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Résumé

Cette thése propose de nouveaux algorithmes de localisation a faible cotit pour les réseaux de
capteurs sans fils (“wireless sensor networks (WSNs)”). Jusqu'ici, la nature hétérogéne des WSNs
a été ignorée lors de la conception de tels algorithmes. Ceci nous a motivé a développé un nouvel
algorithme adapte aux WSNs hétérogénes (HWSN)s. On a prouvé que l'algorithme proposé
est capable de localiser les capteurs avec une grande précision. En plus, on a développé dans le
cadre de cette thése, un nouvel algorithme de localisation qui exploite en plus du nombre minimal
de sauts d’autres informations localement disponible au niveau de chaque capteur. Malgré leur
précision, les performances de ces algorithmes se détériorent rapidement dans les environnements
anisotropes plus réaliste ou plusieurs obstacles (murs, personnes, immeubles, machines, etc.)
peuvent exister entre deux noeuds. Afin de résoudre ce probléme, on a développé une stratégie
de sélection d’anchors fiable a faible cott. Afin d’augmenter encore plus la robustesse de nos
algorithmes, on a développé un mécanisme de correction qui tient en compte le phénomeéne
d’atténuation anisotrope du signal. En exploitant les réseaux de neurones artificiels (ANNs),
ce mécanisme est capable de corriger les erreurs d’estimation de distance due a ce phénoméne.
Etant donné que la précision de localisation est étroitement liée aux positions des anchors, cette
theése propose aussi une stratégie novatrice de placement optimal des anchors. En recourant a
I'optimisation par essaim de particules bien connu (“Particle swarm optimization PSO”), il a été

démontré que cette nouvelle stratégie offre des gains de précision significatifs.



Introduction

Les progreés récents dans les communications sans fil et I’émergence de nouvelles technologies a
faible cotit ont conduit a la prolifération des réseaux de capteurs sans fil (WSN). Un WSN est un
ensemble de capteurs sans fil complétement indépendants, autonomes, de taille réduite, et a faible
colit qui sont souvent équipés avec une ressource énergétique limitée et irremplagable. Ces unités
sont déployées généralement en grande densité d’une fagon aléatoire dans des environnements
hostiles. Ils ont pour role la détection et la mesure de certains phénomeénes physiques sus tels
que la température, la lumiére, la pression, etc.. Afin de préserver leurs énergies, ces capteurs
collaborent souvent dans la transmission des données vers un point d’accés (AP). Ces données
sont malheureusement inutiles si la position de ’endroit oti elles ont été mesurées est inconnue, ce
qui rend la localisation des nocuds une tache essentielle dans les WSNs. De nombreuses solutions
intéressantes existent dans la littérature qui peuvent étre classifiées en deux grandes catégories :
range-based et range-free.

Pour localiser correctement un capteur, les algorithmes range-based exploitent des données
pertinentes obtenus & partir des signaux radio regus, tels que le temps d’arrivée (TOA), 'angle
d’arrivée (AOA), ou la puissance re¢u (RSS). Ces signaux sont, en fait, transmis par des noeuds
ayant une connaissance préalable de leurs positions, appelées "anchors" (ou points de repére).
Bien que les algorithmes range-based sont trés précis, nous ne pouvons négliger I'impact éner-
gétique de ces algorithmes sur la survie de ’ensemble du réseau, et par suite ils ne conviennent
pas aux WSNs. Ils nécessitent en effet une forte puissance pour assurer la communication entre
les capteurs, alimentés par de petites batteries. De plus, du matériel supplémentaire est généra-
lement requise au niveau des capteurs, augmentant ainsi le cotit global du réseau. En outre, les
performances de ces algorithmes peuvent étre gravement affectées par le bruit, les interférences,
I'évanouissement (fading), effet de masque (shadowing).

Contrairement a ces derniers, les algorithmes range-free sont originalement proposés comme



des algorithmes plus économes en énergie et qui ne nécessitent pas de matériel supplémentaire au
niveau des nceuds et, par conséquent, sont plus appropriés pour WSNs. Les algorithmes relevant
de ce type de stratégie exploitent les informations de connectivité de réseau pour estimer les
positions des noeuds réguliéres. Afin de bénéficier de ces nombreux avantages, les algorithmes de
localisation range-free ont attiré 'attention de la communauté des chercheurs dans le domaine
de localisation. La plupart de ces algorithmes sont incontestablement basés sur des variations de
DV-HOP dont la mise en ceuvre dans WSNs multi-sauts nécessite la dérivation d’un facteur de
correction h,, (i.e., distance moyenne entre deux nceuds intermédiaires consécutifs) pour estimer
la distance entre un noeud régulier et un noeud d’ancre comme nyh,y, ot ny représente le nombre
minimale de sauts (i.e., nombre de liens radios empruntés par un message du nceud d’ancre au
nceud régulier & travers des nceuds intermédiaires (“hop-count”)) entre ces deux nceuds. En effet,
hay est calculé d’une maniére non-localisée au niveau des nceuds ancres et diffusé dans le réseau
par chaque ancre. Ceci induit inévitablement de 1’overhead (qui augmente linéairement avec le
nombre des ancres) et de consommation d’énergie indésirables, augmentant ainsi le cotit global
du processus de localisation. Lorsque le réseau est dense, cet overhead peut devenir excessif ce qui
entraine un épuisement sévére des batteries des terminaux. Ce défis majeur a motivé beaucoup
de rechercher visant & développer les meilleures algorithmes capables de réduire 1’overhead des
algorithmes heuristiques.

Visant a atteindre cet objectif, de nombreuses alternatives populaires appropriées pour WSNs
multi-sauts ont été développées. Ces algorithmes évaluent analytiquement la valeur de h,, en
utilisant les caractéristiques statistiques du déploiement du réseau. La valeur obtenu de h,, est en
fait localement calculable a chaque noeud régulier, évitant ainsi 1’overhead et la consommation
d’énergie inutile encourus par les algorithmes heuristiques si, de méme, il a da étre diffusé
dans le réseau. Malgré leur précieuse contribution, les algorithmes de localisation développées
jusqu’a présent ne fournit pas malheureusement de précision suffisante, en raison de grandes
erreurs se sont produites lors de la cartographie le nombre de sauts n; en unités de distance.
Ceci est principalement causé soit par le fait que les algorithmes existant se basent sur une
hypothése irréaliste (i.e., tous les noeuds ont les mémes capacités de transmission), ou bien soit
par le manque des informations fournies lors de la dérivation de h,,. Il a été prouvé que les
performances d’algorithmes existants sont malheureusement, trés médiocres surtout dans les

réseaux hétérogeénes de capteurs sans fil(HWSNs) ou les portées de transmission de capteurs



sont trés souvent différentes.

L’objective de cette thése est donc :

— Fournir de nouvelles algorithmes analytiques de localisation novatrices en prenant plusieurs
phénomeénes en considération lors de la conception de ces algorithmes tels que, la nature
hétérogene de réseaux de capteurs, I'existence des obstacles dans le réseau, le phénoméne
d’atténuation anisotrope de la portée de transmission de capteurs etc., tout en évitant les
inconvénients respectifs (I’énorme overhead).

— Prouver lefficacité des algorithmes développés dans des conditions d’implémentation réelles.

— Proposer une stratégie de placement optimal de nocuds d’ancre capables de garantir une

haute précision de localisation peu importe la technique de localisation utilisée.

Structure de la Thése et Contributions

Le reste de cette thése est organisé comme suit. Chapitre 1 introduit les réseaux de capteurs
sans fils et le concept de la localisation. Les défis & surmontés pour garantir un algorithme de
localisation robuste et précis dans des conditions réelles sont aussi détailles et discutés dans ce
chapitre.

Chapitre 2 propose un algorithme de localisation distribué plus approprié pour les réseaux de
capteurs heterogene (HWSNs). La distance entre le capteur régulier et les anchors est localement
calcule en exploitent uniquement les informations disponibles au niveau de chaque capteur,
réduisant ainsi 1’overhead nécessaire a la localisation. En plus, nous développons un mécanisme
de correction capable d’améliorer encore plus la précision de notre algorithme sans pour autant
nécessiter des couts supplémentaire. Il a été prouvé que notre algorithme offre plus de précision
que la plupart des algorithmes dans la littérature : DV-hop, LAEP et EPHP dont la conception
ne prend pas en compte ’hétérogénéité des WSNs.

Etant donné que des obstacles peuvent également existes dans les environnements pratiques,
il est tres probable que le chemin le plus court entre un anchor et un capteur soit courbé ce
qui entraine une surestimation de la distance entre ces deux nceuds. Ceci rend évidemment la
localisation moins précise. En estimant seulement les distances entre un nceud régulier et un
sous-ensemble d’anchors fiables, on a réussi a résoudre ce probléme dans le chapitre 3. En plus,

un mécanisme d’économie d’énergie visant a améliorer la durée de vie WSN est proposée. Il a



été démontré que notre algorithme pourrait facilement surpasser la plupart des algorithmes de
la littérature.

Chapitre 4 améliore encore plus la précision de la localisation en utilisant non seulement
I'information du nombre minimal de sauts entre les nceuds mais, aussi, d’autre informations
localement disponibles au niveau de ces derniers. Dans ce chapitre, L’expression analytique de la
moyenne de 'erreur de I'estimation de positon a été calculée pour la premiére fois en closed-form.
Il a été démontré que, en utilisant notre algorithme, les erreurs d’estimation de la position et de
leurs écart-type tendent vers zéro dans les réseaux trés denses.

Chapitre 5 propose un nouvel algorithme de localisation robuste contre 1"atténuation aniso-
trope du signal. Une nouvelle approche capable de calculer efficacement les distances estimées en
closed-form a été développée dans ce chapitre. En exploitant les réseaux de neurones artificiels
(ANNSs), on a réussi a développer un mécanisme de correction des distances estimées a faible
cotit. La précession et la robustesse de notre algorithme a été prouve.

Etant donné que la précision de localisation est étroitement liée aux positions des anchors,
chapitre 6 a élaboré une stratégie novatrice de placement optimal de ces derniers. En recourant
a Poptimisation par essaim de particules bien connu (“Particle swarm optimization PSO”), il
a été prouvé que la nouvelle stratégie de placement des anchors offre des gains de précision

considérables.



Chapitre 1

La localisation dans les réseaux de
capteurs sans fil : revue de la littérature et

illustration

1.1 Concept des réseaux de capteurs sans fils

Durant les derniéres années, les réseaux de capteurs sans fil ont été introduits dans de nom-
breuses applications, ces réseaux sont constitués des nocuds de capteurs sans fil dispersés aléatoi-
rement dans le terrain d’intérét. Un capteur sans fil est un petit dispositif électronique capable de
surveiller, mesurer et de collecter périodiquement des données relatives aux conditions physiques
ou environnementales telles que la température, la présence de substances toxiques, de pression,
mouvement, son, et d’autres phénomeénes [1]-[3].

Un réseau de capteurs (WSN) est donc défini comme un réseau de dispositifs de capteurs sans
fil qui se communiquent entre eux et avec une station de base (BS) en utilisant des liens radio
sans fil, et qui coopérent les uns avec les autres afin de partager 'information par un traitement
coopératif. Par conséquent, un capteur sans fil n’est pas seulement responsable de la détection et
de la collecte des données, mais aussi une unité de traitement, de communication, de stockage,
de corrélation et la fusion de ses propres données et des données provenant d’autres nceuds de

capteurs [3].



1.2 Applications des WSNs

De nos jours, la réduction de plus en plus importante de la taille des capteurs, leur faible cofit,
ainsi que leur fonctions configurables de traitement du signal (filtre, gains, etc.), permettent aux
réseaux de capteurs d’envahir de trés nombreux applications dans plusieurs domaines telles que
le militaire, la santé, I’environnemental, le réseau électrique intelligent, ’automatisation de la
maison, etc..

Plusieurs projets ont été lancés pour aider les unités militaires dans le champ de bataille
et protéger les villes contre des attaques, tels que le projet DSN (Distributed Sensor Network)
au DARPA (Defense Advanced Research Projects Agency) qui était 'un des premiers projets
dans les années quatre-vingt ayant utilisé les réseaux de capteurs pour rassembler des données
distribuées. Un réseau de capteurs peut étre déployé dans un endroit stratégique ou hostile afin
de surveiller les mouvements des forces ennemies, ou analyser le terrain avant d’y envoyer des
troupes (détection des armes chimiques, biologiques ou radiations).

De nombreuses applications ont été proposées dans le domaine de la santé pour les réseaux de
capteurs sans fil, y compris le suivi des patients atteints de la maladie de Parkinson, I’épilepsie,
les patients cardiaques, les patients de la réhabilitation des AVC ou une crise cardiaque, et
les personnes agées. Contrairement aux autres types d’applications abordés jusqu’a présent, les
applications dans le domaine de la santé ne fonctionnent pas comme des systémes autonomes.
Dans ce domaine, les réseaux de capteurs peuvent étre utilisés pour assurer une surveillance
permanente des organes vitaux de I'étre humain.

Un autre domaine d’application pour les réseaux de capteurs sans fil c’est au niveau de
I'environnement, ot les réseaux de capteurs sont beaucoup utilisés dans les foréts (peut aider a
détecter un éventuel début de feu), dans les milieux urbains (détecter la pollution et analyser
la qualité de lair), dans les sites industriels (empéche les risques industriels comme la fuite des
gaz toxiques). De plus, les réseaux de capteurs sont utilisés pour surveiller les volcans actifs et
méme pour la surveillance des pipelines (monitoring of gas, water,and oil pipelines). Les réseaux
de capteurs sans fil sans également appliqués dans le domaine de 'agriculture, par exemple pour

suivre la progression d’une tige d'une plante.



1.3 La localisation dans les WSNs

Dans de nombreuses applications mentionnées ci-dessus, les informations de position de
chaque nceud de capteur dans le réseau est essentiel pour le service. En effet, normalement
les utilisateurs ont besoin de savoir non seulement ce qui se passe, mais aussi ou les événe-
ments intéressants se produisent. Par exemple, durant la surveillance du champ de bataille, la
connaissance de I’endroit exacte d’ott ’ennemi vient est beaucoup plus important que seulement
savoir I'apparence de 'ennemi dans la zone de surveillance. Plus simplement, il faut répondre
a la question fondamentale : “mais ou suis-je 7”. D’autre part, les informations de position des
neeuds de capteurs sont supposées étre disponibles dans de nombreuses opérations de gestion

du réseau, telles que les algorithmes de routage, le controle de topologie du réseau qui utilise
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FIGURE 1.1 — Les deux principaux composants d'un systéme de localisation.

les informations de positionnent des noeuds comme une connaissance a priori pour ajuster la
connectivité du réseau pour les économies d’énergie,etc..

L’origine de nombreuses techniques de localisation c’est la connaissance du monde physique.
Fondamentalement, comme illustré par la Fig. 1.1, tout systéme de localisation peut étre divisé
en deux composantes distinctes [6]-[30] :

— Mesures des grandeurs physique

— Derivation de position



1.3.1 Mesures des grandeurs physique

Dans cette phase les nceuds communiquent entre eux et collectent diverses caractéristiques
a propos du signal radio entre les deux noeuds, a partir desquelles les distances et/ou les angles
entre les nceuds peuvent étre estimées, ainsi qu'une connaissance globale sur la connectivité du
réseau peut étre fournis.

Selon la caractéristique du signal & récupérer, nous présentons dans ce qui suit les techniques

de mesures des grandeurs physique les plus populaires dans la littérature [6]-[30].

1.3.1.1 Temps d’arrivée (TOA)

Cette méthode s’enregistre le temps d’arrivée (TOA), ce concept est indiqué dans la Fig. 1.2.
Le temps de propagation peut étre directement traduit en distance, sur la base de la vitesse de

propagation de signal connue [6]. Cette méthode peut étre appliquée a de nombreux signaux
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FIGURE 1.2 - TOA
différents, tels que RF, acoustique, infrarouge. La distance entre deux nceuds 7 et j peut étre
déterminée comme suit :

di—j - (tQ - tl) V (11)
ou t; et to sont les instants de 'envoi et de réception du signal (mesurée a I’émetteur et au
récepteur, respectivement) et V' est la vitesse du signal.
1.3.1.2 Différence de temps d’arrivée (TDOA)

Les méthodes TDOA sont remarquablement précises sous les conditions de visibilité directe

LOS. Mais cette condition (LOS) est difficile & respecter dans certains environnements comme
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le cas de I'environnement minier. En outre, la vitesse du signal dans 'air varie avec la tempéra-
ture de lair et 'humidité, ceci est causé par une inexactitude dans ’estimation de la distance.

L’approche TDOA utilise deux signaux qui voyagent a des vitesses différentes (Fig. 1.3). Le ré-
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FIGURE 1.3 — TDOA
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cepteur est alors en mesure de déterminer sa position similaire & I’approche TOA. Par exemple,
le premier signal pourrait étre un signal radio (émis a l'instant ¢; et requ a t5), suivi par un signal
acoustique (immeédiatement ou aprés un intervalle de temps fixe tgely = t3 —t1). Par conséquent,

le récepteur peut déterminer la distance par :

di—j = (v1 = v2) (ts — t2 — taclay) (1.2)

L’approche TDOA n’exige pas les horloges de ’émetteur et du récepteur pour étre synchronisée
et peut obtenir des mesures trés précises. L’inconvénient de 'approche TDOA est le besoin de

matériel supplémentaire, par exemple, un microphone et haut-parleur pour I’exemple ci-dessus.

1.3.1.3 Indicateur de puissance de signal recu (RSSI)

L’indicateur de puissance de signal regu (RSSI) mesure la puissance du signal au niveau du
récepteur basé sur une puissance d’émission connue. La perte de propagation efficace peut étre
calculée. En utilisant des modéles théoriques et empiriques, nous pouvons traduire cette perte en
une estimation de la distance [5]. Cette méthode a été utilisée principalement pour les signaux
RF. RSSI est une solution relativement pas chére sans aucun périphérique supplémentaire, parce
que tous les nceuds de capteurs sont susceptibles d’avoir des signaux radios. Cependant, la per-
formance n’est pas aussi bonne que d’autres techniques de position parce que la propagation se
fait par trajets multiples. Il y a trois parameétres principaux qui jouent un réle dans la détermi-

nation de la puissance du signal recgu : les pertes dues a la distance parcourue (path loss), les
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effets de masque (shadowing) provoqués par des obstacles, et les évanouissements (fadings) dus
aux effets induits du multi-trajet. Le modéle de signal le plus largement utilisé est le modéle
log-Normal avec effet de masque (log-normal shadowing ) [5] :

P(d) = Pr— P(do) — mn(di) L X, (13)

ou :
— P(d) : puissance regue a la distance d;
— Pr : puissance de transmission ;
— P(dp) : est la perte de trajet sur une distance de référence dy;
— n : coefficient d’atténuation (entre 3 et 5);
— d : distance qui sépare I’émetteur du récepteur ;
— dj : distance de référence ;
— X, : une variable aléatoire qui suit une loi normale de moyenne nulle et d’écart-type o
(déviation standard en dB).
En pratique, 'atténuation réelle dépend des effets de propagation par trajets multiples, des

réflexions, du bruit, etc.

1.3.1.4 Angle d’arrivée (AOA)

Une autre technique utilisée dans la localisation est de déterminer la direction de propagation
du signal, typiquement en utilisant un réseau d’antennes. L’angle d’arrivée (AOA) est alors
I’angle entre la direction de propagation et la direction d'une référence connue sous le nom
d’orientation [8]. AOA estime l’angle sous lequel les signaux sont recus et utilise les relations
géométriques simples pour calculer les positions des nceuds. En régle générale, les techniques de
I’AOA fournissent des résultats de localisation plus précis que les techniques & base de RSSI,
cependant, par rapport a ceux a base de TDOA , aucune amélioration significative n’est pas
obtenue. Compte tenu du fait que le cott du matériel d’AOA est tres élevé, seulement quelques

algorithmes de localisation nécessite absolument I'information d’AoA dans la pratique.

1.3.1.5 Nombre de sauts (hop-count)

Le nombre des sauts (“hop-count”) est 'un des paramétres les plus exploités par les algo-

rithmes de localisation range-free [4]-[13]. Il s’agit du nombre de liens radios empruntés par
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un message de la source a la destination a travers des noeuds intermédiaires. Comme premiére
étape, le k- éme ancre diffuse a travers le réseau un paquet de donnée spécial qui se compose d’un
en-téte suivi d'une charge utile de données (data). L’en-téte contient la position d’ancre(zy, yx),
tandis que la charge utile de données contient le nombre de sauts n initialisée a un.

Chaque nceud recoit ce paquet, il stocke la position du k-éme ancre ainsi que le nombre de
sauts regu ny = n dans sa base de données, incrémente ce dernier (i.e, n = n + 1), et il diffuse
ensuite le paquet résultant. Une fois que ce paquet est recu par un autre nceud, ses informations
de base de données sont vérifiées. Si les informations du k-éme ancre est déja disponible et la
valeur de nombre de sauts regu n est plus petite que celle précédemment stockée ny, le noeud met
a jour ce dernier, incrémente n par 1, puis rediffuse le paquet résultant.Si n, est plus petit que
n, le noeud rejette tout simplement le paquet regu. Toutefois, lorsque le noeud est inconscient
a la position du k-éme ancre, il ajoute cette information a sa base de données et transmet le
paquet recu apres l'incrémentation de n par 1.

Ce mécanisme continuera jusqu’a ce que tous les nceuds prennent conscience de les positions
des tous les ancres et leurs nombres minimales de sauts correspondantes. Cette information est
ensuite combinée & la taille moyenne d’un saut pour estimer la distance séparant les nocuds

réguliers des ancres.

1.3.2 Les techniques de derivation de position

Le but de cette phase est de trouver les positions des noeuds en exploitant une ou plusieurs me-
sures de grandeurs phtisiques décrites ci-dessus. Selon I'information utilisée, plusieurs méthodes
peuvent étre utilisées pour calculer la position d’un nceud. Ces méthodes comprennent triangula-
tion, trilatération, multilatération, approches probabilistes, etc. Le choix de la méthode a utiliser
a ¢galement un impact sur la précision de localisation. Un tel choix dépend des limitations du
processeur et 'information disponible au niveau du noeud. Lorsqu’un nceud a suffisamment d’in-
formations sur les distances et/ou des angles lui-méme et les nceuds des ancres, il peut dériver

sa propre position en utilisant 'une des méthodes étudiées dans cette section.

1.3.2.1 Triangulation

La triangulation utilise les propriétés géométriques de triangles pour estimer la position de

capteur. Cette méthode est utilisée lorsque la direction du noeud est estimée au lieu de la distance,
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comme dans ’AOA. Les positions de nceuds sont calculées dans ce cas en utilisant les lois de la
trigonométrie sinus et cosinus. Fig. 1.4 illustre le concept de la triangulation en utilisant trois
nceuds d’ancre avec des emplacements connus (x;,y;), et des angles mesurés «; (exprimée par

rapport a une ligne de référence fixe, par exemple, la ligne verticale dans la fig. 1.4). Supposons

X35 V3

FIGURE 1.4 — Triangulation

que la position du récepteur inconnu est x, = [x,, y,,]T, les mesures de I'angle d’arrivés a partir
de N noeuds d’ancre sont exprimés en 3 = [3y,...,Bx|T, et les positionnements des ancrages
sont connus par x; = [x;, yi]T. Mais & cause du bruit, les angles d’arrivés mesurées ne reflétent
pas parfaitement les angles réels qui sont exprimés par 0(z) = [01(z),...,0x(x)]". La relation

entre les valeurs mesurées et réelles est donnée par :
p=0(x,)+ 0 (1.4)

ou §6 = [064,...,00 N]T, est le bruit gaussien avec une moyenne nulle. Diverses méthodes statis-
tiques ont été appliquées a ’estimation de la position d’un capteur. L’estimation par le maximum
de vraisemblance ML (Maximum Likelihood) estime la position d’un nceud en minimisant les dif-
férences entre les distances mesurées et les distances estimées. Selon 'estimateur ML, la position

du récepteur est donnée par :

i, = argmin% 0(z,) — 87 S [6(,) — 6]
N 2) — 2
— argmin% Z (6 7’;2 5) (1.5)

ou S = diag (03,...,0%).
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1.3.2.2 Trilatération hyperbolique

La méthode la plus simple et intuitive est appelée trilatération hyperbolique. Elle consiste a
localiser un noeud en calculant 'intersection de trois cercles. La trilatération désigne le procédé
de calcul de la position d’un noeud sur la base de distances mesurées entre lui-méme et un certain
nombre de points d’ancres. Etant donné I’emplacement d’une ancre et la distance d’un capteur a
I’ancrage, il est connu que le capteur doit étre positionné quelque part le long de la circonférence
d’un cercle centré sur la position de ’ancre, avec un rayon égal & la distance entre le capteur

Y
et 'ancre. Dans un espace bidimensionnel, les mesures de distance d’au moins de trois points
d’ancrage non colinéaires sont nécessaires pour obtenir un positionnement unique (c’est-a-dire

'intersection de trois cercles).
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FIGURE 1.5 — Trilatération

Fig. 1.5 illustre un exemple dans le cas bidimensionnel. Pour obtenir les mesures de distance
dans le cas de trois dimensions, quatre ancres non coplanaires au moins sont nécessaires. Sup-
posons que les emplacements des N, nceuds d’ancre sont donnés par (z;,y;), ¢ = 1,..., N, et

que les distances entre un noeud régulier (x,y) et ces noeuds d’ancre sont également connus par

d;,» =1,...,N,. En utilisant cette information on obtient le systéme d’équations non linéaires
suivant :
( A2 N2 2
(T1=2)"+(n—9)"= d
N2 ~\2 2
To— ) + — = d
(22 —2)"+ (12— 9 2 (1.6)

(en, — 8+ (yn, — 0)° = %

ou (Z,y) sont les coordonnées estimées du noeud régulier. Aprés quelques réarrangements qui

\
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linéarisent le systéme ci-dessus, nous obtenons :

1
N W T
ou & = [z,7]",
T1 — TN, Y1 — Yn,
To — X —
¥ 2 Na Y2 — YN, ’ (1.8)
| T(Na—1) = TNa  Y(Ne—1) — YNa |
and _ -
2 —d% + 2% — a2+ yk —yl
&3 — d%, + 2%, — 23+ vk, — 43

72 72 2 2 2 2
| din,—y — AN, + 2N, — Tv,—y T YN T Yve-1)
Puisque Y est une matrice non inversible, & peut étre estimée par le pseudo-inverse de Y

comme suit

& = —% (rY") " Y7k, (1.10)

1.4 Les algorithmes de localization range-free

Les différentes techniques utilisées dans les approches “range-based’ sont basées sur les estima-
tions de distance et/ou de I'angle. En revanche, les algorithmes “range-free” sont plus économique
en matériel car ils se contentent de I'information de connectivité liée a la portée radio au lieu
des mesures de distance ou d’angle. Les sections suivantes décrivent ces différentes algorithmes

de localisation.

1.4.1 L’algorithme MDS

L’algorithme MDS (Multidimensional Scaling) utilise la technique de localisation centralisée,
ou un dispositif central puissant (par exemple, la station de base) recueille de I'information
a partir du réseau, détermine les positions des noeuds, et propage cette information dans le
réseau [13]. Bien qu’il existe de nombreuses variantes de MDS, la version la plus simple (dite

classique MDS) a une solution analytique permettant des implémentations efficaces. Définissons
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la matrice des carrés des distances entre les nocuds est écrite comme suit :
D*=cl' +1¢ — SS (1.11)

Ou 1 est un vecteur de longueur n x 1 ou touts les éléments sont égaux a 1, S est la matrice de
similarité pour les n points, ott chaque ligne représente les coordonnées du point i le long des

3 . . . /
coordonnées m (m < n qui sont des nceuds ancres et qui connaissent leurs emplacements), S.S
est appelée matrice du produit scalaire, et ¢ est un vecteur contenant les éléments diagonaux de

la matrice du produit scalaire. En multipliant les deux cotés de I’équation (1.11) par la matrice
[y’

de centrage T'= I — =, ou [ est la matrice identité on obtient :

TD*T =T(cl' +1¢ — SS)YT =Tel'T +T1¢ T — T(2B)T (1.12)

N / .. . . N 4
Ou B = 5§, l'utilisation d’une matrice de centrage des uns rend a un vecteur de zéros, et par

conséquent :

TD?T = -T(2B)T (1.13)

En outre, multipliant les deux cotés avec —% nous donne :

B = —1/2T'D*T (1.14)
B est une matrice symétrique et donc elle peut étre décomposée en :
B=QAQ = (Q'A)(Q'A?) =S5 (1.15)

Une fois que B a été obtenu, les coordonnées S peuvent étre calculées par décomposition d’une

matrice en éléments propres (“Eigendecomposition”) :

S = QA2 (1.16)

Sur la base de ce concept, une méthode de localisation pour les réseaux de capteurs appelée

MDS-MAP [13] peut étre appliquée.
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1.4.2 Systéme de positionnement Ad-hoc (APS)

APS est un exemple d’un algorithme de localisation basé sur la connectivité distribuée qui
estime la position des nceuds avec le soutien d’au moins trois nceuds d’ancre, ol les erreurs de
localisation peuvent étre réduites en augmentant le nombre de nceuds d’ancre. Chaque noeud
d’ancre propage son emplacement & tous les autres nocuds du réseau en utilisant le concept de
I'échange de vecteur de distance (DV), o les nceuds dans un réseau échangent périodiquement
leurs tables de routage avec leurs voisins & un seul saut. L’algorithme le plus fondamental de
I’APS, qui est appelé DV-hop [4], chaque nceud maintient une table X;,Y; n;, ou X;,Y; est
I’emplacement du neeud ¢, n; est le nombre de saut minimal entre ce nceud et le noeud 2. lorsqu’un
noeud d’ancre obtient les distances vers des d’autres ancres, il détermine alors une taille moyenne
d’un saut C;(appelé le facteur de correction) qui peut étre calculée comme suit :

VX - X))+ (Y - Y)?
2.

(1.17)

C;

FIGURE 1.6 — Algorithme DV-hop

Pour mieux comprendre cette technique, nous prenons cet exemple qui est illustré dans
la Fig. 1.6. Dans cet exemple, nous avons trois noeuds d’ancre A;, Ay, As. Pour 'ancre Ay, les
distances euclidiennes entre ’ancre A; des ancres A et Az sont d,— 4, = 50m et dy, 4, = 110m,
respectivement. En plus, les nombres des sauts séparant ’ancre A; des ancres Ay et Az sont deux
et six sauts successivement. Le facteur de correction pour A; est calculé alors par % = 20m,

qui représente la distance estimée moyenne d’un saut. De la méme facon, nous calculons le facteur
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de correction pour A comme 531_20 = 18.57m. Une fois que toutes les ancres dérivent leur propre
taille moyenne d’un saut ils les diffusent & travers le réseau aux autres nceuds réguliers. A la
réception de ces messages au niveau de nocuds réguliers ils sauvegardent seulement la valeur de

la taille moyenne d’un saut recu de I’ancre le plus proche.

1.4.3 L’algorithme APIT

La méthode d’APIT (Approximate Point In Triangulation) est une approche similaire a
I’APS. Elle repose sur la présence de plusieurs noeuds d’ancrage qui connaissent leurs propres
positions. Toute combinaison de trois points d’ancrage constitue une région triangulaire et la
présence d’'un neeud a l'intérieur ou a l'extérieur d’une telle région permet & un nceud d’affiner
sa positon possible [10]. La puissance du signal entre les noeuds et 'ancre peut étre utilisée pour
estimer quel nceud est le plus proche de ’ancre, puis si aucun voisin du nceud M n’est ni proche
ni loin des trois ancres A, A,, Az simultanément, M suppose qu’il est a I'intérieur du triangle
A1 A5A3. Sinon M suppose qu’il est a 'extérieur du triangle. Ce concept est illustré dans la Fig.

1.7. Dans la partie gauche de la Fig. 1.7, le nceud M a quatre voisins, aucun de ces noeuds ne

A

(a) Cas a l'intérieur. (b) Cas a l'extérieur

FIGURE 1.7 — Algorithme APIT

sont proches ou loin des trois ancres. Donc M conclut correctement qu’il est & l'intérieur du
triangle A;A5As. La situation est différente dans la partie droite de la figure, par exemple le

voisin 4 est proche de tous les trois nceuds d’ancre que le nceud M, tandis que le nceud 2 est
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loin des noeuds d’ancre que le noeud M, par suite le nceud M conclut qu’il est a 'extérieure du
triangle A; A5 As.

Dans ce schéma, un nceud peut prendre de mauvaises décisions, par exemple dans la partie
gauche de la figure, si les mesures du distance du noeud 4 indiquent qu’il est plus loin du neeud
Ay que le nceud M (& cause d’un obstacle entre 'ancre A, et le nceud 4), le noeud M conclurait
qu’il doit étre en dehors du triangle Ay AsAs. L’avantage d’APIT réside dans sa simplicité et sa
facilité de mise en ceuvre. Mais ’APIT exige un ratio élevé de noeuds d’ancre. Pour un faible

nombre d’ancres, cet algorithme ne saura pas donner des résultats précis.

1.5 Défis de localisation dans le WSN

A la lumiére des informations présentes dans les sections précédentes, les algorithmes de

localisation doivent inévitablement faire face aux défis suivants

1.5.1 Hétérogénéité des noeuds

Les nceuds de capteurs sont congus en utilisant différentes technologies pour réaliser diffé-
rentes taches, leur détection ainsi que leurs capacités de transmission sont trés souvent différentes.
En outre, si une technologie de récolte d’énergie (“Energy Harvesting (EH)”) est localement inté-
grée a chaque nceud, ce qui est le cas dans les WSNs développés récemment [30]-[33], la puissance
récoltée disponible au niveau des nceuds serait alors aléatoire. Ce phénomeéne résulte en fait dans
la randomisation de capacités de transmission des noeuds (Fig. 1.8), puisque les lettres sont
étroitement liées aux ressources énergétiques disponibles des nceuds. Au cours du processus de
localisation, il est donc trés probable que les capacités de transmission des nceuds soient diffé-
rentes. Puisque les approches traditionnelles de localisation [4]-[30] assument la méme capacité
de transmission a travers le réseau, leur précision de localisation se détériore gravement dans les
WSNs hétérogenes (HWSNs). Au meilleur de notre connaissance, il n’y a pas d’algorithme de
localisation qui tient compte a ce jour pour la nature hétérogéne de WSN.

Pour combler cet écart, nous proposons dans les prochains chapitres un nouvel algorithme

de localisation spécifiquement con¢u pour le HWSNs.
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FIGURE 1.8 — Réseau hétérogéne de capteurs sans fil.

1.5.2 Communication & visibilité indirecte (NLOS)

Comme il a été discuté dans la section 1.3, afin de localiser les capteurs dans les algorithmes
range-free, chaque nceud doit étre en mesure de compter le nombre minimal de sauts entre
lui-méme et au moins trois ancres. Malheureusement, dans les milieux anisotropes, plusieurs
obstacles et/ou des trous peuvent exister, ce qui rend la majorité des algorithmes range-free
incapable de fournir une précision de localisation suffisante en raison de grandes erreurs qui se
produisent lors de la cartographie du nombre de sauts en unités de distance. En effet, dans de
tels environnements, il est trés probable que le chemin le plus court entre une ancre et un noeud
régulier est recourbé, ce qui conduit a une surestimation de la distance entre ces deux nceuds et

par suite & une localisation imprécise.

1.5.3 Anisotrope de la portée de transmission

Jusqu’au présent, lors de la conception des algorithmes de localisation, on a ignoré le phéno-
méne de l'atténuation anisotrope du signal (i.e., la portée de transmission est différente d'une

direction a l’autre) présent, en pratique, dans tous les milieux de propagation. Par conséquent,
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si ce dernier n’est pas correctement prises en compte, les erreurs de ’estimation de la distance

augmentent considérablement et entravent gravement la précision de la localisation.

1.5.4 Répartition des ancres

Finalement, il existe encore plusieurs informations pouvant étre intégrées au processus de
Localisation qui ne sont pas directement utilisées dans le calcul de la position mais servent a
assurer I'implémentation de ’algorithme. L’ une des plus élémentaires est la répartition optimale
des ancres dans le réseau. Il a été prouvé que la stratégie de placement des ancres sur le périmeétre
est optimale dans des environnements isotropes (sans d’obstacles) mais pas dans les milieux

anisotropes.

21



Bibliographie

1

2l

3]

4]

[5]

6]

17l

8]

9]

[10]

D.P. Agrawal and Q.-A. Zeng, Introduction to Wireless and Mobile Systems, 3" edition
Cengage Learning, USA, 2010.

S. Zaidi and S. Affes “Distributed collaborative beamforming in the presence of angular

scattering," IEEE Trans. Commun., vol. 62, pp. 1668-1680, May 2014.

F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor net-

works,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102-114, August 2002.

J.N. Al-Karaki and A.E. Kamal, “Routing techniques in wireless sensor networks : a sur-

vey,” IEEE Wireless Commun. vol. 11, no. 6, pp. 6-8, December 2004.

F. Gustafsson and F. Gunnarsson, “Mobile Positioning Using Wireless Networks : Possibi-
lities and Fundamental Limitations Based on Available Wireless Network Measurements,”

IEEE Signal Process. Mag., vol. 22, no. 4, pp. 41-53, July 2005.

H. Shen, Z. Ding, S. Dasgupta, and C. Zhao, “Multiple Source Localization in Wireless
Sensor Networks Based on Time of Arrival Measurement,” IEEE Trans. Signal Process.,

vol. 62, no. 8, pp. 1938-1949, February 2014.

J. Rezazadeh, M. Moradi, A.S. Ismail and E. Dutkiewicz, “Superior Path Planning Mecha-
nism for Mobile Beacon-Assisted Localization in Wireless Sensor Networks,” IEEE Sensors

J., vol. 14, no. 9, pp. 3052-3064, May 2014.

D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using AOA," IEEE INFO-
COM’2003, San Francisco, California, USA, 30 March-3 April, 2003.

V. Lakafosis and M.M. Tentzeris, “From single-to multihop : The status of wireless locali-

zation,” IEEE Microw. Mag., vol. 10 | no. 7, pp. 34-41, December 2009.

D. Niculescu and B. Nath, “Ad hoc positioning system (APS),” Proc. IEEFE GLOBE-
COM’2001, San Antonio, TX, USA, November 25-29, 2001.

22



[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

[20]

[21]

7. Ziguo and T. He,“RSD : A Metric for Achieving Range-Free Localization beyond Connec-
tivity,” IEEE Trans. parallel and distributed Sys., vol. 24, no. 11, pp. 1943-1951 , November
2011.

A. Boukerche, H.A.B.F. Oliveira, E.F. Nakamura, A.A.F. Loureiro, “DV-Loc : a scalable
localization protocol using Voronoi diagrams for wireless sensor networks,” IEEE Wire-

less. Commun. Mag., vol. 16, no. 2, pp. 50-55, April 2009.

Y. Shang, W. Rumi, Y. Zhang, M. Fromherz, “Localization from connectivity in sensor
networks," IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 11, pp. 961-974, November
2004

D. Ma, MJ. Er, B. Wang , “Analysis of Hop-Count-Based Source-to-Destination Dis-
tance Estimation in Wireless Sensor Networks With Applications in Localization,” IEEE

Trans. Veh. Technol., vol. 59, no. 6, pp. 2998-3011, July 2010.

D. Ma, MJ. Er, B. Wang , “A novel approach toward source-to-sink distance estimation in

wireless sensor networks,” IEEE Commun. Lett., vol. 14, no. 5, pp. 384-386, May 2010.

X. Ta, G. Mao, and B. D. Anderson, “On the probability of k-hop connection in wireless
sensor networks,” IEEE Commun. Lett., vol. 11, no. 9, pp. 662-664, August 2007.

Y. Wang, X. Wang, D. Wang, and D. P. Agrawal, “Range-Free Localization Using Expected
Hop Progress in Wireless Sensor Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 10, pp. 1540-1552, October 2009.

T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free localization
schemes for large scale sensor networks,” Proc. ACM MobiCom’03, San Diego, California,
USA, September 14-19, 2003.

S. Vural and E. Ekici, “On Multihop Distances in Wireless Sensor Networks with Random
Node Locations,” IEEE Trans. Mobile Comput., vol. 9, no. 4, pp. 540-552, April 2010.

M. Haenggi, “On distances in uniformly random networks,” IEEE Trans. Inf. Theory,
vol. 51 , no. 10 , pp. 3584-3586, October 2005.

JC. Kuo, W. Liao, “Hop Count Distribution of Multihop Paths in Wireless Networks With
Arbitrary Node Density : Modeling and Its Applications,” IEEE Trans. Veh. Technol.,
vol. 56, no. 4, pp. 2321-2331, July 2007.

23



22]

23]

[24]

[25]

[26]

[27]

28

29]

M. Li and Y. Liu,, “Rendered path : Range-free localization in anisotropic sensor networks

with holes,” IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 320-332, February 2010.

7. Shigeng, C. Jiannong, L.-J. Chen , C. Daoxu Chen, “Accurate and Energy-Efficient
Range-Free Localization for Mobile Sensor Networks,” IEEE Trans. Mobile Comput., vol. 9,
no. 6, pp. 897-910, June 2010.

B. Xiao, L. Chen, Q. Xiao, M. Li , “Reliable Anchor-Based Sensor Localization in Irregular
Areas,” IEEE Trans. Mobile Comput., vol. 9, no. 1, pp. 60-72, January 2010.

Q. Xiao, B. Xiao, J. Cao, J. Wang, “Multihop Range-Free Localization in Anisotropic
Wireless Sensor Networks : A Pattern-Driven Scheme,” IEEE Trans. Mobile Comput.,
vol. 9, no. 11, pp. 1592-1607, November 2010.

A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power Management in Energy Harves-
ting Sensor Networks,” ACM Trans. Embedded Computing Systems, vol. 6, no. 4, pp. 1-38,
September 2007.

A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith, “Design of an
RFID-Based Battery-Free Programmable Sensing Platform,” IEEE Trans. Instrum. Meas.,
vol. 57, no. 11, pp. 2608-2615, November 2008.

Y. Luo, J. Zhang, and K. B. Letaief, “Optimal Scheduling and Power Allocation for
Two-Hop Energy Harvesting Communication Systems,” IEEE Trans. Wireless Commun.,

vol. 12, no. 9, pp. 4729-4741, September 2013.

S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes : Survey and Implica-
tions,” IEEE Commun. Survey and tutorials, vol. 13, no. 3, pp. 443-461, Third Quarter
2011.

24



Chapitre 2

Low-Cost Localization for Multi-Hop

Heterogeneous Wireless Sensor Networks

Ahmad El Assaf, Slim Zaidi, Sofiéne Affes and Nahi Kandil
IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 472-484, January 2016.

Résumé : Ce chapitre propose de développer et d’évaluer un nouvel algorithme no-
vateur de localisation a faible cotlit visant une utilisation dans le contexte de réseaux
hétérogénes de capteurs sans fil (HWSNs) ou les portées de transmission de nceuds
sont différentes. Le fait d’ignorer cette derniére caractéristique lors de la conception
de l’algorithme de localisation, peut nuire fortement a la précision de I’algorithme.
En supposant que les portées de transmission sont différentes, nous développons
dans ce chapitre, deux approches différentes pour dériver analytiquement la taille
moyenne d’un saut (“Expected Hop Progress (EHP)”). En exploitant celle-ci, on
a réussi a concevoir un nouvel algorithme de localisation a faible cotit qui tient
compte de I’hétérogénéité du réseau de capteurs, et qui est aussi capable de locali-
ser avec précision les noeuds de capteurs. En outre, nous développons un mécanisme
de correction qui est conforme a la nature hétérogéne de WSNs pour améliorer en-
core la précision de localisation sans encourir de frais supplémentaires. Il est aussi
prouvé que l’algorithme proposé, qu’il soit appliqué avec ou sans le mécanisme de
correction, surpasse en termes de précision les algorithmes de localisation les plus

représentatives dans la littérature.
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Abstract

In this paper, we propose a novel low-cost localization algorithm tailored for multi-hop hetero-
geneous wireless sensor networks (HWSNs) where nodes’ transmission capabilities are different.
This characteristic, if not taken into account when designing the localization algorithm, may
severely hinder its accuracy. Assuming different nodes’ transmission capabilities, we develop two
different approaches to derive the expected hop progress (EHP). Exploiting the latter, we pro-
pose a localization algorithm that is able to accurately locate the sensor nodes owing to a new
low-cost implementation. Furthermore, we develop a correction mechanism which complies with
the heterogeneous nature of WSNs to further improve localization accuracy without incurring
any additional costs. Simulations results show that the proposed algorithm, whether applied
with or without correction, outperforms in accuracy the most representative WSN localization

algorithms.

2.1 Introduction

Recent advances in wireless communications and low-power circuits technologies have led
to proliferation of wireless sensor networks (WSNs). A WSN is a set of small and low-cost
sensor nodes often equipped with small batteries. The latter are often deployed in a random
fashion to sense or collect from the surrounding environments some physical phenomena such as
temperature, light, pressure, etc. [1|-[3]. Since power is a scarce resource in such networks, sensor
nodes usually recur to multi-hop transmission in order to send their gathered data to an access
point (AP). However, the received data at the latter are often fully or partially meaningless
if the location from where they have been measured is unknown [3]-[2], making the nodes’
localization an essential task in multi-hop WSNs. Owing to the low-cost requirements of WSNs,
unconventional paradigms in localization must yet be investigated. Many interesting solutions
exist in the literature [6]-[30]. To properly localize each regular or position-unaware node, most of
these algorithms require the distance between the latter and at least three position-aware nodes
called hereafter anchors. Since it is very likely in multi-hop WSNs that some regular nodes
be unable to directly communicate with all anchors, the distance between each anchor-regular

nodes pair is usually estimated using their shortest path. The latter is obtained by summing the
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distances between any consecutive intermediate nodes located on the shortest path between the
two nodes. Depending on the process used to estimate these distances, localization algorithms
may fall into three categories : measurement-based, heuristic, and analytical [6]-[30].

Measurement-based algorithms exploit the measurements of the received signals’ characteris-
tics such as the received signal strength (RSS) [6]-[5] or the time of arrival (TOA) [6], etc. Using
the RSS measurement, the distance between any sensors’ pair could be obtained by converting
the power loss due to propagation from a sensor to another based on some propagation laws.
Unfortunately, due to the probable presence of noise and interference, the distance’s estimate
would be far from being accurate, thereby leading to unreliable localization accuracy. Using the
TOA measurement, nodes require high-resolution clocks and extremely accurate synchronization
between them. While the first requirement may dramatically increase the cost and the size of
sensor nodes, the second results in severe depletion of their power due to the additional overhead
required by such a process. Furthermore, in the presence of noise and/or multipath, the TOA
measurement is severely affected thereby hindering nodes’ localization accuracy. As far as heu-
ristic algorithms [4|{12] are concerned, they also have a major drawback. Indeed, most of these
algorithms are based on variations of DV-HOP [4] whose implementation in multi-hop WSNs
requires a correction factor derived in a non-localized manner and broadcasted in the network
by each anchor. This causes an undesired prohibitive overhead and power consumption, thereby
increasing the overall cost of the network.

Popular alternatives, more suitable for multi-hop WSNs, are the analytical algorithms [13]-
[30] which evaluate theoretically the distance between any two consecutive intermediate nodes.
The latter is in fact locally computable at each node, thereby avoiding unnecessary costs incurred
if it is fully or partially computed at other nodes and then broadcasted in the network, such
as in heuristic algorithms. In spite of their valuable contributions, the approaches developed so
far in [13]-[30] to derive that distance are based on the unrealistic assumption that all nodes
have the same transmission capabilities (i.e., the WSN is homogenous). However, due to the fact
that these sensor nodes are designed using various technologies to achieve different tasks, their
sensing as well as transmission capabilities are very-often different. Furthermore, if an energy
harvesting (EH) technology is locally integrated at each node, which is the case in the most
recently developed WSNs referred to hereafter as EH-WSNs [30]-[33], the available harvested

power at nodes would then be random. This phenomenon actually results in the randomization
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of the nodes’ transmission capabilities, since the latters are closely related to the nodes’ available
powers. During the localization process, it is then very likely that nodes’ transmission capabilities
be different. As the approaches in [13]|-[30] assume the same transmission capability throughout
the network, their localization accuracy substantially deteriorates in the so-called heterogeneous
WSNs (HWSNs) making them unsuitable for such networks. To the best of our knowledge, there
is no analytical algorithm that accounts so far for the heterogeneous nature of WSNs.

To bridge this gap, we propose in this paper a novel analytical algorithm tailored for multi-hop
HWSNs where nodes have different transmission capabilities. Taking into account this characte-
ristic, two approaches are developed to accurately derive the distances between any consecutive
nodes. Using the so-obtained distances, the proposed algorithm is able to accurately locate the
nodes owing to a new low-cost implementation. Furthermore, we develop a correction mechanism
which complies with the heterogeneous nature of WSNs to further improve localization accuracy
without incurring any additional costs. Simulations results show that the proposed algorithm,
whether applied with or without correction, outperforms in accuracy the most representative
multi-hop WSNs localization algorithms.

The rest of this paper is organized as follows : Section 4.2 describes the system model and
discusses the motivation of this work. Section 2.3 derives the distance between consecutive sensors
using two approaches. A novel localization algorithm for HWSNs is proposed in section 5.4. Its
implementation cost is discussed in Section 2.6. Simulation results are discussed in Section 3.8
and concluding remarks are made in section 5.6.

Notation : Uppercase and lowercase bold letters denote matrices and vectors, respectively.
[-]# and [-]; are the (i,[)-th entry of a matrix and i-th entry of a vector, respectively. I is the
identity matrix. (-)7 denotes the transpose. D (i, z) denotes the disc having the i-th sensor as a

center and x as a radius.

2.2 Network model and overview

Fig. 6.1 illustrates the system model of N sensor nodes uniformly deployed in a 2-D square
area S. The transmission coverage of each node is assumed to be circular, i.e., the i-th node
could directly communicate with any node located in D (i, T'¢;), the disc having this node as a

center and its transmission capability T'c; as a radius. In a multi-hop transmission, note that
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the i-th node could also communicate with any node located outside its coverage area D (i, T¢;).
Due to the heterogonous nature of WSNs, nodes are assumed here to have different transmission

capabilities. It is also assumed that only a few nodes commonly known as anchors are aware of

FIGURE 2.1 — Network model.

their positions. The other nodes, called hereafter position-unaware or regular nodes for the sake
of simplicity, are oblivious to this information. As shown in Fig. 6.1, the anchors are marked
with red squares and the regular nodes are marked with blue crosses. If a node is located
within the coverage area of an another node, the two nodes are linked with a dashed line that
represents one hop.Three discs were drawn as few illustrative examples of the coverage areas of
the corresponding nodes. Let N, and N, = N — N, denote the number of anchors and regular
nodes, respectively. Without loss of generality, let (x;,v;), i = 1,..., N, be the coordinates of
the anchors and (z;,v;), ¢ = N, + 1,..., N those of the regular nodes.

As a first step of any localization algorithm for multi-hop WSNs aiming to estimate the
regular nodes’ positions, the k-th anchor broadcasts through the network a message containing
its position. As it can be seen in fig. 2.2, if the (i — N,)-th regular node (or the i-th node) is

located outside the anchor coverage area, it receives this message through multi-hop transmission.
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For simplicity, let us assume that only one intermediate node j located over the shortest path

FIGURE 2.2 — Multi-hop transmission.

between the k-th anchor and the i-th node is necessary (i.e., two-hop transmission). Assuming
a high node density in the network, the distance di_; between the two nodes can be accurately

approximated as [13]-[30]
dkfi ~ dkfj + djfl', (21>

where dj_; (d;_;) is the effective distance between the k-th (i-th) and j-th nodes. Two methods
have been so far developed to analytically estimate the distance dy_; exploiting the aforemen-

tioned approximation [13]-[30]. In the first method, the j-th node estimates the distance dj_;

T

F1GURE 2.3 — Node’s neighborhood in HWSN.
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using the number of common neighbors with the k-th node. In fact, if n; common neighbors
exist in the intersection area I = D(k,T'c;) N D(j,Tc;), I could be approximated by I = N At
where A = N/S is the average node density in the network. Furthermore, using some geometrical
properties, one can show that

& +Tc2—-Tc? & +Tc2 —Tc?
I = fl(dn ) = Tc2 -1 k—j J k T2 -1 k—j k J
f(dik—j) cj cos ( 2dr i Te, + T'c;, cos 2 Tor

- \/4d T2 — (@, — T +Te2). (2.2)

dj—; is then obtained as dy—; = f~' (I) ~ f~' (ng_;A"). Since it is impossible to derive f~! in
closed-form, dj_; can be numerically derived using for instance the well-known secant method.
The problem here is that the j-th node needs to be aware of n;; to be able to estimate the area 1.
To this end, the k-th and j-th nodes broadcast a "Hello" message that will be sent back by their
respective neighbors. Upon reception of the k-th node neighbors’ list, the j-th node compares it
with its own neighbors’ list and, hence, ny; is obtained. Unfortunately, it is no longer possible
to get an exact knowledge of ny; in HWSNs. Indeed, in such networks, it is very likely that the
neighbor of a node has a different transmission capability from the latter. Thus, as shown in
Fig. 2.3, some "Hello" messages sent back by some respective neighbors of the k-th and j-th node
would not reach the latter nodes, due to their weaker capabilities. Consequently, the j-th node
obtains ny; < ny; leading, hence, to inaccurate distance estimation. Note that this discussion
also holds for d;_;. This proves that this first analytical method is not suitable for HWSNs.
The second method uses the fact that the minimum mean square error (MMSE) of the

distance estimation is obtained if d = E (d) and, hence,
dk,i ~ Jk,j -+ Jj,i, (23>

where dj,_; = E {d}_;} is the expected hop progress (EHP) and d; ; = E {d;_;} is the mean last
hop (MLH). One of the well-known analytical expressions of EHP is the one developed in [13]

as follows :
Tey 1 2 2
\/3)\/ g2em 3 (T~ )da:, (2.4)
0

where A is the node density, and x is the distance between the k-th and the i-th node. From (2.4),
the EHP a priori depends only on the k-th node transmission capability T'c; and, therefore, its

computation does not supposedly require any knowledge of the j-th node transmission capability
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T¢;. In what follows, and in contrast to (2.4), we will prove the EHP expression to be dependent
on both T'c;, and T'c; thereby revealing the expression derived in [13], as one example among too
many others [16]-[25] whose approaches are similar to the above but not discussed here for lack

of space, to lack accuracy.

(a) Small Tc, (b) Large T'c;

FIGURE 2.4 — Effect of the intermediate node transmission capability.

Let F be the potential forwarding area wherein the intermediate node j could be located.
Since this node should, at the same time, be located in the k-th node coverage area and com-

municate directly with the i-th node using its transmission capability T'c;, F' is given by
F = D(k,Tc,) N D(i,Tc;). (2.5)

It is noteworthy that the EHP is nothing but the mean of all distances between the k-th node and
all the potential intermediate nodes located in F' and, hence, the EHP strongly depends on F. As
can be observed from Fig. 2.4, if the intermediate node transmission capability 1'c; increases, the
potential forwarding area F' increases to include potential intermediate nodes closer to the k-th
anchor, thereby decreasing the EHP. Likewise, if T'c; decreases, F' decreases to exclude potential
intermediate nodes closer to the k-th anchor and, hence, the EHP increases. Consequently, the
EHP depends not only on T'cy, but also on T'c;. Let us now turn our attention to the MLH. It
is obvious that the transmission capability of the i-th node does not have any effects on the last
hop size d;_;. Therefore, in contrast with the EHP, the MLH depends only on the transmission
capability of the transmitting node j. In the next section, novel approaches are developed to
accurately derive the expressions of both the MLH and the EHP. These results will be exploited

in Section 5.4 to propose a low-cost localization algorithm that complies with the heterogeneous
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nature of WSNs.

2.3  Analytical evaluation of the MLH and EHP

In this section, expressions of both the MLH and the EHP are accurately derived. To this
end, we consider the same scenario described in Section 4.2. For the sake of clarity, in what
follows, we denote by X, Y, and Z the random variables that represent dj_;, d;_;, and dj_;,

respectively.

2.3.1 MULH derivation

Since the i-th regular node could be located anywhere in D(j, T¢;) (the j-th node’s coverage
area) with the same probability, Y can be considered as a uniformly distributed random variable

on [0,T¢;]. Therefore, the MLH denoted hereafter by hjast(7'c;) is given by

TC]‘ TCj TC
haalTe) = [ utvdy= [ Ly =20
0 0

Cj

(2.6)

where fy(y) = 1/T¢; is the probability density function (pdf) of Y.

2.3.2 EHP derivation

In order to derive the EHP, one should first compute the conditional cumulative distribution
function (CDF) Fyx (2) = P(Z < z|z) of Z with respect to the random variable X. In the

following, two approaches are proposed to derive this CDF.

2.3.2.1 Approach 1

As can be shown from Fig. 3.4, Z < z is guaranteed only if there are no nodes in the dashed

area A. Therefore, the conditional CDF Fy x(z) can be defined as
Fzix (2) = P(Z < z|z) = P (Aol FY), (2.7)

where P (Ap|F1) is the probability that the event Ay = {no nodes in the dashed area A} given
F, = {at least one node in the potential forwarding area } occurs. Since the nodes are uniformly

deployed in S, the probability of having K nodes in F follows a Binomial distribution Bin (N, p)
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where p = g For relatively large N and small p, it can be readily shown that Bin (/V, p) can be
accurately approximated by a Poisson distribution Pois(AF'). Using the Bayes’ theorem, Fyx (2)

could be rewritten as
P (F1]Ag) P (A)

F = 2.8
z1x (%) PE) (2.8)
and, hence, for a large number of nodes N and small p, we have
oM (1 — B
Fyix (2) = ( ) (2.9)

(T—e) -
where B = F — A. In the equation above, note that we use the fact that P (F;|Ag) is the
probability that at least one node is in B. As can be observed from (2.9), when z = a where
a=x —Tcj, we have B =0 and A = F and, therefore, Fzx (2) = 0. This is expected since all
potential intermediate nodes are located in the forwarding zone F' where any node is at least at
distance « from the k-th node (i.e., P(Z < «) = 0). Furthermore, if z = T'¢, it holds that B = F’
and A = 0 and, hence, P(Z < T¢;) = 1. This is also expected since all potential intermediate
nodes are located in the k-th node’s coverage area at distance T'¢;, at most from the latter (i.e.,
P(Z < Tci) = 1). It should be noticed here that the properties above are not satisfied by any
previously developed CDF expressions such as those in [13]-[20].

FIGURE 2.5 - EHP analysis.

Using some geometrical properties and trigonometric transformations, one can readily show
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that

2 2

B =22 (@—%) +7T¢ (9;— M), (2.11)

F=T¢c (9 - sm(ze)) + T (9’ - M) : (2.10)

2

Tci —Tc? +x2
2T crx

2 2,2
ch —Tcp+x
2Tcjx

zQ—Tc?—{—mQ

where 6 = arccos( >, 0, = arccos (T>> and e’z —

), 0 = arccos(

02_22 2?2
arccos (TJQT:) . Finally, the EHP h(T'cy, T'c;) between the k-th and j-th nodes can be derived
as
Tecy,
h(TCk, TCj) = Em (OéHzp((Oé) + HZ|X (Z)dZ)
TCk+TCj : Tcy,
= / (aHZ|X(a) + HZX(z)dz) fx (z)dx, (2.12)
Ty «

where Hyx(2) = 1 — Fzx(2) and fx (x) is the pdf of X. Note that the latter can be considered
as a uniform random variable over [T'cy, T'c; + T'c;] and, hence, fx(x) can be substituted there
by 1/T¢;. To the best of our knowledge, a closed-form expression for the EHP in (2.12) does not
exist. However, h(Tc;,Tc;) can be easily implemented since it depends on finite integrals. As
can be observed from (2.12), the proposed EHP depends on both T'¢; and T'c;. Such extremely
important and crucial features in HWSNs no longer hold true for the previously proposed EHPs,
such as in (2.4), which are only dependent on the sender node’s transmission capability. It can
be shown from Figs. 2.6 and 2.7 that the so-obtained EHP decreases if T'c; increases while it
increases when T'c; increases. This collaborates the discussion made above. These figures also
show that the proposed EHP above increases with the node density. This is expected since it is
very likely that the per-hop distance increases when the number of nodes located in F' increases
if, of course, both T'c; and T'c; are fixed. Therefore, the so-obtained EHP expression is more
accurate than those developed so far and, hence, should allow more accurate distance estimation

and more reliable localization as will be shown next.

2.3.2.2 Approach 2

The main issue with the approach developed above is that it holds only when the number of
nodes N is sufficiently large and the area F' is much smaller than the network size. Since N is
typically large in the context of WSNs, the first condition is very likely to be satisfied. Unfor-

tunately, the second condition cannot be always guaranteed, especially when the transmission
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FIGURE 2.7 — Effect of the intermediate node transmission capability on the EHP.

capabilities T'c;, and T'c; are not small enough. Indeed, in such a case F' is very likely to be large
and, hence, the EHP derived using the above CDF is no longer accurate. In this section, we
propose another approach aiming to derive this CDF for any N, T'¢; and T'c;.

Let us assume that M potential intermediate nodes exist between the i-th and k-th nodes,
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or, in other words, M potential positions of the intermediate node j exist in F. Let Z,, be the
random variable that represents the distance between the k-th node and the m-th potential

intermediate node. Thus, one can define Fzx(2) as follows

Using the fact that Z,,,m = 1,..., M are independently and identically distributed (i.i.d) ran-

dom variables, we obtain
Fyx(2) =P (Zn < 2)M. (2.14)

As can be observed from Fig. 3.4, in order to satisfy Z,, < z, the m-th intermediate node should

be located in the area B and, hence,
Fz,x (2) = P (Zn < z|7) = P (E), (2.15)

where P(E,) is the probability that the event Ey = {the m-th intermediate node is located in
B} occurs. Since the nodes distribution is assumed to be uniform, the m-th intermediate node
could be located anywhere in F' with the same probability. Therefore, the probability that this

node is located in any area € C F' is nothing but the ratio of {2 to F'. Consequently, Fx(z) is

given by
A\ M
Using similar steps to derive A, it can be shown that
sin(26) , sin(20)

where A is obtained by subtracting (3.12) from (3.8). Finally, the EHP is derived by substituting
(2.16) in (2.12). By avoiding the Binomial-to-Poisson approximation exploited in Approach 1,
the obtained EHP using Approach 2 is then valid for any N, T'¢;, and T'c; and, hence, it is more
likely to be accurate than that developed in Section 2.3.2.1. However, the main drawback of
Approach 2 is that the EHP depends on the number of potential intermediate nodes M which
should be determined by training, i.e., at additional overhead and power costs with respect to
Approach 1. Therefore, Approach 1 is favored when restrictions on power and overhead costs
are severe while Approach 2, which performs better as will be verified later by simulations in
Section 3.8, is favored when these restrictions are milder.

In the next section, based on the so-obtained EHP and MLH expressions, we propose a novel

localization algorithm suitable for HWSNs where nodes have different range capabilities.
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2.4 Proposed localization for HWSNs

In this section, we propose a novel three-step localization algorithm for HWSNs. In the first
step, the regular nodes receive in a multi-hop fashion all the information required to estimate
their respective positions while, in the second step, they compute an initial guess exploiting one
of the two EHP expressions developed above. In the third and last step, a correction mechanism
is locally performed at each node, in order to further minimize the incurred localization errors.

These three steps will be further detailed in the sequel.

2.4.1 Initialization

In this step, the k-th anchor starts by broadcasting through the network a packet which
consists of a header followed by a data payload. The packet header contains the anchor position
(2, yr), while the data payload contains (7'cg, cZk), where T'¢;, is the transmission capability of
the k-th anchor and dj, is the estimated distance initialized to zero. If the packet is successfully
received by a node, the latter estimates the EHP using either Approach 1 or 2 above, adds it to
czk, stores the resulting value in its database and then, rebroadcasts the resulting packet after
substituting T'c; by its own transmission capability. Once this packet is received by another
node, its database information is checked. If the k-th anchor information exists and the stored
estimated distance is larger than that of the received one, the node updates the k-th anchor’s
information, then broadcasts the resulting packet after substituting the received transmission
capability by its own. Otherwise, the node discards the received packet. However, when the node
is oblivious to the k-th anchor position, it adds this information to its database and forwards
the received packet after substituting the received transmission capability by its own. This
mechanism will continue until each regular node in the network becomes aware of each anchor
position as well as the distance from the latter to the last intermediate node before reaching that
node. Note that the implementation of the proposed algorithm requires that each node broadcasts
the anchor information not only with its estimated distance but also its transmission capability
to allow the EHP computation at the next receiving node. In contrast, the implementation of
existing algorithms in HWSNs requires the broadcast of the anchor information and the estimated
distance only. Yet we will prove next in Section 2.6 that the additional power cost that could be

incurred a priori when broadcasting the transmission capabilities can be easily avoided by the
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proposed algorithm.

2.4.2 Positions’ computation

In this section, we will show how the so-received information can be exploited to get an initial
guess of each regular node position. Using its available information, the (i — N,)-th regular node

(or the i-th node) computes an estimate of its distance to the k-th anchor as

Cikfi = Cik + Pnast (Tex+1), (2.18)
where
E+L—1
de = Y h(Ta,Tagn), (2.19)
=k

is the distance from the k-th anchor to the last intermediate node. In (2.18) and (2.19), we assume
for simplicity, yet without loss of generality, that L intermediate nodes exist over the shortest
path between the k-th anchor and the (i — N,)-th regular node and that the I-th intermediate
node is the (k+1)-th node. Using its estimated distances to the IV, anchors as well as the latters’
coordinates, the position of the (i — N,)-th regular node could be obtained by multilateration
as [35]

(&5, 1) = —% (TTT)_l Y ks, (2.20)

where (Z;,7;) are the biased initial guesses of the (i — N,)-th regular node’s coordinates,

T1 — TN, Y1 — Yn,

T2 — TN, Y2 — YN,

Y= ' ‘ , (2.21)

| T(N,—1) — TN, YWNo—1) — YN,

and
72 72 2 2 2 2
di_;—dy,_;+tay, — 21+ Yy, — Ui

72 72 2 2 2 2
dy_; —dy,_;+ay, — T3+ Yn, — Y3

Ki = (2.22)

A

d%Nafl)fi _d?\/rﬁ‘ﬁva _x%Naq) +y12\7u _y(2Na71) i

It is noteworthy from (6.3) and (6.4) that Z; and g; are solely dependant on the anchors’ co-
ordinates (g, yx),k = 1,..., N, and the estimated distances dy_;,,k = 1,..., N, which are all
locally available at the (i — N,)-th regular node.
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Unfortunately, errors are expected to occur when estimating the distance between each re-
gular node-anchor pair, thereby hindering localization accuracy. As a third step of our proposed

algorithm, we propose a correction mechanism aiming to reduce this error.

2.4.3 Correction mechanism

Let ¢; denote the estimation error of the distance between the k-th anchor and the i-th

regular node as

~

ki = dg—i — dg—; (2.23)

where dj_; is the true distance between the two nodes. As discussed above, this error hinders

localization accuracy. As such, we have

, (2.24)
where ¢,, and J,, are the location coordinates’ errors to be determined. Exploiting the Taylor

series expansion and retaining the first two terms, the following approximation holds :

dy—i ~ Jk—i + Yki0z, + Prily, (2.25)
where
dii = \/(iz — ) — (9 — ), (2.26)
and ~
¢ki = a]; = - 5 i R 5 = d* . k? (227>
0.0 \/(Iz —xx)” — (Ui — Yk) k=i
dd, —i i — i —
4 24,7 \/(iz - xk) - (Ql - yk) ki

for k=1,2,..., N,. Note that dy._; is different from cZ,H» due to the error incurred by multilate-

ration [35]. Therefore, rewriting (2.25) in a matrix form yields
I'ié;, = ¢, — e, (2.29)
where I' is a N, x 2 matrix with

[Fi]k1 = Vi, [Fi]kg = P, (2.30)
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and
T

¢ = [ Czlfi - Czlfi szfz‘ - 0?271' e CzNafi_CZNafi ) (2'31)
€ = [€1i, €, €n,)7, and &§; = [d,,,0,]". Many methods such as the weighted least squares
Algorithm 1 Proposed algorithm for every nodes

Input : Number of anchors N,, and their positions (xy,yx), where k = 1,..., N,, as well as
their transmission capabilites
fort=1— N, do
dy_; < using Approach 1 or 2 (Section 2.3)
end for
Z;,U; < Eq. (6.5) in the section 5.4
8 = (TTP;'T,) ' TTP; !¢, + Eq. (2.32)
T Ty + Og;
Yi < Ui+ Oy;
while 6, > 0 do
Ti < @y
Yi < Yis
Recalculate ||6;] < Eq. (2.32)
T; — T; + Oy,
Yi < Ui + Oy;
end while
Output (z;,y;) > Estimated position of the i-th node

(WLS) might be used to properly derive ;. Using WLS, the solution of (2.29) is given by :

1L _
6, = (TTP;'Ty) TI/P;'¢, (2.32)
where P; is the covariance matrix of €;. Since ¢;; k = 1, ..., N, are independent random variables,
P; boils down to diag {o};, ..., 0% ;} where o, is the variance of ¢;. A straightforward inspection

of (2.32) reveals that §; depends on some locally available information as well as all o7, k =
1,...,N,. Yet we will show in what follows that the derivation of o7,k = 1,..., N, requires a
negligible additional power cost that could be easily avoided. Once we get d;, the value of (Z;, 7;)

is updated as ;=2; +6,, and y; = ¢; +9,,. The computations are repeated until ||d;|| approaches
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zero. In such a case, we have from (2.24) that z; ~ Z; and y; ~ y; and, hence, more accurate
localization is performed. As can be observed from Fig. 2.8, the proposed correction mechanism
converges after 5 iterations at most. Nevertheless, we will prove in Section 2.6 that the proposed

algorithm perfectly tailored for HWSNs, and whose pseudocode implementable at each node is
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summarized in Algorithm 1, does not burden the overall cost of the WSN.

2.5 Variance evaluation

This section aims to derive the expression of the variances o7,, k = 1,..., N, which are
required for the proposed algorithm’s implementation. As such, two different methods, analytical

and non-parametric, are proposed.

2.5.1 Analytical method

Assuming a high node density in the network, the distance dj_; between two nodes can be

rewritten as
k4L

dk—i ~ Z dl—(l+1)7 (233)
I=k
where L is the number of intermediate nodes over the shortest path and d;_(11) is the distance
between the [-th and (I 4 1)-th intermediate node. It follows from (2.18) and (2.33) that the
distance estimation error (DER) gy, is given by

k+L—1
Eri = Z e+ €last (234>
=k

with e; = h (T¢;, T'ci41) — di—(+1) being the error incurred during the (I —k+1)-th hop and ejng =
Piast(T'cre1,) — dikyr)—; the error incurred at the last hop. It can be readily shown from (2.34)
that o2, = fikL 107 + 0102 where 07 and 0,2 are the variances of e; and e, respectively.

Using the results developed in Section 2.3, we obtain

Tc?
2 (k+1L)
Olast” = 5 2.
last 1o (2.35)

and

0l2 _ /Tcz-i-Tcl.H @2H(Q) o /Tcz ZH(Z)dZ) fX (w) dr

Tc o

(/T”JFTCI+1 (aH(a) n - H(Z)dz) fx (@) d$>2- (2:36)

Tc [e]
Note that ;% could be obtained using any of the CDFs developed in Section 2.3.2. As can be
observed from (2.35) and (2.36), 01as:2 is locally computable by the i-th node while o, should be
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l,;ik 0,%1, then forwarded to

computed at the (I + 1)-th intermediate node, added to the term )
the next intermediate node. This results in additional few bits that must be transmitted by each
node in the network. In what follows, we will prove that the additional power cost that could be

incurred a priori when transmitting o; can be easily avoided by the proposed algorithm.

2.5.2 Non-parametric method

In the previous section, the analytical expression of ¢, was derived using the approximation
in (2.33) which holds only for highly dense networks. However, if this assumption is not satisfied
(i.e., lowly dense network), (2.33) would no longer be valid and, hence, o3,’s expression would
no longer be accurate enough. In such a case, to properly derive ¢Z;, we propose to exploit
the PDF of the DER ¢; denoted by f (¢). Unfortunately, to the best of our knowledge, there
is no closed form solution for such a PDF. In this work, we propose to use a non-parametric
technique to estimate it owing to some potential observations available at anchors. So far, many
non-parametric techniques have been proposed in the literature such as the histogram [39] and
the well-known kernel density estimation (KDE) [40] techniques. In this paper, we are only
concerned by the latter which can estimate an arbitrary distribution without much observations.
Such observations can in fact be easily obtained at the k-th anchor. Indeed, since this anchor
is aware of all other anchor positions, it is able to derive the actual distances between it and
the latters. Using (2.18), the k-th anchor could also obtain the estimated distances between
it and the other anchors and, therefore, derive ei;. Hence, if N, anchors exist in the network,
the total number of available observations is n, = N, (N, — 1). Let &1,¢€9,...,&,, denote such
observations. Using the KDE technique, f (¢) can be then approximated by

fle)= iiK <€ ;gt), (2.37)

A —

where s is a smoothing parameter determined using the method in [41] and K (¢) is the Gaussian

kernel given by

1 1

Ner exp(—§€2). (2.38)

As can be noticed from (2.37) and (2.38), the estimated PDF is computed by averaging the

K (¢) =

Gaussian density over all observations. Substituting (2.38) in (2.37) and using the resulting
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PDF to compute o3, yields

Mo (X,Gy — Y72
o2 = 2 NG — ) (2.39)
121 Gi
where
) ) ) _(1—ep)? _ (+ep)?
Xt = (SE + €t) Gt — SE (€t + 1) e 252 + (St — ].) e 252 s (240)
-1 1
G, = s.2n (Q (gt ) ~Q (gt + )> , (2.41)
Se Se
and
_(-ep? _(4ep)?
Y, = Gy — 2 [e 252 g 22 } , (2.42)

with Q(x) being the Q-function.

Fig. 2.9 plots the empirical f (¢) as well as f (¢) for different numbers of anchors. We see there
that only a few anchors (i.e., few observations) are required to accurately estimate the localization
errors’ PDF. Furthermore, from Fig. 2.9, the estimated PDF approaches the empirical one, as

N, increases. This gives a sanity check for the proposed nonparametric method.

0.05 :
—— Emperical
o KDE N_=40
KDE N =10
0.04r —KDEN =3 |
0.03r
(&
a
el
0.02r
0.01+
Lo, 3 50

FI1GURE 2.9 — Estimated DER’s PDF using KDE.

Nevertheless, in order to derive o, using this approach, each regular node needs to be aware

of all observations. If this is not properly done, it will be very expensive in terms of power
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consumption, since each anchor would recur to a second broadcast to share its observations with
the regular nodes. In order to circumvent this problem, we propose in what follows a power-
efficient observation sharing protocol where anchors periodically broadcast their information. In
fact, during the first time slot, only the first anchor should broadcast its own information while
the (IV, — 1) other anchors only execute the tasks described in Section 2.4.1. At the second time
slot, the second anchor derives an estimation error observation using the information received
from the first anchor, adds it to its packet and broadcasts the resulting packet in the network.
Upon reception of this information, the rest of anchors derive and store a second observation. Two
observations are then available at the third anchor which also broadcasts them in the network.
This process will continue until each regular node becomes aware of a sufficient number of
observations. Note that if NN, is large enough so that (N, — 1) observations are sufficient to
accurately derive the PDF, only two time slots are required. Indeed, after the first time slot,
(N, — 1) observations are available and can be simultaneously broadcasted by the (N, — 1)
anchors in the network. In the next section, we will prove that each anchor could transmit few

observations without incurring any power cost. Fig. 2.10 plots the error variance for different node
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FIGURE 2.10 — Global variance for different node densities.

densities. It shows, as expected, that the variance decreases when the node density increases.

Beyond a node density threshold of less than 0.1, both the analytical and the non-parametric
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methods start to yield about the same variance as the empirical one. Furthermore, when N,
increases, more so at large enough values, the efficiency of the non-parametric method increases
even at low node densities. Note that increasing the number of anchors N, does not only result

in a more accurate variance, but also in a more reliable localization [4].

2.6 Proposed algorithm’s implementation cost

As discussed in Section 5.4, the Proposed algorithm’s implementation requires the (i — NV, )-th
regular node to be able to compute its coordinates’ initial guess (Z;,9;) as well as §; which is
used at the position correction step. As discussed above, since these quantities depend solely
on the information locally available at the (i — N,)-th regular node, their computation does
not require any additional overhead or power cost. Furthermore, from (6.5) and (2.32), this
node must perform matrix-inversion operations to the matrices YY7 and r’'e; T, in order to
derive (&;, ;) and §;, respectively. This kind of operations which is often highly computationally
demanding may significatively increase the overall cost of the WSN. Nevertheless, since these
matrices are 2-by-2, the entries of their inverses can be analytically and easily derived using
the locally available information at the (i — N,)-th regular. This proves that the computation of
(Z;,9;) and §; does not burden neither the implementation complexity of the proposed algorithm
nor the overall cost of the WSN. Moreover, some iterations should be repeated, at most 5 times
as shown in Fig. 2.8, to ensure the convergence of the proposed correction mechanism. Knowing
that the required power to execute one instruction is in the range of 10~* of the power consumed
per transmitted bit [33|{34], the power needed to execute this mechanism is then very negligible
with respect to the overall power consumed by each node. On the other hand, as discussed in
Sections 5.4 and 2.5, the proposed algorithm’s implementation requires that each node transmits,
upon reception a message from an anchor, its transmission capability and variance besides to
the latter’s coordinates and the distance between the two nodes. This results in additional few
bits, with respect to the existent algorithms, thereby causing an additional power cost. We will
shortly see below that this cost could be easily avoided.

Let p; be the available power at the ¢-th node, b; be the length in bits of the original packet sent
when the existing algorithms are implemented (i.e., packet includes only the anchor’s coordinates

and its distance to the i-th node), and a; be the cost in bits if T'¢; and 0,2 are added to the
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packet. If the power p; allows the i-th node to transmit b; bits over a T'¢; coverage distance,
this power will also allow the latter node to transmit b; 4+ a; bits but over a coverage distance
Te¢; < Te;, where T, is the new transmission capability of the i-th node. Since no matter are the
transmission capabilities of the i-th node and the previous intermediate node, this node is always
able to compute the EHP, the fact that T¢; decreases to Te¢; does not affect the performance
of the proposed localization algorithm. Therefore, the additional bits a; could be broadcasted
without any additional power cost.

All the above discussion proves that the proposed localization algorithm can be implemented
at a low cost. Furthermore, since it complies with the heterogeneous nature of WSNs and, further,
is power efficient, it could easily find application in EH-WSNs where the power is considered as

a Scarce resource.

2.7 Simulations results

In this section, we evaluate the performance of the proposed algorithm in terms of localization
accuracy by simulations using Matlab. These simulations are conducted to compare, under the
same network settings, the proposed algorithm with some of the best representative localization
algorithms currently available in the literature, i.e., DV-Hop [4|, LAEP [13] and EPHP [20].
All simulation results are obtained by averaging over 100 trials. In the simulations, nodes are
uniformly deployed in a 2-D square area S = 100 x 100 m?. We always assume that T'c; # Tc;
if ¢ # j and that all transmission capabilities are set between 5 and 30 meters, except in
Fig. 2.12(b) where the transmission capability 7, = 20 meters is the same across the network

(i.e., homogenous WSN). We also assume that the number of anchors N, is set to 20.

Parameter Value
A 0.02:0.025 : 0.145
Transmission capabilities 5—30 m
S 10* m?
N, 20

TABLE 2.1 — Simulation parameters.

As a performance metric, we propose to adopt both the distance DER and the normalized
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root mean square error (NRMSE) which is defined as and

Yo\ f (- 80+ (i - §)°

1
NRMSE = — 2.43
0.05
----- LAEP
DV-HOP
- =-=-EPHP
0.04r O Approach 1 ]
—— Approach 2
0.03
=
A
[l

0.02

0.01

2= 20 0 20 40 60 80
DER [m]

FIGURE 2.11 — Empirical PDFs of the DERs achieved by different localization algorithms.

Fig. 2.11 illustrates the empirical DER’s PDF achieved by our proposed localization algorithm
as well as those achieved by other well-known algorithms. Since these localization algorithms
exploit the distance between each regular node and all anchors to estimate the coordinates
of the latter, the better is the distance estimation, the more accurate are these localization
algorithms. As can be shown from this figure, when using Approaches 1 or 2, we are able to
achieve a narrower PDF centered around 0, thereby offering unbiased and far-more accurate
distance estimation. This is expected since in contrast to the previous works, both Approaches
1 and 2 take into account the fact that different transmission capabilities may coexist as it is
the case in HWSNs.

Fig. 2.12 plots the localization NRMSE achieved by DV-Hop, EPHP, LAEP and the pro-
posed algorithm for different node densities A in (a) HWSN and (b) Homogenous WSN. From
Fig. 2.12(a), the proposed algorithm, with or without localization correction, always outper-
forms its counterparts. Indeed, our proposed algorithm turns out to be until about two, three

and four times more accurate than LAEP, DV-Hop, and EPHP, respectively. Furthermore, as
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FIGURE 2.12 — Localization NRMSE vs. node density in : (a) a heterogenous, and (b) a homo-

genous WSN.

can be observed from this figure, the NRMSE achieved by the proposed algorithm significantly

decreases when the node density A increases while those achieved by its counterparts slightly
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FIGURE 2.13 — Standard deviation vs. node density.

decrease then quickly saturate. This is expected since two conflicting phenomena arise when A\
grows large. The first is that the approximation in (2.33) becomes more realistic and, hence, more
accurate localization is performed. The second is the increase of the number of different trans-
mission capabilities due to the heterogeneous nature of WSNs when the node density increases.
Since more different are the transmission capabilities in the network, worse is the accuracy of
the former algorithms. This explains why their performance quickly saturates when the node
density increases. The proposed algorithm’s accuracy, in contrast, increases with A since it takes
into account the difference between the transmission capabilities that is typical of HWSNs. This
further proves the efficiency and suitability of the proposed localization algorithm to HWSNs.
Moreover, from Fig. 2.12(b), our algorithm is also the most accurate in homogenous WSNs where
the transmission capability is the same across the network. As could be seen from this figure,
although all algorithms’ accuracy improve as expected in homogenous WSN with respect to
the heterogenous case, our proposed algorithm remains the best algorithm. This is due to the
fact that our EHP accounts for the transmission capabilities of the sender and receiver nodes,
leading thereby to a more accurate localization. This is in contrast with DV-Hop, EPHP ans
LAEP whose respective EHPs are derived accounting only for the sender node’s transmission

capability. The last result further proves the efficiency of our proposed algorithm.
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Fig. 2.13 plots the NRMSE’s standard deviation achieved by all localization algorithms. As
can be observed from this figure, the one achieved by the proposed algorithm substantially de-
creases when the node density increases while those achieved by the other algorithms slightly
decrease. This is due once again to the fact that the proposed algorithm complies with the he-
terogeneous nature of the WSNs when the former algorithms do not. Furthermore, the NRMSE
standard deviation achieved by the proposed algorithm using either Approach 1 or 2 approaches
zero. This means that implementing our algorithm in HWSNs guarantees a very accurate lo-
calization for any given realization. This result is very interesting in terms of implementation
strategy, since it proves that the result in Fig. 2.12 becomes more and more meaningful as A

grows large.
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FIGURE 2.14 — Localization NRMSE’s CDF.

Fig. 2.14 illustrates the localization NRMSE’s CDF. Using the proposed algorithm, 90%
(99.5% with Approach 2) of the regular nodes could estimate their position within almost the
fifth of their transmission capabilities. In contrast, 20% of the nodes achieve the same accuracy
with LAEP, about 14% with DV-Hop, and only 9% with EPHP. This further proves the efficiency
of the proposed localization algorithm.

Fig. 2.15 plots the localization NRMSE achieved by DV-Hop, EPHP, LAEP and the proposed

algorithm versus the degree of irregularity (Dol) of the transmission capabilities, when A = 0.045.
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The adopted transmission model in this figure is the same as in [38]. As could be shown from
Fig. 2.15, the accuracy of all algorithms deteriorate, as expected, when Dol increases. However,
from this figure, the proposed algorithm still outperforms its counterparts even in more adverse
conditions. Furthermore, from Fig. 2.15, our algorithm accuracy slowly deteriorates with Dol,
in contrast with its counterparts. This makes it more robust against such a phenomenon.

Fig. 4.18 shows the total number of exchanged packets Npackets using by the proposed al-
gorithm and its counterparts versus the node density. As could be seen from this figure, the
proposed algorithm requires the same number of exchanged packets as LAEP and EPHP while
it requires half the packets exchanged with DV-Hop. This is expected since the three first are
analytical algorithms where the EHP evaluation and, hence, the position estimation are locally
performed at each node after the initialization step, without requiring any additional information
exchange. This is in contrast with DV-hop whose heuristical nature imposes a second broadcast
from the anchors to assist regular nodes’ self-localization. This implies that the overall power
required by our algorithm to transmit and receive the exchanged packets is the same as that
required by LAEP and EPHP while it is the half of that needed by DV-Hop. On the other hand,
the additional power cost incurred by the proposed algorithm due to the correction mechanism’s

instructions is negligible and to the few extra bits in each packet is easily avoidable, as discussed
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in Section 2.6. Therefore, our proposed algorithm incurs almost the same power cost as LAEP
and EPHP while it incurs the half cost of DV-hop. This proves that the proposed algorithm
outperforms in accuracy all its counterparts, yet a no extra power cost, thereby highlighting its

superiority.

2.8 Conclusion

In this paper, a novel low-cost localization algorithm which accounts for the heterogeneous
nature of WSNs was proposed. Two different approaches were developed to accurately derive the
EHP. Using the latter, the proposed algorithm is able to accurately locate the sensor nodes owing
to a new low-cost implementation that avoids any additional power consumption. Furthermore,
a correction mechanism which complies with the heterogeneous nature of WSNs was developed
to further improve localization accuracy without incurring any additional costs. The proposed
algorithm, whether applied with or without correction, is shown to outperform in accuracy the

most representative WSN localization algorithms.
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Chapitre 3

Accurate Nodes Localization in

Anisotropic Wireless Sensor Networks

Ahmad El Assaf, Slim Zaidi, Sofiéne Affes and Nahi Kandil
International Journal of Distributed Sensor Networks, vol. 2015, pp. 1-17, April 2015. Invited
Paper.

Résumé : Ce chapitre propose un algorithme de localisation précise adapté pour
les réseaux de capteurs sans fil distribués dans des environnements anisotropes
(AWSNs). En utilisant 1’algorithme proposé, chaque nceud régulier estime les dis-
tances lui séparant de tous noeuds d’ancres fiables. Ces derniers sont bien choisis
suite 4 une nouvelle stratégie de sélection d’ancre fiable qui assure une estimation
précise de la distance rendant ainsi notre algorithme de localisation plus précise.
Il est prouvé que I’algorithme proposé est réalisable dans les deux scénarios : deux
et trois dimensionnel (2-D et 3-D). Un mécanisme d’économie d’énergie visant a
améliorer la durée de vie de WSN est également envisagé dans ce chapitre. Il est
prouvé que l’algorithme proposé pourrait facilement intégrer un tel mécanisme. 11
est aussi montre que notre algorithme, qu’il soit combiné ou non avec le mécanisme
d’économie d’énergie, surpasse constamment les meilleurs algorithmes de localisa-
tion représentatifs actuellement disponibles dans la littérature en ce qui concerne
la précision, méme dans le cas de distribution non uniforme des nceuds ou avec la

présence de la phénoméne de irrégularité de portée de transmission.
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Abstract

An accurate localization algorithm tailored for anisotropic wireless sensors networks (WSN)s
is proposed in this paper. Using the proposed algorithm, each regular or position-unaware node
estimates its distances only to reliable anchors or position-aware nodes. The latter are properly
chosen following a new reliable anchor selection strategy that ensures an accurate distance esti-
mation making thereby our localization algorithm more precise. It is shown that the proposed
algorithm is implementable in both 2-dimensional (2-D) and 3-dimensional (3-D) scenarios. A
power saving mechanism aiming to enhance the WSN lifetime is also envisaged in this paper.
It is proven that the proposed algorithm could easily incorporate such a mechanism. Simula-
tions show that our algorithm, whether combined or not with for the power saving mechanism,
consistently outperforms the best representative localization algorithms currently available in
the literature in terms of accuracy, even with the presence of non-uniform node distribution or

radiation irregularities.

3.1 Introduction

Due to their reliability, low cost, and ease of deployment, wireless sensor networks (WSNs)
are emerging as a key tool for many applications such as environment monitoring, disaster relief,
and target tracking [3]-[2]. A WSN is a set of small and low-cost sensor nodes with limited
communication capabilities. The latter are often deployed in a random fashion to collect some
physical phenomena from the surrounding environments such as temperature, light, pressure,
etc. [2]. Due to their limited transmission ranges, the sensor nodes are often unable to directly
communicate with a remote access point (AP). For this reason, they recur to multi-hop commu-
nication through several intermediate nodes that successively forward their gathered data to the
AP. However, the sensing data are very often meaningless if the location from where they have
been measured is unknown ; which makes their localization a fundamental and essential issue in
WSNs. So far, many localization algorithms have been proposed in the literature and mainly fall
into two categories : range-based and range-free.

To properly localize the regular or position-unaware nodes, range-based algorithms exploit the

measurements of the received signal characteristics such as the time of arrival (TOA), the angle of
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arrival (AOA), or the received signal strength (RSS) [6]-[6]. These signals are, in fact, transmitted
by nodes having prior knowledge of their positions, called anchors (or landmarks). Although the
range-based algorithms stand to be very accurate, they are unsuitable for WSNs. Indeed, these
algorithms require high power to ensure communication between anchors and regular nodes
which are small battery-powered units. Furthermore, additional hardware is usually required at
both anchors and regular nodes, thereby increasing the overall cost of the network. Moreover, the
performance of these algorithms can be severely affected by noise, interference, and/or fading.
Unlike range-based algorithms, range-free algorithms, which rely on the network connectivity to
estimate the regular node positions, are more power-efficient and do not require any additional
hardware and, hence, are suitable for WSNs [4]-[29]. Due to these practical merits, range-free
localization algorithms have garnered the attention of the research community. Unfortunately, in
anisotropic environments where obstacles and/or holes may exist, range-free algorithms do not
provide sufficient accuracy due to large errors occurring when mapping the hops into distance
units. Indeed, in such environments, it is very likely that the shortest path between an anchor
and a regular node is curved, thereby resulting in overestimation of the distance between these
two nodes. The more obstacles and/or holes there are, the larger are distance estimation errors
and, consequently, less accurate is localization.

In this paper, we propose a novel range-free localization algorithm tailored for anisotropic
WSNs. Using the proposed algorithm, each regular node estimates its distances only to reliable
anchors. The latter are properly chosen following a new reliable anchor selection strategy that
ensures an accurate distance estimation thereby making our localization algorithm more pre-
cise. New average hop sizes’ expressions are also developed in this paper for both 2-D and 3-D
scenarios. We show that the obtained expressions are very accurate especially for high nodes den-
sities. Furthermore, a power saving mechanism aiming to enhance the WSN lifetime is envisaged.
We prove that our proposed algorithm could easily incorporate such a mechanism. Simulations
show that our algorithm, whether combined or not with the power saving mechanism, consis-
tently outperforms the best representative range-free localization algorithms currently available
in the literature in terms of accuracy, even with the presence of non-uniform node distribution
or radiation irregularities.

The rest of this paper is organized as follows : Section 4.2 describes the network model.

Section 3.3 presents the related works and defines the motivation scenario. Section 3.4 proposes
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a novel localization algorithm while Section 3.5 and 3.6 introduce a new reliable anchor selection
strategy and a novel distance estimation technique, respectively. A power saving mechanism
aiming to enhance the WSN lifetime is envisaged in Section 3.7. Simulation results are discussed

in Section 3.8 and concluding remarks are made in section 5.6.

3.2 Network model

Fig. 6.1 illustrates the system model of N WSN nodes uniformly deployed in a 2-D square
area S in the presence of a rectangle obstacle which makes the network topology C-shaped. All
nodes are assumed to have the same transmission capability (i.e., range) denoted by R. Each
node is able to directly communicate with any other node located in the disc having that node as
a center and R as a radius, while it communicates in a multi-hop fashion with the nodes located
outside. Due to the high cost of the global positioning system (GPS) technology, only a few
nodes commonly known as anchors are equipped with it and, hence, are aware of their positions.
The other nodes, called hereafter position-unaware or regular nodes for the sake of simplicity,
are oblivious to this information. As shown in Fig. 6.1, the anchor nodes are marked with
red triangles and the regular ones are marked with blue circles. If two nodes are able to directly
communicate, they are linked with a dashed line that represents one hop. Let N, and N, = N—N,
denote the number of anchors and regular nodes, respectively. Without loss of generality, let
(xi,y), 1 = 1,..., N, be the coordinates of the anchor nodes and (z;,y;), i = N, +1,..., N

those of the regular ones.

3.3 Related works and motivation

In order to localize the i-th regular node (i.e., (N, 4 i)-th node), the distances between it and
at least 3 anchors are usually required. The k-th anchor should then broadcast its coordinates
(g, yx) through the network. If the i-th regular node is located in the coverage area of this
anchor (i.e., the disc D(k, R) having the k-th anchor as center and R as radius), it receives the
coordinates in ny = 1 hop. Otherwise, it receives them after n; > 1 hops. So far, in most previous

algorithms, the ¢-th regular node estimates its distance to the k-th anchor dj_(n,+) using only
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FIGURE 3.1 — Network model (C-shaped topology).

the information n; as
di— (N, +i) = s (3.1)

where hy is a predefined average hop size. Note that this distance estimation approach relies on

the fact that in highly dense WSNs,
ng
de(No+iy = Y T, (3.2)
=1

holds. In (4.2), h; is the [-th hop’s distance. hg is usually derived either analytically (i.e., hy =
E{h}) as with LAEP [13] or heuristically as with DV-Hop [4] by computing the mean hop size

of all the shortest paths between anchors as follows

- 1 dk—j
Sl i1 D3P Dy 83

where ny, ; is the number of hops between the k-th and j-th anchors. Although heuristical and
analytical algorithms are proven to be sufficiently accurate in isotropic WSNs (i.e., where obs-
tacles do not exist), their accuracies substantially deteriorate in anisotropic WSNs (AWSN)s.

Indeed, in such type of networks, it is very likely that the shortest paths between one regular
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node and some anchors are not straight lines due to the presence of an obstacle, as can be
observed from Fig. 3.2. This unfortunately causes an overestimation of the distances between
the regular node and these anchors, when mapping the number of hops into distance, thereby
hindering localization accuracy. In the example of Fig. 3.2, the regular node 1 communicates
with the anchor node A; through n; = 6 hops. Its distance estimate to this anchor cik_( Na+1) 18
derived using (3.1). As can be seen from Fig. 3.2, if the blue obstacle does not exist, n; would be
much less than 6 and, hence, the distance from i to A; is overestimated. Thus, using cfk_( Nati)
when performing multilateration will undoubtedly result in an imprecise localization. An inter-
esting approach to circumvent this issue is to properly select the anchors so that overestimation
stemming from situations similar to the one illustrated in Fig. 3.2 is avoided or minimized.
Based on this reliable anchor selection, several localization algorithms for AWSNs have been
so far proposed such as pattern-driven in [20] and RAL in [29]. Despite their valuables to the
advancement of knowledge and know-how in this key topic, we will later see that they still leave
room for significant additional accuracy improvements in AWSNs.

In the following, we develop a novel localization algorithm based on new reliable anchor

selection strategy and prove that it outperforms all the aforementioned algorithms.

®- - -4

% A

o As ®

FIGURE 3.2 — Motivation scenario.
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3.4 Proposed localization algorithm

As a first step of any anchor-based localization algorithm, the k-th anchor broadcasts through
the network a message containing (xy,yx,n) where n is the hop-count value initialized to one.
When a node receives this message, it stores the k-th anchor position as well as the received
hop-count n; = n in its database, adds one to the hop-count value and broadcasts the resulting
message. Once this message is received by an another node, its database information is checked. If
the k-th anchor information exists and the received hop-count value n is smaller than the stored
one ny, the node updates ny to n, increases it by 1, then broadcasts the resulting message. If ny
is smaller than n, the node discards the received message. However, when the node is oblivious
to the k-th anchor position, it adds this information to its database and forwards the received
message after increasing n by 1. This mechanism will continue until all nodes become aware
of all anchors’ positions and their corresponding minimum hop counts. In order to avoid the
situation illustrated in Fig. 3.2, we propose a reliable anchor selection phase in the second step
of our algorithm. In the next section, we introduce a new selection strategy where the k-th anchor
properly selects a set of reliable anchors among all of those in the network denoted by s. The k-th
anchor then broadcasts s over the network. Upon reception of all (xy, yx, nk, Sk), k= 1,..., N,
each regular node estimates its distance only to its nearest anchor (i.e, kg = argming ny) and
to the reliable anchors in the set sj,. The regular nodes finally compute their own positions
exploiting their available distances’ estimates by performing multilateration [22].

In what follows, we develop our proposed reliable anchor selection strategy as well as our

distance estimation technique.

3.5 Reliable anchor selection strategy

After receiving all anchors’ information, the k-th anchor becomes aware of its own position as
well as those of all other anchors in the network and, hence, is able to compute all true distances
separating it from the latter. On the other hand, this anchor could also compute the estimate
of the distance to any other anchor j and the corresponding estimation error e;_; stemming
from the use of (3.1). Nevertheless, due to the anisotropic topology of the WSN considered here,

errors could be too large if we fall in a situation such as in Fig. 3.2. Consequently, a threshold on
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ex—; is required to guarantee some reliability of the j-th anchor with respect to the k-th anchor.
If the topology of the WSN were isotropic, the estimation error of the distance between these
anchors would be

T1 = dk—j — dk—j

= |—]_l Ths = di—j, (3.4)

where the second line is due to the fact that czk_j is obtained using (3.1). In (3.4), [z] refers to
the ceiling function. Thus, a distance estimation error higher than 7 occurs only if the shortest
path between the k-th and the j-th anchors is curved due to the presence of obstacles between
the two nodes. In such a case, the number of hops between the latter is much larger than dj_;/ hs
and, hence, we should have e;_; > T. Therefore, we chose T} as a threshold below/above which
an anchor is deemed reliable or not, respectively. Finally, in order to ensure an accurate distance
estimation, each regular node will estimate its distance only to the nearest anchor and to those

rated reliable by the latter.

A ---0 --0

A
l

A
A
@ As @

FIGURE 3.3 — Reliable anchors.

However, some anchors deemed reliable by the nearest anchor could be found unreliable by
the regular node, since the shortest path from the latter to these anchors may be curved as
shown in Fig. 3.3. To circumvent this issue, we implement a finer selection at the regular node

that discards each anchor having a number of hops larger than T = [v/2S5/R]. Note that T5
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Algorithm 2 Localization algorithm for anchor nodes
% k refers to the k-th anchor node %

sk ={}
for j=1 to N, and j # k do

dp_j = ng X hy
erj=dpj—dpj
if e;_; <T) then
sk =sprU{j}
end if
end for

Broadcast the set s;, of reliable anchors

Algorithm 3 Localization algorithm for regular nodes
% 1 refers to the i-th regular node %

% sk, is the set of the reliable anchors at the nearest anchor node from the i-th regular
node%
% s; is the new set of reliable anchors at the i-th regular node %
si = {}
c=0
for k € s, do
if h,_p <715 then

s; = s; U{k}
c=c+1
end if
end for

for j=1—cdo

d;, = nj, X hy

end for

% 7; denotes the j-th reliable anchor node index in the set s; %

% 1, and 7; can be estimated using multilateration. %.
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is the maximum number of hops that may occur if the shortest path is not curved. Processing
steps at the anchors and regular nodes are summarized by localization algorithms 2 and 3 listed

in Algorithms 1 and 2, respectively.

3.6 Distance estimation technique

We propose in this work to estimate each regular-anchor distance using (3.1). To this end,
one should accurately derive the average hop size h, between any two consecutive nodes on
the shortest path between any regular and anchor nodes. Let us consider a two-hop scenario
where the k-th node communicates with the ¢-th node through an intermediate node j. In what
follows, we denote by Z and X the random variables that represent the distances d;_; and dj_;,

respectively. In order to derive

he =E{Z}, (3.5)

we start by deriving the conditional cumulative distribution function (CDF) Fyx(2) of Z with

respect to X.

3.6.1 Two-dimensional (2-D) case

As can be shown from Fig. 3.4, Z < z is guaranteed only if there are no nodes in the area
B, =F — A, where F = D(k,R)N D(i,R), A, = FFN D(k, z) and D(-, ) is the disc having the
~-th node as a center and x as a radius. It is noteworthy that F' is nothing but the forwarding

zone area where any potential intermediate node must exist. Fz (z) can be then defined as
Fyx(2) (2) = P(Z < z|lx) = P (Ey) , (3.6)

where P(Ey) is the probability that the event Ey = {no nodes in the area Bz} occurs. Since the
nodes are uniformly deployed in .S, the probability of having K nodes in B, follows a Binomial
distribution Bin (N, p) where p = %. For relatively large N and small p, it can be readily
shown that Bin (N, p) can be accurately approximated by a Poisson distribution Pois(AB,) where
A = N/S is the average nodes density in the network. Consequently, for a large number of nodes
N and small p, we have

Fpx (2) = e P (3.7)
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FIGURE 3.4 — 2-D distance analysis.

As can be seen from Fig. 3.4, F' = 4Age._1r where Age._1y is the green sector area minus the
dashed triangle area. Please note that this equality holds only when the two circles have the
same radius R (i.e., the k-th and j-th nodes have the same transmission capability). F' is then

given by

F = 2(R*0—axh)

= 2R? (9 - w) . (3.8)

Following the same approach as above, A, can be obtained as

A, =27 (ez - %) + R? <6’Z — %) . (3.9)

Furthermore, using some geometrical properties, we easily show that

B 24+ R(1—2cos(0))
b = \/ 2R (1 — cos (0)) 9, (3.10)

and

R—=z
b = \/23(1—cos<9))9' (3:11)

Substituting (3.10) and (3.11) in (3.9) and using (3.8), we have

B.=R? (29—8111 (20)—6. + %) —22 <€Z _ Sln(;gz)) . (3.12)
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Substituting (3.12) in (3.7) and using the resulting CDF to compute the mean of the random

variable Z yields to

_ 3 35 (B
P =R = / / e P=dzdb. (3.13)
T™Jo Jo

Note in (3.13) that we use the fact that 6 € [0,7/3] since § = arccos(z/2R) where x €]R,2R).
It follows from (3.13) that h2P increases with the nodes density . This is expected since it
is very likely that the per-hop distance increases when the number of nodes located inside F

increases if, of course, R is fixed. From (3.13), h?P is also an increasing function of R. Fig. 3.5
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FIGURE 3.5 — Analytical and empirical results of h2P .

plots h?P versus A for different values of R. From this figure, the analytical BiD approaches its
empirical counterpart for small A while the two curves almost coincide when the latter is large.
This is expected since the approximation of Bin (N, p) by Pois (AF') becomes more accurate as A
grows large. Fig. 3.5 also shows that h?P increases with A and R, which corroborates the above

discussion.

3.6.2 Three-dimensional (3-D) case

Since each node is able to communicate with any other node located at most at R meters

from it, its transmission coverage in the 3-D case is spherical. Let us denote by V' the forwarding
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FIGURE 3.6 — 3-D distance analysis.

zone defined as V' = S(k, R)NS(i, R) where S(-, ) is the sphere having the --th node as a center

and % as a radius. In 3-D case, the CDF Fyx (%) is then given by
Fyx (2) = e V%), (3.14)

where V, = S(k,2)NS(i, R), A\, = N/Vr, and Vr is the total volume where the WSN is deployed.
As can be shown from Fig. 3.6, V' = 2V, where V. is the volume of the spherical cap with height

2 _
h— 32 ’ (3.15)

Therefore, V is given by
1

V=m(2R - z)? (4R +z). (3.16)

As far as V, is concerned, from Fig. 3.6, it is the sum of the volumes of two spherical caps with

heights
e — (R—z+x2)3(6R+z—x) (3.17)
h — (R—a:+z)2(;R+x+z). (3.18)

V, is then given by

VZ:w(R—HZ)Z((x—Z) (x:—;;z) +2R (z + 32)—3R2). (3.19)

Substituting (3.16) and (3.19) in (3.14) and using the resulting CDF, we obtain

73D L wvev

hw = R—}—% e T dzdr. (3.20)
R 0
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From (3.20), A?P is an increasing function of A\, and R. This observation is further verified by

the empirical results in Fig. 3.7.
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FIGURE 3.7 — Analytical and empirical results of h3P.

3.7 Power saving mechanism

In order to provide the required operational power, WSN nodes are usually equipped with
batteries or energy harvesting devices. However, the batteries have a very limited capacity while
energy harvesting using the technologies so far developed is not only very expensive, especially
if embedded in large scale WSNs, but also unable to provide the sufficient amount of energy.
This makes power saving a crucial mechanism in WSNs. If such a mechanism is not taken into
account during the localization process, it may hinder localization accuracy. In what follows,
we will show how a power saving mechanism could be easily incorporated in our proposed
localization algorithm. Although several power saving mechanisms exist in the literature, we
are only concerned in this paper by the most basic mechanism which consists on switching
periodically each node between the awake (i.e.,power on) and the sleep (i.e., power off) states
to save power and, hence, increase the WSN lifetime. Using this mechanism, the time is equally

divided into cycles where each node independently decides whether to be awake or sleep. This
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causes the randomization of the number of available (i.e, in the awake state) nodes assumed to
be equal to N in (3.13) and (3.20) may hinder localization accuracy. To circumvent this issue,
we propose to substitute N in these two equations by the average number of available nodes
N,,. Assuming that the time required to perform the proposed algorithm does not exceed one

cycle, N,, is given by
N
Naw = > _p}¥, (3.21)
i=1

where p?V is the probability that the ¢-th node is in the awake state. If this probability is the
same across the network (i.e., p? =p*, i =1,...,N), N,, would be reduced to Np?¥. Using

the latter result in (3.13) and (3.20) yields to
W22 =R -3 [3 [ Bdzdp, (3.22)
and

73D 1 2R R -\ aw(Viv)
h;” = R-— In e P “dzdz, (3.23)
R 0

respectively.

3.8 Simulations results

In this section, we evaluate by simulations the performance of the proposed algorithm in
terms of localization accuracy using Matlab. These simulations are conducted to compare, un-
der the same network settings, the proposed algorithm with some of the best representative
localization algorithms currently available in the literature, i.e., DV-Hop [4], RAL [29], and
pattern-driven [20]. Simulations are run both in 2-D and 3-D cases. In the 2-D case, nodes are
assumed to be uniformly deployed in a square area S = 10* m? and in a cubic volume V = 10*m?3
in the 2-D and 3-D cases, respectively. Besides to the C-shaped network topology in Fig. 6.1,
we consider two other anisotropic topologies commonly used in the context of WSN : W-shaped
and S-shaped topologies as depicted in Fig. 3.8(a) and Fig. 3.8(b), respectively.

As an evaluation criterion, we propose to use the normalized root mean square error (NRMSE)

defined as follows

Ny A \2 A N2
> /(o= 20 + (i~ )
e= N.R )

(3.24)
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All the following results are obtained by averaging over 100 trials.

Fig. 3.10 plots the localization NRMSE achieved by DV-Hop, RAL, pattern-driven, and our
proposed algorithm versus the node density with a constant number of anchors set to be 20 in
C-, W-, and S-shaped network topologies. Figs. 3.10(a), 3.10(c), and 3.10(e) provide the results
of the 2-D case, while Figs. 3.10(b), 3.10(d), and 3.10(f) provide those of the 3-D case. As
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can be shown from these figures, the proposed algorithm always outperforms its counterparts.
Indeed, in the 2-D case (3-D case), it is until about 80% (180%), 70% (100%), and 60% (60%)
more accurate than DV-Hop, RAL, and pattern-driven, respectively. Furthermore, our algorithm
achieves almost the same performance in the three network topologies while DV-Hop’s, RAL’s,
and driven-pattern’s performance, which are already poor in the C-shaped topology, severely
deteriorate in the W-shaped topology, more so in the S-shaped topology.

Fig. 3.11 shows the NRMSEs’ standard deviations achieved by all localization algorithms for
different node densities in the C-; W-, and S-shaped network topologies. Figs. 3.11(a), 3.11(c),
and 3.11(e) provide the results of the 2-D case, while Figs. 3.11(b), 3.11(d), and 3.11(f) provide
those of the 3-D case. As can be seen from these figures, the NRMSEs’ standard deviations
achieved by DV-Hop, RAL, and driven-pattern slightly decrease when the node density increases
while the one achieved by the proposed algorithm substantially decreases. This means that
implementing our algorithm in any network topology guarantees an accurate localization for any
given realization. This result is very interesting in terms of implementation strategy, since it
proves that the result in Fig. 3.10 becomes more and more meaningful as A grows large.

Fig. 3.12 illustrates the localization NRMSE’s CDF achieved by DV-Hop, RAL, pattern-
driven, and our proposed algorithm with N = 200 and N, = 20 in the C-; W-, and S-shaped
network topologies. Figs. 3.12(a), 3.12(c), and 3.12(e) provide the results of the 2-D case, while
Figs. 3.12(b), 3.12(d), and 3.12(f) provide those of the 3-D case. Using the proposed algorithm,
until 80% (90%) of the regular nodes could estimate their position within twice the transmission
range in the 2-D case (3-D case). In contrast, until 38% (10%) and 42% (60%) of the nodes
achieve the same accuracy with RAL and pattern-driven, respectively, and about 0% (10%)
with DV-Hop. This further proves the efficiency of our new algorithm.

Fig. 3.13 plots the localization NRMSEs achieved by our proposed algorithm and its counter-
parts versus the anchors number with N = 200 in the C-; W-, and S-shaped network topologies
in both 2-D and 3-D cases. As can be observed from this figure, all algorithms become more
accurate as the number of anchors in the network increases. From Fig. 3.13, the NRMSE achie-
ved by the proposed algorithm decreases more rapidly than those achieved by DV-Hop, RAL
and pattern-driven. This is expected since the number of potentially reliable anchors increases
with the total number of anchors and, hence, localization is more accurate. This is in contrast

with DV-Hop in which each regular node estimates its distance to all anchors (i.e., even those
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with curved shortest path) in the network, thereby hindering localization accuracy. The fact that
the NRMSE achieved by the proposed algorithm decreases more rapidly than that achieved by
pattern-driven an RAL proves that our anchors selection strategy is more reliable and efficient
than that in [20] and [29].

Fig. 3.14 displays the localization NRMSEs achieved by the proposed algorithm and its
counterparts versus p* in the C-; W-, and S-shaped network topologies in both 2-D and 3-D
cases. As can be observed from this figure, localization accuracy of each algorithm improves when
p*¥ increases. This is expected since the number of potentially available nodes increases with p*¥
and, hence, the nodes density increases. Furthermore, from Fig. 3.14, if the proposed algorithm
accounts for the power saving mechanism, its achieved NRMSE remains almost constant when
p*" increases. This highlights another advantage of our algorithm over its counterparts, namely
its ability to efficiently incorporate a power saving mechanism.

Fig. 3.15 plots the localization NRMSEs achieved by the proposed algorithm and its counter-
parts versus the nodes density with different anchors placement strategies : perimeter, grid and
random as depicted in Figs. 3.9(a), 3.9(b), and 3.8, respectively. This figure shows that the grid
anchors’ placement is the most efficient strategy in W- and S-shaped topology while the random
anchors’ placement is best in the C-shaped topologies. This result is very interesting since it
proves that the performance of each strategy is closely related to the network topology. In other
words, if the latter is known beforehand, we will be able to select the appropriate strategy when
deploying the WSN.

Figs. 3.16 and 3.17 plot the localization NRMSEs achieved by the proposed algorithm and its
counterparts versus the nodes density and the degree of range irregularity (Dol), respectively.
In Fig. 3.16, a non-uniform nodes’ deployment is assumed while, in Fig. 3.17, the transmis-
sion range is no longer assumed circular. A range irregularity model similar to that in [8] was
implemented instead. From these figures, the localization NRMSEs achieved by all algorithms
deteriorate due to both non-uniform nodes’ deployment and range irregularity. This is expected
since these phenomena are not taken into account when designing the proposed algorithm and
its counterparts. However, as could be observed from Figs. 3.16 and 3.17, the proposed algorithm
remains more accurate than its counterparts. This further proves the increased robustness of our

proposed algorithm to model imperfections.
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3.9 Conclusion

In this paper, we proposed a novel range-free localization algorithm tailored for anisotro-
pic WSNs. Using the proposed algorithm, each regular node estimates its distances to reliable
anchors only. The latter are properly chosen following a new reliable anchor selection strategy
that ensures an accurate distance estimation thereby making our localization algorithm more
precise. New average hop sizes’ expressions were also developed in this paper for both 2-D and
3-D scenarios. We showed that the obtained expressions are very accurate especially for high
nodes densities. Furthermore, a power saving mechanism aiming to enhance the WSN lifetime
was envisaged. We proved that our proposed algorithm could easily incorporate such a mecha-
nism. Simulations showed that our algorithm, whether combined or not with the power saving
mechanism, consistently outperforms the best representative range-free localization algorithms
currently available in the literature in terms of accuracy, even with the presence of non-uniform

node distribution or radiation irregularities.
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Résumé : Jusqu’a présent, tous les algorithmes de localisation de type range-free
exploitent une seule information (i.e., nombre de saut, taille moyenne de saut, etc.)
pour localiser les capteurs. Afin de pousser la précision de localisation, ce chapitre
propose un nouvel algorithme de localisation qui prend en compte non seulement
Pinformation de nombre de sauts entre les noeuds réguliers et les nceuds des ancres
mais aussi des informations déja fournies par les noeuds intermédiaire (a savoir,
relais) entre chaque ancre et nceud régulier. En tant que tel, nous développons
un nouvel algorithme de localisation range-free. En tenant compte les positions
des nceuds d’ancre ’expression analytiquement exacte de la moyenne de ’erreur
de lestimation de positon (LEE) a été calculée pour la premiére fois en closed-
form dans ce chapitre. Il est démontré que la performance de notre algorithme
proposé surpasse les meilleurs algorithmes représentatifs de la littérature en termes
de précision. Contrairement a ce dernier, nous montrons en outre qu’il est en mesure
d’atteindre une moyenne et une variance de LEE autour de 0 dans les réseaux trés

denses, réalisant ainsi une précision sans précédent parmi les techniques range-free.

89



Abstract

To localize wireless sensor networks (WSN)s nodes, only the hop-based information (i.e.,
hops’ number, average hop size, etc.) have been so far exploited by range-free techniques, with
poor-accuracy, however. In this paper, we show that localization accuracy may greatly benefit
from joint exploitation, at no cost, of the information already provided by the forwarding nodes
(i.e., relays) between each anchor (i.e., position-aware) and sensor nodes pair. As such, we develop
a novel range-free localization algorithm, derive its average location estimation error (LEE) in
closed-form, and compare it in LEE performance with the best representative algorithms in the
literature. We show that the proposed algorithm outperforms them in accuracy. In contrast to
the latter, we further prove that it is able to achieve a LEE average and variance of about 0 when
the number of sensors is large enough, thereby achieving an unprecedented accuracy performance

among range-free techniques.

4.1 Introduction

Recent advances in wireless communications and low-power circuits technologies have led to
proliferation of wireless sensor networks (WSNs). A WSN is a set of small and low-cost sensor
nodes often equipped with small batteries. The latter are often deployed in a random fashion
to sense or collect from the surrounding environments some physical phenomena such as tem-
perature, light, pressure, etc. [1]-[3]|. Since power is a scarce resource in such networks, sensors
usually recur to multi-hop transmission in order to send their gathered data to an access point
(AP). However, the received data at the latter are often fully or partially meaningless if the
location from where they have been measured is unknown [4], making the sensors’ localization
an essential task in multi-hop WSNs. Designed to comply with such networks, many localiza-
tion algorithms exist in the literature [5]-[30]. To properly localize each sensor, most of these
algorithms require the distance between the latter and at least three position-aware nodes called

hereafter anchors!. Since it is very likely in multi-hop WSNs that some sensors be unable to

1. In practice, an anchor node refers to a sensor, base station, or a nearby access point (AP) with known
position. This information is usually acquired using global positioning system (GPS) technology, configured or

manually entered into the node memory prior to deployment.
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directly communicate with all anchors, the distance between each anchor-sensor pair is usually
estimated using their shortest path. This distance is in fact approximated by the sum of the
distances between any consecutive intermediate nodes located on the shortest path between the
two nodes. The localization algorithms based on such an approximation are commonly known in
the literature as connectivity-based or range-free algorithms [5]-[30]. Depending on the process
used to estimate the distances between the intermediate nodes, range-free algorithms may fall
into three categories : measurement-based, heuristic, and analytical [5]-[30].

Measurement-based algorithms exploit the measurements of the received signals’ characte-
ristics such as the received signal strength (RSS) [5] or the time of arrival (ToA) [6], etc. Using
the RSS measurement, the distance between any sensors’ pair could be obtained by converting
the power loss due to propagation from a sensor to another based on some propagation laws.
Unfortunately, due to the likely presence of noise and interference, the distance’s estimate would
be far from being accurate, thereby leading to unreliable sensor localization accuracy. Using the
ToA measurement, both sensor and anchor nodes require high-resolution clocks and extremely
accurate synchronization between them 2. While the first requirement may dramatically increase
the cost and the size of every node, the second results in severe depletion of their power due to
the additional overhead required by such a process. Furthermore, in the presence of noise and /or
multipath, the ToA measurement is severely affected thereby hindering sensors’ localization ac-
curacy.

As far as heuristic algorithms [4]-[12] are concerned, most of them are based on variations of
the DV-HOP technique [4|, whose implementation in multi-hop WSNs requires the computation
of the average hop size (i.e., average distance between any two consecutive intermediate nodes)
h., to estimate the distance between a sensor and an anchor as nh,, where ny, is the number of
hops between the two nodes. Such algorithms have, however, a major drawback. Indeed, h,, is
computed in a non-localized manner and broadcasted in the network by each anchor. This incurs
undesired prohibitive overhead and power consumption, thereby increasing the overall cost of
the localization process.

More popular alternatives suitable for multi-hop WSNs are the analytical algorithms [13]-[30]

2. Please note that advanced ToA-based algorithms known as round-trip (i.e., two-way) ToA algorithms do
not require any synchronization between nodes [31], [32]. However, this advantage comes at the cost of additio-
nal overhead which becomes prohibitive especially in multi-hop WSNs, making the round-trip ToA algorithms

unsuitable for such networks.
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which evaluate theoretically h,, using the statistical characteristics of the network deployment.
The obtained h,, is actually locally computable at each regular node, thereby avoiding the
unnecessary overhead and power consumption incurred by heuristic techniques if, likewise, it
had to be broadcasted in the network. In spite of their valuable contributions, the localization
algorithms developed so far in [13]-[30] do not provide unfortunately sufficient accuracy, due to
large errors occurred when mapping ny, into distance units. This is primarily caused by the lack
of information provided by both h,, and n;. Actually, the distance between an anchor-sensor pair
depends not only on the latter hop-based information, but also on the number m of forwarding
nodes (i.e., which forward any data between the two nodes). Indeed, when nj, and the total nodes’
number are fixed, the distance increases (decreases) if m increases (decreases). Consequently, if
this easily-obtained information is taken into account when designing a localization algorithm,
its accuracy would definitely be improved.

Hence we propose in this paper, a novel analytical localization algorithm that properly ex-
ploits m alongside the hop-based information, derive its average location estimation error (LEE)
in closed-form, and compare it in LEE performance with the best representative algorithms in
the literature. We show that the proposed algorithm outperforms them in accuracy. In contrast
to the latter, we further prove that it is able to achieve a LEE average and variance of about
0 when the number of sensors is large enough, thereby achieving an unprecedented accuracy
performance among range-free techniques.

The rest of this paper is organized as follows : Section 4.2 describes the system model and dis-
cusses the motivation for this work. Section 4.3 proposes a new approach aiming to estimate the
distance between any anchor-sensor pair. A novel localization algorithm for multi-hop WSNs is
introduced in section 5.4. Its accuracy is analyzed in Section 4.5. Simulation results are discussed

in Section 5.5 and concluding remarks are made in Section 5.6.

4.2 Network model and motivation

Fig. 4.1 displays the system model of M anchor and N sensor nodes deployed in a 2-D

1

square area S. The anchors' are aware of their positions while the sensors are oblivious to this

3. Note that a forwarding node between an anchor-sensor pair is a node able to forward any data between the
two nodes without being necessary on the shortest path. An intermediate node on this path is then a forwarding

node but the reciprocal does not hold true.
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information. These sensors are assumed to be uniformly distributed in S. All anchor and sensor
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FIGURE 4.1 — Network model.

nodes are assumed to have the same range (i.e., transmission capability) denoted by R. Each
node is then able to directly communicate with any other node located in the disc having that
node as a center and R as a radius, while it communicates in a multi-hop fashion with the nodes
located outside it. As shown in Fig. 4.1, the anchors are marked with red triangles and the
sensors are marked with blue circles. If two nodes are able to communicate directly, they are
linked with a dashed line that represents one hop. Let (x;,y;), ¢ = 1,..., N be the coordinates
of the sensors and (ag,bg), k= 1,..., M be those of the anchors.

In what follows, we propose an efficient anchor-based localization algorithm aiming to accu-
rately estimate the sensors’ positions. Such an algorithm requires that the latter estimate their
distances to at least 3 anchors and be aware of their coordinates. The k-th anchor should then
broadcast its coordinates (ag, bx) through the network. If the i-th sensor is located at a distance

less than or equal to R from that anchor, it receives the coordinates in n, = 1 hop. Otherwise,
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it receives them after n; > 1 hops. So far, in most previous algorithms, the i-th sensor estimates

its distance to the k-th anchor d;_; using only the information n;, as
di— = nphay, (4.1)

where h,, is a predefined average hop size. Note that this distance estimation (DE) approach

relies on the fact that in highly dense WSNss,

nh
di—k =~ Z hl, (42)
=1

holds. In (4.2), h; is the [-th hop’s distance. Unfortunately, this approach exhibits a major
drawback. Indeed, h,, is usually derived either analytically (i.e., hay = E {h;}) by exploiting the
Poisson Limit Theorem valid for high nodes densities [13]-[30] or heuristically by computing the

mean hop size of all the shortest paths between anchors as in [4]

1
Bay = MO Y - : (4.3)

where ny; is the number of hops between the k-th and [-th anchors. It is then very likely that
hav be different from the mean hop size of the shortest path between the k-th anchor and the
i-th sensor (i.e., hay # (D", i) /ny and, hence, large DE errors may occur, thereby hindering
the ¢-th sensor’s localization accuracy. This motivates us to seek for more efficient DE approach

for exploitation by our localization algorithm.

4.3 Proposed DE approach

In this work, we propose to exploit, in addition to n;, another easily obtained information,
in order to reduce the distance estimation error, thereby improving the localization accuracy.
According to the parity of n;, we distinguish below between two cases and develop two different

approaches suitable for each case.

4.3.1 ny is even

For simplicity, let us first assume that nj, = 2. Let Dy (R) and D;(R) be the discs with radius
R and having, respectively, the k-th anchor and the i-th sensor as centers. F' = Dy (R) N D;(R)
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FIGURE 4.2 — Effect of the distance d;_; on the forwarding area F.

is then the forwarding area wherein the forwarding nodes*, which forward the messages sent
from the k-th anchor to the i-th sensor, are located. An in depth look at this area reveals that it
is strongly dependant on d;_j; a fact that could be exploited to estimate the latter. Indeed, as
can be observed from Fig. 4.2, if d;_j increases (decreases). then F' decreases (increases). Using

some geometrical properties and trigonometric transformations, one can even show that

: 1
F=®(d) =2R*cos™* <Z—Z) - §dk“ [AR? — d2;. (4.4)

4. A forwarding node refers to a sensor located in the forwarding area F'. Please note that we consider, in this

work, that an anchor assists the sensors’ localization by only broadcasting its information across the WSN. It is

then not involved in forwarding the messages of other anchors.
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It follows from (4.4) that ® (d) is a decreasing function of d, which confirms the above observation.
As such, computing F' is crucial in order to estimate the distance between the k-th anchor and

the i-th sensor. From Fig. 4.3, the latter receives m times the k-th anchor’ coordinates, each

FIGURE 4.3 — Two-hop communication.

from a distinct forwarding node. Since nodes are uniformly distributed in S, knowing m, the

A

i-th sensor is able to locally approximate F' as F' = m/\ where A = N/S is the WSN density.

A

d;_1 could then be obtained as

diy = U(F), (4.5)
where W(z) = ®~!(x) is the inverse function of ®. Unfortunately, to the best of our knowledge,
there is no closed-form expression for W(z). It is then impossible to obtain d;_; using (4.5). In
order to circumvent this impediment, a look-up table may be envisaged at each sensor. However,
such a table usually requires a large memory space; a scarce resource for these often-primitive
devices. Even if it is possible to implement an additional memory space at each node, this would
substantially increase the overall cost of the network, especially for large-scale WSNs. Alterna-
tively, one may numerically compute cZi_k. To this end, we propose to equivalently reformulate
this problem as a root-finding problem of the function &)(x) = O(x) — F. Many root-finding
iterative algorithms already exist in the literature such as Newton-Raphson method, Brent’s

method, Secant method, etc.. Due to its simplicity, only the latter is of concern in this work.
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Using the Secant method, d;_ is derived by iteratively executing the following instruction :
~1
di_y, — &y,

O (d ) — @ ()

Aty =diy — @ (d7)

7

(4.6)

where p refers to the p-th iterations, until convergence (i.e., p = p™®* = infp{cif_k = cfff,f , Vs e

N*}). From (4.6), two initial values oi?f , and c;lllf . are required to properly compute diy = ch:n;X
To guarantee fast convergence of the Secant method, cZ?_k and cZ}_k must be chosen among the

range of possible values of d;_j, (i.e., [R,2R]). In this work, we opt for d°_, = Rand d!_, = 2R. As
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FIGURE 4.4 — Distance estimation error (DEE) vs. the number of iterations.

can be observed from Fig. 4.4, using these values, p™** does not exceed 5 iterations. Knowing that
the required power to execute one instruction is in the range of 10~* of the power consumed per
transmitted bit [33|-[34], the power needed to execute the Secant method is then very negligible
with respect to the overall power consumed by each sensor. Consequently, the proposed DE

approach complies with WSNs where the power is considered as a scarce resource.
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Now, let us generalize the proposed DE approach by considering n; > 2. In such a case, d;_j,
would simply be, as could be observed from Fig. 4.5, the summation of n;,/2 two-hop distances

A~

between the k-th anchor and the ¢-th sensor. d;_j is then given by

ny/2

di_y = 121: v (%) , (4.7)

where m; is the number of forwarding nodes at the [-th 2-hop distance.

FIGURE 4.5 — Four-hop communication.

4.3.2 ny is odd

If ny, is odd, d;_j would be the summation of (n, — 1)/2 2-hop distances plus the last-hop
distance d“**. Using the fact that the minimum square error (MMSE) of the last-hop distance
estimation is obtained as dlast = E{dM} d,_, is given by

A (nn—1)/2 my -

dy p = ; v <7> 4l (4.8)
Now, let us focus on dr**. In order to derive it, one should compute the conditional cumulative
distribution function (CDF) Fyz(z) = P (Z < z/Z < R) where, for the sake of clarity, Z refers to
the random variable d-®*. Actually, as shown in Fig. 4.6, the probability that the event {Z < 2}

occurs is the probability that the i-th sensor be in the disc D;(z) having the j-th sensor as center

and z as radius. Therefore, F(z) can be defined as
Fy(2) = P(AB) = 2\2) (49)
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FIGURE 4.6 — Last-hop distance estimation.

where P (A|B) is the probability that the event A = {the i-th sensor is in the dashed disc D;(z)}
given B = {the i-th sensor is in D;(R)} occurs. Since the nodes are uniformly distributed in S,

we have

P(A) = (4.10)
P(B) = %Rz. (4.11)

It follows from (4.10) and (4.11) that F(2) = (z/R)? and, hence, the probability density
function (PDF) fz(z) of Z is given by

2z
fz(2) = (4.12)
Exploiting (4.12), we easily show that
~ 2R
d"st = - (4.13)

In what follows, we introduce a new localization algorithm for multi-hop WSN that exploits
the proposed DE approach and analytically prove its accuracy. The obtained results will be

further verified using Monte Carlo simulations.
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4.4 Proposed localization algorithm

4.4.1 Initialization

As a first step of any anchor-based localization algorithm, the k-th anchor broadcasts through
the network a packet which consists of a header followed by a data payload. The packet header
contains the anchor position (ag, by), while the data payload contains (n, cZ), where n is the hop-
count value initialized to one and d is the estimated distance initialized to zero. If the packet is
successfully received by a node, it stores the k-th anchor position as well as the received hop-count
n, = n in its database, adds one to the hop-count value and broadcasts the resulting message.
Once this message is received by the another node, its database information is checked. If the
k-th anchor’s position does not exist, the node adds the received information to its database
and checks the parity of n. If it is odd, the message is broadcasted after incrementing it by 1.
Otherwise, the node creates a variable m;,, which represents the number of received packets from
the k-th anchor with the same data payload, and initializes it to one. However, if the node is aware
of the k-th anchor’s coordinates, it compares n and d with the stored ones ny, and cfk, respectively.
If n > ng or n = ng but d > czk, the packet is immediately discarded. If n < n, or n = n; and
d < dk, the node updates n; to n and cik to d. Otherwise, the parity of n is checked. If it is odd,
the packet is broadcasted after incrementing it by 1. If not, my, is incremented by 1. At this stage,
a waiting-time 7, before transmitting the k-th anchor information, is envisaged to ensure that all
similar packets are received. Afterwards, using m; and the approach in Section 4.3.1, the node
estimates the last two-hop distance, adds the estimate to di, and broadcasts the resulting packet
in the network. This process will continue until each sensor in the network becomes aware of all
anchors’ position. It is noteworthy that, at this stage, if ny is even, the sensor is already aware of
its distance to the k-th anchor. Otherwise, it is obtained by adding, as discussed in Section 4.3.2,
2/3 to the stored d. Fig. 4.7 summarizes our algorithm’s pseudocode implementable at each

Sensor.
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4.4.2 Positions’ computation

Once the i-th sensor obtains all the anchors’ coordinates and their corresponding distances,

it computes its position by solving the following nonlinear equations system :

(ay — &) + (b —5:)° = d2,

A N\2 A \2 7
— &)+ (b —5) = A2
(ag — ;) .(2 ) ‘27 <4_14>

N2 N 5
(anr = 2:)" + (bn — )" = di_y
where (;,7;) are the estimated i-th sensor’s coordinates. After some rearrangements aiming to

linearize the system above, we obtain

1
YTa; = 5k (4.15)
where &; = [, ?Qi]T7 _ .
a1 — app bl - bM
o —a by — b
r_ 2 | M 2 | M 7 (4.16)
| a(m-1) — am bar—1) — b i
and - i
di y = di_y +ady — af + by, — b
42, —d? \ +ad, — a3+ b3 — b}

A

di_ a1y = dinr + @iy — Ay gy + 03— by i

Since Y is a non-invertible matrix, &; could be estimated with the pseudo-inverse of Y as
follows :

&; = —% (YY7) " ATk, (4.18)

Therefore, the i-th sensor is able to obtain an estimate of its coordinates as #; = [&;]1, and
Ui = [&]2. It is also noteworthy from (6.3) and (6.4) that ; and g, are solely dependent on the
anchors’ coordinates (ag, b),k =1, ..., M and the estimated distances dk_i, k=1,..., M which
are all locally available at the i-th sensor. Therefore, their computation does not require any
additional overhead (i.e., additional power cost), making our algorithm compliant with WSNs’

power restrictions.
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Input : Number of anchors M, and their positions (x, yx), as well as the received hop-count
ny, and the number of received packets m initialized to zero, where k =1,..., M
for k=1— M do
Check database
if Data{k}= () then
Save Data{k}
ng =ng+ 1
Broadcast updated Data{k}
else if n > n;, and d > cik then
Discard received data

else if n < n; and d < czk then

else if (n; mod 2) =0 then
m=m+1
Wait 7
cik,(nk,g) + Eq. (6.2) in section 5.4
else
n,=n;+1
Broadcast updated Data{k}
end if
end for
Z;,9; < Eq. (6.5) in section 6.1
Output (z;,v;) > Estimated position of the i-th node

FIGURE 4.7 — Proposed algorithm for sensors.
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In what follows, the performance of the proposed localization algorithm is analyzed and

compared to the most representative benchmarks in the literature.

4.5 Performance analysis of the proposed algorithm

4.5.1 Performance metrics

One way to prove the efficiency of the proposed localization algorithm is undoubtedly ana-

lyzing its accuracy. To this end, we introduce the following performance metric :
Epi = lloi — &, (4.19)

where Ep; denotes the i-th sensor’s location estimation error (LEE) and ay; = [z;,3,]" is a vector
whose entries are the true i-th sensor coordinates. From (6.6), &p; is an excessively complex
function of the random variables (z;,v;),i = 1,..., N, d;_; and czi_k, k=1,...,M and, hence,
a random quantity of its own. Therefore, it is practically more appealing to investigate the
behavior and the properties of the average LEE Ep(N) = E{&p;} achieved using the proposed
algorithm. Actually, &p(N) could be differently defined as

Ep(N) =E{G5(N)}, (4.20)
where
p(N) = %ZEP,ZH (4.21)

refers to the global LEE through the network, which is commonly used as a performance metric in
the context of localization in WSNs [4]-[7]. Furthermore, using the strong law of large numbers,

we show for large N that we have
PN L E(N), (4.22)

where 2% stands for convergence with probability one. From (6.9), Ep(N) is not only the sta-
tistical average of GN°'(NN), but also it approaches the latter for any given realization (i.e., any
given (z;,v;),i = 1,..., N). All this proves that £p(N) is a meaningful and useful performance
metric.

In the next section, the average LEE £p (V) achieved using the proposed algorithm is derived

in closed -form and its behavior is analyzed.
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4.5.2 Proposed algorithm’s average LEE
It follows from (6.5) that

2
Epi = 4H (xx?) 7| (4.23)

where [8,] = [e1 — €nr, ..., €nr—1 — €xr]" With €, = cZZQ — d?_, being the squared-distance estima-

tion error. &p; is then given by

Ep; = Tr<(TTT) Y7867 (YY7) 1)

H

-1

= Tr(Q6:6]) = Z Qe (| + Z Q[0 (4.24)

=1 I=1,l#k

where Tr (X) is the trace of the matrix X and 2 =T (TTT) 2T, Note in the second line of
(6.11) that we exploit the cyclic property of the trace. Since €,k = 1,..., M are i.i.d random

variables, we have from (6.11) the following

Ep(N) = o? <2Tr(Q)+Z_ - le>. (4.25)
k

Now let us turn our attention to o2. For the sake of clarity, we first assume that there are
exactly two hops between the i-th sensor and each anchor. The obtained results will be thereafter
generalized. In such a case, from (4.4) and (4.5), the Taylor series expansion of W(x) at F yields

. . v (R
diog = dig+ Y JAF”, (4.26)

n!
n=1

where W (z) is the n-th derivative of ¥(x) and AF = my,/\ — F}. Assuming that AF is small
enough to allow approximation of di_i by the first three non-zero terms of the right-hand-side

(RHS) of (4.26), we obtain
e 24 WO (F)AF + (WO(F)) + diy 0@ (F) ) AF, (4.27)

where OO (z) = (4R? — U(2)?) ™% and U@ (z) = U (z) / (4R? — ¥ (x)2)2. Since the nodes are

uniformly deployed in S, the probability of having my nodes in F} follows a Binomial distribution

Bin (V, p) where p = % and, therefore, the first and second order statistics of my, are E{m;} =

AFy and E{mi} = \F}, (1 — % -+ )\Fk), respectively. Using the latter along with (4.27) yields

ARPATIE, (1— )

(4R2 — W (F,)?)

Ep, {ex} = (4.28)
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where the expectation is taken with respect to my. As could be observed from (4.28), the probabi-
lity density function fr, (F) of Fj is crucial to derive ¢ in closed-form. For the sake of mathema-
tical tractability, Fy is assumed to be Uniform in [0, Fi,ax] where Fia = ®(R) = <_\/T§ + 2%) R2.
Despite this simplifying assumption, we will shortly see in Section 5.5 that the obtained analyti-
cal results closely match those obtained empirically by Monte Carlo simulations. E {e;} is then

given by

_ 2y-1 2Rq)($)(1—q)($)5) . 1 B
Bl = a | (472 — 227 dx_9(3\/§—4w)N<12< 9+ ir) §

+ (27\/3 +4m(9 - 2\/§7r)) R2> . (4.29)

In the first line of (4.29), please note that we resort to the variable change F' = ®(z). Following

similar steps as above, we show that

(47r (47 (9V/3 + 4m) — 189) — 1053@) R*—9 (87 (3v/3+2m) — 243) R%S

E{e}= . (4.30)

27 (3v3 —4m) N

and, hence, o? is obtained. It can be then inferred from (6.12)-(4.30) that the achieved average
LEE &p(N) using the proposed algorithm linearly decreases with N when S and R are fixed.
Furthermore, for sufficiently large N, we have &p(N) ~ 0. This property is actually a desired
feature for any sensor localization algorithm since WSNs are typically dense. It is noteworthy
here that the best representative benchmarks in the literature lack such a feature [4], [13]. Recall,
however, that the results in (4.29) and (4.30) were derived assuming that the number of hops
between any anchor-sensor pair is n, = 2 hops. For the sake of generalization, we consider in
the sequel that ny is a random variable with mean 7;,. In such a case, E{e;} and E {€2} could

be expressed as

3(2np — 1) (€02 + 2&1,1) + o1 <3§1,o <2ﬁh (7 — 3) + 3) + 4(np — 1)) ]

E = R? - —
{en} R 12N 36

+ (4.31)

&, <2ﬁh (71, — 3) + 3) )

8N?2
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16 4 np—1
E{ k}_4N< 502 - gt;l — (nh72 )<2(fo,2+2§1,1) +§0,1(ﬁh—3) (50—Nl+2§10)><

_ n, — 3/ 362
1250,1(]7\1;1 1)) Han—1) (45272+nh2 3( f\o{,sz (él—NI—F&z&o)

63 2
4651 + (3802 +4&11) (M — 5)51,0) + 6(}’\15170 (7t —"7) (R, —5) + f(;\jfm <( i —5)EL o+

252’()) <6§$/2 + ([ =5) (1 ]é\[11 + (=10t & 0)>)>+ﬁh@§2,2+(ﬁh—2)<252[2 + 4(El 1y

&12610)+ S0 (651 2481+ (nn, — 4) (30,2 + 451,1)51,0) + 3% (7, —6) (7, — 4)&10+

-2 ) + B (5 4 a0 (5 (7 Ot 0)) ) )+

25R*  2R&10 | &0
R? =222
(162 Tt )

o <6€1,2 +

(4.32)

respectively, where &, ,, n,m = 0, 1,2 are parameter functions of R and S whose expressions are
listed in TABLE 4.1.

Proof : See Appendix A.

It is noteworthy that the results in (4.31) and (4.32) are very interesting in terms of imple-
mentation strategy, since they allow, through (6.12), to easily find the smallest N that keeps
Ep(N) below a certain level. They also allow to find the best anchor placement strategy that
minimizes £p(N) for a given N. Moreover, in contrast with the two-hop case, it follows from

(4.31) and (4.32) that we have

_ R2

Ep(N) ~ 0.16R* + —51 0+ 520 #0, (4.33)
when NN is large enough. Note that = is nothing but the error incurred when estimating the
last hop of an odd distance between any anchor-sensor pair in the network. A proper anchor
selection scheme should then be envisaged to make our proposed algorithm reach its optimal
accuracy (i.e., &p(N) ~ 0) at large N. Indeed, if each sensor selects among the list of anchors
only those with an even number of hops, its achieved average LEE would approach 0 when N is
large enough. This, of course, requires that at least 3 anchors comply with the above criterion.
Please note that such a selection scheme could be easily implemented in each sensor without

burdening neither the implementation complexity of the proposed localization algorithm nor the

overall cost of the WSNs.
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Parameter Closed-form expression
€10 6V3R/(4(m — 3v3))
£2,0 (8v/3m +9)R? /(831 — 18)
01 ((297\/§—87T(9—|—2\/§7T)>R2—|—6(4\/_7T—27 )S / (36(3v/3 — 47) R)
€o,2 ((647T — 567v/3 — 216m) R* + 36(27 — 47?) > / (216(3v/3 — 4))
€1,1 ((1215\/3 —8r(87(3v3+7) - 135>)R2 +36(47(2v/3 + ) — 99) S) /(432(3\/§ — 4r))
£ (( — 17013 + 407 (13 + 2/37) ) B 4 30 (19 — 4v/37) RS) /(30(3¢§ — 4r))
<9R (3VBR(—1+45R) — 1045) — 548 — 16v/3(1 + 3R) 72 R? + 24r (3(1 — 5R)R?
§2,1
+V3(1+ 6R)S>> /(36(3\/5 ~4m))
S22 (9 (243 - 87 (3v3 + 27) ) R3S + (471' (47(9v/3 + am) — 189) — 1053¢§) 34) / (108(3v/3 — 4r))

TABLE 4.1 — Closed-form expressions of &, ,, n,m =0, 1,2.

4.5.3 Proposed algorithm’s asymptotic LEE

So far, we derived the average LEE achieved by our localization algorithm and studied its

behavior and properties. Motivated by the fact that the LEE is a more practical metric than its

average, we investigate in this section its statistical properties more thoroughly for the sake of

further highlighting the proposed algorithm’s accuracy.

Let us consider again the 2-hop case (i.e., two hops between the i-th sensor and the k-th

anchor nodes). Exploiting the fact that my is a Binomial random variable, we have from the

Chebyshev’s inequality we have

— P(JAF| < k) < FilS = Fi)

ST NE (4.34)

where k is any given strictly positive real. If the latter is chosen small enough to guarantee the

equivalence |AF| < k & |AF| ~ 0, it holds for sufficiently large N that

P (|AF| ~0) ~ 1. (4.35)
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Exploiting this result along with (4.27) we obtain
P (e ~0) ~1, (4.36)

and, hence, for large N we have &p; ~ 0. This further proves the accuracy of the proposed
algorithm. Furthermore, it is straightforward to show that £p; >~ 0 also holds when the number
of hops between the i-th sensor and all anchors is even (but not necessarily 2). This emphasizes

even more the importance of the anchor selection scheme discussed above.

4.6 Simulations results

In this section, we validate and illustrate our theoretical results by Monte Carlo simulations.
These are conducted to compare under the same network settings the R%-normalized LEEs
(NLEE)s achieved by the proposed algorithm and three of the best representative localization
algorithms currently available in the literature, i.e., DV-Hop [4], LAEP [13|, and EPHP [20].

All simulation results are obtained by averaging over 600 trials. In all simulations, sensors
are uniformly deployed in a 2-D square area S = 10* m2. M is set to 20, expect in Fig. 4.10
where it varies from 15 to 40. R is set to 20 m, expect in Fig. 4.11 where it varies from 12 m to
36 m. Two commonly used anchor placement strategies in the context of WSNs are considered :
the perimeter and grid placements as depicted in Figs. 4.8(a) and 4.8(b), respectively.

Fig. 4.9 plots the average NLEE achieved by the proposed algorithm, DV-Hop, and LAEP
versus N with two anchor placement strategies : perimeter in Fig. 4.9(a) and grid placement
in Fig. 4.9(b). From these figures, the proposed localization algorithm always outperforms in
accuracy its counterparts. It is, for instance at N = 700, until 12 times more accurate than DV-
Hop and until 10 times more accurate than LAEP. This further proves the proposed algorithm’s
efficiency in WSNs and highlights its advantage over its counterparts.

Fig. 4.10 plots the average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and
EPHP versus the anchor ratio with two anchor placement strategies : perimeter in Fig. 4.10(a)
and grid placement in Fig. 4.10(b). From these figures, all algorithms benefit, as expected,
from larger anchor ratios. However, the proposed algorithm remains more accurate than its
counterparts thereby proving once again its superiority.

Fig. 4.11 displays the average NLEE achieved by all localization algorithms versus both

the node degree and communication range with both the perimeter and grid anchor placement
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(b) Grid anchor placement.

FIGURE 4.8 — Different anchors placements.

strategies. As can be observed from this figure, the average NLEE of each algorithm decreases,
as expected, with both the node degree and communication range. However, the accuracy gain

of the proposed algorithm is much more important than those of its counterparts. In contrast
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(b) Grid anchor placement.

F1GURE 4.9 — Average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP

with both perimeter and grid anchor placement strategies versus the nodes number N.

to the latter, its average NLEE approaches 0 when the node degree and/or the communication
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FIGURE 4.10 — Average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP
with both perimeter and grid anchor placement strategies versus the anchor ratio when the nodes

number N = 300.
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FIGURE 4.11 — Average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP
with both perimeter and grid anchor placement strategies versus the node degree and commu-

nication range when the nodes number N = 300.
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F1GURE 4.12 - NLEFE’s standard deviation achieved by the proposed algorithm, DV-Hop, LAEP,

and EPHP with both perimeter and grid anchor placement strategies versus the nodes number

N.
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Fig. 4.12 plots the NLEE’s standard deviation achieved by all localization algorithms ver-
sus N, for two anchor placement strategies : perimeter in Fig. 4.12(a) and grid placement in
Fig. 4.12(b). As it can be observed from these figures, regardless of the anchor placement stra-
tegy, the one achieved by the proposed algorithm substantially decreases when N increases while
those achieved by the other algorithms slightly decrease. Furthermore, the NLEE’s standard de-
viation achieved by the proposed algorithm with or without anchor selection approaches 0 for
any placement strategy. This is due to the fact that the LEE itself being around 0 occurs al-
most certainly (i.e., with almost probability 1) as stated in Section 4.5.3. On the other hand,
Figs. 4.12(a) and 4.12(b) suggest that the proposed algorithm’s performance is further improved
if the low-cost anchor selection scheme introduced in Section 4.5.2 is implemented at each sensor.
All these observations corroborates the results and discussions disclosed in Section 4.5.

Fig. 4.13 illustrates the NLEE’s CDF achieved by our proposed localization algorithm with
and without the anchor selection scheme as well as that achieved by the other algorithms for
two anchor placement strategies : perimeter in Fig. 4.12(a) and grid placement in Fig. 4.12(b).
From these figures, using the proposed algorithm, 80% (98% with anchor selection) of the sensors
could estimate their position with NLEE less than 0.2. In contrast, 45% of the nodes achieve
the same accuracy with LAEP and only about 38% with DV-Hop using the perimeter anchor
placement strategy. This proves even more the accuracy of the proposed localization algorithm.

Fig. 4.14 plots the average NLEE achieved by the proposed algorithm and its counterparts
versus the degree of range irregularity (Dol). In this figure, the transmission range is no longer
assumed circular. A range irregularity model similar to that in [8] was implemented instead. From
Fig. 4.14, the average NLEEs achieved by all algorithms deteriorates due to the range irregularity.
This is expected since this phenomena is not taken Figs. 4.14(a) and 4.14(b), the proposed
algorithm remains more accurate than its counterparts. This further proves the superiority of
our proposed algorithm over the latter.

We plot the average NLEE achieved by the proposed algorithm and its counterparts versus
N in two different anisotropic topologies commonly used in the context of WSNs : the O-
shaped and the U-shaped illustrated in Figs. 4.15(a) and 4.15(b), respectively. We observe from
Figs. 4.16 and 4.17, respectively, that From these figures, the average NLEEs achieved by all
algorithms deteriorate due to the presence of obstacles (i.e., areas with no nodes, for instance

mountains, hills, etc.) in the network. This is expected since such obstacles, which are not taken
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FIGURE 4.13 — NLEE’s CDF achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP

with both perimeter and grid anchor placement strategies when the nodes number N = 300.

into account when designing theses algorithms, cause DE estimation errors, thereby hindering

their accuracies. However, as could be observed from Figs. 4.16 and 4.17, the proposed algorithm
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FIGURE 4.15 — Different network topologies.

remains more accurate than its counterparts. This proves its robustness against the latter, in
anisotropic environments.

Fig. 4.18 shows the total number of exchanged packets Npackets using by the proposed al-
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FIGURE 4.16 — Average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP

with both perimeter and grid anchor placement strategies versus the nodes number N in the
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FI1GURE 4.17 — Average NLEE achieved by the proposed algorithm, DV-Hop, LAEP, and EPHP
with both perimeter and grid anchor placement strategies versus the nodes number N in the

U-Shaped topology.

gorithm and its counterparts versus the node density. As could be seen from this figure, the

proposed algorithm requires the same number of exchanged packets as LAEP and EPHP while
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FIGURE 4.18 — The total number of exchanged packets Npackets Versus the node density.

it requires half the packets exchanged with DV-Hop. This is expected since the three first are
analytical algorithms where the EHP evaluation and, hence, the position estimation are locally
performed at each node after the initialization step, without requiring any additional information
exchange. This is in contrast with DV-hop whose heuristical nature imposes a second broadcast
from the anchors to assist regular nodes’ self-localization. This implies that the overall power
required by our algorithm to transmit and receive the exchanged packets is the same as that
required by LAEP and EPHP while it is the half of that needed by DV-Hop. On the other hand,
the additional power cost incurred by the proposed algorithm due to the correction mechanism’s
instructions is negligible and to the few extra bits in each packet is easily avoidable, as discussed
in Section 2.6. Therefore, our proposed algorithm incurs almost the same power cost as LAEP
and EPHP while it incurs the half cost of DV-hop. This proves that the proposed algorithm
outperforms in accuracy all its counterparts, yet a no extra power cost, thereby highlighting its

superiority.
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4.7 Conclusion

In this paper, we proposed a novel localization algorithm which properly exploits, in addition
to the hop-based information, the forwarding nodes’ number between any anchor-sensor pair.
Its average location estimation error (LEE) was derived in closed-form and compared to those
of the best representative algorithms in the literature. We showed that the proposed algorithm
outperforms them in accuracy. Furthermore, we proved that, in contrast to the latter, our algo-
rithm is able to achieve an average LEE of about 0, when the total sensors’ number N is large
enough. We also proved in such a condition that any realization of its achieved LEE approaches

0, which confirms unambiguously its high accuracy.

Appendix A

In order to compute E {¢,} and E{ei} for any given n;, one should distinguish two cases :
a) ny, is even and b) ny, is odd. Let us first assume that ny, is even. In such a case, ny,/2 2-hop

distances exist between the -th sensor and the k-th anchor nodes and, hence,

np/2

di-r=) _dy, (4.37)
r=1

where d, denotes the r-th 2-hop distance. ¢, is then given by

2 2
np/2 np/2

=Y d| - D d] . (4.38)
r=1 r=1

where d, is the estimated r-th 2-hop distance. Applying (4.26) to d, and retaining the two first

non-zero terms, €, could be equivalently expressed as

2
TLh/2 TLh/2 nh/2

€ = Z ¢ (Fk,r) +2 Z v (Fk,r) Z ¢ (Fk,r)> (439)

where Fj, is the forwarding area associated with d, and

¢ (FLw 0 ) (s 4 2 (s s Y;

(4.40)
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where my,, is the number of forwarding sensors in Fj .. It follows from (4.39) that

E{Gk}— (fo 2+2811+ 2601 (7 - >(@+§1 o))
(4.41)

where &0 = E{¥ (Fy.,)}, &0 = E{¥ (Fi,)’}, and &um = NE{ (Fy.,)" ¢ (Fr,)™} for (n,m) €
{(4,4)|i,7 =0,1,2}\{(1,0),(2,0)}. In order to obtain (4.41), please note that, we resort to the
Multinomial theorem to break (Z"h/ 2 (Fy, T))2 into several terms.

Now, let us turn our attention to the computation of &, ,,,. We first start by o1 = NE{C (F},)}-

Since the sensors are uniformly deployed in S, the probability of having my,, sensors in Fj,, fol-

lows a Binomial distribution Bin (N , Fg:") and, hence, we have
52 Ly
By, AC(Fir)} = W (Fiep) Fip (1= —57 )+ (4.42)

where E,,, . refers to the expectation with respect to my,,. Using (4.42) and integrating by parts

fo1= QFiax {\D(l) (F)F (1—%) —U (F) (1_2§)] e

1 Fmax
/ U (F)dF. (4.43)
Fmax 0

twice yields

&o.1’s expression is then obtained by substituting ¥ (Fiax) with R and Fj.x with its expression.

As far as 2 is concerned, it can be readily shown that

S e F
2= 5 . /O (T (F)* F (1 - §) dF. (4.44)

In order to compute the above integral, one could apply the variable change F' = ®(z). From
(4.4), this implies that dF = \/4R? — 22dx where 2 € [R,2R)]. & is then easily obtained by
integrating over x. It is noteworthy that, using similar approaches as above, all the expressions
of &.m n,m = 0,1,2 could be derived.

Let us focus now on the case where ny, is odd. It follows from (4.26), (4.8), and (4.13) that

€; is given by

(nh—l)/Q 2 nh 1 /2 (nh 1 /2
€= § ¢ (Fr) E, (Frr) E:C Fir) +
(nh—l)/2 2
4R 4R
— F)4+ — — 72 4.45
3 ; C(F)+ =5 (4.45)



Recall here that Z refers to the random variable d“*t. It follows then from (4.45) that

E {Ek}:n};]; ! (250,1 ((nhz_l —1> <% +§1,0> + ?)

4{0,2+2§1,1>- (4.46)

Finally, using (4.41) and (4.41), (4.31) is obtained.

Following similar above steps, (4.32) is also obtained.
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Résumé : Afin d’élargir encore plus les domaines d’application des algorithmes de lo-
calisation proposés, ce chapitre propose un nouvel algorithme de localisation range-
free pour les réseaux de capteurs sans fil (WSN)s qui est robuste contre ’atténuation
anisotrope du signal induite ’évanouissement (fading), effet de masque (shadowing),
et les interférences, etc., présents dans n’importe quel canal sans fil, et de développer
par la présente une technique robuste d’estimation des distances entre les nceuds.
En exploitant les réseaux de neurones artificiels (ANNs), on a réussi a développer
un mécanisme de correction des distances estimées a faible cotit qui tient compte
correctement pour ’atténuation anisotrope du signal. Il est prouvé que I’algorithme
proposé surpasse les algorithmes de localisation la plus représentatifs, non seulement

de la précision, mais aussi dans la robustesse.
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Abstract

We propose a novel range-free localization algorithm for wireless sensor networks (WSN)s
that is robust against the anisotropic signal attenuation induced by fading, shadowing, and in-
terference, etc., present in any wireless channel, and hereby develop a new distance estimation
(DE) approach able to efficiently derive distances’ estimates in closed-form. Exploiting artifi-
cial neural networks (ANN)s, we also develop a power-efficient DE correction mechanism that
properly accounts for anisotropic signal attenuation. Simulation results show that the proposed
algorithm significantly outperforms most representative range-free localization algorithms, not

only in accuracy, but also in robustness against anisotropic attenuation.

5.1 Introduction

Localization is crucial for many WSN applications such as environment monitoring, disaster
relief, and target tracking [2|. So far, several localization algorithms have been proposed in
the literature. These algorithms can be roughly classified into two categories : range-based and
range-free |2]. To properly localize the regular or position-unaware node positions, range-based
algorithms exploit the measurements of some specific received signals’ characteristics such as
the time of arrival (TOA), the angle of arrival (AOA), or the received signal strength (RSS).
These signals are, in fact, transmitted by nodes aware of their positions called anchors (or
landmarks). Although range-based algorithms are very accurate, in general, they are unsuitable
for WSNs. Indeed, these algorithms require high power to ensure communication between anchors
and regular nodes which are small battery-powered units. Furthermore, additional hardware is
usually required at both anchors and regular nodes [3]|, thereby increasing the overall cost of
the network. Unlike range-based algorithms, range-free algorithms, which rely on the network
connectivity to estimate the regular node positions, are more power-efficient and do not require
any additional hardware and, hence, are suitable for WSNs. Due to their practical merits, range-
free localization algorithms have garnered the attention of the research community. The range-
free techniques developed so far fall in two classes : heuristic and analytical |4]-[6]. Heuristic
algorithms are more or less a variation of the well-known DV-HOP [4] whose implementation

in WSNs requires the overhead-burdened calculation (by input reception) and broadcast (by
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output transmission) of a correction factor by each anchor. Such undesired impediment incurs
prohibitive overhead and power consumption thereby increasing the overall cost of the network.
On the other hand, analytical algorithms [13]-[6] evaluate theoretically the distances between
the anchors and regular nodes. These distances are in fact locally computable at each node,
thereby avoiding the above-mentioned impediments of heuristic algorithms. In spite of their
valuable contributions [13|-[6], these techniques rely on the unrealistic assumption that nodes
have a circular radio propagation pattern (RPP). However, due to real-world phenomena such
as fading, shadowing, and interference, etc., present in any wireless channel, anisotropic signal
attenuation (i.e., different from a direction to another) occurs, thereby resulting in practice to
irregular nodes’ RPPs [8]. Hence, if the latter are not properly taken into account, distance
estimation (DE) errors increase significantly and severely hinder localization accuracy.

In this letter, we propose a novel analytical algorithm robust against the anisotropic signal
attenuation and develop a new DE approach able to efficiently derive distances’ estimates in
closed-form. Exploiting ANNs, we also develop a power-efficient DE correction mechanism that
properly accounts for anisotropic signal attenuation. Simulation results show that the propo-
sed algorithm outperforms most representative range-free localization algorithms, not only in

accuracy, but also in robustness against anisotropic attenuation.

5.2 Network model

Fig. 5.1(a) illustrates the system model of N WSN nodes uniformly and independently de-
ployed in a 2-D square area S. Due to the high cost of the global positioning system (GPS) tech-
nology, only a few nodes commonly known as anchors are equipped with it and, hence, are aware
of their positions. The other nodes, called hereafter position-unaware or regular nodes for the
sake of simplicity, are oblivious to this information. In Fig. 5.1(a), the anchor nodes are marked
with red triangles while the regular ones are marked with blue discs. Without loss of generality,
let (x;,y;), i =1,..., N, be the coordinates of the anchor nodes and (z;,y;), i = N, +1,..., N
those of the regular ones. All nodes are assumed to have the same transmission capability (i.e.,
range) denoted by R. An anisotropic signal attenuation (i.e., varies from a direction to another)
is also assumed, due to phenomena such as fading, shadowing, and interference, etc., present in

any wireless channel. This leads, as illustrated in Fig. 5.1(a), to irregular RPPs. Hence, the green
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curves there represent the nodes’ irregular RPPs while the black circles represent their idealistic

ones (i.e., without accounting for fading, shadowing, and interference, etc.).

(a) Network model.

(b) Distance estimation.

FIGURE 5.1
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In what follows, we propose an efficient localization algorithm which accounts for the nodes’
irregular RPPs when estimating the regular nodes’ positions. Such an algorithm requires that
these nodes estimate their distances to 3 anchors, at least, and be aware of their coordinates [4]-
[6]. The more accurate is DE, the more reliable is localization. Hence, we propose in the next
section a novel DE approach for proper integration later in our proposed WSN localization

algorithm.

5.3 Proposed DE approach

So far, in most previous algorithms, the i-th regular node (i.e., (N, + i)-th node) estimates
its distance to the k-th anchor d;_; as

A

di—;, = N K Nay, (5.1)

where n; i, is the number of hops between the two nodes and h,, is a predefined average hop size
(AHS). Unfortunately, this approach exhibits a major drawback. Indeed, AHS is usually derived
either analytically by exploiting the Poisson Limit Theorem valid for high nodes densities [13]-[6]
or heuristically by computing the mean hop size of all the shortest paths between anchors [4].
It is, however, very likely that AHS be different from the mean hop size of the shortest path
between the k-th and (N, + i)-th nodes (i.e., h,, # (Z?:f hl) /ni where h; is the I-th hop’s
size). Hence, large DE errors may occur, thereby hindering the i-th regular node’s localization
accuracy. In order to circumvent this issue, we propose in this paper to directly estimate d;_
without resorting to AHS. Indeed, it was shown that the minimum mean square error (MMSE)

of the distance estimation can be obtained if [6]

A

where Z denotes the random variable that represents the real distance d;_j, and E {-|n; s} is the
expectation conditioned on n; ;. However, due to the randomness of the nodes’ irregular RPPs,
the derivation of d;_j in closed-form is a priori a very tedious task, if not impossible. For the sake
of both simplicity and tractability, we assume herein, only temporarily, idealistic circular RPPs
(i.e., there is no interference, fading or shadowing) when computing d;_1.. In the next section, we
will propose a correction mechanism that properly accounts for the effects of the nodes’ irregular

RPPs in the calculation of cZi_k.
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Assuming idealistic circular nodes’ RPPs, it is straightforward to show that the i-th regular

node is located, as illustrated in Fig. 5.1(b), in the area
A=D(k,nixR)ND(i,R), (5.3)

where D(x,z) is the disc having the *-th node as a center and = as a radius. An in-depth look
at this figure reveals that d;_; is strongly dependent on A. Indeed, d;_, decreases as A widens
and it increases as this area narrows down. di_k could be then obtained by averaging d;_; over
all possible values of A and, hence, we have

diy = / " W(A) fa(a) da, (5.4)

AMin

where W(A) is the functional relationship between d;_j and A, Ay, and Ay, are the maximum
and minimum value of the latter, respectively, and f4(a) is its probability density function (pdf).
According to (5.4), it is clear that W(A) and f4(a) are crucial to obtain d;_j’s expression. First,
let us focus on W(A). Using some geometrical properties and trigonometric transformations, one

can show that

A2, + R*(1—n2 A2, — R*(1 —n?
A=d(di_y) = R?cos™! ( ik ( Zk)) + n R cos™! ( ik ( i) ))

2Rd27k 2ni,dei,k

_ %\/<Rz(1 + )2 — d;{k> <dzsz ~ R2(1-— m’wz)’ (5.5)

where ® = U~ is the inverse function of W. As ®(d;_;) is a complex function of d;_j, W(A)
cannot be unfortunately obtained in closed-form. We will, however, prove in the sequel that
it is possible to compute the integral in (5.4) by solely exploiting the right-hand-side (RHS)
of (5.5). Now let us turn our attention to fa(a). Since A could take any value in [Apgin, Anax]
with the same probability, f4(a) can be considered as uniform (i.e., fa(a) = (Apax — Aniin) ).
Furthermore, using (5.5) alongside the fact that Ay occurs when d = (n;, — 1) R and Ay,

occurs when d = (n; ;) R, we have

-1
1 1 1

fala) = (R2 (7? — cos ! <2n?k) —nZjcos! (1 ~ 5 ) + 5,/4711% - 1>> . (5.6)
i, ik

In order to compute cii_k,, we propose to resort to the variable change z = d;_, = V(A) in the

integral of (5.4). This implies that dz = ¥ (A) da where U™ is the first derivative of ¥ given

\If(l)(A) = (q)(l) (\I,(l)(A)))’l — ((I)(l) (Z))*l — —z/\/Q (1 + ngk) R2:2 — (”?k _ 1)2R4 {5:T)
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where ®() is the first derivative of ®. Actually, this key property - that the inverse function’s
first derivative depends only on the original function’s first derivative - is the one to allow us

compute dj_; as

" ’I’LiJCR
= fata) [
(n;,x—1)R

In (5.8), please note that we account for the fact that if A = Apax (or, A = App,), then

\/2 (14 n2,) R?2% — (n?, — 1)2 R* — 24dz. (5.8)

i’

z = (nix— 1) R (or, z = n;xR). It is also noteworthy that the integral in (5.8) can be easily
obtained in closed-form expressed using Elliptic functions. It follows from (5.8) that Ji_k depends
solely on R and n;; which will be shown to be locally available at every regular node in the next

sections.

5.4 Proposed localization algorithm

We propose in this section a novel three-step localization algorithm. In the first step, the
regular nodes receive in a multi-hop fashion all the information required to estimate their res-
pective distances to all anchors using the DE approach developed in (5.8). In the second step, a
correction mechanism that properly accounts for the effects of the real irregular nodes’ RPPs is
locally performed at each node in order to minimize the DE errors. In the third and last step,
the regular nodes’ positions are computed using the obtained distances alongside the anchors
positions by resorting to conventional multilateration. Due to space limitation, only steps one
and two are described in the following. Interested readers can be, however, referred to [2| for

ample details on the multilateration process.

5.4.1 Step 1 : Initialization

As a first step of any anchor-based localization algorithm, the k-th anchor broadcasts through
the network a packet which consists of a header followed by a data payload. The header contains
the anchor position (zy, yx) while the data payload contains the hop-count value n initialized to
one. When a node receives this packet, it stores the k-th anchor position as well as the received
hop-count n; = n in its database, increments the latter (i.e., n = n+1), and then broadcasts the
resulting message. Once this message is received by an another node, its database information

is checked. If the k-th anchor information is already available and the received hop-count value
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n is smaller than the one previously stored ny, the node updates the latter, increments n by 1,
then broadcasts the resulting message. If n; is smaller than n, the node discards the received
message. However, when the node is oblivious to the k-th anchor position, it adds this information
to its database and forwards the received message after incrementing n by 1. This mechanism will
continue until all nodes become aware of all anchors’ positions and their corresponding minimum
hops’ numbers. Using its available information, the i-th regular node is then able to compute
an estimate d;_j of its distance to the k-th anchor using the DE approach developed in (5.8).
Unfortunately, since this approach does not account for the real irregular nodes’ RPPs significant
errors occur, thereby hindering severely localization accuracy. In the sequel, we propose a new

DE correction mechanism that properly accounts for the effects of the real irregular nodes” RPPs.

5.4.2 Step 2 : Distance correction

An important feature that might allow substantial reduction of DE errors, if properly ex-
ploited, is that anchors are fully aware of their true inter-distances and, further, could easily
estimate them from (5.8). In order to capitalize on these data (i.e., true and estimated anchor
inter-distances), we propose the exploitation in this paper of ANNs due to their ability to build
the complex relationship between the true and estimated distances. ANNs consist of groups of
interconnected artificial neurons. Depending on the nature of these neurons’ connections, se-
veral types of ANNs exist in the literature |7]. In this letter, we only consider the multi-layer
perceptron (MLP)-type feed-forward back-propagation ANNs whose efficiency has been already
proven in the context of WSN localization |7]. Using all the estimated distances between anchors
as inputs and the true distances as outputs of the ANN during the learning phase, we are able
to generate a model or a set of parameters also known as weights and biases that governs the
ANN’s input-output relationship or function. It is the use of the latter through the very same
ANN type at the regular nodes during the so-called generalization phase, i.e., over previously
unobserved data, that allows extrapolation - through the very same linkage established over
anchor inter-distances - any new ANN-input distances d;_1. estimated at the regular nodes as-
suming idealistic circular RPPs into ANN-output calibrated ones d;_j that properly account for
real irregular RPPs.

Nevertheless, one pending issue needs to be addressed before of our new ANN-based distance

correction mechanism can be implemented properly. Indeed, as discussed above, the latter impe-
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ratively requires a training phase that must necessarily be performed at a node with large power
resources. In this letter, we propose that one of the anchors, called hereafter super anchor, play
this role (i.e., generation through training then broadcast for generalization at other nodes the
obtained generic ANN model throughout the network). The main reason for this choice is that
an anchor already stores a good part of the required training data and, hence, allows substantial
overall reduction of overhead, hardware complexity, and power. Actually, in many applications
some anchors are nothing but access points (AP)s with large-enough power resources. Should
such APs be unavailable, the so-called super anchor could be equipped with a longer lifetime
battery (and/or even energy-harvesting capabilities) that maintains an adequate power level for
all its tasks to be achieved.

Furthermore, to be able to perform ANN training, the super anchor needs to be aware of
all true and estimated anchor inter-distances (i.e., N,(N, — 1) distance pairs). Otherwise, each
anchor should be solicited for a second power and overhead consuming broadcast to share its
data with the super anchor. To avoid this situation, we propose in what follows a power-efficient
information sharing protocol where anchors periodically broadcast their positions alongside the
training data. In fact, during the first time slot, only the super anchor should broadcast its
position while the (N, — 1) other anchors only execute the tasks described in Section 5.4.1. At
the second time slot, one of the latter calculates its pair true (e.g., GPS-based) and estimated
(as described in Section 5.3) distances to the super anchor then broadcast it along with its
own position throughout the network. Upon reception of these information, all nodes become
a priori aware of the super anchor and first anchor positions and their inter-distance pairs.
A second anchor then calculates its true and estimated inter-distances to both the super and
first anchors and broadcasts them along with its position throughout the network. Within N,
time slots, all nodes, including the super anchor, become a priori aware of all the anchors’
positions and all N,(N, — 1)/2 inter-distance pairs (i.e., true and estimated). The super anchor
is hence able to progressively accumulate up to (N2 + N, — 2) /2 distance pairs. Although a
relatively larger training data could be collected if each anchor were to broadcast separately its
position and distances, we will show below that the one gathered through the power-efficient
information sharing protocol proposed above is more than enough for the proposed ANN-based
WSN localization technique to outperform most representative range-free algorithms currently

available in the literature.
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5.5 Simulations results

Monte-Carlo simulations are provided in this section to support the theoretical and analytical
results established previously. These simulations are conducted to compare, under the same
network settings, the proposed algorithm with three of the best benchmarks currently available
in the literature, namely, DV-Hop [4], LAEP [13] and MLPNN-CGFR [7]. All simulation results
are obtained by averaging over 500 trials. In all simulations, nodes are uniformly deployed in a
2-D square area S = 10*m? and R and N, are, respectively, set to 18m and 20. Furthermore,
a nodes’ RPP model characterized by a degree of irregularity (Dol) similar to that in [8] is
considered.

As a performance metric, we propose the normalized root mean square error (NRMSE)
defined as NN,

NRMSE = 3 /(e )"+ s~/ ( (NN, ). (5.9)
i=1

Fig. 5.2 plots the localization NRMSE achieved by the proposed algorithm, LAEP, DV-Hop,
and MLPNN-CGFR for different values of N and Dol. As can be observed there, the proposed

algorithm always outperforms its counterparts as it turns out to be until about four, three, and
two times more accurate than LAEP, DV-Hop, and MLPNN-CGFR, respectively. In Fig. 5.2(b),
the localization NRMSE achieved by all algorithms deteriorates as expected with Dol. However,
the proposed algorithm show much more robustness to Dol and its accuracy losses than its
counterparts.

Figs. 6.4 and 5.3(b) plot the NRMSE’s standard deviation achieved by all localization algo-
rithms for different values of N and Dol, respectively. They show that it decreases as expected
for all algorithms when the node density increases. However, the one achieved by our algorithm,
in contrast to its counterparts, remains relatively very small and even approaches zeros when N
becomes large enough. Furthermore, Fig. 5.3(b) shows that the NRMSE’s standard deviation’s
increase with the Dol is relatively slow and moderate with the proposed algorithm, but steep
and significant with all three benchmarks.

Fig. 6.6 illustrates the NRMSE’s CDF achieved by all algorithms and suggests that 99% of
the sensors could estimate their position within a NRMSE value of less than 1 with the proposed
technique. In contrast, only 61% of the nodes achieve the same accuracy with MLPNN-CGFR,
43% with Dv-Hop, and only 30% with LAEP. This further proves the superiority of our new WSN
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FIGURE 5.2 — Localization NRMSE achieved by the proposed algorithm and its counterparts for
different values of N and Dol.

localization algorithm over its counterparts in the presence of anisotropic signal attenuation.
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5.6 Conclusion

In this letter, we proposed a novel range-free localization algorithm robust against the ani-

sotropic signal attenuation induced by fading,18¢adowing, and interference, etc., present in any
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wireless channel. To do so, we developed a new DE approach able to efficiently derive distance

estimates in closed-form. We also developed an ANN-based power-efficient DE correction me-

chanism that accounts for anisotropic signal attenuation. The proposed algorithm significantly

and unambiguously outperforms most representative range-free localization algorithms, not only

in accuracy, but also in robustness against anisotropic attenuation.
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Chapitre 6

Optimal Anchors Placement Strategy for
Super Accurate Nodes Localization in

Anisotropic Wireless Sensor Networks

Ahmad El Assaf, Slim Zaidi, Sofiéne Affes and Nahi Kandil
Proc. IEEE IWCMC’2016, Paphos, Cyprus, September 5-9, 2016.

Résumé : Etant donné que la précision de localisation est fortement dépendante
des positions de nceuds des ancres, ce chapitre élabore une stratégie de placement
optimal de noeuds d’ancre capables de garantir une haute précision de localisation
dans les réseaux de capteurs sans fil distribués dans des environnements anisotropes
(AWSNSs). En recourant a 'optimisation par essaim de particules bien connu (“Par-
ticle swarm optimization PSO”), nous dérivons les positions optimales des ancres
qui minimisent ’erreur moyenne d’estimation de position (LEE). Il a été prouvé que
notre stratégie de placement offre des gains de précision considérables si elles sont
utilisées a la place des stratégies classiques et qu’il est en mesure de réduire non
seulement la moyenne LEE mais aussi la LEE lui-méme et, par conséquent, garantit

une grande précision pour toute configuration de WSN.
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Abstract

In this paper, we develop a novel optimal anchors placement strategy tailored for anisotropic
WSNs. By resorting to the well-known particle swarm optimization (PSO), we derive the optimal
anchors’ positions that minimize the average location estimation error (LEE). We show that our
placement strategy provides substantial accuracy gains if used instead of the conventional ones
and that it is able to reduce not only the average LEE but also the LEE itself and, hence,

guarantees high accuracy for any WSN configuration.

6.1 Introduction

Recent advances in wireless communications and low-power circuits technologies have led to
proliferation of wireless sensor networks (WSNs). A WSN is a set of small and low-cost sensor
nodes often equipped with small batteries. The latter are often deployed in a random fashion to
sense or collect from the surrounding environments some physical phenomena such as tempera-
ture, light, pressure, etc. [1]-[3]. Since power is a scarce resource in such networks, sensors usually
resort to multi-hop transmission in order to send their gathered data to an access point (AP).
However, the received data at the latter are often fully or partially meaningless if the location
from where they have been measured is unknown [4], making sensors’ localization an essential
task in WSNs. Many localization algorithms available in the literature [5]-[13] were designed to
comply with such networks. To properly localize each sensor, most of these algorithms require
the distance between the latter and at least three position-aware nodes called hereafter anchors .
Since it is very likely in WSNs that some sensors be unable to directly communicate with all
anchors, the distance between each anchor-sensor pair is usually estimated using their shortest
path. This distance is in fact approximated by the sum of the distances between any consecu-
tive intermediate nodes located on this path. Several approaches have been so far developed to
estimate these distances. Although efficient, they were unfortunately unable to guarantee high

accuracy, especially in anisotropic environments where the shortest multi-hop path between each

1. In practice, an anchor node refers to a sensor, base station, or a nearby access point (AP) with known
position. This information is usually acquired using global positioning system (GPS) technology, configured, or

manually entered into the node memory prior to deployment.

143



anchor-sensor pair is often much longer than the actual distance separating them. This is ac-
tually due to the fact that the accuracy of any localization algorithm is governed not only by the
distance estimation (DE) efficiency, but also the position of the anchors themselves. Significant
research endeavors have been recently devoted to developing anchor placement strategies able to
guarantee high sensor localization accuracy [14]-[22|. In [15], it has been proven that perimeter
placement is the optimal strategy in isotropic environments free of obstacles (e.g., mountains,
coverage holes, etc.). In [18], this strategy was investigated and compared in accuracy perfor-
mance to other strategies in anisotropic environments. It was shown in [18] and [19] that the
perimeter placement performs poorly in anisotropic environments. Some attempts to derive the
optimal anchors positions in such environments have been made in [20]-|22] without providing
significant accuracy gains.

In this paper, we develop a novel optimal anchors placement strategy properly tailored for
anisotropic WSNs. By resorting to the well-known particle swarm optimization (PSO), we derive
the optimal anchors’ positions that minimize the average location estimation error (LEE). We
show that our placement strategy provides substantial accuracy gains if used instead of the
conventional ones and that it is able to reduce not only the average LEE but also the LEE itself
and, hence, guarantees high accuracy for any WSN configuration.

The rest of this paper is organized as follows : Section 6.2 describes the network model.
Section 6.3 introduces the average LEE and proves its adequacy to anchor-based localization.
Section 6.4 proposes a novel optimal anchors placement strategy. Simulation results are discussed

in Section 6.5 and concluding remarks are made in Section 6.6.

6.2 Network model

Fig. 6.1 illustrates a network model of M anchors and NV sensors deployed in a 2-D square area
S. The anchors are aware of their positions while the sensors are oblivious to this information.
These sensors are assumed to be uniformly distributed in S. All anchor and sensor nodes are
assumed to have the same transmission capability (i.e., range) denoted by R. Each node is able
to directly communicate with any other node located in the disc having that node as a center
and R as a radius, while it communicates in a multi-hop fashion with the nodes located outside.

As shown in Fig. 6.1, the anchors are marked with red triangles and the senors are marked with
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blue circles. If two nodes are able to directly communicate, they are linked with a dashed line
that represents one hop.
Let us denote by (a;,b;), ¢ =1,..., M the coordinates of the anchor nodes and (z;,y;), i =

1,..., N those of the regular ones.

FIGURE 6.1 — Network model.

In what follows, we propose an efficient anchor placement strategy able to significantly en-
hance the accuracy of any anchor-based localization algorithm. To this end, one should first
determine the metric which properly gauges the accuracy of such algorithms. From this pers-
pective, Section 6.3 presents a new metric and proves its adequacy to anchor-based localization

algorithms.

6.3 Average location estimation error (LEE)

As a first step of any anchor-based localization algorithm, the k-th anchor broadcasts its
coordinate (ag, by) in the network. The regular nodes receive these information either directly or
through multi-hop communication. Once the i-th regular node obtains all anchors’ coordinates

and computes their corresponding distances, either heuristically or analytically, it derives its own
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position by solving the following nonlinear equations system :

(a7 — &) + (b —5:)° = d2,
(ag — &) + (e — 9:) = d2,

| (an = &)+ (bw = 3" = d7y

where (Z;,9;) are the estimated i-th sensor’s coordinates and cii_k is its estimated distance to

the k-th anchor. After some rearrangements aiming to linearize the above system , we obtain

1
Yéi = —-ri, (6:2)
2
where &; = [Z;, @i]T7 _ .
a1 — Gpp b]_ - bM
4 —a by — b
r_ 2 — ayp 2~ OM 7 (6.3)

a(mM-1) — am b(Mfl) —bu i

and
&2 —d?  +ai, —al+ b3, — b3

By — 2\ + a3, —ad+ B, — B3

_d?—(M—l) —dj_yrt+ady _a?M—l) +b% _b%M—l) i
Since Y is a non-invertible matrix, ¢&; could be estimated with the pseudo-inverse of Y as

follows :

&; = —% (YTY) " X7k (6.5)

Therefore, the i-th sensor is able to obtain an estimate of its coordinates as #; = [&;]1, and

~

Ui = [&]2. Let Ep; denote the i-th sensor’s location estimation error (LEE) given by

R (6.6)
where a; = [2;,4]" is a vector whose entries are the true i-th sensor coordinates. From (6.6),
Ep,; is an excessively complex function of the random variables (x;,v;),7 = 1,..., N, d;,_; and
cZi_k, k=1,..., M and, hence, a random quantity of its own. Optimizing the anchors’ locations

using such a metric would not only be a tedious task, but it would also result in locations stron-

gly dependent on the sensors’ coordinates. Recall here that such information are not available. A
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much more appealing metric would be then the average LEE Ep(N) = E{&p,;} where the expec-
tation is taken with respect to all the sensors’ coordinates. Actually, Ep(NN) could be differently

defined as
Ep(N) =E{Gp(N)}, (6.7)

where

et ( Zé‘p i (6.8)

refers to the global LEE through the network. Furthermore, using the strong law of large num-

bers, we show for large N that we have
PHN) o Ep(N), (6.9)

where 5 stands for convergence with probability one. From (6.9), Ep(NN) is not only the sta-
tistical average of Gh®*(N), but also it approaches the latter for any given realization (i.e., any
given (z;,1:),7 =1,..., N). All the above proves unambiguously that & (N) is a meaningful and

useful performance metric. It follows from (6.5) that

2
Epi = il (6.10)

il
where [0;] = [e1 — €nry -+, €1 — eM] with €, = difk — d?_, being the squared-distance estima-

tion error. &p; is then given by

&pi=Tr ((070) " X667 (Y71) )

M-1 M—-1 M-1
:Z Qi ([6:])*+ Qpa[6:1:[0:]r, (6.11)
k=1 k=1 I=1l#k

where Tr (X) is the trace of the matrix X and 2 =T (TTT) 2T Note in the second line of
(6.11) that we exploit the cyclic property of the trace. Since €,k = 1,..., M are i.i.d random
variables, we have from (6.11) the following

EP(N):a§<2Tr (Q)+i i le> =0?F(Q). (6.12)

k=11=1,l#k
Therefore, in order to reduce Ep(N) (i.e. improve the localization accuracy), one should minimize
both o2 and F () = 2Tr () + S0 ' oM l;ék Qy;, the former by use of accurate DE techniques
[5]-[13] while F (£2) requires the optimization of the anchors positions. In the next section, adopt

F(£2) as a new design cost function to develop a novel optimal anchors placement strategy.

147



6.4 Proposed anchor placement strategy

In order to improve the localization accuracy in the anisotropic environments of our concern,

one could compute the optimal set of anchors’ positions S,y that satisfies

Sopt = argmin I (£2)
st. Ly<a;<U, i=1,2---,N,
Ly<b;<U, i=1,2---,N,

|Pi = Pil| > dppin. Yi#] (6.13)

where P, = [ai,bi]T is the vector of the i-th anchors coordinates and L,, L, U,, and U, are
lower and upper bounds on all anchors coordinates. These bounds depend on the obstacle form
and position. Please note that the first two constraints ensure that anchors be located within
the obstacle surrounding area. Whereas the third constraint imposes a minimum distance d,,;,,
between the anchors and, hence, guarantees their deployment all over the available area.

Several effective optimization algorithms that require a moderate memory and reasonable
computational resources have been proposed so far to solve such complex optimization problem,
for instance the simulated annealing algorithm (SA), genetic algorithms (GA), artificial intelli-
gence (Al), and particle swarm optimization (PSO) [23]. Due to its ease of implementation, high
resolution, and speed of convergence, the latter has attracted a lot of attention in the research
community and has been recently introduced as a promising tool for solving a wide range of
optimization problems in different contexts such as UWB antenna design, data mining, acoustic
communication, and localization [24]. However, despite their advantage, traditional PSO-based
algorithms may easily fall into local optima, especially when solving a complex multimodal pro-
blem such as the one of our concern [25]|. In order to overcome this issue, we propose in this
paper a novel non-linear fitness-based inertia weight expression given by
(Wmax — Winin) 4 + Wnin

minfik—maxfzk) ’

¢k = Wmax 11—
1 (_2wmin ka
+e i

(6.14)

where p is a random variable uniformly distributed in the interval [0,1] and fF is the average
fitness value at the k-th generation. From (6.14), the value of the inertia weight will be then

dynamically updated at each iteration in a non-linear manner according to the calculated fitness.
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Algorithm 4 Optimal anchor nodes placement algorithm

% s, 1s the set of anchor nodes%
Initialize the first two anchor nodes positions
sp=[0 S;5 9]
Initialize the cognitive and social scaling parameters ¢; and cg, respectively
Initialize the maximum number of iterations k,,qz
Initialize v, in such a way that the fitness of «, is as close to infinity as possible
Initialize position and velocity boundaries
m=3
for m < N, do
Xo = s, (m—1)
while Constraints criteria are not met do
k=1
for each particle 7 do
P, = | Xy + rand (1,2)]
Vi = Vinae X rand (1,2)
Compute f (P;)
if f(P)</(3) then
Vg = Fi
f(g) = f(P)
end if
end for
while k # k,.,v do
@+ < Equation (6.14)
for each particle i do
V1 < Equation (6.15)
PM! « Equation (6.16)
Check the velocity and position boundaries
Compute f (F;)
if f(P)</(p) then
pi = F;
f(pi) = f(F)
end if
if f(P)<f(y) then

- D
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This allows a shorter exploration time than with existing approaches such as the linear, random,
constant, and chaotic ones [26]-[29]. Once we get ¢*, the velocity and position of each particle

are updated using the following equations
VIt = o"VE+ cia (pf — PF) + 4B (v — PF), (6.15)
and
P+l = Py kL (6.16)

where p¥ is the best previous position of the i-th particle, 'yg is the best global position at the
k-th generation, ¢; and ¢y are the cognitive and social scaling parameters, respectively, and «
and (3 are two random variables uniformly distributed within the interval [0, 1]. The rest of the
proposed PSO-based estimation algorithm of the optimal anchors positions with a minimum
average LEE is summarized in Algorithm 4.

In the next section, we prove that placing the anchors in the positions obtained using our PSO-

based algorithm can enhance localization accuracy in anisotropic environments substantially.

6.5 Simulations results

Monte-Carlo simulations are provided in this section to verify the efficiency of the propo-
sed anchors placement strategy. These simulations are conducted to compare, under the same
network settings, the latter with three commonly adopted benchmarks, namely the grid [14], per-
imeter [15], and random [13| placement strategies. All these strategies are tested using two loca-
lization algorithms : the well-known RAPS [8] and one of our recently developed algorithms [9].
All simulation results are obtained by averaging over 800 trials. In all simulations, nodes are
uniformly deployed in a 2-D square area in the presence of a rectangle obstacle which makes the
network topology C-shaped, except in Fig. 6.2 where we consider an isotropic environment. S
and R are set to 502 m? and 10 m, respectively. M is set to 12, expect in Fig. 6.5 where it varies
from 5% to 10%.

Figs. 6.2(a) and 6.2(b) plot the average R*-normalized LEE (NLEE) achieved by RAPS |[§]
and our localization algorithm in [9] using the proposed anchor placement, grid, perimeter, and
random strategies for different values of IV in an isotropic environment. From these figures, the

accuracy of both localization algorithms is improved using the proposed strategy instead of the
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FIGURE 6.2 — Average NLEE achieved by RAPS [8] and our localization algorithm in [9] using
the proposed anchor placement, grid, perimeter, and random strategies for different values of N

in an isotropic environment.

grid and random strategies. Furthermore, the proposed strategy guarantees almost the same

accuracy as the perimeter placement, which was previously proven to be the optimal one in
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any isotropic environment [15]. This validates the optimality of the proposed anchors placement

strategy.
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FIGURE 6.3 — Average NLEE achieved by RAPS [8] and our localization algorithm in [9] using
the proposed anchor placement, grid, perimeter, and random strategies for different values of N

in an anisotropic environment.
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FIGURE 6.4 — NLEE’s standard deviation achieved by RAPS [8] and our localization algorithm

in [9] using the proposed anchor placement, grid, perimeter, and random strategies for different

values of N in an anisotropic environment

Figs. 6.3(a) and 6.3(b) display the average NLEE achieved by RAPS [8] and our localization

algorithm in [9] using the proposed anchor placement, grid, perimeter, and random strategies

1
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FIGURE 6.5 — Average NLEE achieved by RAPS [8] and our localization algorithm in [9] using
the proposed anchor placement, grid, perimeter, and random strategies for different values of M

with V = 150 in an anisotropic environment.

for different values of NV in an anisotropic environment. As could be observed from these figures,

the lowest average NLEE is always achieved by the proposed strategy. The latter turns out to be
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FIGURE 6.6 — NLEE’s CDF achieved by RAPS [8] and our localization algorithm in [9] the pro-
posed anchor placement, grid, perimeter, and random strategies with N = 150 in an anisotropic

environment.

until about 76.8%, 61.62%, and 50.64% more accurate than than grid, perimeter, and random

strategies, respectively. This proves the superiority of the proposed PSO-based anchor placement
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strategy.

Figs. 6.4(a) and 6.4(b) plot the NLEE’s standard deviation achieved by RAPS [8] and our
localization algorithm in 9] using all anchors placement strategies for different values of N. From
these figures, using any strategy, the NLEE’s standard deviation decreases as expected when the
node density increases. However, the one achieved by the proposed strategy approaches 0 as N
grows large, in contrast to all its counterparts. Our strategy is actually able to minimize not
only the average NLEE, but also the NLEE itself. This is a highly desirable feature, since it
guarantees high accuracy for any WSN configuration.

Figs. 6.5(a) and 6.5(b) show the average NLEE achieved by RAPS [8] and our localization
algorithm in [9] using the proposed anchor placement, grid, perimeter, and random strategies
for different values of M with N = 150. As could be observed from these figures, the localization
accuracy is improved as expected when he number of anchors is improved. However, the average
NLEE achieved using our new anchor placement strategy remains the lowest, thereby further
proving its high efficiency.

Figs. 6.6(a) and 6.6(a) illustrate the NLEE’s CDF achieved by RAPS [8] and our localization
algorithm in [9] using all the anchor placement strategies. With the proposed strategy, until
90% of the sensors could estimate their position with a NLEE less than 2 using the RAPS
algorithm. In contrast, 62% achieve the same accuracy with the random strategy, 52% with the
perimeter strategy, and only about 40% with the grid strategy. This highlights again the net
advantage of the proposed PSO-based placement strategy against its counterparts in anisotropic

environments.

6.6 Conclusion

In this paper, we developed a novel optimal anchor placement strategy tailored for aniso-
tropic WSNs. By resorting to the well-known particle swarm optimization (PSO), we derived
the optimal anchors positions that minimize the average location estimation error (LEE). It
was shown that our placement strategy provides substantial accuracy gains if used instead of
conventional ones and that it is able to reduce not only the average LEE but also the LEE itself

and, hence, guarantees high accuracy for any WSN configuration.
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Conclusion

Cette thése propose des algorithmes de localisation novateurs a faible cout qui offre une trés
haute précision. Au chapitre 2, on a développé un algorithme de localisation adapte pour les
WSNs hétérogéne ou la portée de transmission est généralement différente d’un capteur a un
autre. En exploitant le fait que la distance entre deux noeuds de capteurs dépond a la fois de la
portée de transmission du nceud émetteur et celle du noeud intermédiaire, on a réussi & améliorer
la précision de 'estimation de distance et, par conséquent, les performances de la localisation.
Il a été prouvé que notre algorithme ne nécessite aucun échange d’information supplémentaire
entre les capteurs. Un mécanisme de correction capable d’améliorer encore plus la précision a
été aussi développé. Il a été démontré que notre algorithme offre plus de que la plupart des
algorithmes dans la littérature : DV-hop, LAEP et EPHP dont leur conception ne prend pas
en compte I’hétérogénéité des WSNs. Au chapitre 3, un nouvel algorithme robuste contre la
présence d’obstacles entre les nceuds a été développé. Cet algorithme exploite une stratégie
novatrice de sélection des anchors fiables. En plus, un mécanisme d’économie d’énergie visant
a améliorer la durée de vie WSN a été proposé. Visant a améliorer encore plus la précision
de la localisation dans les WSNs, un autre algorithme a été développé dans le Chapitre 4. Ce
dernier utilise d’autres informations localement disponibles au niveau de chaque nceud, jusqu’ici
inexploité. En plus, L’expression analytique de la moyenne de 'erreur de I’estimation de positon
a été calculée pour la premiére fois en closed-form. 11 a été démontré que, en utilisant notre
algorithme, les erreurs d’estimation de la position et de leurs écart-type tendent vers zéro dans
les réseaux trés denses. Chapitre 5 a proposé un nouvel algorithme de localisation robuste contre
"atténuation anisotrope du signal. Une nouvelle approche capable de dériver efficacement les
distances estimées en closed-form a été développée dans ce chapitre. En exploitant les réseaux
de neurones artificiels (ANNs), on a réussi a mettre en place un mécanisme de correction des

distances estimées a faible cotit. La précession et la robustesse de notre algorithme a été prouvé.
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Etant donné que la précision de localisation est étroitement liée aux positions des anchors,
Chapitre 6 a élaboré une stratégie novatrice de placement optimal des anchors. En recourant &
I'optimisation par essaim de particules bien connu (“Particle swarm optimization PSO”), il a été

démontré que la nouvelle stratégie de placement offre des gains de précision considérables.
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