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ON THE CONSTRUCTION OF CONFIDENCE INTERVALS 

FOR THE QUANTI LES OF THE GAMMA DISTRIBUTION 

Fahim Ashkar and Bernard Bobée 

Institut national de la recherche scientifique (INRS-Eau), 

C.P. 7 500, Sainte-Foy, Québec, canada GIV 4C7 

We present an approximate method for constructing confidence intervals 

for the quantiles of the 2-parameter gamma distribution when both scale and 

shape parameters e and le, respectively, of the distribution are unknown. 

There is a relationship between these confidence intervals and one-sided 

tolerance limits for the distribution. Simulation shows that the method is 

highly accurate for many practical applications. The method is also quite 

general and might be useful for other distributions as well. 

KEYS WORDS: Confidence bounds; percentiles; tolerance limits; approximate 

methods; small and moderate sample sizes; simulation. 
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1. INTRODUCTION 

A well known problem in statistics is how to calculate a lower 'Y 

probability tolerance limit for proportion 1-p of a given statistical 

distribution. This can also be regarded as a lower 'Y level confidence limit 

for the pth quantile x of the distribution because if L(x ;'Y) is a lower 'Y 
p p 

LeL for x and R(t) is the reliability at time t, then 
p 

Pr { R(L(x ;'Y)) ~ 1-p} = 'Y 
p 

where by definition R(t) = 1-F(t) and F(·) is the cdf of the distribution. 

Ways of obtaining exact confidence limits for quantiles of such 

distributions as the normal/log normal, extreme value type 1 /Weibull, and 

exponential, are weIl known and weIl documented in the statistical 

literature. One distribution for which a method for constructing exact 

confidence limits for its quantiles is not yet known, is the gamma 

distribution in the case where the two parameters e and K of the 

distribution are unknown. This because unlike the other distributions 

mentioned above, the paramet'ers of the gamma distribution are not of the 

location-scale type. Approximate methods for the gamma distribution have 

been sought for quite a long time and it is only recently that Bain, 

Engelhardt and Shiue (1984) have had sorne success in developing a usefully 

approximate method for this distribution. The tolerance limits obtained by 

Bain et al. for the gamma distribution are calculated by first assuming 

the distribution mean known and the shape parameter (K) unknown, and then 
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replacing the distribution mean by the sample mean. This method is shown 

to be satisfactory for quite a broad range of values of the shape parameter, 

and for moderate sample sizes, but not for aIl probability levels p. 

In fact, for values of p greater than .20, the method of Bain et al. 

fails to produce good results. Therefore, in situations where one is 

interested in constructing confidence intervals for quantiles situated at 

the right tail of the distribution (values of p close to unit y) , this method 

does not provide an adequate solution. This is exactly the kind of 

situation which we will be interested in, in the present study. To handle 

this kind of problem, we shall develop a new approximate method which we 

shall discuss and test using simulation. We start by presenting one area of 

application where quantiles of the gamma distribution play an important 

role. 

2. DESCRIPTION OF TIIE PROBLEM 

The gamma distribution (also known as the Pearson type 3 distribution) 

is a widely used distribution in hydrology. For example, in the area of 

flood frequency analysis the 3-parameter gamma distribution is very 

frequently used to fit annual maximum flood series which consists of the 

maximum discharge value recorded each year at a given gaging station over an 

n-year period. See Bobée (1975), United States Water Resources Council 

(1981) or Rao (1981) for more detail on this subject. In these references, 

either the annual maximum flood dis charge or its logarithm is assumed follow 

a 3-parameter gamma distribution. 
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The probability density function of the 3-parameter gamma distribution 

is given by: 

1C-1 = (y-n) exp [-(y-n)/0] f(x; 0,IC,n) ~~~--~IC~~~L-~~~ 

e r(lC) 

00 1C-1-t 
where r(lC) = Jo t e dt is the gamma function. In the present study, we 

shall restrict our attention the case where the location parameter n is 

equal to zero but we mention that in flood frequency analysis n signifies 

the lower bound of flood flows and for this reason it is frequently assumed 

to be greater than zero (the value of n depends on the hydrogeographical 

conditions of the watershed and has to be estimated from the recorded flood 

sample but on certain rivers, especially those in arid or semi-arid regions 

n is sometimes taken to be equal to zero and the 2-parameter gamma 

distribution is obtained). 

There are different ways of describing the shape of the gamma 

distribution one of which is by using the coefficient of skewness r = 2/ 

..;---K . The mean and variance of the gamma distribution are 
2 2 

respectively given by ~ = n + ICS and ~ = ICS . 
X X 

The design of flood control structures and other hydraulic works is 

usually done on the basis of a specified annual flood discharge X
T 

corresponding to a specified return period T (in years) where T = l/Pr [X ~ 
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Xr] is the return period of the design flood value Xr. In other words, if a 

dam is constructed to withstand the 100-year flood XT (T = 100), say, then 

the dam will be expected to be overtopped on the average once every 100 

years. The probability that the dam will be overtopped in any given year 

will be equal to .01 (1 - p = Pr [ X ~ Xr ] = 1/100 = .01). This shows how 

the estimation of quantiles XT(or X
p

) and the construction of confidence 

intervals for these quanti les comes to play an important role in hydraulic 

design. 

This article is to present an approximate method for constructing 

confidence intervals for quantiles of the gamma distribution. Our method has 

been applied successfully to the 3-parameter gamma distribution at least for 

sample sizes and shape parame ter values commonly found in flood frequency 

analysis. From a hydrologie perspective, the method has been discussed in 

(Ashkar and Bobée 1987) but in the present study we shall give a brief 

description of the method and· apply it to the 2-parameter gamma 

distribution. It will be shown that for this distribution the method can 

give excellent results for many sample sizes (n), shape parameter values (K) 

and probability levels (p) encountered in many areas of application. 

3. THE PROPOSED METHOD 

In equations 1 through 7 we present the method without any mathematical 

justification. The next two sections wil help give further clarification 

of the method, but it is only after Table 1 is presented, that the practical 

utility of the method can be fully appreciated. 

-5-



Let Y be a continuous random variable with probability density function 

(p.d.f.) fy(Y; el' ... , ek), and cumulative distribution function (c.d.f.) 

Fy(Y; el' ... , ek), where el' ... , ek are unknown parameters. Suppose that 

a method exists for constructing confidence intervals for the quanti les 

y of the random variable Y. In other words, for any 100 (1 - 2~) % 
p 

confidence level, we can calculate upper and lower confidence limits U (p) 
~ 

and L (p) such that: 
~ 

P [Y ~ U (p)]= ~ 
p ~ 

which implies that: 

and P [Y ~ L (p)] = ~ 
p ~ 

1 - 2~ 

(1) 

(2) 

Suppose that X is a random variable for which a method for constructing 

confidence intervals for X 
p 

does not exist 

FX(x; e~, ... , e~) be the p.d.f. and c.d.f. 

Let fX(x; e~, ... , e~) and 

of X, respectively, where 

e', ... , e' are unknown parameters. What we are searching for, are two real 
1 m 

numbers U' (p) and L' (p) such that: 
~ ~ 

or 

p [X ~ U' (p)] = ~ 
p ~ 

and p [X ~ L' (p)] = ~ 
p ~ 

P [L~ (p) ~ Xp ~ U~ (p)] = 1 - 2~ 

Assume for the time being that 81 , ... , 8k are know.n. 

(3) 

Let Pl be 

the probability of Y not exceeding L (p) and P2 the probability of it not 
~ 

exceeding U~(p), i.e.: 

P [Y ~ L (p)] = Pl 
~ 

and (4) 
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This means that La(p) is the pl-quantile of Y and Ua(p) is the p2-quantile 

of Y: 

Y 
Pl 

U (p) = Y 
a P2 

(5) 

If La(p) and Ua(p) are known, then Pl and P2 can be calculated using the 

equations: 

(6) 

If the c.d.f. FX is known, then this can be used to calculate the Pl- and 

P2- quanti les of X, namely X and X 
Pl P2 

The method we propose consists in 

taking the desired lower and upper 100(1-2a) % confidence limits for X 
P 

to 

be equal to: 

X 
Pl 

and U~(p) = X 
P2 

(7) 

Before giving a mathematical justification for this approximate method we 

shall give an example. 

4. EXAKPLE 

It is weIl known that when the parent distribution of an observed sample is 

normal or log normal, exact confidence intervals for X can be constructed 
p 

as described in (Johnson and Welch, 1940). These are based on the noncentral 

t-distribution. 

In other words, if {Y l , ... , Y } is a random sample of size n from a 
n 

normal distribution, with mean ~ and standard deviation a , then the exact y y 
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th 
100 (1 - 2~) % confidence interval [L~ (p), U~ (p)] for the p quantile 

y , of Y, is given by: 
p 

[L~ (p), U~ (p)] = [Y + SY ~~ (p), y + SY ~1-~ (p)] (8) 

where ~ (p) and ~1 (p) are obtained using tables of the non-central 
~ -~ 

t-distribution (Locks, Alexander and Byars, 1973; Resnikoff and Lieberman, 

1957; Odeh and Owen, 1980 and others). 

The following sample, placed in increasing order, gives the maximum 

discharge during the month of September, over the period 1940-1966, at a 

gaging station on the Harricana river, Canada. The sample values are in 

m3 jsec. and the sample size, n, is 27. 

19, 23, 27, 33, 39, 39, 40, 43, 50, 50, 51, 61, 62, 63, 65, 66, 71, 82, 85, 

86, 89, 93, 101, 106, 117, 119, 126. 

The 2- parameter gamma distribution provides a good fit to the sample, 

and the maximum likelihood (ML) estimates of the parameters e and K of this 

distribution (X) are respectively: ~ = 14.57 and K = 4.59. The estimate of 

the coefficient of skewness of X is therefore ~ = 2jJ 4.59 = .934 and 

estimates of the mean and standard deviation are ~ = 66.88 and à = 31.22. x x 

Suppose that we wish to construct a 90% confidence interval (~ = 0.05) for 

the 99th percentile of X (p = .99). We choose a "prior" Y to be for instance 
2 

a normal random variable with mean ~ and variance cr y y This 
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choice of Y will be discussed in more detail later. From tables of the 

noncentral t-distribution, with n = 27, P = 0.99 and ex = 0.05, we find 

Lex(p) = ~ex(p) = 1.817 and Uex(p) = ~l-ex(P) = 3.117, which by equation 8 are 

the lower and upper confidence limits for the standardized normal quantile 

(Y -~ )/cr under the assumption that Y = ~ and S = cr (we shall also p y y y y y 

return to this assumption later). The next step is to find ~ (1.817) and 

~ (3.117), where ~ is the c. d. f . of the standard normal distribution. 

Approximation formula (26.2.17) of Zelen and Severo (1970) gives 

~ (1.817) = Pl ~ 0.965391 and ~ (3.117) = P2 ~ 0.999086. From Tables of 

Cohen, Helm and Sugg (1969) or Tables of Harter (1964) with ~ = .934 and 

non-exceedance probabilities Pl = 0.965391 and P2 = 0.999086 we obtain the 

values K ~ 2.13 and K ~ 4.54, where K is the pth quantile of the 
Pl P2 P 

standardized gamma variate with coefficient of skewness ~. The values of K 

can also be calculated using program MDCHI of the Library IMSL (1982) or 

more conveniently by using the Wilson-Hilferty approximation (Wilson and 

Hilferty, 1931): 

K 
p 

2 
~ --

Our proposed method consists in taking the lower and upper confidence 

limits for X as follows: 
p 

L' (p) 
ex = L~.5 (0.99) '" = X 

Pl 
'" '" = ~ + K cr ~ 66.88 + 2.13 (31.22) = 133.4 

x Pl x 
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u' (p) cx 

and 

'" '" = ~ + K a ~ 208.6 
x P2 x 

The above numerical calculations are summarized schematically in Figure 

1. What we have done, in this example, is that we have used the exact 

90% confidence interval [1.817, 3.117] for the 99
th

percentile of the normal 

distribution (Y.99)' under the assumption that Y = ~y and Sy = ay , to 

construct an approxirmte 90 % confidence interval [133.4, 208.6] for the 

corresponding gamma percentile, X. 99 , by making use of the observed sample 

from the gamma distribution. Had the random variable Y that we started with 

been Weibull, for instance, rather than normal, we would have obtained a 

different confidence interval for X. 99 . Had Y on the other hand been 

lognormal or any other distribution derived from the normal by a monotonie 

transformation, we would have obtained exactly the same confidence interval 

as ab ove . We expect that the distribution Y that behaves "nearest" to the 

gamma distribution (X) at the probability level p, of interest, to yield the 

most accurate (or least inaccurate) confidence intervals for the gamma 

quantile X. This "best" distribution Y may vary, however, with the value 
p 

of the probability level p and also with the value of cx (confidence level). 

With the help of simulation, one can choose the best distribution Y for 

different values of p and cx. 

We mention that for the above example the method of Bain, Engelhardt 

and Shiue gives L'(p) ~ 143.9 and U'(p) ~ 202.1. Had we been interested in cx cx 

a 90% confidence interval for X. 01 instead of X. 99 our method would have 
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given [7.9, 22.3] while that of Bain el al. gives [7.4, 20.7]. We shall 

have a word to say about the two methods later. 
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5. MATHEHATICAL JUSTIFICATION FOR THE PROPOSED APPROACH 

We know that for any two distributions X and Y, a relationship exists 

which gives the quanti les X of the distribution X as a function of the 
p 

corresponding quantiles Y of the distribution Y. This relationship is 
p 

given by: 

(9a) 

Of course, the inverse of this relationship gives Y as a function of 
p 

X : 
p 

and both functions h(-) and h- l (-) are increasing functions. 

(9b) 

If FX in the last two equations is estimated by FX then h will be 

'" estimated by li and equations (9a) and (9b) will be approximate equalities 

rather than strict equalities_ 

If by using certain assumptions such as Y = 

to calculate L (p) and U (p) such that: 
a. a. 

1 - 20'. 

= cr we are able 
y 

(10) 

i.e. such that [L (p), U (p)] is a 100 (1 - 20'.) % confidence interval for 
a. a. 

Y , then: 
p 
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(1) taking L (p) = y and UN(p) = y as was done in (5); 
a Pl ~ P2 

(2) making use of the approximate relationship Y
p 

~ li-l(X
p
); 

and (3) using the fact that li-l(.) is an increasing function; we obtain: 

1 - 2a 

~ P [Y ~ li- l (X ) ~ Y ] 
Pl P P2 

~ P [li- l (X ) ~ li- l (X ) ~ li- l (X )] 
Pl P P2 

~ p (X ~ X ~ X ) 
Pl P P2 

(11) 

This last result means that [X ,X ] is an approximate 100 (1-2a) % 
Pl P2 

confidence interval for X , and this is basically why we suggested taking 
P 

L'(p) = X and U'(p)= X in (7). 
a Pl a P2 

The foregoing mathematical derivations show the logic behind the 

approach that we are proposing for transforming confidence intervals from 

one distribution (Y) to another distribution (X) but they do not tell us 

which distribution Y should be chosen as the "prior" for any given 

distribution X. This choice of Y when X is gamma distributed will be 

resolved by simulation, as will now be shown. 
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6. TESTING THE PROPOSED METHOD BY SIMULATION 

Ashkar and Bobée (1987) considered the case of a 3-parameter gamma 

distribution (X) which is frequently used in flood frequency analysis and 

their study consisted of two parts: 

(1) In the first part, the coefficient of skewness (shape parameter) of 

the variable X was assumed to be known, and it was shown using 

simulation that the best distribution Y for producing confidence 

intervals for the quantiles of X was the n01TTK11 distribution as 

compared to other choices of Y such as the Weibull (2-parameter) and 

exponential (1- and 2-parameter). Note that when Y is taken to be 

1-parameter exponential, it is assumed that Y/Y follows the unit 

exponential; likewise when Y is Weibull, it is./ assumed that (Jl.n Y -

Y)/ S follows the standard Extreme Value distribution. 
y 

(2) In the second part of the study by Ashkar and Bobée (1987), the 

coefficient of skewness of X was assumed to be unknown, and in this 

case it was shown that taking Y to be Weibull (2-parameter) gave 

fairly accurate confidence intervals for the quantiles of X (3-

parameter gamma) for quite a wide range of sample sizes and 

coefficients of skewness found in practice. Of course one would 

presume that taking Y to be 3-parameter rather than 2-parameter 

Weibull would have most probably given better results, but since no 

simple method exists for constructing confidence intervals for 
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quantiles of the 3-parameter Weibull, Ashkar and Bobée did not 

consider this option in their study. 

In what follows we shall consider the case where X is a 2-parameter 

gamma distribution with both parameters unknown. From exploratory simulation 

experiments we have observed that among the Weibull (2-parameter), normal, 

and exponential (1- and 2-parameter) distributions, it was the nonnal 

distribution that gave the best confidence intervals for quantiles X of the 
p 

gamma distribution. From our experience, it is not necessary to carry out a 

sophisticated Monte Carlo experiment in order to find out which "prior" Y is 

best for a given distribution X, so it was sufficient from the limited 

computer runs that we carried out to clearly see that the normal 

distribution was the best prior for the problem at hand. Although detailed 

results for the other distributions are not available, we mention that the 

normal distribution was uniformly superior to aIl other distributions that 

were considered (readers who are interested in comparative values of 

confidence intervals for the 3-parameter gamma, arrived at by normal, 

exponential and Weibull assumptions can refer to the paper by Ashkar and 

Bobée, 1987). The procedure that we propose for obtaining confidence 

intervals for the quanti les of the gamma distribution is therefore to take Y 

to be normally distributed exactly as was done in the example that we gave 

earlier. 

We present in Table 1 the resul ts of an experiment in which 10,000 

samples for each of three sample sizes n = 10, 25, 50 were generated from 

the standardized gamma distribution (mean zero, variance one) with 

coefficient of skewness 1 = 0.2, 0.5, 0.7, 1.0, 1.5 and 2.0. For each 

sample size n and coefficient of skewness 1 we present the actual frequency 
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with which 90% and 99% confidence intervals constructed using the method 

proposed in the present study contained the true value of the gamma quantile 

x , for p = 0.002, .01, .05, .1, .5, .9, .95, .99 and .998. The exact 
p 

number of samples that were generated in each run (10,000) is rather 

subjective but we believe that it provides a good degree of accuracy. The 

calculation of K and K in the experiment was done using two 
Pl P2 

approximation formulas: the Wilson-Hilferty transformation, mentioned 

earlier, and the Cornish-Fisher transformation (Fisher and Cornish, 1960). 

Table 1 shows that the method proposed in the present study gives very 

good results for a wide range of sample sizes (n), probability levels (p) 

and coefficients of skewness (1) of the gamma variable. Most of the 

frequencies reported in this table are based on the Wilson-Hilferty 

transformation for calculating gamma quantiles, which generally gave more 

reliable results-than the Cornish-Fisher transformation but a few entries in 

the upper right hand corner of the table are based on the Cornish-Fisher 

transformation. A few other entries are missing because neither 

transformation gave reliable results. 

A comparison of Table 1 with Table 2 of Bain, Engelhardt and Shieu 

(1984) shows that the method proposed in the present study brings sorne clear 

improvements over the method of Bain et al. for values of p greater than 

about .20. For p < .20 one of the two methods might perform slightly better 

than the other, but with the computer time at our disposaI we did not find 

it necessary to make a detailed comparison between the two. Our main 

objective was to extend as much as possible the range of values of p, n and 
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"{ for which to test our method. For values of p lower than .20 i t is 

therefore le ft to the user to choose the method that he or she finds 

appropriate. 

7. CONCLUSION 

We close our discussion with the following remarks: 

(1) The method proposed in the present study is general; it remains to 

be seen if it can be useful for distributions other than the 2- or 

3-parameter gamma distribution; 

(2) The results reported in Table 1 cover only the case where the 

parameters 8 and K of the gamma distribution are obtained by maximum 

likelihood. The method was tested and gave approximately the same 

degree of accuracy when a and K were estimated by the method of 

moments, but due to lack of space, these results are not shown here; 

(3) Another method which was not investigated in the present study but 

which the authors feel can be very useful for transforming confidence 

intervals from one distribution Y to another distribution X has been 

proposed by Stedinger (1983), and discussed in Ashkar and Bobée 

(1987) . The method consists in scaling confidence intervals of the 

quantiles Y by multiplying them by a certain factor to obtain a 
p 

corresponding approximate confidence interval for X , the factor being 
p 

equal to the ratio of the asymptotic standard error of X to that of 
p 
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y This method was not tested because it takes considerably more 
p 

time to program and run on a computer than the method that we have 

proposed 
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o 

C.D.F. OF Y 

1 
.... """' ... +- - - _I

1 

1 • 
La (p) Yp 

(1.817) 

I 

1 • 

ua( p ) 

(3.117 ) 

F x( X) 

y 

FMPIRICAL C.O.F. OF X 
{Qamma with ;Zx =66~a8 ond'Ux =31.22 

(0.965591 ) -- - -~--

t 

1 

1 
1 

'DESIRED 100 (1-2 a) % 
: APPROXIMATE CONE"IDENCE 
,INTERVAL FOR Xp 

1 

x 
L'Q(p)Xp u'a (p) 

( 133.4 ) ( 208.6 ) 

FIGURE 1. Obtaining approximate confidence intervals for X using exact confidence 
p 

intervals for X . 
P 

The information given between parentheses corresponds 

to the example given in the present study. 



Tlble 1: Frequency (SI w'lth OIhich IpproxiNte confidence intervils constMicted for the 
quentiles Xp of 1 ga_ varilble X blSed on 1 no,...l Vlrilble Y, contlined the tMie 
velue of Xp ' 

SKh' COEF'rICIEN: or X 

0.2 0.5 0.7 1.0 1.5 2.0 
confi-
dence n 
level 

90S 10 89.83 90.68 90.01 90.06 89.47 *'* 
25 89.43 90.14 90.26 89.95 88.55. *'* 
50 89.87 90.00 90.48 89.49 86.2'* *'* 

p •• 002 
99S 10 99.03 98.98 99.03 99.17 98.94 .-

25 98.88 98.80 98.95 99.12 98.83* .-
50 98.95 99.05 98.90 98.96 98.36$ *'* 

90S 10 89.78. 90.47 89.77 90.02 90.55 91.48* 
25 89.42 90.11 90.15 90.32 89.49 .-
50 89.79 89.95 90.50 90.38 90.64 • ... 

p •• 01 
99~ 10 99.03 98.93 99.02 99.14 99.13 98.40 

25 98.81 98.74 98.98 99.16 98.87 98.95* 
50 98.93 99.02 98.94 99.07 98.58 *'* 

90S 10 89.45 89.80 89.45 89.80 90.52 90.55 
25 89.38 90.11 90.27 90.13 90.82 89.93 
50 89.74 90.13 90.31 90.35 90.51 88.74 

p •• 05 
99: 10 98.94 98.88 98.91 98.99 99.15 99.18 

25 98.77 98.80 98.97 99.09 99.22 99.03 
50 98.83 99.00 98.99 99.14 99.09 98.71 

9O~ 10 89.4C 89.31 89.21 89.65 90.17 90.48 
25 89.30 89.70 89.97 89.81 90.56 90.76 
50 89.82 89.91 90.21 90.18 90.86 90.67 

p •• 10 
99~ 10 98.91 98.84 98.81 98.90 96.98 99.18 

25 98.77 98.78 98.91 99.0C' 99.22 99.25 
50 98.83 96.96 99.01 99.17 99.23 99.25 

90\ 10 88.43 86.14 88.26 88.43 87.90 86.28 
25 89.53 89.13 89.15 88.87 89.22 89.16 
50 89.72 89.46 89.33 90.04 90.06 89.84 

P • .50 
99 ~ 10 98.59 98.48 98.67 98.66 98.73 98.45 

25 98.92 98.71 96.96 98.54 98.70 98.75 
50 98.93 98.84 98.83 98.88 99.01 98.86 

90\ 10 89.09 89.28 89.25 89.58 88.62 86.72 
25 89.76 89.80 89.25 89.35 89.13 89.16 
50 90.05 9O.5C 90.27 89.73 89.76 89.16 

P •• 90 
99 \ 10 98.82 98.90 98.82 98.90 ge.83 98.93 

25 99.02 99.02 98.99 98.98 98.8C ge.77 
50 98.87 98.86 98.82 98.91 98.93 98.82 

90\ 10 89.32 89.69 89.42 90.06 88.92 89.22 
25 89.95 89.68 89.40 89.68 89.4C 89.37 
50 90.11 90.37 90.40 89.90 89.81 89.09 

P • .95 
99 \ 10 98.90 99.03 98.92 98.97 98.86 99.00 

25 99.09 99.08 99.00 99.00 98.89 98.97 
50 98.93 98.88 9S.84 98.95 98.95 98.87 

90\ 10 89.61 90.10 89.75 90.26 89.32 89.67 
25 89.87 89.70 89.87 90.01 89.42 89.75 

- 50 90.03 90.29 90.44 89.99 89.81 89.34 
p • .99 

99: 10 98.89 89.04 98.89 98.97 98.96 99.09 
25 99.11 99.13 99.02 99.19 98.95 99.11 
50 98.88 98.88 98.95 98.93 98.97 98.90 

90S 10 89.85 90.26 89.97 90.32 89.53 89.82 
25 89.95 89.82 89.97 90.25 89.66 89.96 
50 90.08 90.20 90.47 90.06 89.83 89.39 

P •• 998 
99S 10 98.91 99.04 98.93 99.02 99.01 99.06 

25 99.11 99.15 99.00 99.29 98.97 99.09 
50 98.92 98.87 98.92 98.96 98.96 98.91 

• The reported freQuenc1es Ire blSed on 10 000 si~'lted slliples for .. ch 
Sillple siu n, ste. coefficient l. Ind problbility leve' p. 

... These frequenci es are not reported Ncause nei ther the 1111 son-M11 ferty 
nor the Cornish-Fisher approxiNtion fo~l. for tllculating the 
qu.ntiles of the ga_ distribut10n gave reHlb'e resulu. 

• These frequencin are blSed on the COMl1sh-Fisher approxiNtion fo~'" 
All the orther frequencies Ire baud on the 11115on-Hilferty IPprOxiNtion 
fo~le. 


