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With ongoing climate change, longer thaw seasons and increased annual ¥ | P?“ét * The CEN station in Quarlikturvik Valley (73°09’N, 79°59’W) is on the western side of BYLOT 5
precipitation are expected over Arctic regions. Such conditions are " P ISLAND within Sirmilik national park, Nunavut, CANADA ‘ ,.
favourable for both intensive and extensive permafrost thaw, mobilising _h . s I - OCE M * The valley is covered by organic rich sediments (15-45%) comprised of peat and aeolian silt ¢
\ organic matter (OM) from different sources and intensifying its flux to | . # | ‘  The landscape is covered by deep continuous permafrost, with taliks underneath the lakes 52
?‘- aquatic ecosystems. These systems are abundant over Arctic lowlands and \ . 2 | o ' that are deeper than ~2m (maximum winter ice thickness)
v are known to be hot-spots of microbial activity. The projected climate 3 * Dense ice-wedge network and snowmelt water both shape the landscape composed of dry
5“1 change, intensification of anoxia mobilization of labile OM could stimulate tundra patches and shallow water bodies (comprising ~6% of the valley bottom) i
4 microbial activity, hence the emissions of CO, and CH, to the atmosphere. e Polar climate with mean annual air temperature of -15°C and low precipitation (190mm) g
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i Objective: Explain a large part of the variability in CO, and CH, emission rates 23
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observed from the aquatic systems associated with permafrost thaw by (1) the Polygonal pond
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it morphology of water bodies, (2) the physiochemical properties of the water T T il e o
column, and (3) the OM load and its lability. e ' L F_STON V..
.. Figure s: A) Average GHG emission rates from water bodies on Bylot Island, B) 4C age of ebullition gas (from Bouchard et al. 2015), C) Landscape at the study site P e S ‘
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t\)NZt.er Photos Vertical profiles (rEm)OLc':l) * Incubations lasting ~2 weeks, under in situ conditions (dark) £
ool . 5 * Incubated materials: 3 depths of a terrestrial core and =
(B 3 sediments from different water bodies )
? ;..,‘. BYL 66 —= B * Soil/sediment incubated with pond water (type 1) or leached o
[ ) iherielars S 7 ' in pond water and filtered through GFF filters (type 2). £ 3
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BYL27/ — L The bottom of polygonal ponds are covered with benthic cyanobacterial mats T =
'/ (Ice-wedge e 6 3 &z o : :g{:) 10.9-14.3 35 " **The sediments of IWT ponds are mainly composed of eroded material from the shores L
A 5 d. "
trough pond) ™ A § Rates from experiment Type 1 are presented in absolute values, whereas from Type 2 are At .
:» : ‘ ‘given as relative to control sample (incubation of pond water without addition of soil OM) P
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T:_..' ' Dissolved oxygen (%) . . . . . . . . . S
& g - ' * Active layer material shows the highest rates of GHG production among terrestrial soils, and C:N ratio supports this result.
O This layer may receive fresh OM from growing plants. Also, as we deal with syngenetic permafrost, the deeper layers may
‘ | have already been exposed to degradation before being integrated into permafrost, lowering modern-day lability. .
2016 field season . 4 oA SEELh * Sediment of polygonal pond BYL80 shows the hlghest GHG produc.:tlon rat.e am.ong lacustrine sedlments,. potentially ¢
,‘ ) ‘ st related to the fresh OM released by actively growing cyanobacterial mats in this pond. However, C:N ratios are not |
* Continue incubation experiments with more following the trend as for terrestrial sediments (higher for materials with higher GHG production rates), but aquatic OM is = 7
replicates, under controlled laboratory conditions, more diverse and from different sources. More replicated incubations may help to resolve such trends (& pending FA). i
{ e I.astchEgtIonger (4 \éveelgi),.alznlng(’:cf)Nrelite fatt * Results obtained from the lability experiments are not sufficient to explain the variability in GHG emissions observed in S
,‘- | prQX|es _ dt are easy to obtain {€.6. LN ratlo, fatty situ. The morphology and thermal structure of these ecosystems, as well as the erosional flux of OM, likely additionally
: acids) with rates and amounts of GHG produced ! oy : e s .
¥ o influence water column GHG storage and emission rates. These will be closely studied in the upcoming field season. -
N O el e MR DEEnEE e Creser  14C age of CO, respired during the incubation ranged from modern (active layer and BYL 80 cyanobacterial mats; both 3

A intensity levels and pond morphology with DOC

_ pools most recently deposited) to ~1700 yr BP (thermokarst lake sediments), with a consistent increase in age with depth
concentrations and GHG fluxes.

in the terrestrial core.
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Interestingly, although 4C incubation results indicate that eroded sediments in IWT ponds are labile as the respired CO, is
almost a thousand years old (over a 2-week incubation), in situ observations indicate mostly modern age for the GHG / 3
emitted by these water bodies.
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