it “square”, with as many equations as there are variables.7 

Here we are concerned with multinational (or multiregional) world models, 
and we will examine model closures that take the simple form of fixing one or 
more variables exogenously. Specifically, we consider: 

1) How many variables must be exogenously fixed? 
2) Which variables can be sensibly designated as exogenous to close the 

model? 
3) Does the choice of exogenous variables always matter? Can the same 

model closure be implemented by fixing alternative sets of variables? Put 
otherwise, are there model closures which are different in their 
implementation, but are mathematically and economically equivalent? 

Underlying question 1 is the matter of redundant equations. The number of 
variables to fix exogenously is equal to the number of degrees of freedom in the 
model, given by the difference between the number of endogenous variables and 
the number of independent equations. To accurately count the number of 

                                                           

6 It would be tempting to add “unique”. But the possibility of multiple solutions cannot 
always be ruled out in models that are constrained nonlinear systems (CNS).  
7 For example, see “Macroeconomic balances”, pp. 14-17 in Lofgren et al. (2002). 
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independent equations, one must be able to identify redundant equations in the 
model. This is of practical importance when the model is submitted to a GAMS 
solver as a CNS (constrained nonlinear system) class model, because GAMS will 
reject the model as not square if it contains redundant equations, even if, 
mathematically, redundant equations do no harm. 

2.3 Calibration neutrality and consistency 

To implement a CGE model, values must be assigned to its parameters and 
benchmark variables. This process is called model parametrization and the usual 
practice in CGE modeling is to proceed in two steps: (1) assign values to a set of 
so-called “free” parameters, and (2) calibrate the model. The distinction between 
free and calibrated parameters is somewhat arbitrary, but it is customary to treat 
elasticities in behavioral functions as free parameters, for which modelers use 
econometric estimates, or else borrow estimates from the literature. Model 
calibration on the other hand is the process of assigning values to parameters and 
benchmark variables, given the values of free parameters, from the information 
contained in the underlying data base (often organized in the form of a social 

accounting matrix  SAM), combined with the restrictions imposed by the 
theoretical specification of the model (model equations). 

Price × volume factoring: Variable benchmark values in particular are 
routinely calibrated from SAMs. SAM entries are transaction flows. Part of the 
calibration procedure consists in a factoring of SAM transaction flows into 
price × volume products. But SAM transaction flows generally represent 
composite aggregates for which there is no clear physical unit of measurement. 
Even when the volume can be measured unambiguously, factoring depends on 
the choice of unit of measurement, which is arbitrary: 454 grams of something at 
1¢ a gram is the same as one pound at $4.54 per pound. It follows that the 
price × volume factoring is arbitrary, constrained only by the value of their 
product. However, although the factoring of SAM transaction flows is arbitrary, 
there are consistency requirements to satisfy: we return to these shortly. 

But first, let us briefly recall an implication of the arbitrariness of price × volume 
factoring that is occasionally neglected in the interpretation of CGE simulation 
results, namely that prices and volumes must be viewed as indices: price or volume 
levels are meaningless; only proportional changes are meaningful.8 When, in a 
simulation solution, a transaction flow increases or decreases relative to its 
benchmark value, the CGE model provides a decomposition of the change into price 

                                                           

8 Of course, if complementary information makes it possible to convert SAM flows into 
proper quantities, then the volume indices can be translated to quantities. For example, the 
volume of full-time equivalent employment, when it is known, provides a metric to 
convert the SAM flow of labor income into the corresponding number of jobs.  
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variation and volume variation. This is exactly the kind of decomposition that is 
needed to correctly interpret, say, an increase in consumption expenditures when 
the consumer price index changes.  

Neutrality of the identification constraints: Once the so-called “free” 
parameters (elasticities and the like) have been specified, the number of unknowns 
(parameters and benchmark variables) usually remains greater than the number 
of constraints (SAM values and model equations). Therefore, to solve the 
calibration problem, it is necessary to impose additional constraints, which we 
shall call “identification constraints”. Identification constraints often consist in 
fixing the level of a set of variables which are defined only up to a factor of 
proportionality (like in price × volume factoring). There is in general no unique set 
of identification constraints that will complete the calibration procedure, but such 
constraints, given that they are based neither on observation (SAM flows), nor on 
theory (model equations), should be non-restrictive, or “neutral”. By that, we 
mean that they should not affect model results. Formally, we define neutrality as 
follows. Given a consistent calibration procedure, a set of identification constraints 
is said to be neutral if it results in a model for which the relative variation of a 
variable between any simulation solution and its benchmark is the same as with 
any other set of neutral identification constraints.9 

A concrete example of neutrality is given in subsection 6.2 with respect to the 
arbitrariness of price × volume factoring. We show that the volume of a constant 
elasticity of substitution (CES) or constant elasticity of transformation (CET) 
aggregate may be benchmarked as the sum of its components without implicitly 
imposing perfect substitutability, or alternatively, that the price of the aggregate 
may be arbitrarily set at 1 without imposing price equality.  

Consistency of the calibration procedure: The calibration procedure solves 
what has in effect become a simultaneous equations problem, as defined by the 
values of free parameters, the model data base (SAM), the model specification 
(equations), and the identification constraints. But rather than being shifted to a 
solver program, the calibration problem is generally solved through a sequence of 
statements assigning values to the unknown parameters and benchmark variables. 
This is equivalent to solving the system of equations after having triangularized 

                                                           

9 There is the appearance of a circular problem here. The model cannot be solved if it is not 
calibrated, and it cannot be calibrated without some set of identification constraints. So 
checking numerically whether simulation results are the same with or without a given set 
of identification constraints actually means comparing simulation results obtained using 
two different sets of identification constraints. Unless one of the two has been 
demonstrated to be neutral, the comparison is not logically conclusive. However, in this 
modeler’s experience, there usually exists a set of identification constraints that can be 
shown mathematically to be neutral. 
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the problem. So the art of calibration is very much the art of correctly sequencing 
the assignments. 

What then is “calibration consistency”? Formally, calibration consistency could 
be defined as the requirement that the calibration procedure be truly equivalent to 
solving the (correctly) triangularized calibration problem. Practically speaking, 
calibration inconsistency may result from errors in the sequencing of assignments 
or in formulations that fail to preserve the neutrality of some identification 
constraint. 

Test of neutrality and consistency: Two models are equivalent if the relative 
variation of all variables between any simulation solution and the benchmark is 
the same in both. To test a calibration procedure against another is to determine 
whether the models that result from the two procedures are equivalent or not. 

Mathematically, let SC
kiP
,

,  be the value of price variable i, in solution k of the model 

calibrated using a calibration procedure C and a set S of identification constraints; 
subscript k is equal to 0 for the benchmark, and to 1 for the simulation. Also let 

SC
kjQ
,
,  be the value of volume variable j in solution k of the model calibrated using 

C and S. Sets S may differ in the choice of variables or in the values assigned or 
both. Then the resulting models are equivalent if 
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for any pair C1, C2 of calibration procedures, and pair S1, S2 of sets of identification 
calibration constraints. The first condition states that variations in the price of any 
good i relative to any other h must be the same in both cases; the second condition 
says that proportional volume variations must be equal. 

If these two conditions are not realized, it may be for one of two reasons. First, 
one of the pair of sets of constraints S1 and S2, or both, may be restrictive (non-
neutral). In that case, the problem is with the identification constraints, not with 
the calibration procedure. And either the identification constraints must be 
replaced with a set of neutral constraints, or the model specification should be 
extended to include one or more of these non-neutral constraints. As an example 
of the latter situation, the assignment of values to elasticity parameters is not 
neutral; for that reason, elasticities are treated as “free” parameters, not as 
identification constraints, and they are part of the model specification. 

The second reason for which conditions (1) and (2) may be violated is that the 
calibration procedure is not consistent. In particular, the way in which the 
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constraints are implemented may be inconsistent in the sense that the calibration 
procedure is compatible only with one particular set of identification constraints. 
An example is given in subsection 6.3.3, where a calibration shortcut which sets a 
given price at 1 is valid only if other previously determined prices are also set at 
1, while their value should be arbitrary. 

To summarize, model parameters and benchmark values cannot be calibrated 
from SAM values and model equations alone, even after assigning values to the 
free parameters: the solution of the calibration problem remains undetermined 
without additional “identifying” constraints. However, these identifying 
constraints are not totally arbitrary: they must be neutral and applied consistently. 
Moreover, the calibration procedure must be a correct implementation of the 
solution to the triangularized calibration problem. 

3. Skeleton model: Model 1 

We now define the theoretical model which will serve as our departure point 
to explore the issues raised in the introduction.  

3.1 Model description 

There are N regions. There is a single regional agent in each region, and there 
are no taxes. All prices and nominal values are expressed in terms of the 
international currency. 

There is a single good, and production factors are fixed. With full employment, 
this implies that output is fixed in each region z, and that the regional agent’s 
income is equal to the value of production. 

The model is static, so we can define “consumption” to include both current 
consumption and investment. It follows that domestic savings, the difference 
between income and “consumption” (which includes savings), are equal to the 
current account balance (CAB).10 

The model retains the Armington hypothesis regarding the distribution of 
demand between imports and the domestically produced good, and for imports, 
between source regions, using CES aggregator functions. Similarly, production is 
allocated between domestic sales and exports, and for exports, between regions of 
destination, according to CET functions. 

This model is close to a Walrasian pure exchange economy. It is illustrated in 
Figure 1 for the case of two regions. But in what follows, we deal with an N-region 
model. 

                                                           

10 In other words, in this skeleton model, the definition of domestic savings is much 
narrower than normally: here, it is the surplus of income over domestic absorption, 
whereas it is normally the surplus of income over current private and public consumption. 
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Figure 1. Skeleton model of international trade 
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At the top of Figure 1, domestic production is sold on the domestic market or 
exported, following a CET function. The value of domestic production constitutes 
the regional agent’s income, which is divided between domestic demand, and 
domestic savings (which may be negative). Domestic demand is distributed 
following a CES function between domestic production and imports. The 
imperfect-substitutability Armington hypothesis is what makes it possible to have 
both imports and exports even if there is a single good. Each region’s current 
account balance (CAB) is given by the value of exports, minus the value of imports. 
Given that investment is subsumed in consumption, the CAB is equal to domestic 
savings. Also, in the particular case of two regions, one region’s CAB is equal to 
minus the other’s. 

Table 1 lists the Model 1 variables, and Table 2 lists the equations (for a more 
detailed presentation, see Appendix A, supplemental online material). The regions 

are designated by subscripts  Nzjjzjz ,,,,   (a different style of subscripting 

might use i, j, and k, rather than z, zj, and zjj). For instance, in variables zzjIM , , 

zjzEX , , and zjzPW , , the first subscript designates the region of origin, and the 

second the region of destination of goods in trade flows. This physical flow from-
to convention for subscript order is applied throughout the model. Also note that 

zzIM , , zzEX , , and zzPW ,  is undefined, which reflects the fact that there is 

no international trade between a country and itself.12 
Model 1 being a very simple model, it is easy to verify its homogeneity 

analytically. Indeed, for any set of variable values that solves equations (3)-(18), a 
new set of variable values obtained by multiplying all prices and nominal values 

by some positive constant  is also a solution. Homogeneity implies that in the 
model, prices (and nominal values) are defined only up to a factor of 
proportionality, so that the modeler must choose a numéraire and set its level. 

The number of variables in the model is 11 N + 3 N (N – 1), where N is the 
number of regions. The number of equations in Table 2 is 12 N + 1 + 3 N (N – 1) 
equations. The model appears to be overdetermined. But, as we shall see, it is not. 

                                                           

12 In a real global model, the world is divided into regions, some of which include more 
than one country: then, international trade within a multi-country region is possible. 
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Table 1. Model 1 variables 

Number 

Volumes 

zXS  Domestic production in region z N 

zQ  Domestic demand for the composite good in region z N 

zD  Domestic demand for the locally produced good in region z N 

zzjIM ,  Imports from region zj by region z N (N–1) 

zIMT  Total imports of region z N 

zjzEX ,  Exports by region z to region zj N (N–1) 

zEXT  Total exports of region z N 

Prices 

zP  Producer price in region z N 

zPL  Market price of local product in region z N 

zPC  Price of the composite good in region z N 

zPMT  Price of composite imports in region z N 

zPXT  Price of composite exports of region z N 

zjzPW ,  
World price of exports from region z to zj, in terms of the 
international currency 

N (N–1) 

Nominal value variables 

zCAB  Current account balance of region z N 

Total number of variables 11 N + 3 N (N–1) 

Table 2. Model 1 equations 

  Number 

zzzzz QPCXSPCAB   (3) N 

zzzzz IMTPMTEXTPXTCAB   (4) N 

  
z

zz
zzzzzz EXTDBXS


 



  where 

z

z
z







 ,  z  (5) N 

continued... 
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Table 2. Model 1 equations (continued) 

  Number 

z

z

z

z

z

z

z

PL

PXT

D

EXT





















  (6) N 

 

X
z

X
z

zj
zjz

X
zjz

X
zz EXBEXT





















  ,,  where 

X
z

X
zX

z






 ,  X

z  
(7) N 

 

X
z

X
z

z
X
zjz

zjz

X
z

z
zjz

PXT

PW

B

EXT
EX




 

















,

,
,  (8) N (N–1) 

  
z

zz
zzzzzz IMTDAQ


 





 where 

z

z
z







 ,  z  (9) N 

z

z

z

z

z

z

z

PMT
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D

IMT







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








 
  (10) N 

M
z

M
z

zj
zzj

M
zzj

M
zz IMAIMT























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M
z

M
zM

z






 ,  M

z  
(11) N 

 

M
z

M
z

zzjz

z
M
zzj

M
z

z
zzj

PWe

PMT
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IMT
IM
























,

,
,  (12) N (N–1) 

zzzzzz EXTPXTDPLXSP   (13) N 

continued... 
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Table 2. Model 1 equations (continued) 

  Number 


zj

zjzzjzzz EXPWEXTPXT ,,  
(14) N 

zzzzzz IMTPMTDPLQPC   (15) N 


zj

zzjzzjzz IMPWIMTPMT ,,  
(16) N 

zzjzzj IMEX ,,   (17) N (N–1) 


z

zCAB  (18) 1 

Total number of equations 12 N + 3 N (N–1) + 1 

4. Redundant equations and reduction of the model: Model 2 

How many variables and equations are there in the model? If the number of 
independent equations is greater than the number of variables, then the model is 
over-determined and infeasible. On the other hand, if the number of independent 
equations is less than the number of variables, then some variables have to be 
made exogenous and fixed in the closure. So it is necessary to identify and 
eliminate redundant equations from the model. 

From Tables 1 and 2, Model 1 appears to have 11 N + 3 N (N – 1) variables: 11 
(groups of) variables indexed in z, and 3 (groups of) variables indexed in z,zj. The 
equation count is 12 N + 3 N (N – 1) + 1: 12 (groups of) equations indexed in z, 3 
(groups of) equations indexed in z,zj, plus the single equation (18). So the model 
appears to have N + 1 equations too many. However, as we demonstrate in 
Appendix B (supplemental online material), several equations are redundant: 
equations (7) and (8) together imply (14), which is therefore redundant; equations 
(11) and (12) together imply (16), which is therefore redundant; equations (4) and 
(17) together imply (18), which is therefore redundant; equations (13), (15) and (3) 
together imply (4), which is therefore redundant. 

In addition, it is shown in Appendix B that Walras’ Law can take the following 
form in our model: if equation (3) is satisfied for N – 1 regions, then it is also 

satisfied for the Nth one. Therefore, one equation of the set (3) may be discarded 

as redundant. So we can arbitrarily pick some region zleon,  Nzleon ,,  (zleon 

is a mnemonic for Léon Walras), and remove equation (3) for that single region. 

Note that with the removal of the equation relating to zleon, the variable zleonCAB  
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no longer appears in the model, but its value may be computed using the 
suppressed equation. 

Some modelers sidestep the task of seeking out and eliminating redundant 
equations by changing the constrained nonlinear system (CNS) into a nonlinear 
programming (NLP) problem with a dummy objective variable set equal to a 
constant. This is risky, because the solver will find a solution even if the model 
misses a closure equation, which usually implies that the solution produced by the 
solver depends on the initial values of the variables, because when a closure 
equation is missing, the solution is generally not unique. This point is illustrated 
with the help of a simple example in Appendix C (supplemental online material). 

We now rewrite the model, discarding redundant equations. After eliminating 
equations (4), (14), (16) (18), and one equation of the set (3), we are left with Model 
2. The equations in Model 2, listed in Table 3, number 9 N – 1 + 3 N (N – 1), where 
N is the number of regions. The list of variables is the same as for Model 1, except 

that zleonCAB  no longer appears in the model; it is determined implicitly. Since it 

no longer appears in the model, zleonCAB  is not to be counted as a model variable, 

even if it appears in Table 3. So the reformulated model has 11 N – 1 + 3 N (N – 1) 
variables. Thus, Model 2 is underdetermined, it is 2N equations short. So the 
overdetermined appearance of Model 1 is nothing more than an illusion caused 
by the presence of redundant equations. Consequently, the closure of Model 2 will 
require adding 2N constraints, including fixing the numéraire. We also note that 
the homogeneity of Model 2 can be confirmed by examining it analytically in the 
same way as that of Model 1.  
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Table 3. Model 2 equations 

  Number 

zzzzz QPCXSPCAB  , for all zleonz   (3) N–1 

  
z
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zzzzzz EXTDBXS
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Table 3. Model 2 equations (continued) 

  Number 

 

M
z

M
z

zzj

z
M
zzj

M
z

z
zzj

PW

PMT

A

IMT
IM
























,

,
,  (12) N (N–1) 

zzzzzz EXTPXTDPLXSP   (13) N 

zzzzzz IMTPMTDPLQPC   (15) N 

zzjzzj IMEX ,,   (17) N (N–1) 

Total number of equations 9 N – 1 + 3 N (N–1) 

5. Closure of Model 2 

Reviewing the list of variables in Table 1, it might appear that there are several 
candidates for being fixed in the closure rule. Here we shall go through the list 
critically, discarding possibilities that are incorrect in the general equilibrium 
framework. Throughout the review process, we maintain the neoclassical full-
employment hypothesis, which is itself a closure rule, so that we restrict our 
attention to neoclassical closures.13 With production factors in fixed supply, in our 
simple model, the neoclassical full-employment hypothesis implies that 

production is fixed: zz XSXS  . 

This adds N constraints to the model, leaving N degrees of freedom. 

5..1 Neoclassical closure with fixed current account balances 

In this section, we see how fixing zCAB  makes the model non-homogenous, and 

how homogeneity can be preserved by fixing a pseudo-volume variable zCABX , 

the definition of which is not unique, however. Finally, we examine the 

substantive implications of fixing zCAB  beyond the issue of homogeneity. 

We begin with a closure rule that is very common in trade models14, which 
consists in fixing current account balances for zleonz  , in addition to fixing the 

                                                           

13 It would have been possible to consider non-neoclassical closures, such as fixing Qz. 

However, our goal is to illustrate the mathematical logic underlying the selection of closure 
rules, and restricting our attention to neoclassical closures makes the exposition more 
compact. 
14 Recall however that there are several models with endogenous current account balances, 
as mentioned in a footnote in the Introduction. 
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numéraire. This adds (N – 1) + 1 = N constraints to the model, making it square. 

However, fixing zCAB  makes the model non-homogenous. The reason is that 

zCAB  is a nominal variable, and if zCAB  is fixed, the constraint it represents in real 

terms depends on the choice of numéraire and its value. 

Formally, fixing zCAB , zleonz  , means fixing N – 1 elements of the vector of 

nominal variables (n) in the  npq ,,  triplet which represents a model solution (see 

section 2.1). Now, homogeneity requires that if two simulations starting from the 

same set of benchmark values  npq ,, , with different numéraires, yield solutions 

 npq ,,  and  npq  ,,  respectively, then the solutions must satisfy the relationship 

 npq  ,,  =  npq  ,,  for some  > 0. If N – 1 elements of the vector of nominal 

variables (n) are fixed, the relationship can hold only for  = 1. 
Therefore, in a closure that preserves model homogeneity, current account 

balances must be fixed in real terms. One way to do this is to fix 
 

zz CABXPWINDEXCAB   (19) 

where zCABX  is fixed in the closure, and 

 










z zj
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z zj
zjzzjz

z zj
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zjz

z zj

O
zjzzjz

EXPW
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EXPW

EXPW

PWINDEX

,,

,,

,,

,,

 (20) 

is a Fisher index of bilateral trade prices, and superscript O designates benchmark 

values (equivalently, one could substitute zjzIM ,  for zjzEX ,  and O
zjzIM ,  for O

zjzEX ,  

in (20)). 
By inverting (19) to obtain 

 
PWINDEXCABCABX zz   (21) 

it is manifest that zCABX  is a pseudo-volume variable. The introduction of zCABX  

and equation (21) adds N + 1 variables, because it re-introduces zleonCAB  into the 

model, and N equations. The introduction of PWINDEX  adds one variable and one 
equation to the model. So the expanded model now has N + 1 additional equations, 
for a total of 10 N + 3 N (N – 1) equations, and N + 2 additional variables, for a total 

of 12 N + 1 +3 N (N – 1) variables, leaving 2 N + 1 degrees of freedom. With zXS  

and zCABX  fixed (2 N variables), there is a single degree of freedom left. It is used 

to set the numéraire. 

The user may pick any one price from one of the sets zP , zPL , zPC , zPMT , zPXT

, or zjzPW , , or PWINDEX . Running a simulation with different numéraires will 
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yield solutions where the volume variables are equal, and prices and nominal 
value variables are all proportional (relative prices are the same). 

There are of course other ways to define zCABX . Among the alternatives is the 

possibility of using another trade-price index, such as a Laspeyres index of 
bilateral trade prices, or of regions’ aggregate import prices, or of regions’ 
aggregate export prices; Paasche or any other type of price indexes could also be 
used. One could even define the “real” current account balance on the basis of a 
price that is not directly related to trade, such as, for example, the producer price 
in some particular region selected as a “reference region”. Let the reference region 

be designated by the index zr,  Nzr ,,  (the index used for the reference region 

is zr, to indicate that the reference region may be different from region zleon which 

is excluded from equation (3) under Walras’ Law). Then zCABX  can be defined as 

 
zrzz PCABCABX   (22) 

where zrP  is the producer price in the reference region. 

It must be kept in mind, however, that the denominator that defines zCABX  

must be the same for all regions z. It would be an error, for example, to define 

zzz PCABCABX  , where the denominator is specific to each region. In that case, 

the implicit solution value of zleonCABX  will be different from its fixed closure 

value. Since zleonCABX  does not appear in the model, GAMS will find a solution. 

But the equation left implicit on account of Walras’ Law will be violated, as well 
as one or more of the redundant equations (4), (14), (16), and (18). 

No matter how zCABX  is defined, provided that definition is admissible, the 

choice of the numéraire and its value is arbitrary. However, the way zCABX  is 

defined does matter! That is because different variants of zCABX , when they are 

fixed in the closure, impose different constraints in real terms. Indeed, zCABX  is a 

pseudo-volume variable, which does not have a clear-cut, unique definition. 

Although choosing a particular variant of zCABX  is not equivalent to choosing any 

other, none of the possible specifications of zCABX  stands out as the natural one.15 

It might be tempting to sidestep the issue of defining zCABX  while maintaining 

model homogeneity with respect to changes in the value of the numéraire by fixing 
 

zz CABXCAB   (23) 

                                                           

15 This issue does not arise in models such as GTAP where the current account balance is 
endogenous, although the definition of CABXz does matter for interpretation. 
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where  is the numéraire; the value of zCABX  fixed in the closure is usually O
zCAB

.16 Indeed, with this definition, the value of zCAB  automatically adjusts to any 

change in the value of the numéraire. Note that this approach is equivalent to 

defining zCABX  as 

 
zz CABCABX   (24) 

and fixing it in the closure. This shows that the approach in (23) implicitly defines 

zCABX  in terms of the numéraire, so that changing the commodity that serves as 

the numéraire good modifies the closure in real terms. In other words, the model 
is homogenous with respect to changes in the value of the numéraire, but not with 
respect to changes in the choice of the numéraire good. 

The following example illustrates this point. The model was run three times in 
GAMS17; in each run, the model is parametrized, the benchmark solution is 
computed, and a simulation is performed (in this case, an increase in Region 3’s 

resources/output). All three runs use a fixed nominal zCAB  closure. In the first, 

the numéraire is PWINDEX  and it is fixed at 1. This, as we have seen, yields 

identical results to a fixed zCABX  closure with the same numéraire. In the second 

run, the value assigned to the numéraire PWINDEX  is set at 2, and the value of 

fixed nominal zCAB  is doubled accordingly. In the third run, Region 3 is 

designated as the reference region, and the numéraire is changed to zrP . 

Table 4. SAM and calibrated values  

(numéraire PWINDEX ) 

Social accounting matrix (benchmark) 

  Reg1 Reg2 Reg3 Tot 

Reg1 100 10  110 

Reg2 15 50 10 75 

Reg3 5  30 35 

CAB -10 15 -5  

Tot 110 75 35 220 

 

Benchmark Volumes  Benchmark Prices 

                                                           

16 This strategy is applied in the Globe model (McDonald and Thierfelder, 2016), and it is 
used by van der Mensbrugghe (2010, see p.28-29). 
17 The GAMS program which was actually used was not Model 2, but Model 3 with the FE 
closure and exchange rates set at 1 (see 6.2.1), which yields solutions numerically identical 
to Model 2’s. 
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  Reg1 Reg2 Reg3    Reg1 Reg2 Reg3 

DD 100 50 30  PL 1 1 1 

EXT 10 25 5  P 1 1 1 

IMT 20 10 10  PC 1 1 1 

XS 110 75 35  PMT 1 1 1 

Q 120 60 40  PXT 1 1 1 

         

Bilateral trade volumes - Benchmark  Bilateral trade prices - Benchmark 

  Reg1 Reg2 Reg3    Reg1 Reg2 Reg3 

Reg1   10    Reg1   1   

Reg2 15  10  Reg2 1  1 

Reg3 5      Reg3 1     

Source: Author calculations. 

With PWINDEX , all benchmark volumes are the same as with PWINDEX

, and all prices are doubles. When the numéraire is zrP , with Region 3 as the 

reference region, all benchmark values are the same as with PWINDEX . Now 
let us compare the simulation-to-benchmark ratios (Table 5). 
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Table 5. Simulation/benchmark ratios using different numéraires 

 PWINDEX = 1 PWINDEX = 2 
Ref. region = 3, 

zrP  

 Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 

Volumes 

DD 0.997 1.002 1.576 0.997 1.002 1.576 0.990 1.026 1.571 

EXT 1.032 0.995 1.543 1.032 0.995 1.543 1.093 0.947 1.575 

IMT 1.061 1.032 1.118 1.061 1.032 1.118 1.038 1.093 1.058 

XS 1.000 1.000 1.571 1.000 1.000 1.571 1.000 1.000 1.571 

Q 1.007 1.007 1.454 1.007 1.007 1.454 0.998 1.037 1.433 

Bilateral trade volumes 

Reg1  1.032   1.032   1.093  

Reg2 0.912  1.118 0.912  1.118 0.872  1.058 

Reg3 1.543   1.543   1.575   

Prices 

PL 0.993 1.025 0.886 0.993 1.025 0.886 1.138 1.234 1.000 

P 0.995 1.024 0.885 0.995 1.024 0.885 1.143 1.218 1.000 

PC 0.988 1.023 0.922 0.988 1.023 0.922 1.133 1.227 1.047 

PMT 0.962 1.010 1.052 0.962 1.010 1.052 1.111 1.195 1.218 

PXT 1.010 1.022 0.876 1.010 1.022 0.876 1.195 1.185 1.001 

Bilateral trade prices 

Reg1  1.010   1.010   1.195  

Reg2 1.000  1.052 1.000  1.052 1.161  1.218 

Reg3 0.876   0.876   1.001   

Source: Author calculations. 

As expected, the nominal zCAB  closure is homogenous with respect to changes 

in the value given to the numéraire, provided the exogenous value of zCAB  is 

properly adjusted: model results are equivalent, whether PWINDEX  or 

PWINDEX  (left and center panels of Table 5). However, the nominal zCAB  

closure is not homogenous with respect to a change in the numéraire good: when 

the numéraire is changed from PWINDEX  to zrP , the simulation results are 

different, even if all benchmark values are the same as in the first run (right-hand 
side panel of Table 5). 

5.2 Neoclassical closure with a set of fixed volume variables 

In this section we extend the formal discussion of closures to systematically 
examine other possibilities, only to conclude that they are not feasible. Specifically, 
if zXS  is fixed, it is infeasible to fix another set of volume variables. We shall try 
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to understand why, and highlight the fact that selecting closure rules cannot be 
reduced to counting equations and variables.  

Model 2 has 6 sets of volume variables in addition to zXS  (See Table 1: Model 

1 and Model 2 have the same sets of variables). Fixing zz XSXS   is the form that 

the neoclassical full-employment hypothesis takes in the skeleton model. We now 
assert that, in this model, if zXS  is fixed, it is infeasible to fix another set of volume 

variables. This can be illustrated in a 2-region version of Model 2; the two-region 
version of Model 2 is detailed in Appendix H. It consists of equations (3) (for 

zleonz  ), (5), (6), (9), (10), (13), (15) and (21)18, together with a trade-price index 
re-defined for the two-region case 

 










z
z

O
z

z
zz

z

O
z

O
z

z

O
zz

IMTPMT

IMTPMT

IMTPMT

IMTPMT

PWINDEX  (25) 

and the two-region equilibrium conditions 
 

zzj IMTEXT   (26) 

 
**
zzj PMTPXT   (27) 

From the 2-region version of Model 2, consider the sub-model consisting of 
equations (5),(9), and (26). Let us call this sub-model the Q-Model (Q for quantity). 
With two regions, there are 6 equations and 10 variables in the Q-model: zXS , zD

, zEXT , zQ , zIMT . In principle, it should be possible to fix 4 of them, among which 

zXS . Figure 2 summarizes the two-region Q-model. The position of the CET 

production frontiers in the north-west and south-east quadrants is determined by 
the fixed zXS . As long as the zQ  are not fixed, the CES indifference curves in the 

north-east and south-west quadrants are free to move inward or outward. Setting 
a pair of zD , zEXT , or zIMT  specifies a point on each of the CET frontiers defined 

by zXS . Drawing perpendicular lines from these two points traces a rectangle. The 

                                                           

18 Equation (3) is the CAB definition; (5) is the CET transformation between domestic sales 
and exports, and (6) is the relative supply function; (9) is the CES aggregator between the 
domestic good and imports, and (10) is the relative demand function; (13) equates the value 
of production to the sum of the value of sales on the domestic market and exports; (15) 
equates total expenditures to the sum of purchases on the domestic market and the value 
of imports; (19) is the definition of CABXz. 
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solution corresponds to the values of zQ  that make the indifference curve pass 

through the north-east and south-west corners of the rectangle.  

 

Figure 2. The two-region Q-Model 

It is quite obvious that if, a contrario, the zQ  are fixed rather than the zD , zEXT

, or zIMT , there is no guarantee that a solution rectangle exists. Therefore, given 

zXS , zQ  cannot be fixed arbitrarily.19 And if a solution exists, it may well not be 

unique. Let us examine this more closely with the two-region Q-Model. Suppose 

the zQ  are fixed: zz QQ  . Then combining equations (5), (9) and (26) yields 

                                                           

19 This kind of limitation is common in CGE models. Indeed, it was the central issue in Sen 
(1963). 
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 (28) 

(see Appendix I, supplemental online material). Given zXS  and zQ , the pair of 

equations (28) can be solved for zIMT ; then zEXT  and zD  follow from (26) and 

either (9) or (5). The pair of equations (28) ( IMT  as a function of IMT , and IMT  as 

a function of IMT ) are plotted for different values of zQ  in the four parts of Figure 

3.  
The two functions are convex: as a function of the other region’s imports, the 

imports of each region increase at a decreasing rate. The solution, of course, is 
given by the intersection of the two curves. In the benchmark equilibrium, the 
curves are tangent at the solution (Figure 3(a)). If the exogenous volume of 

domestic demand zQ  is increased in both regions (Figure 3(b)), the curves no 

longer intersect: there is no solution. If, on the contrary, zQ  is reduced in both 

regions (Figure 3(c)), then the solution exists, but it is not unique. Finally, Figure 

3(d) illustrates a situation where zQ  is increased in one region, but reduced in the 

other; in that particular case, there is a solution, but it is not unique. 

This explains why, if one tries to close the model by fixing zQ , then the 

CONOPT solver cannot find a solution and issues the diagnostic “Pivot too small”, 
which “means that the set of constraints is linearly dependent in the current point 
and there is no unique search direction for Newton’s method so CONOPT 
terminates”.20  

                                                           

20 The reader can find this quote through the GAMS Help menu, under “Solver manual”. Click on 
CONOPT and navigate to Appendix A/Miscellaneous Topics/Constrained Nonlinear Systems or 
Square Systems Of Equations. The author of the CONOPT solver manual is Arne Drud, ARKI 
Consulting and Development A/S, Bagsvaerd, Denmark (http://www.conopt.com). 



Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

241 

Panel 1 
Benchmark equilibrium 

 
Panel 3 

Domestic demand reduction in both 
regions 

 

Panel 2 
Domestic demand increase in both regions 

 
Panel 4 

Domestic demand reduction in region 1, 
increase in region 2 

 
 

Figure 3. Existence of a solution in the two-region Q-Model 

What about closures that would fix zD , zEXT , or zIMT , in addition to zXS ? 

We have shown above that such a closure determines all volume variables in the 
model, using equations (5), (9), and (26). The issue is then whether there exists a 
set of prices that can make those quantities equilibrium quantities. Given the 
calibrated values of the model parameters, there is no guarantee that there is such 
a set of prices. Moreover, if such a set of prices exists, the price equation sub-
system becomes degenerate. 

To illustrate this, consider once again the two-region model described in 
Appendix H. After removing the Q-model equations, the rest of the model consists 
of 14 equations; given the Q-model solution, there are 15 remaining variables, one 
of which is to be fixed as the numéraire. Separate the 14 equations into two sub-
models. The core price model (the P-Model) consists of 3 pairs of equations: 

equations (6), (10), and (27), and it comprises 6 variables: zPL , zPMT , and zPXT . 
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The remaining equations, (3) (for zleonz  ), (21), (13), (15) and (25), constitute the 
downstream part of the model, which is readily solved using the solution values 
of the volume variables in the Q-Model and of the prices in the P-Model. Note, 
however, that the P-Model is homogenous in prices, as it should be. Therefore, its 
solution can be defined only up to a factor of proportionality. This implies logically 
that the 6 equations cannot be independent (the P-Model cannot be of full rank). 
Indeed, following the development in Appendix J (supplemental online material), 
the P-Model equations may be combined to yield 
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Write equation (29) explicitely for  PMTPMT  and for  PMTPMT , and invert 

the second, so that the right-hand side of both equations is equal to  PMTPMT . 

It follows immediately that the P-Model has a solution only if  
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 (30) 

And if a solution exists, then equation (29) consists of two identical equations and 
the system is singular, leading to solver diagnostic “Pivot too small”. Note that 
equation (29) is implied by the model, and it therefore remains in force under any 
closure. What leads to the predicament described here is the fact that all right-hand 
side variables in equation (29) are hypothesized to have been predetermined in the 
Q-Model, so that they are treated as constants. 

To summarize, we have shown for the two-region version of Model 2 that, 

given zz XSXS  , it is not possible to close the model using zz QQ  , nor is it 

possible to close the model by fixing zD , zEXT , or zIMT . I have not been able to 

formally generalize the demonstration to the N-region version of Model 2. But 
experiments show that the GAMS solver’s behavior in the three-region version is 
the same as in the two-region version. And our close examination of the two-
region Model 2 yields a rather powerful intuition of why the model doesn’t solve 

when one attempts to fix volume variables in addition to zz XSXS   in the closure 

(this includes volume variables zjzEX ,  and zjzIM , , which are absent in the two-

region version). The general lesson to be drawn from this exploration is that 
selecting closure rules cannot be reduced to counting equations and variables. 



Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

243 

Indeed, as was mentioned in an earlier footnote, the choice of variables that can be 
fixed in the model closure is subject to restrictions in all CGE models no matter 
how large; that was the central issue in Sen (1963). 

Finally, for the sake of completeness, it should be obvious that closing the 
model by fixing more than one price (the numéraire) in Model 2 is not admissible, 
because it prevents relative prices from adjusting. 

6. Model with exchange rates: Model 3 

We now expand the model to introduce nominal exchange rates. Initially, these 
are merely conversion factors to convert values expressed in terms of the 
international currency into values expressed in terms of domestic currencies. We 
shall see however that, under certain closure rules, they may be interpreted as 
price ratios that have economic meaning. 

6.1 Variable transformation 

Let ze  be the price of the international currency in terms of region z’s domestic 

currency. All regional prices and nominal values in the model can be expressed in 
terms of domestic currencies by multiplying the values in terms of the 

international currency by ze . So let zzz PeP * , and define similarly *
zPL , *

zPC , 

*
zPMT , *

zPXT , and *
zCAB ; the transformation is not applied to zjzPW , , which 

remains expressed in terms of the international currency. Model 3 is the same as 

Model 2, except that *
zP , *

zPL , *
zPC , *

zPMT , *
zPXT  and *

zCAB  are substituted for the 

corresponding variables in terms of the international currency. 
By construction, Model 3 is therefore exactly equivalent to Model 2. Indeed, any 

solution of Model 3 can be converted to a solution of Model 2 by reversing the 

conversions using zzz ePP * , zzz ePLPL * , etc. This holds for any set of arbitrary 

ze . We conclude that the exchange rates in Model 3 are totally arbitrary, or 

else that they are superfluous. As a matter of fact, several world trade models, such 
as GTAP (Hertel, 1997) or MIRAGE (Bchir et al., 2002a, 2002b; Decreux and Valin, 
2007), are expressed in terms of an international currency and have no exchange 
rates. 

6.2 Closure 

We now consider the issue of closures in a model with nominal exchange rates. 

We use an expanded version of Model 3, as we did with Model 2, adding *
zCABX  

and PWINDEX and corresponding equations (21) and (20), mutatis mutandis. With 

exchange rates ze in Model 3, there are N more variables than in the expanded 

Model 2, but the same number of equations (which is consistent with the 

arbitrariness of the ze ). The expanded Model 3 has  
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10 N + 3 N (N – 1) equations like Model 2, and 13 N + 1 + 3 N (N – 1) variables 

(recall that introducing equation (21) re-introduces *
zleonCAB ). There are 3 N + 1 

degrees of freedom left, N more than in Model 2. We know that any solution of 
Model 2 can be extended to Model 3 by converting prices and nominal values from 
the international currency to regional currencies, that is by multiplying them by 

exchange rate ze . Quite obviously, for this transformation to be valid, there is no 

restriction on the ze  other than being strictly positive. Consequently, any set of 

conditions which constitutes a proper closure of Model 2, together with an 
arbitrary set of exchange rates, is also a proper closure of Model 3 (fixing an 
exchange rate at a value different from its benchmark value merely results in a 
proportionally equal change in all regional prices and nominal variables; e.g. 
doubling region z’s fixed exchange rate will result in regional prices and nominal 
variables double their benchmark value).  

6.2.1 Closures with fixed or endogenous exchange rates 

One closure that is frequently used by modelers, which we call the FE closure 

(for Fixed Exchange rates), is to set the ze  and the *
zCABX  (2 N variables fixed in 

the closure), and to pick some price such as PWINDEX or a reference region’s 

producer price *
zrP  as the numéraire. As a matter of fact, fixing all exchange rates 

to 1 makes Model 3 solutions numerically identical to Model 2 solutions. 
Another possibility, which we call the FP closure (for Fixed regional Price 

indexes), is to fix the *
zCABX  and one price, such as *

zP , in each region (2 N variables 

fixed in the closure), and to take some international price, or the exchange rate of 
some region picked as the reference region, as the numéraire. Why is it admissible 
to exogenously set prices other than the numéraire in Model 3, while it was not in 
Model 2? Because all that matters are the ratios of regional prices to nominal 
exchange rates (see the variable transformation described in 6.1). In other words, 

if nominal exchange rates ze  are free to move, then fixing some set of regional 

prices such as *
zP  does not prevent relative prices from adjusting any more than 

fixing ze  under the FE closure. And that remains true even if zre  is chosen as the 

numéraire.  

However, under the FP closure, since one set of prices (say *
zP ) are fixed as 

regional numéraires, then you cannot fix another regional price (say *
zrPL ) in 

reference region zr as the global numéraire, because then relative prices in region 
zr are prevented from adjusting. So with the FP closure, if the numéraire is not an 
exchange rate, then it must be an international price like PWINDEX or even, 

although it would be somewhat odd, some zrjzrPW ,  (in which case the numéraire 

commodity is a particular bilateral trade flow between a pair of reference regions, 
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zr and zrj,  Nzrjzr ,,,  ). Also note that under the FP closure, regional 

numéraires may be fixed at arbitrary values, just like nominal exchange rates may 
be fixed at arbitrary values in the FE closure. 

Solutions obtained under the FP closure are readily converted to FE closure 

solutions and vice-versa. If all regional prices ( *
zP , *

zPL , *
zPC , *

zPMT , and *
zPXT ) 

and the nominal value variable *
zCAB  in the FP solution are divided by the 

corresponding nominal exchange rate, the values obtained are exactly equal to the 

regional prices obtained with the FE closure when ze , as well as to the solution 

of Model 2 (without exchange rates).21  
Table 6 compares simulation/benchmark ratios with the FE and FP closures. 

The simulation consists in an increase in Region 3’s resources/output. The table 
shows that the models are equivalent in that the volume ratios are equal. The 
bilateral trade price ratios are also equal (trade prices are expressed in the 
international currency). 

                                                           

21 The FE and FP equivalence is not driven by the simplifying assumptions of the skeleton 
model. It is also true of the PEP-w-1, PEP-w-t and PEP-w-t-fin models, with which I have 
run experiments.  
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Table 6. Simulation/benchmark ratios with FE and FP closures 

  FE closure FP closure 

  Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 

Volumes 

DD 0.997 1.002 1.576 0.997 1.002 1.576 

EXT 1.032 0.995 1.543 1.032 0.995 1.543 

IMT 1.061 1.032 1.118 1.061 1.032 1.118 

XS 1.000 1.000 1.571 1.000 1.000 1.571 

Q 1.007 1.007 1.454 1.007 1.007 1.454 

Bilateral trade volumes 

Reg1   1.032    1.032  

Reg2 0.912   1.118 0.912  1.118 

Reg3 1.543     1.543   

Prices 

PL 1.000 1.000 1.000 1.005 0.976 1.130 

P 0.993 1.025 0.886 0.998 1.001 1.002 

PC 0.995 1.024 0.885 1.000 1.000 1.000 

PMT 0.988 1.023 0.922 0.993 0.999 1.043 

PXT 0.962 1.010 1.052 0.967 0.987 1.189 

Bilateral trade prices 

Reg1   1.010    1.010  

Reg2 1.000   1.052 1.000  1.052 

Reg3 0.876     0.876     
Source: Author calculations. 

As for regional prices, we can show that they fulfill condition (1) put forth in 
section 2.3: 

 


























SC

h
SC

h

SC
i

SC
i

SC
h

SC
h

SC
i

SC
i

PP

PP

PP

PP

,
,

,
,

,
,

,
,

,
,

,
,

,
,

,
,

 (1) 

Let price variable h be the nominal exchange rate. Identify [C1, S1] as the FE 

closure, and [C2, S2] as the FP closure. Then 





SC
h

SC
h PP ,

,
,

,  is equal to 1.005, 0.976, 

and 1.130 for regions 1, 2 and 3 respectively. If we divide all 
simulation/benchmark price ratios under the FP closure by these exchange rate 
ratios, we find that indeed, condition (1) is realized (Table 7). 
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Table 7. Simulation/benchmark ratios of regional relative prices under FP closure 

  Reg1 Reg2 Reg3 

e 1.000 1.000 1.000 

PL 0.993 1.025 0.886 

P 0.995 1.024 0.885 

PC 0.988 1.023 0.922 

PMT 0.962 1.010 1.052 

PXT 1.010 1.022 0.876 
Source: Author calculations. 

The FP closure is the default closure of the Globe model (McDonald and 
Thierfelder, 2016), and current versions of the PEP standard world CGE models 
offer the user a choice between the FE and the FP closure (Lemelin, Robichaud, 
Decaluwé & Maisonnave, 2013; Lemelin et al., 2014; Lemelin and Robichaud, 
2014). But why consider the FP closure? Because it has an interesting 

interpretation. The fixed regional prices ( *
zP  or other) play the role of regional 

numéraires, and the nominal exchange rate ze  is the price of the global numéraire 

good in terms of the regional one. So in complex models, the FP closure facilitates 
the analysis of price changes: with regional numéraires, it is easier to distinguish 
between movements of regional prices relative to each other, and joint movements 
of regional prices relative to international prices; the latter are reflected in the 
nominal exchange rates (see Table 6). As a matter of fact, the FE and FP closures 
mimic a fixed and flexible exchange rate regime respectively. The verb “mimic” 
points to the fact that, in the idealized frictionless world of most CGE models, the 
difference between the two is purely formal as we have seen, while in reality, it is 
substantive. But in simulations, the FE closure solution can be viewed as 
illustrative of adjustment by inflation or deflation (“internal” devaluation or 
revaluation; think of Greece in the Euro zone); the FP closure, on the other hand, 
can be viewed as an illustration of adjustment through devaluation or revaluation 
of the currency. 

6.2.2 FP closure endogenous exchange rates and real exchange rates 

What is the relationship between the FP closure nominal exchange rates and 
real exchange rates? In this section, we show that the FP closure exchange rates are 
indeed nominal, and not real, exchange rates. However, absent changes in other 
exchange rates, proportional changes in a region’s exchange rate are equal to 
proportional changes in its multilateral real exchange rate. 

Chinn (2006, 2008) defines the bilateral real exchange rate as *ppsq  , where 

q is the logarithm of the real exchange rate, s is the logarithm of the nominal rate 
(price of the foreign currency in terms of the domestic one), and p and p* are 
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logarithms of the domestic and foreign price levels respectively. Let us transpose 
this definition to our notation. In our model, a bilateral nominal exchange rate is 

 
zjzzjz eeE ,  (31) 

Now, ez is the price of the international currency in terms of z’s domestic 

currency, while zje  is the price of zj’s domestic currency in terms of the 

international currency, so that Ez,zj is the price of region zj’s currency in terms of 

region z’s currency. And, taking antilogs, Chinn’s definition can be written as 
 

*

*

,,
z

zj
zjz

R
zjz

P

P
EE   (32) 

where R
zjzE ,  is the bilateral real exchange rate, and *

zP  and *
zjP  are taken as 

“regional price levels” (other regional prices could play the role). Given (31), 
definition (32) is equivalent to 

 

zz

zjzjR
zjz

eP

eP
E

*

*

,   (33) 

And given the variable transformations defined in 6.1, 
 

z

zjR
zjz

P

P
E ,  (34) 

The bilateral real exchange rate is equal to the ratio of the foreign to the 
domestic price level expressed in terms of the international currency. In our highly 
simplified model, with a single good and fixed production factors, regional 

producer prices zP  and zjP  can be also interpreted as factor prices, so that the 

bilateral real exchange rate in (34) is the ratio of foreign to domestic factor prices. 
Note that equation (34) implies that the value of a bilateral real exchange rate is 
the same in Model 3 as in Model 2, whether the FE or the FP closure is applied. 

Under the FP closure, if *
zP  and *

zjP  are regional numéraires set equal to 1, then 

from (33), 
 

zj

zR
zjz

e

e
E ,  (35) 

Under the FP closure, a bilateral real exchange rate is equal to the ratio of the 
domestic exchange rate over the exchange rate of the trading partner. Note that, 
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in view of (34), the bilateral real exchange rate is independent of the choice of 
regional numéraire.  

In Table 8, bilateral exchange rates are computed from the simulations of Table 
6. 

Table 8. Bilateral real exchange rates with FE and FP closures 

 FE closure FP closure 

 Reg1 Reg2 Reg3 Reg1 Reg2 Reg3 

Prices - Simulation results 

e 1.000 1.000 1.000 1.005 0.976 1.130 

PL 0.993 1.025 0.886 0.998 1.001 1.002 

P 0.995 1.024 0.885 1.000 1.000 1.000 

PC 0.988 1.023 0.922 0.993 0.999 1.043 

PMT 0.962 1.010 1.052 0.967 0.987 1.189 

PXT 1.010 1.022 0.876 1.016 0.998 0.991 

Bilateral exchange rates 

Reg1  1.030   1.030  

Reg2 0.971  0.864 0.971  0.864 

Reg3 1.124   1.124   

Source: Author calculations. 

From (35), it is obvious that ez is not a bilateral real exchange rate. But what 

about a multilateral real exchange rate? Well, to define a multilateral real exchange 
rate would require to define a price-level variable for the world. For example, 
suppose we use a weighted average of regional price levels: 

 
 





zzj
zjzjzjRoW ePwP *  

(36) 

Then 
 

zz

RoWR
RoWz

eP

P
E

*
,   (37) 

 
 

zz

zzj
zjzjzj

R
RoWz

eP

ePw

E
*

*

,




  (38) 
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




zzj

R
zjzzj

R
RoWz EwE ,,  

(40) 

The multilateral real exchange rate is a weighted average of the bilateral ones. 
Then under the FP closure, we have 

 






zzj zj

z
zj

R
RoWz

e

e
wE ,  (41) 

 






zzj zj

zj
z

R
RoWz

e

w
eE ,  (42) 

R
RoWzz Ee ,  only if   

zzj
zjzj ew , and this cannot be true in general. However, 

absent changes in other exchange rates, proportional changes in a region z’s 
exchange rate are equal to proportional changes in its multilateral real exchange 
rate. 

6.3 Calibration neutrality and consistency 

In this section, we examine the parametrization problem, first by determining 
the number of unknowns and constraints, and the corresponding number of 
degrees of freedom. Then we lay out the identification constraints that enable a 
solution, and we show that these are neutral, with special attention to the 
normalization rules in price × volume factoring. Finally, we show how the 
calibration sequence must be constructed carefully to ensure that calibration is 
consistent with whichever particular set of identification constraints is applied.  

6.3.1 Parametrization of Model 3 

Model 3 has 14 N + 2 N (N – 1) parameters, listed in Table 9. There are 4 N pairs 

(= 8 N) of free parameters:  zz  , ,  MzM
z  , ,  zz  , , and  XzX

z  ,  which are set 

from exogenous sources. That leaves 6 N + 2 N (N – 1) parameters to be calibrated. 
The expanded version of Model 3 also has 13 N + 1 + 3 N (N – 1) variables whose 
benchmark values must be determined, and 10 N + 3 N (N – 1) equations. The SAM 

contains N2 transaction flows. Table 10 summarizes the situation. 

There are N2 + 7 N degrees of freedom, of which we dispose as follows: (1) three 

sets of prices are fixed exogenously: O
ze , 

O
zPL*  and O

zjzPW , ; (2) we apply a 

normalization rule as an identification constraint to define the benchmark values 

of four volume variables: O
zEXT , O

zIMT , O
zQ  and O

zXS  (see below about 

price × volume factoring); (3) parameters M
zzj ,  and X

zjz ,  are defined for each z 
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only up to a factor of proportionality, and we apply the 2 N normalization rules: 


zj

X
zjz ,  and 

zj

M
zzj ,  (see Lemelin, Robichaud, Decaluwé & Maisonnave, 

2013, Appendices D4.3.2.2 and D4.3.3.2). Table 11 lists the identification 
constraints in the calibration process. The number of identification constraints is 
equal to the number of degrees of freedom in the calibration problem. 

Table 9. Model 3 parameters 

Number 

zA  
Scale parameter, Armington CES function between local production 
and imports 

N 

z  
Share parameter, Armington CES function between local production 
and imports 

N 

z  
Elasticity of substitution between local production and imports: 

 z  
N 

z  
Elasticity parameter: 

z

z
z







 , and  z  N 

M
zA  

Scale parameter, Armington CES function between imports from 
different regions 

N 

M
zzj ,  

Share parameter, Armington CES function between imports from 
different regions 

N (N–1) 

M
z  

Elasticity of substitution between imports from different regions: 

 M
z  

N 

M
z  Elasticity parameter: 

M
z

M
zM

z






 , and  M

z  N 

zB  Scale parameter, CET product aggregator N 

z  Share parameter, CET product aggregator N 

z  Elasticity of transformation:  z0  N 

z  Elasticity parameter: 

z

z
z







 , and  z  N 

X
zB  Scale parameter, CET exports aggregator N 

X
zjz ,  Share parameter, CET exports aggregator N (N–1) 

X
z  Elasticity of transformation:  X

z  N 

X
z  

Elasticity parameter: 
X
z

X
zX

z






  and 

 X
z  N 

Total number of parameters 14 N + 2 N (N–1) 
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Table 10. Number of constraints and unknowns in the calibration process 

(1) Parameters 14 N + 2 N (N – 1) 
(2) Minus: Free parameters 8 N 
(3) = (1) – (2) Equals: Parameters to be calibrated 6 N + 2 N (N – 1) 
(4) Plus: Variables 13 N + 1 + 3 N (N – 1) 

(5) = (3) + (4) Number of unknowns 19 N + 1 + 5 N (N – 1) 
(6) = (5) Equal to 5 N2 + 14 N + 1 

(7) Number of equations 10 N + 3 N (N – 1) 
(8) = (7) Equal to 3 N2 + 7 N 
(9) Walras’ Law 1 
(10) SAM transactions flows N2 

(11) = (8) + (9) + (10) Number of constraints 4 N2 + 7 N + 1 

(12) = (6) – (11) Number of degrees of freedom N2 + 7 N 

Table 11. Identification constraints in the calibration process 

(1) Exogenous prices O
ze , 

O
zPL*  and O

zjzPW ,  2 N + N (N – 1) 

(2) = (1) N2 + N 

(3) Parameter normalization rules for M
zzj ,  and X

zjz ,  2 N 

(4) Composite volume variable normalization rules for O
zEXT , 

O
zIMT , O

zQ  and O
zXS  

4 N 

(5) Number of identification constraints = (2) + (3) + (4) N2 + 7 N 

6.3.2 Price × volume factoring 

One implication of the arbitrariness of the price × volume factoring mentioned 
in 2.3 relates to the calibration of CES and CET aggregates.22 Consider, for instance, 
the CET aggregate of exports to other regions. 

Assume that ze , zjzPW ,  and zjzEX ,  have already been assigned their 

benchmark values O
ze , O

zjzPW ,  and O
zjzEX , , and that free parameters X

z  and 

  X
z

X
z

X
z    are defined. We want to assign benchmark values to *

zPXT  and 

zEXT , and calibrate parameters X
zB  and X

zjz , : we have 3N + N (N – 1) unknowns 

for 2N + N (N – 1) equations, namely equations (7), (8) and (14). That leaves N 
degrees of freedom, which correspond to the arbitrariness of the price × volume 

                                                           

22 The reader is referred to Appendices D4.3.2 and D4.3.3 in Lemelin, Robichaud, Decaluwé 
& Maisonnave (2013) for a mathematical exposition of the calibration of CES and CET 
function parameters. 
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factoring. Choosing a normalization rule eliminates the extra degrees of freedom. 
For instance, we can pose 

 

zj

O
zjz

O
z EXEXT ,  

(43) 

This is neutral (non-restrictive). Indeed, observe that, if O
zEXT , 

O
zPXT *  and X

zB  

satisfy equations (7), (8) and (14), then so do O
z

O
z EXTEXT  , 

O
z

O
z PXTPXT ** 


 

and X
z

X
z BB  , for any  > 0. Also note that the normalization rule (43) does not 

imply that exports to different regions are perfect substitutes. In simulations, the 
solution values will in general not satisfy equation (43). Alternatively, it would not 

be restrictive to fix 
O
zPXT *  rather than using (43), provided O

zEXT  is correctly 

calibrated according to (14), and the X
zB  are calibrated correspondingly (this is 

illustrated in the first calibration consistency test outlined in Appendix K.2, 
supplemental online material).23  

6.3.3 Calibration consistency and the calibration sequence 

So model parametrization requires that identification constraints such as (43), 
be imposed to solve the calibration problem. These identification constraints must 

be  and are  neutral. But also, the calibration sequence must be constructed 
carefully to ensure that calibration is consistent with whichever particular set of 
identification constraints is applied. This is illustrated in Table 12, which presents 
the calibration sequence of benchmark variables and parameters relating to 
exports. 

Table 12 provides an example of the kind of pitfalls that can compromise 
calibration consistency. In view of steps 1, 3 and 6, it might be tempting to take a 

shortcut and replace step 7 with 
O
zPXT * ; that, however, would compromise 

calibration consistency, because the values assigned to O
ze  and O

zjzPW ,  are 

arbitrary, and not necessarily 1. Note in particular that adopting a different rule 

than the one in step 6 would change the benchmark value O
zXS  in step 8, then 

O
zP
*  

in step 9, and it would modify the calibrated value of zB  in step 11. So it is critical 

that these assignments be applied in the proper order. This is easy to verify here, 
but with a complex CGE model, the calibration procedure will be much more 
difficult to examine analytically. 

                                                           

23 This is the choice made by McDonald and Thierfelder (2016, p.19). 
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Because of the convenience of calibrating aggregates as in step 6, the calibration 

procedure of Model 3 applies the same rule to O
zEXT , O

zIMT , O
zQ  and O

zXS  (in that 

order). The calibration sequence of benchmark variables and parameters relating 
to imports is similar to that of exports. For a more complete presentation of the 
calibration procedure, the reader is referred to the GAMS code (supplemental 
online material), which is amply documented with comments in the code itself. A 
more in-depth presentation of the parametrization strategy, as it is applied to PEP-
w-1, can be found in Appendix E of Lemelin, Robichaud, Decaluwé & Maisonnave 
(2013). 

In a model as simple as Model 3, it is feasible to be reasonably certain of the 
consistency of the calibration procedure by diligent inspection of the code. In a 
complex model, even diligent inspection may overlook logical flaws, and testing 
offers an additional guarantee of consistency. To that end, the GAMS 
implementation of Model 3 presented in Appendix K (supplemental online 
material) contains options for the reader to test for calibration consistency; the 
options provided are examples of tests that could be performed on more elaborate 
models (and of course, no reader should resist the temptation to invent his/her 
own tests by modifying the programs provided). 
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Table 12. Calibration sequence of export related benchmark variables and parameters 

Step Assignment 

1 O
ze  

2 
O
zPL*  

3 O
zjzPW ,  

4 
O
z

O
z

O
z

O
zO

z
PLPL

DPL
D

**

* flow nstransactio SAM
  

5 
O
zjz

O
zjz

O
zjz

O
zjzO

zjz
PWPW

EXPW
EX

,,

,,
,

flow nstransactio SAM
  

6 
zj

O
zjz

O
z EXEXT ,  

7 
O
z

zj

O
zjz

O
zjz

O
z

O
z

EXT

EXPWe

PXT




,,

*  

8 O
z

O
z

O
z EXTDXS   

9 
O
z

O
z

O
z

O
z

O
zO

z
XS

EXTPXTDPL
P

**
* 

  

10 
























 






 







 

zz

z

O
z

O
z

O
z

O
z

O
z

O
z

z

EXTPXTDPL

DPL







**

*
 

continued... 
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Table 12. Calibration sequence of export related benchmark variables and parameters 

(continued) 

Step Assignment 

11 

    
z

zz O
zz

O
zz

O
z

z

EXTD

XS
B












 

  

12 

 

 






zjj

O
zjjz

O
zjjz

O
zjz

O
zjzX

zjz X
z

X
z

EXPW

EXPW







,,

,,
,  

13 

 

X
z

X
z

zj
zjz

X
zjz

zX
z

EX

EXT
B
























 ,,

 

7. Conclusion 

This paper was born out of the author’s personal experience in critically 
examining a worldwide CGE model. At times, my PEP colleagues and I were 
confronted with pairs of model solutions that should be equivalent in theory, but 
didn’t look like they were. In the course of (successfully) resolving such paradoxes, 
we feel we have gained a deeper understanding of the issues discussed here, and 
of CGE modeling in general. We want to share our insights, because the issues 
which we explore in this paper are seldom discussed explicitly in the descriptions 
of global multinational models. For that purpose, we develop a highly simplified 
skeleton model derived from the PEP-w-1 worldwide CGE model (Lemelin, 
Robichaud, Decaluwé & Maisonnave, 2013), which nonetheless represents the 
essential structure of several world trade models.  

The issues discussed may be grouped into four sets. First, in order to determine 
how many variables must be exogenously fixed in the closure, we delve into the 
identification of redundant equations. Beginning with a set of theoretical 
equations, the model is pared down by eliminating redundant equations, making 
sure in the process to avoid circular reasoning. The final step is to highlight Walras’ 
Law. In all CGE models, one equilibrium relation is routinely discarded, and a 
numéraire is defined, invoking Walras’ Law. But seldom is Walras’ Law explicitly 
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deducted from model equations as it is done in Appendix B (supplemental online 
material).  

Secondly, we consider model closures, homogeneity with respect to prices, and 
the way the latter is dealt with in closing the model. We show that fixed nominal 
current account balances, a widely used closure rule, is in principle incorrect 
because it compromises model homogeneity (although it may be correct under 
certain conditions), and we formulate a theoretically correct fixed current account 

closure. Then, we broaden our view to see which variables other than zCABX  could 

be made exogenous to close the model: we find that in the highly simplified 
skeleton model without exchange rates (Model 2), once the neoclassical full-

employment hypothesis is applied ( zz XSXS  ), there is really no other closure 

possible, except for variations on the numéraire.  
Third, we introduce nominal exchange rates in the model (Model 3), and we 

show that they can be given arbitrary values. We go on to develop the idea that 
the supplementary degrees of freedom created by introducing exchange rates in 
the model allow for applying what we have labeled the FP closure (Fixed regional 
Price indexes), in which there is a fixed local numéraire for each region, and the 
endogenous nominal exchange rate is the price of the global numéraire good in 
terms of the regional one. We establish that the model under the FP closure is 
equivalent to the model under the fixed nominal exchange rates (FE) closure. Put 
otherwise, the two model closures are different in their implementation, but are 
mathematically and economically equivalent. In complex models, the FP closure 
facilitates the analysis of price changes: with regional numéraires, it is easier to 
distinguish between movements of regional prices relative to each other, and joint 
movements of regional prices relative to international prices, reflected in the 
exchange rates. Finally, although the FP nominal exchange rates are not real 
exchange rates, they are closely related: absent changes in other exchange rates, 
proportional changes in a region’s exchange rate are equal to proportional changes 
in its multilateral real exchange rate. 

The fourth and final set of questions examined relates to calibration neutrality 
and consistency. Even after so-called “free” parameters (elasticities and the like) 
have been specified, the calibration problem usually remains underdetermined. 
Consequently, identification constraints (arbitrary exogenous values and 
normalization rules) are imposed. Such identification constraints, given that they 
are based neither on observation (SAM flows), nor on theory (model equations), 
should be neutral, or non-restrictive. Moreover, whichever set of neutral 
identification constraints are used to make the calibration problem determinate, 
the calibration procedure should yield parametrized models that are equivalent. 
Model equivalence is defined in terms of the mathematical conditions which 
model solutions must meet for models to be considered equivalent. Finally, 
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attention is drawn to the sequencing of calibration assignments and how incorrect 
sequencing can compromise neutrality and consistency. 

The paper is complemented by a set of GAMS programs which implement the 
model, and allow for experimentation with alternate calibration procedures and 
model closures, and test for model homogeneity and calibration neutrality and 
consistency.  

Nowadays, CGE models are routinely used to inform policy decisions. It is 
therefore critical that models be well conceived and that their results be correctly 
interpreted. But not all modelers and model-users have the leisure of reflecting on 
the foundations of their approach. This paper calls their attention to good 
modeling practice, and possible sources of errors and misinterpretations. 
Moreover, in the area of economic modeling, explicit and complete documentation 
is important for establishing a model’s scientific basis, like the reproducibility of 
experiments is in other scientific domains. Black-box models are without scientific 
credibility. While experienced modelers usually seem to apply correct solutions to 
the issues raised in this paper, few actually discuss their choices. Perhaps some 
simply repeat standardized forms. Modelers are now challenged to explain why 
they do what they do the way they do it. They are challenged to move from oral 
to written transmission of proper modeling practice. In the end, it is hoped that 
the considerations raised here find their way into the curricula of CGE modeling 
training sessions. 
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Appendix A: Detailed statement of Model 1 

Production 

With fixed production factors and full employment, output is fixed in each 

region z: zz XSXS  , where zXS  is domestic production in region z. That 

constraint, however, is not part of the model; rather, it is a closure equation. 

Income and savings 

Regional income is equal to the value of production. 
 

zzz XSPY   (A.1) 

where zP  is the producer price in region z and zY  is the income in region z. 

The model is static, so we can define “consumption” to include both current 
consumption and investment. It follows that savings, the difference between 
income and consumption, are equal to the current account balance (CAB). So the 
regional agent’s budget constraint is 

 
zzzz QPCYCAB   (A.2) 

where zCAB  is the current account balance of region z; zPC is the price of the 

composite good in region z; zQ  is domestic demand for the composite good in 

region z. 
To make the model more compact, we substitute (A.1) into (A.2), which 

becomes27 
 

zzzzz QPCXSPCAB   (3) 

We can eliminate equation (A.1) and variable zY  from the model. 

Not only is the current account balance equal to savings, but it is by definition 
equal to the difference between the aggregate value of exports and the aggregate 
value of imports. 

 
zzzzz IMTPMTEXTPXTCAB   (4) 

where zIMT  is total imports of region z; zEXT  is total exports of region z; zPMT  is 

the price of composite imports in region z; zPXT  is the price of composite exports 

of region z. 

                                                           

27 Equations that appear in the main text are numbered as they are in the main text. 
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Trade 

Production is allocated between sales on the domestic market and exports so 
as to maximize its value subject to a CET transformation function. 

 

  
z

zz
zzzzzz EXTDBXS


 



  
(5) 

where 

z

z
z







 , with  z , and 
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
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











  (6) 

where zD  is domestic demand for the locally produced good in region z; zPL is 

the market price of local product in region z; and zB  is a scale parameter and z  

is the share parameter of the CET product aggregator; z  is the elasticity of 

transformation:  z  

z

z
z







 :  z  

Total exports are allocated among destination regions so as to maximize their 
value subject to a CET transformation function. 
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where 
X
z
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zX
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 , with  X

z , and 
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,

,
,  (8) 

where X
zB  is the scale parameter and X

zjz ,  is the share parameter of the CET 

exports aggregator; X
z  is the elasticity of transformation, with  X

z ; 

X
z

X
zX

z






  is the elasticity parameter, with  X

z ; zjzPW ,  is the world 
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price of exports from region z to region zj; and zjzEX ,  are exports by region z to 

region zj. 
Under the Armington hypothesis, domestic demand is distributed between 

the domestically produced good and imports so as to maximize the quantity 
acquired, subject to a CES aggregator function. 

 

  
z
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zzzzzz IMTDAQ
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(9) 

where 
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  (10) 

where zA  is the scale parameter, and z  the share parameter of the Armington 

CES function between local production and imports; z  is the elasticity of 

substitution between local production and imports, with  z ; and 

z

z
z







  is the elasticity parameter, with  z . 

Under the Armington hypothesis, imports are distributed among exporting 
regions so as to maximize the quantity acquired, subject to a CES aggregator 
function. 
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where M
zA  is the scale parameter, and M

zzj ,  the share parameter of the 

Armington CES function between imports from different regions; M
z  is the 
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elasticity of substitution between imports from different regions, with  

 M
z ; and 

M
z

M
zM

z






  is the elasticity parameter, with  M

z . 

Prices 

The value of production is equal to the sum of the value of sales on the 
domestic market and exports. 

 
zzzzzz EXTPXTDPLXSP   (13) 

The total value of exports is equal to the sum of values of exports to all 
regions 

 

zj

zjzzjzzz EXPWEXTPXT ,,  
(14) 

Total expenditures are equal to the sum of purchases on the domestic market 
and the value of imports. 

 
zzzzzz IMTPMTDPLQPC   (15) 

The total value of imorts is equal to the sum of values of imports from all 
regions 

 

zj

zzjzzjzz IMPWIMTPMT ,,  
(16) 

Equilibrium 

Imports from region zj by region z must be equal to exports from region zj to 
region z. 

 
zzjzzj IMEX ,,   (17) 

The world sum of current account balances, expressed in the international 
currency, must be zero. 

 


z
zCAB  

(18) 
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Appendix B: Redundant equations in model 1 

We now show that  

 equations (7) and (8) together imply (14), which is therefore redundant; 

 equations (11) and (12) together imply (16), which is therefore 
redundant; 

 equations (4) and (17) together imply (18), which is therefore redundant; 

 equations (13), (15) and (3) together imply (4), which is therefore 
redundant; 

 equations (14) (or equivalently the combination of (7) and (8)),  
 (16) (or equivalently the combination of (11) and (12)),  
 (13), (15) and (3), and 
 (18) (or alternatively the combination of (13), (15) and (3),  
 which together imply (4), and equations (4) and (17))  
together imply that, if equation (3) is satisfied for N – 1 regions, then it is 

also satisfied for the Nth one (Walras’ Law). Therefore, one equation of 
the set (3) may be discarded as redundant. 
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B.1 Redundancy of equations (14) and (16) 

Given (7) and (8), equation (14) is redundant, and given (11) and (12), equation (16) is redundant. This is 
demonstrated in parallel in three steps. 

Step 1: Substitute (8) into (7), and (12) into (11), and develop. 
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Step 2: Multiply both sides of (8) by zjzPW , ,  and both sides of (12) by zzjPW , , and sum over zj. 
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Step 3: Substitute the right-hand side of the last equation in Step 2 into the last equation in Step 1 
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(B.18) 

The final equations in Step 3 are identical to (14) and (16), which are therefore redundant. 
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B.2 Equation (18) redundant 

Substitute (14) and (16) into (4) and sum over z. 
 

 

z zj
zzjzzj

z zj
zjzzjz

z
z IMPWEXPWCAB ,,,,  

(B.19) 

 
 

z zj
zjzzjz

z zj
zjzzjz

z
z IMPWEXPWCAB ,,,,  

(B.20) 

Note the change in the order of indices between (B.1) and (B.2). 
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And, given (17), we have (18). Equations (4) and (17) together imply (18), which 
is therefore redundant. 

B.3 Equation (4) redundant 

Substitute (13) and (15) into (3) to obtain (4). Since equations (13), (15) and (3) 
together imply (4), the latter is therefore redundant. 

B.4 Walras’ Law 

We shall now examine how Walras’ Law applies to our model. Define excess 
demands on the domestic and international markets respectively as 
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where D
zD  is the demand for domestic production, and O

zD  is supply to the 

domestic market. 
It is shown in Appendix D that the demand for domestic production as a 

function of relative prices and the demand for the composite good is 
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Similarly, it is shown in Appendix E that supply to the domestic market as a 
function of relative prices and total production is 
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In Appendix F, it is shown that region z’s demand for imports from zjj, as a 
function of relative prices and demand for the composite good, is given by 
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Finally, it is shown in Appendix G that region z’s supply of exports towards 
zjj, as a function of relative prices and total supply, is 
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Supply and demand equations (B.24)-(B.27) are homogeneous with respect to 
prices. Their mathematical derivations are given in Appendices D-G (look for 
equations (D.43), (E.46), (F.32) and (G.35)). 

The value of excess demand on the domestic and international markets is 
given by 

 
O
zz

D
zzzz DPLDPLXDPL   (B.28) 

 
zzjzzjzzjzzjzzjzzj EXPWIMPWXMPW ,,,,,,   (B.29) 

The aggregate value of all excess demands, expressed in terms of the 
international currency, is 
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 (B.30) 

Substitute equations (14) and (16) into the last equation. It is true that 
equations (14) and (16) are no longer present among the model equations (they 
have already been discarded as redundant), but they are implied27: 

 equations (7) and (8) together imply (14) (see above and Appendix B); 

 equations (11) and (12) together imply (16) (see above and Appendix B). 

                                                           

27 We underline this as a precaution against the logical pitfall that would consist in using 
a discarded equation that could no longer be considered implicit in the model because 
the equations which imply it would also be absent from the model. 
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The substitution yields 
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Substitute (13) and (15) into the last equation, and 
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where the regional agents’ budget constraints are given by (3). 
Regional budget constraints are homogeneous with respect to prices and 

nominal values28. Substitute the regional budget constraints into (B.35) to obtain 

                                                           

28 In the traditional development of Walras’ Law, the income and expenditures of each 
agent are constained to be equal, so that their budget constraints are homogeneous with 
respect to prices. Here, agents may have surpluses or deficits (non-zero CABs), the 
counterpart of which are, broadly speaking, international “loans”. It follows that 
homogeneity must be defined not with respect to prices only, but with respect to prices 
and nominal values. 
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Substitute (18) into the last equation (equation (18) is no longer present among 
the model equations, but implied: equations (13), (15) and (3) together imply (4), 
and equations (4) and (17) together imply (18)). The substitution yields 
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So the total value of excess demands is zero, which is Walras’ Law. It follows 
from Walras’ Law that, if all excess demands but one are zero, then the 
remaining one is zero also. Therefore, one of the market equilibrium constraints 

consisting of (17) and O
z

D
z DD   is redundant (Of course, in the model, this 

equilibrium constraint is represented by the fact that both sides of the equation 
are one and the same variable, Dz). 

However, rather than discarding one of the market equilibrium constraints, it 
is possible to discard one of the budget constraints, while retaining all market 
equilibrium constraints. Indeed, if all excess demands are zero for some price 
vector, the left-hand side of equation (B.35) is zero. It follows that, for any region 
z,  Nz ,, , 

 
   





zzj
zjzjzjzjzzzz XSPQPCXSPQPC  

(B.38) 

while (18) implies 
 






zzj
zjz CABCAB  

(B.39) 

Consequently, if zjzjzjzjzj QPCXSPCAB   for all zzj  , then the last two 

equations guarantee that, for the remaining region z also, zzzzz QPCXSPCAB  . 

This is the form which Walras’ Law takes in our model. We arbitrarily pick some 
region zleon,  Nzleon ,,  (zleon is a mnemonic for Léon Walras), and remove 

equation (3) for that single region. Note that, with the removal of the equation 
relating to zleon, the variable zleonCAB  no longer appears in the model. Its value 

may be computed using the suppressed equation. 
It is common practice in CGE modeling to introduce an extra variable and an 

extra equation to verify Walras’ Law. In the GAMS implementation described in 
Appendix K, the extra variable is labeled LEON in honor of Léon Walras, and 

 zleonzleonzleonzleonzleon QPCXSPCABLEON  . A nonzero LEON in the solution 

indicates that there is an error in the model. 



Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

274 

Appendix C: NLP problem with dummy objective 

Some modelers sidestep the task of seeking out and eliminating redundant 
equations by changing the constrained nonlinear system (CNS) into a nonlinear 
programming (NLP) problem with a dummy objective variable set equal to a 
constant. This is risky, because the solver will find a solution even if the model 
misses a closure equation, which usually implies that the solution produced by 
the solver depends on the initial values of the variables, because when a closure 
equation is missing, the solution is generally not unique. This point is illustrated 
here with the help of a simple example. 

Consider the following example 

 ayx   (C.1) 

 
babybx   (C.2) 

 cy   (C.3) 

where a, b and c are constants. Clearly, equation (C.2) is redundant given 
equation (C.1). Equation (C.3) plays the role of a closure rule. This model is 
programmed and solved following different strategies to illustrate the riskiness 
of using NLP. The GAMS code is given at the end of the appendix. 

Using the GAMS solver CONOPT, with the statement 

Solve testmodel_1 using CNS; 

where testmodel_1 consists of equations (C.1), (C.2) and (C.3), the program 
aborts, because the model is not square: the CONOPT solver does not detect 
redundancy, so it believes there is one equation too many. On the other hand, 
with the statement 

Solve testmodel_1 using NLP minimizing y; 

the model finds a solution which is identical to the solution produced with the 
correct model testmodel_2, consisting of equations (C.1) and (C.3), by the 
statement 

Solve testmodel_2 using CNS; 

Now, suppose the modeler does not eliminate redundant equation (C.2), fails 
to include closure rule (C.3), and introduces a dummy objective variable, z. The 
resulting model is testmodel_3, which consists of equations (C.1) and (C.2), 
together with (C.4): 

 
dz   (C.4) 

where d is any constant. We now perform 
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Solve testmodel_3 using NLP minimizing z; 

Obviously, the solution of testmodel_3 is not unique. The solution produced 
by the algorithm depends on the initial values of variables. If the SOLVE 
statement for testmodel_3 comes immediately after the solution of testmodel_2, 
then x and y will be implicitly initialized at their correct solution values and the 
solution will be the same. But if the initial values are modified, then the solution 
could be different and, in our example, wrong. 

GAMS code 

* Testmodel for Appendix C 

 

parameter a, b, c; 

a = 10; 

b = 2; 

c = 2; 

 

variable x, y; 

equation eq1, eq2, eq3; 

 

eq1.. x+y =e= a; 

* eq2 is redundant given eq1 

eq2.. b*x+b*y =e= a*b; 

* eq3 is the closure rule 

eq3.. y =e= c; 

 

option NLP = conopt3; 

 

Model testmodel_1 /all/; 

*======================== CNS with redundant equation ========================= 

* testmodel_1 is not square 

* The model cannot be solved using CNS: the program aborts 

* with the diagnostic "**** CNS models must be square". 

*solve testmodel_1 using CNS; 

 

*================== NLP with redundant constraint and fixed y ================= 

* Even if the value of y is fixed by eq3, 

* NLP is able to solve the model minimizing y. 

* The solution is correct, given by 

*     y = c 

*     x = a - y 

* In this case, the redundant equation causes no harm. 

solve testmodel_1 using NLP minimizing y; 

 

*=========================== CNS with square model ============================ 

* After deleting redundant eq2, testmodel_2 is square, 

* and CNS is able to solve the model. 

Model testmodel_2 /eq1, eq3/; 

solve testmodel_2 using CNS; 

 

*=========== NLP with redundant constraint and a dummy objective ============== 

variable z dummy objective; 

* The value of the dummy objective is fixed at a constant value 

equation eq4; 

eq4.. z =e= 2; 

 

* testmodel_3 consists of eq1 and eq2, which are equivalent, so that one of 

them 

* is redundant. The modeler has omitted the closure rule eq3, and added the 

* dummy objective fonction eq4. 
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Model testmodel_3 /eq1, eq2, eq4/; 

* The solution of the model is not unique, and it depends on initial values. 

* For example, if x and y are not initialized, their value by default is 

* their solution value from the preceding SOLVE: 

parameter xSol, ySol; 

xSol = x.l; 

ySol = y.l; 

display xSol, ySol; 

* Therefore, in this program, failing to initialize x and y is equivalent to: 

x.l = 8; 

y.l = 2; 

* NLP finds the correct solution. 

solve testmodel_3 using NLP minimizing z; 

 

* But if the initial value of y were different, say 

x.l = 0; 

y.l = 2; 

* then the solution violates missing eq3. 

solve testmodel_3 using NLP minimizing z; 
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Appendix D: Equation (B.24) 

D.1 Cost minimizing problem 

The regional agent allocates demand between domestic production and 
imports by minimizing consumption expenditures (equation (15)), subject to 
constraint (9). 

D.2 Lagrangian and first-order conditions 

Form the Lagrangian 
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The first order conditions are: 
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 (D.4) 

with 
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and 
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Given (9), 
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Substitute the last equation into (D.6) to obtain 
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and similarly into (D.8), yielding 
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First-order conditions (D.3) and (D.4) can now be written as 
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or 
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D.3 Relative demand for domestic production and imports 

Take the ratio of the final two equations of D.2, 
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where 
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D.4 Demand for components in terms of composite demand and prices 

Substitute the final equation of D.3 into (9) 
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where 
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(D.32) 

where the left-hand side ratio depends only on component prices. As a matter of 
fact, multiplying both sides of (D.33) by zQ  transforms it into a demand equation 

of zD . A similar development would lead to a demand equation for zIMT . 
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D.5 Unit cost of composite demand 

It is clear from (D.23) that the relative demand for domestic production and 
imports is independent of the scale of demand, which is consistent with the first-
degree homogeneity of aggregator function (9). Consequently, the unit cost of the 
composite demand can be obtained from (15) by substituting the optimal ratio 
determined in (D.23), and dividing through by zQ . 
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To express zPC  in terms of the component prices only, we must substitute for 

zz QD  in this last equation using (D.33): 
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D.6 Demand for domestic production and imports reformulated 

Given the last equation in D.5, we have 
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Using the preceding equation, we can write (D.33) as 
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which is an alternate form of the demand equation for domestic production. A 
similar development leads to the import demand equation: 
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Equation (B.24) defines D
zD  from (D.43). 
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Appendix E: Equation (B.25) 

E.1 Sales revenue maximizing problem 

The regional agent allocates production between the domestic market and 
exports by maximizing the value of production (equation (13)), subject to 
constraint (5). 

E.2 Lagrangian and first-order conditions 

Form the Lagrangian 
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The first order conditions are: 
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with 
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and 
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Given (5), 
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Substitute that into (E.6) to obtain 
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and similarly into (E.8), which yields 
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First-order conditions (E.3) and (E.4) can now be written as 
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E.3 Relative supply of components 

Take the ratio of the two last equations in E.2: 
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where 
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E.4 Supply of components in terms of aggregate production and prices 

Substitute the last equation of E.3 into (5) 
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where the left-hand side ratio depends only on component prices. As a matter of 
fact, multiplying both sides of (E.33) by zXS  transforms it into a supply equation 

of zEXT . A similar development would lead to a supply equation for zD . 
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E.5 Unit value of aggregate output 

It is clear from (E.23) that the relative supply on the domestic and export 
markets is independent of the scale of output, consistent with the first-degree 
homogeneity of aggregator function (5). Consequently, the unit value of the 
output aggregate can be obtained from (13) by substituting the optimal ratio 
determined in (E.23), and dividing through by zXS . 
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To express zP  in terms of the component prices only, we must substitute for 

zz XSEXT  in the preceding equation using (E.33): 
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E.6 Supply of components reformulated 

Given the last equation in E.5, we have 
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Using this, we can write (E.33) as 
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which is an alternate form of the export supply equation. A similar development 
leads to the domestic supply equation: 
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Equation (B.25) defines O
zD  from (E.46). 
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Appendix F: Equation (B.26) 

F.1 Cost minimizing problem 

The regional agent allocates imports between origins by minimizing the 
aggregate cost of imports (equation (16)) subject to constraint (11) and to 

*
zz IMTIMT  , where *

zIMT  is the solution to the demand allocation problem as 

given by (D.44). 

F.2 Lagrangian and first-order conditions 

Write the Lagrangian 
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The first order conditions are: 
 

























 *
,, z

zj
zzj

M
zzj

M
z

X
z

z IMTIMA

M
z

M
z








L
 

(F.2) 

 































M
z

M
z

zjj
zzjj

M
zzjj

M
z

zzj

M
zzzj

zzj

z IMA
IM

PW
IM




 ,,

,
,

,

L
 

(F.3) 
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Given (11), which is equivalent to 
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And the first-order condition becomes 
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F.3 Relative demand for imports of different origins 

Take the ratio of the preceding equation for two different origins, zj and zjj: 
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F.4 Demand for components in terms of aggregate imports and prices 

Substitute the last equation of F.3 into (11), and 
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(F.25) 

where the left-hand side ratio depends only on component prices. As a matter of 

fact, multiplying both sides of (F.23) by *
zIMT  transforms it into a demand 

equation for zzjIM , .  

F.5 Unit value of aggregate imports 

It is clear from (F.16) that the relative demand for imports of different origins 
is independent of the scale of imports, consistent with the first-degree 
homogeneity of aggregator function (7). Consequently, the unit value of the 
import aggregate can be obtained from (16) by substituting the optimal ratio 

determined in (F.16), and dividing through by *
zEXT . 
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To express zPMT  in terms of the component prices only, we must substitute 

for *
, zzzjj IMTIM  in the preceding equation using (F.23): 
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F.6 Supply of components reformulated 

Given the preceding equation, we have 
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Using that equation, we can rewrite (F.23) as 
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which is an alternate form of the demand equation for imports from a particular 
region. 

To obtain equation (B.26), substitute (D.44) from Appendix D into (F.32). 



Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

303 

Appendix G: Equation (B.27) 

G.1 Revenue maximizing problem 

The regional agent allocates exports between export destinations by 
maximizing the value of exports (equation (14)), subject to constraint (7) and to 

*
zz EXTEXT  , where *

zEXT  is the solution to the output allocation problem as 

given by equation (E.45). 

G.2 Lagrangian and first-order conditions 

Write the Lagrangian 
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The first order conditions are: 
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where 
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Given (7), which is equivalent to 
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we can write 
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And the first-order condition becomes 
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G.3 Relative supply of components 

Take the ratio of the preceding equation for two different trading partners of 
region z: zj and zjj. 
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Or, given 
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G.4 Supply of components in terms of aggregate exports and prices 

Substitute the final equation of G.3 into (7) to obtain 
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(G.25) 

where the left-hand side ratio depends only on component prices. As a matter of 

fact, multiplying both sides of (G.25) by *
zEXT  transforms it into a supply 

equation of zjzEX , .  

G.5 Unit value of aggregate exports 

It is clear from (G.18) that the relative supply on different export markets is 
independent of the scale of exports, consistent with the first-degree homogeneity 
of aggregator function (7). Consequently, the unit value of the export aggregate 
can be obtained from (14) by substituting the optimal ratio determined in (G.18), 

and dividing through by *
zEXT . 
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To express zPXT  in terms of the component prices only, we must substitute 

for *
, zzjjz EXTEX  in the preceding equation using (G.25): 
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G.6 Supply of components reformulated 

Given the preceding equation, we have 
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So we can rewrite (G.25) as 
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 (G.35) 

which is an alternate form of the supply equation of exports to a particular 
region. 

To obtain equation (B.26), simply substitute (E.45) from Appendix E into 
(G.35). 

 



Journal of Global Economic Analysis, Volume 2 (2017), No. 1, pp.  215-324. 

 

311 

Appendix H: Two-region version of Model  

In a 2-region model, each region has only one trading partner, so that, for 

zzj  , we have zjzz EXEXT , , zzjz IMIMT , , zzzj PMTPW ,  and zzjz PXTPW , , 

which replace (7), (11), (8) and (12) respectively. The first two equalities above, 
together with (17), imply 

 
zzj IMTEXT   (24) 

And following two equalities imply 
 

zzj PMTPXT   (25) 

So we can insert equations (24) and (25) into the model, and do away with 
equations (17) and the four equations (7), (11), (8) and (12), and with variables 

zjzEX , , zjzIM ,  and zjzPW , . The PWINDEX variable is consequently re-defined, 

and equation (20) is replaced by 
 










z
z

O
z

z
zz

z

O
z

O
z

z

O
zz

IMTPMT

IMTPMT

IMTPMT

IMTPMT

PWINDEX  (23) 

The two-region Model 2 variables are listed in Table H1, and the equations in 
Table H2. This model has 11 N  + 1 = 23 variables and 9 N  + (N – 1) +1 = 20 
equations. There are N + 1 = 3 degrees of freedom. 
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Table H.1 Two-region Model 2 variables 

Volumes 

zQ  Domestic demand for the composite good in region z 

zD  Domestic demand for the locally produced good in region z 

zIMT  Total imports of region z 

zEXT  Total exports of region z 

zCABX  Real current account balance (pseudo-volume variable) 

Prices 

zP  Producer price 

zPL  Market price of local product 

zPC  Price of the composite good 

zPMT  Price of composite imports to region z 

zPXT  Price of composite exports from region z 

zjzPW ,  World price of exports from region z to region zj 

Nominal value variables 

zCAB  Current account balance of region z 
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Table H.2 Two-region Model 2 equations 

zzzzz QPCXSPCAB  , zleonz   (3) 

PWINDEXCABCABX zz   (19) 

  
z

zz
zzzzzz EXTDBXS


 



  where 

z

z
z







 , with  z  (5) 
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zzzzzz EXTPXTDPLXSP   (13) 

zzzzzz IMTPMTDPLQPC   (15) 


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z
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z

O
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PWINDEX  (23) 

zzj IMTEXT   (24) 

**
zzj PMTPXT   (25) 
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Appendix I: Equation (26) 

The 2-region Q-Model consists of equations (5), (9) and (24). Develop (5) when 

zz XSXS   
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Next, let zz QQ  , substitute into (9) and develop. 
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(I.6) 

Combine that equation with (I.3) 
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Equation (26) follows directly. 
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Appendix J: Equation (27) 

The 2-region P-Model consists of equations (6), (10) and (25). Substitute from 
(25) into (6) and develop. 
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Next, develop (10): 
 

z

z

z

z

z

z

z

D

IMT

PMT

PL























 (J.4) 

 

z

z

z

z

z
z PMT

D

IMT
PL

z





















  (J.5) 

Combine this with (J.3): 
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Equation (27) follows directly. 
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Appendix K: GAMS implementation 

K.1 Brief description of GAMS programs 

Model 3 has been implemented in GAMS for illustration purposes. All of the 
GAMS programs and files are provided with this paper as supplementary online 
material. The standard version of the model is implemented in program 
SkeletonWorld_2017_Model3A.gms. The main program calls several sub-programs. 
In order of appearance, they are: 

 Calib_check_2017.gms may be called at the end of calibration. It computes 
the difference between the left- and right-hand side of every equation 
when the variable arguments are replaced by their (calibrated) 
benchmark values. Since this is a toy model, the Calib_check_2017 results 
are displayed in the main program listing file 
(SkeletonWorld_2017_Model3A.lst). 

 Closures_2017.gms contains various closure options, including different 
choices of the numéraire and of its value. The user chooses by 
activating/disactivating the $ontext/$offtext switches in the program. 

 RESULTS_BAU_2017.gms stores the BAU (“business as usual”, no shock) 
solution values. 

 Benchmk_chk_2017.gms may be called once the BAU solution has been 
computed. It computes the difference between each variable’s solution 
value and its benchmark (calibrated) value. Since this is a toy model, the 
Benchmk_chk_2017 results are displayed in the main program listing file 
(SkeletonWorld_2017_Model3A.lst). 

 RESULTS_SIM_2017.gms stores the SIM solution values and produces 
the GDX output file and its xls companion. 

 RATIOS_2017.gms computes the ratio of SIM solution values to BAU 
(benchmark) values for the purpose of checking for calibration 
consistency. 

Calib_check_2017.gms and Benchmk_chk_2017.gms are not directly related to the 
issues discussed in this paper. They are two diagnostic tools frequently used by 
the author in developing models. 

The program SkeletonWorld_2017_Model3A.gms produces two result files. The 
first is a “classic” Excel results file (results.xlsx) created in 
RESULTS_SIM_2017.gms from the standard GDX output file, using GDX2XLS, 
with one sheet per variable. The second (Results_too.xlsx) is in tabular form, made 
in the main program with the GDXXRW facility, reading set-up parameters from 
a text file which is created within the GAMS model program. 

There is a second program, SkeletonWorld_2017_Model3B.gms, which is 
basically the same, but offers in addition various possibilities for modifying the 
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calibration and/or the closure rules, and making comparisons with the standard 
version of the model.  

Some of the sub-programs called by SkeletonWorld_2017_Model3A.gms are 
duplicated to be called by SkeletonWorld_2017_Model3B.gms.  

 Closures_B_2017.gms is similar to Closures_2017.gms, except for the user’s 
choice of which closure is activated; it also offers additional closures 
designed to perform tests of Model A against Model B. If the user 
chooses the same closure in both, then SkeletonWorld_2017_Model3A.gms 
and _Model3B.gms will produce identical results. Duplicating the Closures 
program eliminates the need to modify the choice of closures between 
SkeletonWorld_2017_Model3A.gms and _Model3B.gms.  

 In RESULTS_BAU_B_2017.gms, variables containing the BAU (“business 
as usual”, no shock) solution values are prefixed with “B” for 
comparison computations. For instance, the variable BvalDD(z,scen) 
corresponds to valDD(z,scen) created in RESULTS_BAU_2017.gms. 

 RESULTS_SIM_B_2017.gms stores the SIM solution values with a B 
prefix like the preceding profram, and produces the GDX output file and 
its xls companion. 

 RATIOS_B_2017.gms computes the ratio of SIM solution values to BAU 
(benchmark) values for the purpose of checking for calibration 
consistency. The ratio variables names begin with a B for comparison 
computations. For example, the variable BratioEXT(z) corresponds to 
ratioEXT(z) created in RATIOS_2017.gms. 

Comparisons are made using two sub-programs: 

 Compare_SOLUTIONS.gms reads the standard model solution GDX file 
produced by SkeletonWorld_2017_Model3A.gms, and computes the ratios 
of Model3B/Model3A solution values, for the purpose of checking for 
model homogeneity when the choice of the numeraire, or its value, or 
both are modified. The output consists of files Sol_ratios.gdx and 
Sol_ratios.xls. 

 Compare_RATIOS.gms reads the GDX file of SIM/BAU ratios produced 
by SkeletonWorld_2017_Model3A.gms, and computes the Model3B–
Model3A ratio differences, for the purpose of checking for calibration 
neutrality and consistency. The output consists of files Ratio_diff.gdx and 
Ratio_diff.xls. 

SkeletonWorld_2017_Model3B.gms is therefore a tool for testing model 
homogeneity and calibration neutrality and consistency.  
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K.2 Examples of tests 

All the tests described here have been made against the standard version of 
the model with the FP closure and PWINDEX as the numéraire price: 

 XS.FX(z)     =  XSO(z); 

 P.FX(z)      =  PO(z); 

 CABX.FX(z) = CABXO(z); 

 PWINDEX.FX  = PWINDEXO; 

In Model3B, the closure is defined in Closures_B_2017.gms, as described for 
each test. 

K.2.1 Test of FP and FE closures 

Implement the FE closure in Model3B: 

 XS.FX(z)    = XSO(z); 

 e.FX(z)     = eO(z); 

 CABX.FX(z)  = CABXO(z); 

 PWINDEX.FX  = PWINDEXO; 

In Compare_SOLUTIONS.gms, set the Lambda parameter to 1 and the program 
will compute the ratios of Model3B/Model3A solution values, after dividing all 
regional prices and nominal variables by their exchange rate to convert them into 
the international currency. Observe in Sol_ratios.xls that all ratios are equal to 1 
(except for exchange rates): the two models are identical. 

K.2.2 Homogeneity test 1 

If a model is truly homogenous, the solution values of real (volume) variables 
and all price and nominal value ratios are supposed to be  

 independent of which commodity is taken as the numéraire; 

 independent of which region is taken as the reference region when the 
numéraire is a regional commodity (a particular case of the preceding); 

 independent of the particular value given the price of the numéraire, 
whatever commodity plays that role. 

In Model3B, implement the FP closure with zrjzrPW ,  as the numéraire. 

 In section 1.1 of SkeletonWorld_2017_Model3B.gms, designate a pair of 
reference regions: 

 zr(z) = no; 

 zr('Reg1') = yes; 

 zrj(z) = no; 

 zrj('Reg2') = yes; 

(this may also be done in Closures_B_2017.gms) 

 In Closures_B_2017.gms, activate “Homogeneity test 1 with FP closure”: 

 XS.FX(z)     =  XSO(z); 

 P.FX(z)      =  PO(z); 
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 CABX.FX(z)   =  CABXO(z); 

 PW.FX(zr,zrj)     =  PWO(zr,zrj); 

In Compare_SOLUTIONS.gms, set the  parameter using29 

Loop{(zr,zrj), 

 Lambda(scen)   = BvalPW(zr,zrj,scen)/valPW(zr,zrj,scen); 

     }; 

Then the program will compute the ratios of Model3B/Model3A solution values, 
after dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that all 
ratios are equal to 1 (except for exchange rates): the two models are identical. As 

for exchange rates, their ratio is equal to 1/. Now, let A
zPL  be the value of zPL  

in the Model3A solution, and B
zPL  its value in the Model3B solution. We observe 

in Sol_ratios.xls that A
z

A
z

B
z

B
z ePLePL   and A

z
B
z ee . Consequently, 

A
z

B
z PLPL , which is as it should be under the FP closure. The reason is that the 

regional numéraires (here zP ) are fixed, so that, if the models are identical, going 

from PWINDEX to zrjzrPW ,  as the numéraire leaves regional prices unchanged. 

Homogeneity test 1 can be performed with the same results if the numéraire is 
given any arbitrary positive value. For example, 

 lambda0      = 1.7; 

 PW.FX(zr,zrj)     =  Lambda0*PWO(zr,zrj); 

However, with multiples outside the [0.45,1.7] range, the model needs to be 
initialized accordingly for GAMS to be able to solve it: 

 PW.FX(zr,zrj)     =  Lambda0*PWO(zr,zrj); 

 

 e.L(z)      =  eO(z)/Lambda0; 

 PW.L(z,zj)  =  Lambda0*PWO(z,zj); 

 PWINDEX.L   =  Lambda0*PWINDEXO; 

(the re-initialization code appears in Closures_B_2017.gms). 

K.2.3 Homogeneity test 2 

In Model3B, implement the FP closure with zre  as the numéraire. Activate 

“Homogeneity test 2 with FP closure” in Closures_B_2017.gms: 

 zr(z) = no; 

 zr('Reg1') = yes; 

  

 XS.FX(z)     =  XSO(z); 

 P.FX(z)      =  PO(z); 

 CABX.FX(z)   =  CABXO(z); 

 e.FX(zr)     =  eO(zr); 

                                                           

29 The loop is necessary because zr and zrj are sets (albeit singletons) in GAMS.  
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In Compare_SOLUTIONS.gms, set the  parameter using30 

Loop{zr, 

 Lambda(scen)   = vale(zr,scen)/Bvale(zr,scen); 

     }; 

which is equivalent to    A
zr

B
zr ee  . This reflects the fact that the numéraire 

is an international price: it is actually zre , the price of region zr’s currency in 

terms of the international currency, rather than zre , the price of the international 

currency in terms of region zr’s currency. 
The program will compute the ratios of Model3B/Model3A solution values, 

after dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that all 
ratios are equal to 1 (except for exchange rates): the two models are identical.  

Homogeneity test 2 can be performed with the same results if the numéraire is 
given any arbitrary positive value, but with large or small multiples, the model 
needs to be initialized accordingly for GAMS to be able to solve it: 

 e.FX(zr)     =  Lambda0*eO(zr); 

 e.L(z)       =  Lambda0*eO(z); 

 PW.L(z,zj)   =  PWO(z,zj)/Lambda0; 

 PWINDEX.L    =  PWINDEXO/Lambda0; 

The appropriate code is in Closures_B_2017.gms. 

K.2.4 Homogeneity test 3 

In Model3B, implement the FP closure with PWINDEX as the numéraire and 
change zP  for zPL  as the regional numéraire. Activate “Homogeneity test 3 with 

FP closure: change in regional numeraire” in Closures_B_2017.gms: 

 XS.FX(z)     =  XSO(z); 

 PL.FX(z)     =  PLO(z); 

 CABX.FX(z)   =  CABXO(z); 

 PWINDEX.FX   =  Lambda0*PWINDEXO; 

and add the corresponding re-initialization: 

 e.L(z)       =  eO(z)/Lambda0; 

 PW.L(z,zj)   =  Lambda0*PWO(z,zj); 

In Compare_SOLUTIONS.gms, set the  parameter using 

 Lambda(scen)   = BvalPWINDEX(scen)/valPWINDEX(scen); 

The program will compute the ratios of Model3B/Model3A solution values, 
after dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that all 
ratios are equal to 1 (except for exchange rates): the two models are identical.  

                                                           

30 The loop is necessary because zr and zrj are sets (albeit singletons) in GAMS.  
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K.2.5 Homogeneity test 4 

In Model3B, implement the FP closure with PWINDEX as the numéraire and 
change zP  for zPL  as the regional numéraire, with a change of value for the 

numéraire. Activate “Homogeneity test 4 with FP closure: change in regional 
numeraire” in Closures_B_2017.gms: 

 XS.FX(z)     =  XSO(z); 

 PL.FX(z)     =  Lambda0*PLO(z); 

 CABX.FX(z)   =  CABXO(z); 

 PWINDEX.FX   =  PWINDEXO; 

and add the corresponding re-initialization: 

 e.L(z)      =  Lambda0*eO(z); 

 P.L(z)      =  Lambda0*PO(z); 

 PC.L(z)     =  Lambda0*PCO(z); 

 PMT.L(z)    =  Lambda0*PMTO(z); 

 PXT.L(z)    =  Lambda0*PXTO(z); 

 CAB.L(z)    =  Lambda0*CABO(z); 

In Compare_SOLUTIONS.gms, set the  parameter using 

 Lambda(scen)   = BvalPWINDEX(scen)/valPWINDEX(scen); 

The program will compute the ratios of Model3B/Model3A solution values, after 
dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that all 
ratios are equal to 1 (except for exchange rates): the two models are identical.  

K.2.6 Homogeneity test 5 with FE closure 

The modified FE closure is implemented in Model3B with zrP  rather than 

PWINDEX as numéraire. Activate “Homogeneity test 5 with FE closure and 
regional price for numéraire” in Closures_B_2017.gms: 

 XS.FX(z)    = XSO(z); 

 e.FX(z)     = eO(z); 

 CABX.FX(z)  = CABXO(z); 

 P.FX(zr)     =  Lambda0*PO(zr); 

and add the corresponding re-initialization: 

 PL.L(z)      =  Lambda0*PLO(z); 

 PC.L(z)      =  Lambda0*PCO(z); 

 PMT.L(z)     =  Lambda0*PMTO(z); 

 PXT.L(z)     =  Lambda0*PXTO(z); 

 PW.L(z,zj)   =  Lambda0*PWO(z,zj); 

 PWINDEX.L    =  Lambda0*PWINDEXO; 

 CAB.L(z)     =  Lambda0*CABO(z); 

In Compare_SOLUTIONS.gms, set the  parameter using 

Loop{zr, 

 Lambda(scen) = [BvalP(zr,scen)/Bvale(zr,scen)] 

                                       /[valP(zr,scen)/vale(zr,scen)]; 

     }; 
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The program will compute the ratios of Model3B/Model3A solution values, after 
dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that all 
ratios are equal to 1 (except for exchange rates): the two models are identical. 

K.2.7 Calibration consistency test of price × volume factoring 

In Closures_B_2017.gms, implement the standard FP closure for Model3B with 
PWINDEX as the numéraire. Then, to perform the test, go to section 4.1 of the 
SkeletonWorld_2017_Model3B.gms main program, look for the line 

*$GoTo Alternate_calib 

and remove the asterisk at the beginning. In Compare_SOLUTIONS.gms, set the  
parameter using 

 Lambda(scen)   = 1; 

The program will compute the ratios of Model3B/Model3A solution values, 
after dividing all regional prices and nominal variables by their exchange rate to 
convert them into the international currency. Observe in Sol_ratios.xls that the 
ratios of the prices of aggregates ( zPXT , zPMT , zPC  and zP ) are equal to the 

Model3B/Model3A ratios of their benchmark values, while the ratios of the 
corresponding volumes are the inverse, including in the SIM results. In 
Ratio_diff.xls, observe that the SIM/BAU ratios are equal in both models, which 
satisfies the criterion of calibration consistency as stated in equations (1) and (2) 
of section 2.3.31 

K.2.8 Calibration consistency test of arbitrary prices 

Implement the standard FP closure in Model3B with PWINDEX as the 
numéraire.  

In section 3.4 of the SkeletonWorld_2017_Model3B.gms program, replace the 
following statements 

 eO(z)      = 1; 

 PLO(z)     = 1; 

 PWO(z,zj)  = 1; 

with different assignments. For example: 

 eO(z)      = .5; 

 PLO(z)     = 0.8; 

 PWO(z,zj)  = 1.5; 

 PLO('Reg3')= 1.6; 

 PWO(zr,zrj)= 2; 

                                                           

31 Actually, there are very small differences, due to imperfect accuracy in the calculations. 
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In Sol_ratios.xls, the SIM ratios and the BAU ratios are equal, and the 
passionate reader could trace the sources of divergence from 1. More interesting 
is Ratio_diff.xls, where it can be verified that the SIM/BAU ratios are equal in 
both models, which satisfies the criterion of calibration consistency as stated in 
section 1.3.32 

K.2.9 Calibration consistency test of arbitrary prices and exchange rates 

Implement the standard FP closure in Model3B with PWINDEX as the 
numéraire. In the SkeletonWorld_2017_Model3B.gms program, go to the section 
labeled “4.1_supplement Re-calibration with arbitrary unequal exchange rates”, 
and activate the procedure by cancelling the $ontext/$offtext switches. The same 
result obtains as in the preceding test. 

                                                           

32 Actually, there are very small differences, due to imperfect accuracy in the calculations. 


