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1. FUNDAMENTAL CONCEPTS 

The analysis of flood probability distributions plays a major 

rol e in hydrologie and econorni c eval uations of water resources 

projects and in establishing project design criteria. In general, 

one wishes to determine a statistical distribution or a probabi

l ity model suitable for representing a sampl e of run-off flows. 

With such a distribution or such a model it then becomes possible 

to estimate events corresponding to a given probability. These 

estimations are basic for the construction works and help to 

permit an efficient design. 

1.1. Annual Series and Partial Duration Series 

Starting with a recorded hydrograph or with the tabulated 

data abstracted from thi 5 hydrograph, two types of flood peak 

series may be used in a frequency analysis. These are the annual 

flood series (a.f.s.) which consists of the largest flood in each 

year, and the partial flood series (p.f.s.) which consists of 

all "well-defined" flood peaks above a specified magnitude, often 

called the flood truncation level or base level. In fact one of 

the drawbacks of partial flood series (also called partial dura

tion series; p.d.s.) is that it is not completely well-defined 

which of the flood peaks exceeding the base level should be 

retained for the analysis and which should be excluded. Since in 

p.d.s. models now in common use, it is required that sucessive 
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flood peaks shou1d be independent, sorne flood investigators (Cun

nane, 1979; Water Resources Counci1, 1976, and others) have propo

sed putting restrictions on the inter-arriva1 times of flood 

events (flood peaks) so that these events wi 11 not occur close 

together in bunches. Water Resources Counci1 (1976) arbitrari1y 

defined separate flood events as events separated by at 1east as 

many days as five plus the natura1 10garithm of square miles of 

drainage area, with the requirement that the intermediate f10ws 

must drop be10w 75 percent of the 10wer of the two separate maxi

mum daily f10ws. Todorovic and Zelenhasic (1970) and Todorovic 

and Rousselle (1971) defined the partial flood series as al1 flood 

peaks ab ove the base level, and in the case of a mu1tip1e-peaked 

flood hydrograph only the largest discharge is considered as the 

flood peak to be retained. This is done with the expectation that 

when the base level is sufficiently high the independence of flood 

peaks (al so called exceedances) woul d become physically pl ausi

ble. 

Although annual flood series are more precisely defined than 

partial flood series they have the disadvantage that they use on1y 

one flood per year. In certain cases the second largest flood in 

a year may outrank many annua l floods of other years and yet i t i s 

totally neglected in the a.f.s. approach. This disadvantage is 

remedied in the p.d.s. approach in which the truncation level is 

generally selected low enough that the average number of exceedan

ces per year is of the order of two or three. 
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1.2. The Return Period as a Measure of Risk 

Langbein (1949) and Chow (1950) investigated the theoretical 

relationship between the probability of annual flood series and 

the expectancy of partial flood series. Let P be the expectancy 
p 

of a variate in the partial flood series being equal to or greater 

th an x, and let m be the average number of events per year, or mN 

be the total number of events in N years of record. Th en P p/m i s 

the annual probability of an event being equal to or greater 

than x, and 1 - P /m i s the probab il i ty of an event bei ng 1 ess p 

than x. The probabil ity of an event x being the 1 argest of the 
m m events in a year would then be (1 - pp/ml • This probability 

can be approximated by exp (- P ) when Pis small compared 
p p 

with m. Note also that this is the probability of an annual event 

of magnitude x and corresponds to the annual series. Hence, the 

probability Pa of an annual flood series of magnitude x being 

equaled or exceeded is: 

P = 1 - exp (- P ) a p 

or 
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P = - ln Cl - p ) 
p a (1.1 ) 

The time el apsi ng between successive events of magnitude 

equalling or exceeding a specified value x is a random variable 

whose mean value is defined as the return period T of x (notation: 

T = T(x) or T = T). Al ternative1y, each flood value x may be x 
considered as a function of its associated value of return period 

(notation: x = x(T) or x = xT). The return periods of annua1 

series and partial duration series have different meanings. In 

the first case the return period T is the mean recurrence time of 
a 

an event of a given magnitude as an annua1 maximum whi1e in the 

second case the return period Tp carries no implication of annua1 

maximum. 

Letting T = l/P and T = l/P in equation (1.1) yie1ds: a a p p 

1 
T = P ----------------

lnTa -ln(Ta-1) 
(1. 2) 

from which it can be seen that T , the return period in partial 
p 

flood series is sma11er than Ta in annual series but that Tp 
approaches T as both T and T increase. Langbein (1949) states a p a 
that the difference between T and T becomes negligible for 

p a 
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floods greater than about a five-year return periode 

Equation (1.2) is an approximate relationship because it is 

based on approximating (1 - pp/m}m by exp (- Pp). An alternative 

derivati on of rel ati onshi p (1. 2) was presented recently by Takeu 

chi (1984) who reconfirmed its validity and encouraged its practi-

cal use. 

The definition we have just given for the return period T 
p 

for partial duration series can be modified to carry more implica-

tion of annual maximum. Let Xl' X2' ••• , Xn be the sequence of 

annual maximum values abstracted from a partial flood series. 

This means that if the year i contains no exceedances or no flood 

peaks above the base level Xo then the value of xi for that year 

will be equal to zero, when the discharge Xo is taken as reference 

(base 1 evel) • In other words, if the year j contains mjexceed-

ances ~l' ~2' ~mj then: 

X j = 1 max (~l' 
o for m. 

J 

~ 2 , ••• , ~mj) for m j > 0 

= 0 (1.3 ) 

where ~i is obtained from the i
th 

peak flood discharge Qi exceed-
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ing xo simp1y by subtracting xo: ~i = Qi - xo. If the distribu

tion of the ~.s and of the m.s is known, then the distribution of 
1 J 

the Xjs can be deduced and the probabi1ity of the variable ~ 

equa11ing or exceeding a specified magnitude x can be ca1cu1ated. 

If this probabi1ity is now denoted by P (the subscript p standing 
p 

for IIp.d.s.") then T = 1/P wou1d be the new definition of the 
p p 

return period for partial duration series. This definition, which 

is more convenient for mathematica1 treatment than the previous 

one, i s the one in common use [see for instance Todorovi c and 

Ze1enhasic 1970, Todorovic and Rousselle 1971, Ashkar and 

Rousselle 1981]. We sha11 make no further reference to the 

previous definition of T in the rest of our discussion. The new p 

definition of Tp is nearer to the definition of Ta given for the 

annua1 series but still differs from it because the term lIannua1 

maximum Il does not carry the same meaning in a.f.s. as in p.f.s. 

On 1y years that produce a peak di scharge superi or to the base 

discharge yield the same value of annual maximum for a.f.s. as 

for p.f.s. In general, therefore, we expect that the higher the 

average number of exceedances per year, the nearer Ta and Tp are 

to each other. 

Lloyd (1970) considered the exceedance probabi1ity P [X > ~] 

associated with an arbitrary random variable X and a return period 

T such that: 



1 
p [X > XT] = P = -

T 
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(1. 4) 

and showed that T, as a random variable, has a distribution of the 

form: 

P [T = t] = p (1 _ p) t-1 (1. 5) 

This distribution has for mean and variance: 

mean E(T} = l/p 

variance: Var (T) = (1 - p}/p2 

If a period of r years is considered, the probability P that the 

event X > xT will occur at least once during these r years is 

P = 1 - Q, where Q is the probability of not having a flow X > xT 
during r years. This gives 

1 
r r 

P = 1 - (1 - p) = 1 - (1 - -) (1.6 ) 
T 
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1 
T = ------

1 - (1 _ p )l/r 
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(1. 7) 

This expression can also be written in an approximative form: 

The following simple applications of relationships (1.6) and 

(1. 7) are i ntended to hel p better understand the concepts of 

return period and of reciprocal probability. 

Applications 

(1) Considering a return period of T = 100 years, the probability 

P that duri ng these 100 years to come, the centenary flow 

(p = 0.01) will be exceeded at least once, is 
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P = 1 - (1 - 0.01)100 

P = .63 

There is therefore a 63 % chance that the centenary flow will 

occur during the 100 years to come. 

(2) One wishes to construct a public work having a duration life 

of r = 50 years and one wishes to determine the return period 

T such that the flow X > xT wi 11 occur wi th a probabil ity 

less than or equal to 20 %. Thus 

T > 50 (_1 __ 0.5) 
.20 

T > 225 years 

The work must thus be constructed so that the return period 

T = 225 years if one wishes that in the 50 years to come, the 

flow X > xT will occur with a probability less than or equal 

to 20 %. 
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In this last example, the probability 20 % that one or more 

events will exceed a given flood magnitude (the flood correspond

ing to a return period of 225 years) within a specified number of 

years (50 years) i s sometimes referred to as the Il ri skll associ ated 

with the given flood magnitude and with the specified number of 

years. For a one - year period, the probability of exceedance p, 

which is the reciprocal of the recurrence interval T, expresses 

this risk. Table 1.1 gives for different return periods T the 

percent chance (risk) of getting one or more floods of return 

period T, or greater, within one of a number of different lengths 

of time. 

1.3. A Reliability Criterion for Flood Flow Estimates 

The reliability of flood flow estimates obtained from the 

recorded data by extrapolation is directly related to the length 

of record. The following criterion is proposed by Hardison 

(1969) : 

( Number of years of 

1 Maximum recurrence 

data collection 

interval 

2 5 10 15 20 25 years 

2 5 10 15 50 100 years 

Hardison (1969) has shown that this criterion gives sufficiently 

close estimates for xT. 
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1.4. Mixed Populations 

In areas where hi gh flows are generated by more th an one 

distinct hydrologie process (e.g. snownelt - and rainfall - gen

erated peaks), peak di scharge data shoul d be consi dered to be 

drawn from subpopulations with different statistical characteris

tics. Stoddart and Watt (1970) for exampl e have described how 

flooding in sorne watersheds in southern Ontario is created by two 

different types of events. In these watersheds rain floods occur 

generally in the summer and floods due to snownel t, sometimes 

combined with precipitation, occur in winter and spring. Waylen 

and Woo (1982) describe also how floods in the Cascade Mountains 

of southern British Columbia can be due to heavy winter rainfall, 

or snowmelt in spring. 

When i t can be shown that floods on record come from two or 

more distinct populations then it may be more hydrologically 

reasonable to try to find to what subpopulation each flood belongs 

and then to analyse each subpopul ati on separately, rather than 

separating floods by calendar periods. This, unless of course, 

the events in the separate periods are clearly caused by different 

hydrometeorologic conditions. 

Consider two independent flood generating processes, a and b 

say, and suppose that a flood of a given magnitude x would have a 

return period Ta if it belongs to population a and Tb if it 
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belongs to population b. The probabilities of not exceeding x 

are 

q = 1 - l/T 
a a 

and 

The probability of not exceeding x in any year becomes 

and the return peri od for the annua 1 flood associ ated wi th the 

level x becomes 

T = 1 / (1 - q) 
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or 

T = T T / (T + T - 1) 
a b a b 

(1.8) 

1.5 Plotting Position 

In frequency analysis of hydrological data a statistical 

model may be postul ated whose parameters are estimated from the 

observed data (cf. section 2.1.4), or alternatively, an empirical 

distribution of the observed magnitudes may be obtained by 

graphical analysis on a probability plot. In the latter method 

the ranked data are plotted on probability paper using probability 

as abscissa values obtained from a plotting position formul a. 

This plotting may help in getting a better interpretation of the 

data, in detecting any possible errors, or in picking an adequate 

probability distribution for fitting the data. The scale of the 

abscissa is frequently arranged in such a way that events distri

buted according to a given probability distribution will plot as a 

straight line. 

Numerous works have been produced on the subject of plotting 

position both because of the practical importance of the choice of 

this empirical probability and because there is no formula which 

is entirely satisfactory in finding it. Gumbel (1958) states four 
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postulates which the plotting position Pk of the event of order k 

of an ordered sample (Xl> ••• > Xk > ••• > xN) must satisfy: 

(1) the plotting position shoul d be such that all observations 

can be plotted; 

(2) the plotting position should be between the observed frequen

cies (k - 1) / N and k/N and should be distribution free; 

(3) the return peri od of a val ue equal to or 1 arger than the 

largest observation should approach N, the number of observa

tions; 

(4) the observations shoul d be equally spaced on the frequency 

scale, i.e. the difference between the observations of order 

(k + 1) and k should be a function of N only and be indepen

dent of k. 

Among the principal formul as currently found in practical 

use, the following may be cited: 

The Hazen (or Foster) formula: 
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k - 0.5 
p = k ---

N 

This formula is recommended by Brunet-Moret (1973) for the case 

where the parameters of the adjusted distribution are estimated 

from the sample. 

The Wei bull formul a: 

k 
p = 

k -N-+-1 

This formula is recommended by Chow (1953) for the study of flows. 

It is the average of the probabilities of all events with rank k 

in a series of periods, each of N years. 

The Chegodayev formula: 

k - 0.3 
p = 
k -N-+-0-.-4 
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This formula is recommenaed by Kimball (1960) as well as by 

Brunet-Moret (1973) for the case where the parameters of the 

distribution are known a priori. Th i s formul a gives the 

approximate probability of the median of the distribution of the 

statistic of order k from a sample of size N. 

A critical review of Gumbel ' s postul ates has been given by 

Cunnane (1978) who argued against postulate (3), notably that the 

return peri od of a val ue equal to or greater than the 1 argest 

observation should converge towards N, the number of observations. 

Hi s argument was based on statistical properties of the 1 argest 

value in a sample of size N. He proposed a plotting position that 

has the property that quantile estimates made from the plot will 

be unbiased and will have smallest mean square error among all 

suc h est i mat es. Th i sun b i as e d plo t tin 9 po si t ion i s n am e 1 y 

E (y(i)) the mean of the ith order statistic in samples from the 

reduced variate population. E (Y(i)) has the disadvantage, 

however, that it depends on the form of the distribution being 

considered, and if the reduced variate depends on a shape 

parameter then E (y(i)) too depends on this parameter. 
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2. SINGLE SITE ANALYSIS 

2.1. DATA BASE 

2.1.1. Introduction 

In flood frequency analysis, the primary objectives are to 

determine the return periods of recorded events of known magnitu

des and then to estimate the magni tude of events for return 

periods beyond the recorded range, that can be used in the design 

of hydraulic structures and the planning and management of water 

resources systems. In this kind of analysis it is important to 

try to abstract the maximum information from the available data. 

Inadequate estimations may come from: 

- the use of inadequate data; 

- the wrong choice of a representative statistical distribution; 

- the inadequate use of a technique for estimating the parameters 

of the chosen law. 

For these reasons we shall be dealing in the remainder of 

secti on 2. wi th: 
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- conditions that are required of relevant data before the appli

cation of a statistical distribution; 

- the characteristics of the distributions habitually used to 

represent run-off flows; 

- properties and particularities of the principal methods of 

estimating parameters. 

2.1.2. Conditions Required from the Data 

Before one may adjust a statistical law to a given sample it 

must be demonstrated that the elements of this sample verify three 

conditions: 

A. temporal independence; 

B • homogene i ty; 

C. stationarity. 

A. Condition of temporal independence 

To estimate the probabilities of hydrologie events, one 

assumes generally that the observed flows are independently 

distributed in time. Streamflow sequences, however, tend to be 

persistent in that high flows tend to follow high flows and low 

flows tend to follow low flows. This persistence depends on the 



- 20 -

lapse of time separating the successive elements of the sequence; 

dependence among successive daily flow values, for instance, tends 

to be strong, while dependence among yearly values, is weak. 

The independence of the sample elements of flood flows can be 

checked using either the Wald and Wolfowitz (1943) test or the 

Anderson (1941) test. 

Wald and Wolfowitz test 

For a sample of size N (Xl' ••• , XN) we consider the statis

tic R such that 

N-l 
R = I xi xi+l + xl XN 

i=l 

In the case where the el ements of the sampl e are i ndependent, R 

follows a normal distribution with mean and variance given by 

_ 2 

R = (s - S2) / (N - 1) 
l 
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2 _ 4 

= (s - S4) / (N - 1) - R2 + (s 
2 1 

2 

2 
- 4s S2 

1 

+ 4 SIS 3 + S - 2 S 4) / (N - 1) (N - 2) 
2 

th where rn r is the r moment of the sample about the origin 

(cf. section 2.1.4 A). 

The quantity u = (R - R) / (var R)I/2 follows a standardized 

normal distribution (mean 0 and variance 1) and can be used to 

test the hypothesis of independence. 

Anderson test 

Let rI be the first-order serial correlation of the sample 

given by 

x· 2 
l 
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For a normal random time series of N values, rI is nearly normally 

distributed with 

a mean: 

rI = - 1 / (N - 1) 

a variance: 

Va r rI = (N - 2) / (N - 1) 2 

-
Considering the quantity u = (rI - rI) / (var rdl/ 2 it is possi-

ble to test whether rI at a given level is significantly different 

from zero. Al though thi s test i s only theoretically val id for 

samples taken from a normal distribution, it is generally used for 

other parent populations also. 



- 23 -

B. Condition of representativeness of the sample 

The condition of representativeness impl ies that all the 

elements of the sample originate from the same population. In 

annual flood series as well as in partial duration series it may 

happen that the sample is composed of events of different origin 

belonging to different populations (e.g., sno\\ffielt and rainfall 

fl oods) • To check whether two samples belong to the same 

popul ation we can use the Terry (1952) test or the Mann and 

Whitney (1947) test. 

Terry test 

Given two samples of size p and q, respectively, the combined 

set of N = P + q observati ons i s ranked in i ncreasi ng order. If 

in the complete series I denotes the ranks of the elements of the 

first sample and J those of the observations of the second sample, 

we consider the statistic C given by 

C = l E (X J N) 
J ' 

where E (X
k 

N) denotes the mathematical expectation of the kth-, 
order statistic in a sample of size N from a standardized normal 
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popul ation. 

For N > 15, under the null hypothesis that the two sampl es 

belong to the same population, the quantity 

with 

t = C [(N - 2) / [(N - 1) var C - C2JJl/2 

N 
Va r C = (pq / N (N - 1))· l E 2 (X k ,N ) 

k=1 

follows approximately a Student distribution with (N - 2) degrees 

of freedom. In practice, the values of E (X k N) may be obtained , 
from the Harter (1961) tables. 

Mann-Whitney test 

As was done above, we regroup two sampl es of size p and q 

(with p < q) in a combined set of size N = P + q, ranked in 

increasing order. We consider the quantities 



- 25 -

v = T - p (p + 1) / 2 

W = pq - V 

where T i s the sum of the ranks of the el ements of the fi rst 

sample (of size p) in the combined series and V is the number of 

times that an item in sample 1 follows in the ranking an item in 

sample 2; W is computed in a similar way for sample 2 following 

sample 1. 

When N > 20, p, q > 3, and under the null hypothesis that the 

two sampl es come from the same popul ation, V and W are approxi

mately normally distributed with mean pq / 2 and variance 

pq (p + q + 1) /12. In practice we consider the quantity 

v - pq / 2 u = ____________________ _ 
[pq (p + q + 1) / 12]1/2 

and for a test at a level of significance u, u is compared with 

the standardized normal variate corresponding to a probability of 
u 

exceedance -. 
2 
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In practice, to study the run-off flows at a given station, 

one can consider the sample fonned from the maximum annual flow 

(or the sample formed from the exceedances, in the p.d.s. 

approach) duri ng N years and exami ne the i ndependence of the 

elements of the sample. If however, the flows are due to two 

different causes, for example a flow due to snowmelt which occurs 

in the spring and the autumn flows due to over-abundant precipita

tion, it is possible to test for heterogeneity between the two 

sampl es. In the case where there i s heterogenei ty, i t i s reason

able to consider the two types of flow separately. 

For an application of tests of independence and of homogene

ity refer to the example given in section 2.2.8. 

C. Condition of stationarity 

The assumpti on that the natural processes i nfl uencing river 

flow characteristics are stationary with respect to time is diffi

cult to guarantee. Non-stationary behaviour may occur in a number 

of different forms. There are the slow changes in hydrologie 

parameters and the rapid changes. An example of the slow changes 

are evol uti onary changes such as gradual movements in cl imate, 

involving for instance, increasing or decreasing rainfall. 

Urbanization and variations in catchment characteristics are 

another form of slow change. Rapid changes may resul t, for 

instance, from earthquakes or from building of dams. 
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In current hydrologic investigations, the problem of exis

tence of long term variations, conceived as fluctuations of the 

basic characteristics of hydrologic time series, in function of 

time, is one of the most controversial problems. The question at 

stake, is whether or not, trends, periodicity, or other non

stationarity in the probability structure of hydrologic time 

series beyond the periodicity of the year, do really exist. 

Existing techniques of time series analysis cannot answer this 

question. Based on sorne studies which do not support the concept 

of non-stationarity in hydrologic series of annual values (see 

Yevjevich, 1963 for instance) we shall make the conventional 

assumption that no non-stationarity exists in hydrologic series, 

beyond the periodicity of the year. 

Flood records used in frequency analysi s shoul d represent 

relatively constant watershed conditions. The records shoul d be 

carefully examined to make sure that no major changes within the 

wa tershed have occurred duri ng the peri od of record si nce such 

changes effect record homogeneity. Tests discussed in the 

previous paragraph can be used to check for any significant 

nonhomogeneity when it is suspected that such a nonhomogeneity in 

flood values might be present. 



- 28 -

2.1.3. Random Variables and their Statistical Characteristics 

From a fai rly short record of streamfl ow, how does one 

estimate a design flood? As we mentioned earl ier, thegeneral 

approach is to use the sample data to fit a frequency distribution 

which in turn is used to extrapolate from the recorded events to 

the design events. The first step consists of choosing a frequen

cy distribution. Subsequently, the parameters of this distribu

tion are estimated and used to extrapolate beyond the domain of 

recorded events. 

Given a sample of independent hydrologie observations 

Xl, X2, "', xN let X be the random variable (r.v.) representing 

the population from which this set of observations is drawn. If 

the population consists of an infinite set of elements distributed 

over an interval D of finite or infinite length then we have what 

is called a "continuous population" which may be represented by: 

its continuous probability density function (p.d.f.) 

f (x; °1 , "', Ok) where 8 1 , "" 8k are parameters; 

- its continuous cumulative distribution function (usually called 

simply "distribution function") defined as: 
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x 
F (x) = P [X < x] = f f (x) dx 

_00 

which means that 

dF (x) 
f (x) = __ _ 

dx 

While most of the probability distributions used in flood 

frequency analysis are of the continuous type, sorne distributions, 

such as the Poisson distribution used in partial duration series 

model s to represent the number of flood exceedances in an arbi

trary but fixed interva1 of time (section 2.3.1) are not contin

uous. The Poisson distribution which can asslJl1e the discrete 

values 0, 1, 2, ••• is a member of the class of "discrete distri-

butions" which can assume values over a finite or infinite set S 

of di screte or separate val ues. If i i s an el ement of the set S 

then the discrete random variable X defined over S may be repre

sented by: 

- its discrete probabi1ity density function (a1so called mass 

function) f (i; Gl , ••• , Gk) = P [X = iJ where Gb ••• , Gk are 

parameters; 
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- its (cumulative) distribution function defined as 

F (i) = P [X < i] = l f (j) 
jES;j<i 

2.1.4 Methods of Estimation 

Several methods for the estimation of parameters of a (con

tinuous or discrete) p.d.f. are available and are more or less 

adequate depending upon the distribution chosen. The two princi-

pal methods of estimation used in practice are: 

- the method of moments; 

- the method of maximum likelihood. 

A. Method of moments 

For a given distribution, depending on k parameters it is 

possible to calcul ate the non-central and central moments about 

the mean. This gives the non-central moment of order r, jJr such 

that: 

jJ = r J xr f (x) dx 
D 
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and ~r the central moment of order r around the mean ~1 such 

that: 

1 r 
~ = f (x - ~1) f (x) dx 

r D 

The variate X defined over the interval D has probability density 

function f (x). In the case of a discrete random variable the 

integration over D is replaced by a summation over the set S over 

which the discrete r.v. is defined. 

Si nce f (x) depends on the parameters 01, ••• , Ok' the 

moments ~ and ~ are functions of the parameters. These moments 
r r 

can be estimated numerically by means of the corresponding sample 

moments. For a sample Xl, ••• , xN the non-central sample moment 

of order r, mr is given by: 

1 N 
l x~ 

N i=l 1 

and the central sample moment mr of order r around the me an ml = x 



i s given by: 

1 N 
mr = - l 

N i=l 
- r (x. - x) 

1 
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where N is the size of the sample. 

Thus, for a law of k parameters, the parameters are estimated 

by setting the k moments of the population equal to the k moments 

corresponding to the sample. This gives k equations permitting 

the estimation of (G l , ••• , Gk)' 

In practice, the higher the order of the moment, the more 

likely it is that one is subject to important sampling errors. It 

i s for thi s reason that in the méthod of moments one uses the 

moments (or functions of the moments) of the lowest possible 

order. The moments used should be functionally independent, 

however. For exampl e, the moments f1lJ f12 and f12 cannot be used 
12 

together because f12 = f12 - f1l • 

For a law of two parameters, the mean (non-central moment of 

order 1) and the variance (central moment of order 2) can be used. 

In the case of a 1 aw of three parameters, the skewness coeffi-
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cient y (which is a function of the central moments of order 2 and 

3; y = ~3 / ~23/2) can be considered as well. 

The mean of a sampl e (Xl'" Xi ••• xN) of size N i s given by 

X = ml' and the non-biased variance is given by: 

1 N N m2 
S2 = -- \' (x. - x) 2 =--

N - 1 i~1 1 N - 1 

(one considers the non-biased value S2 such that 

E(S2) = ~2 = 0 2 ; 0 2 being the variance of the population). 

The skewness coefficient is given by: 

1 -x7[~ 1 -xl 2] 
3/2 m3 

Cs - l ( Xi (xi = - - sn: 
N m2 

In fact, it can be shown (Kirby, 1974) that C is biased, or 
s 

in other words that E(C ) * y; y is the skewness of the s 
population. 

Different corrections can be used: 
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where 

1 N (N - 1) 
al =-----

N - 2 

This classical correction, which is obtained by using the 

non-biased values of the moments of order 2 and 3, in fact leads 

to a biased skewness; 

where 

( 8.5) 
a 2 = 1 + -N-

/ N (N - 1) 

N - 2 
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This usual correction is empirical and leads to a non-biased 

estimation of the skewness for a small interval only of skewness 

values (Wallis et alo, 1974); 

where a3 depends on the distribution usedo 

It can be shown (Bobée and Robitaille, 1975) that: 

- for the Pearson type 3 law, one has: 

- for the log-normal law of 3 parameters, one has: 

a
3 

= (1.01 + 7001 + 14066) + (1
0

69 + 74
0
66) C 3 

N N2 N N2 S 
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According ta the value of the skewness coefficient of the 

sampl e chosen, different estimati ons of the parameters of the 

distribution are obtained. 

B. Method of maximum likelihood 

The method of maximum likelihood is based on the principle 

that, for a density function f (x) dependent on the parameters 

( G l , ••• , Gk), the probability of obtaining a given sample 

(Xl, ••• , XN) is proportional ta the likelihood function l such 

that: 

The method consists in determining the values of the parame-

ters which maximize l, hence which maximize the probability of 

observing the sample (Xl, ••• XN). 

In practice, one often maximizes ln l, which is equivalent ta 

maximizing l since 

alnl 1 al 
=--

a G. l a G. 
1 1 
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One thus obtains as many equations as one has parameters to 

determine: 

al 
-= 0 
a8. 

1 

i = 1, ••• k 

One must moreover verify that the matrix of general term 

aij = --
a 8. a8. 

1 J 

is definite negative to assure that a maximum is obtained. 

2.1.5 Sampling Variances and Confidence Intervals 

All that is available to estimate the parameters (8 1, ••• ~) 

of a distribution representing a population is a sample of size N. 
... ...... 

The estimation 8 1 , ••• 8k are thus distorted due to sampling 

errors and they therefore have a certain variance (the estimation 

'" of the parameters 8 1 , ••• êk are real izations of a random 

variable). 
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An event XT corresponding to a return period T, thus to an 
1 

exceedance probabi 1 i ty P = ,i s determi ned by the general 
T 

relation: 

(2.1 ) 

where: 

~ and 0 2 are the mean and the variance of the population respec-

tively; 

x is a frequency factor which depends on the return period T and 

the moments of the distribution. 

In practice, ~, 0, and x are not exactly known but are estimated 

by the quantities 
,.. ,. 
~ , 0 and K, (n 0 ta t ion: 

which have a certain sampl ing variance. It results that XT is 

estimated by the general relation: 

(2.2) 
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~ ~ 

with a sampl ing variance o\T = var (X T) and a mean XT = E (X T). 

'" It may be shown in the first approximation that X
T 

is distributed 

asymptotically according to a normal distribution; thus the 

quantity 

u =---

follows a standardized normal distribution (of mean 0 and variance 

1). It i s then possi b le to determine the confi dence i nterval s of 

XT at a given significance level a. This gives: 

(2.3 ) 

u
a/2 

is the standardized normal variable of exceedance probability 
,.. 

a/2 (al so call ed the Il a/2 - quantil e" of u), Va r (XT) i s frequent-

ly written in the form 

(2.4 ) 
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A '" where ~2 = S2 = cr2 and 0T is a function of the return period T and 

of the estimated parameters. 

A. Method of moments 

In the method of moments, the moments of the population are 

estimated by the moments corresponding to the sample. Thus, for a 

law of 3 parameters, this gives: 

~ = ml = x mean 

-;2 = 

A 

Y = C 

S2 = m 2 

S 

variance 

skewness coefficient 

Si nce Cs i s a functi on of m2 and m3 (central moments of order 2 
.... 1 ,.. 

and 3), XT is a function of ml' m2 and m3: XT = f (ml' m2, m3). 

Thus, for a law of 3 parameters: 
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" 

Var XT = C1X 2 = 
T 

2 {ax ) 2 
var m2 ~ 

am3 

/\ A ) 

var m3 + 2 (~\ (aXT 
cov 

amI") am2 

+ 2 

(2.5 ) 

The parti al derivatives are deduced from the general rel ation 

XT = f (ml' m2' m3) and the variances and covariances of the 

moments can be expressed as a function of the moments, thus of the 

parameters, of the distribution considered. 

..... 
For a distribution of two parameters, one has XT = f (ml' m2) 

"" and the expression of var XT does not bring terms relative to m3 

into consideration. 
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B. Method of maximum likelihood 

When considering the method of maximum likelihood, one 
A .... 

obtains the estimations 01, 02 and 03 for a law of three parame-

terse The estimates of the moments of the population are function 

of these parameter estimates. In other words: 

... 
~ = 9 (01' 02' ~3) 

A A "" 

Y = k (01· 02· 03) 

XT is thus a function of 01' 02 and 03. This gives: 

One can deduce: 
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ax 2 ("") ",T Var ~3 
a03 

(2.6) 

The parti al derivatives are cal cul ated from the general rel ati on 
A A A A 

XT = <il (0h 02' 03). 

Given V .. , the general term of the variance-covariance matr;x 
lJ 

of the parameters, one has: 

-" '" 
V; j = Co v (0;, 0 j ) if; *j 

A 

V;; = Var 0; 
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This matrix is the inverse of the symmetric matrix: 

a .. 
lJ 

It is thus possible from the likelihood function L (8 1, 02' 03) to 

determine the variances and covariances of the parameters estimat-

ed by the method of maximum likelihood. 

2.2 COMMON PROBABILITY DISTRIBUTIONS AND FITTING TECHNIQUES 

2.2.1 Introduction 

As hydrological processes are bounded by physical limita

tions, the statistical distributions which are used to represent 

them must conform, for a flow can neither take a negative val ue, 

nor can it exceed an upper bound while keeping its physical mean

ing in the hydrogeographical context of the watershed. For flood 

flows, this upper bound has been well studied by Francou and 

Rodier (1969). With respect to the lower bound of the flood flow, 

we think like Csoma (1969) that its value should not be inevitably 

zero, but i s dependent on the hydrogeographi cal system of the 

watershed. Furthennore, hyd rol ogi sts generally agree that the 

stati stical di stri buti on of annual floods i s posi tively skewed, 
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al though i t has never been proved that a negative skewness i s 

impossible. Klemes (1970) showed moreover that the distribution 

of mean annual flows could be negatively skewed. 

Ki te (1976) has effectuated a profound study of several 

statistical laws. Only the principal distributions used in Canada 

for the study of extreme values in hydrology (floods in particu

lar) will be considered here. In addition, the principal charac

teristics of fitting methods related to these distributions will 

be indicated. 

2.2.2. The Normal Distribution 

This distribution has a symmetrical p.d.f. given by 

1 
f (x) = exp 

o r21T [

_ (x - ~)2] 
2 0 2 

(2.7) 

The methods of moments and of maximum likelihood yield the 

same estima tes for the parameters ~ and 0: 
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(2.8 ) 

and the value of 0T involved in the calculation of Var (X T) (equa

tion 2.4) is given by: 

o = 1 + U2 / 2 
T T 

(2.9 ) 

where U stands for the standard normal vari ate correspondi ng to 
T 

an exceedance probability of p = 1 / T. 

2.2.3. The Lognormal Distribution 

The lognormal distribution is deduced from the normal distri-

bution by a logarithmic transformation. More precisely, when X 

follows a lognormal distribution with three parameters a, J.l and y 

cry' its p.d.f. is given by 

1 
f (x) = exp 

(x - a) cry 1 21T 

_ i t_L_
n _(_x_~_y_a}_-_J.l_y ] 2 

(2.l0) 
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and the random variable Y = Ln (X - a) follows a normal distribu-

tion with parameters ~ and o. When a = 0 we obtain the two-
y y 

parameter lognormal distribution. 

A. Method of moments 

Kite (1978) gives the estimates of a, ~ and 0 by the method y. y 

of moments in terms of the sample mean ml' standard deviation 

s = lïm2 and coefficient of skewness CS: 

[Ln (Z2 + 1)]1/2 

.... 
a = ml - s/Z 

1 
- -Ln (Z2 + 1) 

2 

(2.11 ) 

where Z is the coefficient of variation of the sample (Xl - a), 

(Xn - a) which is solution of the equation 

Cs = 3 Z + Z 3 



- 48 -

and is such that 

1 - w2 /3 
Z=--- (2. 12) 

with 

- Cs + {C§ + 4)1/2 
w= _______ _ 

2 

For a two-parameter lognormal distribution we have a = 0 and 

Z becomes equal to the coefficient of variation of the observed 

sample (Z = s / ml) in which case the first two equations of 

(2.11) readily yield the solutions for ~ and ~ • y y 

The estimate of the design event XT corresponding to a return 

period T can be put in the form of equation (2.2): 
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with 

exp [Ln (1 + Z2)Jl/2 UT - ~ Ln [1 + Z2] - 1 

KT = ------------------
Z 

(2. 13) 

Z being given by equation (2.12) and UT being the standard normal 

variate corresponding to an exceedance probability of p = 1 / T • 
..... 

The calculation of var (X T) can be done as in (Ki te, 1978) but for 

the three-parameter lognormal distribution the expression obtained 

is not explicit. In the special case of the two-parameter 

lognormal distribution, using the same notation as in equation 

(2.4) one obtains (Kite, 1978): 

2 
ÔT = [1 + (Z3 + 3Z) KT + (Za + 6Z 6 + 15Z 4 + 16Z 2 + 2) KT/4] 

(2.14) 

/' 

from which var (X
T

) and confidence limits around XT may be deduced 
/\ 

assum i ng normal i ty of XT (substi tute 2.14 i nto 2.4, and then 2.4 

and 2.13 into 2.3). 
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B. Method of maximum likelihood 

For a random sample Xl, ••• , xN of size N from the three

parameter lognormal distribution, the method of maximum likelihood 

leads to the following system of equations: 

1 
\ly = - l Ln (x,. - a) 

N i 

2 1 
o = - l [L n (x. - a) - \l ] 2 
Y Ni' Y 

\l - 02 Ln ( x,. - a) y y 
I---= I----
i (Xi a) i (xi - a) 

(2. 15) 

which may be solved starting with the parameter lIa li which may be 

found numerically by substituting the values of j.1 and 0 2 from the y y 

first two equations into the last equation, and subsequently 

determining \l and 0 2 using the first two equations. y y 

For the two-parameter lognormal di stribution we have a = a 

and the fi r st t wo e qua t ion s 0 f ( 2 • 15 ) s u f fic e for the 
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determination of ~ and ;2. From the form of these two equations y y 

it can be seen that applying the method of maximum likelihood to 

the two-parameter lognormal distribution is equivalent to fitting 

the normal distribution by maximum likelihood to the logarithms of 

the data. 

It is important to point out that since the properties of the 

method of maximum likelihood are only asymptotically optimal, this 

method may not be optimal with small sample sizes found in 

hydrol ogy. 

A 

The calculation of var (X ) is indicated in (Kite, 1978) but 
T 

for the three-parameter case no explicit expression is obtained. 

For the two-parameter distribution, we have (notation of equation 

2.4) : 

ê = ----------------T 
(2. 16) 

Z2 

. (2 13) Z I"""in;. ff" . where KT is given in equatlon • , = __ lS the coe lClent 
ml 

of variation and UT is the standard normal variate corresponding 

to an exceedance probability of liT. 
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2.2.4 The Gumbel Distribution (Type 1 Extremal) 

A. Characterization of the distribution 

This distribution is based on the theory of extreme values. 

When one considers N samples of size p and if one takes the 

largest value from each sample (or the smallest value), one can 

form a new sample containing the N extreme values. 

If each sample of size p is formed of independent values and 

cornes from the same stati stical popul ati on, i t can be shown 

(Gumbel, 1958) that when p becomes large the sample consisting of 

N extreme values can be represented by one of three distributions 

of extreme values. In the Type 1 distribution of extreme values 

(Gumbel distribution) the population from which the samples 

originated is of the exponential type. 

In the study of maximum annual flood flows, each sample is of 

the size p = 365 and the maximum annual value is selected to form 

the sample of N flood flows. 

If one poses y = a(X - 6), the cumul ative distribution (non

exceedance probability) is: 



F (x) 

and the density function is: 

-y 
f (x) = ex e[ -y - e ] 

One can thus deduce: 

the mean: 

c 
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(2.17) 

(2.18) 

~ = B + - (C is the Euler constant and is equal to 0.577) 
ex 

the variance: 
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the skewness coefficient: 

y = 1.139 

B. Method of moments 

The estimation of the parameters a. and (3 by the method of 

moments leads to: 

1f 1 1. 2825 
0.=_. = __ _ 

ro s s 

-x- 0.4500 s (2.19) 

x and S2 are the mean and the variance of the sample, respective

ly, which are estimations of the me an ~ and the variance 0 2 of the 

population. 

The event X
T 

of return period T is estimated by: 
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(2.20) 

..... - '" One has ~ = x and cr = s. 

It can be shown (Ki te, 1976) that the frequency function is 

estimated by: 

K(T) = - [0.45 + .7797Ln f Ln ~ - ~ )]] (2.21) 

As a function of the estimated parameters, the event of return 

period T is obtained from equations (2.19), (2.20) and (2.21) as: 

(2.22) 

'" The estimation variance of XT is: 



with 
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0 2 

= 0X 2 = -- ôT (equation 2.4) 
T N 

ÔT = (1 + 1.1396 KT + 1.1000 Kf) (2.23 ) 

c. Method of maximum likelihood 

The method of maximum likelihood leads to the following 

system of equations (Kite, 1978): 

1 -aX· 
S = - Ln [N / l el] 

a i 

-ax. -ax. 
~ Xi e 1 - (mi - 1/ a) rel = 0 
1 1 

(2.24 ) 

The second of these equations, in which ml is the sample mean 
l 

may be solved for a by iteration (see Kite, 1976) and subsequently 
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8 may be deduced from the first equation • 

.... 
As for var (X

T
), the term 0T (equation 2.4) is given by: 

with 

2 
CT = 0.6740 + 0.3125 YT + 0.3696 YT 

y = - L n [- L n ( 1 - 1 fT ) ] 
T 

D. The interest of the Gumbel distribution in hydrology 

(2.25 ) 

The Gumbel distribution has known an increasing popularity 

because of its apparent theoretical justification (section 

2.2.4 A). In fact, however, the hypotheses leading to the law of 

extreme values are not respected: 

the maximum value is selected in a sample of size p = 365; this 

value is not very high; 
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- the daily flows which constitute the sample of 365 values are 

not independent; 

the probability law of the daily flows is not constant and may 

vary according to the season. 

The Gumbel distribution cannot, therefore, be preferred over 

other laws for theoretical reasons. Mo reover, thi s 1 aw has 

certain disadvantages: 

- the interval of the variate x is not bound (one can have -

oo<x<+oo); 

- the skewness coefficient is constant (y = 1.139) and there is 

little reason to think that all the distributions of flood flows 

have the same skewness. 

2.2.5. The Pearson Type 3 Distribution 

A. Characterization of the distribution 

The density function of the Pearson type 3 distribution is: 

f(x) = -a. (x-m) [( ) ]À-1 e a. X - m (2.26) 
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where r(·} is the gamma function. 

The interval of definition is always such that a (x - m) > O. 

Therefore: 

if a > 0, m ~ X < + 00 (form with positive skewness) 

if a < 0, - 00 < X ~ m (form with negative skewness) 

The moments may be expressed as a function of the parameters: 

mean: 

variance: 

À 

m+
a 
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À 

skewness coefficient: 

2 Cl 

y = .-

1 n the case where the pa rameter of ori gi n mis nul, one 

obtains the Gamma law. This distribution equally includes, as a 

limiting case when y tends towards 0 {À tends towards co} the 

normal law. 

B. Method of moments 

The method of moments leads to the following parameter 

estimates: 

3 

" m2 4 
1..=4_=_ 

m2 C2 

3 S 



2 
A. m2 
m = ml - 2 _ 

l 
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(2.27) 

ml and mare respectively the me an and the (non-biased) variance 
l 2 

of the sample. m3 is the third central moment (around the mean). 

C i s the val ue of the skewness coefficient of the sampl e. 
s 

. One can take the values (CS)l or (C S)2 or (C S)3 defined in section 

2.1.4 A) for Cs. 

A 

In the case of the Gamma law, by placing m = a (m = 0) in the 

last equation of (2.27) we obtain: 

".. 

Ct = ml / m2 
l 

A 

À = ml2 / m2 
l 

(2.28) 



- 62 -

For the Pearson type 3 distribution, the event of return 

period T is estimated by: 

(2.29 ) 

The frequency factor K depends on T and the skewness Cs; the 

Harter tables (1969) permit the determination of K. 

Using the same notation as in equation (2.4), the term cT 

required in the calculation of the sampling variance of XT is 

given by (Bobée, 1973): 

~K) ( 5 C~) K ] - 1+ __ +_C 
ac s 4 2 s 

(2.30) 
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The partial derivative (::s) can be deduced from the Harter 

tables (1969) for a given value of T. Kite (1976) equally gives 

an approximation of K and of (::s) as a function of the nonnal 

standardized variable. 

distribution reduces 

In the case whe n C = 0 the Pearson type 3 
s 

to a normal distribution and equation 

(2.30) becomes equivalent to equation (2.9). 

The method of moments, with the correction of skewness 

Cs = (Csh defined in section (2.1.4 A) leads to a better ad just

ment (Bobée and Robitaille, 1977). 

In the case of the Gamma distribution (m = 0) it can be shown 

that Cs = 2 Z (Z being the coefficient of variation) and ôT 
reduces to (Bobée, 1973): 

(2.31) 

C. Method of maximum likelihood 

The method of maximum likelihood is not preferable to the 

rnethod of moments in the case of the Pearson type 3 distribution 
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applied to small samples (Bobée and Robitaille, 1977). The 

properties of maximum likelihood are only in effect asymptotically 

optimal, and with the Pearson type 3 distribution the use of this 

method in practice may involve certain problems which are 

discussed by Matalas and Wallis (1973). This work may be consult

ed for details concerning the applicability of the method of 

maximum likelihood to the Pearson type 3 distribution. 

In the case of the Gamma distribution the method of maximum 

likelihood leads to the following equations: 

À 

d Ln r( À} 
Ln À - ----= A 

dÀ 

with 

1 (Xi) A = - - l Ln -
N i ml 

l 
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for which an approximate solution was obtained by Thom (1958) as 

À = 

and 

1 + / 1 + 4A/3 

4A 

(2.32) 

From the parameter estimates of IX and À, estimates for the 

population mean ~I and variance ~2 may be deduced and used to 
A l 

calculate X
T 

with the aid of equation (2.2), KT being given by the 

Harter tables (1969) for a coefficient of skewness C = 2 / r1 s 
and the desired return period T. 

'" For the calculation of Var (X
T

), using the notation of equa-

tion (2.4) we have (Bobée and Boucher, 1981 a): 
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wi th 

d2 Log r (>,) 
'j11 = _____ (trigamma function) [tabul atedJ 

1 
n = 'j11 

À 

1 1 
E: = a / lai (2.33 ) 

1 1 

2.2.6 The Log-Pearson Type 3 Distribution 

A. Characterization of the distribution 

The log-Pearson type 3 distribution is deduced from the Pear-

son type 3 distribution by a logarithmic transformation: 

If Y = Ln X follows a Pearson type 3 distribution, X follows 

a log-Pearson type 3 distribution. It can be shown (Bobée, 1975) 

that the density function of the variate X is: 



sion: 
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10.1 am 
f (x) = __ _ e_ [a (Ln x - m) i-1 

a > 0 

a. < 0 

r (À) 1 +0. 
X 

m 
e ~ x 

m o ~ x ~ e 

(2.34 ) 

The non-central moment of order ris given by the expres-

III = 
r 

The log-Pearson type 3 distribution includes the log-normal 

distribution in the limiting case where À tends towards infinity. 
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B. fvlethod of moments 

The hydrology committee of the Water Resources Council in the 

United States recommends the use of the method of moments to 

logarithmically transformed samples (y = Ln x) of observed values 

(Benson, 1968). This method may be described as follows: from 

the observed sample Xl, ••• , xN' the transformed sample 

YI' ••• , Yn is obtained such that Yi = Ln xi (one may also consid

er a base -10 logarithmic transformation for instance). The mean 

(ml) , unbiased variance (S2) and corrected coefficient of skew-
IY y '" 

ness (C) are then cal cul ated and the event YT i s deduced from 
s Y 

Y = (ml) + K s 
T l Y T Y 

(2.35) 

where K is the Pearson type 3 frequency factor corresponding to a 
T 

return period T and to a skewness coefficient (C) (equation 
s Y 

,.. """ 
2.29). Since we have YT = Ln xT we can deduce: 

(2.36 ) 
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from which we obtain asymptotically: 

1 
" = - Var (XT) 

"2 XT 

(2.37) 

Note that when the base -10 logarithmic transformation is used, we 

have asymptotically: 

with 

1 
A = Logl 0 e = = 0.434 

Ln 10 
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The method of moments based on the logarithmic transformation 

of the observed sampl e, cornes to give the same wei ght to the 

logarithms of the observed values. Each observed value, however, 

no longer has the same weight. Moreover, it is the moments of the 

sampl e of 1 ogari thms whi ch are preserved and not the moments of 

the sample of observed values. Consequently this method tends to 

reduce the rel ative importance of the 1 arger el ements of the 

sample. 

C. The method of moments appl i ed to the sampl e of observed 

values 

This method (Bobée, 1975) conserves the moments of the sample 

of observed values and gives the same weight to each observation. 

We consider the three first non-central moments of the 

sample, ml, ml and ml which are estimations of the moments ~I, ~I 
l 2 3 l 2 

and ~I of the population. Equating these first three sample 
3 

moments to the corresponding popul ation moments, the following 

system of equations is obtained: 

Ln [(1 - 1/a}3 1 (1 - 3/a)] Ln m3 - 3 Ln ml 
------------=-------
Ln [(1 - lia) 2 1 (1 - 21 a)] Ln ml - 2 Ln ml 

2 l 



- 71 -

Ln m2 - 2 Ln ml À = __________ _ 
Ln [(1 _ 1/a)2 / (1 - 2/a)J 

m = Ln ml + À Ln (1 - 1/ a) 
l 

(2.38 ) 

The solution of the first of these equations for a may be 

obtained with the help of available tables (Bobée, 1975) or by 

approximations given by Bobée and Boucher (1981 a). Ki te (1978) 

al so gives approximati on formul as for determi ni ng a from thi s 

equation. 

Knowi ng a we may cal cul ate À and then m usi ng the l ast two 

equations of (2.38). We may hence estimate the moments (~~)p and 

(~) along with the coefficient of skewness yp of the corre-
2 p 

sponding Pearson type 3 distribution. YT = Ln xT is then calcu-

YT 
lated using relationship (2.2), and finally xT = e is deduced. 

,.. 
The calcul ation of Var (X

T
) for this method of estimation is 

A 

indicated in (Bobée and Boucher, 1981 b) but the form of Var (XT) 

(and therefore of 0T) is not explicite 
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From a, À and m (or from the non-central moments), the mean, 

vari ance and coeffi ci ent of skewness of the popul ati on may be 

determined. 

Hoshi and Burges (1981) describe a method for estimating X
T 

A 

and Var {X T} for the log-Pearson type 3 distribution based on 

estimates of the mean, coefficient of variation and skew 

coefficient obtained from the observed (untransformed) sampl e. 

This method leads in practice to the same results as the method of 

Bobée {1975} that we have just described. 

D. Method of maximum likelihood 

The equations of maximum likelihood obtained for the variate 

X, which follows a log-Pearson type 3 law, correspond to the equa

tions of maximum 1 ikel ihood for the Pearson type 3 distribution 

with Y = Ln X. 

In practice, i t suffi ces to 1 ogari thmi cally transform the 

originally observed sample (Xl ••• xN), to obtain the sample 

(YI ••• YN) with Yi = Ln xi· 

The appl ication of the method of maximum 1 ikel ihood to the 

sampl e Y., whi ch i s supposed to be drawn from a Pearson type 3 
l 

".. ".. A. 

law, leads to the solution (a, À, ml. 
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",.. 

One can thus deduce the event YT of return period T and then 

.... YT compute xT = e • It is equally possible to determine the asymp-

totic variance Var (Y
T

) and to deduce var (X
T

) which is equal to 
"... A. 

(XT}2 var (YT) (to a first order asymptotic approximation). 

However, as in the case of the method of maximum likelihood 

appl ied to the Pearson type 3 distribution, properties of the 

method are asymptotically optimal and theoretically the method is 

only viable for large samples (Bobée, 1979). The restrictions 

and the particularities of the method of maximum likelihood, for 

the log-Pearson type 3 distribution, are the same as those 

described in section (2.2.5 C) for the Pearson type 3 distribu-

tion. 

2.2.7. Goodness-of-fit Tests and Comparison of Frequency 

Distributions 

Tests of goodness-of-fit, or test of ad justm en t, are a means 

of verifying whether a probability density function f (x) repre

sents the observations (or the sample). Among the most commonly 

used tests of goodness-of-fit are the chi-square test and the 

Kolmogorov-Smirnov test. Unfortunately, however, with the usual 

sample sizes of flood data none of the existing tests of 

adjustment are powerful enough to di scrimi nate between di fferent 

probability distributions. 
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A. Chi-square test 

The statistic x2 is a measure of the deviation between the 

observed number of events (Di) and the theoretical number of 

events (e.). The deviation 
1 

k (Qi - e.) 2 
1 k Of 

1 

x 2 = l = l -- N (2.39 ) 
i=1 e. i=1 e. 

1 1 

follows approximately a chi-square distribution (x2 ) with y 

degrees of freedom, where y = k - P - 1, in which: 

k: number of class intervals; 

p: number of parameters defining the probability density function 

f* (x) that are estimated beforehand from the sample, to make 

f* (x) a completely specified function. 

In practi ce therefore, to apply the x2 test, the N i ndepen-

dent observations of the sample are grouped into k classes and the 

number of observations O.in each class, is determined. We 
1 

k 
therefore have l Di = N. 

i=1 
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The x2 test i s then formul ated as follows: 1 et F* (x) be 

sorne completely specified distribution function and let X repre

sent the random variable from which the observed sample is drawn. 

Consider the two hypotheses: 

Ho: the distribution function of the observed random variable is 

F* (x); 

Hl: the distribution function of the observed random variable is 

different from F* (x). 

* Denote by Pj the probability of a random observation from the 

distribution function F* (x) falling in class j. The theoretical 

number of events (e.) in class j is therefore given by 
J 

, * 
e. = P. N 

J J 
j = 1, 2, ••• , k (2.40) 

Having defined 0J and ej , the value of the test statistic x2 

given in equation (2.39) can now be calculated. If this value is 

greater than x1-a the (1 - a) quatile of a chi-square random 

variable with k - P - 1 degrees of freedom, reject Ho at the a 
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level of significance. Otherwise accept Ho. Tables giving the 

quantiles of the Chi-square distribution may be found in any 

standard statistics textbook. 

The k classes should cover the whole range of definition of 

the random variable X. If the k cells are equiprobable, i.e. if 

* Pj = l/k so that ej = N/k, j = l, ••• , k then equation (2.39) 

reduces to: 

(2.41) 

When sorne of the ejs are small the chi-square distribution which 

in fact is theoretically valid only asymptotically, may not be 

appropriate as a distribution for the test statistic x2 • Conover 

(1971) suggests that classes with small e. be combined with other 
J 

classes in sorne meaningful way so that no more than 20 % of the 

e.are less than 5.0 and that none are less than 1.0. This rule 
J 

may be relaxed somewhat if all the e. are equal (equiprobable 
J 

cell s). 

The chi-square test may be used with both continuous as well 

as discrete random variables. If a discrete random variable is 

defined over a set X composed of k separate values these values 

may be chosen to represent the k different classes. 
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We point out that one may always be quite sure in practice 

that the true distribution function representing the sample is 

never totally the same as the hypothesized distribution function. 

What we are interested in however is a good approximation to the 

true distribution function. It should be realized that in any 

test of adjustment the hypothesized distribution will be rejected 

if the sample size is large enough. 

B. Kolmogorov-Smirnov Test 

Denote by F (x) the unknown distribution function with which 

the random sample Xl, ••• , XN is associated. Let F*(x) be a 

completely specified hypothesized distribution function. We wish 

to test the following two hypotheses: 

Ho: F(x) = F*(x) for all X from - ~ to + ~ 

Hl: F(x) * F*(x) for at least one value of x 

Let S (x) be the empirical distribution function based on the 

random sample Xl, ••• , XN. S (X) is a step function defined as 

the fraction of the x~s which are less than or equal to X for each 
l 

X, - ~ < X < +~. Comparing S (X) with F*(x) constitutes a 

logical way of deciding whether or not it is reasonable to accept 

F*(x) as an adequate distribution function to fit the observed 



- 78 -

random sample. As a measure of the discripancy between S (x) and 

F*(x), Kolmogorov (1933) proposed the statistic 

1 1 
DN = Sup IF*(x) - S (x) 1 
xII 

(2.42) 

whi ch i s the 1 argest verti cal di stance between the two graphs 

S (x) and F*(x), this maximum being calculated over the whole 

range of the variable x and not only at the sample values. Reject 

Ho at the level of significance a if the statistic DN exceeds the 

1 - a quantile w1_
a 

as given by tables of the Kolmogorov-Smirnov 

test (Haan, 1977). 

For the Kolmogorov-Smirnov test to be exact, the hypothesized 

distribution function F*(x) should be continuous. If this distri-

buti on functi on i s di screte, the test i s conservative, that i s, 

the true but unknown level of significance is less than the stated 

one. 

We point out that in practice the hypothesized distribution 

function F*(x) is sel dom completely specified because normally its 

parameters have to be estimated from the sample. The kolmogorov-

Smirnov test used in this situation loses sorne of its power. One 

way of remedying this problem is to calculate critical values that 

take account of this estimation of parameters. This bas been done 
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only for the normal distribution (Li 11 iefors, 1967) and for the 

exponential distribution (Li11iefors, 1969). Tables of this 

modified Kolmogorov-Smirnov test may be found in (Conover, 1971). 

2.2.8. Example of Application 

A. Description of the example 

In this example, the data for the south Saskatchewan River at 

Saskatoon (station kF62), for which a sample of size N = 59 years 

is available, will be considered. This data is presented in 

table 2.1. It can be shown (Bobée and Robitaille, 1977) that: 

the independence condition is verified; in effect, u = 1.07 is 

found wi th the Wa 1 d-Wo 1 fowi tz test and u = 1.04 i s found wi th 

the Anderson test. These values are within the acceptance zone 

at a level of 5 %; 

- the homogeneity condition is verified; after having separated 

(1) floods within the period Jan. 1 - Apr. 30 (16 floods) from 

the remaining floods, and (2) floods within the period Sept. 1 -

Dec. 31 (3 floods) from the remaining floods; the application of 

the Mann-Whitney and Terry tests leads to the acceptance of the 

homogeneity hypothesis. 
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It is thus possible to adjust statistical distributions to 

the sampl e considered. The different methods for adjusting the 

Pearson type 3 and log-Pearson type 3 laws, described in sections 

2.2.5 and 2.2.6 will be considered. 

B. Estimation of the parameters 

The characteristics of the sample of observed values are: 

-mean x = 1484.84 

standard deviation s = 774.15 

skewness (C) = 1.272 (section 2.1.4 A) 
s l 

The characteristics of the sample of logarithms of observed 

values are: 

mean 
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standard deviation (s)L = .214 

skewness [(C )] =.099 
sIL 

In the case of the Pearson type 3 distribution, one considers: 

Method 1 moments with correction (C ) 
S l 

Method 2 moments with correction (C ) (section (2.1.4 A) 
s 2 

Method 3 moments with correction (C ) 
S 3 

Method 4 maximum likelihood 

In the case of the log-Pearson type 3 di stributi on, one consi d-

ers: 

Method 5 

Method 6 

Method 7 

Method 8 

Method 9 

moments of the series of observed values 

moments of the sample of logarithms with correction 

(C ) 
S l 

moments of the sampl e of 1 ogari thms wi th correction 

(C ) 
S 2 

moments of the sampl e of logarithms wi th correction 

(C ) 
S 3 

maximum likelihood 
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Table 2.2 indicates the values of the parameters u, À and m 

in the case of each method. It equally indicates the skewness 

coefficient of the population of flows (methods 1 to 4) and of the 

population of logarithms of the flows (methods 5 to 9). 

Table 2.2 shows that, for the example considered, there is 

little deviation between the different adjustment methods of the 

Pearson type 3 di stributi on. On the other hand, for the log-pear

son type 3 distribution, method 5 (adjustment with the observed 

values) leads to results different from other methods. In 

particular the sign of the skewness is changed. This is not 

suprinsing since, in methods 6 to 9, the Pearson type 3 law is 

appl ied by considering the sampl e of logarithms of the observed 

values. 

The calculation program used (Bobée and Robitaille, 1976) 

permits equally to determine the flow QT' thus its sampling 

variance, and confidence intervals, for different return periods T 

1 
(hence for different exceedence probabilities P = _). 

T 

In the way of an example, one traces, in considering the 

k -.5 
plotting position of Hazen Pk =-

N 
(section 1.5): 

- the adjustment obtained by considering the Pearson type 3 law 
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w i th the s k e w n e s s c Q r r e c t ion (C) ( fig ure 2. 1) and w i th 
s 3 

confidence intervals at a level of 80 % and of 95 %; 

- the adjustment of the log-Pearson type 3 distribution (figure 

2.2) obtained by considering method 5 (adjustment with the 

series of observed values) and method 6, which is the method 

suggested by the Water Resources Council (adjustment wi th the 

series of logarithms, with the skewness correction (C ) ). 
s l 

It is not possible to choose the law and the method of 

adjustment the most adequate from thi s exampl e. As we have 

already mentioned in section (2.2.7) the classical tests of 

adjustment are just notpowerful enough to discriminate between 

the se different laws. A more global comparison (Bobée and Robi

taille, 1977), however, ,has shown that in general, the Pearson 

type 3 l aw wi th the skewness correcti on (C) (method 3) and the 
s 3 

log-Pearson type 3 l aw aàjusted to the series of observed val ues 

(method 5) lead to the best results. 

2.2.9. Concl usi on 

The primary objectives of frequency analysis are to determine 

the magnitude of events for design return periods. The sampl e 

data are used as an estimate of an unknown population to calculate 

estimates of the paramet~rs of the selected probability distribu

tion. The fitted distribution is then used to estimate event 
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magnitudes correspondingto return periods greater th an or 1 ess 

than those of the recorde~ events. 

There is actually no general agreement among hydrologists as 

to which of the various t~eoretical distributions available should 

be used. The present state of the art i s al so such that no 

general agreement has been reached as to preferable techniques. 

Moreover, statistical tests, such as chi-square or Kolmogorov

Smirnov, do not permit discrimination between the different 

techniques applied to different laws. 

In North America, the log-Pearson type 3 distribution is 

being used increasingly since its systematic usage by American 

governmental agenci es has been recommended. Wi th respect to the 

adjustment techni que suggested by the hydrology commi ttee of the 

Water Resources Council, several cri tici sms can be addressed to 

it. It is for this reason that a simple technique of adjustment 

for the log-Pearson type 3 law, which preserves the moments of the 

sample of observed values and which accords the same weight to 

each observation, was pre$ented. This technique, which seems more 

justified on a theoretical basis, leads equall~ to better practi

cal results. One must hope that in the future global comparisons, 

by Monte Carlo simulation for example, will lead to definitive 

conclusions and will permit the recommendation of the systematic 

use of an adjustment technique across Canada. 
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The list of distrib~tions that we have presented represents 
J 

the set of probability ,laws that are most commonly used in North 

America. New laws are being introduced and investigated in the 

1 i terature. We menti on in parti cul ar the Wakeby di stributi on 

which was introduced by Houghton (1978 a). This distribution has 

aroused a good degree of interest for aesthetic as well as analy

tical reasons. In addition to being a five-parameter distribution 

one of its peculiarities is that it is expressable as an inverse 

distribution function: 

x = - a (1 - F}b + c (1 - F}d + e 

where F is a uniform random variable over the interval (0, 1) and 

a, b, c, d, e are parameters. 

Houghton i ntroduced the Wakeby di stribution as the grand 

parent of distributions used in hydrology. It gives better fit 

for flood data than conventional distributions when its parameters 

are chosen correctly. It has five parameters, however which have 

to be estimated. Th i s i ntroduces substanti al estimati on error. 

In addition, its density function is expressable only in inverse 

forme This calls for the use of unconventional methods of 

estimation (such as the "incomplete means" procedure introduced by 
"-

Houghton (1978 b)}. Fi nally a method of cal cul ation of var (XT) 

is not yet 
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available. All these reasons render the Wakeby distribution less 

attractive for hydrologie appltcatîôns. 

2.3. PARTIAL DURATION SERIES MODELS 

2.3.1. Mathematical Presentation 

Let us consider the stochastic process described by the 

streamflow hydrograph and let us select a base level xo. 

If we cons i der only those flood peaks Q. in the arbitrary , 
interval of time [0, t] that exceed xo' we can define 

ç; i = Qi - xo (2.43 ) 

where ç;. > a is a random variable for all i = 1, 2, ••• Associat, 
ed with each exceedance ç;. is a random variable T(i) which is the , 
time when the corresponding peak occurred (figure 2.3). Only the 

largest peak is taken into consideration in the case of a 

multiple-peaked hydrograph (figure 2.3). 

Denote by n(t) the number of exceedances in the interval of 

time [0, t] and let Et stand for the event [n(t) = v] i.e. the 
v 
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event that there are exactly \1 exceedances at or before time t. 

The event [n(t2 ) - n(t 1 ) = \1; t 2 > t 1] i.e. the event that there 

are exactly \1 exceedances between t 1 , and t 2 is denoted by 

Et l,t 2• 
\1 

Let P(E~,t+sIE~) be the probability that there is exactly one 

exceedance in the interval of time (t, t + s] conditional on the 

event E~ that there are k exceedances up to and including time t. 

Under certain regul arity assumptions [discussed in (Todorovic, 

1970)] and in the case when 

(2.44 ) 
llt 

llt+O 

is independent of k; i.e. in the case when \(t) - À(t), we have 

(Todorovic and Zelenhasic, 1970): 
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t t k 
= exp [- fa À(S} ds] [fa À(s}ds] / k!, k = 0, 1, 2 .•• 

(2.45) 

which is a time-dependent Poisson process. À(t} is called the 

lIintensity function ll of this process. This impl ies that E[n(t}], 

the mean number of exceedances in [0, t] (which we shall denote by 

A(t)} is given by: 

E [n (t)] = A( t} 
t = f À( s} ds 
a 

(2.46 ) 

It is commonly known that the variance of n(t} (Poissonian) is 

equal ta its mean: 

Var [n(t}] = A(t} (2.47) 

One of the advantages of truncating the hydrograph by the 

base level XQ is that it has enabled us (equation 2.45) ta 

a ttri bute a certa in s tachas tic s truc ture ta the process 

{ n ( t) ; t >0 } • For additional theoretical explanation of the 

Po i sson property of n (t) the reader i s referred ta (Todorovi c, 

1978) • 
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Let us consider now the sequence: 

Xl' X2' ••• 

of largest exceedance in each year (sorne of which may be zeros) 

and defi ne the random variable N for an arbitrary x > 0, in the x 
fo 11 owi ng way: 

Nx = inf (v; Xv > x) (2.48 ) 

In other words, Nx is the smallest value of v for which ~ is 

greater th an x. The length of time (in years) that elapses before 

x is exceeded for the first time determines N. Under the assumpx 
tion that (x ) is a sequence of independent random variables with 

v 

the common distribution function Ft*(x): 

P (x < x) = F * (x) v ... t (2.49 ) 

where t* i s equal to the one-year peri od, i t can be shown (Todoro-

vic and Zelenhasic, 1970) that the expectation of the random 
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variable N for an arbitrary x > 0 is equal to: x 

1 
E(N ) = ___ _ 

x 1 - Ft (x) 
(2.50) 

This represents the average passage time of the level x, i.e. 

the average number of years before the first exceedance of magni

tude greater than x occurs. It is used to characterize the return 

period of the discharge x (equation 2.56). 

Let x(t) denote the magnitude of the largest exceedance 

within [0, t] i.e., 

x (t) = max ~i 

t( i )-st 

(2.51) 

so x(t) is the maximum among a random number of random variables. 

Natural1y the distribution of x(t) is dependent on both the 

distribution of the number of exceedances (events) in [0, tJ which 

i s usually assumed to be Poi ssoni an (equati on 2.45) and the 

distribution of {~i}' 
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For a high enough base level Xo, the variables ~i may be 

assumed to be i ndependent. Ma ny authors (Todorovi c and 

Zelenhasic, 1970; Todorovic, 1978; Ashkar and Rousselle, 1981) 

introduce the further assumption that the ~is are identically 

distributed, their common distribution being of the exponential 

type: 

(2.52) 

The mean and variance of ~ are: 

E (~) = 1 / 8 

Var (~) = 1 / 82 (2.53 ) 

From equations (2.45) and (2.52) and the assumption that (~ ) 
v 

and (T(V)) are mutually independent sequences, the distribution of 

x(t) the largest exceedance in [0, t] may be deduced (Todorovic 

and Zelenhasic, 1970): 
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(2.54 ) 

Taking t = t* the one-year period and denoting A(t*) by À for 

simplicity, we obtain (using equations 2.49 and 2.54): 

F* (x) = p [x < x] t v .... 
-(3x = exp (- À e ) (2.55) 

Combining relationships (2.50) and (2.55) we finally obtain: 

1 1 
T = E(N ) = = x -------- --------------

1 - F*t (x) QX 1 - exp {- Àe-~ } 

(2.56) 

which gives the return period as a function of the exceedance x 

(or equivalently as a function of the discharge Q which differs 

from x only by a constant xo; equation 2.43). 

Remark that if one poses À = eU and y = ((3x - cd in relation

ship (2.55), one obtains: 
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Ft(X) (2.57) 

which is the Gumbel distribution function already given in 

relationship (2.17). 

The discharge X
T 

of return period T can be obtained by solv

ing equation (2.56) with respect to x; this yields: 

CT + ln À T 
XT = wi th CT = - ln l n __ 

S T - 1 

Note that in this last relationship XT will be negative if À 

. -C 
is less than e T; so if we want XT to be positive we should 

define: 

-CT 
(CT + ln À) / s for À > e = 1 n [T / (T -1)] 

o otherwi se (2.58 ) 



- 94 -

2.3.2. Estimation of Design Events and Uncertainty of Estimation 

In practice, the parameters À and 8 in relationship (2.58) 
... "" 

are estimated by À and 8 obtained using a sampl e of flood data 

from N years of record. It can be shown (As hkar and Roussell e, 

1981) that the method of moments and the method of maximum like-

lihood yield the same estimates, given by: 

M 
S = M / ( l é;.) 

i=l l 
(2.59 ) 

where M is the number of exceedances é;i observed in the N years of 

record. 

Replacing À and 8 in relationship (2.58) with their estimates 
A ~ 

À and S makes XT a random variable, which we shall denote by XT,N 

(to show that it varies with both the return period T, and the 
A 

length of record N). The p.d.f. of XT,N as derived by Ashkar and 

Rousselle (1981) is given by: 



with 
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I* [mNÀ!3X exp (- ax/u) /u]m / m! (m - 1)!; x > 0 
m 

e -NÀ (NÀ)m 
1 - I* x = 0 (2.60) 

m m! 

u = uT ,N (m) = - ln + ln m 

The summation I* is over positive integers m that are greater than 

ln [T/(T - l)]N. 

One of the advantages of the density function (2.60) is that 

it is exact (non-asymptotic), and therefore valid with any sample 
'" size N. It can be used to calculate the exact variance of XT,N 

and exact confidence limits around X
T 

N at any level of , 
confidence. 

... ... 
Cunnane (1973), assuming that COY (À, a) = 0 and using the 

well-known first-order Taylor approximations of Var (f(x,y)) and 

COY (f(x,y), g(x,y)) derived the asymptotic variance of XT N as: , 
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A 

Va r (X T ,N) = À - l 13- 2 N - l {1 + [1 n À + CT J2 } (2.61) 

Ashkar and Roussell e (1981) and Tavares and Da Si 1 va (1983) 
"'-

have shown, however that this assumption of independence of À and 
".. 

13 can lead to serious errors. The use of equation (2.61) is 

therefore not recommended in practice. 

It would be very helpful to have tables based on relationship 

(2.60) that will give confidence limits around XT for values of T, 

N, À, t3 and confidence coefficient (1 - <x), within the range of 

interest in flood analysis. Unfortunately, such tables are not 

available at present, but a computer program can easily be 

constructed to deal wi th rel ati onshi p (2.60). As hkar and Rous

selle (1981) used such a program to calcul ate the density function 

fT ,N (x) for different val ues of T and N using real data. Note 

that in order to calculate fT,N(x) the parameters À and t3 in 

relationship (2.60) should be estimated beforehand using 

relationships (2.59). The cumulative distribution function 
A. 

FT,N(X) of XT,N may be obtained from fT,N(X) by numerical integra-

tion. This too can easily be done on a computer. Once FT N(x) is , 
obtained, the calculation of confidence intervals at any level of 

confidence becomes a very simple task. This kind of calculation 

has been successfully done by El-Jabi et al. (1982). 
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2.3.3. Comparison of Annual Series and Partial Duration Series 

Cunnane (1973) and also Taesombut and Yevjevich (1978) have 

compared the (asymptotic) estimation variance of XT,N obtained by 

the partial duration series method with the assumption that 
'" ,.. 

COY (À, S) = a (relationship 2.61) to that resulting from fitting 

a Gumbel l aw to the annual maxima by the method of maximum 

likelihood (relationship 2.25). Cunnane's study concluded that 

the estimate of X
T 

of partial flood series in the case when the 

average number of exceedances per year i s equal to one, has a 

larger sampling variance than the annual flood series estimate for 

the return periods greater than la years. Both studies (Cunnane, 

1973; Taesombut and Yevjevich, 1978) concluded that partial flood 

series produce smaller sampling variance than annual flood series 

only if partial flood series contained at least 1.65 N items; N 

being the number of years of record. 

As we have stated earl ier, however, the use of equation 

(2.61) can lead to significant errors; the validity of the above 

results may therefore be doubtful. 

Tavares and Da Silva (1983) carried out a study similar to 

the studies done by Cunnane (1973) and Taesombut and Yevjevich 

(1978) but evaded the use of relationship (2.61) by resorting to 

simul ation. They concluded that the partial duration series 

method has a significantly lower estimation variance th an the 



- 98 -

annual maxima method if À the mean number of exceedances per year 

i s greater than 2. This reduction of the estimation variance 

increases with the return period and with À. 

We believe that more use of equation (2.60) may give a more 

accurate idea about the relative efficiency of the partial 

duration series method as compared to the method of annual maxima. 

Studies along this direction are encouraged. 

2.3.4. Treatment of Non Identically Distributed Exceedances 

In many cases there i s good agreement between Gumbel ' s 

distribution and observed annual flood series indicating that the 

assumptions introduced in the derivation of equation (2.55) which 

is equivalent to equation (2.57) are basically correct. In this 

kind of a situation we shall say that "Model Ali applies. There 

are cases, however, when Gumbel's law is clearly found inadequate 

for fitting the observed sequence of annual maxima. In this case 

the need for more refined models arises. The natural thing to do 

is to try and remove the strongest of the hypotheses on which 

equation (2.55) is based, namely that {s.} is a sequence of 
1 

identically distributed random variables. 

It may be found phenomenologically closer to reality to 

assume that the occurrence of exceedances still follows a time-

dependent or "non-homogeneous" Poisson process, but that the 
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exceedance values are not identically distributed random 

variables. In fact, it has been remarked by many authors 

(Todorovic and Rousselle, 1971; North, 1980; Wayl en and Woo, 

1982) that the distribution of i;i is actually dependent on T(i). 

One way of allowing for this time dependence is by retaining the 

exponenti al di stribution as in equati on (2.52) but assumi ng i ts 

parameter S to be time-dependent, i.e., 

-rH t) x 
= t] = 1 - e , x > 0 (2.62) 

This is the model suggested by North (1980). In this model (which 

we shall call Model B) the distribution of the largest exceedance 

x(t) within [0, t] is given by: 

t -s(u)x = exp [-Jo e À(u) du] (2.63) 

By taking t = t* (the one-year period) in this equation the 

distribution of the largest annual exceedance is obtained. 

In areas where hi gh flows are generated by more than one 

distinct hydrologie process (e.g. sno",,"elt-and rainfall-generated 
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peaks) the partial duration series may be modelled by considering 

~. as the mixture of two or more independent components, each 
1 

bei ng exponenti ally di stributed (Model C). In the case of two 

independent components, if the exceedances associated with compo

nent i, i = 1,2 occur according to a Poisson process of parameter 

A.(t), as in expression (2.46) then the distribution function of 
1 

the largest exceedance in a year will be given by (Versace et al., 

1981; Waylen and Woo, 1982): 

(2.64 ) 

where t* stands for the one-year period; À. = A.(t*) and ~. is the 
1 1 1 

parameter of the exponential distribution associated with compo-

nent i. Note that wi th a change of notation l ike the one 

introduced in equation (2.57), notably: 
a. 

1 and y. = e 
1 

À. = (~.x - a.), i = 1, 2, expression (2.64) reduces to: 
111 

-e-y l 
e • (2.65) 

In other words, the overall annual flood di stribution (by IIflood ll 

we often mean lIexceedance ll
; this should not lead to any confusion) 
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is the product of the annual flood distributions of the individual 

components. 

On substituting expression (2.63) with t = t* (Model B) or 

expression (2.64) (Model C) in equation (2.50), the return period 

T = E (N ) associ ated wi th an exceedance magnitude equal to x can 
x x 

be cal cul ated. 

It was said in section 1.4 that when it can be shown that the 

set of recorded floods come from two or more distinct populations 

then it may be more hydrologically reasonable to try and separate 

the subpopulations on the basis of the distinct generating 

processes that gave rise to them (as was done in Model C) rather 

than separating floods by calendar periods. It may happen 

however, and in fact it may not be uncommon, that a separation on 

the basis of the distinct flood generating processes cornes to 

reveal that the different subpopulations obtained are also 

separated according to separate calendar periods. These calendar 

periods may be called "seasons" and the "Seasonal Model" thus 

obtained (Todorovic and Rousselle, 1971) is nothing but a special 

case of Model C. 

The Seasonal Model i s al so in effect a speci al case of 

Model B. It corresponds to the case of a pi ecewi se constant 

function S(t) in equation (2.62), S(t) being constant within each 
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season, and assumi ng different val ues from one season to the 

other. 

Ashkar and Rousselle (1981) derived the p.d.f. fT N(x) of , 
~ 

XT,N' the estimate of the event of return period T in the case of 

the Seasonal Model. Th i s derivation i s al so val id for the more 

general Model C. The numerical calcul ation of this probabil ity 

distribution fT N(x) requires computer programming and involves a , 
m.mber of summati ons and numerical i ntegrati ons that i ncreases 

wi th the number of seasons (subpopul ati ons) cons i dered. Wi th two 

or three seasons (subpopul ations) no serious difficul ties shoul d 

occur with this numerical calculation. For the exact expression 

of fT,N(x) the reader is referred to (Ashkar and Rousselle 

1981) • 

Once fT N(x) is determined, the calculation of the cumulative , 
distribution function F (x) and of confidence intervals for X

T T,N 
becomes an easy task. 

With regard to Model B, the estimation of its parameters 

(North, 1980) is complex and requires elaborate computer .. 
programming. The distribution of XT,N has not yet been studied 

for this model. 
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2.3.5. Applications and Additional Comments 

It is difficult to construct an example using data from one 

single station that will apply all the theoretical results we have 

presented wi th the parti al durati on seri es approach, especi ally 

that different models were presented each having its own set of 

hypotheses. More than one example with more than one set of data 

are needed in order to clarify all the ideas that were put for

eward. To simpl if y our task of providing satisfactory practical 

applications we shall choose a number of examples already given in 

scientific journals or readily available publications, and present 

the reader with a brief summary of each example, adding sorne 

comments when we find it necessary. 

As for Model B, North (1980) gives a nlJT\erical exampl e. 

Since the kind of calculations involved calls for sorne quite 

elaborate mmerical techniques and since we are primarily inter

ested in calculations that can be reproduced with reasonable 

effort by practitioners, we shall not discuss this example here. 

For the more practical Models A and C, here are sorne applica

tions (in referring to equations or paragraphs pertaining to the 

present study we shall write "AB" (Ashkar and Bobée)): 
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MODEL A 

This model may be widely applicable in parts of Canada where 

high flows are dominated by a single flood generating process, 

notably snowmelt. 

Todorovic and Zelenhasic (1970, pp. 1645-1648) give a 

numerical example. A brief summary of this example follows: 

(1) The river considered is Susquehanna River at Wilkes-Barre, 

Pennsylvania; N = 72 years. 

(2) The base l evel xo, i s not chosen by the authors (i n the 

United States it is usually furnished along with p.d.s. data 

by the U.S. Geological Survey). 

(3) The question of which flood peaks above Xo should be retained 

and which should be exluded is briefly addressed (cf. AB 

section 1.1). 

(4 ) The question of independence of the exceedances ~. is briefly 
1 

commented and the assumption of identically distributed 

exceedances for the whole year period is justified graphical-

ly and with a Kolmogorov-Smirnov test (cf. AB section 

2.2.7 B). 
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(5) Th e observed functi on AI (t), the average nlJTlber of exceed

ances in [0, t] (AB equation 2.46) is plotted (Tl fig. 7) and 

a fitting function A(t) is obtained for A'(t) using a Fourier 

seri es fi t procedure. Th i s fi tted functi on whi ch can be 

computationally burdensome can for all practical purposes be 

repl aced by the observed functi on AI (t) in most appl i ca-

tions. 

(6) Observed and corresponding theoreti cal (Po i sson) di stri bu-

tions of the number of exceedances within periods [0, t] for 

different values of t ranging from 20 days to 365 days, are 

plotted and compared (Tl fi g. 6). A chi- square test of 

goodness of fi t (AB secti on 2.2. 7 A) coul d be used in thi s 

case to measure the di seri pancy between the observed and 

theoretical distributions. 

(7) The distribution function Ft(x) of x(t) the largest exceed

ance in [0, t] (AB equation 2.62) is obtained after esti

mating B by B given in (AB equation 2.54). The result is (Tl 

equation 30). Observed and theoretical functions Ft(x) are 

plotted and compared in (Tl fig. 9) for 160 -, 200-and 

365-day periods. Observed and theoretical (exponential) 

distributions Fs(X) of the magnitude of exceedances (AB equa

tion 2.52) are plotted in (Tl fig. 8). A Kolmogorov- Smirnov 

test of goodness of fit could be used in the case of both 

Ft(X) and Fs(x) to measure their adequacy for fitting 
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the observed data. 

(8) The event having a return period of 100 years is calculated 

using (AB equation 2.58 or equivalently, AB equation 2.55 ~ 

TZ equation 31). 

MODEl C 

This model may be applicable when floods are brought about by 

more than one generating process, snowmelt and rainfall for 

instance. 

The following is a brief summary of a numerical example given 

in (Versace et al., 1981): 

(1) The example considers the flood values obtained from a 36-

year record of daily flows at the Amato Ri ver in Southern 

Italy. 

(2) The coeffi cient of skewness C of the annual flood series i s 
s 

computed and found to be incompatible with what the Gumbel 

distribution should produce. This directs the attention to 

checking the validity of the hypotheses on which Model A is 

based. 
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(3) The base 1 evel i s chosen such that À, the observed mean 

number of exceedances per year i s equal to 2.06. The 

hypothesis of a Poisson distribution of the number of events 

per year is checked graphically and by a statistical test. 

It is found acceptable. For more details on the test used, 

which employs a test statistic R equalling the ratio of the 

observed variance to the observed mean the reader is referred 

to (Cunnane, 1979). 

(4) Observed and theoretical (exponential) distribution functions 

of exceedances are plotted and compared under both Models A 

and C. In Model C floods associated wi th desastrous storms 

are distinguished from other floods and considered as belong

ing to a separate population. From the plots obtained, it is 

shown that considering two subpopul ations of flood exceed

ances (Model C) for the river under investigation improves 

substantially the fi t to the observed data as compared wi th 

Model A whi ch consi ders all exceedances as comi ng from the 

same popul ation. A plot of the observed and theoreti cal 

distributions of the largest annual exceedance for Model A 

(AB equation 2.55) and for Model C (AB equation 2.64) 

demonstrates further the superiority of Model C over 

Model A. 
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(5) The same comparisons do ne between Model s A and C are done 

also between Models Band C. This again points out the good 

performance of Model C. 

Waylen and Woo (1982) applied Model C to the study of floods 

in southwestern British Columbia. The follONing is a brief 

summary of a numerical example they give: 

(1) The river considered is Coquihalla River in the Cascade 

Mountains. The number of years of record is 34 years (daily 

discharge). 

(2) In the region covered by the study, high flows may result 

from heavy winter rainfall or from snowmelt in spring. 

(3) Observed annual floods and the fitted Gumbel distribution are 

represented graphi cally and the divergence of the data from 

the fitted function shows that Model A is not applicable. It 

is hypothesized that the floods are generated by two .distinct 

processes: rainfall (including rain on snow) and snowmelt. 

(4) The authors propose a differentiation between these two flood 

generati ng processes on the basi s of antecedent preci pi ta

tion. The available records of precipitation permit them to 

plot 4-day antecedent precipitation against annual flood 

di scharge for each year. From thi s plot two subpopul ati ons 
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are found to be distinguishable. When Gumbel distributions 

are fitted to the annual maxima series of each of these two 

subpopulations separately a better fit is obtained (WW 

fig. 4) as compared to the case where all the annual maxima 

are considered to belong to only one population (WW fig. 1). 

A point of interest in this case study is that the two 

subpopulations are associated with two separate seasons. The 

subpopulation of snowmelt-generated floods is associated with 

the period April - July, while the subpopulation of rainfall 

- generated floods i s associ ated wi th the months Oc tober -

March (WW fig. 3). Model C reduces in this case to the 

Seasonal Model that was mentioned in section 2.3.4. 

(5) The two Gumbel ditributions are compounded to yield the 

distribution function of the annual flood (AB Equation 

2.64). A comparison of the fit between observed and 

theoretical distributions in (WW fig. 5; Model C) and (WW 

fig. 1; Model A) demonstrates the improvement that Model C 

introduces as compared to the more restrictive Model A. 

The base l evel 

The choice of the base level Xo is of particular importance 

in p.d.s. models. This importance stems from the fact that the 

(time-dependent) Poi sson process as a model for flood count and 

the assumption of stochastic independence of flood exceedances 
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cannot be expected to be physically plausible if the truncation 

level or base level is not "relatively high". 

The truncation level is usually chosen in such a way that on 

the average, no more than two or three exceedances occur in a 

year period (Langbein, 1949; Dalrymple, 1960). This criterion is 

no more than a "rul e of thumb", however. Often in practice 

interest lies with a precise value of xo, determined by the nature 

of the engineering problem at hand. 

The natural question that cornes to mind is the following: 

what are the effects of changing the base level upon the distribu

tions employed in Models A, Band C above ? 

Ashkar and Rousselle (1983) have proven that with any of the 

Model s A, B or the "Seasonal Model" that we described previously 

(which is a special case of Model Cl, if the time-dependent Pois

son process is found applicable with a certain truncation level Xo 

then it should remain so with any level Yo higher than xo. 

Al though this proof as given by Ashkar and Rousselle does not 

coyer Model C in its general form, a simple modification may be 

introduced in the proof, that allows Model C to be covered too. 

If we denote by ni (t) the number of exceedances within [o,t] 

obtained from a truncation at the level Yo = Xo + h (h > 0), then 

the intensity function ÀI(t) of the Poisson process at the level 

Yo is related to the corresponding intensity function À(t) at the 

• 
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level xo by the following equation: 

À 1 (t) = Pt,h • À(t) 

where Pt,h is the probability of an exceedance occuring at time t 

being greater than h. Note that in Model C an exceedance ocurring 

at time t may belong to one of a number of different populations, 

in whi ch case Pt,h shoul d be taken as the overall probabil ity of 

this exceedance being greater than h. 

Another point of practical interest regarding Model s, A, B 

and C i s that the exponenti al di stribution used in these three 

models as the distribution of flood magnitude shares the same 

property that we have just described in relation to the Poisson 

process. In fact, if the exponential distribution (with parameter 

B) is found applicable at a certain truncation level Xo then as 

the truncation level is raised, not only does this distribution 

remain applicable, but its parameter S remains constant too (Ross, 

1976) • 

These interesting characteristics of the Poisson process and 

of the exponential distribution give a great degree of freedom to 

the practicing engineer to choose the truncation level that he 
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finds adequate for the problem at hand without having to worry too 

much about the sensitivity of the obtained results to the choice 

of the truncation level. As a general rule, the truncation level 

should be chosen high enough so as to satisfy the Poisson model 

and the hypothesis of independence of exceedances, and low enough 

to get a good number of events that permits reliable estimates of 

distribution parameters. 
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Risk of obtaining one or more floods of return 
period T or greater within the specified length of 
time 

Percent chance of getting one or more such or 
bigger floods in this many years 

Re turn peri od 
100 50 25 10 1 (Years) 

years years years years year 

50 2 
20 5 

99.9 94 65 10 10 
90.5 71 40 5 20 

86 63 40 18 2 50 
63 39 22 9.6 1 100 
39 22 12 5 0.5 200 
18 9.5 5 2 0.2 500 

9.5 4.8 2.5 1 0.1 1000 
5 2.3 1.2 0.5 .05 2000 
2 1.0 0.5 0.2 .02 5000 
1 0.5 .25 0.1 .01 10000 
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TABLE 2.1: Maximum daily discharge values for the South Saskat
chewan River at Saskatoon - Station n° KF62 

r-

YEAR MAXIMUM DAILY DISCHARGE YEAR MAXIMUM DAILY DISCHARGE 

1912 1424 m3/sec on Jul. 17 1942 1818 m3/sec on Jun. 13 
1913 1209 m3/sec on Jul. 6 1943 1280 m3/sec on Apr. 9 
1914 994 m3/sec on Jun. 26 1944 631 m3/sec on Jun. 25 
1915 3143 m3/sec on Jul. 2 1945 1169 m3/sec on Jun. 14 
1916 2633 m3/sec on Jul. 4 1946 1053 m3/sec on Jun. 16 
1917 1974 m3/sec on Jun. 9 1947 1826 m3/sec on Mar. 28 
1918 1184 m3/sec on Jun. 22 1948 2696 m3/sec on Apr. 24 
1919 980 m3/sec on Jun. 5 1949 541 m3/sec on Jun. 11 
1920 1761 m3/sec on May 14 1950 1274 m3/sec on Jun. 30 
1921 1416 m3/sec on Apr. 15 1951 1540 m3/sec on Jul. 1 
1922 1070 m3/sec on Jun. 13 1952 2418 m3/sec on Apr. 10 
1923 3370 m~/sec on Jun. 7 1953 3936 m~/sec on Jun. 15 
1924 900 m /sec on Jun. 24 1954 1535 m /sec on Sep. 2 
1925 1365 m3/sec on Apr. 5 1955 2183 m3/sec on Apr. 10 
1926 1150 m~/sec on Sep. 19 1956 1192 m3/sec on Apr. 15 
1927 2330 m /sec on Jun. 17 1957 855 m3/sec on May 30 
1928 2486 m3/sec on Jul. 7 1958 852 m3/sec on Apr. 17 
1929 3058 m~/sec on Jun. 9 1959 1252 m3/sec on Jul. 5 
1930 855 m /sec on Jun. 19 1960 1124 m3/sec on Apr. 3 
1931 583 m3/sec on Jun. 29 1961 1070 m3/sec on Jun. 4 
1932 3143 m3/sec on Jun. 8 1962 815 m3/sec on Apr. 16 
1933 1082 m3/sec on Jun. 25 1963 1540 m3/sec on Jul. 8 
1934 1138 m3/sec on Jun. 15 1964 1424 m3/sec on Jun. 18 
1935 793 m3/sec on Jun. 28 1965 1634 m3/sec on Jun. 27 
1936 861 m3/sec on Apr. 18 1966 1260 m3/sec on Jun. 13 
1937 1107 m3/sec on Jun. 21 1967 583 m3/sec on Apr. 30 
1938 1365 m3/sec on Jun. 3 1968 595 m3/sec on Jan. 9 
1939 1422 m3/sec on Jun. 24 1969 1778 m3/sec on Jul. 6 
1940 1572 m3/sec on Apr. 22 1970 399 m3/sec on Nov. 30 
1941 926 m3/sec on Apr. 7 



TABLE 2.2: Estimation of the parameters (station kF 62) 

Method PEARSON TYPE 3 

Para-

meters 1 2 3 4 5 

Cl .0020 .0018 .0018 .0020 -29.42 

À 2.473 1.889 1.943 2.360 44.85 

m 267.00 420.29 405.15 327.47 4.639 

(Cs) 1.272 1.455 1.435 1. 302 -0.299 

LOG-PEARSON TYPE 3 

6 7 8 

94.74 82.81 87.10 

411.20 314.16 347.50 

-1. 221 -0.674 -0.871 

.099 0.113 0.107 

9 

77.97 

274.00 

-0.395 

0.121 

-' 
N 
a 
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FIGURE 2.2: 
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Adjustment of the loçrPearson type 3 di stribution 
by considering the methods 5 and 6 
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FIGURE 2.3: 
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Stochastic representation of a streamflow hydro
graph 
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