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Enhanced phosphorus export from land into streams and lakes is
a primary factor driving the expansion of deep-water hypoxia in
lakes during the Anthropocene. However, the interplay of regional
scale environmental stressors and the lack of long-term instrumen-
tal data often impede analyses attempting to associate changes
in land cover with downstream aquatic responses. Herein we
performed a synthesis of data that link paleolimnological recon-
structions of lake bottom-water oxygenation to changes in land
cover/use and climate over the last 300 years in order to evaluate
whether the spread of hypoxia in European lakes was primarily
associated with enhanced phosphorus exports from either grow-
ing urbanization, intensified agriculture or climatic change. We
showed that hypoxia started spreading in European lakes around
CE 1850 and was greatly accelerated after CE 1900. Socio-economic
changes in Europe beginning in CE 1850 resulted in widespread
urbanization as well as a larger and more intensively cultivated
surface area. However, our analysis of temporal trends demon-
strated that the onset and intensification of lacustrine hypoxia
were more strongly related to the growth of urban areas than
to changes in agricultural areas and the application of fertilizers.
These results suggest that anthropogenically-triggered hypoxia in
European lakes were primarily caused by enhanced phosphorus
discharges from urban point sources. To date, there have been
no signs of sustained recovery of bottom water oxygenation in
lakes following the enactment of European water legislation in
the 1970s to 1980s, and the subsequent decrease in domestic
phosphorus consumption.

Anthropocene | lake hypoxia | land cover/uses | meta-analysis |
varved sediment

Introduction
Changes in land cover and land use have been identified as impor-
tant drivers of phosphorus (P) transfers from terrestrial to aquatic
systems, resulting in significant impacts on water resources (1–3).
In post-WorldWar II Europe, changes in land cover, land use and
P utilization caused widespread eutrophication of freshwaters
(3). Elevated rates of P release from point sources to surface
water bodies increased in step with population increases, with
the novel use of P in domestic detergents and with enhanced
connectivity of households to sewage systems that generated
concentrated effluents (4). The intensification of agriculture and
drastic increased use of fertilizers from industrial and manure
sources resulted in elevated P concentrations in runoff from
diffuse sources (4). These trends have now metastasized from
Europe and North America to most nations, which explains the
almost global development of eutrophication problems in surface
waters (1).

Much of our understanding regarding the interactions among
changes in land cover/use, climate and lake eutrophication comes
from detailed studies of individual lakes (5), modeling exercises
(1), and/or regional-scale syntheses of instrumental data (6,7);
these studies are largely based on relatively short time series (8).
Depending on the multitudinous local differences in catchment
and lake morphology, river transport capacity, climate, geology
and regional trajectories in socioeconomic development, the re-
sponses of lakes to surrounding land changes can differ greatly
in intensity, modalities and kinetics (9–12). Multiple sites need
to be investigated in order to quantify a regional trend as well as
evaluate local to regional heterogeneities. Only a few studies have
interpreted the long-term trajectories of lakes (based on >100-
year lake records) in terms of eutrophication on a regional scale
by analyzing trends in nutrient and dissolved CO2 concentrations
(13, 14), carbon burial rates (15), cyanobacterial dominance (16)
and hypoxia development (17). However, none of these studies
considered the temporal dynamics of land cover and use, and
only a few studies (16, 17) considered modern land cover. Our
current lack of knowledge of the effects arising from cumulative

Significance

Using a compilation of data arising from over 1,500 European
watersheds, we have identified the relative role of different
drivers in initiating hypolimnetic hypoxia, a critical indicator
of lake health. In particular, our regional synthesis of lami-
nated lake sediments indicated a significant acceleration in the
spread of lacustrine hypoxia in the 1900s, which occurred well
before the general use of commercial fertilizers in the mid-20th

century and the onset of supraregional climate warming in
the 1970s. The spread of hypoxia was best explained by urban
expansion and the associated intensification of anthropogenic
point sources of phosphorus, whereby changes in life style
increased the discharge of nutrients from treated and raw
sewage, and ultimately led to enhanced lacustrine biological
productivity.
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Fig. 1. Location of the 1,607 study sites and changes in land cover over the last 300 years (CE 1700-2000). (a) 51 recently hypoxic lakes (red dots), 97 naturally
hypoxic lakes (white dots), and 1,459 benchmark watersheds (blue dots) comprised of 769 from the Lake-Core Database and 690 randomly-selected European
lakes from the GLWD database. (b-c) Increases in cultivated areas (%) and urban areas (%) for the last 300 years were observed in all the watersheds according
to a Mann-Kendall test, where a higher coefficient indicates a stronger increase (69).

environmental pressures present the potential for a serious un-
derestimation of the long-term impacts of land use changes and
hinder our ability to identify the relative importance of P sources
to lake ecosystems (18).

Recent progress in land use science has provided an insightful
large-scale perspective spanning centuries to millennia (19–22).
Additionally, European high-resolution datasets (23, 24) allow
for investigations to be conducted at the scale of individual
lake watersheds. The present study relies on existing datasets
of changes in land cover at the watershed scale (HILDA model
(24)), climate data (UDEL model (25)) and a database on the
historical onset of hypoxia in lakes (17) to (i) reconstruct the Eu-
ropean dynamic of lacustrine hypoxia during the Anthropocene,
and (ii) decipher whether P from diffuse sources (agriculture)
or point sources (urbanization) is responsible for the spread of
lacustrine hypoxia in Europe.

One widely-studied response of lakes to eutrophication is
bottom water hypoxia ([O2]<2 mg L-1). Bottom water hypoxia
in lakes is detrimental not only for the biota that would nor-
mally inhabit oxic aquatic and benthic environments, but also
facilitates biogeochemical reactions that generate methane and
further mobilize pollutants from previously-accumulated sedi-
ment, including P (26-28). Hypoxia can develop naturally, but
more often is the result of: (i) cultural eutrophication which
enhances biomass production and ultimately its decomposition
throughmicrobial oxygen respiration (29-31), and (ii) risingmean
temperatures which decrease oxygen solubility in water (32),
stimulate microbial oxygen respiration (30), and/ or strengthen
thermal stratification (33, 34). Among these forcing mechanisms,
recent paleolimnological studies identified excess P availability,
and not climate, as the main driver for the onset of lacustrine
hypoxia during the Anthropocene (17, 35). These studies used
the presence and environmental signals of varved (i.e. annually-
laminated) sediments in lakes distributed in the French Alps and
worldwide to assess the long-term dynamics of hypoxia. Indeed,
hypoxic conditions are recorded in lake sediments by virtue of
preserved laminations after crossing a critical threshold in bottom
water oxygenation that prevent macrobenthic bioturbation in the
deeper parts of basins (35). The onset of sustained lamination (in-
cluding varves) in modern lake sediments is an unambiguous and
independent proxy for the timing of hypoxic, anoxic (i.e. complete
absence of oxygen), or even euxinic (i.e. sulfidic) bottom water
conditions on a regional scale. The well-defined geochronology

of lacustrine varves provides forensic evidence to quantify the
timing, prevalence and causes of aquatic regime shifts (17).

Additive mixed-effect models (36) were used to analyze tem-
poral trends and to depict differences among groups of water-
sheds in Europe: (i) 51 watersheds with lakes recording recent
hypoxia onset; (ii) 97 watersheds with lakes recording natural
hypoxia; (iii) 769 benchmark watersheds extracted from the Lake
Core Database (37); and, (iv) 690 benchmark watersheds from
the Global Lakes and Wetlands Database (GLWD) (38). Lakes of
the GLWD have been selected randomly in Europe to represent
various gradients of human pressure, climate conditions, land
cover and land use.

Results

Our sampling captured the wide ranges of lake morphometric
properties, catchment sizes, modern human activities and climatic
conditions that are spread across Europe (Figs. 1a, S1; Table S1).
General trends in land cover change in Europe during the last
300 years corresponded to increases in the percentages of urban
and cultivated areas, albeit some regions were more affected than
others (Fig. 1b-c).

Based on our analyses (see Methods), we found that the
fraction of lakes recording hypoxia in Europe increased over the
past 300 years, from an initial annual rate of 0.06 ± 0.004 % a-1

(Pearson's test, p<0.0001) between CE 1850 and 1900 to rates
of 0.20 ± 0.01 % a-1 between 1900 and 2000 CE (p<0.0001; Fig.
2a). In total, we found that 51 lakes shifted to hypoxia during the
last 300 years (Table S2). The catchments of these 51 lakes with
recent hypoxia onset had higher percentages of both cultivated
and urban areas in CE 2000 than the benchmark watersheds
(Fig. S2). Furthermore, most of the lakes with recent hypoxia
onset were low elevation sites (48/51 were situated between sea
level and the 1000 m above). We also found that the patterns
of historical change in land cover and land use for these 51
lakes were best described by nonlinear (i.e. additive mixed-effect)
models; urbanized areas increased sharply at the end of the 19th
century (from 0.02 % in CE 1700 to 4.1 % in CE 2000), whereas
the proportion of cultivated lands have expanded more gradually
since the early 18th century (from 7.8 % in 1700 to 23.4 % in
2000) and occurred well before the first spread of hypoxia (Fig.
2b-c). More than half of the 51 lakes shifted to hypoxia before
the introduction of fertilizers in Europe in the middle of the 20th
century. Climate warming, as well as changes in precipitations,
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Fig. 2. Trends in the prevalence of lake hypoxia and urbanization as well as
observed climate change dynamics during the past 300 years in Europe. (a)
Spread of lacustrine bottom water hypoxia shown as a cumulative number
of lakes (blue curve) based the onset of varve deposition in lake sediments
from the 51 lakes subset, and the human population in these watersheds (red
dashed curve). (b) Percentages of urban and (c) agriculturally-cultivated areas
in watersheds of the 51 lakes that shifted to hypoxia during the last 300 years.
In (b, c), temporal trends and 95 % confidence intervals were calculated
according to centennial land use data and the additive mixed-effect model
(AMM). Black arrow in (b) indicates early European water legislation in the
1970s and 1980s (70). Dark grey and green shaded peaks in (c) indicate the
respective nitrogen (N) and phosphate (P2O5) fertilizer applications in the
European Union since the 1950s (71). European trends in (d) air temperature
and (e) April-May-June (AMJ) precipitation reconstructed from tree rings
(72).

is also an unlikely primary driver for the onset of hypoxia as the

Fig. 3. Probability of hypoxia onset increased as a function of urban area
(%) in the 51 lake subset.The logistic GAMM showed that the probability
of a hypoxia onset in lakes increased as the proportion of urban area
increased over the last 300 years (a). The random smooth logistic GAMM
further detected that the vast majority of lakes experienced an increase in
probability of hypoxia as urban land cover increased but that the timing of
the onset varied among lakes (b).

Table 1.

Random slope
logistic GAMM

edf Ref.df Chi.sq p-value Signif.

s(Urban area) 34.0 46.0 118.6 6.3e-14 ***
s(Cultivated area) 1.9 2.3 3.5 0.24
s(Pastured area) 3.3 4.1 5.2 0.27

Random smooth
logistic GAMM

edf Ref.df Chi.sq p-value

s(logUrban,Lake) 65.4 204 200.2 <2e-16 ***

Fig. 4. One hundred year trends for land cover in Europe based on an
additive mixed-effect model (AMM), grouping watersheds according to their
history of downstream lake hypoxia or reference source. Trends in Europe
represent decadal percentages of urban, cultivated, grassland and forested
areas. Note the higher increase in urbanization for the recently hypoxic sites
during the last 110 years compared to the reference sites. Grey bands indicate
95 % confidence intervals of the predicted means based on the AMM.

main warming signal in the air-temperature record post-dates the
initial spread of hypoxia (Fig. 2d-e).

Our statistical analyses support the conclusion that urban
point sources were the leading driver for the onset of hypoxia.
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Using a general additivemixedmodel (i.e. GAMM)we found that
the probability of hypoxia onset in our 51 lake subset increased
as the proportion of urban area increased over the last 300
years (p<0.0001), but was unrelated to the changes in cultivated
and pastured land area (p>0.1) (Fig. 3; Table 1; R2=0.23). A
common observation across the lakes with hypoxia developing
only recently is the acceleration of urbanization around CE 1900
that coincided with the onset of hypoxia (Fig. S3). However, the
timing of hypoxia onset was quite variable across lakes (Fig. 3b).
The varve records showed no evidence of a sustained return to
improved oxygenated conditions, despite many efforts of remedi-
ation (Fig. 2a).

Centennial trends in land cover for the 51 watersheds dif-
fered notably from trends in the 97 study watersheds recording
natural hypoxia (i.e. sites with sustained varves for >300 years;
see Methods) and the 1,459 benchmark watersheds (Fig. 4).
The rate of expansion of urban areas was significantly higher in
watersheds associated with recent hypolimnetic hypoxia than in
other European watersheds (Table 1, Fig. 4). To the contrary,
the rate of changes in cultivated and pastured areas are similar
in watersheds with recent hypoxic lakes and other European
watersheds, although the absolute magnitude of cultivated land
was generally higher around the sites with recent hypoxia. M-K
tests indicated that hypoxia onsets were preceded by centennial
increases in urban (45 % of the sites), cultivated (95 % of the
sites) and pastured areas (80% of the sites). However, during the
transition toward hypoxia (-/+ 20 years centred on the time of
the onset), urban areas expanded in 71 % of the sites, whereas
cultivated and pastured areas were decreasing in 61 % and 74
% of the sites, respectively (Tables S3, S4). Collectively, these
findings suggest that urban point sources of nutrients were the
leading factor explaining the spread of lacustrine hypoxia in
Europe over the last few centuries. The prevailing importance
of urban point sources of nutrients as the preeminent trigger
towards the spread of hypoxia was also validated by M-K and
AMM analyses of decadal-scale landscape and climatic recon-
structions spanning the period between CE 1900-2010 (24; Figs.
4, S3, S4). Finally, basin-scale analyses of modern characteristics
confirmed the prevailing importance of local human activities on
the presence of hypoxia (Fig. S5).

Discussion

This regional-scale analysis of paleolimnological records adds
to the growing evidence that modern human activities are a
widespread force in shaping the structure and functioning of
inland waters (13, 39–42). Our previous paper (17) demonstrated
that the spread of lacustrine hypoxia at the global scale was pre-
dominantly the result of non-descript human impact. However,
the current study specifically pinpoints urban point sources of
nutrients as the main forcing mechanism within Europe. Based
on earlier water quality studies and paleoecological data, it is
known that algal blooms decreased water transparency for most
lakes in Europe starting in the middle to late 19th century (37).
The eutrophication phase was often more pronounced beginning
CE ∼1950 (37, 43), but the development of widespread hypolim-
netic hypoxia has largely predated the more visible effects of
eutrophication in the epilimnion (this study). As such, the spread
of hypolimnetic hypoxia can be considered as an early warning
of eutrophication, caused by enhanced sediment and organic
matter fluxes towards bottom waters. The hypolimnion acts as an
integrator of processes taking place over the entire water column.

It is generally well accepted that contemporary freshwater
eutrophication is predominantly caused by diffuse P sources,
principally from agriculture (2), in developed nations (i.e. nations
having very high human development in 2014 according to the
UN Human Development Index). In contrast, the situation in
developing nations is mixed and includes diffuse sources of P

and domestic point sources (18). However, our analysis of longer-
term trends in Europe (Fig. 2) provides an important historical
perspective, whereby intensive fertilization of agricultural soils
and associated diffuse sources of P and N increased through the
middle of the 20th century largely post-dated the initial spread
of lake hypoxia (Fig. 2a, c) (2, 18). As such, diffuse sources of P
appear to have had a subordinate role compared to point sources
for most of the last 300 years, and were not decisive for the
onset of lacustrine hypoxia in most of the studied lakes. However,
nutrient arising from agricultural areas likely had some effect as
the long-term M-K tests demonstrated that hypoxia onsets were
preceded by increases in cultivated and pastured areas, as well as
urban areas. Overall, we suggest that lakes have suffered a slow
loss of resilience as a result of both point and diffuse P inputs over
time until a disproportionate increase from urban point sources
tipped the balance towards hypoxia.

In present-days Europe andNorth America, domestic sewage
and industrial waste water mostly receive an efficient treatment,
including P removal prior to discharging effluents into lakes (44).
However, the situation around the end of the 19th century was
quite different as urban waste waters with increasing P content
were directly discharged into waterways (44) and began affecting
downstream aquatic ecosystems. The problem was fuelled by
urban expansion, a growing population, an accelerating economy
during the industrial revolution, the rising standard of living,
and novel domestic and industrial uses of P (45). The first P-
containing detergents were introduced around the end of the
19th century and soon enjoyed wide acceptance (45). All of these
developments were synchronous with the rapid spread of lake
hypoxia.

Importantly, our study shows that lakes with recent hypoxia
shifted abruptly and irreversibly to an alternate stable state. For
instance, among the lakes considered in this study, three peri-
alpine lakes (Geneva, Bourget, Annecy, Fig. S6) that were pre-
viously oxygenated over the last millennia shifted to hypolimnic
hypoxia between CE 1930 and CE 1950 following a slight P
increase (i.e. with enrichments of only ∼8-10 µg P L-1; (35, 46-
47). This illustrates that even a small increase in P availability can
stimulate enough primary productivity to trigger hypoxia without
generating algal blooms (as blooms were only observed after CE
1950). Likewise, the temporal trend of oxygenation in European
lakes (Fig. 2a) shows a slowing down of rate of increase, but no
turning off of hypoxia after the 1980s, despite the implementation
of restoration programs and successful controls on nutrient influx.
The crossing of critical thresholds of nutrient loading appeared
to have abruptly and irreversibly shifted lacustrine ecosystems
from one state to another (48). Imported P, both from watersheds
(external load) and remobilized from lake sediments (internal
load) can explain the stability of hypoxia over the last ca. 30 to
40 years. P loads from watersheds to downstream lakes initially
accumulate in lake sediments, but later may be remobilized from
sediments into overlying waters under hypoxic conditions. P-rich
sediments have been identified as the key factor in sustaining
hypoxia (49, 50). For instance, the accumulation of organicmatter
during eutrophic conditions and the subsequent diagenetic re-
lease of P from near-surface sediments is known to cause lakes
to remain in a eutrophic state even if the external input of P
has diminished (1). In addition, a reduced ability of ecosystems
to remove nitrogen via denitrification and anaerobic ammonium
oxidation may be related to hypoxia and could lead to accelerated
eutrophication (49). Finally, an increase in water temperature
could also decrease the threshold of P concentrations sustaining
hypoxia, with more intense stratification, reduced solubility of
oxygen at higher water temperatures and enhanced metabolic
rates in warmer bottom waters (51).

Unfortunately, the lack of past land cover data at a suffi-
ciently high spatial resolution in other regions prevents from
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expanding this work globally. Nonetheless, the observed regime
shifts to new stable hypoxic conditions highlight the challenges
for developing countries facing persistent diffuse P emissions,
growing P demands together with changes in lifestyle (e.g., diet
shifts), and expanding urban areas (including the development
of megacities and peri-urbanization).Moreover, wastewater from
sewage and industry is often untreated and may be the primary
contributor towards eutrophication (52). For example, only 35 %
of wastewater in Asia and <1 % in Africa were treated in CE
2005 (52). Without implementation of wastewater treatment of P
in point and mixed sources, the future of lakes in these regions
will likely result in prevalent hypoxic hypolimnetic conditions,
degraded water quality and the necessity for decade-long restora-
tion efforts.

In conclusion, our analyses of varved sediment records indi-
cate that nutrient point sources from growing urban areas were
the leading driver for the onset of hypoxia in the hypolimnion
of downstream lakes. Point and diffuse sources have always both
contributed to the total supply of nutrient inputs to lakes, but
with varying intensities over time and space. Our results show
that urban point sources of P were the dominant driver of lake
eutrophication in European lowland systems during the Anthro-
pocene. During the last few decades, the relative contribution
of diffuse P sources has progressively become a major cause
of modern freshwater eutrophication in developed countries, as
point sources have been reduced and fertilizer use has increased.
The lack of re-oxygenation of the hypolimnion evident from our
analyses highlight the importance of the history and legacy of past
land uses, and the need for long-term strategies to maintain and
restore water quality in modern lake ecosystems.

Materials and Methods
Reconstructing the dynamics of hypoxia

The sediment textures of many lakes offer a simple proxy for the
oxygenation history of bottom waters (53-55). Indeed, the appearance of
laminated sediment on top of homogeneous sediment indicates that annual
oxygenation conditions fell below a critical threshold in both duration and
concentration (35, 56, 57), hence recording the die-out of macrobenthos and
the end of its related bioturbation (Fig. S7, 54, 58, 59). If laminations are
proven to reflect annual cycles of sedimentation, they offer the additional
advantage that the shift from well-oxygenated to at least seasonal hypoxic
hypolimnic conditions can often be precisely dated by counting varves from
the sediment/water interface down-core (54). The Varves Working Group of
PAGES (VWG) has intensively investigated varved lakes over the last decade
(54, 60, 61), enabling the assembly of a large dataset of lake hypoxia (17). In
Europe, 148 varved sediment records were referenced in the global compila-
tion of the VWG (17) and indicated that the European dynamics of lacustrine
hypoxia encompassed: (i) a period of relatively undisturbed conditions prior
to CE 1850 serving as a pre-industrialized baseline reference; (ii) a period
of major changes during the early industrialization of western countries
and the following “Great Acceleration” phase of the so-called Anthropocene
(42); and, (iii) the initiation of European lake restoration programs since
the 1970s. Land use changes in watersheds of recently varved lakes have
been compared to a set of 97 naturally varved lakes in order to dismiss any
sampling bias related to morphometric properties. Preservation of laminated
sediments usually indicates that lakes have strong hypoxia; however, strong
seasonal hypoxia may not systematically develop laminations, notably due to
the absence of contrasting seasonal sedimentation, or as a consequence of
wind causing sediment resuspension. Our data matrix does not attempt to
include all lakes with hypoxia but instead includes a conservative and large
selection of well-characterized lakes with laminated sediments to provide
a statistically sound and relevant basis for constraining the dynamics of
hypoxia in Europe.

Paleolimnological data
A literature search was conducted in April 2014 (17) and updated in

June 2015 using the ISI Web of Science database and Google Scholar with
different combinations of the following keywords: ‘varve’ and ‘lake’, and
‘lamin’ and ‘lake sediment’. The search yielded 148 relevant European lakes
that contain laminated or varved sediments. Descriptions and data on varved
sites, sediments and dating methods are available in (17) and references

therein. The original chronologies were expressed in Common Era (CE)
calendar years. Laminated lacustrine sites had to satisfy several conditions
in order to be included in this synthesis. Accepted sites (i) contained a varved
or well-preserved laminated sedimentary sequence, (ii) featured a published
age-model relying on varve counting and/ or radiometric dating, and (iii)
the lakes’ sediment texture had to be explicitly described or illustrated by
pictures outlining the laminated intervals. The timing of the first onset of

hypoxia was obtained for each lake by examining all relevant published varve
data. Where time intervals could not be dated precisely with the help of
published data, corresponding authors were contacted and asked for advice.
The water depth for each lake was collected and used to verify that lake level
fluctuations were not the cause of changes in preservation conditions of the
varves. Descriptions and data for lake sites were compiled in this study (Table
S1).

Land use and climate data
Modern data and temporal changes in land use and climate during the

last 300 years were analyzed for 1,607 watersheds. Hydrological basins of
each site were calculated using the flow accumulation and flow direction
rasters made available from HydroSHEDS together with lake perimeters
and areas, using the Global Lakes and Wetlands Database from the World
Wildlife Foundation (38). The following variables were extracted from mod-
eled areas using the geographic information system ArcGIS: (i) modern site
characteristics; (ii) past land use from CE 1900 to 2010 at decadal steps
and with a 1 km2 spatial resolution and (iii) past land use from CE 1700
to 2000 with centennial resolution. Mean local temperatures, precipitation,
population densities (62), changes in urban area, cultivated, pastured and
forest areas (24) as well as past human population densities (63) were
extracted from modeled areas for each watershed.

Numerical analysis
An additive mixed-effect model (AMM) framework generated using the

mgcv library in R (64) was used to describe the general nonlinear trends in
land uses over the last three centuries. It was anticipated from (17) that
watersheds with recently hypoxic lakes would contain an environmental
signal reflecting a more urbanized and agriculturally-cultivated landscape
compared to watersheds serving as benchmarks as well as naturally hypoxic
lakes. Thus, the relationships among urban, cultivated, pastured and forested
areas were evaluated for the four watershed categories of this study. Con-
fidence intervals were derived using the standard errors produced by the
predict.gam function in R (65), with type = ‘response’ specified in the model
(mgcv library (66)).

Multiple regression analyses were conducted to identify the main drivers
of hypoxia onsets. For each recently hypoxic lake (n = 51), we created a
binomial time series indicating whether the first hypoxic event had occurred
or not at each date of the land cover data (i.e. 1700, 1800, 1900, 1910, ...
, 2010). To test the relative importance of the different land cover types,
we then ran a logistic general additive mixed-effect models (GAMM) using
the binomial time series as the response variable, the percentage of urban,
cultivated and pastured areas as fixed effect explanatory variables, and lake
ID as the random effect (testing a random slope and intercept for each lake).
To further test whether the smooth term varied among lakes, we tested a
random smooth logistic GAMM, which not only allowed the slope to vary
among lakes but also the shape of the nonlinear relationship. All GAMMs
were fit using the bam function of the itsadug package in R (67).

Non-parametric Mann–Kendall (M-K) tests for monotonic trends were
used to quantify trends of land use for each of the 1,607 watershed time
series within the past 300 years. This analysis was based on the Kendall
rank correlation coefficient and was conducted using the Kendall library
(68). A positive score shows a monotonically increasing trend, whereas a
negative value shows a monotonically decreasing trend (69). For each site,
M-K tests were run for two time windows to identify the potential effects of
slow and fast land cover changes on the hypoxia onset: (i) we anticipated
that fast changes in the land cover would show an effect within a short
period of time (±20 years) centered on the time of the onset to be consistent
with the uncertainties of reconstructions, and (ii) slow changes in the land
cover would show an effect over a longer period of time (∼200 years)
preceding the onset of hypoxia to be consistent with the long-term history
and potential legacy effects of past land changes in Europe.
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