Session No.

Study of relationships between cardiovascular disease peaks and weather: application in Quebec and Montreal, Canada

Y. Chiu^a, F. Chebana^a, B. Abdous^b, D. Bélanger^{a, c}, P. Gosselin^{a, d}

1.Background

- . Cardiovascular diseases (CVD) affect the heart and the blood vessels, heavy socioeconomic burden in the Quebec province
- . Health peaks: extreme values of the sanitary variable
- Difficult to predict \rightarrow management issues for health network
- . Large literature about relationships between CVD and meteorological conditions based on **mean events**, not peaks
- . Climate change context (CC)
- . CC might modify directly or indirectly CVD peaks distribution

5.Results

Selected results

- . Hospitalisations in Montreal (POT 95 %), n = 33
- . Deaths in Quebec (blocks 180 days), n = 63
- . Models with only temperature and date as significant variables

Hospitalisations in Montreal

2.Objectives

. Snow (cm)

Main objective: health system support

- . Study of health peaks relationships with meteorological conditions
- Development of a general methodology

(1) GAM: influence functions in classical case and peaks case (temperature lagged by 5 days)
→ ~10 °C: temperature of lesser effect (function is low)
(2) Comparison with QR
→ similar function

Deaths in Quebec

Generalized Additive Models (GAM) and Quantile Regression (QR)

- . Once peaks are extracted, study of relationships with weather
- . GAM and QR with non parametric methods
- . Meteorological variables may have a lagged effect on CVD peaks \rightarrow use of lags
- . Explained deviance (EXD) used to assess the fit

(3) GAM: influence functions in classical case and peaks case (temperature lagged by 4 days)

- \rightarrow hot and cold: higher effect
- \rightarrow ~10 °C: temperature of lesser effect (function is low)
- (4) Comparison with QR
 - \rightarrow small differences with GAM

6.Conclusions

 Explained deviances in the peaks case much larger than in the classical case

 Y_{τ} : variable in the τ quantile, s: cubic spline, $\overline{X}^{(k)}$: lagged mean over k days

References

- Coles, S. (2001). An introduction to statistical modeling of extreme values (Vol. 208). London: Springer.
- / Koenker, R. (2005). *Quantile regression* (No. 38). Cambridge university press.
- Wood, S. (2006). Generalized additive models: an introduction with R. CRC press.

Acknowledgments

Jean-Xavier Giroux (INRS-ETE) Pierre Masselot (INRS-ETE)

- As in the classical case, temperature has an important influence on peaks occurrence
- . Non-linear relationships between CVD peaks and weather
- . Methodology can help refine meteorological and sanitary alerts
- . Main limitations
 - \rightarrow small samples
 - \rightarrow no **individual** or **pollution** variables

Contact information

Yohann Chiu, PhD candidate in environmental statistics yohann.chiu@ete.inrs.ca