
1 
 

Publisher: Taylor & Francis & IAHS  
Journal: Hydrological Sciences Journal  
DOI: 10.1080/02626667.yyyy.nnnnnn 

 
A comparative study for water temperature modelling in a small basin, the 

Fourchue River, Quebec, Canada 

 
Jaewon Kwak1, Andre, St-Hilaire2 and Fetah Chebana2 

1Nakdong River Flood Control Office, Busan, South Korea,  
2INRS-ETE, INRS, Quebec, Canada,  
Corresponding author : A. St-Hilaire: email: Andre.St-Hilarie@ete.inrs.ca 
 

Abstract 

Analysis and forecasting of water temperature are important for water-ecological 

management. The objective of this study is to compare models for water temperature during the 

summer season for an impounded river. In a case study, we consider hydro-climatic and water 

temperature data of the Fourchue River (St-Alexandre-de-Kamouraska, Quebec, Canada) from 

between 2011 to and 2014. Three different models were applied, which are broadly characterized as 

deterministic (CEQUEAU), stochastic (Auto-regressive Moving Average with eXogenous variables or 

ARMAX) and nonlinear (Nonlinear Autoregressive with eXogenous variables or NARX). The 

efficiency of each model was analyzed and compared. The rResults show that the ARMAX is the best 

performing water temperature model for the Fourchue River and the CEQUEAU model also 

simulated water temperature adequately without the overfitting issues that seem to plague the 

autoregressive models.  

Keywords water temperature; CEQUEAU; ARMAX; NARX 

 

1. INTRODUCTION 

Water temperature affects physical and biological processes in the river system and is one of 

the most important physical characteristics for aquatic organisms (Beschta et al., 1987,; Hammitt and 

Cole, 1998,; Coutant, 1999,; Nunn et al., 2003). Among them, fish species are sensitive to water 

temperature for growth rate and spawning (Ojanguren et al., 2001; Selong et al., 2001; Lessard and 
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Hayes, 2003; Handeland et al., 2008). Furthermore, it is also an important factor for water quality 

(Singh et al., 2004; Morrill et al., 2005; Chang, 2008). There are many models and studies which 

contribute to more accurate water temperature simulations and forecasts. Caissie (2006) suggested 

that most models can be classified into three categories: regression-based, deterministic and stochastic. 

Following the early work of Johnson (1971) and Kothandaraman (1972), parametric statistical models 

such as regressions have been applied in many studies (Benyahya et al., 2007a). Simple linear 

regressions have been used with air temperature as a predictor (Crisp and Howson, 1982; Mackey and 

Berrie, 1991; Stefan and Preud'Homme. 1993). Also, multiple regression (Jeppesen and Iversen, 1987; 

Jourdonnais et al., 1992), logistic regression (Mohseni et al., 1998; Mohseni and Stefan, 1999), ridge 

regression (Ahmadi‐Nedushan et al, 2007) and Gaussian-process regression (Grbi•  et al, 2013) have 

been used in water temperature models.  

Deterministic models are based on the governing laws of heat exchanges and they consider 

the different energy fluxes and (in some cases) mixing process in the rivers with various degrees of 

complexity (Morse, 1970; Caissie, 2006, 2007). Due to this, they are widely used in applications with 

complex thermal in/outflows (Sinokrot and Stefan, 1993; Kim and Chapra, 1997; Younus et al., 2000; 

Danner et al., 2012). However, these models typically require more data than statistical models 

(Benyahya et al., 2007b). In contrast, stochastic models often require one or few predictors that are 

correlated with water temperature (Caissie, 1998; Webb et al., 2008). This category of models is very 

efficient when air temperatures are the only available data (Caissie, 2006). Hence, they have been 

widely applied to estimate weekly/monthly water temperature (Mohseni et al., 1998; Benyahya et al., 

2007b, 2008), daily water temperature (Caissie et al., 1998, 2001; Pal’shin and Efremova, 2005; 

Ahmadi‐Nedushan et al, 2007; Larnier et al., 2010) and hourly temperature (Mestekemper et al., 2010; 

Pike et al., 2013; Jeong et al., 2013). Furthermore, Artificial neural networks (ANN), which belong to 

the non-parametric category (Chenard and Caissie, 2008; Sahoo et al., 2009; DeWeber and Wagner, 

2013; Hadzima-Nyarko et al., 2014), k-nearest neighbors algorithm (k-NN), which is a nonlinear 

dynamic model (Benyahya et al., 2008; Nowak et al., 2010; St‐Hilaire et al., 2012; Caldwell et al., 

2013) and dynamic chaotic models (Sahoo et al., 2009) have been applied to estimate water 

temperature. While the literature on water temperature modelling is growing rapidly, relatively few 
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comparative modelling studies have been completed on rivers with dams, especially in Canada. 

The objective of this study is therefore to investigate the simulation efficiency of a number of 

water temperature models using hydro-climatic variables in the context of regulated flows. The 

models were compared on the Fourchue River basin, a forested catchment on which there is a 

managed reservoir. The Fourchue River has been previously studied by Beaupré (2014). She 

compared a deterministic model (SNTEMP; Bartholow, 1995) and a geostatistical model (Guillemette 

et al., 2009) both upstream and downstream of the dam. Beaupré (2014) showed that the geostatistical 

model outperformed SNTEMP for directly predicting temperature metrics that are relevant for 

salmonids, especially when these metrics are calculated using simulated maximum temperatures. For 

this follow-up study, hydro-climatic data were collected from 2011 to 2014 and models that represent 

three categories: deterministic, stochastic and nonlinear were used.  

 

2. STUDY AREA AND DATA  

The Fourchue River, with a drainage basin of 261 km2, is a tributary of the Du-Loup River, 

located in the eastern Quebec region, Canada. The Fourchue River is regulated by the Morin Dam, 

with flows of between 0.06 to and 4.0 m3/, which discharged from the epilimnion zone of the 

reservoir (184 E.L.m to 188 E.L.m). 

 

Fig. 1 Study area and measuring station. 

 

Many factors influence water temperature variability, which can be classified into four 

groups; atmospheric, topographic, hydrologic and streambed conditions. Selected predictors included 

atmospheric variables because atmospheric conditions are mainly responsible for the heat exchange 

processes. In addition, stream discharge was selected because it influences the heating capacity by 

determining the volume of water in the river reach (Caissie, 2006), but also because all models 

compared in this study need to be able to account for the impact of impoundment and the associated 

regulated flows. 
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Atmospheric variables used as potential predictors include air temperature, solar radiation, 

relative humidity and wind speed, which are known to be related to water temperature. Water 

temperature were obtained during the summer seasons (June to September) from 2011 to 2014 with 

Hobo Pro V2 thermographs (± 0.2° ℃C) sampling at 15- minutes intervals, and hourly solar 

radiation data were measured with a Kipp and Zonen pyranometer (SP-LITE, ± 10uV/W/m2), 

connected to a Campbell Scientific CR1000 datalogger, powered by a solar panel and a 12- V battery. 

The water temperature loggers were deployed over a 8- km river reach, from directly downstream of 

the Morin Ddam to its confluence with the Du-Loup River. Air temperature and relative humidity 

were obtained from the Fourchue River meteorological station (Environment Canada; 

http://climate.weather.gc.ca). Also, hydro-physiographic properties of the Fourchue River basin, 

required to run the deterministic model, were extracted from a 3 km x× 3 km grid DEM and lLand-use 

map (http://srtm.csi.cgiar.org/) (Fig.ure 2). 

 

Fig. 2 Hydro-physiographical characteristics of the study area., showing Map shows land use, 

whole squares (elementary hydrological units) and arrows indicateing water routing used for 

the deterministic (CEQUEAU) model. 

 

3. METHODOLOGY 

 

3.1 Test statistics for selection of model and predictors selection 

Given the plethora of potential models, five test statistics were used to identify the main 

characteristics of collected temperature data and potential predictors in order to select reasonable 

candidate models to simulate water temperatures of the Fourchue River. The considered tests are: the 

Spearman rank correlation coefficient for randomness (Myers and Well, 2003), the Ljung-Box Q test 

for autocorrelation (Ljung, 1978), Levene’s test for heteroscedasticity (Levene, 1960), the Lyapunov 

exponent test (Bask and Gençay, 1998) and the BDS statistics test for chaotic characteristic (Brock et 
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al. 1987) of data time series.  

Mutual Information (I) was also used to select appropriate predictors among the collected 

data set., where I(X:Y) is a measure of the amount of information that one continuous random variable 

X contains about another continuous random variable Y (Cover and Thomas, 2006):  

 

I(X: Y) =  ∫ ∫ 𝑝(𝑥, 𝑦) log � 𝑝(𝑥,𝑦)
𝑝(𝑥) 𝑝(𝑦)

� 𝑑𝑑  𝑑𝑑  𝑋𝑌    (1) 

 

where, 𝑝(𝑥) and 𝑝(𝑦) are the marginal probability density functions of X and Y and 

𝑝(𝑥, 𝑦) is the joint probability density function. The mutual information will be larger for variables 

which have a stronger relation and vice versa. So, predictors selection based on value of I(X:Y) of 

each input variable with the output variable can be used to identify the most important predictors 

(Battiti, 1994). 

 

3.2 Water tTemperature mModels 

Given the large number of available water temperature models in use, the aforementioned 

criteria were used to find the most suitable ones for the Fourchue River. Three types of candidate 

models were considered: (ai) one a deterministic model called CEQUEAU (Morin et al., 1998); (bii) 

the ARMAX (AautoRregressive-Mmoving Aaverage with eXxogenous terms) model, which is in the 

stochastic category; and (ciii) the NARX (Nonlinear AutoRegressive model with eXogeneous input) 

for the nonlinear approach. 

The CEQUEAU model is a hydrological model that is combined with a heat budget model 

and has shown applicability in Canada (Morin and Slivitzky, 1992; St-Hilaire et al., 2000, 2003; 

Seiller and Anctil, 2014) and in other countries (Dibike and Coulibaly, 2005; Ba et al., 2009; Sauquet 

et al., 2009; Eleuch et al., 2010). The ARMAX model is useful when the data are noisy, so it has the 

potential to show good results and provide flexibility in describing the properties of the noise 

associated with water temperature time series (Breaker and Brewster, 2009) and NARX models also 

show good performance for several types of chaotic time series (Diaconescu, 2008). 

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Comment [F7]: Make variables 
italic, ‘d’ not italic; use of Equation 
Editor 3.0 or MathType is preferred so 
that equation fonts are the same as the 
text. Also use text and symbols where 
possible in the text below, rather than 
equation terms. Make variables 
consistent between text and equations, 
i.e. in terms of italics  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 2
0:

14
 2

2 
M

ay
 2

01
6 



6 
 

 

3.2.1 CEQUEAU model: deterministic approach 

The CEQUEAU model is a semi-distributed hydrologic model which takes into account the 

hydro-physiographic characteristics of the basin (Morin et al., 1981). It is based on a water balance 

calculations and subsequent runoff generation through a set of elementary hydrological units called 

“whole squares”, which are further divided in “partial squares” according to the water divide (Morin 

et al., 1998). The CEQUEAU model comprises two functions to describe the runoff mechanism and 

upstream-downstream routing: (a) the production function represents vertical water routing from 

rainfall, snowmelt, infiltration and evapotranspiration used in water-balance calculations; and (b) the 

routing function is used to estimate the amount of water transiting to the downstream partial squares 

and ultimately to the outlet of the basin in the drainage network (Figure 3). 

 

Fig. 3 Schematic description of CEQUEAU model:; (a) production function (b) routing 

function (Morin, 2007). 

 

Prior to modelling water temperature, the hydrological model component of CEQEAU needs 

to be calibrated against observed flows and/or water levels. Model parameters were adjusted by hand 

using water level and runoff data of the Morin Dam between June 2011 and September 2014 (Figure 

4). Subsequently, the water temperature module of the CEQEAU model was used (Morin et al, 1998). 

This component computes a heat budget on each elementary hydrological unit (whole squares) based 

on the volume of water modelled by the hydrological module of CEQUEAU. Heat budget terms 

include incoming short wave solar radiation, net longwave radiation, latent heat, sensible heat, heat 

advected from upstream, heat loss downstream and local contributions from groundwater and 

interflow. Each heat budget term can be adjusted using a weighing coefficient. Average water 

temperatures are thus estimated at a daily time step.  

 

Fig. 4 Observed and simulated flows with CEQUEAU hydrological model for both 
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calibration and validation periods (June, 2011 to September, 2014). 

 

3.2.2 ARMAX: stochastic approach 

The ARMAX model is useful when the input data have noise, has more flexibility than other 

stochastic model, such as ARMA or ARX, and is defined as: 

 

A(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡 − 𝑘) + 𝐶(𝑧)𝑒(𝑡)    (2) 

 

wWhere 𝑦(𝑡) is the output, 𝑢(𝑡) is the input, 𝑒(𝑡) is the system error and 𝑘 is the time delay of 

the system. The terms A(z), B(z), and C(z) are polynomial with respect to the backward shift 

operator 𝑧−1 and defined as: 

 

A(𝑧) = 1 + 𝑎1𝑧−1 + ⋯+ 𝑎𝑡𝑎𝑧
−𝑡𝑎  

B(z) = 𝑏0 + 𝑏1𝑧−1 + ⋯+ 𝑏𝑡𝑏𝑧
−(𝑡𝑏−1)  

𝐶(𝑧) = 1 + 𝑐1𝑧−1 + ⋯+ 𝑐𝑡𝑐𝑧
−𝑡𝑐        (3) 

 

In this study, the ARMAX model has second order AR and MA processes and one day time 

lag (𝑘), which were optimized by trial and error method (ARMAX(2,2,1)).  

 

3.2.3 NARX : nonlinear approach 

Non-linear AutoRegressive model with eXogeneous input (NARX), is a special form of 

recurrent neural network with the outputs fed back to the input by delay line (Haykin, 1999). It has 

been demonstrated that they are well suited for modeling nonlinear and chaotic time series (Lin et al, 

1996; Gao and Joo, 2005) and also solve vanishing gradient problem, which occur in the prediction of 

nonlinear data (Haykin, 1999). A NARX model can be expressed as (Eq(4) and Figure 5): 

 

𝑦𝑡(𝑡 + 1) =  �∅(𝑢(𝑡), 𝑦𝑖(𝑡),               𝑖 = 1
𝑦𝑖(𝑡),                𝑖 = 2,3, … , 𝑘�   (4) 
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wWhere the output 𝑦𝑡(𝑡 + 1) and 𝑦𝑖(𝑡), 𝑖 = 1, 2, … , 𝑘, are state variables of a  recurrent 

neural network that contains feed-back connection for water temperature of the previous time step. 𝑡 

denotes the time series index set and ∅  denotes the neural network system. The Levenberg-

Marquardt-QNBP algorithm was used to train the network and to optimize the parameters. It is known 

to show good results for non-linear problems such as related meteorological and hydrological data 

(Battiti, 1989). NARX model of this study has 12 hidden layers that include one feed-back layer with 

one day time lag (𝑘) for water temperature.  

 

Fig. 5 NARX network schematization (Jose et al., 2008), where. 𝑢(𝑡) is the input 

set, 𝑦𝑖(𝑡) is the exogeneous input, k is the input delay and each circle represents an artificial 

neuron. 

 

To compare the results of each model, Root Mean Square Error (RMSE (Root Mean Square 

Error; Hyndman and Koehler, 2006; Eq. 5), Bias (Eq. 6) and Nash-–Sutcliffe  model efficiency 

coefficient of model efficiency (E; Nash and Sutcliffe, 1970; Eq. 7) were applied: 

 

RMSE = �∑ (𝑂𝑜𝑜𝑜−𝑂𝑠𝑠𝑠)2 𝑛
𝑖=1

𝑛
     (5) 

Bias =  ∑ (𝑂𝑜𝑜𝑜−𝑂𝑠𝑠𝑠) 𝑛
𝑖=1

𝑛
      (6) 

Nash E = 1 − ∑ (𝑂𝑜𝑜𝑜−𝑂𝑠𝑠𝑠)2 𝑛
𝑖=1
∑ (𝑂𝑜𝑜𝑜−𝑂𝑜𝑜𝑜�������)2𝑛
𝑖=1

     (7) 

 

where 𝑂𝑜𝑜𝑜 and 𝑂𝑠𝑠𝑠 are the observed and simulated values at the same time step, 𝑂𝑜𝑜𝑜������ 

denotes mean value of 𝑂𝑜𝑜𝑜, 𝑛 denotes the number of observations. The RMSE describes an average 

measure of the error in prediction but it doesn’t provide any information on phase differences. The 

bias represents the mean of all the individual errors and shows whether the model over or under 

estimates. The Nash–-Sutcliffe model efficiency coefficient, E, has been widely  used  to assess the 
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predictive power of hydrological  models (Moriasi et al., 2007). 

 

4. MODEL AND PREDICTOR SELECTION  

We applied five test statistics (Spearman rank correlation coefficient, Ljung-Box Q, Levene, 

Lyapunov exponent and BDS test) to determine the characteristics of the collected data (water and air 

temperature, runoff, solar radiation, relative humidity and wind speed). Through the Spearman Rank 

Correlation and Ljung-Box Q tests, all time series except solar radiation, which is a truly random 

series (calculated 0.154 versus critical value 1.96 in the Spearman Rank Corr. Coeff. test, and p-value 

0.997 in Ljung Box-Q test), were identified as stochastic time series. Other test results are shown in 

Table 1. 

 

Table 1 Test statistics for each dependent and independent variables. 

 

As the result of test statistics indicate, solar radiation data are categorized as a random series, 

runoff is a chaotic time series which has heteroskedasticity, relative humidity is also a chaotic time 

series and other data time series (water temperature, air temperature and wind speed) are categorized 

as nonlinear stochastic time series. Water temperature (target variable) can be classified as a nonlinear 

stochastic time series and most of the input predictors are chaotic, nonlinear and stochastic time series. 

Therefore, models such as multiple regression or zero-mean AR(1) models that cannot account for 

such characteristics are not eligible to simulate water temperatures in the Fourchue River. From the 

conclusions drawn from Table 1, the NARX and ARMAX models were selected because they are 

adapted to model time series such as water temperature and they show good results with chaotic and 

nonlinear data (Diaconescu, 2008; Diversi et al., 2011). These models will be compared to the 

deterministic model (CEQUEAU).  

Also, selection of the appropriate inputs is one of the main challenges. For the stochastic 

models, this selection can be done by trial and error models with different number of input variables 

(Grbi•  et al., 2013). However, that trial and error method can be time-consuming and lead to poor 
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performance for neural networks (Haykin, 1999; Maier and Dandy, 2000). So, mutual information 

theory was employed to select the most important predictor variables for the NARX models. As the 

result of the computation of mutual information, air temperature (1.28), runoff (0.82) and relative 

humidity (1.09) are shown to have more meaningful mutual information value with water temperature 

than solar radiation (0.30) and wind speed (0.09). The positive high value of the mutual information is 

indicative that the potential predictor has a stronger relation with the dependent variable, i.e. water 

temperature (May et al., 2008; Sahoo et al., 2009). So, air temperature, runoff and relative humidity 

were selected as the appropriate predictors. 

To corroborate the results of the Mutual Information analysis, a trial and error jackknife 

method was used. One of the hydro-climatic variable was removed from the input data set, which 

consist of air temperature, runoff, relative humidity, solar radiation and wind speed. Then the NARX 

and ARMAX models were simulated 200 times with each removed data set. Figure 6 shows boxplots 

of the evaluation result of simulation with each removed set. 

 

Fig. 6 Performance statistics from jackknife simulations to select predictor:; (a) 

RMSE of NARX, (b) ENash of NARX, (c) Bias of NARX, (d) RMSE of ARMAX, (e) Nash 

E of ARMAX, and (f) Bias of ARMAX. 

 

As the mutual information results and boxplots show and as expected, air temperature is the 

most suitable predictor for water temperature simulation. Runoff and relative humidity are also 

revealed as suitable independent predictors. The fact that runoff was included in the list of predictors 

is of the utmost importance, given that the river is regulated and that the models must be able to 

account for flow management. On the contrary, the inclusion of solar radiation and wind speed 

showed no improvement and in some cases, slightly better results were obtained if they were removed 

from the input data set.  

Also, as shown in Ffig.ure 4, the summer season (June. to –September.) of 2011 has a high 

runoff event (peaking at over 30 m3/s), while the other periods do not include such extreme events (i.e. 
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flows remain below 10 m3/s). In spite of the inclusion of flow as a predictor, model performances are 

not as good during high runoff period as for the rest of the time. Longer time series will be required to 

improve model calibration on the Fourchue River.  

 

5. RESULTS AND DISCUSSION 

To partially overcome the challenges associated with the relatively small time series that can 

be used form model calibration, we divided the data set in two cases and perform calibration and 

validation in both cases.  

 

Case 1: 2011, 2012, 2013 as calibration period and 2014 as validation period. 

Case 2: 2012, 2013, 2014 as calibration period and 2011 as validation period. 

 

The calibration results with selected models and predictors, which consist of air temperature, 

runoff and relative humidity, are shown in Ffigures 7 and 8. 

 

Fig. 7 Calibration results for Case 1:; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 

 

Fig. 8 Calibration results for Case 2:; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 

 

The ARMAX model shows the best results among all the selected models, with an RMSE, 

Bias and Nash values of 0.56 °C, 0.03 °C and 0.96, respectively, during the calibration period. It is 

closely followed by the other model with an autoregressive component, i.e. the NARX model (see 

Table 2). The CEQUEAU model simulation is characterized by a larger bias than the statistical 

models in cases 1 and 2, mostly caused by an underestimation of the warm period in 2012. Validation 

results are shown in Figures 9 and 10 and performance metrics are provided in Table 2. As it is often 

the case, all models show higher RMSE and lower Nash coefficient values for the validation than the 

calibration phase, except for the CEQUEAU model, which shows similar results for both calibration 
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and validation phases albeit with a higher bias (Table 2). Overall, the ARMAX model has the best 

performance, in spite of a slightly higher RMSE and lower NASH value than the deterministic model 

during one validation phase (in Case 2, Table 2).  

 

Fig. 9 Validation results for Case 1:; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 

 

Fig. 10 Validation results for Case 2; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 

 

Table 2 Calibration and validation performance statistics for each Case. 

 

The CEQUEAU model showed some modeling potential, in spite of a systematic negative 

bias (-0.41°C for calibration and -1.06°C for validation phase). It seems that the proximity of the 

monitoring station to the dam, may be one cause of the bias. The thermal regime in the Fourchue 

River is very strongly influenced by the presence of the reservoir. The travelling time is very short 

between the dam and the monitoring station (< 0.5 day) and thus, the reservoir thermal regime, which 

affects the thermal regulation in the lower reach of the Fourchue River, may come into play. For 

instance, there may be some occasional stratification and mixing of the water column in the reservoir 

that may modulate the temperature of the discharged water. Such an affect is not accounted for by 

CEQUEAU. In order to account for stratification, CEQUEAU would need to be coupled to a lake or 

reservoir temperature model. If stratification were present, it would also affect the ARMAX and 

NARX models. However, in spite of the fact that water was drawn from the reservoir epilimnion, 

stratification and mixing may have been an occasional source of error. 

Also, in the validation result of Case 2 (Figure 10), all of the selected models, except 

CEQUEAU show highly over and under estimated water temperatures between August 27 August, 

2011 to and September 8, September 2011 (Figure 10(b) and 10(c)). The high rainfall-runoff events in 

2011 seem to be one of the causes of this discrepancy (Figure 4).  

Given their autoregressive structure, the ratio of the training sample size to the number of 
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weights is 29 (Wang et al., 2005) and overfitting may have occurred for ARMAX and NARX during 

the calibration phase in Case 2. If this is the case, these models may lack the required robustness to be 

operationally implemented. Longer time series would be required to fully investigate this. This 

phenomenon shows the potential disadvantage of the statistic and stochastic models. The CEQUEAU 

model shows worse results than ARMAX and NARX model, but its performance is more constant 

throughout the calibration and validation periods, with 0.8°C in RMSE and 0.9 in Nash coefficient 

(Table 2). Otherwise, the deterministic model (CEQUEAU) will be good alternative when the hydro-

climatic data has extreme events which are expected as the cause of overfitting issue.  

 

CONCLUSIONS 

This study performed a comparative analysis of three models used to simulate water 

temperatures in the Fourchue River, Quebec, Canada. The main conclusions are:  

 

1. As shown by the result of test statistics, water temperature data and most input variables 

of the Fourchue River were proven to be chaotic, nonlinear and stochastic time series. 

Simple statistic models such as linear regression may prove to be inadequate. For this 

reason, more sophisticated time series models (ARMAX and NARX) were tested. 

2. The CEQUEAU showed weaker performances than ARMAX and NARX, with 

systematic bias. But its performance is constant throughout with 0.8°C in RMSE and 0.9 

in Nash coefficient and there is no indication of overfitting. 

3. The fact that the ARMAX model proved to have the best performance is not surprising, 

given the non-linear autoregressive nature of the model. Water temperatures in any river 

have strong autocorrelation. This phenomenon is exacerbated in the Fourchue River, 

because of the presence of the reservoir, which has a strong dampening effect.  

4. Two models except CEQUEAU show potential overfitting, as shown by their weaker 

performance in the validation phase in Case 2. Therefore, the CEQUEAU model 

(deterministic approach) will expect the stable performance for the Fourchue River. 
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[Table 1. Test statistics for each dependent and independent variables.; W(m): indicated 

embedding dimension;, 95% C.I.: indicated 95% confidential inbound for test; and rejected 

data are marked as in bold character]. 

Test Stat. Value 

Dependent and independent variables 

Water Temp. 
of Upstream 

Water Temp. 
of 

Downstream 
(Target) 

Air 
Temp. 

Runoff 
from 

Fourchue 
Ddam 

Solar 
Radiation 

Relative 
humidity 

Average 
Wind 
Speed 

Levene’s 
test 

p-value 0.448 0.877 0.548 0.000 0.239 0.992 0.657 

Lyapunov 
exponent 
Lamda 

test 

calculated 1.82 x 10-6 1.62 x 10-6 0.000 1.000 0.0003 0.274 0.000 

95% C.I. -0.0653 -0.1486 -0.3825 0.1245 -0.1868 -0.2372 -0.6811 

BDS test 

W(2) 79.02 62.15 20.96 16.49 2.82 19.58 2.53 
W(3) 85.80 67.11 20.30 15.17 0.81 18.29 2.42 
W(4) 94.52 73.32 19.81 13.79 0.46 17.12 2.05 
W(5) 106.87 82.27 19.86 12.74 0.54 16.62 1.74 

95% C.I [-1.96, +1.96] 

Result 
Nonlinear 
stochastic 
time series 

Nonlinear 
stochastic 
time series 

Nonlin
ear 

stochas
tic time 
series 

Chaotic 
time 
series 
with 

hetero-
skedastici

ty 

Random 
series 

Chaotic 
time 

series 

Nonlinear 
stochastic 

time 
series 
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[Table 2. Calibration and validation performance statistics for each Case] 

CASE Model 
Calibration phase Validation phase 

RMSE(°C) NASH BIAS(°C) RMSE(°C) NASH BIAS(°C) 

CASE 1 

CEQUEAU 0.80 0.91 -0.36 0.77 0.91 -1.14 

ARMAX 0.57 0.96 0.04 0.68 0.94 0.82 

NARX 0.67 0.94 0.11 0.80 0.91 0.75 

CASE 2 

CEQUEAU 0.78 0.92 -0.45 0.83 0.88 -0.97 

ARMAX 0.55 0.96 0.01 1.14 0.83 1.60 

NARX 0.65 0.94 -0.18 1.46 0.77 4.20 

Overall 
Result 

CEQUEAU 0.79 0.92 -0.41 0.80 0.90 -1.06 

ARMAX 0.56 0.96 0.03 0.91 0.89 1.21 

NARX 0.66 0.94 -0.18 1.13 0.84 2.48 
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Fig. 1 Study area and measuring station. Comment [F16]: please see edits to 

figure captions in the main body text 
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Fig. 2 Hydro-physiographical characteristics of study area. Map shows land use, whole 

squares (elementary hydrological units) and arrows indicate water routing used for the 

deterministic (CEQUEAU) model. 

  

Comment [F17]: in fig. 2, after 
Datum: North, you have spelled 
American incorrectly (Amreican) 
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Fig. 3 Schematic description of CEQUEAU model; (a) production function (b) routing 

function (Morin, 2007). 

 

 
 

Fig. 4 Observed and simulated flows with CEQUEAU hydrological model for both 

calibration and validation periods (June, 2011 to September, 2014).   
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Fig. 5 NARX network schematization (Jose et al., 2008). 𝑢(𝑡) is the input set, 

𝑦𝑖(𝑡) is the exogeneous input, k is the input delay and each circle represents an artificial 

neuron. 
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Fig. 6 Performance statistics from jackknife simulations to select predictor; (a) 

RMSE of NARX, (b) Nash of NARX, (c) Bias of NARX, (d) RMSE of ARMAX, (e) Nash of 

ARMAX, (f) Bias of ARMAX. 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 2
0:

14
 2

2 
M

ay
 2

01
6 



29 
 

 

 
Fig. 7 Calibration results for Case 1; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 
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Fig. 8 Calibration results for Case 2; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 
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Fig. 9 Validation results for Case 1; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 
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Fig. 10 Validation results for Case 2; (a) CEQUEAU model, (b) ARMAX, (c) NARX. 
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