# Mise à l'échelle pilote d'un procédé de traitement de sols appliqué aux buttes de tirs contaminées par du Cu, Pb, Sb et Zn



# Karima Guemiza, Guy Mercier et Jean-François Blais

Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec (Québec), Canada

#### 1. Introduction

☐ Entraı̂nement des militaires balles de tir : Cu (4,5%), Pb (85,5-93,1%), Sb (9.5 - 1.9%), Zn (0,5%)

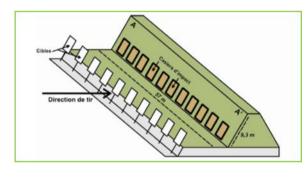






La décontamination :

Les particules du sol >125 µm sont traitées avec succès par des procédés physiques [1] et les fines seront traitées par un procédé chimique [2]


# 2. Objectifs

- ☐ Appliquer, à l'échelle pilote, un procédé de traitement chimique, pour décontaminer la fraction fine des sols (Sb, Cu, Pb et Zn).
- ☐ Évaluer l'applicabilité du procédé en contre-courant avec recirculation des effluents

# 3. Méthodologie

#### 3.1. Échantillonnage - Caractérisation

- ☐ Le site Batoche de la base militaire de Valcartier, en juillet 2011 (0 - 30 cm).
- ☐ Répartition massique des différentes fractions granulométriques, suite à un tamisage sur différents tamis (25 mm - 4 mm - 2 mm -1 mm - 0.5 mm - 0.25 mm et 0.125 mm).





Représentation schématique en 3-D d'une butte de tir de site de tir [1]

### 3.2 Procédé de décontamination des sols

Lavage 1

Lavage 2

Lavage 3

Rinçage 1

Filière de traitement du sol contaminé

-> Filière de recyclage des eaux de lixiviation

- □ Conditions de lavage :
  - Taille des particules de sol :  $< 125 \mu m$ .

2 kg du sol dans un réacteur de 20 L.

- Solution aqueuse de lixiviation
- appropriée, DP = 10% (p/p).
- □ Agitation : agitateur à 1 350 rpm.
- Durée: 60 min.
- Température : 20°C.
- □ Conditions de rinçage :
  - Eau fraîche, DP = 10% (p/p).
  - Durée: 15 min.
  - Température : 20°C.

#### 3.3. Sélection du réactif de lixiviation et traitement des effluents

- $\square$  Réactifs de lixiviation: HCl (0,25 M), HCl (0,25 M) + NaCl  $(4 \text{ M}), H_2SO_4 (0.25 \text{ M}) \text{ et } H_2SO_4 (0.25 \text{ M}) + \text{NaCl } (4 \text{ M});$
- □ Lixiviation acide: NaCl (4 M) et  $H_2SO_4$  (0,0625-0,125 0,25 et 0.5 M);
- ☐ Traitement des effluents acides par précipitation avec NaOH (200 g/L) à pH 9.

3.4. décontamination des sols en contre-courant

Fig. 1: Schéma représentant le procédé de lixiviation à contre-courant avec traitement des lixiviats

L: Étape de lixiviation

### 4. Résultats et discussions

4.1. Répartition massique des différentes fractions granulométriques

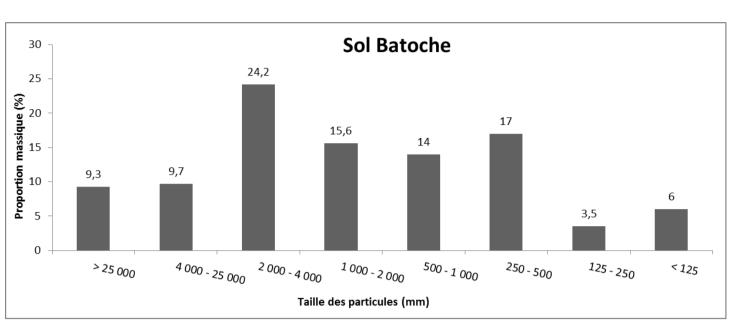



Fig 2 : Répartition massique dans le sol Batoche

La fraction fine représente 6% du sol

#### 4.2. Teneurs initiales dans la fraction fine du sol

Tab 1 : Teneurs initiales (mg/kg) en métaux dans les sols (fraction < 125 μm)

| Type de sols         | Batoche |                             |
|----------------------|---------|-----------------------------|
| Teneur en Cu (mg/kg) | 418     | Critère <b>B</b>            |
| Teneur en Pb (mg/kg) | 5006    | Critère <b>D</b>            |
| Teneur en Sb (mg/kg) | 168     | > limite industriel de CCME |
| Teneur en Zn (mg/kg) | 96      | _                           |

#### 4.3. Sélection de réactif de lixiviation et sa concentration

☐ Réactifs de lixiviation, H<sub>2</sub>SO<sub>4</sub> ou HCl (0,25 M) avec ou sans NaCl (4 M)

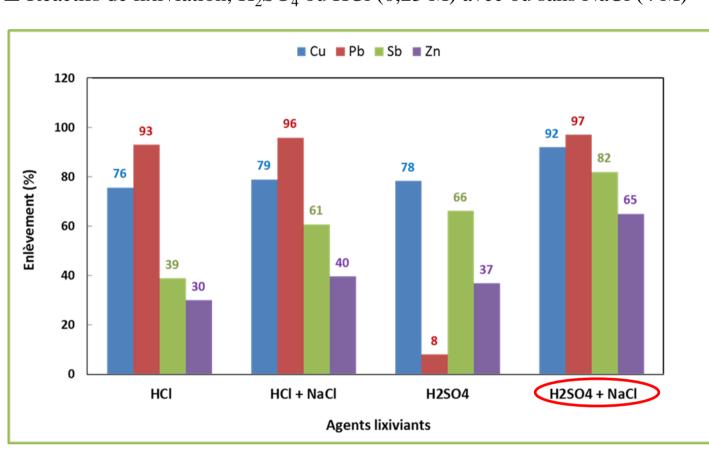
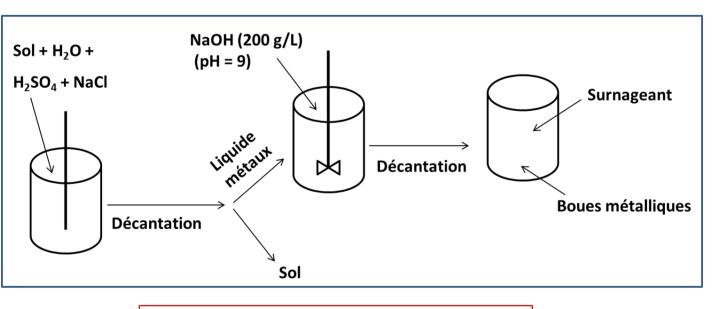



Fig 3 : Rendements d'enlèvement (%) des métaux présents dans le sol


 $\square$  Lixiviation acide, NaCl (4 M) et H<sub>2</sub>SO<sub>4</sub> (0,0625 – 0,125 – 0,25 et 0,5 M)

# Tab 2 : Rendement d'enlèvement (%) des métaux

|              | Rendement d'enlèvement (%)  Batoche |    |    |    |  |
|--------------|-------------------------------------|----|----|----|--|
|              |                                     |    |    |    |  |
| $H_2SO_4(M)$ | Cu                                  | Pb | Sb | Zn |  |
| 0,0625       | 76                                  | 95 | 44 | 14 |  |
| 0,125        | 93                                  | 97 | 89 | 70 |  |
| 0,25         | 92                                  | 97 | 82 | 65 |  |
| 0,5          | 91                                  | 98 | 83 | 53 |  |
|              |                                     |    |    |    |  |

- ➤ Très bons taux de solubilisation avec 0,125 0,25 et 0,5 M H<sub>2</sub>SO<sub>4</sub> + **4 M NaCl**: > 91% Cu, > 97% Pb, > 82% Sb et 53 - 70% Zn.
- > 0,125 M H<sub>2</sub>SO<sub>4</sub> + 4 M NaCl, concentration optimale retenue pour la solubilisation des métaux.

### 4.4. Précipitation des métaux avec NaOH (pH = 9)



 $M^{z+} + z NaOH \longrightarrow M(OH)_z + z Na^+$ 

Tab 3 : Teneurs (mg/L) avant et après traitement par précipitation ainsi que les rendements d'enlèvement (%) des métaux

|                               |         |       |                | _                                  |  |
|-------------------------------|---------|-------|----------------|------------------------------------|--|
|                               | Batoche |       |                |                                    |  |
| Éléments                      | Avant   | Après | Règlementation | (2004)Règlement                    |  |
| Concentration en Cu<br>(mg/L) | 22,3    | 0,21  | 5              | R.V.Q. 416.<br>Règlement sur la    |  |
| Enlèvement (%)                | 99      | 9,0   |                | quantité et la<br>qualité des eaux |  |
| Concentration en Pb<br>(mg/L) | 242     | 0,06  | 2              | usées. [3]                         |  |
| Enlèvement (%)                | 1       | 00    |                |                                    |  |
| Concentration en Sb<br>(mg/L) | 7,09    | 0,35  | ND             |                                    |  |
| Enlèvement (%)                | 9!      | 5,0   |                |                                    |  |
| Concentration en Zn<br>(mg/L) | 2,89    | 0,00  | 10             |                                    |  |
| Enlèvement (%)                | 1       | 00    |                |                                    |  |
|                               |         |       |                |                                    |  |

Respect des **concentrations maximales** acceptables pour le rejet dans les égouts municipaux.

## 4. Résultats et discussions (suite)

#### 4.5. Traitement de sol en mode contre-courant

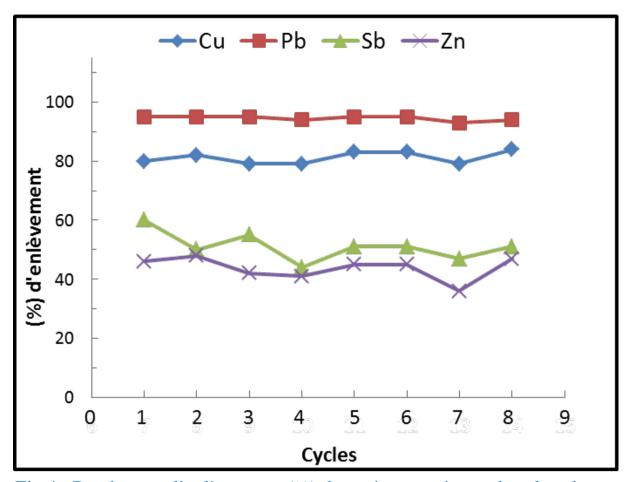



Fig 4 : Rendement d'enlèvement (%) des métaux présents dans le sol

➤ Bon enlèvement des métaux lors des boucles

#### 4.6. Disponibilité et toxicité des métaux présents dans le sol

 $\square$  Test TCLP, Toxicity Characteristic Leaching Procedure) (n = 3) [4]

Tab 4 : Critères de validation par année des trois modèles

|                          | Teneurs en métaux (mg/L) |      |      |                |
|--------------------------|--------------------------|------|------|----------------|
|                          | Cu                       | Pb   | Sb   | Zn             |
| Avant<br>décontamination | 11,1                     | 142  | 0,28 | 1,30           |
| Après<br>décontamination | 1,20                     | 0,80 | 0,49 | 0,46           |
| Réglementation           | Non réglementé           | 5    | 1    | Non réglementé |

- > Diminution de la disponibilité du Pb (> 99%) dans les conditions des sites d'enfouissement.
- > Respect des concentrations limites pour la **définition des MRD**, fixées par l'USEPA.

# 4.7. Étude technicoéconomique du procédé de traitement développé

Tab 5 : Bilan des coûts d'exploitation du procédé

| Boursey Laure                           |                             |                              |       |                          | Coûts       | Coûts/Revenus |  |
|-----------------------------------------|-----------------------------|------------------------------|-------|--------------------------|-------------|---------------|--|
| Paramètres                              |                             |                              |       |                          | (\$Can/tst) | (\$Can/an)    |  |
| Paramètres d'exploitation de base       |                             |                              |       |                          |             |               |  |
| Période d'opération                     | 350                         | jrs/an                       |       |                          |             |               |  |
| Capacité de traitement de l'usine       | 50                          | tst/jr                       |       |                          |             |               |  |
| Coûts directs d'opération               | Consomm                     | Consommation (kg/tst)        |       | Coût unitaire (\$Can/kg) |             |               |  |
| Acide sulfurique                        | 124,5                       |                              | 0,080 |                          | (9,96)\$    | (156 909)     |  |
| Chlorure de sodium                      | 466,3                       |                              | 0,050 |                          | (23,32)\$   | (367 232)     |  |
| Hydroxyde de sodium                     | 14,0                        |                              | 0,500 |                          | (6,99)\$    | (110 104)     |  |
| B. Main-d'œuvre d'opération             |                             |                              |       |                          | (66,76)\$   | 1 051 454     |  |
| C. Utilités                             |                             |                              |       |                          |             |               |  |
| 1. Électricité                          | Consommation électrique     |                              | 54,91 | kWh/tst                  | (3,84)\$    | (60 536)      |  |
| 2. Eau de procédé                       | Consommation eau de procédé |                              | 3,33  | m³/tst                   | (1,67)\$    | (26 250)      |  |
| 3. Chargement et transport des sols B-C | 2,316                       | t/tst                        | 50    | Km                       | (23,16)\$   | (364 740)     |  |
| 4. Gestion des déchets métalliques      | 0,113                       | t/tst                        | 300   | \$Can/t                  | (33,89)\$   | (533 808)     |  |
| D. Entretien et réparation              |                             | % coûts fixes en capitaux/an | 2,0   |                          | (6,77)\$    | (106 696)     |  |
| E. Matériaux courants                   |                             | % coûts fixes en capitaux/an | 0,8   |                          | (2,54)\$    | (40 011)      |  |
| F. Frais de laboratoire                 |                             | % M.O. opération             | 10,0  |                          | (5,56)\$    | (87 621)      |  |
| Sous-total                              |                             |                              |       |                          | (189,40) \$ | (2 983 055)   |  |
| Coûts indirects et généraux             |                             |                              |       |                          | (78,14) \$  | (1 230 646)   |  |
| Coûts totaux d'exploitation             |                             |                              |       |                          | (267,54)\$  | (4 213 701)   |  |

> Résultats très encourageants puisque la disposition d'un déchet dangereux dans un site d'enfouissement sécuritaire est estimée à plus de 300 \$/t.

# 5. Conclusion

- > Sol initial fortement contaminé;
- $\triangleright$  DP=10%, 1 h, 20°C, 3 étapes de lixiviation à 0,125 M H<sub>2</sub>SO<sub>4</sub> + 4 M NaCl, 1 étape de rinçage = excellente solubilisation de Cu (93%), Pb (97%), Sb (89%) et Zn (70%) à l'échelle pilote;
- ➤ Utilisation de NaOH (pH 9) permet la précipitation de 99% du Cu, 100% du Pb et Zn et 95% de Sb:
- Contre-courant avec traitement des lixiviats, aucune perte d'efficacité observée au cours des boucles (n = 8);
- > TCLP: diminution considérable des risques de dispersion des contaminants dans l'environnement après traitement du sol;
- Coût d'exploitation d'environ 270 \$/tst (scénario de traitement de 50 t/jr);
- > Il serait également opportun d'étudier cette filière de traitement avec d'autres types de sols.

## 6. Références

[1] Laporte-Saumure M, Martel R & Mercier G (2010) Evaluation of Physicochemical Methods for Treatment of Cu, Pb, Sb, and Zn in Canadian Small Arm Firing Ranges Backstop Soils. *Water Air and Soil Pollution* 213:171-189.

[2] Lafond S (2012) Développement d'un procédé de traitement des sols contaminés à le Sb, au Cuivre, au Pb et au Zinc de la base militaire de Valcartier. Thèse de Doctorat en Sciences de l'eau, Université du Québec, Québec, QC, Canada, 293 p. [3] MDDEP (2004). Réglement sur la qualité des eaux usées. Réglement RVQ 416.

[4] USEPA (2002) Toxicity characteristic leaching procedure, method 1311. United States Environmental Protection Agency, Washington, DC, USA, website: www.EPAgov/SW-846/1311pdf.

### 7. Coordonnées

Karima Guemiza, Doctorat, décontamination des sols contaminés Email: karima.gmiza@ete.inrs.ca