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Abstract

The overall aim of the work described in this thesis is to bring a number of contribu-

tions to hydrology and hydrological modeling in the framework of a specific physically-

based numerical model for integrated surface–subsurface and flow–transport processes,

the CATchment-HYdrology Flow-Transport (CATHY FT) model. These contributions

revolve around three main themes: the enhancement of the numerical performance of

hydrological models for flow and transport phenomena, the improvement of our current

understanding of complex boundary conditions in order to reduce the errors associated

with their modeling, and the testing and benchmarking of distributed physically-based

models for groundwater flow and transport processes. The work to achieve the general

objective is elaborated into four stages. First, the Larson-Niklasson post-processing al-

gorithm is implemented in CATHY FT to reconstruct mass-conservative velocities from

a linear, or P1, Galerkin solution of Richards’ equation. This is done to improve the

accuracy and mass balance properties of the companion advective transport model (finite

volume-based), which rely on accurate velocity fields as input. Through a comparison

between the results from the reconstructed velocities and the P1 Galerkin velocities, it

is shown that a locally mass-conservative velocity field is necessary to obtain accurate

transport results. Second, a detailed and novel analysis of the behavior of seepage face

boundaries is performed with the flow model of CATHY FT. The numerical simulations

examine the model’s performance under complex conditions such as heterogeneity and

coupled surface/subsurface flow. It is shown that the overall numerical solution can be

greatly affected by the way seepage face boundaries are handled in hydrological models

and that careful considerations are required when using simple approximations, in the

presence of heterogeneous slopes, and for seepage faces forming on a portion of the land

surface. Third, CATHY FT is implemented and run at the Landscape Evolution Observa-

tory of the Biosphere 2 facility, Arizona. A detailed modeling analysis is performed of the
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experimental data collected during an isotope tracer experiment and from an intensively-

measured hillslope, including quantity and quality of groundwater discharge and point-

scale flow and transport data. This flow and tracer data is used to incrementally explore

complex phenomena and associated hypotheses (e.g., heterogeneity, fractionation, and dis-

persion), progressing from flow to transport and from integrated to point-scale response

analysis. This incremental approach highlights the challenges in testing and validating

the new generation of integrated hydrological models when considering many types and

levels of observation data. Finally, a concluding analysis is performed that relates to all

three themes of the thesis, describing some of the features of the CATHY FT model,

discussing key issues associated to its further development, and testing its physical and

numerical behavior for both real and synthetic scenarios. This final stage of the thesis

addresses the myriad challenges faced in accurately and efficiently resolving the difficult

behavior of the advection–dispersion equation for subsurface solute transport, in properly

handling the complex boundary conditions for solute interactions across the land surface,

and generally in capturing process interactions and feedbacks between flow and transport

phenomena in surface and subsurface environments.



Résumé

Le but principal du travail décrit dans cette thèse est d’aporter plusieurs contributions

à la modélisation hydrologique dans le cadre spécifique d’un modèle numérique à base

physique pour des processus de surface–subsurface et flux-transport intégrés, le modèle

CATchment-HYdrology Flow-transport (CATHY FT). Ces contributions tournent autour

des trois thèmes principaux: l’amélioration de la performance numérique des modèles

hydrologiques pour les phénomènes de flux et de transport, l’amélioration de notre

compréhension des conditions aux limites complexes dans le but de réduire les erreurs as-

sociées à la modélisation ainsi que le test et l’analyse comparative des modèles distribués à

base physique pour les processus de transport et flux d’eaux souterraines. Pour atteindre

ces objectifs, les tarvaux sont divisés en quatre étapes. La première est l’implémentation

dans CATHY FT de l’algorithme de Larson-Niklasson pour la reconstruction des vitesses

conservatrices de la masse à partir d’une solution linéaire (ou P1) de Galerkin de l’équation

de Richard. Le but est d’améliorer la précision et les propriétés de bilan de masse du

modèle de transport advectif (à base de volumes finis), qui dépend des champs de vitesse

utilisés comme input. Une comparaison entre les résultats obtenus avec les vitesses re-

constituées et les vitesses de Galerkin P1 montre la nécessité d’un champ de vitesse con-

servateur de la masse pour l’obtention des résultats des transports précis. La deuxième

est une analyse nouvelle et détaillée du comportement des conditions aux limites dans la

zone de suintement réalisée à l’aide du modèle d’écoulement de CATHY FT. Les simu-

lations numériques examinent la performance du modèle sous des conditions complexes,

telles que en présence d’hétérogénéité et d’écoulement de couplage surface/subsurface. Il

est montré que la solution numérique générique peut être largement affectée par la façon

dont les conditions aux limites dans la zone de suintement sont utilisées dans les modèles

hydrologiques et que des considérations soigneuses sont requises dans l’utilisation des ap-

proximations simples, dans la présence de pentes hétérogènes ainsi que dans les zones
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de suintement qui se forment au niveau de la surface de terre. Dans la troisième étape,

CATHY FT est implémenté et exécuté à partir de données issues du Landscape Evolu-

tion Observatory de l’installation Biosphère 2, en Arizona. Une analyse de modélisation

détaillée des données expérimentales collectées pendant une expérience de traçage iso-

topique sur un versant mesuré et surveillé intensivement est réalisée. Ces donnés com-

prennent la quantité et qualité d’eaux souterraines déchargées et des mesures distribuées

d’écoulement et de transport. Les données sont utilisées pour examiner incrémentalement

des phénomènes complexes et les hypothèses associées (e.g., hétérogénéité, fractionnement

et dispersion), en analysant les réponses du flux au transport et les mesures intégrées ou

distribuées. Cette approche incrémentale souligne les défis associés aux tests et valida-

tions des modèles hydrologiques de nouvelle génération lorsque plusieurs types et niveaux

de données d’observation sont considérés. Finalement, une dernière analyse qui fait un

lien avec tous les trois thèmes de la thèse est effectuée. Dans cette analyse quelques

particularités du modèle CATHY FT sont décrites, des questions clés liées à son futur

développement sont abordées et son comportement physique et numérique est testé pour

des scénarios réels et synthétiques. Cette étape finale de la thèse aborde la myriade des

défis rencontrés pour résoudre efficacement et avec précision le comportement complexe

de l’équation d’avection-dispersion utilisée pour décrire le transport des solutés de sub-

surface, pour le traitement de conditions aux limites complexes utilisées pour l’interaction

de solutés entre la surface et la subsurface et, en général, pour capturer les interactions

de processus entre les phénomènes de flux et transport dans les environnement de surface

et subsurface.
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Synthèse

S.1 Introduction

Les eaux souterraines constituent une composante importante de nombreux systèmes de

ressources en eau douce et, pour cette raison, elles ont été largement étudiées par la

communauté des hydrogéologues. Les deux principales forces directrices des études sur

les eaux souterraines sont la nécessité d’évaluer la dynamique de l’eau des aquifères et le

défi de la protection ou la remise en état de la qualité de ces eaux. Une bonne gestion de

la quantité et de la qualité de la ressource en eau souterraine nécessite, pour le système

géré, des prévisions à court, moyen, et long terme. Les prévisions de la réponse du

système peuvent être obtenues en établissant et en résolvant des modèles mathématiques

décrivant les phénomènes de flux et de transport au sein d’un domaine. Pour des cas

plus pratiques, en raison du niveau d’hétérogénéité présent dans les eaux souterraines

et en raison de la forme irrégulière de ses frontières, il est impossible de résoudre les

modèles mathématiques analytiquement et ils sont traduits en problèmes numériques

résolus à l’aide de programmes informatiques. Ceci, combiné aux avancées continues de

la technologie informatique, a fait de la modélisation hydrologique un outil essentiel de la

recherche dans la gestion des ressources en eau [e.g., Bear and Cheng , 2010].

Un grand nombre de modèles numériques hydrologiques et hydrogéologiques sont

disponibles. Les différences entre tous les modèles donnés résident dans la complexité

des processus qu’ils simulent, dans leur dimensionnalité, et dans la méthode de résolution

numérique qu’ils ont adoptée. Indépendamment de la complexité des modèles, Pani-

coni and Putti [2015] montrent clairement que dans la dernière décennie, la modélisation

des eaux souterraines a gagné en intérêt en dévelopant des approches intégrées pour

représenter les différents processus hydrologiques et leurs interactions, en particulier en-

tre les eaux de surface et les eaux souterraines et entre l’écoulement et le transport [e.g.,
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Fleckenstein et al., 2010]. La prise en compte des interactions entre les cours d’eau et les

aquifères est de plus en plus considérée comme pertinente pour la gestion des ressources

d’eau douce, car ils jouent un rôle majeur sur l’eau et sur les bilans des solutés aux échelles

des bassins versants et sont déterminants pour la construction de l’hydrogramme et des

distributions de temps de transit [Winter et al., 1998; Rodriguez-Iturbe, 2000].

Des efforts importants ont été consacrés à l’élaboration et le raffinement des modèles

numériques à base physique pour les simulations hydrologiques intégrées. Des modèles

complexes hydrogéologiques souterraines ont été associés aux modèles d’écoulement de

surface existants et une classe entièrement nouvelle de modèles capables de simuler des

systèmes couplés comme un continuum a été développée : Parallel Flow (ParFlow) [Kollet

and Maxwell , 2006], CATchment HYdrology (CATHY) [Camporese et al., 2010], Hydro-

GeoSphere (HGS) [Therrien et al., 2012], OpenGeoSys (OGS) [Kolditz et al., 2012], pour

n’en citer que quelques-uns. En comparaison, il y a moins de modèles qui abordent les

interactions d’écoulement et de transport entre la surface et la sous-surface [Weill et al.,

2011; Therrien et al., 2012]. Malgré toutes les recherches expérimentales et numériques

réalisées, il reste de nombreux défis à relever et de tests à mener sur les modèles hy-

drologiques intégrés actuels. Dans ce contexte, cette étude vise à apporter certaines

améliorations à un modèle spécifique, et à tester ce modèle sur un versant expérimental

avec un ensemble de données d’observation très détaillées.

S.1.1 Objectifs

Le processus de raffinement des modèles hydrologiques complexes implique une mise

à jour constante, apportant des améliorations, l’introduction de nouveaux processus,

l’avancement des calculs, la réalisation d’analyses et la capacité à tester de manière ex-

haustive le modèle. À cet égard l’objectif principal des travaux décrits dans cette thèse

est d’aborder certains de ces défis dans le cadre d’un modèle spécifique, le modèle CATch-

ment HYdrology Flow-Transport (CATHY FT) [e.g., Camporese et al., 2010; Weill et al.,

2011]. Cet objectif général est développé en quatre objectifs spécifiques:

1. Utiliser une technique de reconstruction du champ de vitesse pour les simula-

tions de transport d’advection: reconstruire les vitesses des eaux souterraines de

CATHY FT, qui sont basés sur les éléments finis et ne respectant le principe de
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conservation de la masse, afin d’améliorer la précision du bilan de masse du modèle

de transport advectif, qui lui est basé sur les volumes finis et s’appuie sur la précision

du champ de vitesse utilisé.

2. Généraliser la condition limite de la zone de suintement pour le modèle d’écoulement:

évaluer les erreurs commises lors de l’utilisation des approximations telles que les

conditions de Dirichlet (statiques), étudier les interactions entre l’écoulement de

surface et l’écoulement de la zone de suintement, et sa dynamique en présence

d’hétérogénéité.

3. Simuler des essais de traçage réalisés avec des traceurs isotopiques et effectuées sur

les versants artificiels au Landscape Evolution Observatory: explorer les limites du

modèle en termes d’écoulement et de transport dans des conditions hétérogènes

et variablement saturées et reproduire des réponses ponctuelles et intégrées de

différentes variables pour les comparer aux données d’observation très détaillées.

4. Tester le comportement numérique et des algorithmes de couplage du modèle

CATHY FT: contribuer à répondre à des questions importantes de modélisation

telles que le contrôle des erreurs de bilan de masse et améliorer la compréhension

des interactions des processus et le traitement des conditions aux limites complexes.

S.1.2 Évolution du modèle CATHY FT et structure de la thèse

Le début du développement du modèle CATHY FT remonte à de nombreuses années,

lorsque les processus souterrains et de surface et les processus d’écoulement et de transport

étaient encore traités séparément. De nombreux chercheurs ont travaillé sur le modèle

au cours des dernières années en introduisant étape par étape des complexités nouvelles.

L’organigramme de la figure 1.1 montre schématiquement une partie des études liées au

développement de CATHY FT, rapportées dans une des sept sections représentant les

différents processus simulés par le modèle (écoulement souterrain, écoulement de surface,

couplage d’écoulement souterrain et de surface, transport souterrain, transport de surface

et le couplage de transport souterrain et de surface), ainsi que les tests du modèle et

les applications. L’organigramme montre également les améliorations que cette étude

vise à apporter et les place en relation avec les différentes composantes d’évolution et
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CATHY FT [Camporese et al., 2010; Weill et al., 2011]

Écoulement souterrain

· modèle de Richards

[Paniconi and Wood, 1993]

· linéarisation de

Picard et Newton

[Paniconi and Putti, 1994]

· modéle de sol de tourbe

[Camporese et al., 2006]

· assimilation de données

[Paniconi et al., 2003a]

[Camporese et al., 2009]

[Pasetto et al., 2012]

· modèle de végétation

[Manoli et al., 2014]

Généraliser la condi-

tion limite de la zone

de suintement

Écoulement de surface

· modèle De Saint Venant

[Orlandini and Rosso, 1998]

· bassin de drainage

[Moretti and Orlandini, 2008]

Couplage

· enquête sur les erreurs

[Dagès et al., 2012]

· atténuation des erreurs

[Fiorentini et al., 2015]

· modèle écohydrologique

[Niu et al., 2014a]

Reconstruire le

champ de vitesse

Transport souterrain

· modèle d’écoulment aux

éléments finis mixtes [Berga-

maschi and Putti, 1999]

· technique de fraction-

nement de temps pour

advection-dispersion

[Mazzia et al., 2000]

· Haute résolution volumes

finis pour advection [Mazzia

et al., 2001]

[Mazzia et al., 2002]

Tester le nouveau

champ de vitesse

pour simulations de

transport advectif

Transport de surface

Couplage

Tester le comporte-

ment numérique et

l’algorithme de cou-

plage

Chapitre 3

[Scudeler et al., 2016c]
Chapitre 2 [Scudeler et al., 2016a]

Chapitre 5

Tests du modèle et applications
Processus d’écoulement: les interactions entre la surface et la suos-surface dans la zone d’exclusion de

Chernobyl [Bixio et al., 2002] et dans le bassin versant Thomas Brook au Canada [Gauthier et al., 2009] ; analyse

comparative de deux modèles couplés [Sulis et al., 2010] ; affaissement à long terme du sol tourbeux à Venice [Zanello

et al., 2011] ; système multi–aquifère du bassin central de la région de la Vénétie en Italie [Passadore et al., 2012] ;

expériences au Landscape Evolution Observatory [Niu et al., 2014b; Pasetto et al., 2015]

Processus d’écoulement et de transport: intrusion d’eau salée à Cap-Bon en Tunisie [Paniconi et al., 2001]

Simuler les essais de traçage réalisés avec des traceurs isotopiques au Landscape Evolution Observatory

Chapitre 4 [Scudeler et al., 2016b]

Figure 1: Processus simulés par le modèle CATHY FT et résumé des développements

réalisés dans le cadre de cette thèse. Les objectifs de cette étude sont mis en évidence en

rouge, bleu, vert et violet et sont insérés dans leur contexte.
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de développement du modèle. Chaque objectif sera traité dans un chapitre différent de

la thèse, chaque chapitre constituant un document autonome soumis ou en train d’être

soumis à une revue:

Chapitre 2 (objectif 1): (C. Scudeler, M. Putti, C. Paniconi, Mass-conservative recon-

struction of Galerkin velocity fields for transport simulations, Advances in Water

Resources, published July 2016). Le contenu est résumé dans la section S.2: Recon-

struction des champs de vitesse de Galerkin basé sur le principe de conservation de

la masse pour les simulations de transport.

Chapitre 3 (objectif 2) (C. Scudeler, C. Paniconi, D. Pasetto, M. Putti, Examination of

the seepage face boundary condition in subsurface and coupled surface/subsurface

hydrological models, Water Resources Research, submitted in May 2016). Le con-

tenu est résumé dans la section S.3: Étude de la condition aux limites dans la zone

de suintement pour des modèles d’écoulement souterrain ou des modèles couplés

eau de surface–eau souterraine.

Chapitre 4 (objectif 3) (C. Scudeler, L. Pangle, D. Pasetto, G.-Y. Niu, T. Volkmann,

C. Paniconi, M. Putti, P. Troch, Multiresponse modeling of variably saturated flow

and isotope tracer transport for a hillslope experiment at the Landscape Evolution

Observatory, Hydrology and Earth System Science, published September 2016). Le

contenu est résumé dans la section S.4: Modélisation multi-réponses d’un essai

de traçage en zone non saturée réalisé avec un traceur isotopique au Landscape

Evolution Observatory.

Chapitre 5 (objectif 4) (C. Scudeler, C. Paniconi, M. Putti, Process-based model of

surface-subsurface and flow-transport interactions: coupling, boundary conditions,

and numerical behavior, manuscript in preparation). Le contenu est résumé dans la

section S.5: Modélisation à base physique des processus d’écoulement et de transport

entre la surface et la sous-surface: couplage, conditions aux limites, et comportement

numérique.

Avant de procéder à un résumé de ces quatre chapitres, une brève introduction au

modèle CATHY FT est présentée, qui servira de référence pour les sections suivantes.
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S.1.3 Le modèle CATchment HYdrology Flow-Transport

CATHY FT est un modèle distribué à base physique qui simule les interactions en-

tre la surface et sous-surface pour l’écoulement et de transport. Le modèle combine

l’équation de Richards et l’équation d’advection-dispersion, utilisées respectivement pour

décrire l’écoulement et le transport dans les milieux poreux variablement saturés, ainsi

que l’équation d’onde de diffusion, utilisée pour décrire l’écoulement et le transport de

surface. La solution de l’équation de Richards 3D pour la hauteur de charge variable est

obtenue en utilisant la méthode des éléments finis linéaires pour la discrétisation spatiale

et un système de contrôle des pas de temps appliqué aux différences finies. Le système

est linéarisé par un schéma itératif de Picard ou Newton [Paniconi and Putti , 1994].

L’équation d’advection-dispersion est résolue au moyen d’une technique de fractionnement

du temps qui combine un solver explicite de haute résolution en volumes finis (HRFV)

pour l’advection avec un système implicite aux élément finis hybride mixte (MHFE) pour

la dispersion. La solution des équations de surface est réalisée numériquement en util-

isant la méthode explicite de Muskingum-Cunge. L’intégration des équations de surface

et souterraines est réalisée avec une procédure d’itération séquentielle et le couplage est

effectué avec un algorithme de changement des conditions aux limites. L’équation de

transport est résolue suite à la résolution de celle d’écoulement.

S.2 Reconstruction des champs de vitesse de Galerkin basé sur

le principe de conservation de la masse pour les simulations de

transport

S.2.1 Introduction

Cette étude porte sur l’application d’un algorithme de recontruction des champs de vitesse

qui améliore la précision de la modélisation du transport de solutés dans une matrice

poreuse. Les méthodes standards éléments finis (FE) de Galerkin (ou Galerkin P1) sont

souvent choisies pour résoudre les équations des écoulements de sous-surface pour leurs

bas coûts de calcul. Cependant, leur utilisation dans ce contexte est connue pour être

à l’origine de champs de champs de vitesse non conservatifs et donc pour générer des

erreurs dans la résolution des équations de transport [Klausen and Russell , 2004; Dawson
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et al., 2004a]. Deux différentes méthodes ont été testées pour surmonter ce problème :

1) l’utilization d’une méthode localement conservative pour discrétiser les équations (par

exemple l’approximation multi-point des flux [Edwards and Rogers , 1998] ou la méthode

des éléments finis mixtes (MFE) [Brezzi and Fortin, 1991; Farthing et al., 2002]) et 2)

la reconstruction en post-traitement des champs de vitesse de Galerkin P1 [Larson and

Niklasson, 2004]. Dans le second cas, il est possible d’atteindre pratiquement le même

niveau de précision qu’avec une méthode localement conservative, mais avec un coût de

calcul beaucoup plus bas. C’est pour cette raison que les stratégies de post-traitement

sont de plus en plus considérées comme une alternative avantageuse.

S.2.2 Méthodologie

Dans cette étude, l’approche de Lanson-Niklasson (LN) est implémentée au modèle CATch-

ment HYdrology Flow Transport (CATHY FT) [Camporese et al., 2010; Weill et al.,

2011]. Il s’agit du couplage du solver P1 de Galerkin des équations de Richard avec

un solver de haute résolution en volumes finis (HRFV) [Mazzia and Putti , 2005] pour

l’équation de transport advectif. Les flux conservatifs locaux sont calculés par une

méthode locale de post-traitement LN, puis intégrés dans la résolution du transport.

Les bilans de masse des solutés sont utilisés pour estimer la qualité des vitesses LN par

rapport aux vitesses FE, et ce pour des scénarios numériques avec des écoulements per-

manents ou transitoires, et du transport de soluté en régime transitoire. Les résultats

issus de la méthode standart de Galerkin P1 sont confrontés aux résultats issus des flux

LN. Comme MFE est considérée comme une méthode respectant la conservation de la

masse, les flux numériques obtenus avec cette approche sont utilisés comme des solutions

de référence [Putti and Sartoretto, 2009].

S.2.3 Résultats

Les résultats des deux simulations les plus importantes sont présentés ici. Le premier

cas simule un écoulement en régime permanent, dans un milieu entièrement saturé, et

avec du transport en régime transitoire. Les écoulements convergent vers une sortie en

bas du domaine et celui-ci présente des blocs de conductivité inférieure à celle du reste

du sol. La figure 2 montre le domaine ainsi que la paramétrisation correspondante du
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Figure 2: Maillage du domaine pour le premier scénario (a) et conditions initiales et

aux limites correspondantes (b).

modèle. Le domaine de 10 x 10 m2 est généré avec une structure en trois dimensions

ayant une profondeur unitaire. Le domaine est entièrement saturé, et le régime permanent

d’écoulement est assuré par le maintient des conditions aux limites constantes. Une

condition limite de type Dirichlet, imposant une pression de ψD = 50 m en haut du

domaine, est imposée. L’exutoire correspond à une portion centrée en bas du domaine

sur laquelle il y a la condition ψD = 0 m. Sur toutes les autres limites, un flux nul est

imposé. Six blocs de faible conductivité hydraulique (Ks = 2×10−12 m/s, c’est-à-dire huit

ordres de grandeur en dessous de la conductivé du sol environnante) sont disposés dans le

domaine (montrées en gris sur la figure 2). Le soluté entre dans le domaine par la première

couche (montré en rouge sur la figure 2) avec une impulsion dont la concentration sans

dimension est fixée à cin = 1 et se déplace avec l’eau vers l’exutoire situé dans le bas du

domaine.

La figure 3 montre l’évolution temporelle du bilan de masse obtenu avec le champ de

vitesse FE. Le graphique represente dans l’ordre : la masse totale de soluté stockée dans

le système (Mst), la masse cumulée sortie du domaine par la limite de flux imposé (Mout),

la masse cumulée totale sortie du domain (Moutt), la masse totale stockée dans les 6 blocs

de faible Ks (Mstf ) et l’erreur sur le bilan de masse cumulée MBE1 = Min−Mst−Mout,

où Min est la masse totale initialement présente dans le système. Les trois variables sont

reportées en termes de pourcentage par rapport à Min. Les résultats montrent qu’un
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Figure 3: Bilan de masse obtenu avec les vitesses Galerkin P1 pour le premier cas testé.
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Figure 4: Bilan de masse obtenu avec les vitesses LN et MFE pour le premier cas testé.

volume non négligeable de masse de soluté sort par la limite de flux nul imposé. L’erreur

relative du bilan de masse à la fin de la simulation est en fait MBE1 = 23%, tandis que

l’erreur sur le bilan global calculé en tenant compte de la masse totale sortie par toutes

les limites du domain, MBE2 = Min −Moutt −Mst, est seulement de l’ordre de 10−3. De

plus, un phénomène de persistance de la masse semble s’illustrer dans la simulation : 4

heures après l’injection, 44% de la masse totale initiale reste piégée de façon permanente

dans les 6 blocs de faible Ks. Ces deux phénomènes (le non respect de la condition de

flux nul aux limites et l’effet de persistence) représentent une source d’erreur importante

dans le bilan de masse. Elle sera mise en évidence en comparant ces résultats avec ceux

obtenus avec le champ de vitesse LN et MFE.

. . . . . . . .. .. . .. ........ .. . . . . . . . . . . . 
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Figure 5: Comparaison des profils de concentration à t = 1.5 h pour une section verticale

du domaine pour le premier scénario obtenus avec les vitesses P1, LN et MFE.

La figure 4 présente les résultats de bilan de masse lorsque les champs de vitesse MFE

et LN sont utilisés pour la simulation du transport advectif. Dans les deux cas, les erreurs

sur le bilan de masse calculées avec MBE1 = Min −Mst −Mout, sont négligeables (de

l’ordre de 10−3%), indiquant que la totalité de la masse quitte le système en passant par

la limite d’écoulement de sortie imposée. La différence entre les deux résultats est causée

par la forte hétérogénéité. Les flux LN conduisent une petite partie de la fraction de soluté

dans les zones de faible Ks mais pas de façon permanente. Ce phénomène de persistance

de masse est légèrement plus important que dans le cas MFE mais l’impact qui en résulte

est indubitablement plus petit que dans le cas de Galerkin P1. Le même résultat peut

de plus être observé dans la figure 5, où les profils de concentration à t=1.5 h obtenus en

utilisant les vitesses P1 LN et MFE sont comparés. Des profils de concentration similaires

sont produits par LN et MFE, avec des valeurs des concentrations toujours inférieurs à

1. Dans le cas Galerkin P1, au contraire, une accumulation de la masse dans les blocs de

faible Ks est évidente, alors que les concentrations dans certains éléments atteignent des

valeurs aussi élevées que 15 à l’instant d’observation considéré.

Le respect du principe de conservation de la masse est encore plus important dans

le deuxième cas testé qui considère un écoulement et du transport en regime transitoire

et variablement saturé. La figure 6 montre le domaine, le maillage utilisé, et la position

des deux blocs à faible conductivité Ks (huit ordres de grandeur en dessous de la con-
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Figure 6: Domaine tridimensionnel, grille tétraédrique utilisée, position des blocs de

faible Ks et condition limite de suintement pour le deuxième cas testé.

ductivé des autres cellules). Une limite de suintement est située le long de la base au

bord du domaine (montrée sur la figure 6). La surface est soumise à deux impulsions

de précipitations spatiallement homogène et ayant une vitesse constante. Une première

impulsion d’une durée de 12 h a lieu au début de la simulation, alors qu’une seconde

impulsion est appliquée à partir de 36 h jusqu’à la fin de la simulation. La durée totale

de la simulation est de 100 h. Au début, la nappe phréatique se trouve à la base du do-

maine et le sol ne contient aucun soluté. L’injection du soluté est réalisée avec la première

impulsion de précipitation en imposant une concentration de l’eau de pluie égale à 1.

Outre les résultats obtenus pour le premiere cas testé, pour le cas Galerkin P1 une

masse de soluté est générée artificiellement dans le domaine parce que certains éléments

sont soumis à une source artificielle d’une masse d’eau en fonction du temps en raison de

l’utilisation d’un champ de vitesse qui ne respecte pas le bilan de masse. Cette source

artificielle d’eau est la cause de l’apparition d’une source artificielle de masse de soluté, qui

est responsable de la forte augmentation des concentrations numériques de ces éléments,

comme on peut le voir sur la figure 7 pour un tétraèdre spécifique, ce qui conduit à

l’interruption de la simulation. Ce comportement est complètement rectifié par les vitesses

LN, qui permettent de conserver le bilan de masse.
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Figure 7: Comportement de la concentration moyenne entrainée par des vitesses P1 et

par des vitesses LN pour le tétraèdre d’observation montré dans le panneau a.

S.2.4 Conclusions

Cette étude a porté sur l’application de l’algorithme de reconstruction Larson-Niklasson

visant à rétablir les propriétés de conservation des champs de vitesse Galerkin P1 pour

les simulations de transport. Il a été démontré que: 1) lorsqu’elle est entrainée par des

vitesses Galerkin P1, la masse de soluté sort facilement du domaine par des limites de flux

nul imposé; 2) le non respect de la condition de flux nul est complètement corrigée par les

vitesses LN; 3) une grande partie de la masse de soluté reste piégée de façon permanente

dans les zones de faible conductivité lors de l’utilisation des vitesses Galerkin P1; 4) et

seulement une petite partie de la masse de soluté traverse en zones de faible conductivité

dans le cas des vitesses LN.

Les résultats pour le cas test en regime variablement saturé, montrent que le champ

d’écoulement numérique Galerkin P1 introduit des sources ou puits artificielles de masse

qui entrainent une forte augmentation de la concentration de soluté dans certains éléments

de la grille, et éventuellement à l’interruption de la simulation. En revanche, pour le champ

d’écoulement généré par LN, aucune de ces inexactitudes n’apparait, ce qui démontre

qu’un champ de vitesse localement conservatif est nécessaire pour simuler le transport de

soluté avec un bon comportement de bilan de masse.
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S.3 Étude de la condition aux limites dans la zone de suintement

pour des modèles d’écoulement souterrain ou des modèles couplés

eau de surface–eau souterraine

S.3.1 Introduction

Cette étude a pour objectif l’amélioration de la compréhension des conditions aux limites

imposées dans les zones de suintement. Il s’agit en premier lieu de limiter les erreurs de

modélisation qui pourraient y être associées et plus particulièrement, de déterminer quand

ces surfaces de suintement sont nécessaires pour la modélisation ou, au contraire, quand

elles peuvent être remplacées par des conditions aux limites plus simples comme celles de

Dirichlet. Par la suite, il s’agira de modéliser des systèmes hétérogènes avec des points

de sortie multiples. De plus, pour les modèles couplés eau de surface–eau souterraine,

on s’interrogera sur l’interaction entre la surface de suintement et la condition à la limite

utilisée pour décrire l’écoulement de surface et l’écoulement en rivière.

Une zone de suintement est définie par la surface à travers laquelle l’eau passe du sol

saturé dans l’air à pression atmosphérique. Elle est généralement modélisée comme une

condition latérale par laquelle l’eau est libre de sortir du domaine de modélisation en cas

de saturation. Le point de sortie d’une zone de suintement est défini comme le point de

rencontre des zones saturée et non saturée au-dessous duquel l’eau s’écoule. C’est une

condition aux limites dynamique puisque dans des conditions transitoires, le point de

sortie de la zone de suintement pourra changer de position. Il est important d’étudier le

comportement de ces zones puisque la distribution des pressions, le niveau de la nappe

phréatique ainsi que le champ des débits sont tous affectés par la manière dont elles sont

modélisées. De plus, les cas hétérogènes complexes avec écoulement de surface n’ont pas

encore été étudiés en détail dans la littérature.

S.3.2 Méthodologie

Les analyses sont effectuées à l’aide du modèle numérique CATHY [Camporese et al.,

2010]. Le modèle d’écoulement souterrain est basé sur une formulation en élément finis

de l’équation de Richards tandis que le modèle de surface est basé sur une formulation

en différences finies. L’algorithme original qui s’occupe des conditions aux limites pour la
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Figure 8: Grille numérique 3D pour les cas de l’aquifère rectangulaire (a) et du versant

de type LEO (b).

zone de suintement dans CATHY découle de l’approche proposée par Neuman [1973] et ne

considère qu’un unique point de sortie dont la position est actualisée après chaque itération

non linéaire du schéma de Picard utilisé pour résoudre l’équation de Richards [Paniconi

and Putti , 1994]. Cette thèse propose une généralisation de cette approche classique en

simplifiant l’algorithme et en intégrant la possibilité de traiter plusieurs zones de suinte-

ment. Le nouvel algorithme prolonge des approches existantes comme celle de Rulon and

Freeze [1985] qui ne permettait de travailler qu’avec deux points de sortie fixes. Dans

cette étude, la zone de suintement est alternativement modélisée comme une limite sta-

tique (condition de Dirichlet) puis dynamique (condition mixte de Dirichlet et Neumann)

et l’approche dynamique est testée dans des conditions d’hétérogenéité et dans un con-

texte de couplage des écoulements souterrains et de surface, en examinant ses interactions

avec la limite de sortie du bassin versant. Les résultats principaux sont discutés dans la

section suivante.

S.3.3 Résultats

La façon la plus simple de traiter une zone de suintement est de fixer la pression hydro-

statique relative (par rapport à la pression atmosphérique) à zéro au point le plus profond

de la surface de suintement (i.e., condition de Dirichlet) et le flux à zéro sur le reste de la

surface (i.e., condition de Neumann sur le flux). Les différentes simulations ont montré

que même en régime permanent, les simplifications proposées entrainent des erreurs non
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négligeables puisque le point de sortie peut se retrouver ailleurs qu’en bas. Ces erreurs

sont analysées en comparant les résultats obtenus avec le traitement statique (condition de

Dirichlet) avec ceux obtenus en utilisant l’algorithme généralisé (condition dynamique).

La comparaison est réalisée sur le domaine rectangulaire présenté à la figure 8a. Une con-

dition de flux nul est imposée sur à la base de l’aquifère ainsi que sur les plans latéraux

exceptés pour la zone de suintement elle-même. Les simulations considèrent une pluie

constante et un état initial sec. L’erreur d’approximation est alors donnée par :

εR =
|Qss

d −Qss
sf |

Qss
sf

× 100 (1)

avec Qss
sf et Qss

d les débits en regime permanent, respectivement pour les algorithme

prenant en compte la dynamique de la zone de suintement et uniquement les conditions

statiques de Dirichlet. Des conditions différentes de pentes (i=1, 10 et 30%), de conduc-

tivité hydraulique à saturation (Ks = 1×10−4 and 1×10−5 m/s), et d’intensité pluvieuse

R sont testées.

La figure 9 rapporte les effets de (a) la conductivité hydraulique Ks (à pente fixe

i=10%) et de (b) la pente i (à conductivité hydraulique fixée Ks = 1.10−4 m/s) sur

les erreurs d’approximation εR pour différents rapports pluie sur conductivité R/Ks et

montre que l’erreur commise suite au traitement statistique de la zone de suintement

plutôt que le traitement dynamique peut être relativement importante et augmente avec

le rapport R/Ks (atteignant même 45%) comme avec la pente à R/Ks fixe. Pour le

cas incluant couches hétérogènes, les figures 11 et 12 montrent l’importance des exutoires

multiples dans la zone de suintement. Le test est reconduit pour la situation décrite

sur la figure 8a pour une pente fixe i=10%. Une condition limite de suintement est

imposée sur le plan vertical à droite. Les conditions atmosphériques (pluie constante à

1×10−5 m/s) sont imposées sur la surface, et le flux est fixé à zéro sur les autres limites

sauf à l’exutoire. Le cas d’étude est composé de quatre couches d’épaisseur égale et de

conductivité hydrauliques différentes (figure 10).

La simulation inclut la présence de trois zones de suintement avec les points de sor-

tie correspondant. La figure 11 montre leur dynamique. Au début, une seule zone de

suintement est présente, dont le point de sortie (ligne noire dans la figure 11) est en bas.

Une deuxième zone de suintement se développe lorsque l’infiltration atteint la couche 2

(à environ 1.5 h). Son point de sortie (ligne bleue) se situe à l’interface entre les deux
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Figure 9: Erreur d’approximation εR en fonction du ratio pluie/conductivité, R/Ks, pour

les simulations pluvieuses sur un aquifère homogène (a) de pente i=10% à conductivité

hydraulique Ks variable et (b) à conductivité hydraulique Ks = 1× 10−4 m/s et de pente

variable.

premières couches et ne bouge jamais. Une troisième zone de suintement se forme lorsque

l’infiltration atteint la couche 4, à environ 7 h, avec son point de sortie (ligne rouge) à la

jonction entre les couches 3 et 4. À 8 h, l’eau de pluie atteint le bas et le premier point de

sortie s’élève à hauteur du troisième point de sortie, résultant en une fusion de la première

et de la troisième zone de suintement. La figure 12 montre le profil de hauteur d’eau en

coupe verticale pour les deux derniers mètres du versant à 7 h, quand les trois zones de

suintement sont présentes et à l’état stationnaire. À partir des contours de pression nulle,

délimités par les lignes noires, les différentes zones de suintement sont facilement visibles.

Les interactions entre une zone de suintement (modèle souterrain) et les limites de

sortie de bassin versant (modèle d’écoulement de surface) sont également analysées pour

le Landscape Evolution Observatory (LEO) du complexe Biosphere 2 en Arizona [Hopp

et al., 2009]. L’analyse est basée sur l’examen de la répartition de l’eau de pluie à l’état

stationnaire entre la sortie de la zone de suintement Qsf et l’écoulement de surface Q. Le
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Figure 10: Coupe verticale de l’aquifère incliné pour les configurations multicouches,

montrant les valeurs de conductivité hydraulique ou les rapports utilisés.
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Figure 11: Dynamique d’écoulement pour le premier (ligne noire), deuxième (ligne

bleue) et troisième (ligne rouge) exutoires dans le cas des couches hétérogènes. Les surfaces

de suintement (SS) situées sous chaque exutoire sont représentées figurées en bleu ciel.

Les zones roses, jaune et grises représentent les durées respectives pendant lesquelles un,

deux puis trois SS sont activées.
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Figure 12: Aperçus des profils de hauteur d’eau en coupe verticale à 7 h (gauche) et

à état stable (droite) d’une portion de 2 m de la pente du versant pour les simulations

multicouches. Les interfaces entre couches sont marquées par les lignes grises, et les

contours de hauteur piézométrique nulle sont représentés par les lignes noires.

domaine de LEO est illustré à la figure 8b. Les conditions atmosphériques à la limite de

surface, une limite de suintement sur le plan vertical de la pente à droite, et des conditions

de flux nul à la limite inférieure et le long des trois autres limites latérales sont imposées.

La sortie du bassin versant pour le modèle d’écoulement de surface du CATHY correspond

à la cellule de surface montrée en rouge sur la figure 8b. La conductivité hydraulique Ks

du système est fixée à 1×10−4 m/s et la nappe phréatique est initialement fixée au niveau

correspondant à la base. Les simulations sont exécutées pour un ensemble de taux de

précipitations R et pour des angles de pentes i de 3, 10 et 20%.

Les résultats, présentés en figure 13, montrent que la contribution Qsf/R de la zone

de suintement diminue avec R/Ks et augmente avec i. Des taux de précipitations plus

élevés augmentent ainsi l’écoulement de surface alors que des pentes abruptes augmentent

l’écoulement à la base du versant. Les résultats montrent aussi que les différences entre

les trois courbes deviennent moins significatives à mesure que R/Ks augmente.

S.3.4 Conclusions

Cette étude présente une modélisation des conditions aux limites des zones de suintement.

Les aspect spécifiquement examinés sont : 1) les erreurs d’approximations apparaissant

avec l’utilisation d’un traitement statique plus simple de la limite représentant une zone
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Figure 13: Répartition de l’eau de pluie R sur le versant LEO entre la sortie Qsf de la

zone de suintement (axe de gauche) et le débit Q de l’écoulement de surface (axe de droite)

à l’état stable pour un ensemble de rapports précipitations/conductivité (R/Ks) et trois

différents angles i de pente. La ligne pointillée horizontale et les trois lignes pointillées

verticales donnent les valeurs de R/Ks pour lesquelles les contributions du suintement et

de l’écoulement sont identiques (R/Ks = 0.009, 0.012 et 0.02 pour les angles de 3%, 10%

et 20% respectivement).

de suintement au lieu d’une approche dynamique; 2) le comportement des zones de suinte-

ment sous conditions d’hétérogénéité ; et 3) les interactions entre une zone de suintement

et un exutoire de bassin versant dans les modèles intégrés surface–souterrain. Les résultats

montrent que la condition statique (Dirichlet) n’est pas toujours adéquate pour modéliser

la zone de suintement dynamique, en particulier en conditions de fortes précipitations,

pente abrupte et hétérogénéité; que les versants ayant des couches hétérogènes créent

de multiples zones de suintement à l’interface de ces surface contrastées qui peuvent être

extrêmement dynamiques; et que les zones de suintement et les limites d’exutoires peuvent

coexister dans les modèles hydrologiques intégrés et qu’il jouent chacun un rôle important.
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S.4 Modélisation multi-réponses d’un essai de traçage réalisé avec

un traceur isotopique au Landscape Evolution Observatory

S.4.1 Introduction

Le but de cette étude est de réaliser des simulations à partir d’un jeu de données

d’observations très important incluant des données qualitatives et quantitatives sur

l’écoulement des eaux souterraines et des données spatialement distribuées d’écoulement

et de transport. Le CATHY FT est appliqué à des versants d’une maquette du Land-

scape Evolution Observatory (LEO) [Hopp et al., 2009]. LEO est une infrastructure

de recherche de grandes dimensions au service de la communauté gérée par l’université

d’Arizona à Oracle aux Etats-Unis (Bâtiment Biosphere 2). Elle est constituée de trois

versants convergents, de 30 m de long et 11.5 m de large, contenant 1 m de sol limono

sableux. Chaque versant possède un réseau dense de capteurs et d’échantillonneurs capa-

bles d’identifier l’hétérogénéité à l’échelle du mètre et l’hétérogénéité latérale de l’humidité

du sol, de l’énergie et des flux. Elle possède aussi un système de simulation de pluie in-

novant qui permet d’appliquer des précipitations entre 3 et 45 mm/h de façon homogène

ou hétérogène. Le deutérium (2H) et l’isotope de l’oxygne (18O) sont utilisés comme

traceurs pour marquer l’eau et peuvent être introduits au système à des concentrations

connues via le simulateur de pluie. La figure 14 montre une vue depuis le haut d’un des

trois versants, le système de collecte d’eau et le simulateur de pluie. Pouvoir réaliser

des expériences au LEO représente une opportunité exceptionnelle pour modéliser des

processus complexes. De telles modélisations sont possibles grâce aux jeux de données

variées provenant d’expériences détaillées et multidisciplinaires (le réseau de bassins ver-

sants expérimentaux TERENO [Zacharias et al., 2011] ainsi que le bassin versant artificiel

Chicken Creek [Hofer et al., 2012] en sont des exemples récents). La modélisation de ces

processus complexes pourra ainsi contribuer activement à l’amélioration de la génération

actuelle de modèles hydrologiques intégrés (surface/sous-surface) [Sebben et al., 2013;

Maxwell et al., 2014].

A ce jour, deux expériences ont été conduites au LEO, un test impliquant de la pluie

et du drainage en février 2013 [Gevaert et al., 2014; Niu et al., 2014b], évaluant les

écoulements souterrains et de surface, et un test de traçage isotopique en avril 2013 [Pan-
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Figure 14: Un versant (haut), le collecteur de flux en sortie de la surface de suintement

(en bas à gauche) et le simulateur de pluie (en bas à droite) du Landscape Evolution

Observatory (LEO).
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Figure 15: Réponse hydrologique de l’expérience de traçage sur le site LEO. À par-

tir du haut : périodes d’entrée de pluie mesurées Qr (l’impulsion rouge est enrichie en

deutérium); écoulement à la surface de suintement Qsf ; stockage total d’eau Vs; et valeurs

de δ2H moyennes à la surface de suintement. Le temps 0 correspond au 13 avril 2013,

9h30.

gle et al., 2015], réalisé avec un sol sec au départ et une pluviométrie moindre dans le but

de réduire le ruissellement de surface. En utilisant les données intégrées (capteur de charge

et surface de suintement) et réparties (mesures ponctuelles dans l’espace d’humidité et

de concentration) collectées pendant l’expérience de traçage, l’objectif de cette étude

est d’identifier les défis, le comportement des différents processus, que représente la

modélisation des écoulements saturés et non saturés ainsi que le transport de solutés

à l’aide de modèles 3D complexes à base physique.

S.4.2 Expérience de traçage isotopique

La figure 15 illustre la réponse hydrologique de l’expérience de traçage isotopique. Trois

périodes de pluie ont été injectées à un taux de 12 mm/h dans le système: au temps 0,

(13 avril 2013, 9h30) pendant 5.5 h, après 23.5 h pendant 6 h, et finalement après 9 jours

(215.5 h) pendant 1.25 h + 4 h séparés par 3 h sans pluie. Le deutérium a été introduit
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Figure 16: Grille numérique 3D pour le site LEO. Les points a, b, c et d sont les

emplacements où les échantillons ont été récoltés durant l’expérience pour être ensuite

analysés en laboratoire.

dans le système avec la deuxième période de pluie. Auparavant, le déficit de deutérium

(δ2H) mesuré dans le système, dans l’eau de la première et troisième périodes, était de

-60‰. Au départ, le système était sec puisqu’il n’avait pas été humidifié durant les 6

semaines précédant l’expérience. Le volume total initial d’eau est estimé à environ 26 m3

(la capacité de stockage totale du domaine est de 135 m3). Toute l’eau de pluie injectée

s’est infiltrée dans le sol et a généré un écoulement à travers la surface de suintement qui

débuta après 5 h. Deux pics d’écoulement ont été observés: le premier après la deuxième

période de pluie avec une pointe à 4.5×10−5 m3/s et le deuxième après les deux dernières

impulsions avec une pointe à 2.1×10−5 m3/s. Le stockage total d’eau, l’écoulement total à

travers la surface de suintement, l’humidité du sol, et la pression ont été mesurés toutes les

15 min durant l’expérience. Sachant que l’évaporation n’a pas été mesurée directement,

elle a été estimée à partir de calculs de bilans hydriques. L’eau s’écoulant à travers la

surface de suintement et au niveau des senseurs a été échantillonnée et analysée par la

suite pour le δ2H . Les données rapportées incluent les échantillons collectés à 5, 20, 50 et

85 cm sous la surface aux quatre emplacements tels qu’illustrés à la figure 16 (points a à
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Figure 18: Réponse du transport intégré sur le domaine pour différentes valeurs de

dispersivité. Les lignes pointillées verticales indiquent les temps d’injection.

d).

S.4.3 Résultats

Les figures 17 and 18 montrent les résultats des simulations du modèle pour la réponse

intégrée. La solution pour le flux a été obtenue par une paramétrisation très simple: ho-

mogénéité des paramètres hydrauliques du sol, homogénéité de la conductivité hydraulique

Ks (sauf pour la surface de suintement, pour laquelle une plus petite valeur a été choisie,

en concordance avec les résultats de la première expérience au LEO Niu et al. [2014b])

et uniformité spatiale des conditions atmosphériques. Les conditions initiales du modèle

ont été établi conformémentles aux mesures d’humidité du sol à chaque emplacement de

détecteur. Les résultats de vitesses et de saturation à différentes périodes ont été utilisés
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dans le modèle de transport pour générer trois scénarios ayant différentes valeurs de dis-

persitivé pour différentes valeurs de dispersivité longitudinale et transversale (αl et αt).

Dans les trois cas, la valeur de αt a été choisie à un ordre de grandeur inférieur à celui

de αl. Les valeurs de δ2H sont exprimées avec c [-], qui correspond à la concentration

par rapport au déficit minimum 0. c = 0 signifie que, le déficit dans l’eau est maximal

(-60‰), alors que c=1 signifie qu’il n’y a pas de déficit dans l’eau. C’est pourquoi la

condition initiale imposée partout est c=0.

Sur la figure 17, on peut voir les flux mesurés et simulés de la surface de suintement et

le stockage total. Concernant l’écoulement de la surface de suintement, le modèle simule

bien l’arrivée des deux pics dans le temps, mais il surestime légèrement les valeurs du

second pic. Dans le cas du stockage total, les différences entre le modèle et la réponse

observée sont négligeables. La figure 18 montre les résultats du modèle de transport pour

c, sur la surface de suintement et pour des valeurs de dispersivité différentes. Les trois

courbes indiquent que la différence entre les valeurs c mesurées et simulées diminue avec

αl. Pour la plus grande valeur de αl testée (0.1 m), 2H apparait juste aprés la deuxième

impulsion, ce qui diffère de ce qui a été observé ainsi que des résultats du modèle obtenus

en réduisant la valeur de αl de un ou deux ordres de grandeur. Dans les trois cas, le

modèle reproduit l’augmentation de c, aprés la dernière impulsion. Cependant, bien que

les valeurs simulées soient quatre fois supérieures à quelles observées pour αl= 0.1 m, pour

αl= 0.01 m et αl= 0.001 m, elles diminuent significativement.

Pour passer de la réponse intégrée à une réponse spatialement discrétisée du flux, il

faut complexifier la paramétrisation du modèle, de façon à obtenir une correspondance

appropriée entre les réponses mesurées et simulées. L’analyse se focalise sur les profils

volumétriques de teneur en eau, pour les quatre points spécifiques qu’on peut voir sur

la figure 16, à 5, 20, 50 et 85 cm de profondeur. Les paramètres hydrauliques de van

Genuchten sont changés en foction de la couche. Dans la figure 19, les données du teneur

en eau sont comparées avec les résultats du modèle obtenus pour un cas de n
V G

homogène

(utilisé pour l’analyse intégrée) et pour un cas de n
V G

hétérogéne. La paramétrisation

plus précise (avec un n
V G

variable) donne de meilleurs résultats, bien que pour certaines

profondeurs de sol (en particulier, à 50 et 85 cm) et quelques points (point c, notamment)

les différences entre les deux séries de temps θ soient assez marquées.

Aucune paramétrisation supplémentaire n’a été tentée pour l’analyse de la réponse du
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Figure 19: La réponse hydrologique distribuée (état interne au domaine) pour les profils

θ à 5, 20, 50 et 85 cm de profondeur pour quatre emplacements sur le versant LEO: point

a (en haut, à gauche), point b (en haut, à droite), point c (en bas, à gauche) et point d

(en bas, à droite) de la figure 16.

transport distribué, correspondant au profil de concentration à des endroits différents. La

figure 20 compare, comme dans la figure 19 pour les profils volumétriques de teneur en eau,

les résultats du modèle à des points individuels et pour plusieurs profondeurs obtenues

utilisant un paramètre n
V G

uniforme et variable. Dans les deux cas, les résultats sont

obtenus pour une dispersivité αl=0.001 m. A cause de la durée de l’échantillonnage et des

coûts élevés inhérents à l’analyse exhaustive des compositions en isotopes au laboratoire,

un nombre plus réduit de données a été pris en compte que dans le cas d’écoulement. Les

résultats montrent que le modèle n’obtient pas de bons résultats à plusieurs endroits (en

particulier à 20 et 5 cm de profondeur pour le point b). Il est cependant encourageant

de constater que les résultats concordent avec ceux obtenus précédemment pour les flux

distribués. Bien que les résultats du modèle avec un n
V G

spatialement variable soient
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Figure 20: Réponse hydrologique distribuée (état interne au domaine) de la concentra-

tion du traceur à 5, 20, 50 et 85 cm de profondeur pour quatre localisations sur le versant

du LEO: point a (en haut à gauche), point b (en haut à droite), point c (en bas à gauche)

et point d (en bas à droite) de la figure 16. Aucune mesure de la concentration en traceur

n’a été effectuée à 5 cm de profondeur pour le point c et à 5 et 20 cm de profondeur pour

le point d. Le modèle de transport est calculé pour αl=0.001 et αt=0.0001 m.

o -
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meilleurs que dans le cas d’un n
V G

uniforme, la performance du modèle à reproduire la

réponse mesurée est considérablement pire que pour l’écoulement.

S.4.4 Conclusions

Les résultats issus de la modélisation pour cette première expérience de traçage isotopique

au LEO témoignent de la difficulté de tester et valider la nouvelle génération de modèles

hydrologiques intégrés. Une bonne adéquation entre les variables intégrées mesurées et

simulées a été obtenue en utilisation une paramétrisation simple, tandis qu’en passant au

réponse distribuée d’écoulement il a été nécessaire d’introduire une hétérogénéité addi-

tionnelle dans les paramètres hydrauliques du sol. L’hétérogénéité additionnelle améliore

également l’adéquation entre les points de mesure des concentrations en traceur, même

si la performance du modèle à reproduire la réponse mesurée diminue considérablement.

Cela suggère la nécessité de complexifier la paramétrisation du modèle ou l’existence de

lacunes dans la représentation du processus des phénomènes de transport de soluté dans

les sols très secs et hétérogènes. Les limites rencontrées dans ce modèle, d’un point de vue

de la procédure expérimentale (concentrations faibles, les conditions initiales sèches et des

mesures non constants de la masse de soluté) et de la formulation du modèle, pourront

guider les prochaines études au LEO.

S.5 Modélisation à base physique des processus d’écoulement et

de transport entre la surface et la sous-surface: couplage, condi-

tions aux limites, et comportement numérique

Les modèles hydrologiques qui intègrent une description et résolution détaillées des inter-

actions du soluté entre la surface et la sous-surface sont à leurs débuts et de nombreuses

améliorations spécifiques sont possibles, réalisables uniquement en effectuant des analyses

approfondies et rigoureuses de leur comportement physique et numérique. Dans cette

étude, ce défi est abordé pour le modèle CATHY FT, en décrivant certaines de ses car-

actéristiques et en identifiant quelques-unes des questions clés liées à son développement,

comme le contrôle de la dispersion numérique et des erreurs de bilan de masse, le traite-

ment des conditions aux limites complexes, et la description des interactions entre les

processus.
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CATHY FT [Weill et al., 2011] est un modèle à base physique en évolution qui couple

l’équation 3D de Richards et l’équation d’advection-dispersion, utilisées pour décrire les

processus de flux et de transport souterrains, avec l’équation d’onde diffusive, utilisée pour

décrire l’écoulement de surface et la propagation de transport de soluté sur la surface.

La solution des équations de surface est obtenue numériquement en utilisant la méthode

Muskingum-Cunge pour le débit d’écoulement Q [L3/T] et le débit massique de soluté

Qm [M/T]. L’équation de Richards est discrétisée en utilisant la méthode des éléments

finis linéaires, ou P1, de Galerkin pour la discrétisation spatiale et un système de contrôle

implicite des pas de temps appliqué aux différences finies, linéarisé par un schéma itératif

de Picard. L’équation est résolue dans sa forme conservatrice [Celia et al., 1990a] pour la

hauteur piézométrique h [L] et la teneur volumétrique en eau θ [-]. Le champ de vitesse

Galerkin P1 q, post-calculé à partir des valeurs de hauteur piézométrique nodaux, est re-

construit avec l’algorithme de post-traitement Larson-Niklasson (LN) visant à rétablir les

propriétés de conservation de la masse [Scudeler et al., 2016a] et est utilisé comme entrée

par le modèle de transport souterrain. L’équation de transport souterrain est résolue pour

la concentration c au moyen d’une technique de fractionnement de temps qui combine un

système explicite de haute résolution en volumes finis (HRFV) pour l’advection avec un

système implicite aux élément finis (FE) linéaires de Galerkin pour la dispersion.

L’intégration des équations de surface et de sous-surface est réalisée par une procédure

d’itération séquentielle. La solution des équations de flux et de transport est gérée de la

même manière car dans la procédure de solution séquentielle, les modules de flux sont

résolus avant leurs homologues de transport. Le contrôle sur l’évolution du pas de temps

de la procédure globale est fait par le routeur d’écoulement souterrain, sous la seule réserve

d’une contrainte de convergence liée au schéma non linéaire. En revanche, la stabilité de

la méthode explicite utilisée pour discrétiser les équations de surface est soumise à la

constrainte de Courant-Friedrichs-Lewy (CFL) [Courant et al., 1967] sur le pas de temps.

Ainsi, pour chaque pas de temps ∆t de la sous-surface, de multiples intervalles de temps

de surface sont accomplis. Les flux dispersifs de l’équation de transport souterrain ne sont

pas limités par conditions de stabilité ou de convergence, donc le pas de temps dispersif est

synchronisé avec l’étape de temps de flux souterrain (∆td = ∆tt), tandis que plusieurs pas

de temps explicites d’advection sont pris par chaque étape dispersive selon la contrainte

CFL qui établit la taille du pas de temps d’advection.
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Figure 21: Solution séquentielle (de 1 à 4 comme indiqué) pour les quatre équations

principales dans CATHY FT. k indique le temps et la solution est évaluée à tk+1. h

[L] est la hauteur d’accumulation d’eau au-dessus de la surface relatif à Q et csf [M/L3]

est la concentration de surface relative á Qm. Les valeurs qk+1
sb et qk+1

tsb sont des entrées

utilisées à l’étape de temps suivante pour, respectivement, les équations d’écoulement et

de transport de surface (en devenant les nouvelles qksb et qktsb).
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La résolution des quatre principales équations couplées est expliquée dans le schéma de

la figure 21. Les termes reliant les équations d’écoulement de surface et souterrain sont qsf

[L3L−3T−1] et qsb [L3L−3T−1] et représentent, respectivement, les écoulements entrant ou

sortant de la surface vers la subsurface et de la sous-surface vers la surface. Ces termes sont

déterminés par un algorithme du changement des conditions aux limites. Cet algorithme

est conditionné par le module souterrain car c’est cette composante du modèle qui gère les

données atmosphériques en entrée qui sont cruciales pour résoudre l’échange. Les termes

couplant les équations de transport souterrain sont qtsf [ML−3T−1] et qtsb [ML−1T−1] et

représentent respectivement le transport de soluté entrant ou sortant de la surface vers

la subsurface et de subsurface vers la surface. Ces termes sont résolus en combinant de

façon rigoureuse les conditions aux limites complexes, qui sont nécessaires à la résolution

des équations de transport souterrain, et des calculs de bilan de masse qui eux considèrent

les différents états issus des solutions des équations d’écoulement (accumulation d’eau en

surface, données atmosphériques d’entrée et les écoulements d’eau effectifs à la surface du

sol).

Le développement de CATHY FT a dû faire face au défi d’approximer avec précision

et efficacité l’équation complexe d’advection-dispersion. En effet, la résolution de cette

équation est toujours difficile car il n’existe pas de méthode numérique optimale sur

l’intégralité des problèmes. L’approche par les éléments finis est par exemple idéale pour

les processus dispersifs alors que pour les processus où l’advection prédomine, les solu-

tions obtenues montrent un caractère oscillatoire et/ou avec une dispersion numérique

excessive proche des forts gradients de concentration [Guddati and Yue, 2004]. Cepen-

dant, les méthodes qui préservent les forts gradients avec une oscillation et une dispersion

numérique minimale, telles que la méthode des volumes finis de type Godunov d’ordre

élevé [e.g., Dawson, 1993; Mazzia and Putti , 2005], ou encore la méthode de Galerkin dis-

continu [e.g., Siegel et al., 1997; Cockburn et al., 2000], ne sont pas idéales pour discrétiser

la composante dispersive et ne sont pas compatibles avec les modèles d’écoulement util-

isant les éléments finis [Dawson et al., 2004a; Klausen and Russell , 2004]. Des études

antérieures liées au modèle CATHY FT ont montré que l’utilisation d’une technique de

fractionnement de temps, qui permet d’adopter une méthode numérique adaptée selon

qu’il s’agisse de résoudre l’advection ou la dispersion (e.g., le volumes finis de type

Godunov d’ordre élevé et les éléments finis mixtes (MFE) [Mazzia and Putti , 2005]),
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et de méthode localement conservatrice (e.g., MFE [Putti and Sartoretto, 2009]) pour

la discrétisation des équations d’écoulement, permet d’obtenir des résultats précis mais

avec des temps de calculs très importants, essentiellement dû à l’effort nécessaire pour la

résolution des systèmes MFE.

Pour résoudre le compromis entre la précision du modèle et le coût de calcul, et

donc éviter l’utilisation d’une discrétisation MFE, dans cette étude il est proposé une

interpolation linéaire qui conserve la masse pour combiner la solution du schéma HRFV

pour l’advection, obtenue sur les éléments, et la solution du système FE pour la dispersion,

obtenue sur les nœuds, avec un opérateur de fractionnement de temps. L’incompatibilité

entre le solveur à volumes finis et le modèle FE de Richards est résolue en rétablissant les

propriétés de conservation de la masse des vitesses FE avec la technique de post-traitement

LN [Scudeler et al., 2016a].

Les résultats des simulations effectuées ont montré comment, pour processus purement

advectifs, le nouveau modèle donne une solution avec des propriétés de bilan de masse

quasi-parfaites et qui surmonte avec succès les limites associées à la discrétisation FE

pour l’advection et la lourdeur des calculs pour la résolution des flux MFE. Cependant,

lors de la simulation des processus d’advection-dispersion, la solution numérique présente

clairement une diffusion non physique qui provoque la propagation rapide de la masse de

soluté dans le domaine, et donc l’efficacité de calcul est obtenue au détriment de précision.

Les conditions aux limites du transport sont une source supplémentaire de complexité

numérique et physique dans le développement de CATHY FT. Un flux dépendant des

valeurs (ou condition limite de Cauchy) est utilisé pour représenter le flux de soluté en

entrée et en sortie à travers la limite du domaine, avec les échanges advectifs régis par les

flux d’eau réels à travers les frontières et les échanges de dispersion régies par le gradient de

concentration. Par souci de cohérence numérique, des conditions de Dirichlet de concen-

trantion sont spécifiées à l’étape advective alors que les conditions de type Neumann sont

imposées à l’étape dispersive. Ainsi, une représentation exacte des processus de transport

aux frontières repose sur la résolution exacte des flux d’eau et des valeurs de concentration

qui doivent éventuellement être imposées. Dans cette étude, il est montré comment ces

complexités de modélisation représentent un problème particulièrement difficile lorsque les

conditions aux limites sont utilisées pour représenter les interactions de soluté à travers

la surface du terrain. Les conditions aux limites et des calculs de bilan de masse sont
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combinées avec précision pour résoudre les échanges de soluté entre la surface et la sub-

surface. Des résultats satisfaisants ont été obtenus pour des processus de ruissellement

de surface par saturation (mécanisme de Dunne). Cependant, des tests supplémentaires

doivent être menés pour évaluer si la méthode s’étend précisément dans des situations

où les processus de surface sont régis par infiltration en excès (mécanisme de Horton) et

en présence d’évaporation. D’autres études seront nécessaires pour quantifier et évaluer

l’importance des échanges diffusifs entre la surface et la subsurface, actuellement négligés

dans CATHY FT.

De nombreuses améliorations et extensions spécifiques sont possibles pour le modèle.

Un défi pour l’avenir sera de résoudre l’efficacité et la précision de la solution numérique

pour l’équation d’advection-dispersion en utilisant, par exemple, la reconstruction des

moindres carrés [Coudière et al., 1999; Manzini and Putti , 2007] pour évaluer les valeurs

des variables nodales à partir des moyennes de cellules, au lieu de l’interpolation linéaire

actuellement utilisée. Des complexités physiques et numériques supplémentaires seront

introduites en incorporant, comme le modèle continue à évoluer, de nouvelles fonction-

nalités telles que des réactions chimiques (par exemple, désintégration et adsorption de

premier ordre), transport de soluté dépendant de la densité (par exemple, des phénomènes

d’intrusion d’eau salée), et un énergétique (y compris l’évapotranspiration et les interac-

tions entre le sol et la végétation).





Chapter 1

Introduction

1.1 Motivation

Groundwater constitutes an important component of many freshwater resource systems

and, for this reason, it has been widely studied by the hydrogeologist community. The

two main driving forces of groundwater studies are the need to assess the water poten-

tial of aquifers and the challenge of protecting or remediating the quality of this water.

Quantity and quality problems can be strongly linked as the quality of water is easily

deteriorated by intense withdrawal, often beyond permissible limits. For example, excess

withdrawal in coastal aquifers can lead to saltwater intrusion problems, causing saline

water contamination that makes freshwater unsuitable for human consumption and irri-

gation [e.g., Barlow and Reichard , 2010]. The interest in water quality problems related

to aquifers has increased even more because of contamination by hazardous industrial

wastes, agricultural activities, leachate from landfills, spills of oils, and so on.

A good management of the quantity and quality of the groundwater resource requires

predictions of the short, medium, and long-term response of the managed system. This

information enables the comparison of alternative actions and the selection of the best

management strategy. Predictions of the system response can be obtained by construct-

ing and solving deterministic mathematical models of the investigated domain and of

the flow and transport phenomena that take place in it. These models generally require

the solution of partial differential equations that can be achieved either analytically or

numerically. Different analytical solutions have been developed to solve the flow and

solute-transport equations for simple cases where properties and boundaries of the sys-
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tem are idealized [e.g., Reed , 1980; Leij et al., 1991]. Nonetheless, for most practical

problems, the mathematical advantages of an exact and simple analytical solution are

overtaken by the errors arising from the assumptions required. Alternatively, the math-

ematical models are transformed into a numerical problem solved by means of computer

programs. This, together with the continual advances in computational technology, has

made hydrological numerical modeling an important field of research in water resource

management [e.g., Bear and Cheng , 2010].

One of the main themes of this thesis is on improving the numerical performance of

state-of-the-art hydrological models of both flow and transport phenomena. The process

of groundwater flow is assumed to be governed by Darcy’s law, which expresses a rela-

tion between the velocity field of the flowing groundwater and the potential or pressure

head gradients. This, combined with the statement of mass conservation, gives rise to

a partial differential equation written and solved in terms of potential head or pressure

head (or mixed volumetric water content-pressure head) depending if the flow is satu-

rated, unsaturated, or variably saturated. Thus, the purpose of a model that simulates

groundwater processes is to compute the potential or pressure head at any specified time

and place. On the other hand, a solute transport model aims to reproduce the dynam-

ics of the concentration of dissolved contaminants in the same groundwater system. In

the case of nonreactive solutes, the changes in concentration occur primarly due to two

distinct processes: advective transport, in which the dissolved compounds are moving

with the flowing groundwater, and hydrodynamic dispersion, in which molecular diffu-

sion and small-scale variations in the flow velocity through the porous media cause the

paths of the dissolved compounds to diverge and spread from the average direction of

groundwater flow. Thus, given that the migration of contaminants is obviously affected

by the groundwater velocity field, the single most important key to understand and model

a solute transport problem relies on an accurate definition of the flow system [Dawson

et al., 2004a]. From a numerical standpoint, although the potential (or pressure) head

field can be often simulated accurately, the relative velocity field required as input by

the companion transport model may be greatly in error. In this context, a first aim of

this thesis is to introduce some enhancements to a coupled flow and transport model by

focusing on the numerical accuracy of the groundwater velocity field.

Another main theme of this thesis concerns integrated surface water/groundwater
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resources management and modeling. Owing to the prevalence of interactions such as

between a river or lake and an adjacent aquifer or between rainfall and runoff at the

land surface, surface water and groundwater cannot be considered as independent water

resources. To give some examples, water from river flows through its beds into the aquifer

whenever the water level in the former is higher than in the latter, and vice versa. Base

flow in streams and discharge from springs are nothing else than groundwater emerging

at the ground surface. These considerations apply also to water quality, as polluted sur-

face water may easily reach and pollute groundwater and vice versa. Thus, it is obvious

that the management of water resources should always include both resources, since any

control of one resource will eventually affect the other. On the modeling side, integration

of surface waters and groundwaters involve complex coupling aspects since their bound-

ary, represented by the land surface, is usually subjected to highly dynamic conditions,

which are difficult to handle both physically and numerically. An interesting scenario

arises when the water table rises and reaches the ground surface producing seepage face,

surface runoff, and surface-subsurface exchange processes. Atmospheric forcing represents

another crucial aspect since at the land surface, based both on water levels above and soil

conditions below, there occurs the partitioning of potential fluxes (rainfall and evapora-

tion) into actual fluxes (infiltration, exfiltration as evaporation, and exfiltration as return

flow) and changes in surface storage. An incorrect representation and resolution of ex-

change and coupling terms can easily introduce approximation and mass balance errors,

particularly difficult to control on solute mass, that affect the overall numerical solution

and performance [Packman and Bencala, 2000]. In this context, a second aim of this

thesis is to improve our understanding of complex boundary conditions and reducing the

errors associated with their representation in an integrated groundwater/surface water

model.

A final theme of this thesis is related to the testing and benchmarkig of distributed

physically-based models for goundwater flow and transport processes. Code verification,

model benchmarking, and model testing play an important role since, together, they serve

to improve a model’s reliability for prediction and as management tools [Refsgaard , 1997;

Maxwell et al., 2014]. Verification of a code is obtained when it is shown that the model

behaves as intended, i.e., that the governing equations are correctly encoded and solved

and that the solution has good mass balance properties. The value of a model stands
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in its capability to integrate site-specific information with the governing equations de-

scribing the relevant processes. In this context, distributed-parameter models are usually

preferred over lumped-parameter models as they can be more realistic and flexible for

simulating the complex, three-dimensional, and heterogeneous setting characterizing a

hydrogeologic field. However, their applicability and reliability are strictly affected by in-

complete process understanding and by the large amount of input data (primarily related

to the system properties but also to the boundary and initial conditions) that they re-

quire. Lack of data introduces uncertainty during the process which seeks to identify the

independent set of parameters (e.g., hydraulic conductivity, porosity) by fitting the model

results to the available field or experimental datasets. Recent attempts to resolve these

issues have looked at automated parameter estimation techniques that rely on numerical

optimization methods. However, these procedures do not bound errors arising from an in-

correct description of the governing processes or from problems in the numerical solution

algorithms. In addition, their application for detailed physically-based numerical models

is not feasible when multiple processes and multivariate observations are involved. Thus,

testing complex models against many types of observation data of different nature is a

challenging problem, compounded by the need to identify the sources of error in the model

and to determine their nature (for example if they are related to unresolved processes,

model parameterization, or numerical solutions). In this context, a third aim of this the-

sis is to perform a modeling analysis with a very detailed observation dataset including

quantity and quality of groundwater discharge and point-scale flow and transport data.

1.2 State of the art

A large number of hydrological and hydrogeological numerical models are available. The

differences between any given models stand in the processes they simulate, in their di-

mensionality (i.e., one-dimensional, two-dimensional, and three-dimensional), and in the

way they are solved numerically (e.g., with a finite difference (FD) or finite element (FE)

technique). All the processes are described by a physical equation representing a mass,

energy, or momentum balance. Most comprehensive physically-based hydrologic models

use Richards’ equation and the advective-dispersive equation to represent, respectively,

variably saturated groundwater flow and solute transport processes. Freeze [1971] is con-
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sidered a pioneer of physically-based hydrological modeling since he was amongst the first

to develop a nonhomogeneous anisotropic transient three-dimensional model integrating

saturated and unsaturated flow processes (earlier models dealt with simpler one- or two-

dimensional problems [e.g., Rubin, 1968; Hornberger et al., 1969; Taylor and Luthin, 1969])

and, thus, he anticipated subsequent model developments for the solution of Richards’

equation [e.g., Huyakorn et al., 1986a; Celia et al., 1990a; Rathfelder and Abriola, 1994]

and the companion advective-dispersive solute transport equation [e.g., Huyakorn et al.,

1986b; Panday et al., 1993]. The continual computational and physical (process descrip-

tion) advances not surprisingly enabled the evolution towards more complex models with

other features. For example, nowadays there are flow models that integrate subsurface

processes with evapotranspiration, with surface processes, with canopy interception, and

with snowmelt processes (e.g., tRIBS [Ivanov et al., 2004] and LISFLOOD [Van Der Kni-

jff et al., 2010]), and transport models that deal with multispecies, equilibrium reaction,

and physical nonequilibrium reactions (e.g., MODFLOW [Prommer et al., 2003] and HY-

DRUS [Šimunek and van Genuchten, 2008; Šimunek et al., 2008]).

FE and FD are two of the major classes of numerical methods that have come to be

well accepted for solving groundwater flow equations [Wang and Anderson, 1995]. Stan-

dard FE methods are often the schemes of choice for spatial discretization because of their

computational efficiency, their ability to handle anisotropy, and, unlike FD techniques,

their flexibility to treat irregular boundaries of the aquifer and of parameter zones within

the aquifer [Pinder and Frind , 1972]. Early examples include the models developed by

Neuman and Witherspoon [1970], Cooley [1983], and Huyakorn et al. [1986a]. Other spa-

tial discretization methods have been proposed that can offer advantages under certain

conditions. These include locally conservative methods [Klausen and Russell , 2004], such

as multi-point flux approximations [e.g., Edwards and Rogers , 1998], mixed finite elements

(MFE) [e.g., Brezzi and Fortin, 1991; Farthing et al., 2002], and enhanced cell-centered

finite differences [e.g., Arbogast et al., 1998]. On the other hand, traditional FD techniques

are often used for time discretization and they can be time-implicit or time-explicit ac-

cording to the nature of the equation [Ascher et al., 1995] (e.g., time-implicit for parabolic

conservation laws such as Richards’ equation).

The advective-dispersive solute transport equation is in general more difficult to solve

numerically than the groundwater flow equation since it changes mathematical proper-
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ties depending upon which terms are dominant in a particular situation: it can be more

hyperbolic in nature when advection dominates and more parabolic in nature (similar to

groundwater flow equations) when dispersion dominates. The FE method is subjected to

Peclet limitations when applied to hyperbolic conservation laws. As a consequence, for

advective dominated processes, it requires to be upwinded [e.g., Huyakorn and Nilkuha,

1979; Huyakorn et al., 1987] with the undesired effect of introducing numerical diffusion,

which smooths the sharp fronts as physical dispersion does. Different numerical methods

have been developed to accurately resolve the difficult behavior of the solute transport

equation. These include the discontinuous Galerkin approach [e.g., Cockburn et al., 2000],

Eulerian-Lagrangian discretization [e.g., Cheng et al., 1984; Thomson et al., 1984; Celia

et al., 1990b; Zhang et al., 1993], high order Godunov-type finite volumes [e.g., Dawson,

1993; Mazzia and Putti , 2005], and time-splitting techniques [e.g., Valocchi and Malm-

stead , 1992]. Another problem arises here since the mass conservation properties of the

velocity field (computed by the flow solver, but needed by the transport solver) required

by these methods are not satisfied by the FE-based flow model [Dawson et al., 2004a].

In fact, even if the FE is the method of choice in solving subsurface flow equations, the

velocity field, post-computed and obtained element-wise from hydraulic head gradients,

has its normal component discontinuous at inter-element boundaries, generating problems

of mass conservation in any application that relies on accurate flux estimates. Two dif-

ferent ways have been tested to overcome this problem: the use of a locally conservative

method for the discretization of the flow equation (e.g., the MFE) or the post-processing

reconstruction of the FE velocity field (e.g., Larson and Niklasson [2004]). In this last

case it is possible to achieve almost the same level of accuracy obtained with a locally

conservative method but at a much lower computational cost and for this reason post-

processing strategies are increasingly considered as an attractive alternative. Additional

numerical complications arise when the solutes affect the density of the solution or they

are reactive. In the first case the transport and flow equations are coupled and need to

be solved simultaneously or iteratively [e.g., Huyakorn et al., 1987; Diersch, 1988; Putti

and Paniconi , 1995; Simmons et al., 1999; Simpson and Clement , 2003]. The second

case can include the introduction of strong nonlinearities, nonequilibrium phenomena,

and multispecies and multiphase processes [Rubin, 1983; Bahr and Rubin, 1987].

Paniconi and Putti [2015] provides a survey of catchment deterministic hydrological
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modeling and of the related physical and computational advances of the past 50 years.

Their paper clearly shows how in the last decades the reasearch performed by the com-

munity of groundwater modelers has been driven by the interest in using an integrated

approach to represent the different hydrological processes and their interactions, in par-

ticular those between surface water and groundwater [e.g., Furman, 2008; Fleckenstein

et al., 2010]. Process interactions between streams and aquifers are increasingly consid-

ered relevant for the management of our freshwater resources since they are one of the

major controls on the water and solute budgets at the catchment and river basin scales

and are key determinants of hydrograph separation and transit time distributions [Winter

et al., 1998; Rodriguez-Iturbe, 2000]. Despite all the experimental and numerical investiga-

tions performed [e.g., Harvey and Bencala, 1993; Packman and Bencala, 2000], significant

challenges remain in integrating flow and transport processes and in simulating water and

solute exchanges across the land surface.

In the current generation of distributed-parameter process-based hydrological mod-

els, a variety of models that couple surface and subsurface flow processes has been

introduced: Parallel Flow (ParFlow) [Kollet and Maxwell , 2006], CATchment HYdrol-

ogy (CATHY) [Camporese et al., 2010], HydroGeoSphere (HGS) [Therrien et al., 2012],

OpenGeoSys (OGS) [Kolditz et al., 2012], Process-based Adaptive Watershed Simula-

tor (PAWS) [Shen and Phanikumar , 2010], and Penn State Integrated Hydrologic Model

(PIHM) [Kumar et al., 2009]. Besides the numerics and the approximations performed,

the differences between models are also in the coupling algorithms used. Mathemat-

ically, there are three distinct approaches for integrating surface and subsurface flow:

asynchronous linking, sequential iteration, and a globally implicit approach [Panday and

Huyakorn, 2004]. Physically, the strategies for coupling surface and subsurface flow are:

first-order exchange [e.g., VanderKwaak and Loague, 2001; Panday and Huyakorn, 2004;

Therrien et al., 2012], continuity of pressure [e.g., Kollet and Maxwell , 2006; Dawson,

2008], and boundary condition switching.

Comparatively fewer models address both flow and transport interactions between the

subsurface and land surface [Weill et al., 2011; Therrien et al., 2012]. Thus, the differences

in numerical and physical approaches for coupling surface and subsurface flow carry over

to the few integrated transport models. For example in Therrien et al. [2012] a globally

implicit approach is used to simultaneously solve the surface and subsurface transport and
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flow equations. In contrast, in the CATchment HYdrology Flow–Transport (CATHY FT)

model [Weill et al., 2011], surface and subsurface flow and transport equations are solved

within a sequential iterative procedure and coupling is handled with a boundary condition

switching algorithm. This requires careful considerations since the stresses involved, such

as atmospheric forcing and seepage face conditions, can be highly dynamic and thus

difficult to describe physically and numerically. Not surprisingly, many challenges still

remain in handling the complexity of boundary conditions coupling surface and subsurface

processes.

Progress in hydrological modeling requires any models being used to reveal the truth

about a system. This has been usually checked by demonstrating that good results are

obtained for problems having known solutions or against site-specific data [Refsgaard ,

1997]. Benchmark problems have been established to compare different approaches of

competing models, such as, for example, the solution of Boussinesq’s equation compared

to the solution of Richards’ equation to simulate hillslope-storage [Paniconi et al., 2003b]

or to compare competing models dealing with complex processes as, for example, vari-

able density groundwater flow [e.g., Konikow et al., 1997a], near-surface processes [e.g.,

Scanlon et al., 2002], land surface processes [e.g., Henderson-Sellers et al., 1993; Boone

et al., 2004], radionuclide transport [e.g., Larsson, 1992], and reactive transport [e.g.,

Pruess et al., 2004]. The intercomparison effort for coupled surface-subsurface models

has followed the above initiatives. Sulis et al. [2010] and Maxwell et al. [2014] present a

comparison between, respectively, two and seven physics-based numerical models for simu-

lating surface water-groundwater interactions. The same effort should be done to develop

additional benchmarks including also coupled surface-subsurface transport processes, in

order to guide scientific understanding as integrated models increase in complexity.

While model intercomparison for benchmark test cases has turned out to be an impor-

tan means for assessing the physical and numerical limitations of competing models, any

modeling case study based on field or experimental data enables advances in model test-

ing and understanding the physics governing complex processes. Valuable data for model

testing are available from different tests performed in experimental hillslopes and field

sites throughout the world. For example, the Panola Mountain research watershed [Freer

et al., 2002; Tromp-van Meerveld and McDonnell , 2006] has been designed to study sub-

surface stormflow. Examples related to both flow and transport processes include the Cap
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Cod experiment [LeBlanc et al., 1991; Hess et al., 1992], the Borden test site [Mackay

et al., 1986; Sudicky , 1986], the Las Cruces trench site [Hills et al., 1991; Wierenga et al.,

1991], the Central Nevada Test Area [Pohlmann et al., 2000], and the Amchitka Island

site [Hassan et al., 2001]. Recent natural and laboratory experiments assembling exten-

sive datasets from detailed multidisciplinary experiments, e.g., the TERENO network of

experimental catchments in Germany [Zacharias et al., 2011], the Landscape Evolution

Observatory (LEO) at the Biosphere 2 facility near Tucson in Arizona [Hopp et al., 2009],

and the Chicken Creek artificial catchment near Cottbus in Germany [Hofer et al., 2012],

represent a unique opportunity to test and improve the current generation of integrated

hydrological models for surface-subsurface and flow-transport simulations and, with that,

to advance in new scientific understanding.

1.3 Objectives

The development of a physically-based integrated numerical model requires different steps:

1) the selection of the essential features and processes to approximate; 2) the description

of these processes mathematically, in the form of partial differential equations; 3) the

definition of a computer code that can most effectively meet the purpose of the model;

4) the definition of a generic computational domain (i.e., the type of elements); 5) the

development of a suitable numerical model for space and time discretization, possible

linearizations, and coupling, which reduces the original partial differential equations into

a sparse algebraic system of equations; and 5) the development of a scheme for solving

this system. For any application of the generic model it is necessary to define: 1) the grid

spacing generating the mesh; 2) the time step to advance in time; 3) the boundary and,

for transient problems, initial conditions; and 4) the properties of the system (and their

distribution).

Mass balance calculations should always be performed to assess the quality of the

model solution. In fact, as the groundwater and solute transport equations of a physically-

based model derive from a local mass conservation law, i.e., the continuity equation, any

mass balance error indicates that there is something wrong in the numerical solver. The

discrepancies between the observed and calculated responses is another typical manifesta-

tion of model errors. In this case it is very hard to discover their source as they might be
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either conceptual, numerical, or arising from our inability to describe the aquifer properties

and stresses [Konikow and Bredehoeft , 1992]. For instance, conceptual errors derive from

neglecting relevant processes, incorrect representations, or strong and inadequate assump-

tions (e.g., the use of a steady state condition when the processes are not at steady state,

modeling a dynamic boundary with a static assumption, and the application of Darcy’s

law where the flow is not laminar). Numerical errors derive from the equation-solving

algorithms and coupling algorithms (e.g., the use of a non mass-conservative velocity field

to simulate transport processes, the introduction of numerical dispersion, and interpola-

tion of parameters and variables which is not of optimal order). The last type of errors

derives from the lack of adequate observational techniques of the soil medium parame-

ters and measurement errors. These include the assumption of homogeneity when the

soil is heterogeneous, the assumption of time constant boundary conditions when they

are time variable, and so on. The modeller has to be aware of the source and nature

of these errors in order to find ways to control and reduce them. This implies continual

updating, bringing improvements, introducing new processes, advancing computationally,

performing analysis, and exhaustively testing the model. In this context, many challenges

remain in improving and testing current state-of-the-art models for integrated hydrologi-

cal simulation, and the overarching aim of the work described in this thesis is to address

some of these challenges in the framework of a specific model, the CATchment HYdrology

Flow-Transport (CATHY FT) model [Camporese et al., 2010; Weill et al., 2011].

This general objective is elaborated into four specific objectives that relate to the three

main themes of the thesis described earlier:

1. Implementing the velocity field reconstruction technique for advective transport

simulations (theme 1, improving the numerical performance of flow and transport

simulators);

2. Generalizing the seepage face boundary condition for the flow model (theme 2,

complex boundary conditions and integrated surface-subsurface modeling);

3. Simulating the isotope tracer experiments at the Landscape Evolution Observatory

(theme 3, model testing and benchmarking using multiprocess and multivariate real

data);

4. General testing of the numerical behavior and the coupling algorithms of the
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CATHY FT model (all three themes).

The first objective is to implement the Larson and Niklasson [2004] local post-

processing algorithm to reconstruct the groundwater velocities of CATHY FT, which

are FE-based and for this reason non mass-conservative. This aims to improve the accu-

racy and mass balance properties of the advective transport model (finite volume-based),

which rely on the velocity field as input. The goals are achieved by estimating the quality

of the reconstructed velocities against that of the FE-based model for advective transport

simulations. In addition, the results are compared to those obtained using as input a

MFE velocity field, which is inherently mass-conservative and for this reason taken as

the reference solution, but which imposes a much higher computational cost [Putti and

Sartoretto, 2009].

As second objective, my reasearch aims to improve our understanding of the seepage

face boundary condition and, with that, reduce the errors associated with its modeling.

A detailed investigation of the behavior of seepage face boundaries is considered to be

important because it is a complex nonlinear dynamic boundary, because the way it is

handled can strongly affect the pressure head distribution, the water table configuration,

and the flow field, and because complexities under conditions of heterogeneity and surface

flow have not been thoroughly analyzed to date. The goals are achieved by performing

a detailed and novel analysis that will involve: 1) assessing the errors committed when

using approximations such as Dirichlet (static) conditions; 2) investigating the interactions

between surface outflow and seepage face outflow; and 3) studying seepage face dynamics

in the presence of more than one exit point.

As third objective, it is performed flow and transport modeling with the very de-

tailed observation datasets obtained from controlled experiments performed on artificial

hillslopes at the Landscape Evolution Observatory of the Biosphere 2 facility in Ari-

zona [Pangle et al., 2015]. The data includes integrated and point-scale flow and trans-

port measurements of seepage face flow, total internal storage, breakthrough curves at

the seepage face and within the domain, and pressure head and soil moisture measured at

496 different sensor locations. This analysis is considered important since very few stud-

ies have applied a physically-based hydrological model with this level of flow and tracer

data. Thus, this works makes possible not only the thorough testing (and improvement)

of our models, but also the exploration of phenomena and associated hypotheses regard-
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ing heterogeneity, fractionation, dispersion, etc. The goals are achieved by pushing the

boundaries of our ability to model flow and transport under very dry conditions and to

capture point-scale and integrated responses of different state variables.

The final objective aims to shed light on important modeling issues related to the

CATHY FT model such as controlling mass balance errors, capturing process interactions

and feedbacks, and handling complex boundary conditions. This analysis is considered

important since integrated modeling of solute transport in surface water and groundwater

is a big challenge involving many interacting processes, complex boundary conditions, and

difficult numerics. The goals are achieved by examining and improving the model numerics

and testing it for different scenarios. As a first contribution, I use the reconstructed

velocities instead of the FE velocity as input for the subsurface transport model. Secondly,

for the solution of the advective-dispersive equation I investigate the possibility to combine

a time-explicit finite volume technique with a time-implicit FE technique instead of with

a time-implicit MFE technique, considering the big savings in computational cost. And

lastly, I address issues of model accuracy associated to the algorithm that couples the

subsurface and the surface transport processes.

1.4 Evolution of the CATHY FT model and structure of the

thesis

The beginning of the development of the CATHY FT model dates many years ago, when

subsurface and surface processes and flow and transport processes were still treated sep-

arately. Many people have worked on the model over the years introducing step by step

new complexities. To report some examples, on the flow side, Paniconi and Wood [1993]

developed the detailed variably saturated subsurface flow model, Orlandini and Rosso

[1996, 1998] developed the detailed surface flow model, Moretti and Orlandini [2008] de-

veloped a scheme for automatic delineation of the drainage basin of the surface dem,

[Paniconi and Putti , 1994] analysed the iterative schemes used to linearize the subsurface

flow equation, Camporese et al. [2006] developed the hydrological model for peat soils,

Camporese et al. [2010] introduced the surface-subsurface coupling algorithm, Sulis et al.

[2010] compared the coupling algorithm with the one of a different physics-based numeri-

cal model, Dagès et al. [2012] investigated the surface-subsurface coupling errors, recently
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CATHY FT [Camporese et al., 2010; Weill et al., 2011]

Subsurface flow

· Richards’ model

[Paniconi and Wood, 1993]

· Picard and Newton

linearization

[Paniconi and Putti, 1994]

· peat soil model

[Camporese et al., 2006]

· data assimilation

[Paniconi et al., 2003a]

[Camporese et al., 2009]

[Pasetto et al., 2012]

· plant-soil model

[Manoli et al., 2014]

Generalizing the

seepage face bound-

ary condition

Surface flow

· De Saint Venant model

[Orlandini and Rosso, 1998]

· drainage basin

[Moretti and Orlandini, 2008]

Coupling

· errors investigation

[Dagès et al., 2012]

· errors mitigation

[Fiorentini et al., 2015]

· ecohydrological model

[Niu et al., 2014a]

Implementing and

testing velocity field

reconstruction

Subsurface transport

· mixed hybrid FE flow

model [Bergamaschi and Putti,

1999]

· time-splitting technique

for advection-dispersion

[Mazzia et al., 2000]

· High resolution FV for

advection [Mazzia et al., 2001]

· density-driven model

[Mazzia et al., 2002]

[Mazzia and Putti, 2005]

Testing the new ve-

locity field for advec-

tive transport simu-

lations

Surface transport

Coupling

Testing the numer-

ical behavior and

the coupling algo-

rithm

Chapter 3

[Scudeler et al., 2016c]
Chapter 2 [Scudeler et al., 2016a] Chapter 5

Model testing and model applications
Flow processes: surface-subsurface interactions in Chernobyl exclusion zone [Bixio et al., 2002]

and in the Thomas Brook catchment in Canada [Gauthier et al., 2009] ; benchmarking of two coupled

models [Sulis et al., 2010] ; long term peatland subsidence in Venice [Zanello et al., 2011] ; multi-aquifer

systems of the Central Veneto Basin in Italy [Passadore et al., 2012] ; Landscape Evolution Observatory

experiments [Niu et al., 2014b; Pasetto et al., 2015]

Flow and transport processes: seawater intrusion in Cap-Bon, Tunisia [Paniconi et al., 2001]

Simulating isotope tracer experiments at the Landscape Evolution Observatory

Chapter 4 [Scudeler et al., 2016b]

Figure 1.1: Processes simulated by the CATHY FT model and summary of the related

developments and applications performed. The objectives of my research are shown in red,

blue, green, and purple boxes placed in relation to the different model development and

evolution components.
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mitigated by the introduction of some numerical strategies [Fiorentini et al., 2015], Niu

et al. [2014a] developed the catchment-scale ecohydrological model, integrating energy,

water, and carbon flux exchanges between land surface and atmosphere, and Manoli

et al. [2014] developed and tested a soil–plant model. Three different data assimilation

techniques, allowing model simulations to be updated with observation data, have also

been implemented. These are Newtonian nudging [Paniconi et al., 2003a], the ensemble

Kalman filter [Camporese et al., 2009], and the particle filter [Pasetto et al., 2012].

Examples of applications and testing of the flow model include modeling scenarios

of the groundwater-surface water interactions in the Chernobyl exclusion zone [Bixio

et al., 2002], a modeling study of heterogeneity and surface water-groundwater interac-

tions in the Thomas Brook catchment in Canada [Gauthier et al., 2009], an experimental

study and modeling scenarios in the Venice coastland, Italy for long term peatland sub-

sidence [Zanello et al., 2011], the simulation of the processes in the multi-aquifer system

of the Central Veneto Basin, Italy [Passadore et al., 2012], and the modeling studies per-

formed for the experiments at the Landscape Evolution Observatory [Niu et al., 2014b;

Pasetto et al., 2015].

On the transport side, Bergamaschi and Putti [1999] discretized Richards’ equation

by means of a locally conservative numerical scheme (the mixed finite element scheme in

its hybridized form) producing accurate velocity fields for transport simulations, Mazzia

et al. [2000] and Mazzia and Putti [2005] developed a suitable numerical model to solve

advection-dominated transport problems avoiding the introduction of numerical disper-

sion, Mazzia et al. [2001] developed the density-dependent flow and transport model

to deal with salt contamination and freshwater-saltwater mixing problems, and Weill

et al. [2011] introduced the surface transport model, the flow-transport coupling, and the

surface-subsurface transport coupling. Compared to the flow model, fewer are the applica-

tions performed for transport processes. One example is the modeling analysis performed

for seawater intrusion in the coastal aquifer of eastern Cap-Bon in Tunisia [Paniconi et al.,

2001].

The flowchart in Figure 1.1 shows schematically a summary of these cited studies

connected to the development of CATHY FT, reported under one of seven sections rep-

resenting the different processes simulated by the model (subsurface flow, surface flow,

surface–subsurface flow coupling, subsurface transport, surface transport, and surface-
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subsurface transport coupling) and model testing and applications. It is clear from this

chart that there is much work to be done in relation to the more recent CATHY FT de-

velopments connected to the transport processes. In the context of testing and improving

the model, the flowchart also shows the enhancements that my research aims to bring

and places them in relation to the different model development and evolution compo-

nents. Each objective will be treated in a different chapter of the thesis, each chapter

constituting a stand-alone paper submitted or to be submitted to a journal:

Chapter 2 (objective 1): (C. Scudeler, M. Putti, C. Paniconi, Mass-conservative recon-

struction of Galerkin velocity fields for transport simulations, Advances in Water

Resources, published July 2016).

Chapter 3 (objective 2) (C. Scudeler, C. Paniconi, D. Pasetto, M. Putti, Examination of

the seepage face boundary condition in subsurface and coupled surface/subsurface

hydrological models, Water Resources Research, submitted May 2016).

Chapter 4 (objective 3) (C. Scudeler, L. Pangle, D. Pasetto, G.-Y. Niu, T. Volkmann,

C. Paniconi, M. Putti, P. Troch, Multiresponse modeling of variably saturated flow

and isotope tracer transport for a hillslope experiment at the Landscape Evolution

Observatory, Hydrology and Earth System Science, published September 2016).

Chapter 5 (objective 4) (C. Scudeler, C. Paniconi, M. Putti, Process-based model of

surface-subsurface and flow-transport interactions: coupling, boundary conditions,

and numerical behavior, manuscript in preparation).

Before proceeding with these 4 chapters/papers, we give a brief description of the

CATHY FT model, in particular the governing equations for the flow and transport mod-

ules and the coupling structure, which will serve as a reference for the subsequent chapters.

1.5 The CATchment HYdrology Flow-Transport model

1.5.1 Surface-subsurface flow model

The CATHY model [Camporese et al., 2010] is a distributed physically-based model that

couples the conservative form of Richards’ equation [Celia et al., 1990a], used to describe
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flow in variably saturated porous media [Paniconi and Wood , 1993; Paniconi and Putti ,

1994], and a FD solver for the diffusion wave equation, describing surface flow propagation

over the land surface (overland runoff) and in the stream network (channel flow) [Orlandini

and Rosso, 1996, 1998]. The mathematical model is described by a system of two partial

differential equations:

θ

n
Ss
∂ψ

∂t
+
∂θ

∂t
−∇ · [Kr(ψ)Ks(∇ψ + ηz)] =qsf + qs (1.1a)

∂Q

∂t
+ ck

∂Q

∂s
−Dh

∂2Q

∂s2
=ckqsb (1.1b)

where in equation (1.1a) θ [L3L−3] is the volumetric water content, Ss [L−1] is the aquifer

specific storage, ψ [L] is the variable pressure head, t [T] is time, n [L3L−3] is the porosity,

Ks [LT−1] is the saturated hydraulic conductivity tensor, Kr(ψ) [-] is the relative hydraulic

conductivity function, ηz = (0, 0, 1)T with z [L] the vertical coordinate directed upward,

qsf [L3L−3T−1] is the inflow or outflow rate from the surface to the subsurface, and qs

[L3L−3T−1] is a source or sink term. In the surface flow equation (1.1b), Q [L3T−1] is the

discharge along the overland and channel network, ck [LT−1] is the kinematic celerity, s

[L] is the coordinate direction for each segment of the overland and channel network, Dh

[L2T−1] is the hydraulic diffusivity, and qsb [L3L−1T−1] is the inflow or outflow rate from

subsurface to surface. The inflow or outflow rates qsf and qsb are the coupling terms and

represent, respectively, the surface-to-subsurface and subsurface-to-surface exchanges of

water. The nonlinear characteristics θ(ψ) and Kr(ψ) are specified using van Genuchten

[1980] relationships.

The model includes a number of features. To give some examples, it handles atmo-

spheric, inflow and outflow (Neumann), and fixed pressure head (Dirichlet) boundary

conditions that can vary in space and time. It also includes the algorithm proposed by

Neuman et al. [1975] for seepage face boundary conditions. This algorithm can be general-

ized and extended to account for a second seepage face as mentioned in Cooley [1983] and

implemented in Rulon and Freeze [1985] for an application to steady state slope stability

analysis in the presence of layered heterogeneity.

CATHY works on a three-dimensional domain discretized by means of a regular trian-

gulation formed by tetrahedral elements. The surface boundary represents the catchment

digital elevation model (DEM) and it is made up of rectangular cells. The tetrahedral

mesh is built by subdividing the grid cell of the DEM into triangles. Thus, each triangle is
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made of three nodes of the computational mesh and represents a face of one tetrahedron.

The cell-based solution of the surface flow equation (1.1b) is achieved numerically using

the Muskingum-Cunge method for the variable Q. The node-based solution of the 3D

Richards equation for the variable ψ is achieved using the linear Galerkin FE method

for spatial discretization and a backward Euler FD scheme for time integration, and is

linearized by a Picard or Newton iterative scheme [Paniconi and Putti , 1994].

The numerics of the subsurface model has required updating, for instance to ensure the

mass conservation properties of the velocity field. Thus, the MFE method in its hybridized

form [Brezzi and Fortin, 1991] has been considered and tested for the 2D Richards flow

equation [Bergamaschi and Putti , 1999] and for the 3D saturated flow equation [Mazzia,

1999; Mazzia et al., 2000; Mazzia and Putti , 2005]. Although the method gives accu-

rate results in terms of velocity field, the high accuracy is achieved at a much higher

computational cost compared to linear FE methods. In addition, it is often affected by

ill-conditioning in the presence of strongly anisotropic coefficients [Mazzia et al., 2011].

Given this limitations, it has been suggested that it may still be advantageous to use the

linear Galerkin approach and to solve the conservation problems by implementing appro-

priate post-processing techniques capable of building conservative velocity fields starting

from linear Galerkin velocities [e.g., Larson and Niklasson, 2004].

1.5.2 Surface-subsurface transport model

The CATHY FT model [Weill et al., 2011] is an updated version of the CATHY model

which simulates not only surface–subsurface flow but also surface–subsurface mass trans-

port and flow-transport interactions. The two additional equations which are solved in

the model are:

∂θc

∂t
+∇ · [vc−D∇c] =qtsf + qts (1.2a)

∂Qm

∂t
+ ct

∂Qm

∂s
−Dc

∂2Qm

∂s2
=ctqtsb (1.2b)

where (1.2a) is the 3D advection-dispersion equation and (1.2b) is the 1D surface solute

transport equation which follows the same dynamic of equation (1.1b). In these equations

c [ML−3] is the subsurface solute concentration, v [LT−1] is the Darcy velocity vector, D

[L2T−1] is the tensor accounting for both mechanical dispersion and molecular diffusion,

qts [ML−3T−1] is a solute mass source or sink term, qtsf is the solute mass inflow or
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outflow rate from the surface to the subsurface [ML−3T−1], Qm [MT−1] is the solute

mass discharge, ct [LT−1] is the kinematic solute celerity, Dc [L2T−1] is the surface solute

diffusivity, and qtsb [ML−1T−1] is the solute mass inflow or outflow from the subsurface

to the surface. Analogously to the flow equation, qtsf and qtsb are the coupling terms and

represent, respectively, the surface-to-subsurface and subsurface-to-surface exchanges of

solute.

The CATHY FT model works on the same computational domain and surface catch-

ment DEM as the flow model. The cell-based solution of the surface transport equa-

tion for the variable Qm is, as for surface flow, achieved numerically using the explicit

Muskingum-Cunge method. The advection-dispersion equation (1.2a) is solved by means

of a time-splitting technique that allows the combination of explicit time stepping for the

advective fluxes with implicit time stepping for the dispersive fluxes. This is done because

of the difficulties in approximating the equation when advection dominates and, thus, to

maintain the possibility of using an efficient scheme for advection. The solution proce-

dure is achieved with the use of multiple advective sub-time steps per dispersive step since

the advective step is constrained by the Courant-Friedichs-Lewy (CFL) [Courant et al.,

1967] condition. The advective equation is discretized using the element-based high res-

olution finite volume (HRFV) scheme and the resulting concentration field is used as

input to the time-implicit dispersive step which is discretized by means of the node-based

linear Galerkin FE method. In previous works [Mazzia et al., 2000, 2001; Mazzia and

Putti , 2005] the MFE in its hybridized form has been used for the discretization of the

dispersive fluxes. This was done since the HRFV and the MFE use similar functional

spaces for the approximation of the dependent variable (in both cases the solution is

element-based), making them ideally suited for combination in a time-splitting approach.

Considering again the high computational cost required by the MFE method and its ill-

conditioning problems, it has been chosen to implement the linear Galerkin method and

accurately combine the element-based (for HRFV) and node-based (for linear Galerkin)

solutions by interpolating the concentration variable. However, the performance of the

new time-splitting operator has not been examined to date.
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1.5.3 Coupling algorithms

In the CATHY FT model we have three levels of coupling: surface–subsurface flow,

surface–subsurface transport, and flow–transport interactions. The surface and subsurface

equations are solved sequentially and coupling is performed through a boundary condi-

tion switching algorithm. This is possible because of the explicit nature of the surface

solvers and implicit nature of the subsurface flow and dispersive solvers. Nonetheless, the

boundary condition coupling scheme, by invoking a node-to-cell and cell-to-node inter-

polation algorithm for the main variable, introduces water balance errors that can affect

the numerical performance of the model [Goumiri and Prevost , 2011]. Additional errors

derive from the sequential iterative procedure since the exhanges fluxes between the sur-

face and subsurface compartments are not completely synchronous [Dagès et al., 2012;

Fiorentini et al., 2015]. The mass balance errors arising from the boundary condition cou-

pling scheme in CATHY FT are even more complicated to control. First of all because

any water balance error will affect the accuracy of the transport model. Secondly, not

only a node-to-cell and cell-to-node but also a node-to-face, face-to-node, cell-to-face, and

face-to-cell interpolation algorithm is required. Finally, the solution of transport processes

always involves difficult numerics and complex boundary conditions.

The third level of coupling, which links the flow and transport models, is seamlessly

handled in the model since in the sequential solution procedure the flow modules are

solved before their transport counterparts, such that after the groundwater flow solution

the volumetric water content and velocity field are passed as input to the transport solver.

This is possible since in this version of the model it is assumed that the solute concen-

tration does not affect the flow field. For density-driven phenomena a physical coupling

is also required and the flow and transport equations have to be solved iteratively [Putti

and Paniconi , 1995; Gambolati et al., 1999; Mazzia et al., 2001; Mazzia and Putti , 2005].





Chapter 2

Mass-conservative reconstruction of Galerkin velocity

fields for transport simulations

2.1 Abstract

Accurate calculation of mass-conservative velocity fields from numerical solutions of

Richards’ equation is central to reliable surface–subsurface flow and transport model-

ing, for example in long-term tracer simulations to determine catchment residence time

distributions. In this study we assess the performance of a local Larson-Niklasson (LN)

post-processing procedure for reconstructing mass-conservative velocities from a linear

(P1) Galerkin finite element solution of Richards’ equation. This approach, originally

proposed for a-posteriori error estimation, modifies the standard finite element velocities

by imposing local conservation on element patches. The resulting reconstructed flow field

is characterized by continuous fluxes on element edges that can be efficiently used to drive

a second order finite volume advective transport model. Through a series of tests of in-

creasing complexity that compare results from the LN scheme to those using velocity fields

derived directly from the P1 Galerkin solution, we show that a locally mass-conservative

velocity field is necessary to obtain accurate transport results. We also show that the

accuracy of the LN reconstruction procedure is comparable to that of the inherently con-

servative mixed finite element approach, taken as a reference solution, but that the LN

scheme has much lower computational costs. The numerical tests examine steady and

unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases

along with initial and boundary conditions that include dry soil infiltration, alternating

solute and water injection, and seepage face outflow. Typical problems that arise with

dionpa
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Chapter 3

Examination of the seepage face boundary condition

in subsurface and coupled surface/subsurface hydro-

logical models

3.1 Abstract

A seepage face is a nonlinear dynamic boundary that strongly affects pressure head distri-

butions, water table fluctuations, and flow patterns. Its handling in hydrological models,

especially under complex conditions such as heterogeneity and coupled surface/subsurface

flow, has not been extensively studied. In this paper we compare the treatment of the

seepage face as a static versus dynamic boundary condition, we assess its resolution under

conditions of layered heterogeneity, we examine its interaction with a catchment outlet

boundary, and we investigate the effects of surface/subsurface exchanges on seepage faces

forming at the land surface. The analyses are carried out with an integrated catchment

hydrological model. Numerical simulations are performed for a synthetic rectangular

sloping aquifer and for an experimental hillslope from the Landscape Evolution Observa-

tory. The results show that the Dirichlet boundary condition is not always an adequate

stand-in for a seepage face boundary condition, especially under conditions of high rain-

fall, steep slope, or heterogeneity; that hillslopes with layered heterogeneity give rise to

multiple seepage faces that can be highly dynamic; that seepage face and outlet bound-

aries can coexist in an integrated hydrological model and both play an important role;

and that seepage faces at the land surface are not always controlled by subsurface flow.

The paper also presents a generalized algorithm for resolving seepage face outflow that
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handles heterogeneity in a simple way, is applicable to unstructured grids, and is shown

experimentally to be equivalent to the treatment of atmospheric boundary conditions in

subsurface flow models.

3.2 Introduction

A seepage face is the boundary between a saturated flow field and the atmosphere or

between a saturated flow field and a stream channel along which groundwater discharges

by downhill movement in response to the force of gravity. The study of seepage faces is a

central component of many geotechnical, hydrogeological, and geomorphological studies.

In geotechnical engineering, seepage analysis is of interest for the design of hydraulic struc-

tures such as earth dams or river embankments [Hirschfeld and Poulos , 1973; Milligan,

2003] and in slope stability analysis [Rulon and Freeze, 1985; Crosta and Prisco, 1999;

Lee et al., 2008]. In hydrogeology, seepage faces play a central role in the interactions

between surface water and groundwater [Sophocleous , 2002], enhancing, for example, the

flow to a stream channel within the time frame of a storm hydrograph [Beven, 1989],

and in contamination migration and attenuation, controlling flow paths in the riparian

zone [Hill , 1990] and the spreading of solutes in tailing impoundments [Heikkinen et al.,

2009; Ferguson et al., 2009].

Early analyses of groundwater flow in the presence of a seepage face involved flow

net techniques [Casagrande, 1937]. This approach is valid if the soil is homogeneous and

saturated, the boundaries well defined, and the system at steady state, conditions that

are rarely encountered in reality. Numerical models provide a more flexible and accurate

approach to solving groundwater flow and seepage problems. Early subsurface hydrologi-

cal models were limited to solving the saturated flow equation or various simplifications of

this equation based on, for example, hydraulic groundwater theory [Troch et al., 2013]. In

saturated flow models the seepage boundary that regulates groundwater drainage is often

treated as a Dirichlet condition, with atmospheric pressure assigned to the designated

outflow nodes. This is a static, and therefore approximate, treatment of this dynamic

boundary. Alternatively, in saturated flow models based on the free surface approach, the

position of the phreatic surface, and thus of the exit point along the seepage boundary,

can evolve over time [e.g., Isaacs , 1980; Shamsai and Narasimhan, 1991].
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Advances in numerical techniques together with the increased performance of high-

speed digital simulation computers have led to numerical models based on Richards’ equa-

tion for flow in variably saturated porous media becoming a widely used current approach

for representing and solving seepage face problems. Freeze [1971] presented one of the

first three-dimensional (3D) finite difference models for transient saturated-unsaturated

groundwater flow and used it for the study of heterogeneous anisotropic aquifers in the

presence of a seepage face boundary. In the early finite element variably saturated flow

models of Rubin [1968], Neuman et al. [1975], and Cooley [1983], an algorithm for locat-

ing the exit point of the seepage face at each iteration of the nonlinear system solver was

incorporated into the overall numerical procedure. The localization scheme positions the

exit point such that all nodes below it are at atmospheric pressure (a Dirichlet condition),

allowing outflow to occur, while all nodes above it are assigned a no-flow (Neumann)

condition, so that the nodes take on negative pressures (atmospheric pressure is the zero

datum). The presence of a surface water body (hydrostatic Dirichlet nodes below the

exit point) can also be incorporated [Tracy and Mariño, 1987]. The seepage face is thus

treated as a combination of Dirichlet and Neumann boundary conditions that evolves in

time and space, with the exit point rising during rainfall events, for example, and falling

during recession periods.

Numerical models are essential for resolving flow dynamics in the presence of soil

heterogeneity. Spatial variability of hydraulic properties may lead to complex interactions

between the saturated and unsaturated zones, formation of perched water tables, and

multiple seepage faces and exit points, which are impossible to model with graphical or

analytical approaches. Eigenbrod and Morgenstern [1972] investigated a layered slope

located in a river valley near Edmonton, Alberta, and their analysis revealed the presence

of two perched water tables. A study performed by Sterrett and Edil [1982] shows how a

complex flow system with double seepage faces formed at the land-lake interface along the

shoreline of Lake Michigan (Wisconsin) due to inhomogeneities of the glacial materials.

Cooley [1983] was the first to model drainage involving double seepage faces, for a case

involving two soil layers separated by an impeding layer. A similar soil configuration was

considered by Rulon et al. [1985] for their laboratory sand-tank experiments. In a steady-

state flow analysis using the finite element model of Neuman [1973] modified to account

for a double seepage face, Rulon et al. [1985] showed that the response of the exit points
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is strongly dependent on the position of the impeding layer. Subsequently, Lam et al.

[1987] simulated the same experiment considering transient conditions and infiltration.

Detailed physically-based models that couple surface and subsurface flow are relatively

recent and still require careful assessment of various implementation details, including the

consistency and interactions between the outflow boundary conditions of each component

model. Intriguing scenarios can arise when a catchment outlet condition (surface routing

model) and a seepage face (subsurface model) coexist, the former inducing convergent

flow patterns towards the land surface while the latter drives flow towards the base of

the hillslope. This was seen recently during the first experiment performed on one of

the artificial hillslopes at the Landscape Evolution Observatory (LEO) of the Biosphere

2 facility in Arizona [Gevaert et al., 2014]. The experiment experienced both saturation

excess overland flow and outflow from the vertical downslope plane and thus required

both a surface outlet and a dynamic seepage face boundary to be reproduced [Niu et al.,

2014b].

Even in absence of vertical downslope planes (e.g., sharp riverbanks), seepage face

conditions can arise, for instance, in riparian zones at the transition between hillslope

and channel terrain, and here as well a consistent treatment of outlet, atmospheric, and

seepage face boundary conditions is needed. The complexities in this case originate from

the diversity of runoff generation mechanisms (infiltration excess runoff, saturation excess

runoff, return flow) and overland flow dynamics, including re-infiltration, ponding, and

direct seepage to the stream channel [Freeze, 1974; Beven and Wood , 1983]. Simple

models of saturation excess runoff are of the conceptual, lumped-parameter type [e.g.,

Boughton, 1990; Willgoose and Perera, 2001]. The saturation mechanism has also been

widely investigated with the use of subsurface flow numerical models [e.g., Beven, 1977;

Ogden and Watts , 2000; Cloke et al., 2003]. More recently, Beaugendre et al. [2006]

simulated water exfiltration at the ground surface with a coupled surface/subsurface model

and compared the results with those obtained by using a simpler subsurface seepage face

model. They show how, for simple scenarios involving constant slope and rainfall, the

two approaches yield similar results. However, in their analysis re-infiltration processes

are neglected.

In this study we address the following four groups of questions relating the behavior

of seepage face boundary conditions:
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1. When is it acceptable to use a simpler, static (Dirichlet boundary condition) treat-

ment of a seepage boundary in lieu of the dynamic condition of a classical seepage

face approach? What are the approximation errors when using the simpler ap-

proach?

2. How do we resolve seepage face outflow under conditions of heterogeneity? What

are the resulting dynamics?

3. In the context of integrated surface/subsurface modeling, how does a seepage face

boundary interact with the catchment outlet boundary condition used in overland

and channel flow models? Can the two types of boundary condition coexist?

4. What are the effects of re-infiltration processes when simulating water exfiltration at

the land surface and overland flow? What is the relationship between the treatment

of seepage face and atmospheric boundary conditions?

To answer these questions, we use the numerical model CATHY [Camporese et al., 2010],

which couples a finite element solver for 3D subsurface flow with a finite difference solver

for overland and channel routing. The original algorithm that handles the seepage face

boundary condition in CATHY derives from the approach proposed by Neuman [1973] and

is based on a single exit point whose position is updated during each nonlinear iteration

of the Picard scheme that is used to solve the nonlinear Richards equation [Paniconi

and Putti , 1994]. Here we propose a generalization of this approach that simplifies the

classic algorithm and that deals also with multiple seepage faces in the presence of layered

and random heterogeneity. The new algorithm extends other approaches, such as the

one proposed by Rulon and Freeze [1985], in performing the update at each nonlinear

iteration and in allowing the presence of more than two seepage faces. The simulations to

address points 1 and 2 above are performed for a simple rectangular hillslope. Different

scenarios are tested by changing the soil parameterization, the slope, and the atmospheric

and initial conditions. The tests are designed to first analyze the approximation errors

committed when modeling the outflow from the base of the hillslpe as a simple fixed

Dirichlet condition instead of as a dynamic seepage face condition. Secondly, the tests are

used to examine the water table configurations and the dynamics of the different seepage

faces and exit points arising from the presence of layered heterogeneity. To analyze the

seepage face and surface outlet interactions (point 3), we consider a numerical model
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of the artificial hillslope constructed for the LEO project at Biosphere 2. In this real

scenario we look at the steady state rainfall partitioning between seepage face flow and

surface outflow for different combinations of rainfall rate and average slope. The last

set of simulations, addressing point 4, are run for a rectangular hillslope and are used

to investigate the behavior of seepage face conditions for complex runoff generation and

routing scenarios.

3.3 Methodology

3.3.1 Hydrological model

CATHY (CATchment HYdrology) is a distributed physically-based model that couples

Richards’ equation, describing flow in variably saturated porous media, and a finite dif-

ference solver for the diffusion wave equation, describing flow propagation over the land

surface (overland runoff) and in the stream network (channel flow) [Camporese et al.,

2010]. The mathematical model consists of the following system of two partial differential

equations:

Sw(ψ)Ss
∂ψ

∂t
+ φ

∂Sw
∂t

= ∇ · [Kr(ψ)Ks(∇ψ + ηz)] + qss (3.1a)

∂Q

∂t
+ ck

∂Q

∂s
= Dh

∂2Q

∂s2
+ ckqs (3.1b)

where in equation (3.1a) Sw(ψ) [L3L−3] is the water saturation, Ss [L−1] is the aquifer

specific storage, ψ [L] is the pressure head, t [T ] is time, φ [L3L−3] is the porosity, Ks

[LT−1] is the saturated hydraulic conductivity tensor, Kr(ψ) is the relative hydraulic con-

ductivity function, ηz = (0, 0, 1)′ with z [L] the vertical coordinate directed upward, and

qss [L3L−3T−1] is a source or sink term that includes the exchange fluxes from the surface

to the subsurface. From Sw and φ the volumetric water content is defined as θ = Swφ

[L3L−3]. In the surface flow equation (3.1b) Q [L3T−1] is the discharge along the overland

and channel network, ck [LT−1] is the kinematic celerity, s [L] is the coordinate direc-

tion for each segment of the overland and channel network, Dh [L2T−1] is the hydraulic

diffusivity, and qs [L3L−1T−1] is the inflow or outflow rate from the subsurface to the

surface.

The 3D Richards equation is discretized by a P1 Galerkin finite element scheme in

space using tetrahedral elements and by a backward Euler scheme in time with adaptive
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time step. The resulting system of nonlinear equations is linearized by the Picard iterative

scheme [Paniconi and Putti , 1994]. The nonlinear characteristics Sw(ψ) and Kr(ψ) are

specified using van Genuchten [1980] relationships.

At every time step CATHY couples equations (3.1a) and (3.1b) as follows: atmo-

spheric inputs (rainfall or potential evaporation) are first partitioned into effective rainfall

or evaporation and surface runoff via a boundary condition switching procedure [Cam-

porese et al., 2010]. CATHY then solves the surface equation and updates the new surface

to subsurface fluxes qss. Finally, the subsurface equation is solved and the model updates

the subsurface to surface exchange fluxes for the start of the next time step. Besides at-

mospheric forcing, other boundary conditions in CATHY include prescribed pressure head

(Dirichlet) and flux (Neumann) conditions imposed on the lateral and bottom boundaries

and that can vary in space and time. With the Dirichlet condition we generate inflow

or outflow which can vary according to the assigned pressure head and the internal sys-

tem state. With the Neumann condition we impose directly inflow or outflow from the

boundary and the model calculates the pressure head. The model also uses Dirichlet and

Neumann conditions to handle the seepage boundary (next section), typically imposed at

the downslope lateral boundary. Additional details on the model features and numerics

can be found in Camporese et al. [2010] and Paniconi and Putti [1994].

3.3.2 Seepage face boundary condition

A seepage face is the boundary between a saturated flow field and the atmosphere, typ-

ically modeled as a lateral boundary (e.g., a riverbank) where water is free to exit from

the domain in case of saturation. A seepage face can also form on portions of the land

surface, such as along a gently sloping riparian zone. In the case of homogeneous porous

media the exit point of a seepage face separates the saturated and unsaturated flow fields:

below the exit point groundwater discharges at atmospheric pressure, while there is no

outflow on the portion of the boundary above the exit point. This definition needs to be

generalized for heterogeneous cases, where several exit points may occur. The seepage

face is a dynamic boundary since for unsteady flow the exit point position changes in time,

typically rising when the aquifer is recharging and dropping as the aquifer drains. The

exit point position cannot be imposed a priori but rather is determined by the internal

system state, i.e., by the level of the water table as it intersects the land surface.
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For homogeneous porous media, the standard approach to handling seepage face

boundary conditions in numerical models of variably saturated subsurface flow is de-

scribed in numerous classic studies [e.g., Neuman, 1973; Cooley , 1983; Huyakorn et al.,

1986a]. Here we propose a simplification and a generalization of this classic algorithm.

3.3.2.1 Standard algorithm

In the classic approach the nodes of the computational mesh forming the seepage face

boundary are subdivided into distinct vertical or sloping lines. The nodes on each of

these lines are reordered in a consecutive way, from the bottom to the top, in such a way

as to easily identify the exit point position along the vertical. The algorithm computes the

exit point position at each iteration of the nonlinear scheme. For each seepage face line,

the initial position of the exit point is calculated considering the initial ψ distribution: by

checking the pressure from bottom to top, the exit point is set below the first node with

negative ψ (atmospheric pressure is taken to be zero). As boundary condition for the next

iteration the algorithm sets zero pressure head (Dirichlet condition) at the exit point and

all nodes below it, and zero flux (Neumann condition) at the nodes above the exit point.

At each nonlinear iteration the position of the exit point is adjusted based on the evolving

ψ solution and the computed fluxes at the Dirichlet nodes. If an unphysical positive flux

(inflow) is encountered at a node below the exit point, the exit point position is lowered

for the next iteration. On the other hand, if a positive value of ψ is encountered at a

node above the exit point, its position is raised. In CATHY the user is given two options

for identifying the new position of the exit point. In the first option the seepage face

convergence can be added as an additional constraint on convergence of the subsurface

solver. If this option is selected, the subsurface solver converges, and thus can progress

to the next time step, if both the Picard scheme converges and the exit points on all

seepage lines are unchanged between the previous and current iterations. The second

option proposes an alternative search for the new exit point by raising or lowering by only

one node the exit point computed at the previous nonlinear iteration. For the numerical

tests performed in this study the standard seepage face algorithm with either of the two

options produced largely similar results.

The standard algorithm for modeling seepage face boundaries is particularly suited to

vertically-structured computational grids where the 2D surface mesh is replicated down-
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ward. In this configuration, identification of the new exit point requires only the position

of the exit point at the previous time, reducing the number of nodes to consider in the

search. In addition to allowing handling of multiple exit points, the generalization of the

seepage face algorithm proposed next can also be applied to unstructured 3D grids.

3.3.2.2 Generalized approach

In the generalized approach the seepage face handling is greatly simplified by doing away

with the notion of individual seepage face lines and the consequent ordering of nodes by

elevation. In fact, the new algorithm only requires identification of the nodes belonging to

the seepage outflow plane, without any additional ordering based on elevation or lateral

position. At the start of the simulation and after every nonlinear iteration, the Dirichlet

or Neumann assignation is performed according to the same procedure used in the classic

algorithm, but without following a bottom to top (or any other) order. Instead of focusing

on the identification of the exit points, the new algorithm simply finds the “active” nodes

of the seepage face boundary by checking node by node for the presence of positive

pressures with an associated outflow (i.e., the Dirichlet nodes). Once this operation is

performed, it is possible (but not necessary for the computation of the numerical solution

at the next iteration) to identify the active portions of the seepage face boundary by

grouping the contiguous Dirichlet boundaries (contiguous nodes along the seepage face

having a Dirichlet condition). With this idea the exit points can be associated to the

nodes at the highest elevations of an active portion.

In addition to its simplicity of implementation, the new algorithm automatically han-

dles multiple seepage faces in the presence of layered and random heterogeneity, and it

reveals similarities between the way seepage face and atmospheric boundary conditions

are handled that are not as apparent in the classic formulation. From a computational

point of view, the proposed algorithm may be slightly slower than the classic algorithm,

since at each iteration the check for the seepage face Dirichlet nodes is done on all the

nodes along the seepage face, while previously only the nodes under the exit point where

considered. However, the cost of this operation is negligible with respect the cost of the

solution of the nonlinear iteration. Moreover, the new algorithm can be applied to any

unstructured 3D mesh, as mentioned earlier.
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Figure 3.1: Conceptual representation of the boundary conditions implemented in the

four analyses performed.

3.3.3 Setup of numerical experiments

We perform four analyses: in the first set we look at the difference between treating a

seepage face as a static (Dirichlet) or dynamic (according to the algorithms presented

in section 3.3.2) boundary (Figure 3.1.1); in the second we study the seepage face re-

sponse in the presence of layered heterogeneity (Figure 3.1.2); in the third we analyze

the interactions between the seepage face and surface outlet (Figure 3.1.3); and finally

we investigate possible similarities between seepage face and atmospheric boundary con-

dition switching algorithms for cases where seepage faces form on portions of the land

surface (Figure 3.1.4). Table 3.1 summarizes the parameter combinations and setup for

each simulation performed in the four sets of experiments. In the first set, which features

a homogeneous domain, we also verified that the classic and generalized seepage face

algorithms give the same results.

3.3.3.1 Static versus dynamic treatment of the seepage boundary

One common and easy way to treat a seepage face is to set to 0 (atmospheric pressure)

the pressure head at the bottom of the outflow plane (i.e., a fixed Dirichlet boundary

condition) and to 0 the flux on all the other nodes of the plane (i.e., a no-flow Neumann
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Table 3.1: Parameter values for the four sets of numerical experiments. The initial

position of the water table for the simulations with rainfall is at the bottom of the domain,

while for the simulations with zero rainfall it is at the surface.

Numerical experiment
Saturated hydraulic conductivity Aquifer

Rainfall R (m/s)
Ks (m/s) slope i (%)

1×10−3 10 0

Drainage 1×10−4 10 0

simulations 1×10−5 10 0

Static 1×10−4 1 0

versus 1×10−4 30 0

dynamic 1×10−4 10 0.025-0.5×10−4

Rainfall 1×10−5 10 0.025-0.5×10−5

simulations 1×10−4 1 0.025-0.5×10−4

1×10−4 30 0.025-0.5×10−4

Top layer Ks1 Bottom layer Ks2

1×10−4 1×10−5 10 0

1×10−4 1×10−6 10 0

1×10−5 1×10−4 10 0

Two-layer 1×10−6 1×10−4 10 0

1×10−4 1×10−5 10 1×10−5

Layered 1×10−4 1×10−6 10 1×10−5

heterogeneity 1×10−5 1×10−4 10 1×10−6

1×10−6 1×10−4 10 1×10−7

Single-layer Soil Ks Lens KsL

with 1×10−4 1×10−6 10 1×10−5

impeding lens 1×10−4 1×10−8 10 1×10−5

Multiple-layer
Ks1 Ks2 Ks3 Ks4

1×10−4 1×10−6 1×10−4 1×10−6 10 1×10−5

Soil hydraulic conductivity Ks (m/s)

Seepage face and surface 1×10−4 3 0.0015-1.5×10−4

outlet interactions 1×10−4 10 0.0015-1.5×10−4

1×10−4 20 0.0015-1.5×10−4

ib (%)

Seepage face 1×10−4 20 1.5×10−6

versus 1×10−4 50 1.5×10−6

atmospheric 1×10−4 100 1.5×10−6
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Figure 3.2: 3D numerical grid for the rectangular sloping aquifer (a) and for the LEO

hillslope (b).

boundary condition). This can lead to large approximation errors since the actual exit

point can be elsewhere than at the bottom, and its position can vary greatly during the

course of a simulation. To investigate these errors we compare the results obtained with

the static Dirichlet treatment with those from the seepage face algorithm. The comparison

is performed on the synthetic rectangular sloping aquifer depicted in Figure 3.2a. The

domain is 10 m long, 1 m deep, and 1 m wide and is discretized into 100 x 5 grid cells in

the lateral direction and 50 layers of equal thickness in the vertical direction. The bottom

of the aquifer as well as all lateral boundaries except for the downslope outflow plane are

assigned no-flow conditions. We perform simulations during which the hillslope drains

water out through the outflow plane from fully saturated initial conditions (drainage test

cases) and from initially dry conditions subjected to constant rainfall.

For the drainage runs we set no-flow conditions at the land surface to preempt overland

flow. The initial pressure head is hydrostatically distributed with the water table at the

surface. The approximation error at time t is quantified as:

εD(t) =
|VD(t)− Vsf (t)|

Vsf (t)
× 100 (3.2)

where Vsf (t) and VD(t) are the cumulative outflow volumes from, respectively, the seepage

face and Dirichlet cases. Different combinations of saturated hydraulic conductivity (Ks =

1× 10−3, 1× 10−4, and 1× 10−5 m/s) and slope angle (i =1, 10, and 30%) were run (see

Table 3.1).

For the rainfall tests we set atmospheric conditions at the land surface with a constant
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rainfall rate. The initial pressure head is hydrostatically distributed with the water table

at the bottom of the domain. The approximation error is quantified as:

εR =
|Qss

d −Qss
sf |

Qss
sf

× 100 (3.3)

where Qss
sf and Qss

D are the steady state volumetric flow raised from, respectively, the

seepage face and Dirichlet cases. Note that for these runs, and for all test cases that involve

rainfall, the rainfall rate are quite high (in realistic terms over long time periods), but the

R/Ks ratios are perfectly realistic. Different parameter combinations included slope angles

equal to i=1, 10, and 30%, saturated hydraulic conductivities equal to Ks = 1×10−4 and

1× 10−5 m/s, and rainfall rates R set in such a way that a ratio R/Ks between 0.025 and

0.5 was sampled for each slope angle and Ks combination (see Table 3.1).

3.3.3.2 Layered heterogeneity

0.5

1.0

0.0

-0.5

0.0 2.0 4.0 6.0 8.0

L2

0.0 2.0 4.0 6.0 8.0

0.5

1.0

0.0

-0.5

L1

L

S

0.0 2.0 4.0 6.0 8.0

0.5

1.0

0.0

-0.5
L1
L2
L3
L4

-

x (m)

x (m)

x (m)

z
(m

)

a

b

c

z
(m

)
z

(m
)

Ks1/Ks2=100; 10; 0.1; 0.01

KsL=10-6; 10-8 m/s

Ks1=Ks3=10-4 m/s
Ks2=Ks4=10-6 m/s

Ks=10-4 m/s

Figure 3.3: Vertical cross section of the sloping aquifer for the two-layer (a), single-

layer with impeding lens (b), and multiple-layer (c) configurations, showing the hydraulic

conductivity values or ratios used in each case.
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For the layered heterogeneity analysis we again use the domain depicted in Figure 3.2a,

with fixed slope i=10%. A seepage face boundary is set on the downslope outflow plane,

atmospheric conditions are set on the surface boundary during rainfall, otherwise no-flow

conditions are set, and no-flow conditions are set on all the other boundaries. We ran

three sets of simulations: two-layer, single-layer with impeding lens, and multiple-layer

heterogeneity (Figure 3.3), in the first set under both drainage and rainfall conditions

and in the other two sets under rainfall conditions only. The initial water table position

for all drainage runs was at the land surface (with no-flow conditions at the surface to

preempt overland flow), whereas for all rainfall runs it was at the bottom of the domain.

All simulations were run to steady state.

For the two-layer test case the ratio of upper layer Ks1 to lower layer Ks2 hydraulic

conductivity was set to 100, 10, 0.1, and 0.01. In the rainfall runs, the rain rate was set to

one order of magnitude less than Ks1. For the impeding lens test case the lens conductivity

KsL was set to 2 and 4 orders of magnitude lower than the soil Ks conductivity. The

rainfall rate was again one order of magnitude less than Ks. The multiple-layer test case

featured four layers of equal thickness and of conductivity (top to bottom) 1 × 10−4,

1× 10−6, 1× 10−4, and 1× 10−6 m/s and a rainfall rate of 1× 10−5 m/s. The parameter

values for these various configurations are summarized in Table 3.1.

3.3.3.3 Seepage face and surface outlet interactions

In this analysis we look at the scenarios arising in the presence of both a seepage face and

a surface outlet. To perform the simulations we consider the LEO model (Figure 3.2b).

This is a 30 m long, 1 m deep, and 11 m wide convergent landscape and is discretized into

22 x 60 grid cells in the lateral direction and 10 layers of equal thickness in the vertical

direction. We set atmospheric conditions at the surface boundary, a seepage boundary on

the downslope vertical plane (the nodes that intersect this plane and the land surface are

designated as atmospheric nodes), and no-flow conditions at the bottom boundary and

along the three other lateral boundaries. The catchment outlet for the CATHY surface

routing model is the land surface cell shown in red in Figure 3.2b. We set the hydraulic

conductivity Ks of the system to 1×10−4 m/s and initially the water table at bottom with

(negative) pressure head hydrostatically distributed. We ran simulations for a range of

rainfall rates such that R/Ks ranged from 0.005 to 1.5, and for slope angles i of 3, 10, and
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Figure 3.4: Vertical cross section and computational mesh of the domain used in the

three numerical experiments for the seepage face versus atmospheric conditions analysis.

20%. Table 3.1 summarizes these configurations. The analysis is based on examination

of the rainfall partitioning at steady state between seepage face flow Qsf and surface flow

Q, considering that when the process is at steady state the change in total water storage

is zero and the total inflow (R) is equal to the total outflow (Qsf+Q).

3.3.3.4 Seepage face versus atmospheric conditions

Seepage faces forming on portions of the land surface can be modeled either with a seepage

face condition or via atmospheric boundary condition switching. In this analysis we assess

the differences between these two approaches. The comparison is performed on the three

domains shown in Figure 3.4 that are 10 m long, 1.2 m deep (at the upslope boundary),

and 1 m wide and are discretized into 50 x 5 grid cells in the lateral direction and 8 layers

of varying thickness. The ib values of 20, 50, and 100% indicated in Figure 3.4 are the

slope angles of the downslope 5, 2, and 1 m portions, respectively, of hillslopes a, b, and

c. On this portion of the land surface we set either atmospheric conditions or seepage face

conditions. The atmospheric case is simulated in three ways: with CATHY in subsurface-

only mode (any exfiltration leaves the domain instantaneously; ponding and re-infiltration
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cannot occur); in coupled mode (exfiltrating water can produce ponding and overland flow,

and can re-infiltrate); and in coupled mode but with very high kinematic celerity (this very

fast surface routing case should in principle approach the subsurface-only case). In the two

coupled cases the outlet cell for the surface routing model is situated at the intersection

of the downslope vertical plane and the land surface, at the center of the hillslope in the

transverse direction. On the remaining portion of the land surface (upslope 5, 8, and 9 m

respectively of hillslopes a, b, and c) we set a constant rainfall rate of 1.5×10−6 m/s (this

was found to be a maximal rate applicable to all three hillslopes that avoids generating

runoff on this portion of the land surface). All lateral boundaries and the bottom boundary

are assigned a no-flow condition. The hydraulic conductivity is set to 1×10−4 m/s and the

water table initially at bottom with pressure head hydrostatically distributed (Table 3.1).

The simulations were are until steady state. We examine the differences over time between

the seepage face volumetric flow and the exfiltration volumetric flow (for the subsurface-

only atmospheric case) and outlet atmospheric flow (for the coupled case), as well as the

differences in water table distance from the outlet, XWT , calculated by averaging along

the transverse direction.
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Figure 3.5: Results obtained with the classic and generalized seepage face boundary

condition algorithms for a drainage simulation (panels a) and a rainfall simulation (panels

b) showing the seepage face volumetric outflow Q (panels 1) and the exit point height ZEP

from the bottom (panels 2). The simulations are for a homogeneous sloping aquifer with

hydraulic conductivity Ks = 1× 10−4 m/s, inclination i=10%, and, for the rainfall case,

R = 1× 10−5 m/s.

For all the simulations involving homogeneous conditions, we first verified that the gen-

eralized and classic seepage face boundary condition algorithms gave the same results.

Figure 3.5 reports the comparison for a drainage and a rainfall test case summarized in

Table 3.1 (Ks = 1 × 10−4 m/s, i=10%, R = 1 × 10−5 m/s for the rainfall case), and it

can be seen that the dynamics of the seepage face outflow Q and exit point height ZEP

(measured from the bottom of the domain) are identical. This was confirmed for all the

other homogeneous test cases.
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3.4.1 Static versus dynamic treatment of the seepage boundary

3.4.1.1 Drainage simulations
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Figure 3.6: Results for the drainage simulations with a homogeneous sloping aquifer of

inclination 10% and varying hydraulic conductivity Ks. Panels (a), (b), and (c): volu-

metric outflow for static (Qd) and dynamic (Qsf) treatment of the seepage face boundary;

panels (d), (e), and (f): exit point height ZEP for the dynamic treatment case.

For the drainage tests the effect of hydraulic conductivity on the approximation errors

committed when using a static (Dirichlet) boundary condition to model a seepage face

boundary is reported in Figures 3.6 and 3.7a. In the left graphs of Figure 3.6 we com-

pare the volumetric outflow over time obtained for the static treatment (Qd) and for the

dynamic treatment (Qsf ) for the three different Ks. In the right graphs we report the

corresponding exit point height (ZEP ) over time for the dynamic case. The results show

that Qsf is higher than Qd early in the simulation, that the differences diminish over
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time, and that the solutions converge by the time the position of the exit point for the

dynamic treatment case converges to the position of the Dirichlet node, at the bottom of

the domain. From the scaling of the time axis in Figure 3.6 it is also apparent that, all

other parameters being equal, the seepage outflow response for both boundary condition

treatments and the exit point response for the dynamic case scale exactly with Ks. In

Figure 3.7 we plot over time the approximation error εD (equation 3.2) for the various

Ks simulations at fixed slope angle (Figure 3.7a) and for the various slope cases at fixed

Ks (Figure 3.7b). Here we see that the error committed using a static treatment for the

seepage boundary rather than a dynamic treatment can be quite high (about 35% for all

runs) early in the simulation, and falls to zero by the end of the simulation. The time

to convergence (zero error) scales with Ks for the varying hydraulic conductivity runs

(Figure 3.7a), as was pointed out also in Figure 3.6. For the varying slope runs, the time

to convergence corresponds, as was the case also for the varying Ks runs, to the time

required for the position of the exit point in the dynamic case to reach the bottom of the

hillslope. This is shown in Figure 3.8. The time to convergence increases as the slope

angle increases.
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Figure 3.7: Approximation error εD over time for the drainage simulations with a

homogeneous sloping aquifer of inclination 10% and varying hydraulic conductivity Ks

(a) and of hydraulic conductivity Ks = 1× 10−4 m/s and varying inclination i (b).
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Figure 3.8: Results for the drainage simulations with a homogeneous sloping aquifer of

hydraulic conductivity Ks = 1× 10−4 m/s and varying inclination i. Panels (a), (b), and

(c): volumetric outflow for static (Qd) and dynamic (Qsf) treatment of the seepage face

boundary; panels (d), (e), and (f): exit point height ZEP for the dynamic treatment case.

3.4.1.2 Rainfall simulations

For the rainfall tests the approximation errors committed when using a static boundary

condition to model a seepage face are shown in Figures 3.9 and 3.10. In the left graphs

of Figure 3.9 for different rainfall rate R we report the time behavior of the volumetric

flow obtained using dynamic conditions (Qsf ) and static conditions (Qd) to model the

seepage face, while in the right graphs we report the corresponding height of the exit

point ZEP for the dynamic case. The results show that for fixed Ks and fixed i the

differences between the two approaches increase with rainfall rate R, as does the final
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Figure 3.9: Results of the rainfall simulations with a homogeneous sloping aquifer of

inclination 10%, hydraulic conductivity 1×10−4 m/s, and varying rainfall rate R. Panels

(a), (b), and (c): volumetric outflow for static (Qd) and dynamic (Qsf) treatment of

the seepage boundary; panels (d), (e), and (f): exit point height ZEP for the dynamic

treatment case.
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(steady state) position of the seepage face exit point. In Figure 3.10 we report the effects

of (a) hydraulic conductivity Ks (fixed i=10%) and (b) slope i (fixed Ks=1×10−4 m/s) on

the approximation errors εR calculated at steady state (equation 3.3) for different ratios

R/Ks. The error committed using a static treatment for the seepage boundary rather

than a dynamic treatment increases significantly with R/Ks (reaching 45%), and also

with i for fixed R/Ks. The error does not vary with Ks for a fixed R/Ks ratio.
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Figure 3.10: Approximation error εR as a function of rainfall/conductivity ratio R/Ks

for the rainfall simulations with a homogeneous sloping aquifer of (a) inclination i=10%

and varying conductivity Ks and (b) conductivity Ks = 1 × 10−4 m/s and varying incli-

nation i.
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3.4.2 Layered heterogeneity

3.4.2.1 Double layers
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Figure 3.11: Evolution of the seepage face exit point height ZEP for the two-layer

drainage simulations with four different conductivity contrasts between the top (Ks1) and

bottom (Ks2) layers. The shaded areas represent the seepage face outflow planes below

each exit point.

Figures 3.11 and 3.12 show the dynamics of seepage face exit points for, respectively,

the drainage and rainfall simulations for the two-layer hillslope and four combinations of

Ks1/Ks2 (Ks1 is the top layer; the parameter values are given in Table 3.1). We refer

to the first and the second exit point as the one corresponding, respectively, to the first

and second seepage face forming on the seepage outflow plane. The results of Figure 3.11

show that under drainage from initial full saturation (water table close to the surface), the

only case that does not feature a second exit point is Ks1/Ks2=10. For Ks1/Ks2=100 the

position of the first exit point quickly drops from the surface to the interface between the

two layers and after about 2 d it starts dropping towards the bottom (reached after about

25 d from the beginning of the simulation). At this time a second exit point appears at the

interface of the two layers and persists for about 2 d. Setting the hydraulic conductivity
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of the top layer one or two orders of magnitude smaller than that of the bottom layer also

results in the formation of two seepage faces, but in this case the dual exit points occur

very early in the simulation and the top seepage face has a very short duration (about

250 s and 500 s, respectively, for the Ks1/Ks2=0.1 and Ks1/Ks2=0.01 cases).
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Figure 3.12: Evolution of the seepage face exit point height ZEP for the two-layer rainfall

simulations with four different conductivity contrasts between the top (Ks1) and bottom

(Ks2) layers. The shaded areas represent the seepage face outflow planes below each exit

point.

The results of Figure 3.12 are relative to the simulations with constant rainfall (of

intensity one order of magnitude smaller than the hydraulic conductivity of the top layer)

and infiltration from initially dry conditions (water table at bottom). In these runs the

only case that features a second exit point is Ks1/Ks2=100. For this case only one exit

point, whose position ZEP is at the bottom, is present from the beginning of the simulation

until 2.5 h (0.1 d), at which time the infiltration front reaches the interface between the

two layers and a second exit point develops. It initially sits at the interface and then rises

to ZEP=0.6 m. After 6 h from the beginning of the simulation the rainfall water reaches

the bottom and, in turn, starts feeding the first seepage face. As a consequence, the first

exit point rapidly rises to reach the second exit point and the two seepage faces merge.
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Figure 3.13: Evolution of the seepage face exit point height ZEP above and below an

impeding lens (shown as the gray strip) for two different conductivity contrasts between

the aquifer (Ks) and the lens (KsL).

3.4.2.2 Single layer with a thin impeding lens

Figure 3.13 reports the dynamics of the first and second exit points for the single-layer

with impeding lens test case (see Table 3.1 for the parameter values). We refer to the

first and second seepage face and relative exit point as those forming, respectively, below

and above the impeding lens. In both cases (Ks/KsL=10000 and Ks/KsL=100), a second

exit point appears when the infiltration front reaches the impeding lens (at about 1.5

h from the beginning of the simulation). For the Ks/KsL=10000 case this second exit

point rises rapidly, while for the Ks/KsL=100 case more water is able to percolate across

the impeding lens, making the second exit point rise more slowly. The dynamics of the

first seepage face is also different between these two permeability contrast cases. When

Ks/KsL=100 the first exit point starts rising at 3.5 h whereas when Ks/KsL=10000 the

first seepage face can only be fed by rainfall water that drains from upslope (much less

percolation through the lens), and as a consequence the first exit point starts rising only

at 6 h. Not surprisingly, at steady state the heights of the first and second exit points are,

respectively, higher and lower for Ks/KsL=100 than for Ks/KsL=10000. In Figure 3.14
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Figure 3.14: Pressure head profiles (m) and zero pressure head contours (shown in

black) in vertical cross section and at times 3 h (left) and steady state (right) for the

simulations with an impeding lens (shown in gray) with conductivity contrast between the

aquifer (Ks) and the lens (KsL) of Ks/KsL=100 (top) and Ks/KsL=10000 (bottom).

we compare the pressure head profile in vertical cross section at 3 h (about one hour after

the appearance of the second exit point) and at steady state. The profile at 3 h clearly

shows that the soil below the lens is much wetter for the Ks/KsL=100 case, while the

water table above the lens is more developed for the Ks/KsL=10000 case. In both cases

at steady state the soil below the lens is wet and two water tables are present, at bottom

and above the lens.

3.4.2.3 Multiple layers

The simulation performed for the multiple seepage face case features the presence of three

seepage faces and corresponding exit points. Figure 3.15 shows their dynamics and in what

follows we refer to the first, second, and third seepage face/exit point as they appeared

chronologically. At the beginning only one seepage face with its exit point (black line in

Figure 3.15) at bottom is present. A second seepage face develops when the infiltration

front reaches layer 2 (at approximatly 1.5 h). Its exit point (blue line) sits at the interface

between the first two layers and neither rises nor falls for the duration of the simulation.

A third seepage face forms when the infiltration front reaches layer 4, at around 7 h,

with its exit point (red line) at the inteface between layers 3 and 4. At 8 h the rainfall

water reaches the bottom and the first exit point rises to the height of the third exit point

such that the first and third seepage faces merge for the remainder of the simulation, to
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Figure 3.15: Dynamics of the first (black line), second (blue line), and third (red line)
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Figure 3.16: Snapshots at 7 h (left) and at steady state (right) of the profiles of pressure

head (m) in vertical cross section at the downslope 2 m portion of the hillslope for the

multiple-layer simulation. The interfaces between layers are shown by the gray lines while

the contours of zero pressure head are traced by the black lines.
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Figure 3.17: Partitioning of rainfall R on the LEO hillslope between seepage face outflow

Qsf (left axis) and surface outlet discharge Q (right axis) at steady state for a range of

rainfall/conductivity (R/Ks) ratios and three different slope angles i. The horizontal and

three vertical dotted lines give the R/Ks value at which seepage and outlet contributions are

equal (R/Ks = 0.009, 0.012, and 0.02 for slope angles 3%, 10%, and 20%, respectively).

steady state. In Figure 3.16 we show the pressure head profile in vertical cross section for

the downslope 2 m portion of the hillslope at 7 h, when three seepage faces are present,

and at steady state. From the zero pressure head contours, shown as black lines, the

different seepage faces are easily discerned. The profile at 7 h shows: the first seepage

face at bottom, the second seepage face in layer 2 and at the interface between the first

two layers, and the third seepage face at the interface between layers 3 and 4. The steady

state profile shows: the first seepage face in layer 4 and at the interface between layers

3 and 4 and the second seepage face in a portion of layer 2 and at the interface between

the first two layers.

3.4.3 Seepage face and surface outlet interactions

The results of a series of simulations on the LEO hillslope to examine seepage face and

surface outlet interactions are presented in Figure 3.17 and show the steady state rainfall

(R) partitioning between seepage face flow Qsf and surface outflow Q for different ratios

of R/Ks (the hydraulic conductivity was fixed at Ks = 1 × 10−4 m/s) and three slope
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Figure 3.18: Steady state profiles of pressure head (m) (color map) and water table

(black lines) for the LEO hillslope aken in vertical cross section along the x direction

(midpoint in the y direction). The seepage boundary is at x=30 m. The results are shown

for two rainfall/conductivity (R/Ks) ratios and three slope angles i.

angles i. The results show that the seepage face contribution Qsf/R decreases with R/Ks

and increases with i. Thus, higher rainfall rates enhance overland flow while steep slopes

enhance flow from the base of the hillslope. They also show that the differences between

the three slope angles become less significant as R/Ks increases. In addition, it is seen

that the R/Ks value at which seepage face and outlet contributions are equal increases

with i. Thus, the R/Ks range for which seepage face flow is greater than surface flow

increases with i. These results can be better understood by looking at the profiles shown

in Figures 3.18 and 3.19. Here the steady state pressure head and velocity profiles for

the different slopes are plotted for a case in which the seepage face contribution exceeds

the surface flow contribution (R/Ks=0.005) and for a case in which the surface flow

contribution exceeds the seepage face contribution (R/Ks=0.1). In accordance with what

has been noted from Figure 3.17, the differences between profiles for the three different
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Figure 3.19: Steady state profiles of Darcy velocity for the LEO hillslope taken in vertical

cross section along the x direction (midpoint in the y direction). The seepage boundary is

at x=30 m. The results are shown for two rainfall/conductivity (R/Ks) ratios and three

slope angles i.

slope angles are greater for the R/Ks=0.005 case than for the R/Ks = 0.1 case. The

differences include a smaller portion of the land surface intersected by the water table,

the water table mound further downslope, less water exfiltration at the land surface, and

higher velocities at the seepage face for increasing i. In addition, while for the R/Ks=0.005

case, where unsaturated areas persist for all three slopes and most of the outflow is from

the seepage face, the fully saturated conditions encountered for the R/Ks=0.1 case give

rise to enhanced convergent velocity trajectories towards the surface outlet.

3.4.4 Seepage face versus atmospheric conditions

In this final set of tests we examine seepage face formation on the land surface and compare

the behavior of the seepage face boundary condition algorithm to the classic atmospheric

boundary condition switching procedure used in catchment hydrological models. For
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Figure 3.20: Results of the seepage face versus atmospheric conditions simulations with

a homogeneous aquifer of hydraulic conductivity 1 × 10−4 m/s and different downslope

land surface inclinations ib. Panels (a), (b), and (c): volumetric outflow Q over time

from the land surface. Panels (d), (e), and (f): average distance of the water table, XWT ,

from the outlet. The results are shown for four different boundary condition treatments of

the downslope portion (see Figure 3.4) of the test hillslopes: as a seepage face boundary

condition (SF, red lines); as atmospheric boundary conditions in subsurface-only mode

(ATM, dotted black lines); as atmospheric conditions in coupled mode, i.e., with surface

routing (ATM+SR, solid black lines); and as atmospheric conditions in coupled mode with

high kinematic celerity, i.e., with very fast routing (ATM+SR*, blue lines).
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In a more general sense, the sequence of test cases examined in this work illustrates the

complexity of flow phenomena at the atmosphere/land surface/subsurface interface. The

attempt to develop generalized algorithms for the handling of boundary conditions at this

interface and to show a degree of consistency between historically very different treatments

applied to these conditions is important in the context of integrated hydrological mod-

eling. Even with valid boundary condition algorithms, however, many challenges remain

in accurately resolving surface/subsurface interactions. An example that involves the co-

existence of catchment outlet and seepage face boundary conditions is reported in Sulis

et al. [2011], where neglecting to represent the latter due to computational constraints

(the fine grid needed to discretize stream channel geometries, including riverbanks) in-

evitably leads to a wet bias from overly shallow water tables that develop in response to

the outlet at the land surface.



Chapter 4

Multiresponse modeling of variably saturated flow and

isotope tracer transport for a hillslope experiment at

the Landscape Evolution Observatory

4.1 Abstract

This paper explores the challenges of model parameterization and process representation

when simulating multiple hydrologic responses from a highly controlled unsaturated flow

and transport experiment with a physically-based model. The experiment, conducted

at the Landscape Evolution Observatory (LEO), involved alternate injections of water

and deuterium-enriched water into an initially very dry hillslope. The multivariate ob-

servations included point measures of water content and tracer concentration in the soil,

total storage within the hillslope, and integrated fluxes of water and tracer through the

seepage face. The simulations were performed with a three-dimensional finite element

model that solves the Richards and advection-dispersion equations. Integrated flow, inte-

grated transport, distributed flow, and distributed transport responses were successively

analyzed, with parameterization choices at each step supported by standard model perfor-

mance metrics. In the first steps of our analysis, where seepage face flow, water storage,

and average concentration at the seepage face were the target responses, an adequate

match between measured and simulated variables was obtained using a simple parame-

terization consistent with that from a prior flow-only experiment at LEO. When passing

to the distributed responses, it was necessary to introduce complexity to additional soil

hydraulic parameters to obtain an adequate match for the point-scale flow response. This
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also improved the match against point measures of tracer concentration, although model

performance here was considerably poorer. This suggests that still greater complexity is

needed in the model parameterization, or that there may be gaps in process representation

for simulating solute transport phenomena in very dry soils.

4.2 Introduction

Simulation models of water and solute interaction and migration through complex geologic

media are essential tools for addressing fundamental and practical problems, ranging from

basic scientific understanding of critical zone processes [Brooks et al., 2015] to improving

the management of our freshwater resources [Gorelick and Zheng , 2015]. Physically based

distributed numerical models require a careful definition of spatially variable parame-

ters and time variable boundary conditions, and can produce information for numerous

response variables at different levels of spatio-temporal aggregation. It is increasingly

acknowledged that proper implementation and verification of these models, in terms of

both process representation and parameter identification, requires detailed, multiresponse

field or laboratory data, in contrast to traditional model evaluation based on a single, in-

tegrated response variable such as total discharge [Paniconi and Putti , 2015]. However,

multiobjective parameter estimation for nonlinear or coupled models with a high num-

ber of degrees of freedom is very challenging [Anderman and Hill , 1999; Keating et al.,

2010], since classical techniques developed for simpler hydrological models [e.g., Gupta

et al., 1998; Fenicia et al., 2007] are not readily extendable, in terms of robustness and

efficiency, to more complex models. Traditional challenges, on both experimental and

modeling sides, are associated with soil heterogeneity, variability in parameters, and vari-

ably saturated conditions [e.g., Binley et al., 1989; Woolhiser et al., 1996; Neuweiler and

Cirpka, 2005]. An added source of complexity arises when passing from flow modeling to

flow and transport modeling [e.g., Ghanbarian-Alavijeh et al., 2012; Russo et al., 2014].

While many hydrologic model assessment studies have reported good agreement be-

tween simulated and observed data when performance is measured against a single re-

sponse variable, there are comparatively few studies that have made use of observa-

tion data from multiple response variables. Brunner et al. [2012], for instance, exam-

ined the performance of a one-dimensional (1D) unsaturated zone flow model when water
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table measurements were supplemented by evapotranspiration and soil moisture observa-

tions. Sprenger et al. [2015] assessed the performance of three inverse modeling strategies

based on the use of soil moisture and pore water isotope concentration data for a 1D

unsaturated flow and transport model. Kampf and Burges [2007] obtained encouraging

results for a 2D Richards equation flow model using integrated (subsurface outflow) and

internal (piezometric water level and volumetric water content) measurements from a

hillslope-scale experiment. Kumar et al. [2013] used multiple discharge measurements to

calibrate and apply a distributed hydrologic model to 45 subcatchments of a river basin

in Germany. Investigations based on hypothetical experiments are more common. Mishra

and Parker [1989], for example, obtained smaller errors for simultaneous estimation of flow

and transport parameters than for sequential estimation based on synthetically-generated

observations of water content, pressure head, and concentration.

In this study we perform a modeling analysis of the experimental data collected from

an intensively-measured hillslope at the Landscape Evolution Observatory (LEO) of the

Biosphere 2 facility [Hopp et al., 2009]. The simulations were conducted with the CATHY

(CATchment HYdrology) model [Camporese et al., 2010; Weill et al., 2011], a physics-

based numerical code that solves the 3D Richards and advection-dispersion equations and

includes coupling with surface routing equations. The availability of extensive observa-

tional datasets from detailed multidisciplinary experiments (recent examples in addition

to LEO include the TERENO network of experimental catchments [Zacharias et al., 2011]

and the Chicken Creek artificial catchment [Hofer et al., 2012]) can contribute vitally to

testing and improving the current generation of integrated (surface-subsurface) hydrolog-

ical models [Sebben et al., 2013; Maxwell et al., 2014].

Two experiments have been conducted to date at LEO, a rainfall and drainage test in

February 2013 [Gevaert et al., 2014; Niu et al., 2014b], which featured both subsurface

and overland flow, and an isotope tracer test in April 2013 [Pangle et al., 2015], run

under drier soil conditions and with reduced rainfall rates to avoid occurrence of surface

runoff. Both of these experiments were performed on the first of the three hillslopes at

LEO to be commissioned, hereafter referred to as LEO-1.

Using both integrated (load cell and seepage face) and distributed (point-scale soil

moisture and concentration) data collected during the tracer experiment, the objective

of this study is to explore the challenges of multiresponse performance assessment for a
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3D variably saturated flow and solute transport model. In a first step we consider only

integrated flow responses, and the CATHY model is initially parameterized according to

analyses of the February 2013 experiment. As integrated transport and point-scale flow

and transport observations are progressively introduced in the analysis, the impact of

different configurations (spatially uniform versus spatially variable parameters, treatment

of initial and boundary conditions, etc) on the model’s ability to capture the expanding

and increasingly detailed response variables is examined. The boundary condition con-

figurations, for instance, include a sink-based treatment of isotope fractionation to allow

only a portion of the tracer to evaporate with the water.

4.3 Study site: Biosphere 2 Landscape Evolution Observatory

LEO is a large-scale community-oriented research infrastructure managed by the Uni-

versity of Arizona at the Biosphere 2, Oracle, U.S.A. [Hopp et al., 2009; Huxman et al.,

2009; Pangle et al., 2015]. It consists of three identical convergent artificial landscapes

(or hillslopes) constructed with the aim of advancing our predictive understanding of

the coupled physical, chemical, biological, and geological processes at Earth’s surface in

changing climates. For the first years of LEO operation, vegetation is not present and the

research is focused on the characterization of the hydrological response of the hillslopes in

terms of water transit times, generation of seepage and overland flow, internal dynamics

of soil moisture, and evaporation. The three hillslopes are 30 m long and 11 m wide and

of 10o average slope. The local slope varies from upslope positions to the convergence

zone, with a maximum slope of 17o near the convergence zone. The landscapes are filled

with 1 m of basaltic tephra ground to homogeneous loamy sand, chosen mainly for its

primary elemental composition that includes critical nutrients for plant growth. The three

landscapes are housed in a 2000 m2 environmentally controlled facility. Each landscape

contains a sensor and sampler network capable of resolving meter-scale lateral hetero-

geneity and submeter-scale vertical heterogeneity in water, energy, and carbon states and

fluxes. The density of sensors and the frequency at which they can be polled allows for a

monitoring intensity that is impossible to achieve in natural field settings. Additionally,

each landscape has 10 load cells embedded into the structure that allow measurement of

changes in total system mass and an engineered rain system that allows application of
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Figure 4.1: Hydrological response to the tracer experiment at the LEO-1 hillslope. From

top: measured rain input pulses Qr (the red pulse is deuterium-enriched); seepage face flow

Qsf ; total water storage Vs; and mean δ2H values at the seepage face. Time 0 corresponds

to 9:30 am, 13 April 2013. The vertical dashed lines indicate the timing of the three pulses

of rain (red when the water is deuterium-enriched and blue when it is not).

precipitation at rates between 2 and 40 mm/h. Each landscape at LEO has 5 indepen-

dent plumbing circuits, each including a different array of sprinkler heads, and therefore

generating a different rain flux. Tracers can be introduced into the system via the rainfall

simulator at a constant or time-varying rate. The embedded soil water solution and soil

gas samplers facilitate the use of these tracers to study water and solute movement within

the hillslopes at a very dense spatial scale.

4.4 Methodology

4.4.1 Isotope tracer experiment

The first tracer experiment performed at the LEO-1 hillslope began at 9:30 am on

April 13, 2013. The experiment consisted of three rainfall events that were applied over

10 days (Fig. 4.1). During each event the rainfall was applied at a rate of 12 mm/h for

durations respectively of 5.5 h, 6 h, and 5.25 h. Rainfall was interrupted for 2.75 h during

the third event (1.25 h from the start) due to necessary equipment maintenance, then
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restarted. During the second event deuterium-enriched water was introduced into the

rain system. The enriched water had a hydrogen isotopic composition (expressed using

the delta-notation as δ2H) of approximately 0‰, which corresponds to an enrichment of

approximately 60‰ compared to typical (non-enriched) rainfall source water.

At the time of this experiment we consistently used one plumbing circuit because the

spatial distribution of rainfall produced by this circuit had been well characterized by in

situ testing. This allowed us to examine the possible influence of spatially heterogeneous

rain patterns on flow and transport. The purpose of the first rain application was to in-

crease the average moisture content of the landscape, which had received no rain for more

than 40 days prior. The second rainfall application was used to introduce the deuterium

tracer. No additional rain was applied for multiple days so that the tracer transport

within, and out of the landscape, would be affected by soil moisture redistribution and

evaporation. The third and final rainfall application was applied with the intention of

forcing additional tracer mass beyond the seepage face boundary, to reveal additional de-

tail in the measured breakthrough curve. In retrospect, and following laboratory analysis

that spanned several weeks, we only observed the initiation of the tracer breakthrough

curve at the seepage face.

The initial conditions of the system were very dry. The estimated total initial volume

of water was about 26 m3 (the total water storage capacity of the hillslope is approxi-

mately 130 m3). All the rain water applied infiltrated into the soil. Seepage face outflow

at the downslope vertical plane started 5 h after the beginning of the experiment. Two

outflow peaks were observed: the first one after the second pulse of rain, with a peak of

4.5× 10−5 m3/s, and the second one after the final pulse, with a peak of 2.1× 10−5 m3/s.

Temporal changes in total soil water storage were monitored via the load cell measure-

ments, flow from the seepage face boundary was measured with electronic flow meters

and tipping bucket gauges, and matric potential and water content were measured at 496

locations with, respectively, MPS-2 and 5TM Decagon sensors installed at depths 5 cm, 20

cm, 50 cm, and 85 cm from the landscape surface. Cumulative fluxes and instantaneous

state variables were recorded at 15-min intervals. The estimated evaporation rate, derived

from the seepage face measurements and load cell data and calculated as the difference

between the change in water volume and the cumulative volume flowing out from the

seepage face over the selected time interval, was, on average, 1.9×10−5 m3/s (5.0 mm/d)
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Figure 4.2: 3D numerical grid for the LEO landscape. Points a, b, c, and d are the

locations where samples were extracted during the experiment for subsequent laboratory

analysis.

between rain pulses and 1.5×10−5 m3/s (3.9 mm/d) after the third rain pulse.

The movement of the deuterium-enriched water within and out of the landscape was

monitored through manual sampling and subsequent laboratory analysis. Prenart quartz

water sampling devices were used to extract soil water samples periodically throughout

the experiment. Data reported in this manuscript include samples collected at 5, 20, 50,

and 85 cm depth from surface at the four locations shown in Fig. 4.2. Flow from the

seepage face boundary was collected with a custom autosampler (sampling cylinders of 5

cm length and 3 cm circumference). The deuterium concentration within all water samples

was measured via laser spectroscopy (LGR LWIA Model DLT-100) at the University of

Arizona. Analytical precision was better than 0.5‰ for δ2H. All isotopic data are

expressed relative to the international reference VSMOW or VSMOW-SLAP scale. The

seepage face isotopic data indicate that the residual soil water in the landscape prior

to the experiment had become enriched in deuterium (compared to the rainfall water)

during evaporation. In fact, during evaporation, hydrogen preferentially goes into the

vapor phase compared to deuterium, so that the liquid phase remaining in the soil easily

becomes deuterium-enriched. Thus, the δ2H values in the early seepage face flow may

reflect some mixing of the new rain water with the evaporatively-enriched water. This

slight enrichment disappears in the seepage flow at later times because of the dilution by



98 4.4 Methodology

the newly infiltrating water.

4.4.2 Hydrological model

The CATHY (CATchment HYdrology) model [Camporese et al., 2010] used to simulate

the isotope tracer experiment has been previously implemented for LEO to study coupled

surface and subsurface flow [Niu et al., 2014b] and sensor performance [Pasetto et al.,

2015]. The description here will thus be limited to aspects pertaining particularly to the

implementation for LEO of the solute transport component of the model. The numerical

solver for the advection-dispersion transport equation is described in detail in Putti and

Paniconi [1995], and, like the flow solver, is based on a three-dimensional finite element

discretization in space and a weighted finite difference discretization in time. The velocity

field and nodal saturation values computed by the flow solver are passed as input at given

time steps to the transport solver. The governing equations for the flow and transport

solvers are:

SwSs
∂ψ

∂t
+ n

∂Sw
∂t

= ∇ · [Kr(ψ)Ks(∇ψ + ηz)] + q (4.1)

∂(nSwc)

∂t
= ∇ · (D∇c)−∇ · (vc) + fc (4.2)

where Sw=θ/θs is the water saturation [−], θ is the volumetric moisture content [−], θs

is the saturated moisture content [−] (generally equal to the porosity n [−]), Ss is the

aquifer specific storage coefficient [1/L], ψ is the pressure head [L], t is the time [T ], ∇
is the gradient operator [1/L], Kr(ψ) is the relative hydraulic conductivity function [−],

Ks is the hydraulic conductivity tensor [L/T ] (considered to be diagonal, with ks the

saturated hydraulic conductivity parameter for the isotropic case and kv and kh, respec-

tively, the vertical and horizontal hydraulic conductivity parameters for the anisotropic

case), ηz=(0,0,1)T , z is the vertical coordinate directed upward [L], q is a source (when

positive) or sink (when negative) term [1/T ], c is the solute concentration [M/L3], D is

the dispersion tensor [L2/T ], v = (v1, v2, v3)T is the Darcy velocity vector [L/T ], and fc

is a correction term [M/TL3] used in the treatment of the surface boundary condition for

the transport equation during evaporation. The velocity vector is obtained from the flow

equation as v = −KrKs(∇ψ + ηz) while the dispersion tensor can be expressed as:

Dij = nSwD̃ij = αt|v|δij + (αl − αt)
vivj
|v|

+ nSwDoτδij i, j = 1, 2, 3 (4.3)



99 4.4 Methodology

where |v| =
√
v2

1 + v2
2 + v2

3, αl is the longitudinal dispersivity [L], αt is the transverse dis-

persivity [L], δij is the Kronecker delta [−], Do is the molecular diffusion coefficient [L2/T ],

and τ is the tortuosity (we assume τ=1) [−]. The evaluation of integrals arising in fi-

nite element discretization of the dispersion fluxes is performed using a rotated reference

system spanned by the unit vectors (x1, x2, x3) that are aligned with the principal direc-

tions of anisotropy of D, whereby x1 = v/|v|. Within this reference system, D becomes

diagonal, with the three components defined as:

D11 = αl|v|+ nSwDoτ (4.4)

D22 = D33 = αt|v|+ nSwDoτ (4.5)

The soil moisture–pressure head and relative conductivity–pressure head dependencies

are described by the van Genuchten [1980] relationship:

Se =

[
1 +

(
|ψ|
|ψsat|

)n
V G
]−m

(4.6)

Kr(ψ) = S0.5
e

[
1− (1− S

1
m
e )m

]2

(4.7)

where Se = (Sw−Swr)/(1−Swr) is the effective saturation [−], Swr is the residual water

saturation [−], m = (1 − 1/n
V G

), n
V G

is a fitting parameter ranging between 1.25 and

6 [−], and ψsat is related to the air entry suction [L].

The transport equation (4.2) is solved in its conservative form, i.e., without applying

the chain rule to the advective and storage terms. Using Euler time stepping, the resulting

discretized system is:

([A+B]k+1 +
1

∆tk
Mk+1)ĉk+1 =

1

∆tk
Mkĉk − bt,k+1 (4.8)

where k is the time counter, ĉ is the vector of the numerical approximation of c at each

node of the grid, and the coefficients of the, respectively, dispersion, advection, and mass

matrices are:

aij =

∫
Ω

D∇φi∇φjdΩ (4.9)

bij =

∫
Ω

∇(vφj)φidΩ (4.10)

mij =

∫
Ω

nSwφiφjdΩ (4.11)
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where i, j = 1, .., N with N the number of nodes, Ω is the discretized domain, and φ are

the basis functions of the Galerkin finite element scheme. The boundary condition vector

for the discretized transport equation is:

bti =

∫
Γt

(−D∇c) · νφidΓt =

∫
Γt

qtnφidΓt (4.12)

where Γt is the boundary of the domain Ω, qtn [M/(L2T )] is the Neumann (dispersive)

flux, and ν is the outward normal vector to the boundary. Cauchy, or mixed, boundary

conditions can be easily implemented as variations of Eq. (4.12), involving an additional

term in the system matrix implementing the advective component of the Cauchy condi-

tion.

4.4.3 Model setup for the LEO tracer experiment

We discretized the 30 m x 11 m x 1 m LEO hillslope into 60 x 22 grid cells in the lateral

direction and 30 layers in the vertical direction (Fig. 4.2). The resulting surface mesh

consists of 1403 nodes and 2640 triangular elements. This horizontal discretization was

chosen in order to have the nodes of the computational mesh aligned with the sensor

and sampler locations, thereby allowing us to directly compare simulated and measured

distributed responses. This same principle was used to guide the vertical discretization

(the interface between two layers is set at the sensor and sampler heights). The surface

mesh was projected vertically to form a 3D tetrahedral mesh with parallel layers of varying

thickness, with the thinnest layers assigned to the surface and bottom layers. This allows

the numerical model to accurately capture infiltration/evaporation processes at the surface

and the formation of base flow at the bottom of the domain. From top to bottom the

thickness of the 30 layers is: 0.01 m for the first five layers, 0.025 m from layer 6 to layer

9, 0.05 m for layer 10, 0.06 m from layer 11 to layer 20, 0.05 m for layer 21, 0.025 m from

layer 22 to layer 25, and 0.01 m from layer 26 to layer 30.

Measurements showed that the average δ2H of the rain source water at LEO was

-60‰. For the transport model, we used a normalized concentration defined as:

c =
δ2Href − δ2H

δ2Href

(4.13)

where δ2Href=-60‰ and δ2H is the actual value. Thus the initial conditions, as well as

the concentrations of the first and third pulses, were c=0, while the second pulse had an
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Table 4.1: Treatment of boundary conditions at the land surface during the rainfall and

evaporation periods for the flow and transport models

Simulation Rain with 2H-enriched water Rain with no 2H-enriched water Evaporation

(see Table 4.3) (second pulse) (first and third pulses) (between rain pulses and

after the third pulse)

Flow (mm/h) Transport (c∗=1) Flow (mm/h) Transport Flow Transport

a-f, g-i qfn=-12 qtc = v · νc∗ qfn=-12 qtc=0 qfn=5 or 3.9 mm/h qtc=0

j qfn=-12 qtc = v · νc∗ qfn=-12 qtc=0 Sink q (Fig. 4.3) fc (Fig. 4.3)

k qfn=-12 qtc = v · νc∗ qfn=-12 qtc=0 Sink q (Fig. 4.3) fc = −qc

imposed concentration of c=1. Note that, with this transformation, the dimension of the

term fc of Eq. (4.2) becomes 1/T .

A careful treatment of boundary conditions was essential to modeling the isotope

tracer experiment, in particular at the land surface where three different cases needed to

be considered. These cases are schematically summarized in Table 4.1, in relation to the

simulations performed, and further noted here: 1) Rain with 2H-enriched water, handled

as a Neumann prescribed flux condition for flow (qfn = −KsKr(ψ)(∇ψ+ηz) ·ν = v ·ν) and

a Cauchy prescribed advective flux condition for transport (qtc = (vc−D∇c) ·ν = v ·νc∗);
2) Rain with no 2H-enriched water, handled with the same Neumann condition as case

1 for flow and a zero Cauchy prescribed total flux condition for transport (qtc = (vc −
D∇c) ·ν = 0 with the concentration values at the surface nodes computed by the model);

3) Evaporation, handled with the same Neumann condition as case 1 for flow and a zero

Neumann prescribed dispersive flux condition for transport (qtn = −D∇c · ν = 0 with

the concentration values at the surface nodes computed by the model). With the zero

dispersive flux condition of case 3, all the isotopic mass in solution with the evaporating

water leaves the domain by advection.

In addition to this “base case” treatment of rainfall and evaporation, we also intro-

duced some variations on the surface boundary conditions. For rainfall (cases 1 and 2

above), we tested both uniform and variable spatial distributions. For the latter, a rainfall

pattern with slightly higher rates towards the center of the landscape was used, as indi-

cated by measurements taken during testing of the engineered rain system. This pattern

was generated in such a way that the mean rainfall rate and the total volume of water

injected were preserved. For evaporation, since there were no measurements of soil evap-

oration isotopic composition at the LEO landscape, we tested two other hypotheses —
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Figure 4.3: Sink term q and correction source term fc over depth z added to the flow

and transport equations, respectively. q1 and fc1 are applied between rain pulses 1, 2, and

3, while q2 and fc2 are applied after rain pulse 3.

that none or only a portion (fractionation) of the isotope tracer evaporated — in addition

to the zero dispersive flux condition of case 3.

To prevent isotope tracer from leaving the system through the landscape surface, we

treated the evaporation as a sink term in the flow model, distributed exponentially from

the surface to a depth of 38 cm, rather than as a Neumann boundary condition. In

generating the sink term, we ensured that the total volume of water evaporated was the

same as in the Neumann boundary condition treatment. The sink term function q in

Eq. (4.1) applied to each layer i (i=1,...,13 for a total depth of 38 cm) is:

qi =
Fev

13∑
i=1

(e−λzi∆zi)

e−λzi (4.14)

where qi is applied to each tetrahedron of layer i, λ [1/L] is a parameter set to 1 m−1 in

this case, zi is the depth from surface to the center of layer i, ∆zi is the thickness of layer

i, and Fev [L/T ] is the homogeneous evaporative flux used in the Neumann boundary

condition case (with rates -5.8×10−8 m/s between rain pulses and -4.5×10−8 m/s after
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the third pulse). The applied sink fluxes are shown schematically in Fig. 4.3. Note that

if the element reaches the residual water saturation, parameterized by its corresponding

pressure head level, the evaporation process becomes soil-limited. When this occurs, the

actual sink term function is automatically smaller than the imposed value. To ensure that

all the tracer mass stays in the system, for the transport model we set the correction term

fc in Eq. (4.2) equal to -qc. In this way we inject back into the system the same amount

of tracer mass that has exited with the sink term q.

Most land surface hydrological models still neglect fractionation, even though it can

significantly influence the mass exchange at the land surface and the concentration profiles

in the soil. Barnes and Allison [1988] examined isotope transport phenomena under both

saturated and unsaturated conditions. In the latter case they experimentally observed

that at steady state the maximum concentration of the heavier isotope species (e.g., 2H)

occurs a short distance below the surface and decreases rapidly beyond that depth. The

resulting profile can be explained as the result of vapor diffusion and isotopic exchange

dominating the zone above the drying front and the balance between capillary and diffusive

liquid water transport below the drying front [Craig and Gordon, 1965; Clark and Fritz ,

1997; Horita et al., 2008]. Alternative conceptualizations of the fractionation process have

also been recently developed [e.g., Braud et al., 2009; Haverd and Cuntz , 2010]. In this

work the fractionation process was incorporated into the CATHY model using the sink

term approach described above, setting 38 cm as the soil depth at which the maximum 2H

tracer concentration occurs (thereby assuming that the soil above is dominated by water

vapor diffusion due to evaporation). The correction source term fc introduced into the

transport equation is now modified such that there is no tracer mass re-injection in the

first layer, and the amount re-injected progressively increases from qc/12 to qc between

layers 2 and 13 (Fig. 4.3). The reasoning here is that the rate at which tracer evaporates

increases with evaporation and water vapor diffusion close to the surface.

Besides the surface boundary, we set up a seepage face condition at the 23 x 30 nodes

that constitute the downslope lateral boundary. For the transport equation the seepage

face nodes have a zero Neumann (dispersive) assigned flux so that 2H is allowed to exit

the domain through advection with the outflowing water. All other LEO boundaries (the

three other lateral boundaries and the base of the hillslope) were set to a zero Neumann

condition for both the flow and transport equations (with a zero water flux this implies
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Table 4.2: Configurations for the 6 simulations of the integrated flow analysis.

Simulation Saturated hydraulic conductivity (m/s) Initial conditions Rainfall

Horizontal, kh Vertical, kv Seepage face, ksf

a 1.4×10−4 1.4×10−4 1.4×10−4 Uniform Spatially uniform

b 6×10−4 1.4×10−4 1.4×10−4 Uniform Spatially uniform

c 6×10−4 1.4×10−4 2.2× 10−5 Uniform Spatially uniform

d 6×10−4 1.4×10−4 2.2× 10−5 Steady state Spatially uniform

e 6×10−4 1.4×10−4 2.2× 10−5
Interpolated soil

Spatially uniform
moisture measurements

f 6×10−4 1.4×10−4 2.2× 10−5
Interpolated soil

Spatially variable
moisture measurements

that the advective flux for the transport equation is also zero).

The time stepping for the flow model is adaptive (based on convergence of the iterative

scheme used to linearize Richards’ equation (4.1)) and we set the time step range between

10−4 s and 90 s. The results in terms of velocity and saturation values were saved every

90 s or 900 s, respectively, during and between the rain events. These were linearly

interpolated in time and read as input by the transport model, which was run with a

fixed time step of 90 s for the entire simulation.

4.4.4 Simulations performed

The model simulations were used to interpret the integrated and point-scale flow and

transport responses of the LEO hillslope. The guiding idea was to assess the need to

increase the complexity of the model in progressing from first trying to reproduce the

integrated flow response, then the integrated transport response, and finally the point-

scale flow and transport responses. With the requirement that each new parameter-

ization still had to satisfy the observation dataset from the previous level, the space

of admissible solutions was progressively reduced. Initially the soil was assumed to be

homogeneous and isotropic. The values of the van Genuchten parameters (n
V G

=2.26,

ψsat=-0.6 m, and θr=0.002), the porosity (n=0.39), the saturated hydraulic conductivity

(ks=1.4×10−4 m/s), and the specific storage (Ss=5×10−4 m−1) were obtained from lab-

oratory analyses and simulations of prior LEO experiments [Niu et al., 2014b; Pasetto

et al., 2015]. From this base set of parameter values for the first simulations, anisotropy

and other variations were progressively introduced in the model.

In the first step of this procedure (integrated flow response), we examined the influence
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of spatial variability and anisotropy in saturated hydraulic conductivity (different ks at

the seepage face and over the rest of the hillslope, on the basis of a clogging hypothesis

from accumulation of fine particles [Niu et al., 2014b]; higher kh than kv, on the basis

of a hypothesis of slight vertical compaction leading to enhanced flow in the horizontal

direction), rainfall (spatially uniform; spatially variable), and initial conditions (uniform;

generated from a steady state simulation under drainage and evaporation; matching the

soil moisture distribution at each sensor location). Six simulations were run in the first

step. The configurations for each run are summarized in Table 4.2. For the initial condi-

tions, in all three configurations (uniform for runs a through c, steady state for run d, and

matching sensors for runs e and f), the same total initial water storage (26 m3 as reported

earlier) was used. For the atmospheric forcing, the spatially uniform rainfall rate (runs a

through e) was the mean measured rate reported earlier (12 mm/h), while the spatially

variable case (run f) was handled as described earlier. The evaporation rate, on the other

hand, was kept spatially uniform for all 6 simulations and equal to the mean rate of 5.0

mm/d between the three pulses and 3.9 mm/d after the third pulse.

In the second step (integrated transport response), the effects of the dispersivity coef-

ficients αl and αt and of isotope evaporation mechanisms on the amount of tracer at the

seepage face outlet were explored. In the third step (flow point-scale data), the analysis

focused on the soil moisture profiles obtained by averaging the observations and model

results at specific depths (5, 20, 50, and 85 cm), and spatially variable (by layer) soil

hydraulic properties (n
V G

) were introduced. Finally, for the point-scale transport we

compared the results obtained from some of the different parameterizations used in the

previous steps.

The simulations performed are summarized in Table 4.3. Model performance was

assessed against available observations using the coefficient of efficiency (CE) on seepage

face flow Qsf for the integrated flow response and the root mean squared error (RMSE) on

concentration c at the seepage face for the integrated transport response and on averaged

θ profiles for the flow point-scale response. The CE and RMSE metrics, also reported

in Table 4.3, are calculated as in Dawson et al. [2007]:
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CE = 1−
∑no

i=1(Qi − Q̂i)
2∑no

i=1(Qi − Q̄)2
(4.15)

RMSE =

√∑no

i=1(Qi − Q̂i)2

n
(4.16)

where no is the total number of observed data available at the different times, Qi and

Q̂i are the observed and modeled values, respectively, and Q̄ is the observed average value.

Table 4.3: Simulation descriptions, parameter configurations, and performance metrics

(coefficient of efficiency CE and root mean squared error RMSE) for the integrated flow,

integrated transport, and point-scale analysis steps.

Integrated flow analysis Simulations CE for Qsf

a base case [Niu et al., 2014b] -0.62

b anisotropy 0.64

Effect on seepage Effect on total c heterogeneity 0.79

face flow Qsf water storage Vs d initial conditions 0.28

e initial conditions 0.82

f rainfall distribution 0.85

Integrated transport analysis αl evaporation RMSE

g 0.1 all solute 0.12

Effect on concentration c at the seepage face h 0.01 all solute 0.037

(flow configuration from simulation f) i 0.001 all solute 0.026

j 0.001 fractionation 0.03

k 0.001 no solute 0.045

Point-scale analysis
RMSE for averaged θ

(at 5, 20, 50, 85 cm depth)

Effect on Effect on Effect on c point-scale
f

depth (cm) 5 20 50 85
10.36, 1.17, 1.73, 3.78

averaged θ point-scale profiles (transport nV G (homogeneous) 2.26

profiles θ profiles configuration from
l

depth (cm) 5 20 50 85
5.61, 1.43, 0.95, 1.72

simulation i) nV G (heterogeneous) 1.8 2.26 2.0 1.9
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Figure 4.4: Results for the 6 simulations of the integrated flow response analysis (see

Table 4.2). For each case the seepage face flow Qsf (left) and total water storage Vs (right)

are reported.

In the first set of simulations we attempt to reproduce two integrated flow responses of

the LEO hillslope, the measured seepage face flow and the measured total water storage.

The results of the 6 simulations are presented in Fig. 4.4. The water balance partitioning

between seepage face flow and internal storage was found to be strongly affected by the

introduction of anisotropy and variability in the hydraulic conductivity. We also found

that the distribution of initial condition determines the timing of the first simulated

seepage face peak and its shape. The spatial distribution of rain, on the other hand, was

not found to have a significant impact on the model response. These general findings are

described in more detail below.
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In the first simulation (Fig. 4.4a), under the assumption of homogeneity, isotropy,

uniform initial conditions, and spatially uniform rainfall and evaporation, the discrepancy

between the simulated and observed response was large (a negative CE is reported in

Table 4.3), with the first and second peaks of the discharge hydrograph, respectively,

underestimated and overestimated by the model. In the second simulation, with the

introduction of anisotropy (increasing the horizontal hydraulic conductivity kh to 6 ×
10−4 m/s), the overall model results for the seepage face flow improved notably compared

to simulation a (CE passed from -0.62 to 0.64) and the match for the total water storage

was improved significantly (Fig. 4.4b). Next, the introduction of low ks at the seepage face

lowered the hydrograph peaks and smoothed out its overall shape (Fig. 4.4c), moving the

simulated hydrograph closer to the measured one (and increasing CE to 0.79). The effect

of using distributed instead of uniform initial conditions is seen in comparing Figs. 4.4c,

4.4d, and 4.4e. Under uniform starting conditions the response was delayed in time,

compared to the steady state case (generated under a drainage and evaporation run from

initially wet conditions), where the response to the first rain pulse was faster. This

faster response resulted in increased drainage due to longer recession periods, adversely

affecting the match for the second pulse but improving the result for the third pulse.

The simulation for Fig. 4.4e, with initial conditions closest to the initial state of the

hillslope, resulted in a further increase in CE to 0.82. For this run, the good match for

the first hydrograph peak from simulation c of Table 4.2 was recovered, whilst retaining

the good match for the second peak from simulation d. The simulated total water storage

dynamics was already very well captured by simulation c and was not greatly affected by

the initial conditions. The initial conditions from simulation e were used for all subsequent

simulations discussed in this study. In the final simulation for the integrated flow response

analysis, incorporating the spatial distribution of rainfall had a nominal impact on the

results (Fig. 4.4f), with a slight increase in CE to 0.85. Thus the actual distribution of

atmospheric forcing, so long as it is not highly variable (which was part of the experimental

design for the LEO tracer experiment), is less important than capturing the correct mean

rate and total volume of these hydrologic drivers.



109 4.5 Results

0 48 96 144 192 240 288
Time (h)

0

0.1

0.2

0.3

c
(-
)

measured αl=0.1 m αl=0.01 m αl=0.001 m

Figure 4.5: Results for the integrated transport response analysis for different values of

dispersivity (simulations g, h, and i of Table 4.3). The vertical dashed lines indicate the

timing of the three pulses of rain (red when the water is 2H-enriched and blue when it is

not).

4.5.2 Integrated transport response

The velocity field and saturation obtained from the sixth flow simulation (simulation f) of

the preceding section were used as input to the transport model. Fig. 4.5 and Table 4.3

show, respectively, the results for the average tracer concentration at the seepage face and

the RMSE for different longitudinal dispersivity αl values, namely 0.1 m, 0.01 m, and

0.001 m. The transverse dispersivity αt was set one order of magnitude smaller than αl.

The three graphs and the RMSE values show that the discrepancy between the measured

and simulated outflow concentration decreases with αl. The results show that the effect

of the high dispersivity makes the tracer percolate down quickly to then flow out of the

domain from the seepage face boundary. In fact, at the highest value, significant levels of

2H-labeled water appeared in the outflow discharge after the second pulse, whereas in the

measured data and in the model results for the smaller dispersivity values the levels were

much lower. In all three cases the model reproduced the increase in tracer concentration

after the last pulse, but whereas for αl=0.1 m the values were four times higher than the

observed ones, for αl=0.01 m and αl=0.001 m they decreased significantly. The simulation

using the lowest value of dispersivity was able to reproduce reasonably well the integrated

measure of tracer response for the LEO hillslope.

To assess model accuracy, we report in Fig. 4.6 the mass balance results for the

αl=0.001 m case, in terms of a balance between the cumulative mass of deuterium that

entered the hillslope (with the second rainfall pulse), that exited the system (through
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Figure 4.6: Simulated mass balance results for αl=0.001 m (simulation i of Table 4.3).

From top to bottom: 2H mass that enters the system, Min (normalized with respect to

the total mass added to the system during the simulation); that exits through the seepage

face, Msf ; that exits through evaporation, Mev; and that remains in storage, Mst. The

bottom graph shows the cumulative mass balance error Er=(Min−Msf −Mev−Mst). The

vertical dashed lines indicate the timing of the three pulses of rain (red when the water is

2H-enriched and blue when it is not).
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Figure 4.7: Measured and modeled average tracer concentration at the seepage face for

the cases in which no tracer and all tracer leaves the system with evaporation (simulations

i and k of Table 4.3). Both simulations are run for αl=0.001 m and αt=0.0001 m. The

vertical dashed lines indicate the timing of the three pulses of rain (red when the water is

2H-enriched and blue when it is not).

seepage face outflow and evaporation), and that remained in storage. The results show

that for αl=0.001 m and αt=0.0001 m, at the end of the simulation (after 14 d), 52% of

the mass of 2H injected has been lost through evaporation, about 4% has seeped out, and

the rest remained in storage, minus a cumulative mass balance error of about 2% with

respect to the total mass injected. The sudden mass balance error jump which occurs

at the beginning of the third pulse of rain is most probably due to discontinuities in the

time derivative of concentration and water saturation close to the surface (since the soil

is very dry at this level and after the long evaporation period) as a consequence of the

discontinuity in the atmospheric boundary condition. The high evaporative component

computed by the model is a direct outcome of the zero dispersive flux surface boundary

condition for the transport equation, through which any tracer in solution with evaporat-

ing water is advected away with the water. We examine next the impact of the sink term

treatment of tracer exchange across the land surface boundary, preventing any isotope

tracer from evaporating.

The results of the sink term simulation in terms of average seepage face tracer con-

centration and mass balance are reported, respectively, in Fig. 4.7 and 4.8. As expected,

the seepage face concentration has now increased, but only slightly, compared to the pre-

vious simulation. In mass terms, the seepage component has increased from 4% to 8%

by the end of the simulation. With no tracer mass now exiting via the landscape sur-



112 4.5 Results

25
50
75
100

M
in
(%
)

2.5
5
7.5
10

M
sf
(%
)

20
40
60

M
ev
(%
)

25
50
75
100

M
st
(%
)

0 48 96 144 192 240 288
Time (h)

0
0.5
1

1.5
2

E
r
(%
)

Figure 4.8: Simulated mass balance results for αl=0.001 m when the sink term is used

to perform evaporation and the correction term fc added to the transport equation is used

to force all the isotopic mass to stay in the system (simulation k of Table 4.3). From top

to bottom: 2H mass that enters the system, Min (normalized with respect to the total mass

added to the system during the simulation); that exits through the seepage face, Msf ; that

exits through evaporation, Mev; and that remains in storage, Mst. The bottom graph shows

the cumulative mass balance error Er=(Min−Msf−Mev−Mst). The vertical dashed lines

indicate the timing of the three pulses of rain (red when the water is 2H-enriched and blue

when it is not).
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Figure 4.9: Measured and modeled average tracer concentration at the seepage face for

the cases in which no tracer, all tracer, and some tracer (fractionation) leaves the sytem

with evaporation (simulations i, j, and k of Table 4.3). The three simulations are run for

αl=0.001 m and αt=0.0001 m. The vertical dashed lines indicate the timing of the three

pulses of rain (red when the water is 2H-enriched and blue when it is not).

face, it is found instead that much more of the mass has remained in storage (about 90%

compared to about 40% when the tracer was allowed to evaporate with the water). This

result strongly suggests that the tracer does not percolate far (deep) into the hillslope,

perhaps as a result of the very dry conditions initially and during the whole experiment.

A negative consequence of not allowing any tracer mass to evaporate, combined with low

percolation, is an intense accumulation of the mass near the landscape surface, with tracer

concentrations as high as 15. A compromise between allowing zero or all isotope tracer

to leave the system via evaporation is to introduce isotopic fractionation processes into

the model.

The results of the isotope fractionation simulation are reported in Figs. 4.9 and 4.10,

respectively, for the average tracer concentration at the seepage face and the model mass

balance results. The curve for the average concentration in Fig. 4.9 justly lies between the

curves obtained by making all and no isotope evaporate with water. The mass balance

shows that at the end of the simulation 6.5% of the total mass injected has gone out

through the seepage face, this result also falling between the previous simulations where

zero or all isotope tracer in solution with the evaporating water was lost via evaporation.

As expected, the evaporative mass loss is now significant (38%), but not as high as

obtained when evaporation was treated as a land surface Neumann boundary condition

(52%). The final mass balance error (0.75%) is lower than for the two previous simulations,
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Figure 4.10: Simulated mass balance results for αl=0.001 m when the correction source

term fc is added to the transport equation to perform isotopic fractionation (simulation k

of Table 4.3). From top to bottom: 2H mass that enters the system, Min (normalized with

respect to the total mass added to the system during the simulation); that exits through the

seepage face, Msf ; that exits through evaporation, Mev; and that remains in storage, Mst.

The bottom graph shows the cumulative mass balance error Er=(Min−Msf −Mev−Mst).

The vertical dashed lines indicate the timing of the three pulses of rain (red when the water

is 2H-enriched and blue when it is not).
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Figure 4.11: Averaged θ profiles at 5, 20, 50, and 85 cm depth from the surface. In each

graph the deviation from the mean (one standard deviation above and below) is shown as

dashed lines. The results are obtained for simulation f reported in Table 4.3.

and the accumulation of isotope mass just below the land surface that occurred in the

preceding case was not observed in this simulation.

4.5.3 Distributed flow response

For the distributed flow response analysis we first examined the behavior in time of the

averaged soil water content value at the 4 depths of the sensor network (5, 20, 50, and

85 cm). That is, we compared the average of all sensor measurements at a given depth

to the average of all simulated nodal θ values at that depth. The graphs for the results

of simulation f from Table 4.2 (the configuration that best retrieved the integrated flow

response) are shown in Fig. 4.11, while the RMSE values are reported in Table 4.3. The

results show that at 50 cm there is a small underestimation by the model and that the

model does not perform well at 5 cm and 85 cm compared to the profile at 20 cm. At

85 cm depth the observed and calculated deviation from the mean are also completely

different (for the model it is almost 0).

To address this problem we increased the retention capacity of the soil by reducing,
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Figure 4.12: Averaged θ profiles at 5, 20, 50, and 85 cm depth from the surface. In each

graph the deviation from the mean (one standard deviation above and below) is shown as

dashed lines. The results are obtained for simulation l reported in Table 4.3.

selectively, the n
V G

parameter of the van Genuchten hydraulic functions as reported in

Table 4.3. We subdivided the soil profile into 4 strata encompassing the 4 sensor depths,

and we decreased n
V G

for the strata closest to the surface (from 0 to 10 cm, n
V G

=1.8), from

32 to 68 cm (n
V G

=2.0), and from 68 cm to bottom (n
V G

=1.9). For the second stratum

(from 10 cm to 32 cm) the retention parameter was left unaltered from all previous

simulations (n
V G

=2.26) since the model already captured the observed response for the

sensor at 20 cm depth quite well. The highest retention capacity (lowest n
V G

value) was

set in the first stratum since the observation data show that the water content close to

the landscape surface remains quite high, both during infiltration and drainage. The n
V G

values for the 4 strata reported here are the combination, from many trials, that best

retrieved the observed averaged θ profiles. The results of this simulation are shown in

Fig. 4.12 and reported in Table 4.3. Compared to the results of the homogeneous n
V G

case, the model response improves significantly for the average profile at 5, 50, and 85

cm, even if the deviations at 85 cm are still very different.

To take the distributed flow response analysis further, in Fig. 4.13 we show the water
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Figure 4.13: Distributed (internal state) hydrological response for the θ profiles at 5, 20,

50, and 85 cm depth from the surface for four locations on the LEO-1 hillslope: point a

(top left), point b (top right), point c (bottom left), and point d (bottom right) of Fig. 4.2.

The results are obtained for simulations f and l reported in Table 4.3.
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content time series at the four specific points shown in Fig. 4.2, at 5, 20, 50, and 85 cm

depth from the surface. Sensor data at each of the 4 points and for each of the 4 soil

depths is compared against both the homogeneous n
V G

case (simulation f from Table 4.2)

and the layered n
V G

case (different value for each of the four strata). Once again the more

detailed parameterization (simulation l from Table 4.3, variable n
V G

) gives better results,

although for some of the soil depths (in particular at 50 cm and 85 cm) and for some

of the points (in particular point c) the discrepancies between simulated and measured θ

time series are quite marked. It should be remarked that we did not run, as we did for the

simulation summarized in Fig. 4.12, repeated trials to find a best fit, so it may perhaps

be possible to optimize the fits against both the averaged θ data and the point data

(Fig. 4.13) by manipulating the soil retention capacity for the 4 strata. However, it seems

more likely that in going from a distributed but nonetheless averaged response variable

to a distributed, point-scale response variable, additional model parameter complexity is

needed to obtain an adequate response for all individual response variables.

4.5.4 Distributed transport response

For the distributed transport response analysis we compared, as we did in Fig. 4.13 for

the internal state flow response, the model results at individual points (a, b, c, d from

Fig. 4.2) and individual soil depths (5, 20, 50, and 85 cm) for simulations using uniform

(corresponding to configuration f from Table 4.2) and spatially variable (simulation l

from Table 4.3) soil retention capacity. The results are shown in Fig. 4.14, and it can

be seen that the model does not perform well at several locations within the hillslope

(consistently at 20 cm depth, and at 5 cm depth for point b). Encouragingly, however,

there is consistency with the previous distributed flow results, in that the variable n
V G

run

performs noticeably better than the spatially uniform case. For instance, with variable

n
V G

the results are improved at the bottom of the hillslope, at 50 cm (for points b and c

the modeled response gets closer to the measurements particularly after the third flush),

and slightly at 5 cm (for point a).

For the distributed transport analysis we did not examine averaged concentration

profiles at each of the 4 sensor depths (as we did for soil water content in Fig. 4.12)

due to insufficient data. The sampling time and laboratory analysis costs for exhaustive

measurement of isotopic compositions were prohibitive, thus there are much less data
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Figure 4.14: Distributed (internal state) hydrological response for the tracer concentra-

tion breakthrough curves at 5, 20, 50, and 85 cm depth from the surface for four locations

on the LEO-1 hillslope: point a (top left), point b (top right), point c (bottom left), and

point d (bottom right) of Fig. 4.2. There were no tracer concentration measurements at

5 cm depth for point c and at 5 and 20 cm depth for point d. The transport model is run

for αl=0.001 m and αt=0.0001 m. The vertical dashed lines indicate the timing of the

three pulses of rain (red when the water is 2H-enriched and blue when it is not).
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Figure 4.15: Performance of the model against integrated flow and transport responses

(seepage face flow Qsf , total water storage Vs, and average tracer concentration c at the

seepage face) using the additional parameterization from the distributed analyses (spatially

variable soil retention capacity, simulation l of Table 4.3). The vertical dashed lines

indicate the timing of the three pulses of rain (red when the water is 2H-enriched and blue

when it is not).

available for the distributed transport analysis compared to the flow case. The data gaps

are also evident in Fig. 4.14: there are no measurements for 3 of the graphs, and scarce

data at 50 cm depth for points a and d. It is also important to note that no additional

parameterization was attempted for the distributed transport analysis. The main explicit

parameters in the transport equation are the dispersivity coefficients, and these were

experimented with in the integrated transport analysis. The transport equation is of

course strongly dependent on flow velocities, and thus implicitly on the conductivity and

other soil hydraulic parameters that were assessed in the flow model analyses. These and

other parameterization issues will be further discussed in the next section.

To complete the sequence of analyses from integrated flow and then transport to dis-

tributed flow and transport, we used the simulation results from the additional parameter-

ization introduced for the distributed analyses (spatially variable soil retention capacity)

to assess model performance against the integrated flow and transport responses. The
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results (Fig. 4.15) show that while the match against tracer concentration at the seep-

age face has somewhat improved (compare with Fig. 4.9), the match against both of the

integrated flow responses (seepage outflow and total water storage) has significantly de-

teriorated (compare with simulation f of Fig. 4.4). This is not a surprising result, given

that no attempt was made to parameterize the model in tandem against both integrated

and point-scale observations (nor against joint flow and transport data); the implications

will be discussed below.

4.6 Discussion

Mass transport in unsaturated soils is extremely important in the context of biosphere,

critical zone, and Earth systems research because of exchanges of water and solutes that

occur across the land surface interface. The study of hillslope transit time distributions

[e.g., Fiori and Russo, 2008; Botter et al., 2010; Heidbüchel et al., 2013; Tetzlaff et al.,

2014] is a good example of the need for a better understanding of such water and so-

lute exchanges and the consequent subsurface flowpaths. The simulation of unsaturated

zone mass transport phenomena is however known to be a particularly complex problem,

compounded by any presence of heterogeneity. Wilson and Gelhar [1981], for instance,

showed that spatial variations in moisture content affect solute plume spreading even

without dispersive mixing, and that the rates of solute displacement are typically much

smaller than the rates of moisture displacement. Birkholzer and Tsang [1997] demon-

strated significant channeling effects (preferential solute pathways, with accompanying

higher dispersion) at the extremes of very low saturation and full saturation. Studies that

have combined comprehensive experimental observation with detailed subsurface simu-

lation have also documented some of the challenges faced in modeling solute transport

under unsaturated and heterogeneous conditions [e.g., Haggerty et al., 2004; Zheng et al.,

2011]. In this context, for the tritium and bromide tracer experiments at the Las Cruces

trench site, standard models gave good prediction of wetting front movement during in-

filtration but poor prediction of point soil water content and tracer transport [Hills et al.,

1991; Wierenga et al., 1991]. For the macrodispersion (MADE) experiment, Russo and

Fiori [2009] found that heterogeneity further enhances solute spreading and breakthrough

curve arrival times when the unsaturated zone is relatively dry or deep. In the present



122 4.6 Discussion

study, the additional complexity introduced for the point-scale responses (namely spa-

tially variable soil retention capacity) did not match as favorably the integrated (flow)

observation dataset (Fig. 4.15). While this could perhaps be remedied using more rigorous

or quantitative parameter estimation, the particular difficulties in capturing the point-

scale concentration profiles, especially near the landscape surface, can be taken as further

evidence for flaws or gaps in theoretical understanding and model formulation (process

representation) for simulating solute transport phenomena in very dry, heterogeneous

soils.

Various hypotheses have been invoked to explain possible factors that affect the migra-

tion and distribution of solutes under unsaturated, heterogeneous conditions, including:

turbulent mixing due to high rainfall [Havis et al., 1992]; solute transfer between mobile

and immobile water [De Smedt and Wierenga, 1984]; mobile-immobile exchange and hys-

teresis [Butters et al., 1989; Russo et al., 1989a,b, 2014]; lateral mixing due to velocity

fluctuations [Russo et al., 1998]; isotope effects [Barnes and Allison, 1988; LaBolle et al.,

2008; Zhang et al., 2009]; variable, state-dependent anisotropy [McCord et al., 1991];

non-Gaussian early-time mean tracer plume behavior [Naff , 1990]; non-Fickian solute

migration at low water contents [Padilla et al., 1999] and for macroscopically homoge-

neous sand [Bromly and Hinz , 2004]; and saturation-dependent dispersivity [Raoof and

Hassanizadeh, 2013]. In addition, Konikow et al. [1997b] and Parker and van Genuchten

[1984] discuss the importance of boundary condition treatment (e.g., water-solute injec-

tion, solute exchange between soil and atmosphere). Given the many open questions, for

this first analysis of the LEO isotope tracer experiment the modeling was kept to the

standard formulation of the Richards and advection-dispersion equations. Limitations

encountered in the multiresponse performance assessment, from the standpoint of experi-

mental procedure, model formulation, or numerical implementation, will inform follow-up

studies at LEO. The simulation results from this tracer experiment, for instance, point to

highly complex effects on plume migration of spatially variable water content in the dry

soils that characterized the experiment, especially at early times.

The broad results of our study should be quite universal, particularly to deterministic

numerical models based on the 3D Richards and advection-dispersion equations. How-

ever, any model has its specific features and differs, for example, in the way equations

are coded (e.g., choice of numerical solvers) or interface conditions are implemented (e.g.,
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free-surface vs boundary condition switching). For insights on the impact of specific model

differences in the performance of CATHY-like models, see the intercomparison studies of

Sulis et al. [2010] and Maxwell et al. [2014]. These intercomparison studies have thus

far focused only on flow processes, and there is an urgent need to extend the analyses

to solute transport phenomena, in order to properly guide our assessment of the physical

and numerical correctness of competing models as these models continue to increase in

complexity. For instance for this study there are aspects of the CATHY model related to

how we implemented evaporation and fractionation that might be expected to negatively

impact the generality of our findings, although in terms of isotope tracer mass exiting

the seepage face the impact was quite small. But the implementation here was some-

what ad hoc, and more study is needed on the importance and proper representation of

fractionation in solute transport models, especially under strongly unsaturated conditions.

4.7 Conclusions

In this study we have used multivariate observations (soil moisture, water and tracer

outflow, breakthrough curves, and total water storage) culled from the first isotope tracer

experiment at the LEO-1 hillslope of the Biosphere 2 facility to explore some of the

challenges in modeling unsaturated flow and transport phenomena. Integrated (first flow

and then transport) and distributed (again flow followed by transport) measurements

were progressively introduced as response variables with which to assess the results from

simulations with CATHY, a 3D numerical model for variably saturated flow and advective-

dispersive solute migration. Compared to the first flow experiment at LEO that was

successfully modeled with CATHY [Niu et al., 2014b], the modeling task for the tracer

experiment was significantly more complicated due to: joint simulation of both flow and

transport processes; considerably drier initial conditions and reduced forcing; performance

assessment against both system-wide and point-scale measurements; and multiple periods

of water/tracer injection compared to a single rainfall episode. In some sense the previous

flow study looked at the first order response of the LEO hillslope, whereas the modeling

exercise for the tracer experiment represents a first look at higher order responses of the

Biosphere 2 landscapes.

There are several findings from this first set of simulations of a LEO isotope tracer
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experiment. At the start of the exercise, where integrated flow measurements were used,

we were able to obtain good matches for two response variables (total water storage

and seepage face outflow) using parameter values and initial and boundary conditions

that correspond quite closely to the actual experimental conditions and previous (flow

experiment) model implementation [Niu et al., 2014b]. The same soil parameterization

was successfully used to reproduce the integrated transport response. When passing

to point-scale flow and finally point-scale transport, a refinement of the model setup

(augmenting the degree of heterogeneity, mainly) was needed. Moreover, providing more

information to the model (for example, the distribution of initial water storage rather

than just the initial total volume) generally helped to improve the simulation results.

The effect of saturated hydraulic conductivity (heterogeneity and anisotropy) on the

response of subsurface hydrologic models is well known, and was also borne out in this

study. Also not surprisingly, the dispersivity parameter had a big impact on the trans-

port simulations, with a clear trend to a better match against measured seepage face

concentration as dispersivity was decreased. The spatial distribution of rainfall was not

found to have a big impact on simulation results, and there was not much difference, in

terms of isotope tracer mass exiting the seepage face, between the zero, partial, and no

fractionation cases, suggesting that the injected tracer did not percolate very far into the

hillslope, likely due to the very dry initial conditions.

We conclude with a few specific recommendations for alleviating some of the modeling

and experimental limitations encountered during this study. On the modeling side, a more

sophisticated treatment of solute transport phenomena beyond the standard advection-

dispersion equation could start with incorporation of a mobile-immobile conceptualization

and/or saturation-dependent dispersivity. Other upgrades to the CATHY model [e.g.,

Scudeler et al., 2016a] will mitigate the grid Peclet constraint and provide more reliable

flow velocity calculations, essential to maintaining low mass balance errors and high accu-

racy in solute transport. On the experimental side, higher tracer concentrations (including

labeled tracers), wetter initial conditions, and more intensive direct or indirect measures

of total tracer mass could help address the high sensitivity of solute transport to small

scale heterogeneity under dry soil conditions. Any experiments that provide spatially

detailed observations of both flow and transport response variables that are then jointly

used in estimating, for instance, conductivity and other soil hydraulic parameters (tra-
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ditionally identified based solely on flow responses), would be critical to advancing the

present state of hydrologic model verification, given the high impact that Darcy veloci-

ties, which are directly dependent on such parameters, have on solute mixing processes.

Finally, future LEO isotope tracer experiments that also generate some surface runoff

would offer valuable benchmark data for improving integrated surface-subsurface models.





Chapter 5

Process-based modeling of surface-subsurface and flow-

transport interactions: coupling, boundary conditions,

and numerical behavior

5.1 Abstract

Process interactions (for e.g. between streams and aquifers, or between water and so-

lutes) are one of the major controls on the water and solute budgets at the catchment

and river basin scales. But their influence is not yet fully understood, and important

challenges remain for instance in performing hydrograph separation analysis or decipher-

ing the paths and travel times of water and solutes. In this context, numerical models

for integrated hydrological simulations are increasingly used to explore hypotheses, to

develop new concepts, and to identify key dynamics. However, their development and

application to complex field situations still represents a big challenge, in particular when

simulating both flow and transport processes and flow and transport interactions across

the land surface. In this study we address this challenge in the framework of an exist-

ing physically-based model that couples the Richards and advection-dispersion equations,

used to describe subsurface flow and solute transport under variably saturated conditions,

with the diffusive wave equations, used to describe surface flow and transport propaga-

tion over the land surface. We present the model features and show its performance in

a series of test cases of hillslope drainage, rainfall, and runoff generation, and we discuss

important modeling issues related to the numerical resolution of the advective-dispersive

equation, to the treatment of boundary conditions, and to complex coupling aspects.
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5.2 Introduction

In the last decades the growing interest in using an integrated approach to study hy-

drological processes and their interactions, such as those between surface waters and

groundwaters and between flow and transport phenomena, poses new challenges to re-

searchers. The current understanding of the dynamic processes at the surface–subsurface

interface is constrained by the strong interplay between heterogeneous topography and

geology and the spatio-temporal variability of climate, which controls the spatial patterns

of interactions between surface waters and groundwaters. Theoretical studies and signifi-

cant effort have been devoted to the development of new methods to resolve these issues.

Examples include the use of natural tracers or heat to decipher the paths and travel time

of solutes and to assess the potential of the groundwater–surface water interface to at-

tenuate polluttants [e.g., Burns , 2002; Constantz , 2008] and the refinement and use of

physically-based numerical models for integrated hydrological simulations [e.g., Tonina

and Buffington, 2007; Frei et al., 2009, 2010].

Due in part to the lack of adequate techniques to fully measure and observe process

interactions, integrated numerical models have become prominent tools for such investi-

gations and are increasingly used to explore surface–subsurface systems. These models

are approximations of a very complex reality and require the solution of partial differen-

tial equations with complicated coupling. Detailed groundwater models has been linked

to existing surface flow models and an entirely new class of fully integrated models has

been developed that can simulate coupled systems as a continuum: CATchment HYdrol-

ogy (CATHY) [Camporese et al., 2010], HydroGeoSphere (HGS) [Therrien et al., 2012],

OpenGeoSys (OGS) [Kolditz et al., 2012], Parallel Flow (ParFlow) [Kollet and Maxwell ,

2006], to name a few. Comparatively fewer models address both flow and transport inter-

actions between the subsurface and the land surface [Weill et al., 2011; Therrien et al.,

2012], and the issues associated to their development and testing have not been fully

examined to date.

In this study we aim to shed light on important modeling issues related to the devel-

opment and performance of the CATchment HYdrology Flow-Transport (CATHY FT)

model [Weill et al., 2011]. CATHY FT is an evolving physically-based model that ad-

dresses both flow and transport interactions between the land surface and the subsurface.
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The model uses a sequential iterative coupling paradigm [Delfs et al., 2009; Camporese

et al., 2010] based on a boundary condition switching algorithm that determines the

partitioning of water exchange fluxes between the surface and the subsurface. On the

transport side, the solute exchange fluxes across the land surface interface are determined

via a mass balance that considers the different states arising from the flow resolution

(water storage at the surface, actual water fluxes at the land surface interface, and atmo-

spheric input). Following a general description of the model, we present the time-splitting

operator implemented to solve the difficult behavior of the advection-dispersion equation

for subsurface solute transport and the solution procedure for the four model components

(flow and transport for the surface and subsurface). We then discuss important model

features related to the equation-solving algorithm, the treatment of boundary conditions,

and coupling aspects, with particular emphasis on details related to mass balances, such

as the impact of different interpolation schemes between nodes and elements. The model

performance is illustrated for three different scenarios that involve both subsurface-only

and coupled surface–subsurface processes for an experimental hillslope at the Landscape

Evolution Observatory of the Biosphere 2 facility in Arizona [Hopp et al., 2009].

5.3 Methodology

5.3.1 Governing equations and numerical resolution

The four equations solved by the CATHY FT model are:

θ

n
Ss
∂ψ

∂t
+
∂θ

∂t
−∇ · [Kr(ψ)Ks(∇ψ + ηz)] =qsf + qs (5.1a)

∂Q

∂t
+ ck

∂Q

∂s
−Dh

∂2Q

∂s2
=ckqsb (5.1b)

∂θc

∂t
+∇ · [vc−D∇c] =qts + qtsf (5.1c)

∂Qm

∂t
+ ct

∂Qm

∂s
−Dc

∂2Qm

∂s2
=ctqtsb (5.1d)

where in Richards’ equation (5.1a) θ [L3L−3] is the volumetric water content, Ss [L−1] is the

aquifer specific storage, ψ [L] is the pressure head, t [T] is time, n [L3L−3] is the porosity,

Ks [LT−1] is the saturated hydraulic conductivity tensor, Kr(ψ) [-] is the relative hydraulic

conductivity function, ηz = (0, 0, 1)T with z [L] the vertical coordinate directed upward,

qsf [L3L−3T−1] is the inflow or outflow rate from surface to subsurface, and qs [L3L−3T−1]
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is a source or sink term. In the surface flow equation (5.1b) Q [L3T−1] is the discharge

along the overland and channel network, ck [LT−1] is the kinematic celerity, s [L] is the

coordinate direction for each segment of the overland and channel network, Dh [L2T−1] is

the hydraulic diffusivity, and qsb [L3L−1T−1] is the inflow or outflow rate from subsurface

to surface. In the variably saturated advective-dispersive solute transport equation (5.1c)

c [ML−3] is the subsurface solute concentration, v [LT−1] is the Darcy velocity vector, D

[L2T−1] is the tensor accounting for both mechanical dispersion and molecular diffusion,

qts [ML−3T−1] is a solute mass source or sink term, and qtsf [ML−3T−1] is the solute mass

inflow or outflow rate from surface to subsurface. In the surface transport equation (5.1d),

which follows the same dynamic of the surface flow equation, Qm [MT−1] is the solute

mass discharge, ct [LT−1] is the kinematic solute celerity, Dc [L2T−1] is the surface solute

diffusivity, and qtsb [ML−1T−1] is the solute mass inflow or outflow from subsurface to

surface.

Surface processes are computed using a cell-centered scheme based on the grid digital

elevation (DEM) model describing the land surface topography. The surface triangulation

S is derived simply by subdividing each DEM cell into two triangles. Subsurface processes

are described using a regular tetrahedral discretization Th(Ω) of the subsurface domain

Ω. This produces N nodes and E elements by subdividing each cell C ∈ S into triangles,

which in turn become the faces of the subsurface boundary elements. The set of nodes

and faces of Th(Ω) are defined as N and F , respectively. Given a tetrahedron T ∈ Th(Ω),

the set of faces that defines T is denoted by FT .

The solution of the surface equations are obtained numerically using the Muskingum-

Cunge method for the variables Q and Qm for each cell C ∈ S, and stability is de-

termined by the Courant-Friedrichs-Lewy (CFL) constraint since time integration is ex-

plicit. Richards’ equation is discretized by means of the linear Galerkin finite element

(FE) scheme in space and by the backward Euler finite difference scheme in time, and

is linearized by a Picard or Newton iterative scheme. In this case time integration is

implicit, thus the scheme is subject only to a convergence constraint related to the non-

linear scheme. The equation is solved in its conservative form [Celia et al., 1990a] for the

variables pressure head ψ and volumetric water content θ for each node i ∈ N . The P1

Galerkin velocity field is post-computed on each element T ∈ Th from the nodal pressure

head values. This is reconstructed using the Larson-Niklasson post-processing algorithm
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and used as input by the subsurface transport model. The subsurface transport equation

is solved by means of a time-splitting technique that adopts appropriate discretizations

to solve the advection and dispersion components.

Camporese et al. [2010] and Weill et al. [2011] present numerical details related to

the solution of the surface equations, Camporese et al. [2010], Paniconi and Putti [1994],

and Scudeler et al. [2016a] describe the detailed FE discretization of Richards’ equation,

and Scudeler et al. [2016a] presents the detailed Larson-Niklasson algorithm for velocity

field reconstruction. Mazzia et al. [2000] develop a time-splitting technique, combining

mixed hybrid finite elements (MHFE) and high resolution finite volumes (HRFV), for the

solution of the saturated advection-dispersion transport equation. In the next sections we

present the time time-splitting technique used to solve the variably saturated advective-

dispersive equation in CATHY FT and the solution procedure for the four equations,

and we also discuss important features related to the implementation of the transport

boundary conditions and the performance of the surface–subsurface coupling algorithm.

5.3.2 The time-splitting algorithm

The advective-dispersive equation is discretized using the time-splitting algorithm that

combines a HRFV scheme for advection and a linear Galerkin FE scheme for dispersion.

Integration in time for the former scheme is explicit, whereas it is implicit for the latter.

Thus, the stability of the advective step is determined by the CFL constraint, while

the dispersive step is not subject to any constraint. A finer advective time step ∆ta

together with a coarser dispersive time step ∆td are employed. For each ∆td a number

na = ∆td/∆ta of advective time steps is performed in accordance with the CFL condition

that establishes ∆ta.

Denoting with G and F the advective and dispersive fluxes, respectively, equation (5.1c)

can be written as:

∂θc

∂t
+∇ · [G+ F ] =qts + qtsf (5.2a)

G =vc (5.2b)

F =−D∇c (5.2c)

The time-splitting technique can be viewed as a predictor-corrector approach that,

starting from equation (5.2a), solves sequentially two different equations, derived here in
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a generic form. Multiplying equation (5.2a) by the test function χ and integrating in

space and time, with time-step ∆t over the time interval [tk,tk+1], the following integral

is obtained:∫
Ω

(θc)k+1 − (θc)k

∆t
χdΩ +

∫
Ω

∇ · (Gk + F k+1)χdΩ =

∫
Ω

(qkts + qktsf )χdΩ (5.3)

The above equation is split into the following two equations:∫
Ω

(θĉ)k+1 − (θc)k

∆t
χdΩ+

∫
Ω

∇ ·GkχdΩ =

∫
Ω

(qkts + qktsf )χdΩ (5.4a)∫
Ω

(θc)k+1 − (θĉ)k+1

∆t
χdΩ+

∫
Ω

∇ · F k+1χdΩ = 0 (5.4b)

First, the advective step solves equation (5.4a) for the variable ĉk+1. Second, the dispersive

step solves equation (5.4b) for the final concentration ck+1. Note that, the dispersive step

uses as initial conditions the total mass of solute obtained at the end of the advective step,

i.e., (θĉ)k+1, so that the sum of equations (5.4a) and (5.4b) gives exactly equation (5.3).

The HRFV and FE discretizations of the variably saturated advective equation and

the advective-dispersive equation can be found in Scudeler et al. [2016b] and Scudeler

et al. [2016a], respectively. We report here the final fully discretized HRFV equation for

the advective flux, which includes also the source/sink term qts and surface-to-subsurface

solute exchange qtsf , and the final fully discretized FE system for the dispersive flux.

For each T ∈ Th the HRFV solver applied to the advective flux G with explicit time

integration gives:

(θT cT )ka+1 = (θT cT )ka − ∆ta
|T |

∑
F∈FT

(qTF )kacF,XAF + qkats,T∆ta + qkatsf,T∆ta T = 1, ..., E

(5.5)

where ka is the advective time step index, |T | [L3] indicates the measure (volume) of

element T , θ is the volumetric water content obtained from the solution of Richards’

equation, qTF [L/T] is the Larson-Niklasson post-processed flux associated to face F and

oriented outward of element T , cF,X are the concentration values at the right (cF,R) or

left (cF,L) of face F (the distinction between right and left is made with respect to a local

counterclockwise reference system defined in accordance to the nodal numbering of face

F and which defines also the orientation of qF ), and AF [L2] is the area of face F . The

term qtsf,T represents the surface-to-subsurface solute exchange associated to element T .

Thus, it can assume a non vanishing value only on surface boundary elements. Details on

how it is computed in the proposed approach are discussed in section 5.3.5.
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The linear Galerkin method applied to the dispersive flux −D∇c with implicit time

integration gives:

(Akd+1 +
1

∆td
Mkd+1)ckd+1

h =
1

∆td
Mkdckdh − b

t,kd+1 (5.6)

where kd is the dispersive time step index, ch =
{
ci

}
is the vector of the numerical approx-

imation for concentration c at each node i ∈ N , and the coefficients of the, respectively,

dispersion and mass matrices and boundary conditions vector are:

aij =

∫
Ω

D∇φi∇φjdΩ (5.7a)

mij =

∫
Ω

θφiφjdΩ (5.7b)

bti =

∫
Γt

(−D∇c) · νφidΓt =

∫
Γt

qtnφidΓt (5.7c)

where i, j = 1, ..., N , φ are the linear basis functions of the Galerkin FE approximation, Γt

is the domain boundary, D is the dispersion tensor computed by considering the elemental

mass-conservative velocity field q recovered from qF by using lowest order Raviart-Thomas

(RT0) interpolation, θ is the volumetric water content obtained from the solution of

Richards’ equation, qtn [M/(L2T)] is the Neumann (dispersive) flux, and ν is the outward

normal vector to the boundary.

The time-splitting algorithm solves equation (5.5) na times for each T ∈ Th using

∆ta as time step and determining the predictor concentration cna
T on each T ∈ Th. Since

HRFV and FE use different functional spaces for the approximation of the same dependent

variable (concentration), an interpolation of cna
T between elements and nodes is performed

in order to generate the nodal concentration vector cna
h = ĉkd+1

h , used as initial condition

in the dispersive step. This solves the FE system (5.6) with ∆td as time step for the final

concentration ckd+1
h . Again, an interpolation of the nodal concentration values between

nodes and elements is performed in order to generate the elemental concentration field

ckd+1
T for each T ∈ Th used as initial condition in the following step ckd+1

T = ckaT . We can

express thusly a general form of the time-splitting algorithm used:

For each time step, do:

• advection step, for each T ∈ Th
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1. c
(0)
T := ckaT

DO ka = 0, na − 1

(θT cT )ka+1 = (θT cT )ka − ∆ta
|T |

∑
F∈FT

(qTF )kacF,XAF + qkats,T∆ta + qkatsf,T∆ta

END DO

2. cna
T → cna

h

3. ĉkd+1
h := cna

h

• dispersive step for ckd+1
h

(Akd+1 + 1
∆td

Mkd+1)ckd+1
h = 1

∆td
Mkd+1ĉkd+1

h − bt,kd+1

4. ckd+1
h → ckd+1

T ∀T ∈ Th
5. ckaT := ckd+1

T ∀T ∈ Th

The mass matrix M at the right hand side of the system solved in the dispersive step

is computed at time level kd+1. As noted before for the generic form of the time splitting

algorithm, this is done in order to guarantee that the sum of equations (5.4a) and (5.4b)

gives equation (5.3).

Compared to the time-splitting approach proposed in Mazzia et al. [2000], here the

dispersive flux is discretized with the FE scheme instead of with the MHFE scheme. The

advantages are that, in contrast to the MHFE method, the FE method is computationally

efficient and is not affected by ill-conditioning problems. On the contrary, the new pro-

cedure requires concentration interpolation between elements and nodes and vice versa,

as represented in steps 2 and 4 of the above algorithm. This interpolation has to be

performed carefully in order to maintain mass conservation.

The HRFV and linear FE schemes use different functional spaces for the approximation

of the dependent variable, which are the space of element-wise constant functions and

the space of linear test functions, respectively. Thus, the HRFV concentration field is

element-wise constant while the FE concentration field, computed on each node of the

computational domain, is continuous and piecewise linear. When the two techniques

are combined in a time-splitting technique, the variable interpolations required to pass

information from elements to nodes and vice versa are performed by ensuring that the

following equality always holds:∫
Ω

θcdΩ =
∑
T∈Th

θT cT |T | =
∑
i∈N

θiciVi (5.8)
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where Vi is the volume associated to node i. The above equation states that the total

solute mass in the system has to be the same whether it is calculated by summing up

each elemental contribution or each nodal contribution. Defining NT as the set of nodes

of element T and Ei as the set of tetrahedra sharing node i, the linear mass-conservative

element-to-node and node-to-element interpolations satisfying equation (5.8) are:

ci =
[∑
T∈Ei

(θT cT |T |)
]
/(4θiVi) ∀i ∈ N (5.9)

cT =
[ ∑
i∈NT

(θiciVi)
]
/(4θT |T |) ∀T ∈ Th (5.10)

where equation (5.9) is used after the advective time step to calculate the nodal concen-

tration field from the elemental concentration field while equation (5.10) is used after the

dispersive step to calculate the elemental concentration field from the nodal concentration

field.

5.3.3 Boundary conditions

The time-splitting requires careful handling of boundary conditions. To better describe

how the boundary conditions are implemented, we distinguish between inflow and outflow

boundaries, defined as ΓtI and ΓtO and characterized by having the normal components of

the flow velocity directed into (v · ν < 0) and out of (v · ν > 0) the domain, respectively.

A special case occurs when v · ν = 0, as here the advective flux will automatically be

zero. The boundary of the domain Γt is thus subdivided into inflow boundary, outflow

boundary, and zero-advective (or Neumann) boundary Γtn, such that Γt = ΓtI ∪ ΓtO ∪ Γtn.

Inflow boundaries can be characterized by both advective inflow and dispersive exchanges.

For this reason, Cauchy conditions, expressed as qtc = (vc −D∇c) · ν, are usually of use

on ΓtI . In CATHY FT they have been implemented by imposing Dirichlet-type boundary

conditions (c = cD) in the advective step and Neumann-type boundary conditions (qtn =

−D∇c · ν) in the dispersive step. However, since the transport module in CATHY FT

at this time does not account for diffusive or dispersive exchange at the boundaries, a

zero-Neumann condition is set in the dispersive step. For example, solute inflow from

rainfall or infiltration from a source of contaminant are specified as:

vc · ν = vcD · ν on ΓtI ⇒ Dirichlet boundary condition c = cD in the advective step



136 5.3 Methodology

qtn = −D∇c · ν = 0 on ΓtI ⇒ zero-Neumann condition in the dispersive step

Outflow boundaries ΓtO are characterized by outgoing velocities. In the HRFV ap-

proach this type of boundary is governed only by the velocity field and it is thus im-

plemented by imposing a zero-Neumann condition (qtn = 0) in the dispersive step. For

example, outflow from a seepage face is modeled as:

vc · ν on ΓtO ⇒ Boundary governed by the velocity field in the advective step

qtn = −D∇c · ν = 0 on ΓtO ⇒ zero-Neumann condition in the dispersive step

For zero-advective boundaries Γtn, the dispersive flux can be either zero, of inflow, or

of outflow. Each of these cases has to be implemented in the dispersive step by imposing,

for example, a known Neumann dispersive flux qtn. However, for the same reasons noted

above, zero-advective boundaries in CATHY FT are also treated with a zero-Neumann

condition.

In the time-splitting code implementation of the transport boundary conditions, we

define the set of boundary faces of the computational mesh as FB, which is the union

FO ∪ FI ∪ Fn, where FO is the set of outflow boundary faces, FI is the set of inflow

boundary faces, and Fn is the set of zero-advective boundary faces. Boundary elements

are characterized by having, at least, one face in FB. For each face in FT ∩ FB the term

qTF cF,X of eq. (5.5) represents a boundary advective flux. For boundary faces we consider

that qF = qTF (meaning that the flux associated to face F is oriented outward of element T ).

Consequently, cF,L and cF,R represent, respectively, the subsurface concentration (inside

the domain) and the surface concentration (outside the domain and eventually imposed)

of face F . Since inflow, outflow, and zero-advective boundary faces are characterized by

having, respectively, qF < 0, qF > 0, and qF = 0, boundary conditions on each F ∈ FB
are imposed as it follows:

if qF < 0 ⇒ F ∈ FI , qF cF,X = qF cF,D with cF,R = cF,D Dirichlet boundary condition

if qF > 0 ⇒ F ∈ FO, qF cF,X = qF cF,L with ouflowing advective flux governed by qF

if qF = 0 ⇒ F ∈ Fn, qF cF,X=0



137 5.3 Methodology

1 Surface flow 2 Surface transport 3 Subsurface flow 4 Subsurface transport

qsb
k qtsb

k

Qk+1,hk+1 Qm
k+1,csf

k+1 ψk+1,qk+1

BC switching

ck+1

Mass balance

qsf
k+1

Atmospheric BCk+1

qsf
k+1

qtsf
k+1

qtsf
k+1

qsb
k+1 qtsb

k+1

Figure 5.1: Solution sequence (from 1 to 4 as labeled) for the four governing equations

in CATHY FT. k is the time step counter and the solution is evaluated at tk+1. h [L] is

the ponding head relative to Q and csf [M/L3] is the surface concentration relative to Qm.

All other variables are as defined in section 5.3.1. The values qsb
k+1 and qtsb

k+1 are used

as input at the following time step for, respectively, the surface flow and surface transport

equations (so they become the new qsb
k and qtsb

k).
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5.3.4 Solution procedure

Integration of the surface and subsurface equations is achieved with a sequential iteration

procedure and coupling is performed through a boundary condition switching algorithm.

Surface-subsurface partitioning is managed by the subsurface module since this is the

model component that handles the crucial atmospheric inputs. The solution of the flow

and transport equations is seamlessy handled since in the sequential solution procedure

the flow modules are solved before their transport counterparts. In the sequential solution

procedure, coupling is intrinsically linked to time stepping. The control on the time step

evolution of the overall procedure is made by the subsurface flow router, subject only to

a convergence constraint related to the nonlinear scheme. By contrast, the stability of

the explicit method used to discretize the surface equations requires a CFL restriction

on the time step. Thus, for each subsurface time step ∆t, multiple surface time steps

are performed. The dispersive fluxes of the subsurface transport equation, discretized by

means of an implicit method, are not constrained by stability or convergence conditions,

thus the dispersive time step ∆td is synchronized with the subsurface flow time step

(∆td = ∆t). Within this framework, multiple advective explicit time steps are taken per

dispersive step, as described earlier.

The procedure to solve the four coupled governing equations is described schematically

in the flow chart of Figure 5.1 and in stepwise fashion below. In what follows, we define

the set of surface boundary faces as FS and the set of surface boundary nodes as NS.

Given the time step ∆t, the different steps to evaluate the solution at time tk+1 from

the solution at time tk for surface discharge Q, surface mass discharge Qm, subsurface

pressure head ψ, and subsurface concentration c are:

1. solution of the surface flow equation for Qk+1 (on each cell C ∈ S). This requires the

subsurface-to-surface water exchange qksb (on each cell C ∈ S) as input, calculated

at the end of the previous subsurface flow time step. Ponding heads hk+1 (on each

cell C ∈ S) are calculated from the computed Qk+1 (on each cell C ∈ S) values.

2. solution of the surface transport equation for Qk+1
m (on each cell C ∈ S). The

procedure requires the subsurface-to-surface mass exchange qktsb (on each cell C ∈ S)

as input, calculated at the end of the previous subsurface transport solution. Surface

concentration ck+1
sf (on each cell C ∈ S) is then calculated from the computed mass
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discharges Qk+1
m (on each cell C ∈ S) and flow discharges Qk+1 (on each cell C ∈ S)

of the preceding step.

3. update of the subsurface boundary condition on the surface nodes. This is accom-

plished by considering the ponding head hk+1 (on each node i ∈ NS) and the atmo-

spheric boundary condition to determine the surface-to-subsurface water exchange

qk+1
sf (on each node i ∈ NS).

4. solution of the subsurface flow equation for the pressure head ψk+1 (on each node

i ∈ N ) and moisture content θk+1 (on each node i ∈ N ). The velocity field vk+1

(on each element T ∈ Th) is post-computed from the pressure head solution.

5. reconstruction of the velocity field vk+1 with the mass-conservative Larson–Niklasson

post-processing algorithm. The reconstructed velocity fields qk+1
F (on each face F ∈

F) and qk+1 (on each element T ∈ Th) are then used, respectively, by the advective

and dispersive solvers of the subsurface transport equation.

6. computation of the subsurface-to-surface water exchange fluxes qk+1
sb (on each node

i ∈ NS) based on the pressure head solution ψk+1 (on each node i ∈ N ) and the

balance with the atmospheric fluxes. The qk+1
sb (on each cell C ∈ S) is then used as

input by the surface flow solver at the next time step, thus becoming qksb (on each

cell C ∈ S).

7. computation of the surface-to-subsurface mass exchange fluxes qk+1
tsf (on each face

F ∈ FS). This term relies on the velocity field qk+1
F (on each face F ∈ FS).

In particular, if a Dirichlet condition for concentration is required (in the case of

inflow), the concentration value to be imposed is calculated by performing a solute

mass balance which considers the concentration ck+1
sf (on each face F ∈ FS), hk+1

(on each face F ∈ FS), and the atmospheric input.

8. solution of the subsurface transport equation for ck+1 (on each element T ∈ Th).
Using as initial condition the concentration ck (on each element T ∈ Th), i.e., the

solution at the previous time step, the advective step computes ĉk+1 (on each element

T ∈ Th). With a mass-conservative variable interpolation, the concentration values

are determined on each node i ∈ N and used as initial condition by the dispersive
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solver, which computes the final concentration field ck+1 (on each node i ∈ N ). The

final concentration field on each T ∈ Th, required as initial condition for the next

time step, is calculated by performing a mass-conservative variable interpolation

from the nodal values.

9. computation of the subsurface-to-surface solute mass exchanges qk+1
tsb (on each face

F ∈ FS). This is accomplished by performing a solute mass balance on each face of

the surface mesh based on the atmospheric input and the solute mass passed across

the surface, governed by the velocity field qk+1
F (on each face F ∈ FS). The qk+1

tsb (on

each cell C ∈ S) is then used as input by the surface flow solver at the next time

step, thus becoming qktsb (on each cell C ∈ S).

The 9-step procedure described above shows how the different numerical schemes used

require input variables and compute output variables which are defined in different sets of

the computational mesh or surface grid. In particular: ponding heads h are calculated in

step 1 on each cell C ∈ S while they are required as input in step 3 on each node i ∈ NS to

compute the nodal surface-to-subsurface exchanges qsf and in step 7 on each face F ∈ FS
to compute the surface-to-subsurface solute mass exchanges qtss; the subsurface-to-surface

water exchanges qsb are calculated on each node i ∈ NS in step 6 while they are required as

input in step 4 on each cell C ∈ S; surface concentrations csf are calculated on the surface

cell and are required as input in step 7 on each face F ∈ FS to compute the surface-to-

subsurface solute mass exchanges qtsf ; in step 8 the advective solver requires and computes

concentrations c on each element T ∈ Th, while the dispersive solver requires and computes

concentrations on each node i ∈ N ; and the subsurface-to-surface solute mass exchanges

qts are calculated in step 9 on each face F ∈ FS while they are used as input on each

cell C ∈ S in step 2. Interpolation algorithms are required to pass information to and

from the surface and subsurface domains, the flow and transport components, and the

advection and dispersion solvers.

Careful considerations are always required when performing variable interpolations

since they can introduce mass balance errors that affect the overall numerical solution [e.g.,

Goumiri and Prevost , 2011]. Camporese et al. [2010] and Weill et al. [2011] describe in

detail the procedure to calculate the terms used to couple the surface and subsurface

equations in CATHY and CATHY FT. Additionally, Dagès et al. [2012] and Fiorentini

et al. [2015] provide an in-depth mass balance analysis of the sources of coupling error in
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the CATHY (flow-only) model and propose improvements to coupling related algorithms

in the model. In this study we proposed earlier a mass-conservative variable interpolation

to reconstruct the nodal concentration field from an elemental concentration field and vice

versa (eqs. (5.9) and (5.10)), as required by the time-splitting technique implemented to

solve the advective-dispersive equation. We now present a mass-conservative algorithm

to compute the surface–subsurface transport coupling terms. We thus focus on steps 7

and 9 of the solution procedure.

5.3.5 Computation of surface–subsurface transport coupling terms

The terms that couple the surface and subsurface transport equations are qtsf and qtsb of

equations (5.1c) and (5.1d) and represent the exchange of solute between the surface and

subsurface domain. Since solute transport depends on the flow conditions, they mainly

rely on the different states arising after the solution of the surface and subsurface flow

equations (ponding situation, atmospheric input, and the actual water flux corresponding

to infiltration or exfiltration).

The term qtsf represents the surface-to-subsurface solute mass exchange and can as-

sume a non vanishing value only on inflow boundaries, representing an advective mass

flux, or on zero-advective boundaries, representing a dispersive mass flux. However, since

the coupling in CATHY FT does not yet explicitly account for diffusive or dispersive

exchanges between the surface and the subsurface, qtsf is always zero on zero-advective

boundaries. On inflow boundaries it is implemented as a subsurface transport boundary

condition, computed by imposing a Dirichlet-type condition in the advective step (and a

zero-Neumann flux condition in the dispersive step). With reference to the HRFV equa-

tion (5.5), the surface-to-subsurface solute exchange associated to the surface boundary

element T and relative to the face F ∈ FT ∩ FS is computed as:

if qF < 0 (infiltration) → F ∈ FI ∩ FS ∩ FT qtsf,T = qF cF,DAF/|T |

if qF > 0 (exfiltration) → F ∈ FO ∩ FS ∩ FT qtsf,T=0

if qF = 0 (zero-flux) → F ∈ Fn ∩ FS ∩ FT qtsf,T = 0

where cF,D is the Dirichlet boundary condition for concentration associated to face F ∈
FI ∩ FS ∩ FT . The Dirichlet concentration cF,D is determined via a local solute mass



142 5.3 Methodology

balance calculation which considers the atmospheric input, ponding head, and the surface

concentration imposed and obtained after the solution of the surface equations. We

define the surface concentration and ponding head associated to cell C as cc,sf and hc,

respectively. The set of faces that defines C is denoted by Fc. Since hc and cc,sf are

constant on cell C, for each face F ∈ Fc the relative ponding head hF,sf and surface

concentration cF,sf are equal to the cell values (hF,sf = hc and cF,sf = cc,sf ). To calculate

cF,D the surface concentration is updated by performing a mass balance which accounts

for any dilution or accretion by rainfall and evaporation. The updated concentration

cF,upd associated to face F is computed as:

cF,upd = cF,D =
qatmc

∗AF∆t+ hF,sfcF,sfAF
qatmAF∆t+ hF,sfAF

(5.11)

where qatm [L/T] is the atmospheric flux given as input and c∗ [M/L3] is a concentration

value to be set according to the sign of qatm, which corresponds to rainfall when positive

and to evaporation when negative. The three following situations can arise:

qatm > 0 → c∗ = catm

qatm < 0 → c∗ = cF,sf if the solute evaporates with water

qatm < 0 → c∗ = 0 if the solute does not evaporate with water

where catm is the solute concentration associated with the atmospheric input in the case

of rainfall. Note that infiltration and evaporation can coexist only if ponding is present.

Note also that, if no ponding occurs after the solution of the surface flow equation, the

Dirichlet concentration cF,D will be equal to the rainfall concentration catm.

The term qtsb represents the subsurface-to-surface solute exchange, computed after

the solution of the subsurface transport equation for each cell C ∈ S. It accounts for the

solute mass that, subsequent to any source arising from exfiltration and rainfall and any

sink arising from evaporation and infiltration, has to be, respectively, added to or removed

from the solute mass calculated by the surface transport module (at the previous time

step). It is thus calculated as the difference between the incoming mass flux and the mass

flux leaving the surface. We distinguish the rainfall case from the evaporation case. In

the case of rainfall (qatm > 0), the subsurface-to-surface solute exchange qtsb,F associated

to face F ∈ Fs of cell C is computed as:

qtsb,F =
qatmcatmAF + qF cF,XAF

∆s
(5.12)
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where ∆s [L] is the length of the channel segment for the given cell. In the above equation

the first term represents the incoming mass flux from rainfall while the second term

represents either the incoming mass flux from exfiltration (qF > 0), with the concentration

cF,X assuming the subsurface value cF,L associated to face F , or the mass flux leaving the

surface through infiltration (qF < 0), with the concentration cF,X assuming the surface

or Dirichlet value associated to face F . Complications arise for the evaporation case

(qatm < 0) as different scenarios have to be carefully considered. In the copresence of

evaporation and infiltration, the subsurface-to-surface solute exchange associated to face

F is computed as:

qtsb,F =
qatmc

∗AF + qF cF,DAF
∆s

(5.13)

where c∗ can be the surface concentration cF,sf if the solute evaporates with water and

zero otherwise. The two terms in the above equation represent the mass flux leaving the

surface through evaporation and infiltration, respectively. In the case of evaporation and

exfiltration from the soil three different situations have to be examined according to the

potential surface evaporative flux, defined as qF,ev = −hF,sf/∆t for face F . If qF,ev = 0 no

mass can evaporate from the surface and the mass exfiltrated from the soil flows directly

to the atmosphere; if qF,ev < qatm all surface water evaporates, surface mass can either

evaporate or not, and the mass exfiltrated from the soil goes directly to the atmosphere;

if qF,ev > qatm part of the surface water evaporates, part of the surface mass can either

evaporate or not, and the mass exfiltrated from the soil flows to the surface. Thus, for

the three different cases the subsurface-to-surface solute exchange qtsb,F associated to face

F is computed as:

if qF,ev = 0 → qtsb,F = 0

if qF,ev < qatm → qtsb,F = qF,evc
∗AF/∆s

if qF,ev > 0 → qtsb,F = (qF,evc
∗AF + qF cF,LAF )/∆s

where c∗ can be either cF,sf or zero. At the end the subsurface-to-surface solute exchange

qtsb,c, associated to cell C and used directly as input by the surface transport equation in

the following time step, is calculated as:

qtsb,c =
∑
F∈Fc

qtsb,F (5.14)

i.e., by summing up the values associated to the two faces defining C.
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Figure 5.2: 3D numerical grid for the LEO landscape.

5.4 Results

The model’s performance is shown for three different scenarios that involve: 1) variably

saturated subsurface flow and advective transport; 2) variably saturated subsurface flow

and advective-dispersive transport; and 3) coupled surface-subsurface flow and transport.

The test cases are designed to allow analysis of the HRFV model and velocity reconstruc-

tion algorithm, of the time-splitting algorithm for a variably saturated case, and of the

algorithm which couples the surface and subsurface transport processes. The CATHY FT

model is run at the Landscape Evolution Observatory (LEO) [Hopp et al., 2009].

LEO consists of three identical 30 m long and 11 m wide convergent hillslopes filled

with 1 m of basaltic tephra ground to homogeneous loamy sand. The hillslopes are of 10o

average slope. The surface of the LEO hillslope is discretized into 60 x 22 grid cells (1403

nodes and 2640 triangular elements). The resulting surface mesh is projected vertically

to form a 3D tetrahedral mesh with 18 parallel layers of varying thickness (Figure 5.2).

From top to bottom the thickness of the 18 layers is: 0.05 m for the first four layers, 0.06

m from layer 5 to layer 14, and 0.05 m from layer 15 to 18.

The first two scenarios reproduce the isotope tracer (deuterium, 2H) experiment con-

ducted at LEO in April 2013. A detailed description and a first modeling analysis of the

experiment can be found in Scudeler et al. [2016b]. With the first scenario we compare

the accuracy and quality of the CATHY FT solution to the solution obtained in Scudeler

et al. [2016b], where the subsurface transport equation was entirely solved with an FE-

based model. It is well known that the FE method is subject to Peclet limitations when
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applied to advection-dominated processes. To avoid oscillatory behavior one can impose

a local grid Peclet number restriction, achievable by using a fine spatial discretization but

at the expense of high computational effort, or apply an upwinding scheme, obtaining

a first order accurate stable solution but with numerical diffusion smearing the front.

CATHY FT uses a more sophisticated numerical solver that is also better suited to simu-

late advective dominated processes and that does not suffer from Peclet limitations as the

FE solution does. With the second scenario we compare the FE and CATHY FT results

when simulating both advection and dispersion in order to assess the quality and accuracy

of the time-splitting technique implemented. The third scenario simulates a synthetic test

case in the presence of water and solute injection and runoff generation, suitable to test

the surface–subsurface transport coupling algorithms.

5.4.1 Isotope tracer experiment performed at LEO

During the first tracer experiment performed at LEO three pulses of rain at a rate of 12

mm/h were injected into the system: at the beginning (9.30 am, 13 April 2013) for 5.5

h, after 23.5 h for 6 h, and after 9 d (215.5 h) for 1.25 h + 4 h separated by 3 h with no

rain. 2H was introduced into the system with the second pulse of rain. Before this, the

deficit (δH2) measured in the system, as in the water of the first and third pulses, is 60‰.

Initially the system was very dry since it had not been wetted for 6 weeks prior to the

experiment. The estimated total initial volume of water is about 26 m3 (the total storage

capacity of the hillslope is 135 m3). All the rain water applied infiltrated into the soil

and generated seepage face outflow that started after 5 h and was characterized by two

outflow peaks. No direct measurements of evaporation were made during the experiment.

The estimated rate calculated from water balance calculations, which considered the total

water storage and total seepage face flow recorded every 15 minutes, was 5 mm/d during

rain pulses and 3.9 mm/d after the third pulse.

The flow solution is obtained with the same model setup and parameterization that

in Scudeler et al. [2016b] was successfully used to reproduce the integrated flow response:

rainfall and evaporation are handled with a Neumann (water flux) boundary condition, the

outflow from the downslope vertical plane is modeled with a seepage face boundary, and

on the remaining LEO boundaries a zero Neumann (water flux) condition is set; the initial

conditions match the soil moisture distribution at each sensor location; spatially variable
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rainfall is set according to analysis performed on the engineered rain system; anisotropy is

added with vertical saturated hydraulic conductivity Kv = 1.4× 10−4 m/s and horizontal

conductivity Kh = 6 × 10−4 m/s; and heterogeneity is added with a lower conductivity

at the seepage face (Ksf = 2.2 × 10−5 m/s) on the basis of a clogging hypothesis from

accumulation of fine particles [Niu et al., 2014b].

The resulting volumetric water content and velocity field, reconstructed at each time

step, are used as input by the transport model, which is run for two different scenar-

ios, the first for pure advection and the second for advection-dispersion with longitudinal

dispersivity αl = 0.01 m and transverse dispersivity αt one order of magnitude smaller

than αl. In the transport analysis the δ2H values are expressed in terms of c [-], which

is the concentration relative to the minimum deficit 0. Concentration c=0 means that

in the water the deficit is maximal (60‰), while c=1 means that in the water there

is no deficit. As a consequence, as initial conditions c=0 is set everywhere. The sur-

face boundary is treated as an inflow boundary during rainfall and an outflow boundary

during evaporation. Cauchy conditions are used in the first case, with a Dirichlet-type

condition implemented in the advective step and a zero-Neumann (dispersive) condition

implemented in the dispersive step, when it takes place. In particular the Dirichlet con-

centration cD is set to zero for the first and third pulses (during water injection) and to

one for the second pulse (during 2H-enriched water injection). Zero-Neumann (disper-

sive) conditions are used during evaporation, as solute outflow from the surface is only

governed by the velocity field, with all the isotopic mass in solution with the evaporating

water leaving the domain by advection. Solute outflow from the seepage face boundary,

implemented at the downslope vertical plane boundary, is also governed by the velocity

field. On all the other boundaries (the three other lateral boundaries and the base of the

hillslope) a zero-Neumann (dispersive) condition is set in the dispersive step and, with

the zero water flux condition imposed, solute advective flux is automatically zero as well.

Figures 5.3 and 5.4 compare the results obtained with the FE-based and HRFV-based

models when simulating pure advection. For the FE-based model the instabilities arising

from the Peclet limitations are controlled by reducing the grid spacing. The model could

be run by setting a relatively small longitudinal and transverse dispersivity (αl = 0.001 m

and αt=0.0001 m), but mesh refinement was nonetheless required in order to maintain low

Peclet numbers when capturing infiltration/evaporation fluxes and formation of base flow
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Figure 5.3: Results for the average concentration at the seepage face obtained for the

purely advective case. The vertical dashed lines indicate the timing of the three pulses of

rain (red when the water is 2H-enriched and blue when it is not).
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Figure 5.4: Simulated mass balance results obtained for the purely advective case. From

top to bottom: 2H mass that enters the system, Min (normalized with respect to the total

mass added to the system during the simulation); that exits through the seepage face, Msf ;

that exits through evaporation, Mev; and that remains in storage, Mst. The bottom graph

shows the cumulative mass balance error Er=(Min−Msf−Mev−Mst). The vertical dashed

lines indicate the timing of the three pulses of rain (red when the water is 2H-enriched

and blue when it is not).
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and to avoid unbounded oscillatory behavior of the solution yielding failure to converge

numerically. The 3D mesh employed for this FE run is formed by 30 layers of varying

thickness (compared to 18 for the HRFV run), with the thinnest layers (0.01 m) assigned

to the surface and bottom layers.

In Figure 5.3 we report the results for the average concentration at the seepage face.

For both the FE and HRFV runs the curves look similar, with 2H showing up after the

second pulse and with the presence of a breakthrough after the third pulse. In contrast

to the HRFV solution, the FE curve exhibits slight oscillatory behaviour, in particular

towards the end of the simulation. These oscillations could be reduced by subjecting the

method to further grid Peclet number restrictions. However, further mesh refining would

easily render the computational costs unacceptably high. In contrast, the HRFV method

shows robustness to Peclet limitations and potential oscillations are bounded by adapting

the advective time-step size according to the CFL constraint. Since smaller time steps are

employed only at times when large velocities occur, the computational efficiency is not

affected as much as by grid restrictions. Moreover, in the HRFV scheme the algorithm

can be easily accelerated by introducing a spatially variable time step size, which performs

more advective time steps only where large velocities occur [Mazzia and Putti , 2005].

In Figure 5.4 we report the results in terms of a balance between the cumulative mass

of deuterium that entered the hillslope (with the second rainfall pulse), that exited the

system (through seepage face outflow and evaporation), and that remained in storage. For

both the FE and HRFV runs at the end of the simulation a high percentage of the total

mass of 2H injected has been lost through evaporation while only a small percentage has

seeped out, in accordance to the low concentration values obtained. The two solutions

exhibit different mass balance behavior as at the end the FE cumulated mass balance error

is 2% while for HRFV it is negligible and of order 10−5% for the whole simulation. These

results are evidence of the high accuracy that can be achieved with an advective transport

solver that mimics a mass balance within each cell of the computational domain and that

makes use of a mass-conservative velocity field, compared to the solution obtained with

a classical FE model.

Figures 5.5 and 5.6 show the average concentration at the seepage face and the mass

balance results when both models are run with longitudinal and transverse dispersivity

of 0.01 m and 0.001 m, respectively. The results show that while the FE solution is not
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Figure 5.5: Results for the average concentration at the seepage face obtained for the

advective-dispersive case. The vertical dashed lines indicate the timing of the three pulses

of rain (red when the water is 2H-enriched and blue when it is not).
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Figure 5.6: Simulated mass balance results for the advective-dispersive case. From top

to bottom: 2H mass that enters the system, Min (normalized with respect to the total mass

added to the system during the simulation); that exits through the seepage face, Msf ; that

exits through evaporation, Mev; and that remains in storage, Mst. The bottom graph shows

the cumulative mass balance error Er=(Min−Msf−Mev−Mst). The vertical dashed lines

indicate the timing of the three pulses of rain (red when the water is 2H-enriched and blue

when it is not).
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significantly affected by the increase in dispersivities, for the CATHY FT (time-splitting)

model the mass balances obtained by performing or not the dispersive step are completely

different. Even for the relatively small dispersivity values used in this test, the total mass

outflow from the seepage face at the end of the simulation as well as the concentration

before the third pulse of rain are four times higher compared to the purely advective case.

This clearly shows how the time-splitting procedure calculates greater dispersive flux than

would occur by physical dispersion alone or would be indicated by an exact solution of

the governing equation. This non-physical dispersion, which causes the solute to quickly

spread and arrive at the discharge outlet, can be attributed to the node-to-element and

element-to-node variable interpolations implemented to combine the node-based FE and

element-based HRFV solutions. Thus, in this case the near-perfect mass balance obtained

with the time-splitting approach (at the end of the simulation the cumulative mass balance

error is 0.2% compared to 2% for the FE case) does not guarantee that a true or accurate

solution has been achieved.

5.4.2 Synthetic test case involving surface–subsurface coupled

processes
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Figure 5.7: Hydrological response to the synthetic test case involving coupled surface–

subsurface processes: rain input pulse Qr, solute input pulse Qrcatm (catm=1 mg/m3), and

discharge Q and solute mass discharge Qm at the surface outflow cell.

We test the surface–subsurface coupling algorithm for a synthetic test case on the

LEO hillslope (Figure 5.2). Solute mass is injected into the system with a pulse of rain

at a rate of 118.8 mm/h for 1 h from the beginning of the simulation (rain input pulse
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Qr=1.125×10−2 m3/s as shown in Figure 5.7 for a total of 40.4 m3 of water volume

injected). The tracer concentration in the rain water is set to catm=1 mg/m3 (solute

input pulse Qrcatm=1.125×10−2 mg/s as shown in Figure 5.7 for a total of 40.4 mg of

solute mass injected). After this, zero evaporation is set until the end of the simulation,

which is run for 36 h. Initially the water table is set at 0.6 m above the bottom with

the pressure head hydrostatically distributed and the soil is solute-free. For the flow

model setup we set a seepage face at the downslope vertical plane, atmospheric conditions

at the surface (rainfall and evaporation) updated at each nonlinear iteration according

to the surface conditions, and zero water flux conditions on all the other boundaries.

On the transport side, we treat as an inflow boundary, an outflow boundary, and a

zero-advective boundary each portion of the boundary characterized, respectively, by

normal velocity components directed inside the domain, by normal velocity components

directed outside, and by zero water flux conditions. The flow solution is obtained with

a simple homogeneous parameterization: saturated hydraulic conductivity Ks = 10−4

m/s, porosity n = 0.39, and elastic storage Ss = 5 × 10−3 1/m. The van Genuchten

retention curves are used with parameters n
V G

= 2.26 (van Genuchten fitting parameter),

residual moisture content Swr=0.002, and ψsat=-0.6 m (parameter related to the air entry

suction). The transport solution is obtained by performing only the advective step since

both dispersivity and diffusion are set to zero.

The hydrological response is characterized by both outflow from the base of the hills-

lope and surface outflow. Seepage face outflow begins right from the start of the simulation

as a direct outcome of the wet initial conditions. The discharge Q at the outlet (shown

in Figure 5.7), starts during rainfall, reaches values comparable to the rain pulse rate Qr,

and ends a little bit after rainfall, shows that the surface soil gets quickly saturated and

that the saturation mechanism is mainly Dunnian. On the transport side, mass discharge

Qm at the outlet (shown in Figure 5.7) behaves as the flow discharge Q, while solute mass

at the seepage face shows up only towards the end of the rainfall event and with reduced

rate compared to the flow. This means that seepage face outflow is mainly characterized

by old water (water already present in the system before the injection).

In Figures 5.8 and 5.9 we show respectively the water and mass balance results for the

simulation. At the end of the simulation (after 36 h), 63.6% of the total volume of water

injected has seeped out and 70.58% has exited from the surface outlet. The cumulative
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Figure 5.8: Simulated water balance results. From top to bottom: cumulated volume of

water that enters the system, Vr (normalized with respect to the total volume added to the

system during the simulation); that flows out through the surface outlet, Vout; that exits

through the seepage face, Vsf ; and cumulated change in total water storage, DVst. The

blue vertical dashed line indicates the duration of the pulse of rain.

change in water storage is -34.45% and the negative sign indicates that over the course

of the simulation the total water storage decreases. The water balance error, calculated

as Erv = Vin − Vsf − Vout − DVst at the end of the simulation, is 0.27%. A good mass

balance is also obtained for the transport. By the end of the simulation 5.95% of the

total solute mass injected into the system has seeped out, 64.65% has exited through the

surface outlet, and the rest remains in storage, minus a cumulative mass balance error

(Erm = Min−Msf−Mout−Mst) of 0.9%. The negative value of the total change in water

storage obtained at the end of the simulation and the small seepage face component

computed by the transport model compared to the flow are further evidence that the

seepage face outflow is mainly characterized by old water.

5.5 Discussion and conclusions

Integrated modeling of solute transport in surface water and groundwater is a particularly

complex problem involving many interacting processes and difficult physics and numer-
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Figure 5.9: Simulated mass balance results. From top to bottom: mass that enters the

system, Min (normalized with respect to the total mass added to the system during the

simulation); that exits through the surface outlet, Mout; that exits through the seepage

face, Msf ; and that remains in storage, Mst. The red vertical dashed line indicates the

duration of the pulse of rain through which the solute was injected.

ics. Hydrological models that incorporate a detailed description and resolution of solute

surface–subsurface interactions are at their early stages and numerous specific improve-

ments are possible, attainable only by performing thorough and rigorous analyses of their

physical and numerical behavior. In this study we have addressed this challenge for the

CATHY FT model and we have described some of its features and identified some of the

key issues associated to its further development, such as controlling numerical dispersion

and mass balance errors, handling complex boundary conditions, and capturing process

interactions.

The CATHY FT model, first introduced by Weill et al. [2011], is an evolving physically-

based model which couples the 3D Richards equation and advection-dispersion equation,

used to describe subsurface flow and transport processes, with the diffusive wave equa-

tion, used to describe surface flow and solute transport propagation over the land surface

and in stream channels. Its development has faced the challenge of approximating accu-

rately and efficiently the difficult behavior of the advection-dispersion equation. Solving

the advection-dispersion equation, in fact, is always very challenging since no numerical
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method is optimal for the entire domain of problems, as has also been shown in this study.

For example, finite element (FE) methods are ideal for dispersive processes whereas in

advection-dominated processes their solution exhibits oscillatory behavior and/or exces-

sive numerical dispersion near steep concentration gradients [Guddati and Yue, 2004]. On

the other hand, methods which are adequate to preserve the steep gradients with minimal

oscillations and numerical diffusion, such as high order Godunov-type finite volumes [e.g.,

Dawson, 1993; Mazzia and Putti , 2005] and discontinuous Galerkin finite elements [e.g.,

Siegel et al., 1997; Cockburn et al., 2000], are not ideal to discretize the dispersive com-

ponent and are not compatible with finite element based flow models [Dawson et al.,

2004a; Klausen and Russell , 2004]. Previous studies related to the CATHY FT model

have shown that the use of the time-splitting operator, which adopts an appropriate nu-

merical technique for advection and dispersion (e.g., high order Godunov finite volumes

and mixed finite element (MFE) [Mazzia and Putti , 2005]), and of locally conservative

methods (e.g., MFE [Putti and Sartoretto, 2009]) for the discretization of the flow equa-

tion give accurate results but at a high computational cost, this last arising from the

computational effort required to solve the MFE systems.

To resolve the trade-off between model accuracy and computational cost, and thus

avoid the use of MFE discretization, we have proposed a mass-conservative linear inter-

polation to combine an element-based high resolution (HRFV) scheme for advection and

a node-based FE scheme for dispersion with a time-splitting operator, and we have re-

solved the incompatibility between the finite volume solver and the FE-based Richards’

model by restoring the mass-conservation properties of the FE velocities with a post-

processing technique [Scudeler et al., 2016a]. The results of the simulations performed

have demonstrated how for purely advective processes the new model gives a solution with

near-perfect mass balance properties and successfully overcomes the limits associated with

FE discretizations and the computational effort of MFE flow solutions. However, when

simulating advective-dispersive processes, the numerical solution clearly introduces non-

physical dispersion that causes the solute mass to quickly spread within the domain, and

thus computational efficiency is gained at the expense of accuracy.

The transport boundary conditions are an additional source of numerical and phys-

ical complexity in the development of CATHY FT. A value-dependent flux (or Cauchy

boundary condition) is used to represent the solute inflow and outflow across the bound-
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ary of the domain, with the advective exhanges governed by the actual fluxes across the

boundaries and the dispersive exchanges governed by the concentration gradient. For

numerical consistency, Dirichlet-type conditions are specified in the case of inflow in the

advective part of the solution procedure while Neumann-type conditions are imposed

in the dispersive step. Thus, a correct representation of the transport processes at the

boundaries relies on the accurate resolution of both the water fluxes and concentration

values to be eventually imposed. In this study we have shown how these modeling issues

represent a particularly difficult problem when boundary conditions are used to represent

solute interactions across the land surface. Boundary conditions together with mass bal-

ance calculations are accurately combined to resolve the solute exchanges between surface

and subsurface. Satisfactory results have been obtained for saturation excess (Dunnian)

surface runoff processes. However, additional tests should be conducted to evaluate if

the method accurately extends to situations governed by infiltration excess (Hortonian)

runoff and in the presence of evaporation. Further studies are also needed to quantify and

assess the importance of diffusive exchanges between the surface and subsurface, currently

neglected in CATHY FT.

Numerous specific improvements and extensions are possible for the model. A future

challenge will be resolving the efficiency and accuracy of the advection-dispersion nu-

merical solution by using, for example, least squares reconstruction [Coudière et al., 1999;

Manzini and Putti , 2007] to evaluate nodal variables from cell averages, instead of with the

linear interpolation as is currently used. Additional physical and numerical complexities

will be introduced by incorporating, as the model continues to evolve, new features such

as chemical reactions (e.g., first-order decay and adsorption), density-dependent solute

transport (e.g., seawater intrusion phenomena), energy balance (including evapotranspi-

ration and soil–vegetation interactions), and so on.





Chapter 6

Conclusions

This thesis has addressed some of the challenges related to the development and appli-

cation of complex numerical models for integrated hydrological simulation. The work

was performed in the framework of a specific model, the CATchment HYdrology Flow-

Transport (CATHY FT) model, and was elaborated into four specific objectives. In

the first three studies, specific aspects related to state-of-the-art models (mass conserva-

tion, complex boundary conditions, and model testing and benchmarking) were analyzed,

whereas in the final study the disparate elements were brought together into an updated,

tested, and documented version of CATHY FT.

The first study met the challenge of improving the numerical performance of the

state-of-the-art hydrological models of both flow and transport phenomena. It was shown

that the non mass-conservative nature of the velocity field arising from standard finite

element (or P1 Galerkin) methods can cause problems for advective transport simulations,

such as solute mass that easily exits from no-flux boundaries, solute mass that remains

permanently entrapped in zones of low hydraulic conducticity, and the generation of

artificial solute mass sources or sinks within some elements of the computational domain,

eventually causing the simulation to abort. To overcome these issues, a post-processing

technique capable of restoring the mass conservation properties starting from the P1

Galerkin velocity field was proposed. It was shown how this improves the overall accuracy

of the companion advective transport model and, as a consequence, how post-processing

strategies for velocity reconstruction represent an attractive alternative to the use of

locally conservative methods, which require a much higher computational cost.

The second study concerned integrated surface water/groundwater resources modeling.

By performing a detailed and novel analysis on the seepage face boundary condition, it
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was shown how integrated modeling involves complex dynamic boundaries that require

careful consideration. In particular, it was shown that a static condition is not always an

adequate stand-in to model the dynamics of the seepage face boundary; that an algorithm

capable of dealing with the multiple seepage faces/exit points case is necessary to model

seepage faces in the presence of layered heterogeneity; and that a coupled surface-surface

model is required to model seepage faces forming at the land surface because ponding,

overland routing, re-infiltration, and return flow have a strong impact on the dynamics.

In the context of model testing and benchmarking, in the third study the CATHY FT

model was tested against a very detailed observation dataset obtained from a highly

controlled flow and isotope tracer experiment performed at the Landscape Evolution Ob-

servatory. This study demonstrated the challenges in validating the new generation of

integrated hydrological models and how complex the problem of model parameterization

is when dealing with multiple processes and multivariate observations of both integrated

and distributed nature.

Based partly on the insights gained from the first three studies, the final study arrived

at a current version of the CATHY FT model which reflects the numerical and physical

processes represented. Important modeling issues related to the numerical resolution of

the advective-dispersive equation and to complex coupling aspects were discussed. It

was shown that, when combining finite volumes with finite elements in a time-splitting

technique to solve the advective-dispersive equation, significant artificial spreading of the

solution is introduced. On the other hand, the use of mixed finite elements instead of finite

elements yields accurate but computationally expensive results. Concerning the coupling

aspects, it was demonstrated how the transport boundary conditions are a source of

numerical and physical complexity, particularly when they are used to represent solute

interactions across the land surface. As of this writing, satisfactory results have been

obtained when simulating solute exchanges during rainfall and saturation excess runoff

and for advective exchanges, whereas additional analyses should be performed in order to

test the model for situations involving evaporation, dispersive exchanges, and infiltration

excess runoff.

This thesis demonstrated how accurate and reliable modeling of integrated processes

requires continual updating, bringing code improvements such as advanced computational

and numerical algorithms and exhaustively testing the model. As integrated hydrological
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models continue to evolve, numerous challenges still need to be addressed. To give some

examples: the efficiency and accuracy of the advection-dispersion numerical solution still

needs to be improved; the importance of solute diffusive exchanges between the surface

and subsurface should be assessed and quantified; the reliability of numerical models in

performing hydrograph separation analysis or deciphering the paths and travel times of

water and solutes needs to be enhanced; validation studies that extend model applications

to complex field situations with detailed observation datasets should be performed; and,

in the specific case of CATHY FT, additional physical processes (e.g., chemical reactions,

density-dependent solute transport, energy balance, . . . ) should be incorporated.
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