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Abstract

Recently, two different copula-based approaches have been proposed to estimate the conditional quan-

tile function of a variable Y with respect to a vector of covariates X: the first estimator is related to

quantile regression weighted by the conditional copula density, while the second estimator is based on

the inverse of the conditional distribution function written in terms of margins and the copula. Using

empirical processes, we show that even if the two estimators look quite different, their estimation

errors have the same limiting distribution. Also, we propose a bootstrap procedure for the limiting

process in order to construct uniform confidence bands around the conditional quantile function.

Keywords: Conditional quantile function, copula, quantile regression, bootstrap

1. Introduction

Copulas, or dependence functions, are very popular to model the dependence between variables,

because one can remove the effect of marginal distributions, provided the latter are continuous. This

is why dependence measures based on the copula are so robust, compared to the traditional Pearson

correlation coefficient. Copulas also enter naturally when computing the conditional distribution

function of a random variable Y given covariates X = (X1, . . . , Xd). See, e.g., Bouyé and Salmon [5]

when d = 1. This relation between the conditional distribution of Y given X = x and the associated
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copula was used recently to propose conditional quantile estimators, as alternative to the quantile

regression methods [11] or the parameter approach [6, 15, 16].

A first copula-based estimator of the conditional quantile was proposed by Noh et al. [19] and is

based on a weighted quantile regression method. The asymptotic limiting distribution was proved to

be Gaussian. More recently, a more intuitive estimator of the plug-in type was proposed in Kraus and

Czado [12], Nasri and Bouezmarni [14], who compared the estimated MISE of various competitors,

including the estimator proposed by Noh et al. [19]. From the simulations performed in Kraus and

Czado [12], Nasri and Bouezmarni [14], it seems that the plug-in estimator performs better than the

other copula-based estimator. However the asymptotic behavior of this estimator was not discussed.

In Section 2, we describe the estimators of Noh et al. [19] and Kraus and Czado [12] and we discuss

their implementation. Another closely related parametric estimator proposed in Nasri and Bouezmarni

[14] is also discussed. In Section 3, we study the asymptotic limiting distribution of the estimators

viewed as stochastic processes over (0, 1) and we show that the two semi-parametric estimators have

the same limiting distribution. We also propose a bootstrapping method for constructing uniform

confidence bands for the conditional quantile functions.

2. Estimation of conditional quantiles

One way to model the dependence between a variable of interest Y and covariates X = (X1, . . . , Xd)

is to use dependence functions called copulas; see, e.g., Nelsen [17]. More precisely, suppose that

(Y1,X1), . . . , (Yn,Xn) are i.i.d. observations of (Y,X) with (unconditional) continuous margins F0,

F1, . . . , Fd, and copula C with density c. Set F(x) = (F1(x1), . . . , Fd(xd)).

By definition, a copula is a joint distribution function of uniform random variables. According to

Sklar’s theorem [17], since the margins are assumed to be continuous, there exists a unique copula C

so that the joint distribution function of (Y,X) can be written in terms of the copula and the margins

viz.

P (Y ≤ y,X ≤ x) = C{F0(y),F(x)}, y ∈ R,x ∈ Rd. (1)

Note that the copula C is the cdf of (U,V), where U = F0(Y ) and V = F(X).
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2.1. Copula-based conditional quantiles

Denote by H(y,x) the conditional distribution function of Y given X = x. The expression of the

conditional distribution function H in terms of the copula function and the marginal distributions

appeared explicitly first in a preliminary version of Bouyé and Salmon [5] in the case d = 1. However,

it is easy to extend it to any d ≥ 1, and one can easily show that

H(y,x) = P(Y ≤ y|X = x) = C{F0(y),F(x)}, y ∈ R, x ∈ Rd, (2)

where C(u,v) is the conditional distribution function of U given V ≡ F(X) = v ≡ F(x). In fact,

according to Rémillard [20, Proposition 8.6.2], for u ∈ [0, 1] and v = (v1, . . . , vd) ∈ (0, 1)d,

C(u,v) =
∂v1 · · · ∂vdC (u, v1, . . . , vd)
∂v1 · · · ∂vdC (1, v1, . . . , vd)

,

and ∂uC(u,v) = c(u,v)/
∫ 1

0 c(z,v)dz, so C(u,v) =
∫ u

0 c(z,v)dz/
∫ 1

0 c(z,v)dz.

Now, the associated conditional quantile function Q(α,x), α ∈ (0, 1), is given by

Q(α,x) = inf{y ∈ R : H(y,x) ≥ α}. (3)

Using (2), we get that Q depends only on the margins F0, F and the copula C viz.

Q(α,x) = F−1
0 [Γ{α,F(x)}] , (4)

where Γ (α,v) is the quantile of order α of the distribution function C(u,v), u ∈ [0, 1], with v ∈ (0, 1)d

fixed. Note that (4) is the basic equation for defining the plug-in estimator.

Next, using (2), one gets that Q(α,x) is also a solution of

arg min
a

E [c {F0(Y ),F(x)} ρα (Y − a)] , (5)

where c(u,v) = ∂uC(u,v), ρα(y) = y {α− I (y < 0)} = (1 − α)|y|I(y < 0) + αyI(y ≥ 0), y ∈ R, and I

is the indicator function. The latter equation is used by Noh et al. [19] to construct an estimator of

Q(α,x).
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2.2. Estimation of the copula and the margins

To estimate the conditional quantile using copulas, one needs to estimate the copula C associated

with (Y,X) or (U,V), and the margins F0,F. First, one can assume that Yi = F−1
0 (Ui) and Xij =

F−1
j (Vij), where (U1,V1), . . . , (Un,Vn) are i.i.d. observations from copula C.

2.2.1. Estimation of the copula

For sake of simplicity, we assume that the copula belongs to a parametric family {Cθ : θ ∈ O}, so

the estimation of the copula is given as Cθn , where θn is a rank-based consistent estimator [7] of the

true parameter θ0. One can use the pseudo-MLE method proposed by Genest et al. [8]. Consequently,

the quantile function Γ (α,v) ≡ Γθ(α,v) can be estimated by Γθn(α,v), α ∈ (0, 1), v ∈ (0, 1)d. The

parametric family approach is also what Noh et al. [19] and Kraus and Czado [12] considered. In

fact, in the case of several covariates, Kraus and Czado [12] used a particular case of a parametric

copula family, namely a D-vine model [2, 1], which is a construction of a copula using a given set of

parametric bivariate copula families. Note that instead of considering a parametric family of copulas,

one could estimate the density of the copula non-parametrically, so that all the conditional quantile

estimators discussed here could also be computed. However the convergence is slower and it often

suffers from the curse of dimensionality [4, 9], with the possible exception of pair-copula construction

[13]. The next step is to estimate the margins.

2.2.2. Estimation of the margins

Motivated by the two-step inference function for margins (IFM) method [10], one could use

parametric families to estimate each of the margins. This would make sense in several applications.

For copula-based quantile estimators, this approach was suggested in Nasri and Bouezmarni [14],

where a parametric copula-based estimator was proposed. Note that as discussed in Noh et al. [18],

if the estimation of the margins is incorrect, the estimation of the copula parameter θ can be biased.

One can also consider non-parametric estimators, namely for any y ∈ R and any x = (x1, . . . , xd) ∈ Rd,

Fn0(y) =
1

n+ 1

n∑

i=1

I(Yi ≤ y), Fnj(xj) =
1

n+ 1

n∑

i=1

I(Xij ≤ xj), j ∈ {1, . . . , d}, (6)

4



and set Fn(x) = (Fn1(x1), . . . , Fnd(xd)). Further note that Fn0(y) = Dn ◦ F0(y), where Dn is the

empirical distribution function of the Ui’s and Fn(x) = Bn ◦F(x), where Bn is the vector of empirical

marginal distribution functions of V1, . . . ,Vd. Noh et al. [19] propose a kernel-based estimator F̂n0

for F0 such that n1/2 supy |F̂n0(y) − Fn0(y)| Pr→ 0 as n → ∞. This was also used in Kraus and Czado

[12]. Even if F̂n0 is continuous, the precision of the estimation might not be better and there is always

the question of the choice of the bandwidth. This is why we will use the estimators given by (6). For

the rest of the section, let x be given and set v = F(x). It then follows that Fn(x) = Bn(v). For sake

of simplicity, x or v might be omitted. We present the copula-based estimators we will study.

2.3. Weighted quantile regression estimator

Surprisingly, the natural plug-in estimator did not appear first in the literature. In fact, Noh

et al. [19] proposed a copula-based model mixed with a quantile regression approach using (5) viz.

Qn,wqr(α,x) = arg min
a

[
n∑

i=1

ρα (Yi − a) cθn{Fn0(Yi),Fn(x)}
]
, (7)

even if the solution is not necessarily unique. In fact they take cθn(u,v) instead of taking cθn(u,v)

but it leads to the same estimator; see, e.g., (8). However, a unique way to define a solution to (7) is

by using the empirical weighted distribution function Hn defined for any y ∈ R by

Hn(y,x) =
n∑

i=1

I(Yi ≤ y)wi,n = Gn{F0(y),v}, with Gn(u,v) =
n∑

i=1

I(Ui ≤ u)wi,n,

where, for any i ∈ {1, . . . , n},

wi,n =
cθn{Fn0(Yi),Fn(x)}∑n
j=1 cθn{Fn0(Yj),Fn(x)} =

cθn{Fn0(Yi),Fn(x)}∑n
j=1 cθn{Fn0(Yj),Fn(x)} =

cθn{Dn(Ui),Bn(v)}∑n
j=1 cθn{Dn(Uj),Bn(v)} . (8)

The estimator Qn,wqr(α,x) is then defined as the quantile of level α of Hn, i.e.,

Qn,wqr(α,x) = H−1
n (α,x) = F−1

0 ◦G−1
n (α,v), α ∈ (0, 1). (9)

If â = arg mina [
∑n

i=1 ρα (Yi − a) cθn{Fn0(Yi),Fn(x)}], then Hn(â,x) ≥ α ≥ Hn(â−,x). Hence

H−1
n (α,x) satisfies (7).
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It is easy to show that Hn is a consistent estimator of the distribution function H(y,x) =

C{F0(y),v}, y ∈ R. Also Gn is a consistent and asymptotically unbiased estimator of the distri-

bution function C(u,v), u ∈ [0, 1].

2.4. Plug-in estimators

Expression (4) provides a natural way for estimating the conditional quantile. We now describe

both parametric and semi-parametric estimators of Q(α,x).

2.4.1. Parametric estimator

In the parametric approach, we assume that the marginal distributions F0 and F belong to para-

metric families denoted by F0β0(·) and Fβ(·) respectively. If βn0 and βn are consistent estimators

of β0 and β, and if Cθ, F0β0(·) and Fβ(·) are continuous functions of the parameters, then for any

y ∈ R, Ȟn(y,x) = Cθn {F0βn0(y),Fβn(x)} is clearly a consistent estimator of H(y,x), yielding

Qn,p(α,x) = Ȟ−1
n (α,x) = F−1

0βn0
[Γθn{α,Fβn(x)}] , α ∈ (0, 1). (10)

2.4.2. Semiparametric estimator

Here, the marginal distributions are estimated using (6). Next, H(y,x) is estimated by

H̃n(y,x) = Cθn{Fn0(y),Fn(x)} = G̃n{F0(y),v}, y ∈ R, (11)

where G̃n(u,v) = Cθn{Dn(u),Bn(v)}, which is a consistent estimate of Cθ0(u,v), u ∈ [0, 1]. As a

result, the estimation of Q(α,x) is defined for any α ∈ (0, 1) by

Qn,sp(α,x) = H̃−1
n (α,x) = F−1

n0 [Γθn{α,Fn(x)}] = F−1
0 ◦ G̃−1

n (α,v). (12)

3. Asymptotic behavior of the copula-based estimators

In this section we find the asymptotic distribution of the conditional quantile functions for the

proposed estimators, extending the results of Noh et al. [19]. As a result, we obtain that the estimation

error of the plug-in estimator and the weighted quantile regression estimator converge to the same
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limiting distribution. We also propose, in Section 3.4, a different bootstrap algorithm that can be

used to construct uniform confidence bands about the conditional quantile function.

As before, x is fixed and v = F(x). Throughout this section, we assume that the density f0 = F ′0

exists and is positive everywhere. If the support is not R, just transform Y accordingly. This way

F0(y) ∈ (0, 1) for any y ∈ R. Also suppose that the density c of the (d + 1)-dimensional copula C is

positive on (0, 1)d+1. Then H(·,x) is continuously differentiable with density h satisfying h(y,x) =

f0(y)c(u,v) > 0, for any y ∈ R. Further set Q(u,x) = H−1(u,x) and Γ (u,v) = C−1(u,v), u ∈ (0, 1).

3.1. Convergence of the parametric estimator

In what follows, ∇β0F0β0(y) is a p0-dimensional column vector, ∇βFβ is a p×d matrix, ∇vCθ(u,v)

is a d-dimensional column vector, ∇θCθ(u,v) = Ċθ(u,v) is a q-dimensional column vector which rep-

resent the partial derivatives with respect to β0, β, v and θ of F0β0 , Fβ, Cθ and Cθ respectively.

Throughout this section, we assume that these derivatives are continuous, and that cθ(u,v) is contin-

uously differentiable with respect to u ∈ (0, 1).

Set Bn0 = n1/2(βn0 − β0), Bn = n1/2(βn − β), and Θn = n1/2(θn − θ0). Finally, define Ȟn(y) =

n1/2
{
Ȟn(y,x)− C(y,x)

}
for any y ∈ R, and Qn,p(u) = n1/2 {Qn,p(u,x)−Q(u,x)}, u ∈ (0, 1). The

proof of the following theorem, giving the asymptotic behavior of the parametric quantile process,

follows readily from the Delta method [21]. To simplify notations, set Ċ(u,v) = ∇θCθ(u,v)|θ=θ0
and

∇vCθ0(u,v) = ∇vC(u,v).

Theorem 1. Assume that (Bn0,Bn,Θn) converges in law to a centered Gaussian vector (B0,B,Θ).1

Then, as n → ∞, Ȟn converges in D(R)2 to a continuous centered Gaussian process Ȟ, denoted

Ȟn  Ȟ = Ǧ ◦ F0β0 , where

Ǧ(u) = Θ>Ċ(u,v) + B>∇βFβ

{
F−1
β (v)

}
∇vC(u,v) + cθ0(u,v)B>0 ∇β0F0β0

{
F−1

0β0
(u)
}
, u ∈ [0, 1].

1See, e.g. Joe [10] for sufficient regularity conditions.
2Convergence in D(I) means that for any close interval [a, b] ⊂ I, the process converges in law in the Skorokhod

topology on D([a, b]). In particular, continuous functions of the process converges in law. See, e.g., Billingsley [3].
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Furthermore, Qn,p  Qp in D(0, 1), where Qp(u) = − Ȟ{Q(u,x)}
h{Q(u,x),x} , u ∈ (0, 1). In particular, for any

[a, b] ⊂ (0, 1), n1/2 sup
u∈[a,b]

|Qn,p(u,x)−Q(u,x)| converges in law to sup
u∈[a,b]

∣∣∣∣
Ȟ{Q(u,x)}
h{Q(u,x),x}

∣∣∣∣.

3.2. Convergence of the semiparametric estimator

We now study the convergence of the process Qn,sp(u) = n1/2 {Qn,sp(u,x)−Q(u,x)}, u ∈ (0, 1).

Before stating the theorem, define Dn(u) = n1/2{Dn(u)−u}, and BBBn(v) = n1/2(Bn(v)−v), u ∈ [0, 1],

v ∈ (0, 1)d. The proof of this theorem follows from the Delta method [21].

Theorem 2. Assume that (Dn,BBBn,Θn) converges in D
(
[0, 1]1+d

)
×Rq to (D,BBB,Θ), where B and BBB are

centered Gaussian processes and Θ is a centered random vector.3 Then, as n→∞, G̃n converges in

D ([0, 1]) to G̃ = H + Dcθ0(·,v), where H(u) = Θ>Ċ(u,v) + BBB(v)>∇vC(u,v), u ∈ [0, 1]. Furthermore,

Qn,sp  Qsp in D(0, 1), where Qsp(u) = − G̃{Γ (u,v)}
h{Q(u,x),x} , u ∈ (0, 1). In particular, for any [a, b] ⊂ (0, 1),

n1/2 sup
u∈[a,b]

|Qn,sp(u,x)−Q(u,x)| converges in law to sup
u∈[a,b]

∣∣∣∣∣
G̃{Γ (u,v)}
h{Q(u,x),x}

∣∣∣∣∣.

3.3. Convergence of the weighted quantile regression estimator

We now study the convergence of the process Qn,wqr(u) = n1/2 {Qn,wqr(u,x)−Q(u,x)}. It ex-

tends the results in Noh et al. [19], where only the convergence at a single value was proven. In

order to formulate the result, we need to define another sequence of stochastic processes, namely
◦
Gn(u) = n−1/2

∑n
i=1 {I(Ui ≤ u)cθ0(Ui,v)− Cθ0(u,v)}, u ∈ [0, 1]. It follows from the theory of stochas-

tic processes [21] that (Dn,BBBn,
◦
Gn) converges in D

(
[0, 1]2+d

)
to centered Gaussian processes (D,BBB,

◦
G).

We can now show that the two estimators have the same limiting distribution.

Theorem 3. Assume that (Dn,BBBn,
◦
Gn,Θn) converges in D

(
[0, 1]2+d

)
× Rq to centered Gaussian

processes (D,BBB,
◦
G,Θ). Then, as n→∞, Gn converges in D ([0, 1]) to G = G̃. Furthermore, Qn,wgr  

Qn,wqr in D(0, 1), where Qwqr(u) = − G{Γ (u,v)}
h{Q(u,x),x} , u ∈ (0, 1). In particular, for any [a, b] ⊂ (0, 1),

n1/2 sup
u∈[a,b]

|Qn,wqr(u,x)−Q(u,x)| converges in law to sup
u∈[a,b]

∣∣∣∣
G{Γ (u,v)}
h{Q(u,x),x}

∣∣∣∣.

3This assumption is satisfied for most well-behaved rank-based estimator of θ. See, e.g., Genest and Rémillard [7].
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Proof. Set ċ(u,v) = ∇θcθ(u,v)|θ=θ0
, ∇vc(u,v) = ∇vcθ0(u,v). It suffices to prove the convergence

of Gn(u) =
√
n(Gn(u) − Cθ0(u,v)). Write Gn(u) = 1

n

∑n
i=1 I(Ui ≤ u)cθn{Dn(Ui),Bn(v)}/sn, where

sn = 1
n

∑n
i=1 cθn{Dn(Ui),Bn(v)}.

Set rn(u) = cθn{Dn(u),BBBn(v)}−cθ0(u,v)− {Θ
>
n ċ(u,v)+∂ucθ0 (u,v)Dn(u)+∇vc(u,v)>BBBn(v)}

n1/2 , u ∈ [0, 1]. By

hypothesis, as n→∞, n1/2 sup
u∈[0,1]

|rn(u)| converges in probability to 0. It follows that

Gn(u) =
n−1/2

sn

n∑

i=1

I(Ui ≤ u){cθn{Dn(Ui),Bn(v)} − cθ0(Ui,v)}+
◦
Gn(u)/sn − Cθ0(u,v)n1/2(1− 1/sn)

= {Ln(u) +
◦
Gn(u)− Cθ0(u,v)Ln(1)− Cθ0(u,v)

◦
Gn(1)}/sn,

where Ln(u) = n−1/2
∑n

i=1 I(Ui ≤ u){cθn{Dn(Ui),Bn(v)} − cθ0(Ui,v)}. Now,

Ln(u) = Θ>n

{
1
n

∑

i=1

I(Ui ≤ u)ċ(Ui,v)

}
+

1
n

n∑

i=1

I(Ui ≤ u)Dn(Ui)∂uc(Ui,v)

+BBBn(v)>
{

1
n

n∑

i=1

I(Ui ≤ u)∇vc(Ui,v)

}
+ oP (1)

= Θ>n Ċ(u,v) +
∫ u

0
Dn(z)∂uc(z,v)dz + BBBn(v)>∇vC(u,v) + oP (1).

Next, assuming that ucθ0(u,v)→ 0 as u→ 0, we have

∫ u

0
Dn(z)∂zcθ0(z,v)dz = n−1/2

n∑

i=1

∫ u

0
∂zcθ0(z,v){I(Ui ≤ z)− z}dz

= n−1/2
n∑

i=1

I(Ui ≤ u){cθ0(u,v)− cθ0(Ui,v)} − n1/2{ucθ0(u,v)− Cθ0(u,v)}

= cθ0(u,v)Dn(u)−
◦
Gn(u).

As a result, Ln  H + Dc(·,v)−
◦
G = G̃−

◦
G. so, Gn  G = G̃ in D([0, 1]).

Remark 1. Note that Theorems 2 and 3 are still valid if we choose the kernel distribution for marginals

instead of the empirical distribution functions since their asymptotic behavior is the same. This is

also true for the bootstrapping procedure defined next.
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3.4. Bootstrapping

Algorithm 1 (Bootstrapping G̃). First, estimate θ using a regular rank-based estimator θn of the

form θn = Tn(U1,n,V1,n, . . . , Un,n,Vn,n) in the sense of Genest and Rémillard [7], and set vn = Fn(x).

Then, for each k ∈ {1, . . . , N}, repeat the following steps:

• Generate (U?i ,V
?
i ) ∼ Cθn , i ∈ {1, . . . , n}, and compute the empirical margins D?

n, F?n;

• Calculate the pseudo-observations U?i,n = D?
n (U?i ), V?

i,n = F?n (V?
i ), i ∈ {1, . . . , n};

• Estimate θ?n = Tn
(
U?1,n,V

?
1,n, . . . , U

?
n,n,V

?
n,n

)
;

• Set G̃(k)
n (u) = n1/2

[
Cθ?n {D?

n(u),B?
n(vn)} − Cθn(u,vn)

]
, u ∈ [0, 1].

The next theorem shows the consistency of the proposed bootstrap.

Theorem 4. Under the conditions of Theorem 2, as n→∞, G̃(1)
n , . . . , G̃(N)

n converge to independent

copies of G̃.

Proof. From Genest and Rémillard [7], (D?
n,BBBn,BBB

?
n,Θn,Θ

?
n) 

(
D⊥,BBB,BBB⊥,Θ,Θ +Θ⊥

)
, where(

D⊥,BBB⊥,Θ⊥
)

is an independent copy of (D,BBB,Θ). Hence, since n1/2{B?
n(vn)−v} = BBB?n(vn)+BBBn(v),

it follows from the Delta Method and Theorem 2 that

G̃(k)
n (u) = Ċ(u, v)>Θ?

n +∇vC(u,v){BBB?n(vn) + BBBn(v)}+ cθ0(u,v)D?
n(u) + oP (1)

 Ċ(u, v)>
(
Θ⊥ +Θ

)
+∇vC(u,v){BBB⊥(v) + BBB(v)}+ cθ0(u,v)D⊥(u)

= Ċ(u, v)>Θ⊥ +∇vC(u,v)BBB⊥(v) + cθ0(u,v)D⊥(u) + H(u) = G̃⊥(u) + H(u),

where G̃⊥ is an independent copy of G̃, while n1/2 {Cθn(u,vn)− Cθ0(u,v)}  H. As a result,

G̃(1)
n , . . . , G̃(N)

n converge to independent copies of G̃.

Remark 2. Note that as shown in Genest and Rémillard [7], most interesting estimators are regular.

In particular, estimators of the class R1: this means that there exists a continuously differentiable

function J so that E[J(U,V)] = 0 and Θn = n−1/2
∑n

i=1 J{Dn(Ui), Bn(Vi)} + oP (1). For example,

pseudo-maximum likelihood estimators, as defined in Genest et al. [8], belong to this class.
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3.4.1. Construction of the uniform 100(1− α)% confidence band for Q

To construct the uniform confidence band on [a, b] ⊂ (0, 1), we generate N processes G̃(k), k ∈
{1, . . . , N} and they are evaluated at u ∈ A = {a + j(b − a)/m; j = 0, . . . ,m}, where m is fixed but

large enough (say m = 1000). The density f0 is estimated with a Gaussian kernel estimator fn0, so

h(u) = h{Q(u,x),x} is estimated by hn(u) = fn0◦Qn,sp(u,x)cθn(u,vn), when vn = Fn(x). One then

computes bk,n = maxu∈A
∣∣∣G̃(k)(u)

∣∣∣ /hn(u), k ∈ {1, . . . , N}, and let bn(α) be the associated quantile of

order 1−α. The uniform confidence band about Q(·,x) is given by Qn,sp(u,x)±n−1/2bn(α), u ∈ [a, b].

A 95% confidence interval about a single point Q(u,x) is given by Qn,sp(u,x)±n−1/21.96σ̂/hn(u) where

σ̂2 is the sample variance of the values G̃(k)(u), k ∈ {1, . . . , N}.

Remark 3. Using our notations, the bootstrap algorithm proposed in Noh et al. [19] yields values

Q
(k)
n,wqr, k ∈ {1, . . . , N}, so that Q(k)

n,wqr = n1/2
{
Q

(k)
n,wqr −Q

}
converges to Q(k)

wqr + Qwqr, where Q(k)
wqr is

an independent copy of Qwqr. It then follows that their algorithm works for estimating the asymptotic

variance σ2
α, in the sense that what they call σ̂2

boot satisfies σ̂2
boot ≈

σ2
α
n if n and N are large. However,

their procedure is slower than the one we propose since we do not need to compute Y ?
i = F−1

n0 (U?i )

and X?
i = F−1

n (V?
i ), i ∈ {1, . . . , n}. In addition, computing H̃n is faster than computing Hn.

4. Conclusion

We have shown that two seemingly different estimators for the conditional quantile function have in

fact the same limiting distribution. However, the plug-in estimator is easier and faster to implement,

in addition to being more accurate for small samples, as shown by simulations in Kraus and Czado

[12] and Nasri and Bouezmarni [14]. Therefore, this is the one we recommend.
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