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Regional structures in the lithospheric mantle to deep crust in continental
intraplate interiors may act as stress guides, localizing earthquakes
in the overlying brittle crust e.g. Western Quebec - Adirondack seismic zone.

Could this also be the case for subduction zone earthquakes?
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Research aims to:

- test whether previously unmapped upper mantle to deep crustal
structures in oceanic lithosphere may play a role in localizing
earthquake epicentres, especially at their intersection with subduction zones?
- determine effects of shear tractions at the base of the lithosphere.
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Do deep structures in oceanic lithosphere intersecting
subduction zones similarly influence seismicity?

Gravity lineaments (= deep crustal to mantle structures) define boundaries
to areas of greatest seismicity: structures act as stress guides
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Gravity lineaments on shaded MITP08 seismic tomographic 100 km depth slice
- several NW- & NNW-striking lineaments represents lithospheric-scale structures

Identification of deep crustal to upper mantle, trans-Pacific structures from satellite gravity

Trans-Pacific deep crustal to upper mantle lineaments are

—

interpreted from enhanced long wavelength satellite gravity data.

Many gravity lineaments correspond to mapped transform faults &

fracture zones in the oceanic crust, however some lineaments &
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Hess (1960) identified a ca. 3,000 km wide, 14,000 km long
trans-Pacific belt of atolls & guyots (that he interpreted as a
former spreading centre, prior to knowledge of seafloor ages

portions of other lineaments, are highly oblique to mapped

e

structures, suggesting decoupling between oceanic crust and

mantle. Gravity lineaments offset or parallel velocity domain

boundaries in seismic tomographic images of the mantle and

separate or terminate zones of earthquake epicentres of different
depths in maps of historical earthquake data. Seismic tomography
also suggests the possibility for continental mantle “rafts” within
the Pacific Ocean, similar to those previously interpreted in the
Atlantic Ocean by Begg et al. (2009). Some gravity lineaments are
interpreted as margins of these continental fragments.

& magnetic anomalies that contradict this interpretation).

Transverse deep crustal & upper mantle structures may localize seamounts & hotspot-related volcanism

- Subduction of seamounts is suggested as a factor contibuting to seismicity at subduction zones. Can the interpreted structures also influence seismicity
where they intersect with subduction zones, or are these structures responsible for effects attributed to seamount subduction?

- Many seamounts occur along interpreted deep, trans-Pacific structures. Even where hot-spot related, volcanism may be controlled by the deep transverse
structures. Some seamounts form échelon arrays along transverse structures due to transcurrent displacement along underlying, deep structures (Utkin, 2006).
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