Dépôt numérique
RECHERCHER

Breathing air to save energy--new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Liot, Quentin et Constant, Philippe ORCID logoORCID: https://orcid.org/0000-0003-2739-2801 (2016). Breathing air to save energy--new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis Microbiologyopen , vol. 5 , nº 1. pp. 47-59. DOI: 10.1002/mbo3.310.

[thumbnail of Liot_et_al-2016-MicrobiologyOpen.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons Attribution Non-commercial.

Télécharger (656kB) | Prévisualisation
[thumbnail of mbo3310-sup-0001-DataS1.pdf]
Prévisualisation
PDF - Matériel supplémentaire
Disponible sous licence Creative Commons Attribution Non-commercial.

Télécharger (772kB) | Prévisualisation
[thumbnail of mbo3310-sup-0002-suppinfo.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons Attribution Non-commercial.

Télécharger (445kB) | Prévisualisation

Résumé

The Streptomyces avermitilis genome encodes a putative high-affinity [NiFe]-hydrogenase conferring the ability to oxidize tropospheric H2 in mature spores. Here, we used a combination of transcriptomic and mutagenesis approaches to shed light on the potential ecophysiological role of the enzyme. First, S. avermitilis was either exposed to low or hydrogenase-saturating levels of H2 to investigate the impact of H2 on spore transcriptome. In total, 1293 genes were differentially expressed, with 1127 and 166 showing lower and higher expression under elevated H2 concentration, respectively. High H2 exposure lowered the expression of the Sec protein secretion pathway and ATP-binding cassette-transporters, with increased expression of genes encoding proteins directing carbon metabolism toward sugar anabolism and lower expression of NADH dehydrogenase in the respiratory chain. Overall, the expression of relA responsible for the synthesis of the pleiotropic alarmone ppGpp decreased upon elevated H2 exposure, which likely explained the reduced expression of antibiotic synthesis and stress response genes. Finally, deletion of hhySL genes resulted in a loss of H2 uptake activity and a dramatic loss of viability in spores. We propose that H2 is restricted to support the seed bank of Streptomyces under a unique survival-mixotrophic energy mode and discuss important ecological implications of this finding.

Type de document: Article
Mots-clés libres: ATP-Binding Cassette Transporters/biosynthesis/genetics; Adenosine Triphosphatases/biosynthesis; Bacterial Proteins/biosynthesis; Energy Metabolism/genetics/ physiology; Gene Expression Profiling; Hydrogen/ metabolism; Hydrogenase/genetics/ physiology; Ligases/biosynthesis; NADH Dehydrogenase/biosynthesis; Oxidation-Reduction; SEC Translocation Channels/biosynthesis; Soil Microbiology; Spores, Bacterial/genetics/ metabolism; Streptomyces/ enzymology/genetics
Centre: Centre INRS-Institut Armand Frappier
Date de dépôt: 25 juin 2017 18:31
Dernière modification: 21 févr. 2022 17:57
URI: https://espace.inrs.ca/id/eprint/5549

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice