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ABSTRACT 14 

Extreme hydrological events, such as floods and droughts, are one of the natural disasters 15 

that occur in several parts of the world. They are regarded as being the most costly natural 16 

risks in terms of the disastrous consequences in human lives and in property damages. The 17 

main objective of the present study is to estimate flood events of Abiod wadiat given return 18 

periods at the gauge station of M’chouneche, located closely to the city of Biskra in a semi-19 

arid region of Southern-East of Algeria. This is a problematic issue in several ways, because 20 

of the existence of a dam to the downstream, including the field of the sedimentation and the 21 

water leaks through the dam during floods. The considered data series is new. A complete 22 

frequency analysis is performed on a series of observed daily average discharges, including 23 

classical statistical tools as well as recent techniques. The obtained results show that the 24 

Generalized Pareto distribution (GPD), for which the parameters were estimated by the 25 

maximum likelihood (ML) method, describes the analyzed series better. This study also 26 

indicates to the decision-makers the importance to continue monitoring data at this station. 27 

Key words : Frequency analysis; Peaks-Over-threshold ; Generalized Pareto distribution 28 

;Threshold selection ; Flood discharges ; Extremequantiles; Biskra ; Algeria. 29 

30 
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Introduction  31 

The study of floods is a subject which arouses more and more interest in the field of water 32 

sciences. In spite of their low rainfall, the basins of the arid and semi-arid areas represent a 33 

hydroclimatic context where the overland flows phenomena are significant and feed a network 34 

of very active wadis. The activity of these wadis is far from being negligible from the flood in 35 

terms of their frequency and intensity. One observes on these rivers exceptional flows which 36 

sometimes, surprise by their magnitude[19]. The Abiod wadi, in the area of Biskra, is a very 37 

representative river of these basins. Moreover, the existence of Foum El Gherza dam to the 38 

downstream for the irrigation of the palm plantations makes the area more sensitive with regard 39 

to the floods. The flood events of the years 1963, 1966, 1971, 1976 and 1989 remain engraved 40 

in the memory of the inhabitants. The flood event of 11- 12th September 2009 was one of the 41 

historic floods in the Zibans area[7]. It rains 80 mm in 24 hours, while the annual total of Biskra 42 

city reaches 100 mm. The damage were 9790 palm trees, 164 flooded houses, 744 destroyed 43 

greenhouses, 200 hectares of lost cultures.  The last flooding at the time of this drafting paper 44 

is that produced in October 29th 2011.  All the populations living downstream of the Foum El 45 

Gherza dam were evacuated. The floods mainly occur in September and October and especially 46 

originate from exceptional storm events. 47 

Describing and studying these situations could help in preventing or at least reducing severe 48 

human and material losses. The strategy of prevention of flood risk should be founded on 49 

various actions such as risk quantification.  On this aspect, various methodological approaches 50 

can contribute to this strategy, among which flood Frequency Analysis (FA). Frequency 51 

analysis of extreme hydrological events, such as floods and droughts, is one of the privileged 52 

tools by hydrologists for the estimation of such extreme events and their return periods. The 53 

main objective of FA approach is the estimation of the probability of exceedance  TP X x , 54 
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called hydrological risk, of an event 
Tx  corresponding to a return period T[16].This process is 55 

accomplished by fitting a probability distribution F to large observations in a data set. Two 56 

approaches were developed in the context of extreme value theory (EVT). The first one, usually 57 

based on the generalized extreme value distribution (GEV), describes the limiting distribution 58 

of a suitably normalized annual maximum (AM) and the second uses the generalized Pareto 59 

distribution (GPD) to approximate the distribution of Peaks-Over-Threshold (POT). For more 60 

details regarding this theory and its applications, the reader is referred to textbooks such as 61 

Embrechts et al.[24],Reiss and Thomas[51],  Beirlant et al.[6] and de Hann and Ferriera [18]. 62 

Many FA models should be tested to determine the best fit probability distribution that describes 63 

the hydrologic data at hand. Specific distributions are recommended in some countries, such as 64 

the Log-normal (LN) distribution in China[10]. In the United States, the Log-Pearson type 3 65 

distribution (LP3) has been, since 1967[44], the official model to which data from all 66 

catchments are fitted for planning and insurance purposes. By contrast, the United Kingdom 67 

endorsed the GEV distribution[45, 46]up until 1999.The official distribution in this country is 68 

now the generalized logistic (GL), as for precipitation in the United States[59]. There are 69 

several examples where a number of alternative models have been evaluated for a particular 70 

country, for example Kenya[43], Bangladesh[35], Turkey[5] and Australia [58]. Nine 71 

distributions were used with data from 45 unregulated streams in Turkey by Haktanir[26]who 72 

concluded that two parameter Log-normal (LN2) and Gumbel distributions were superior to 73 

other distributions. Recent research was conducted by Ellouze and Abida[23]in ten regions of 74 

Tunisia. They found that the GEV and GL models provided better estimates of floods than any 75 

of the conventional regression methods, generally used for Tunisian floods. Rasmussen et 76 

al[50]reveals that the POT procedure is more advantageous than the AM in the case of short 77 

records. Lang et al.[40] develop a set of comprehensive practice-oriented guidelines for the use 78 

of the POT approach. Tanaka and Takara[55] has examined several indices to investigate how 79 
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to determine the number of upper extremes rainfall best for the POT approach. 80 

In the Algerian hydrological context, during the last two decades many authors have used 81 

several approaches to study the associated risks. Recently, Hebal and Remini[29]studied flood 82 

data from 53 gauge stations in northern Algeria, between 1966 and 2008. They found that 50 %, 83 

25 % and 22 %of the samples follow respectively the Gamma, Weibull and Halphen A 84 

distributions. Bouanani [12]performed a regional flood FA in the Tafna catchments and 85 

concluded that the AM flows fit better to asymmetric distributions such as LP3, Pearson 3 and 86 

Gamma. The FA was also used in the sediment context by Benkhaled et al. [8]where the LN2 87 

distribution was selected in the case of the same station considered in the present study, i.e. 88 

M’chouneche gauge station on Abiod wadi. 89 

To the best knowledge of the authors, apart from Benkhaled et al. [8], the flood FA approach 90 

has not yet been performed on data collected at this station. The primary aim of this paper is to 91 

perform a FA to the Abiod wadi flow data by the POT approach, based on GPD approximation 92 

[30].In methodological terms, all the steps constituting FA are performed from data 93 

examination to risk assessment including hypotheses testing and model selection. Due to the 94 

high importance of the latter and its impacts, more recent techniques are employed to select the 95 

appropriate distribution that fit better to the tail. A relatively large number of known 96 

distributions fit well the center of the data whereas the focus in FA is on the distribution tail. 97 

To this end, tail classification and specific graphical tools are employed, see El Adlouni et al. 98 

[22] for more technical details. 99 

The paper is organized as follows. In Section 2, the study area and the data set are briefly 100 

described. Section 3 is devoted to the FA methodology. The results of the study are presented 101 

and discussed in Section 4. Concluding remarks are reported in Section 5. 102 

 103 
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1. Study area and data  104 

In this section, we present the region where the site of interest is located, followed by a 105 

description of the available data. 106 

1.1 Study Area 107 

The Abiod wadi watershed, with an area of 1300 Km2, is located in the Aurès massif in the 108 

southern east of Algeria in North Africa (Figure 1). It is part of the endorheic watershed Chott 109 

Melghir. The wadi length is 85 km from its origin in the Chelia (2326 m high) and Ichemoul 110 

(2100 m high) mountains. After crossing Tighanimine, the wadi gradually flows into the 111 

canyons of Ghoufi and M’chouneche gorges, and then opens a path to the plain until the 112 

Saharian gorge Foumel Gherza. The valley of the wadi is mainly composed of sedimentary 113 

rocks, comprising alternating limestone, marl, soft sediments (sandstones, conglomerates) and 114 

some evaporates (gypsum) dated of Paleogene. 115 

The watershed is characterized by its asymmetry, a mountainous area in the north to over 2000m 116 

(Chelia) and another low area in the south (El Habel 295 m). The relief is rugged with slopes 117 

ranging between 12.5% and 25% for half of the area, and from 3% to 12.5% for another 40% 118 

of the area. Land cover is a mix of rocky outcrops, highly eroded soil, sparse vegetation, a few 119 

forests, crops, gardens and pastures [27]. In the orographic and hydrographic points of view, 120 

Abiod wadi is characterized by two distinct climatic regions: the Aurès, where rainfall averages 121 

450 mm/year, and the Sahara plain with mean rainfall 100-150 mm/year. The climate of Abiod 122 

wadi watershed is thus semi-arid to arid. Along Abiod wadi to the Foum El Gherzadam there 123 

are six rainfall stations, and one hydrometric station located 18 km upstream of the dam, as 124 

shown in Figure 1, which was damaged during the floods of 1994-1995 and it is not operational 125 

since. 126 
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The choice of this station was made on the basis of climatic context of the study area. It is the 127 

only station on the studied basin and it is rather representative of the whole south-east region 128 

in Algeria, which is arid to semi-arid. Also, the size of the series used shows the interest of the 129 

FA application. 130 

1.2 Data Description 131 

The data set used in this study is provided by the National Agency of Hydraulics Resources 132 

(ANRH) of Biskra and it is the first time to be considered and studied. It consists of the daily 133 

average discharges 1, , NQ Q
 (with N = 8034), collected at the gauge station of M’chouneche 134 

over 22 years from 1972 to 1994.  135 

Note that the IACWD Bulletin 17B [1] suggests that at least 10 years of record are necessary 136 

to warrant a statistical analysis. For instance, Tramblay et al. [57] used a minimum of 10 years 137 

of daily data. The short data size can affect the choice of distributions, the quantile estimations, 138 

particularly those corresponding to large return periods and the extent of confidence intervals. 139 

The size of the used data in the present study is relatively large, to perform a FA, as in a number 140 

of similar studies[15]. 141 

2. Methodology 142 

In this section, after defining the type of series to be analyzed, namely the POT series, we briefly 143 

present the required elements to perform a hydrological FA. The latter is a statistical approach 144 

of prediction commonly used in hydrology to relate the magnitude of extreme events to a 145 

probability of their occurrence[16]. It allows, for the selected station, to estimate the flood 146 

quantiles of given return periods. In general, FA involves four main steps:  147 

(i) characterization of the data and determination of the usual statistical indicators, such as 148 

the mean, the standard-deviation, the coefficients of skewness (Cs), kurtosis (Ck) and 149 
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variation (Cv)and detection of outliers, 150 

(ii) checking the basic hypotheses of FA, i.e. homogeneity, stationarity and independence, 151 

applicability on the studied data set, 152 

(iii) fitting of probability distributions, estimation of the associated parameters and selection 153 

of the best model to represent the data, and 154 

(iv)  risk assessment based on quantiles or return periods, [e.g. 11, 14, 26, 49]. 155 

3.1. Peaks Over Threshold Series 156 

The data to be extracted and then used in this approach consist in the observations that exceed 157 

a selected relatively high thresholdu . Let Q represent the daily average discharge and denote 158 

by uN the number of discharges exceedingu . Then, the sample of excesses is defined as 159 

  . . ; 1, .
j jj i i uE Q u s t Q u j N   

 
160 

In this approach the selection of an appropriate threshold is crucial. This approach is useful and 161 

has some advantages compared to the AM one, even though the latter is widely used. It is of 162 

particular interest in situations where the AM could not perform well especially in situation 163 

with little extreme data or the extracted extremes by AM cannot be considered as extremes in 164 

a physical or hydrological meaning. 165 

3.2.1.GPD Approximation 166 

Statistically, the distribution of the POT series 1, ,
uNE E ,can be determined by making use of 167 

the GPD which is a cdf ,G   defined, for    , : 0,x S     if 0  and  0, /   if 0  , 168 

by: 169 
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(1)where 𝛾 ∈  𝑅  and 0  are respectively shape and 170 

scale parameters[31].  171 

Let    uF x P Q u x Q u    denote the excess cdf of Q over a given threshold u . Then, we 172 

have the following result: 173 

      ,
0

lim sup 0,
F

F

u u
u q x q u

F x G x
 

   

   (2) 174 

where Fq is the right end point of the cdf F . This result, due to Balkema andde Haan[4] and 175 

Pickands [48],is one of the most useful concepts in statistical methods for extremes. It says that 176 

for large threshold u , the excess cdf 
uF  is likeley to be well approximated by a GPD. 177 

3.2.2.Threshold Selection 178 

In order to obtain the asymptotic result in(2), the threshold u should be large enough which has 179 

as a consequence a satisfactory GPD approximation. The choice of the threshold is a crucial 180 

issue in the POT procedure. Indeed, selecting a threshold that is too low results in a large bias 181 

in the estimation, whereas taking one that is too high yields a big variance[24, section 6.4 and 182 

6.5]. Hence, a compromise between bias and variance is to be found. To this end, one can 183 

minimize the asymptotic mean squared error, which is composed by the bias and variance. 184 

Furthermore, several graphical procedures are available to select u , such as the mean residual 185 

life (MRL), threshold choice (TC) and dispersion index (DI) plots. On the other hand, the choice 186 

of u can be based on physical considerations, e.g. by identifying the flood level of the river of 187 

interest. For a survey of the main selection procedures, see e.g. the paper of  Lang et al [40]. 188 

3.2.Exploratory Data Analysis 189 
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The first step allows to check the data quality and to screen the data to avoid outlier effects. It 190 

also permits to obtain prior information, e.g. the shape, regarding the distribution to be selected. 191 

The presence of outliers in the data can have an important effect and causes difficulties when 192 

fitting a distribution[3]especially on the distribution upper part. The Grubbs and Beck[25] 193 

statistical test, based on the assumption of normality data, is designed to detect  low and high 194 

outliers. In the case where the original data are not normal, they should be appropriately 195 

transformed. According to Section 1.8.3 in[49], this test is based on the following quantities:  196 

  exp ,H nx x k s   (3) 197 

  exp ,L nx x k s   (4) 198 

where x and s are respectively the mean and standard deviation of the natural logarithms of the 199 

sample, and nk is the Grubbs-Beck statistic tabulated for various sample sizes and significance 200 

levels by Grubbs and Beck [25]. For instance, at the 10% significance level, the following 201 

approximation is used 202 

 
1/4 1/2 3/4.62201  6.28446  – 2.49835   0.491436  –  0.037911 ,3n n n nk n     (5) 203 

where n is the sample size. 204 

The observations greater than Hx are considered to be high outliers, while those less than Lx205 

are taken as low outliers. 206 

3.3.Testing Independence, Stationarity and Homogeneity 207 

Three basic assumptions are required to correctly apply FA of extreme hydrological events, 208 

namely independence, stationarity and homogeneity of the data[11]. To verify these 209 

assumptions, three tests are widely used in the literature. The Wald-Wolfowitz test is employed 210 
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for the independence, the homogeneity test of Wilcoxon is applied to check whether the data 211 

come from the same distribution or not and the Mann-Kendall test allows to verify stationarity 212 

of the data, i.e. the series does not present a trend over time. These three tests have the advantage 213 

of being non-parametric and are widely used in hydrological FA. In other words, they do not 214 

require any prior knowledge on the distribution of the data. 215 

3.4.Parameter Estimation and Model Selection 216 

The choice of the appropriate model is one of the most important issues in FA. In practice the 217 

distribution of hydroclimatic series is not known. Using the fitted probability distribution, it is 218 

possible to predict the probability of exceedance for a specified magnitude, i.e. quantile, or the 219 

magnitude associated with a specific exceedance probability. To estimate the parameters 220 

associated to the appropriate probability distribution, popular techniques are used in hydrology, 221 

including the methods of Maximum Likelihood (ML)[e.g. 17, 46], Moments (MM) and 222 

Probability Weighted Moments (PWM) [e.g. 13, 32]. The latter is equivalent to the L-moment 223 

method which is widely used in hydrological FA[29]. 224 

The choice of the adequate distribution is determined on the basis of numerous classical and 225 

recent statistical tools, including graphical representations [34, 46] and goodness-of-fit tests 226 

such as the tests of Pearson (Chi-squared, Chi2), Kolmogorov-Smirnov (KS), Cramer-von 227 

Mises and the normality specific Shapiro-Wilk (SW) test. Due to the importance of the 228 

distribution impact in FA, these tools should be exploited. This point is widely studied in the 229 

literature [8, 20, 22, 28, 31, 38 and  47]. 230 

Nonetheless, the decision procedures mentioned above are not perfectly suited for extreme 231 

value distributions, because they are not sensitive enough to deviations in the tails. Several 232 

transformations have been proposed to overcome the limitations of the aforementioned tests 233 

[36, 39, 41]. In our application, where we focus on the upper tail of the distribution, we perform 234 
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the Anderson-Darling k-sample test (k=2) implemented in the adk package of the statistical 235 

software R. This procedure is used to test the null hypothesis that k samples come from one 236 

common continuous distribution. In our case, the first sample of size 42 is the considered POT 237 

series and the second one consists in values generated from the GPD model. For more details 238 

on this test, we refer to [53]. 239 

The probability distributions that are appropriate for hydrology data are those with heavy tails. 240 

A number of them are listed, e.g. in [37, 49, 52]. In order to select the appropriate distribution 241 

among those which passed the goodness-of-fit tests, one or more criteria are required. To this 242 

end, one  can consider the Akaike and Bayesian information criterion (AIC, BIC) respectively 243 

proposed by Akaike [2] and Schwartz [54]. They are given by: 244 

 2ln 2 ,AIC L k    (6) 245 

 2ln 2 lnBIC L k m   (7) 246 

where L is the likelihood function, the number of parameters and mthe sample size. The best 247 

fit is the one associated with the smallest criterion AIC or BIC values [20, 28, 49].  248 

3.5.Quantile Estimation 249 

Once the appropriate distribution selected, the quantiles and return periods can be evaluated. 250 

The quantile estimation for various recurrence intervals is the main goal in hydrological practice. 251 

The notion of return period for hydrological extreme events is commonly used in FA, where 252 

the objective is to obtain reliable estimates of the quantiles corresponding to given return 253 

periods of scientific relevance or government standard requirements[49]. In the FA context the 254 

uncertainty decreases with the sample size whereas it increases with the return period when 255 

estimating quantiles.  256 

k
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In many environmental applications the sample size is rarely sufficient to enable good extreme 257 

quantiles estimations. Usually, a quantile of return period T can be reliably estimated from a 258 

data record of length n if T<n. However, in many cases, this condition is rarely satisfied –since 259 

typically n<50 for hydrological applications based on annual data[31]. 260 

3. Results and discussion  261 

The application of the presented methodology in section 3 to the data described in section 2 262 

leads to the following results, obtained by means of the packages stats, evir and POT of the 263 

statistical software R [33] and also by using the HYFRAN-PLUS software[21]. 264 

4.1.Exploratory Analysis and Outlier Detection 265 

From Figure 2, it appears that the whole daily data series vary from a minimum value of 30 /m s  266 

corresponding to many dry days, to a maximum value of 378.57 /m s recorded on September 267 

21st, 1989. The average flow of 30.39 /m s is a relatively low in comparison with other tributary 268 

wadis of Chott Melghir like El Hai wadi and Djamorrah wadi [42]. The standard-deviation of269 

32.48 /m s  yields a coefficient of variation equal to 6.39 .The box-plot in Figure 3clearly 270 

shows the existence of extreme values. Indeed, the median ( 30.10 /m s ) is close to both 25th 271 

and 75th percentiles ( 30.04 /m s and 30.20 /m s ). In addition to this graphical consideration, the 272 

values of skewness and kurtosis 3(20.51 /m s  and 
3498.59 /m s  respectively) eliminate the 273 

Gaussian model. In particular the very large value of the kurtosis indicates longer and fatter 274 

distribution tails, urging us to focus on heavy-tailed models 275 

From Erreur ! Source du renvoi introuvable., we observehigh inter-annual and the short 276 

sample size (resulting from selection AM) which leads to selecting low discharges during the 277 

driest years whereas some interesting discharges were not selected during the years where 278 
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several floods have occurred. This explains the non-relevance of the AM approach for Abiod 279 

wadi data analysis and suggests that the POT approach would be more appropriate, and would 280 

lead to a more homogeneous sample of extreme discharges. This method starts with the 281 

selection of a convenient threshold, then the consideration of the observations that exceed this 282 

threshold. 283 

In order to detect outliers, the quantities 
Hx and 

Lx  are found to 508.31 and 0.08 respectively. 284 

Since there is no value greater than Hx and nor less than Lx , we conclude that, at the significant 285 

level of 10 %, no outlier exist among the excesses. Since it is difficult to use the outlier detection 286 

test with the analysis of extremes and due to the lack of regional weather data, the significance 287 

level to 10% is considered. 288 

4.1.1.Threshold Selection 289 

In this study, we adopt one of the available graphical tools, namely the TC-plot. From Figure 290 

4we can choose a threshold value 35.6 /u m s , which results in an excess series of size 291 

58.However, as recommended by many authors [9, 40, 56], this data set must be reduced in 292 

order to avoid the effects of dependence. We eliminated the peaks being obviously part of the 293 

same flood, and in order to keep the character of flood seasonality, we retain three peaks per 294 

year over the recorded period. Thus, the length of the data series becomes 42. Figure 5shows 295 

the distribution of these excesses and Table 1summarizes their elementary statistics. 296 

The positive skewness coefficient Cs=1.62 reveals that the data is right skewed relative to the 297 

mean excess, as shown in Erreur ! Source du renvoi introuvable.a. In Figure 5a, the data are 298 

arranged by classes, of length10 m3/s each, with the associated frequencies. It can be seen that 299 

some values are more frequent than others and that the majority of excesses have a low value 300 

varying between 0 and 10 m3/s. Erreur ! Source du renvoi introuvable.b, where the data are 301 
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arranged according to the months of appearance, shows that the peaks generally occur in the 302 

fall season.  303 

4.2.Testing the Basic FA Assumptions  304 

The results of the required hypothesis testing on the considered data are given in Table 2. 305 

Applying Wilcoxon, Kendall and Walf-Wolfowitz tests respectively, we conclude that the 306 

homogeneity, stationarity and independence of the excesses are accepted at any of standard 307 

significance levels (1%, 5% and 10%).Note that for the homogeneity test, we split the data in 308 

two sub-series 1972-1981 and 1982-1994 (any other subdivision led to the same conclusion). 309 

The homogeneity can also be noted in Erreur ! Source du renvoi introuvable.a where there is only one 310 

mode (the highest frequency). 311 

4.3.Model Fitting  312 

To fit a statistical distribution, we consider three commonly used estimation methods of the 313 

GPD parameters (ML, MM, and PWM). Then we perform the Anderson-Darling test to check 314 

the goodness-of-fit of the model. The results are summarized in Table 3. In view of the large P-315 

values, we deduce that the GPD can be accepted as an appropriate model for the excess at any 316 

standard significance level (for instance 5%). 317 

To discriminate between the obtained models, we use the AIC and BIC criteria. The last two 318 

columns of Table 3as well as Figure 6bfavor the GPD of the ML fitting method. We illustrate 319 

the goodness of fit of the excesses to this model in Erreur ! Source du renvoi introuvable.a. 320 

Furthermore, this ML-based will be used for quantile estimation in the following section. 321 

Note that the ML and PWM results are very similar whereas those of the MM results are slightly 322 

different but remain in the same range.  323 
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4.4.Quantile Estimation 324 

The estimation of extreme quantiles for different return periods should take into consideration 325 

the record period and the right tail of the distribution. The formally gauged record represents a 326 

relatively small sample of a much larger population of flood events. Thus, the extrapolation for 327 

long return periods is less accurate. In the M’chouneche station only the following return 328 

periods were considered for the estimation of quantiles: 2, 5, 10, 20 and 50 years as presented 329 

in Table 4. The return period of the strongest streamflow in the 1972-1994 period, equal to 330 

78.57 m3/s, is estimated by means of Pareto’s fitted model to be 30.62 years.  331 

The confidence interval is a way to assess the uncertainty in the estimation of the distribution 332 

parameters and quantiles. For the GPD, the confidence bounds are obtained through asymptotic 333 

results [31]. In the present case-study, one can see from Erreur ! Source du renvoi 334 

introuvable.c that the GPD agrees with the observations for return levels less than 30 but not 335 

beyond even though they are all included in the confidence interval. This is probably due to the 336 

small number of peaks over the chosen threshold. Therefore, it is important to consider this 337 

distribution with care with return periods greater than 30 years. This point indicates the issue 338 

of the quantity of the required data in this station for better estimation of high return periods.  339 

4. Conclusions  340 

The study of the Algerian wadis floods remains a quasi-unknown field as only some 341 

very specific indications are given in the Algerian hydrological directories. Floods are one of 342 

the basic features of a stream regime. The present study, which is the first one carried out in 343 

southern east of Algeria with new data series, in the context of FA. Mean daily discharges data 344 

recorded at the gauging station of M’chouneche in Abiod wadi, near Biskra, are available and 345 

considered in the present study. Due to the high inter-annual variability of the data as well as 346 

to the relatively short record length, the AM approach is not adapted to this analysis. Hence, in 347 
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this paper, we considered a more appropriate procedure, namely the POT method. 348 

The purpose of this work is to provide a suitable model for the excesses over a chosen threshold. 349 

This allows to estimate extreme flood events of given return periods. A complete FA  was 350 

applied including appropriate tools, commonly used in hydrology. The issue of threshold 351 

selection was dealt by the means of a graphical tool. Several fitting methods have led to 352 

different GPD models and according to the results, the ML-based distribution was adopted. 353 

Because of the short record length, only return periods of 2, 5, 10, 20 and 50 years were 354 

considered. It was found that most of extracted data corresponded to frequent events. In the 355 

present case study, the GPD distribution provided good estimates of return periods less than 30 356 

years but for higher values, the estimation is not acceptable and it is associated with high 357 

uncertainty (large confidence interval). 358 

As a conclusion, we should emphasis that, in addition to the quality of data and sample size, 359 

the right choice of a GPD model heavily depends on the threshold. To improve the flood FA at 360 

this site, future studies should focus on the importance of data monitoring. However, this 361 

conclusion even it is not new in FA, it is important for the studied area where this is the first 362 

time to be studied. It emphasis and confirms the importance of this issue, especially for local 363 

government and decision makers. 364 
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Table 1. Statistics summary of excess data set. 519 

 520 

 Size 42 observations 

 Minimum 0.02 m3/s 

 Qu1(25th percentile) 3.36m3/s 

 Median 7.83m3/s 

 Average 15.72m3/s 

 Qu2(75th percentile) 19.92m3/s 

 Sd 19.70 m3/s 

 Maximum 72.97m3/s 

 Cs 1.62 

 Ck 4.48 

 521 

Table 2.Stationarity, independence and homogeneity tests results. 522 

Tests Statistic value p-value 

Stationarity (Kendall) 0.48 0.63 

Independence (Wald-Wolfowitz) 0.94 0.35 

Homogeneity(Wilcoxon) 0.79 0.43 

523 

524 
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Table 3. GPD parameter estimation, Anderson-Darling goodness-of-fit test and 525 

information criterion results. 526 

Estimation 

method 

Scale Shape Statistic value            

(Anderson-Darling) 

p-value AIC BIC 

ML 10.19 0.39 -0.55 0.49 315.68 326.63 

MM 12.86 0.18 -0.83 0.58 316.61 327.56 

PWM 10.10 0.36 -0.86 0.59 315.72 326.68 

 527 

Table 4. Estimated quantiles of excess flows from the ML-based GPD. 528 

Return period (years) Estimated quantile (m3/s) 

2 8.11 

5 22.80 

10 37.96 

20 57.82 

50 93.82 

  529 
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 530 

Figure 1.Geographical location of the Abiod wadi watershed 531 
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 532 

Figure 2. Time series plot of the daily average discharge at M’chouneche station covering the period 01/09/1972-31/08/1994. 533 
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 534 

Figure 3.Box plot of daily average discharge at M’chouneche station. 535 

 536 

Figure 4.Graphical results of threshold selection applied for daily average discharge of 537 

Abiod wadi at M’chouneche station (tc-plot), vertical line corresponding to the threshold. 538 

 539 

 540 
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 541 

 a)                                                                         b) 542 

 543 

c) 544 

 545 

Figure 5. Distribution of excess series at M’chouneche station a) Histogram by flow 546 

classes b) Histogram by month c) boxplot. 547 

548 
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 549 

a) 550 

 551 

b)                                                                      c) 552 

Figure 6. Best fitted distributions of excess flows at M’chouneche station a) distributions 553 

b) qq plot of ML-based GPD c) Return level plot (95% confidence interval) 554 

 555 


