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Abstract

The ever-increasing traffic data requirements in telecommunication services lead to a continuous
need for higher transmission capabilities. In this scenario, fiber-optic communications have proven to
be a very promising way of achieving such high bitrates. Nowadays, wavelength division multiplexing
(WDM) systems support transmission capabilities of about 10 Tbps, through multiplexing of several
hundred wavelengths with a single channel bit rate of ∼ 40 Gbps. For pre- and post- processing of
information, WDM requires opto-electronic signal conversion circuits individually set and operated
for each different wavelength channel; therefore this evolution leads to an impractical increase of
circuitry complexity and power consumption. Moreover, with the transmission-capacity increase
in WDM systems, coherent technologies have attracted a large interest over the recent years. The
motivation lies in finding methods for achieving the growing bandwidth demand with multilevel
complex modulation formats. To implement high-order complex (amplitude and phase) modulation
formats, the optical in-phase and quadrature (IQ) components of the information signal need to be
synthesized, processed and detected independently, additionally requiring proper synchronization
of these two IQ optical paths.

Therefore, in spite of the fact that the combination of WDM and coherent technologies enables a
more efficient use of the available spectrum, it also hinders the required circuitry in the transmitter,
receiver and intermediate network nodes. In this Thesis, we present and experimentally demonstrate
new concepts and signal processing techniques that remarkably simplify the required electro-optical
circuitry (and consequently the power consumption) in coherent optical systems. Furthermore, we
also develop new ultrafast all-optical signal processors, able to process the information directly in
the optical domain at ultrafast speeds (ideally, with speeds into the THz regime). These optical
processing systems are becoming increasingly important for a myriad of scientific and engineering
applications, including not only high-speed optical telecommunications but also optical comput-
ing systems, ultrafast biomedical imaging, or ultrafast measurement and characterization systems.
Their fundamental goal is to avoid current electronic-based processing, which severely limits the
operation speeds below a few tens of GHz and entails a bottleneck for the effective use of the high
bandwidth intrinsic to optics.

The problem of simultaneously controlling the amplitude and phase of a complex electromag-
netic signal has long been solved in the spatial domain. Holography was developed as a lensless
interferometric imaging system that was able to record and subsequently reconstruct the original
complex-valued information signal, in spite of the recording medium being sensitive to intensity-only
variations. Holographic systems have been widely applied in a vast number of fields, such as 3D
imaging, spatial-domain signal processing, microscopy or security. The basics of classical (spatial
domain holography) are reviewed in Chapter 3, paying special attention to those concepts that will
serve as foundations for the original ideas presented through this work.
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In this Thesis, we propose and formulate for the first time, to the best of our knowledge, the
exact time-domain counterpart of spatial domain holography, by means of the space-time duality.
This method, which is described in Chapter 4, enables simultaneous control of the amplitude and
phase of a temporal optical waveform with complex envelope using a simple setup composed of
devices sensitive to intensity-only or phase-only variations. To prove its effectiveness, several appli-
cations of time-domain holography are experimentally demonstrated and the results are presented
in this dissertation. First, as a proof of concept, we demonstrate generation of complex-modulated
optical waveforms using a simple setup mainly composed of an electro-optical intensity modula-
tor and a band-pass filter. Then, these complex-envelope waveforms are detected (in amplitude
and phase) using a heterodyne scheme based on an intensity-only photodetector. Additionally, we
propose and implement a simplified scheme to perform electro-optical temporal phase conjugation.
This holographic method greatly simplifies previous electro-optical approaches, avoiding the need
for detection and subsequent processing of the phase of the optical signal prior to the electronic-
based conjugation process. Instead, the proposed approach uses intensity-only photodetection and
modulation components, combined with a band-pass filter, thus reducing the complexity and po-
tential cost of the setup, minimizing errors and simplifying the procedure. Finally, we demonstrate
wavelength conversion of complex-envelope optical signals based on time-domain holography. In
this case, an all-optical approach based on nonlinear cross-phase modulation is used. This tech-
nique exhibits important advantages with respect to all previous approaches that typically use
four-wave mixing, as it avoids the stringent phase-matching condition and requires at least one
order of magnitude less power in the employed pump signals.

Using the Fourier-transform property of duality between the time domain and the frequency
domain, we also propose and formulate, for the first time, the concept of spectral-domain hologra-
phy, which is described in Chapter 5. This novel concept enables the simultaneous control of the
amplitude and phase of an optical spectral response by just manipulating the amplitude spectrum.
Spectral-domain holography is applied to the design of two kinds of signal processors. First, we
implement complex-valued and non-symmetrical optical pulse shaping using a scheme based on
time-domain spectral shaping, which achieves temporal resolutions in the sub-picosecond regime
but has been typically restricted to symmetric and intensity-only pulse shaping operations. In this
scheme, the modulating signal that performs the spectral shaping is a spectral hologram, enabling
the synthesis of complex-envelope output waveforms using a setup identical to that of previous
spectral shaping methods. The proposed methodology can be considered as the time-domain coun-
terpart of (spatial domain) Vander-Lugt filters. Then, we apply spectral-domain holography to the
implementation of non-minimum-phase optical pulse processors using fiber Bragg gratings (FBGs)
operating in transmission, which can be considered as optical linear filters with a minimum-phase
spectral response. In this case, the complex-valued spectral response of the target filter is encoded
in an amplitude-only spectral response (the spectral hologram). The use of FBGs operating in
transmission has well-known advantages with respect to the reflective configuration. In this The-
sis, we present and experimentally demonstrate an additional extraordinary advantage: an FBG
operating in transmission is able to implement signal processing functionalities with bandwidths
well in the THz regime (one order of magnitude higher than conventionally achieved bandwidths)
thanks to the degree of freedom available in choosing the spectral phase in reflection. In particular,
we propose the use of a quadratic spectral phase in reflection, which translates into a linear chirp,
allowing the increase of the grating’s operation bandwidth without increasing the grating spatial
resolution.

The novel concepts of time- and spectral-domain holography can be foreseen as powerful tools
for the development of new techniques for the generation, measurement and processing of ultrafast
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complex-envelope optical temporal waveforms. In this Thesis, we have demonstrated interesting
methods aimed at (i) simplifying the current required setup in coherent systems, and (ii) allowing
the implementation of simpler, arbitrary ultrafast optical signal processing devices, which are key
components for future, low power-consumption high-capacity telecommunication networks. More-
over, the vast number of applications of spatial-domain holography allows us to predict a similar
broad range of applications for the time/spectral-domain holography.
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Résumé

A. Introduction

La demande toujours croissante de la quantité de débit pour les services de télécommunications
entraine un besoin de capacités supérieures de transmission de données. Dans ce contexte, les fibres
optiques ont démontré la possibilité d’obtenir de telles performances. De nos jours, le multiplexage
de longueurs d’ondes (WDM pour wavelength division multiplexing) permet d’obtenir des débits
d’environ 10 Tbps, via le multiplexage de centaines de longueurs d’onde, avec un débit par canal
de 40 Gbps [1]. Pour de tels systèmes, des circuits opto-électroniques adaptés à chaque longueur
d’onde sont necessaires pour le traitement de l’information en entrée et en sortie de fibre optique.
Ceci induit une complexification intense des circuits et une augmentation de l’énergie consommée.
De plus, avec l’augmentation des débits de données grâce aux systèmes WDM, les technologies
cohérentes ont attiré un intérêt certain ces dernières années [2]. Cette thèse est motivée par le
besoin de méthodes pour simplifier et/ou améliorer les systèmes qui combinent les techniques WDM
et les formats de modulations à plusieurs niveaux complexes. Afin d’implémenter des formats
de modulation complexes (amplitude et phase) d’ordres supérieurs, les composantes optiques en
phase et en quadrature (IQ) de l’information doivent être synthétisées, traitées et détectées de
façon indépendante, ce qui demande une synchronisation entre chemins optiques de ces deux IQ
composantes.

Ainsi, malgré le fait que la combinaison des technologies WDM et cohérentes permet une utili-
sation plus efficace du spectre disponible, cela complique des circuits indispensables aux différents
nœuds de transmission, réception et intermédiaires du réseau. Dans cette thèse, nous présentons et
démontrons de nouveaux concepts et techniques pour le traitement du signal qui simplifient consid-
érablement les circuits électro-optiques (et par conséquent, diminuent la consommation d’énergie)
dans les systèmes optiques cohérents. De plus, nous avons aussi développé un nouveau procédé tout
optique ultra-rapide pour le traitement de l’information directement dans le domaine optique à une
vitesse extrêmement élevée (idéalement, de l’ordre du THz) par l’utilisation de Réseaux de Bragg
sur Fibre Optique (RDBF, ou FBG par ses sigles en anglais, fiber Bragg gratings). Ces processeurs
optiques deviennent de plus en plus importants pour une myriade d’applications scientifiques, non
seulement pour la télécommunication optique ultrarapide mais également pour les systèmes de calcul
optiques, l’imagerie biomédicale ultra rapide ou encore les systèmes de caractérisation ou de mesure
à grande vitesse. Le but fondamental de ces processeurs optiques est d’éviter tout circuit électron-
ique qui limite drastiquement les vitesses d’opérations à une dizaine de GHz et représente un goulot
d’étranglement pour l’utilisation pratique des larges bandes passantes intrinsèques à l’optique.

Le contrôle simultané de l’amplitude et de la phase de l’enveloppe complexe d’un signal optique
est maitrisé depuis longtemps dans le domaine spatial. L’holographie fût développée comme un sys-

xi



tème interférométrique d’imagerie sans lentille pouvant enregistrer, et par conséquent reconstruire,
le signal complexe original malgré un support d’enregistrement sensible uniquement aux variations
d’intensité lumineuse [3-5]. Les systèmes holographiques sont appliqués dans des systèmes variés,
de l’imagerie 3D au traitement des signaux en domaine spatial en passant par la microscopie ou la
sécurité [6].

Dans cette thèse, l’équivalent temporelle de l’holographie spatiale traditionnelle est formalisé et
démontré expérimentalement. Ce concept implique l’enregistrement, la génération et/ou le traite-
ment d’un signal optique temporel complexe (amplitude et phase) via des systèmes optiques de
modulation et/ou détection de variations d’intensité uniquement. Les procédures résultantes basées
sur l’holographie simplifient considérablement les approches actuelles pour traiter des tâches simi-
laires de génération et de traitement. En utilisant des relations de dualité des transformées de Fourier
entre le domaine temporel et fréquentiel, le concept d’holographie en domaine spectral est présenté,
formalisé et démontré. Ce concept novateur permet le contrôle simultané de l’amplitude et de la
phase de la réponse spectrale par l’unique manipulation de l’amplitude du spectre. L’holographie
en domaine spectral est appliquée à la conception de deux types de traitement du signal, génération
programmable et reconfigurable de la forme d’une impulsion optique arbitraire (complexe) basée
sur un filtre électro-optique (EO) et un traitement ultra-rapide de signaux arbitraires basé sur des
filtres tout optiques à phase minimale (MP).

B. Contributions originales

• Proposition et démonstration expérimentale du concept d’holographie temporelle comme con-
trepartie exacte en temps de l’holographie classique (spatiale). Deux démonstrations expéri-
mentales sont présentées pour valider ce concept : (i) génération et détection de signaux
optiques complexes modulés, et (ii) la conjugaison de la phase temporelle des signaux. Ces
deux exemples sont basés sur un montage EO inspiré par l’architecture de l’holographie spa-
tiale. Les composants EO nécessaires pour le montage utilisé (modulateur et photo détecteur)
sont sensibles uniquement aux variations d’intensité [7,8], simplifiant de façon significative les
approches antérieures pour les applications impliquant la modulation, détection et conjugaison
de signaux optiques à enveloppe complexe.

• Proposition et démonstration expérimentale d’une méthode tout optique pour l’application
de l’holographie temporelle. Le processus de modulation est effectué par l’utilisation de la
modulation de phase croisée (XPM pour cross phase modulation). La méthode proposée est
validée via l’implémentation d’un système de conversion de longueur d’onde complexe, évitant
ainsi la nécessité de satisfaire la condition d’accord de phases et réduisant la puissance du signal
pompe nécessaire d’au moins un ordre de grandeur par rapport aux précédents convertisseurs
de longueur d’onde basés sur l’effet du mélange à quatre ondes (MQO, ou FWM pour four
wave mixing) [9].

• Proposition et démonstration expérimentale de la contrepartie temporelle des filtres de Vander-
Lugt. Ces filtres reposent sur l’équivalent temporel des filtres optiques spatiaux de Fourier
et font usage d’un « hologramme spectral » pour implémenter une fonction de transfert com-
plexe. Ceci diffère des méthodes antérieures limitées aux fonctions de transfert réelles. Cette
proposition est validée par la génération des formes d’impulsion à enveloppe complexe avec
une résolution dans la gamme de la picoseconde [10].
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• Proposition et démonstration expérimentale d’un modèle de RDBF pour le traitement de sig-
naux optiques à phase minimale avec une bande passante dans le régime des THz, surpassant
largement les limites des bandes passantes typiques des RDBF (∼ 200 GHz). Cette méthode
est démontrée via une modélisation numérique de différentiateurs optiques d’ordres arbitraires
[11,12] et la démonstration expérimentale d’un générateur d’impulsions carrées avec une ré-
solution de l’ordre de la picoseconde [11,13].

• Proposition et démonstration expérimentale d’une méthode de conception de RDBF qui per-
met l’implémentation des systèmes de traitement de signaux optiques à phase non minimale
en utilisant des RDBF en transmission. Cette méthode permet de surmonter la restriction
sur la phase minimale pour les RDBF en transmission par l’holographie spectrale. Cette
proposition est validée par la démonstration expérimentale d’un transformateur de Hilbert
photonique avec une bande passante de 5 THz implémenté dans un RDBF en transmission
[14,15].

Les articles publiés dans des journaux évalués par des paires [7-15] avec un haut facteur d’impact
(comme « Optics Letters », « Optics Express » ou « IEEE Photonics Technology Letter ») combinés
avec les 20 présentations lors de conférences renommées (comme « CLEO » , « ECOC » ou «
OFC » en incluant deux présentations invitées) portant sur les résultats de cette thèse démontrent
l’originalité et l’importance de ces contributions.

C. Revue de l’holographie (spatiale) classique

Avant de présenter les concepts novateurs présentés dans cette Thèse, une brève revue de la lit-
térature sur l’holographie spatiale est menée en portant une attention particulière sur les concepts
fondamentaux nécessaires pour les travaux présentés.

L’holographie spatiale est un procédé à deux étapes pour produire une image introduite par D.
Gabor en 1949 [3]. Cette technique utilise l’interférence produite entre une onde de référence et la
lumière diffractée ou diffusée par un objet. De cette façon, toute l’information (i.e. l’amplitude et la
phase) de l’onde diffractée ou diffusée peut être enregistrée et par conséquent reconstruite, malgré
le fait que le support d’enregistrement (e.g. un film photosensible) ne réponde qu’à l’intensité
lumineuse [3-5]. Plusieurs années après, les hologrammes générés par ordinateur (CGH) ont été
introduits [16], ouvrant la possibilité de générer et de traiter des images sans objets réels. Dans ce
cas, le patron d’interférence désiré, i.e. l’hologramme, est calculé par ordinateur et transféré à la
couche photosensible via un système d’impression ou de lithographie.

Dans un système d’holographie spatiale (voir Fig. 1), l’information complexe d’une onde
monochromatique inconnue eS(x, y) (avec x et y représentant les variables spatiales transverses
à la propagation de la lumière, z) peut être enregistrée par son interférence avec une onde de
référence, eLO,1(x, y). Le front d’onde contenant l’information se propage avec un angle (θy) par
rapport au front d’onde de référence. Les variations d’intensité du patron d’interférence iH(x, y) sont
enregistrées sur une couche photosensible. Le patron d’interférence peut également être généré par
ordinateur, e.g. en simulant le processus d’interférence, et est référé comme CGH [16]. L’information
complexe (i.e. l’amplitude et la phase) de l’onde originale peut alors être retrouvée par illumination
de la couche d’enregistrement avec la même onde de référence eLO,2(x, y) = eLO,1(x, y) (dans le plan
holographique, z = z0). Comme présenté sur la Fig. 1, le champ transmit à travers de la couche est
diffracté en plusieurs ordres à différents angles. L’angle de propagation θy est relié à la fréquence
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de l’onde νy = sin(θy)/λ0, où λ0 est la longueur d’onde du signal de référence et de celui contenant
l’information. Ainsi, pour des valeurs de θy suffisamment élevées (i.e. une fréquence spatiale suff-
isamment grande), le front d’onde original peut être effectivement récupéré sans recouvrement avec
les autres ordres [5].
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Figure 1 – (a) Étape d’inscription du signal et (b) étape de récupération de l’information en holographie
classique.

Comme mentionné précédemment, l’holographie a des applications dans de nombreux domaines
[6]. Une application particulièrement intéressante de l’holographie implique l’utilisation d’un filtre
optique complexe spatiale utilisant des masques spatiaux sensibles uniquement à l’intensité, i.e.
les filtres Vander-Lugt [17]. Ces filtres ont été développés dans les années 1960 pour généraliser
les filtres optiques de Fourier traditionnels, à savoir les systèmes 4fl (où fl est la longueur focale
des lentilles utilisées) [18]. Les masques spatiaux typiques utilisés en optique de Fourier peuvent
appliquer une modulation de l’intensité ou de la phase dans le plan de Fourier du système 4fl ce
qui implique que seule une réponse impulsionnelle du filtre réelle et symétrique peut être intro-
duite. Vander Lugt a alors proposé d’implémenter une fonction de filtrage complexe en utilisant un
dispositif holographique. Il s’agit d’inscrire sur une couche photosensible le patron d’interférence
entre la fonction de transfert complexe désirée et un signal de référence (voir Fig. 2(a)). Ainsi la
couche photosensible contient l’information complexe de la fonction filtrante désirée. Afin de traiter
n’importe quel signal, un système à deux lentilles équivalent au système 4fl doit être mis en place,
en positionnant le masque holographique au plan de Fourier, comme présenté sur la Fig. 2(b).
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Figure 2 – Filtre de Vander-Lugt : (a) Enregistrement de l’hologramme, qui contient l’information de la
fonction de transfert complexe du filtre et (b) procédé de filtrage de signaux basé sur la concaténation
de deux systèmes de transformés de Fourier.
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Dans la suite, on établit une analogie entre les traitements d’informations complexes encodées
dans des formes d’ondes spatiales et des procédés équivalents pour des ondes temporelles, i.e., des
ondes dans lesquelles l’information est contenue dans les variations temporelles.

D. Holographie Temporelle

D.1. Formalisme Mathématique

Inspiré par la dualité espace-temps [19], nous définissions la contrepartie temporelle de l’holographie
spatiale ci-après. Lors de l’étape d’enregistrement, l’interférence entre le signal optique contenant
l’information eS(t) et une onde continue (OC, ou CW pour continous wave) servant de signal de
référence eLO,1(t) est obtenue par un couplage optique (CO) et l’intensité du patron d’interférence
iH(t) est la suivante :

iH(t) = |eS(t) + j eLO,1(t)|2

= |eS(t)|2 − |eLO,1(t)|2 + 2|êS(t)| |eLO,1(t)| sin
(

ωit + φS(t)− φLO,1

)

, (1)

où j =
√
−1, eS(t) = êS(t) exp{j ωSt} est la représentation analytique du signal optique contenant

l’information, avec êS(t) = |êS(t)| exp{j φS(t)} l’amplitude complexe de l’enveloppe, ωS représente la
fréquence optique, et eLO,1(t) = i

1/2
LO,1 exp{j ωLO,1t+φLO,1} est le signal de référence OC, où iLO est

l’intensité optique constante, ωLO,1 est la fréquence optique du signal de référence, ωi = ωS −ωLO,1

est une fréquence intermédiaire et φLO,1 est une phase constante arbitraire. L’interferogramme
temporel iH(t) peut être interprété comme l’équivalent temporel de l’hologramme spatial et par
conséquent peut être considéré comme un « hologramme temporel ». Pour la récupération de
l’information, le même signal de référence eLO,2(t) = eLO,1(t) est utilisé comme porteuse dans le
procédé de modulation temporel, typiquement la modulation de l’amplitude, qui est proportionnel
à l’hologramme iH(t) [7].
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Figure 3 – (a) Génération d’hologramme temporel; (b) Récupération de l’information complexe. OC,
coupleur optique; PD, photo détecteur; MZM, Modulateur Mach-Zehnder. Seule l´enveloppe com-
plexe du signal temporel est représentée.

Un exemple graphique du procédé est présenté sur la Fig. 3, dans lequel une approche EO
est utilisée. Dans ce cas, l’hologramme temporel est généré via une photodiode conventionnelle
(PD). L’hologramme temporel iH(t) peut également être conçu par ordinateur puis généré par un
Générateur d’Onde Programmable (GOP, ou AWG pour arbitrary waveform generator), lors d’un
procédé que nous pouvant appeler Génération par Ordinateur d’Hologramme Temporel (CGTH). La
récupération de l’information complexe s’effectue par l’utilisation d’un modulateur Mach-Zehnder

xv



(MZM). Le spectre du signal en sortie du MZM est représenté sur la Fig. 3(b). Comme dans le cas
de l’holographie spatiale (Fig. 1), le signal optique généré est composé de (i) une composante DC
consistante en un signal de référence et d’un terme résultant de la convolution du signal original
avec son conjugué, (ii) d’une version atténuée du signal original complexe eS(t) centrée en ωS et (iii)
d’une version atténuée du signal original conjugué centrée à 2ωLO,1−ωS (en fixant ωLO,1 = ωLO,2).
Ainsi, l’information complexe d’intérêt peut être facilement extraite de l’onde modulée en filtrant
simplement le signal spectral correspondant, i.e. via un Filtre Optique Passe-Bande (FOPB, ou
BPF pour band-pass filter). Si le signal conjugué est à la place filtré (sélectionné), la Conjugaison
Temporelle de la Phase (CTP) est alors obtenue. Cette dernière opération est utile pour l’inversion
spectrale à mi-longueur (ISML), permettant la compensation de la dispersion chromatique d’ordre
pair et de diverses détériorations non-linéaires induites par la propagation de la lumière sur de
longues distances dans les fibres optiques pour la télécommunication [20]. Il est possible d’aligner le
terme conjugué à la longueur d’onde du signal original, obtenant ainsi un système CTP conservant la
longueur d’onde. Dans ce but, le signal de référence utilisé lors du procédé de récupération eLO,2(t)
doit être différent de celui utilisé pour enregistrer le signal, en particulier, ωLO,2 = 2ωS − ωLO,1.
En général, le signal résultant peut être centré à une fréquence quelconque (procédé de conversion
de longueur d’onde), en choisissant pertinemment la fréquence centrale de eLO,2(t), e.g. le signal
de sortie non-conjugué sera centré à ωout,S = ωLO,2 + ωS − ωLO,1, et le signal de sortie conjugué à
ωout,−S = ωLO,2 − ωS + ωLO,1 [8].

Il faut noter que lorsque les deux premiers termes à droite de l’équation 1 (composante DC) ne
présentent aucun intérêt, le terme de convolution impose une bande passante de détection/modulation
au moins quatre fois plus élevée que celle du signal contenant l’information. Ce terme peut être
négligé dans le cas d’une intensité de référence suffisamment élevée, i.e. lorsque iLO,1 ≫ |êS(t)|2,
menant alors à une diminution significative (divisé par deux) des besoins en bande passante [7].
Cette observation peut rapidement être exploitée pour réduire la demande en bande passante dans
le cas typique de la detection optique hétérodyne de phase par une PD unique.

L’approche EO représente une méthode directe pour l’implémentation de l’holographie tem-
porelle puisque utilisant des systèmes sensibles aux variations d’intensité dans le temps. Bien que
cette approche permette de réduire la complexité des circuits et d’éviter le besoin d’une synchroni-
sation précise entre les composants en phase et ceux en quadrature de phase d’un signal complexe
pour n’importe quel schéma de génération ou de détection, l’électronique impose une limitation
intrinsèque dans la bande passante du système.

Pour dépasser cette limitation, un nouveau schéma a été développé pour l’utilisation de l’holographie
temporelle dans le domaine tout optique [9]. Ceci repose sur une modulation de la phase unique-
ment, au lieu de l’amplitude, pour graver l’information du signal complexe dans une OC eLO,2(t) qui
va servir de sonde. La modulation en phase tout-optique est effectuée par procédé XPM dans une
Fibre Optique Hautement Non-Linéaire (FOHNL, ou HNLF pour highly nonlinear fiber). Comme
dans le cas EO, l’hologramme temporel, iH(t), est généré via l’interférence entre eS(t) et eLO,1(t).
Cependant, dans ce cas, aucune PD n’est utilisée lors de la génération du signal d’intensité, comme
présenté sur la Fig. 4(a). À la place, le signal d’interférence agit comme signal de pompe à l’étape
XPM et sa puissance est définie comme suit :

Ppump(t) = iH(t) ·Aeff , (2)

où Aeff est la surface effective du guide d’onde dans lequel le mode de propagation est transmis
(une FOHNL dans cette configuration).
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Figure 4 – (a) Schéma de production d’holographie temporelle basé sur XPM. Dans ce cas ,les procédés
d’enregistrement et d’extraction sont concaténés; (b) Spectre avant et après propagation dans la
FOHNL (HNLF).

Les signaux de pompage et de sonde se propagent tous deux dans la FOHNL, et l’expression du
signal de référence après l’étape de XPM est :

eout(t) = eLO,2(t) · exp
{

j 2γiH(t)Aeff L
}

, (3)

où γ est le coefficient non linéaire et L représente la longueur de la fibre. Comme observé dans
l’équation 3, le signal de modulation est intrinsèquement proportionnel à l’intensité du signal de
pompage sans aucune étape de photo détection. Si 2γLAeff i

1/2
LO,1|êS(t)| ≪ π, le procédé est dans

les limites de la modulation de phase à bande étroite et la modulation de la phase se comporte de
manière identique à la modulation de l’intensité (à noter que l’approximation suivante peut être
utilisée : ej ε ∼ (1+j ε) si ε≪ π). Ainsi, comme présenté sur la Fig. 4(b), la modulation de la phase
élargie le spectre de la sonde de manière équivalente à un procédé de modulation de l’intensité.
Deux composantes proportionnelles à eS(t) et e∗

S(t) sont générées aux fréquences ωout,S et ωout,−S

et peuvent être extraites via un FOPB.

D.2. Application de l’holographie temporelle

L’holographie temporelle trouve des applications immédiates dans (i) la génération de profiles tem-
porels complexes (amplitude et phase); (ii) la conjugaison temporelle d’une forme d’onde temporelle
existante et (iii) la conversion en longueur d’onde de signaux optiques à enveloppes complexes.
Dans la suite, nous présentons la démonstration expérimentale de ces trois applications, utilisant
soit l’approche EO (pour les applications (i) et (ii)) ou l’approche tout optique (pour l’application
(iii)).
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D.2.1. Synthèse et détection de signaux optiques à enveloppe complexe

La première application présentée cible la synthèse de signaux temporels à enveloppe complexe
par modulation d’intensité de lumière OC [7]. En particulier, deux signaux optiques à enveloppe
complexe sont visés afin de démontrer la viabilité du concept : (i) une succession de 16 impulsions
gaussiennes avec une phase quadratique arbitraire dans le but de démontrer que la technique pro-
posée peut générer des ondes optiques avec des phases purement arbitraires évoluant dans le temps,
et (ii) un signal optique pour une application plus concrète, un flux de 1024 symboles à 3 Gbps au
format de modulation d’amplitude en quadrature à 16 états (16-QAM).

Le schéma présenté dans cette partie prend en compte l’étape d’enregistrement du procédé
d’holographie temporel EO décrite précédemment dans laquelle le signal électrique variant en am-
plitude iH(t) est conçu numériquement par CGTH. La figure 5 présente le montage expérimental
ainsi que l’évolution du signal à travers des différentes étapes.
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Figure 5 – Montage utilisé pour générer un signal optique à enveloppe complexe basé sur le concept
de CGTH, i.e. utilisant un MZM unique et un FOPB. Cette figure montre également l’évolution des
signaux en fonction du temps (en noir) et en fréquence (bleue) le long du montage. Le chemin optique
est représenté par des lignes noires, alors que le signal électrique est représenté par des lignes rouges.
AWG, générateur électrique d’onde aléatoire; CW, onde continue; MZM, modulateur Mach-Zenhder;
EDFA, amplificateur sur fibre dopée à l’Erbium; BPF, filtre optique passe-bande ; PD photo détecteur;
OSC, oscilloscope en temps réel.

Le signal d’information eS(t) est centré à fS = ωS/2π = 193.385 THz. Un laser OC génère un
signal de référence centré à fLO,1 = ωLO,1/2π = 193.381 THz, qui est alors divisé par un 10/90 CO
pour une utilisation ultérieur lors de la synthèse et donc dans le procédé de détection. La lumière OC
agit comme porteuse pour un MZM à 10 GHz (avec un biais de 5.1 V, coïncidant avec son point de
transmission minimale) où le signal modulé, iH(t), a une bande passante de 9.6 GHz (à une intensité
maximale de 1%). iH(t) est généré par un GOP-7122C de Tektronix (taux de prélèvement de 24
GSps). Le signal de sortie du MZM (point b sur la Fig. 5) est proportionnel à iH(t) et centré sur
ωLO,1. Ainsi le signal correspondant au spectre de eS(t), qui est décalé de−ωi (fi = (ωS−ωLO)/2π =
4.5 GHz) par rapport à ωLO,1, apparait centré à ωS. Après l’étape d’amplification, le signal modulé
résultant est filtré par un filtre adaptable (Santec OTF-350) centré à ωS et l’onde à enveloppe
complexe est alors générée (point c sur la Fig. 5). Finalement, l’intensité et la phase du signal
résultant sont mesurées par le système décrit ci-dessus d’enregistrement holographique via un PD
unique à 10 GHz. Les pertes dans la partie supérieure de la Fig. 5 introduisent intrinsèquement
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une différence de puissance suffisante pour satisfaire la condition établie plus tôt (iLO,1 ≫ |êS(t)|2),
conduisant à l’augmentation de la bande passante mentionnée précédemment.
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Figure 7 – Flux de données optiques, 1024 symboles au format 16-QAM. (a) Une partie de
l’hologramme temporel conçu numériquement généré par GOP; Profils (b) d’intensité et (c) de phase
du signal optique à enveloppe complexe généré (ligne bleue) et le flux de donnée visé (ligne rouge);
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signal 16-QAM.

La figure 6 présente les résultats de génération de données de 16 impulsions optiques gaussiennes
avec une phase quadratique différente combinées avec le spectre mesuré avant et après le FOPB. La
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figure 7 présente la génération d’un flux de données optiques de 1024 symboles à 3 Gbps modulé en
16-QAM (en intensité et en phase) et la constellation résultante, confirmant que l’onde à enveloppe
complexe voulue est correctement générée.

D.2.2. Conjugaison temporelle de la phase

La deuxième application démontrée est le CTP du signal optique à enveloppe complexe généré dans
la section précédente. Le montage utilisé est présenté sur la Fig. 8 et comprend la concaténation des
étapes de détection et de reconstruction de l’holographie. Dans ce cas, deux signaux de référence
différents sont utilisés dans ces deux étapes pour conserver la longueur d’onde. Ainsi la fréquence
centrale de eLO,2(t) est modifiée de façon à obtenir ωout,−S = ωS [8], i.e. fLO,2 = ωLO,2/2π =
193.389 THz.
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Figure 8 – Montage utilisé pour générer CTP basé sur le concept de l’holographie temporelle.

Une étape d’enregistrement identique à celle utilisée dans la section précédente est utilisée afin
de mesurer l’amplitude et la phase du signal résultant à ωS. Les résultats obtenus sont présentés sur
la Fig. 9 et 10 respectivement dans le cas d’une suite d’impulsions gaussiennes à phase quadratique
différente entre elles et un flux de données modulé en 16-QAM. Les résultats ainsi obtenus présentent
un excellent accord entre le signal conjugué et celui idéalement attendu, confirmant la génération
d’une version conjuguée d’un signal prédéfini.

Le système EO fournie des opérations CTP de façon simple et directe, réduisant de façon
significative la complexité des anciens montages EO pour CTP qui demandent typiquement (i) la
détection des composantes en phase et en quadrature du signal, (ii) la conjugaison de ces derniers
dans le domaine électrique et (iii) la modulation d’un signal optique OC utilisant les composants
en phase et en quadrature traités auparavant et synchronisés. Ainsi, le schéma proposé réduit
effectivement la complexité, le coût potentiel du système global et minimise les erreurs.

D.2.3. Conversion en longueur d’onde de signaux optiques à enveloppe complexe

La dernière application présentée de l’holographie temporelle est la conversion de longueur d’onde
d’un signal à enveloppe complexe par l’utilisation de l’holographie temporel tout optique [9]. Le
montage utilisé est présenté sur la Fig. 11. Dans ce cas, le signal d’entrée eS(t) est une série
d’impulsions gaussiennes avec un taux de répétition de 10 GHz avec une largeur à mi-hauteur
(FWHM) de 2.2 ps, générée par un Laser en Mode Actif Bloqué (LMAB, ou AMLL pour active
mode locked laser) et dispersée par une fibre optique monomode (FOM, ou SMF pour single mode
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Figure 10 – (a) Hologramme temporel du signal d’entré; (b) Intensité détectée du signal conjugué
(ligne pleine orange), comparée avec le profil d’intensité du signal d’entrée (ligne en pointillé rouge);
(c) Phase détectée du signal conjugué (ligne pleine orange) et phase du signal d’entrée (ligne en
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fiber) de longueur 1 km (FWHM final de 27.5 ps). Les signaux de référence eLO,1(t) et eLO,2(t) sont
deux OC. La puissance moyenne des trois signaux impliqués dans ce procédé sont : 0.4 dBm pour
le signal d’information eS(t), 13 dBm pour le signal de référence eLO,1(t) et 3 dBm pour eLO,2(t).
Les caractéristiques de la FOHNL sont γ = 11.3 W−1km−1, L = 1015 m, la longueur d’onde à
dispersion nulle est 1545 nm et la pente de la dispersion S0 (@ 1545 nm) = 0.017 ps/nm2/km.
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La figure 12 montre le spectre des impulsions et les variations temporelles du signal converti en
longueur d’onde dans le cas (a) d’un décalage négatif de 17 nm de eS(t), (b) d’un décalage positif
de 17 nm de eS(t) et (c) d’une conversion supérieure de 10 nm de e∗

S(t). Les ondes temporelles
en sortie ont alors été mesurées en utilisant un oscilloscope optique à échantillonage à 500 GHz
(Exfo PSO-101). Dans tous les cas, les largeurs des impulsions obtenues coïncident avec celles des
impulsions initiales, prouvant que la phase quadratique induite par la dispersion est conservée avec
une efficacité de conversion de ∼-20 dB. Ce résultat est cohérent avec les raisonnements précédents
qui se reposent sur les MQO mais nécessitant une énergie inférieure d’un ordre de magnitude à celui
du signal pompe eS(t) et du signal sonde eLO,2(t).
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XPM pour des signaux à enveloppe complexe. AMLL : laser en mode actif bloqué; PC, contrôleur de
polarisation; CWL, laser continue; EDFA, amplificateur sur fibre dopée à l’Erbium; OSO, oscilloscope
optique à prélèvement; OC, coupleur optique; SMF, fibre monomode.
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La méthode proposée pour la conversion en longueur d’onde de signaux à enveloppe complexe
reposant sur l’holographie temporelle fournie des avantages intéressants comparés aux méthodes
traditionnelles reposant sur le MQO : (i) la condition d’accord de phase n’est plus nécessaire; (ii)
cela rend possible une bonne efficacité de conversion pour une large gamme de longueurs d’onde,
fournissant une efficacité symétrique pour les décalages négatifs et positifs, et (iii) une puissance
inférieure d’un ordre de grandeur est nécessaire pour les signaux utilisés dans ce processus. Les
méthodes classiques reposant sur la XPM sont limités à la conversion de signaux dont l´information
est contenue seulement dans la variation de l’amplitude.

E. Holographie en domaine spectral

En utilisant le propriété de dualité entre le domaine temporel et le domaine fréquentiel de la trans-
formée de Fourier, nous proposons et formulons, pour la première fois, le concept d’holographie en
domaine spectral. Le terme « holographie en domaine spectral » a déjà été utilisé dans la littérature
mais pour définir des systèmes où des filtres dans le domaine spatial sont utilisés pour traiter des
signaux temporels à enveloppe complexe. Dans cette thèse, l’holographie en domaine spectral est
appliquée à la conception de deux types de systèmes de traitement du signal que sont : le filtrage
optique reposant sur la mise en forme de spectre dans le domaine temporel (MFSDT, ou TDSS
pour time-domain spectral shaping) [10] et sur des RDBF utilisés en transmission [14,15]. Dans les
deux cas, l’utilisation de concepts d’holographie permet de s’affranchir des limitations imposées par
le filtrage associées à ces processus, i.e., des réponses spectrales réelles dans le cas de filtres reposant
sur la MFSDT et des réponses spectrales à phase minimale dans le cas de RDBF en transmission.
Pour la suite, le terme « holographie en domaine spectral » est utilisé par soucis de cohérence.

E.1. Formalisme Mathématique

Dans le cas d’un système physiquement réalisable qui est linéaire et invariant dans le temps (LTI)
avec une fonction de transfert HF (ω′) (où ω′ = ω − ω0, ω étant la fréquence angulaire optique et
ω0 étant la fréquence de l’onde porteuse). L’enveloppe complexe correspondante s’obtient comme
ĥF (t) = F

−1{HF (ω′)}. HF (ω′) doit être délimitée dans une fenêtre spectrale de durée ∆ωF . Sa
réponse impulsionnelle doit être causale (ou, en d’autre termes, la réponse impulsionnelle doit être
nulle pour des valeurs négatives de temps). Aussi, la réponse doit être elle-même limitée dans une
fenêtre temporelle de durée ∆tF et centrée à tC > ∆tF /2. Un hologramme spectral peut être généré
par le procédé équivalent en fréquence de l’étape d’enregistrement de l’holographie temporelle, où
la fonction de transfert de la cible interfère avec le signal de référence. Dans ce cas, le signal de
référence doit avoir une enveloppe temporelle instantanée ĥRef (t) = A · δ(t − tD) (centré sur ω0),
avec δ(t) étant la fonction de Dirac. Ainsi, l’hologramme spectral est défini comme l’intensité du
patron d’interférence entre le signal et la référence,

PHol(ω
′) = |HF (ω′) + HRef (ω′)|2

= |HF (ω′)|2 + A2 + 2A|HF (ω′)| cos
(

tpω′ + 6 HF (ω′)
)

, (4)

où tp = tD − tC est le délai entre la fonction hF (t) et la référence hRef (t).
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Dans le domaine temporel, l’hologramme spectral est définie par l’expression suivante :

p̂Hol(t) = ĥF (t)⊗ ĥ∗
F (−t) + A · δ(t) + AĥF (t− tp) + Aĥ∗

F (−t− tp). (5)

Afin d’éviter toute superposition temporelle entre les différents composants du signal de sortie,
tp doit être défini comme tp > 3∆tF /2 (on peut observer que la durée du « terme ambiguë » est
deux fois fois celle de la fonction visée). Il est possible de réduire par deux la durée temporelle de
l’hologramme spectral si la constante A ≫ |ĥF (t)|, puisque le premier terme de l’équation 4 peut
être négligé. Ce procédé peut être vu comme la contrepartie du processus employé dans la Section
D pour réduire la bande passante nécessaire pour l’holographie temporelle. Dans ce cas, on génère
des franges dans le domaine spectral, et la réponse visée peut être obtenu à partir de la réponse
totale de sortie en utilisant un processus de portillonnage temporel.

E.2. Holographie en domaine spectral pour le profilage spectral à valeurs com-
plexes

La technique de profilage spectral pour le filtrage dans le domaine spatial a inspiré, de par la
dualité espace-temps, une méthode extrêmement prometteuse pour implémenter des processeurs
d’impulsions temporelles reconfigurables électroniquement sur fibre optique avec une résolution dans
la gamme des sub-picosecondes [19]. Cette méthode est dénommée MFSDT et emploie (i) un milieu
dispersif au lieu d’une diffraction spatiale pour séparer temporellement les composantes spectrales
de l’impulsion initiale, (ii) un modulateur EO pour effectuer le processus de filtrage désiré dans le
domaine temporel au lieu d’un masque spatial ou d’un Modulateur en Domaine Spatial (MDS) dans
le cas du domaine spatial, et (iii) un deuxième milieu dispersif opposé au premier pour réassembler les
composantes spectrales de l’impulsion initiale. La principale limitation des montages implémentant
MFSDT concerne le fait qu’il est possible de contrôler uniquement l’intensité temporelle des profils
de l’onde en sortie, et typiquement, la synthèse de forme temporelle doit strictement être symétrique.
La figure 13(a) présente le diagramme d’un système MFSDT typique.

Des impulsions optiques avec une forme véritablement programmable (en amplitude et phase)
peuvent être obtenues en concevant le signal modulateur Hhc(t) comme un hologramme spectral.
Le principe général peut être interprété comme la contrepartie temporelle des filtres Vander-Lugt
[10,17]. Dans les notations suivantes, nous employons les lettres majuscules pour les signaux propor-
tionnels aux profils spectraux et les lettres minuscules pour des signaux proportionnels aux profiles
temporels, sans tenir compte de leur domaine de définition (t pour le domaine temporel et ω pour
le domaine fréquentiel).

Supposons que le signal en entrée est une impulsion transformée gaussienne limitée, définie
comme eS(t) = êS(t) exp{j ω0t}, où, êS(t) = exp{−t2/2T 2

0 }, T0 est la largeur à 1/ e-hauteur au
maximum et ω0 est la fréquence de l’onde porteuse. L’enveloppe de la réponse impulsionnelle
temporelle du filtre est ĥF (t) (à ω0). Le signal en entrée est premièrement dispersé dans un milieu
avec une fonction de transfert HΦ̈(ω′) = exp{− j Φ̈ω′2/2} où Φ̈ est la dispersion chromatique. Le
signal dispersé est modulé en amplitude par un signal radiofréquence (RF) Hhc(t), et la transformée
de Fourier à la sortie du modulateur s’écrit comme suit :

EM (ω′) ∝ [ES(ω′) ·HΦ̈(ω′)]⊗ hhc(ω), (6)
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(a) Schéma d’opération des filtres Vander-Lugt tem-
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Figure 13 – (a) Schéma d’opération des filtres Vander-Lugt temporels, reposant sur le MFSDT avec
un hologramme spectrale comme signal de modulation. AM : modulateur d’amplitude. (b) Montage
utilisé pour la démonstration expérimentale de mise en forme d’impulsion reposant sur des filtres
de Vander-Lugt temporels ; la caractérisation du signal de sortie est effectué par interférométrie
spectrale à transformée de Fourier (FTSI). Pour simplicité, les signaux temporels sont représentés
par leurs enveloppes complexes. PMLL : laser en mode bloqué passif; OC : coupleur optique; ODL :
ligne optique à délai; PC : contrôleur de polarisation; PBS : séparateur de faisceau polarisé; LC-FBG
: réseau de Bragg à pas variable; EDFA : amplificateur sur fibre dopée à l’Erbium; APD : photodiode
à avalanche; BPF : filtre passe-bande; ATT : atténuateur.

où ⊗ fait référence à une convolution, ES(ω′) = F{êS(t)} et hhc(ω) = F{Hhc(t)}. La dérivation
dans la section E.1 nous donne l’expression du signal modulé :

Hh(t) ∝ HF (t) exp{− j ωpt}+ H∗
F (−t) exp{j ωpt}, (7)

qui est nommée comme Hh(t) au lieu de Hhc(t) puisqu’une étape supplémentaire est effectuée après
la dernière opération qui est présentée dans la suite. Dans l’équation 7, les composantes en intensité
ont été négligées puisque l’hologramme est conçu par ordinateur et ne sont donc pas utiles pour
l´application visée. Le paramètre ωp est choisi pour éviter toute superposition entre les deux termes
qui composent Hh(t).

Quand le signal en entrée dispersé est modulé en amplitude avec Hh(t) (signifiant que dans
l’équation 6 : hhc(ω) = F{Hh(t)}) et se propage ensuite à travers un milieu avec une dispersion
chromatique −Φ̈, le signal résultant en sortie est proportionnel à eS(t) ⊗ hhc(t) exp{− j t2/2Φ̈}, et
présente alors un terme de phase temporel additionnel quadratique qui empêche d’obtenir le profil
de phase désiré en sortie (voir Annexe A pour la demonstration mathématique). Afin de supprimer
ce terme de phase indésirable, un terme de phase quadratique proportionnel à HΦ̈(ω) doit être
ajouté au spectre de Hh(t), i.e. hh(ω). Cependant, le signal modulé (l’hologramme spectral) doit
toujours être une fonction à valeur réelle. Ainsi, les termes de phase ajoutés aux deux bandes
latérales spectrales de Hh(t) doivent être de signes opposés, de façon que la phase spectrale totale
soit une fonction de symétrie impaire (obtenant ainsi une transformée de Fourier à valeurs réelles) :

hhc(ω) ∝ hF (ω − ωp) exp
{

j
Φ̈ω2

2

}

+ h∗
F (−ω − ωp) exp

{

− j
Φ̈ω2

2

}

. (8)

En remplaçant l’équation 8 dans l’équation 6 et supposant que le spectre est confiné dans un
domaine spectral réduit de façon que T0ωm ≪ 1, où ωm est la fréquence maximale de Hhc(t), le
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spectre du signal optique modulé, EM (ω′), peut être approximé comme :

EM (ω′) ∝ ES(ω′)HΦ̈(ω′)
[

HF (ω′) exp{j Φ̈ωpω′}+ H∗
F (ω′) exp{− j Φ̈ωpω′} ⊗ exp{− j Φ̈ω′2/4}

]

. (9)

Finalement, le signal optique modulé se propage à travers un deuxième milieu dispersif avec une
dispersion de −Φ̈, comme présenté sur la Fig. 13(a). À la sortie, l’enveloppe complexe de l’onde
temporelle résultante peut être écrite comme :

êout(t) ∝ êS(t)⊗ hF (t− Φ̈ωp) + êS(t)⊗ h∗
F (−t− Φ̈ωp) exp(− j t2/Φ̈). (10)

L’équation 10 montre que le signal de sortie est composé de deux termes, un proportionnel à
l’onde temporelle désirée (premier terme de l’équation). Les deux termes sont décalés temporelle-
ment entre eux; ainsi la fenêtre d’opération temporelle du système ∆Tout est divisée par deux par
rapport au cas où la réponse impulsionnelle d’un système est symmétrique et en intensité. Le pro-
duit temps-bande passante (TBP)1 de filtres Vander-Lugt temporels est directement proportionnel
au produit ωm · Φ̈.La portion désirée du signal temporel de sortie peut être filtrée dans un procédé
de portillonnage temporel, si besoin.

Les capacités du schéma proposé sont démontrées avec succès en synthétisant deux différentes
ondes temporelles avec un intérêt pratique, dont une impulsion à forme triangulaire asymétrique
avec une phase parabolique, et une séquence d’impulsion à 4-bit 16-QAM. La figure 13(b) montre
le montage utilisé pour la démonstration expérimentale du plan proposé. Le bras supérieur de
l’interféromètre de Mach-Zehnder représente le montage MFSDT (Fig 13(a)), dans lequel les deux
milieux dispersifs opposés sont implémentés en utilisant le même RDBF avec un pas linéaire (PL-
RDBF, ou LC-FBG pour linearly chirped FBG) utilisé par ses deux extrémités (ils functions en
réflection), et les modulations d’amplitudes sont implémentées via un MZM décentré à son point de
transmission minimal. L’interféromètre est utilisé pour caractériser le champ à enveloppe complexe
en sortie du dispositif de mise en forme d’impulsion des mesures de spectres optiques via l’utilisation
d’un algorithme d’interférométrie spectrale à transformée de Fourier (ISTF, ou FTSI pour Fourier
transform spectral interferometry) [21].

Le signal initial eS(t) est généré par un laser en mode bloqué passif (LMBP, ou PMLL pour
passive mode locked laser). Celui-ci consiste en une suite d’impulsion optique de type gaussienne
avec une FWHM de 2 ps avec un taux de répétition de 10 MHz, centré à λ0 = 2πc0/ω0 = 1545 nm.
Le PL-RDBF fourni une dispersion équivalente à 120 km de FOM, i.e. Φ̈ ∝ −2600 ps2, tout le long
de la bande optique C de télécommunication. L’hologramme spectral est généré par le GOP-7122C
fourni par Tektronix.

Les figures 14 et 15 présentent l’hologramme spectral désigné et les résultats obtenus pour les
deux ondes synthétisées. La résolution temporelle des ondes en sortie a été mesurée comme l’inverse
de la largeur à 1% du maximum de la réponse spectrale de l’impulsion correspondante, considérant
que les impulsions en entrée et en sortie sont toutes deux à phase constante. Dans les deux exemples
présentés, nous estimons une résolution temporelle de δtout ∼ 6.7 ps, très proche de la résolution
temporelle de l’impulsion initiale de eS(t), laquelle est ∼5.8 ps. Un relatif bon accord entre les
ondes obtenues et les résultats idéalement attendus peut être observé sur ces graphiques.

1Le TBP est typiquement utilisé comme figure de mérite pour les systèmes de mise en forme d’impulsion.
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Figure 14 – Impulsion triangulaire asymétrique avec une phase parabolique : (a) hologramme spectrale
Hhc(t) ; (b) intensité temporelle du signal de sortie; et (c) phase temporelle du signal de sortie : ciblée
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Figure 15 – Code 4-bit 16-QAM : (a) hologramme spectral Hhc(t) ; (b) amplitude temporelle du signal
de sortie, seulement la partie droite du signal de sortie est présentée, correspondant de l’impulsion
cible mise en forme; (c) phase temporel du signal de sortie : ciblée (ligne bleue en pointillé) et mesurée
(ligne verte pleine).

E.3. Holographie dans le domaine spectral pour des processus à phase non-
minimale reposant sur des RDBF en transmission

Les RDBF se sont révélés être une technologie critique pour un large éventail d’applications dans
les communications optiques et dans les systèmes de capteurs de par leurs faibles couts, les faibles
pertes optiques engendrées, et leur haute compatibilité avec les systèmes tout optiques. Cependant,
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la caractéristique la plus remarquable des RDBF est leur extraordinaire flexibilité pour la concep-
tion de filtres optiques avec n’importe quelle forme de réponse spectrale passe-bande lorsqu’utilisés
en réflexion. Les implémentations reposant sur des RDBF spécialement apodisés ont une bande
passante limitée < 200 GHz, par les limitations pratiques dans le maximum de changement d’indice
de réfractions (< 10−3) et dans la résolution du profil d’apodisation (> 100 − 200µm). Quand le
réseau est utilisé en transmission, la complexité et le coût du système global sont réduits puisqu’il
n’est pas nécessaire d’employer un circulateur ou un coupleur pour séparer le signal de sortie de
celui en entrée. De plus, la phase de la réponse en transmission est souvent plus résistante aux
imperfections dans la structure du réseau que celle de la réponse en réflexion [22]. Dans cette thèse,
nous démontrons une nouvelle méthode d’opération de RDBF opérant en transmission qui fournit
une augmentation de la bande passante d’au moins un ordre de grandeur comparé aux RDBF en
réflexion (dans le régime THz). Malgré cela, la réponse spectral en transmission est une fonction
à phase minimale [23], ce qui limite sévèrement les applications possibles dans cette configuration.
Avec l’utilisation de l’holographie en domaine spectral, nous étendons les capacités des RDBFs en
transmission, de façon à ce que des systèmes à phases non-minimale puissent aussi être implémentés
dans cette configuration.

E.3.1. Augmentation de la bande passante des RDBF

Dans la suite, une approche est proposée pour augmenter la bande passante d’un RDBF en trans-
mission. Celle-ci consiste en l’exploitation du dégrée de liberté disponible lors de la résolution de la
réponse spectrale en phase de la réflexion du RDBF.

Le problème en question concerne le concept des filtres optiques linéaires fournissant une fonction
de transfert spectrale à phase minimale, Hideal(ω′), tout au long d’une bande passante extrêmement
large (où ω′ = ω−ω0). HT (ω′) et HR(ω′) déterminent respectivement les réponses en transmission
et en réflexion. Puisque le processus en question repose sur les RDBF en transmission, HT (ω′) doit
être proportionnel à Hideal(ω′) le long de la bande passante utilisée. Dans un filtre à phase minimale
(e.g. RDBF à transmission), la phase spectrale de la réponse du filtre est nécessairement déterminée
par l’amplitude de la réponse spectrale via une transformation de Hilbert. De plus, dans une RDBF,
la transmitivité (T = |HT (ω′)|2) et la réflectivité (R = |HR(ω′)|2) sont reliés par la relation suivante :
T = 1−R, par le principe de conservation d’énergie. Ainsi, les caractéristiques de |HT (ω′)| imposent
uniquement les fonctions 6 {HT (ω′)} et |HR(ω′)|. Ainsi, d’après les caractéristiques de l’amplitude
de la transmission désirée |HT (ω′)|, les problèmes de conception se réduisent à la synthèse de
RDBF fournissant l’amplitude de la réponse |HR(ω′)|, sans contrainte additionnelle sur la phase de
la réponse 6 {HR(ω′)}. Ainsi, la phase de la réflexion de la RDBF peut être fixée de façon adéquate
pour obtenir un concept de réseau le plus simple possible en accord avec les caractéristiques ciblées.

La phase spectrale de la réflexion, qui se traduit en une variation linéaire de la période, augmente
la bande passante du réseau : comme la composante fréquentielle en réflexion le long du réseau
dépend de la période, la bande passante de la réponse spectrale en réflexion, i.e. la bande passante
correspondante rejetée en transmission, peut être sensiblement supérieure que dans le cas des réseaux
à périodes uniformes [11]. La réponse en réflexion du RDBF qui doit être synthétisée peut être
exprimée mathématiquement :

HR(ω′) = W (ω′)

√

Rmax

(

1− |HT (ω′)|2
)

exp

{

j
(

1
2

Dω′2 + τshiftω
′

)

}

, (11)

xxviii



où Rmax est le maximum de la réflexion; D est le paramètre dispersion (s2) ou de façon équivalente,
la pente du retard de groupe; W (ω′) représente une fonction fenêtrée qui est introduite car la
réflexion d’une RDBF doit être une fonction passe-bande limitée; et τshift est le temps de retard,
qui se traduit dans le terme linéaire de phase dans l’équation 11, afin d’obtenir un système causal.

D’après les caractéristiques de la réflexion définies par l’équation 11, la méthode proposée obtient
la perturbation du réseau en utilisant un algorithme de synthèse RDBF par couche basé sur la
Théorie des Modes Couplés (CMT) combiné avec la Méthode de Transfert de Matrices (TMM) [24].
Les études numériques ont montrées que les caractéristiques du réseau apodisé résultant peuvent
être moins contraignantes et donc plus facilement réalisables en augmentant de façon adéquate la
valeur spécifique du paramètre de dispersion (D). Plus grand le paramètre de dispersion est, plus
long le réseau sera et plus petit sera le pic maximum de la modulation de l’indice de réfraction.

E.3.2. Processeurs ultrarapides à phase minimale à base de RDBF en transmission

Dans cette Section, nous présentons la conception de deux processeurs optiques à phase minimale, un
différenciateur optique à ordre arbitraire et un dispositif de mise en forme d’impulsion rectangulaire.

- Différenciateur optique à ordre aléatoire :

Un différenciateur optique est un processeur optique qui fournit en sortie la dérivation de
l’enveloppe complexe du signal optique d’entrée. La fonction de transfert idéale peut être exprimée
comme :

Hideal,dif (ω′) ∝ (j ·ω′)N , (12)

où N est l’ordre de dérivation.

Nous avons conçu un différentiateur tout optique d’ordre N = 1 avec une bande passante B = 2
THz (largeur à 1% de l’amplitude maximale spectrale) utilisant l’approche décrite dans la Section
E.3.1 [11]. Lors de la conception, l’équation 11 est utilisée avec un paramètre de dispersion D fixé
à 80 ps2 ; τshift = 1.356 ns et Rmax est à 99.9999%. Dans ce cas, aucune fenêtre temporelle n’est
nécessaire (W (ω′) = 1) puisque la fonction de transfert est une fonction passe-bande. La figure 16
montre l’apodisation du réseau, le profil des périodes et, après une évaluation numérique de l’effet
des erreurs potentiels provenant du procédé de fabrication, la réponse spectrale en transmission.
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Figure 16 – (a) Profiles d’apodisation (ligne pleine rouge) et de période (ligne en pointillé noir); (b)
amplitude (ligne bleue en pointillé) et la phase (ligne verte en pointillé) de la réponse spectrale en
transmission voulue comparée à l’amplitude (ligne rouge pleine) et la phase (ligne noire solide) de la
réponse spectrale en transmission avec les contraintes de fabrication.
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La figure 17(a) présente la caractérisation temporelle du dispositif en considérant une impulsion
de type gaussien avec un FWHM de 1 ps. Le graphique présente un excellent accord entre le
signal idéalement attendue en sortie et celui effectivement obtenue à partir du réseau conçu. Pour
une analyse plus détaillée des performances, nous avons calculé le TBP du différenciateur pour un
coefficient de corrélation croisée (CC) supérieur à 90% (voir Fig. 17(b)). Le TBP résultant est
∼420, un ordre de magnitud plus grand que les différentiateurs proposés précédemment reposant
sur les RDBF.
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Finalement, la conception de différentiateurs optiques à 2 THz à ordre supérieur (jusqu’à N =
4) est également proposée avec la même méthodologie [12]. Le profil d’apodisation résultant est
représenté sur la Fig. 18(a). Tous les paramètres sont fixés à des valeurs identiques à celles de
l’exemple précédent. La figure 18(b) présente la réponse temporelle en sortie du réseau comparée à
celle idéalement attendue. Les simulations numériques offrent des valeurs de TBP similaires à celle
obtenue avec le différenciateur de premiers ordre.
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- Dispositif de mise en forme d’impulsion rectangulaire:

Un dispositif de mise en forme d’impulsion rectangulaire fourni une impulsion optique avec une
enveloppe de forme rectangulaire. En considérant une impulsion en entrée suffisamment étroite, la
fonction de transfert du dispositif de mise en forme rectangulaire peut être approximée par :

Hideal,ft(ω
′) = sinc(ω′ · τF W HM/2π), (13)

xxx



où la fonction sinc est définie comme sin(πω′)/(πω′) et τF W HM est la durée de l’impulsion temporelle
rectangulaire de sortie.

Nous présentons la démonstration expérimentale d’un dispositif d’une mise en forme à 2 ps
reposant sur une RDBF en transmission (τF W HM = 2 ps) avec une bande passante à 5 THz [13].
Pour la fabrication du PL-RDBF, un masque de phase de longueur 14.5 cm a été utilisé avec
une période de 1064.05 nm (i.e. longueur d’onde de Bragg λ0 = 2πc0/ω0 = 1544.87 nm) et une
augmentation de la période le long du réseau de 2.5 nm/cm. Ces paramètres fixent la dispersion
du réseau à D = 33.77 ps2. Le RDBF a été fabriqué dans le laboratoire de la professeure Sophie
LaRochelle à l’Université Laval. Appliquant l’outil de synthèse CMT-TMM à la réponse en réflexion
prescrite (équation 11 avec les paramètres définies ci-dessus), les profils d’apodisation et de période,
présentés respectivement dans les Figs. 19(a) et (b) sont obtenus. Les figures 19(d) et (e) montrent
respectivement la réponse en amplitude et en phase du réseau modulées et mesurées.
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Pour la caractérisation dans le domaine temporel, un schéma ISTF a été implémenté [21].
L’impulsion en entrée a un FWHM de 400 fs et son spectre est présentée sur la Fig. 19(c). Les
ondes temporelles en entrée et en sortie sont présentés sur la Fig. 20, validant le comportement du
réseau fabriqué comme un dispositif de mise en forme d’impulsion rectangulaire.

On note que de nombreux autres dispositifs de mise en forme d’impulsions optiques à phase min-
imale, e.g. parabolique, triangulaire, dispositifs de mise en forme d’impulsion de Nyquist avec des
résolutions de l’ordre du sub-picoseconde peuvent être implémentés sur un RDBF en transmission
via l’utilisation de cette technique de conception.

E.3.3. Holographie spectrale pour l’implémentation de processus ultrarapide à phase
non-minimale reposant sur les RDBF en transmission

Si un système de traitement de signaux optiques à phase minimale avec une bande passante de
l’ordre du THz est implémenté en utilisant un RDBF en transmission, seule la réponse en ampli-
tude désirée doit être spécifiée dans l’algorithme décrit dans la suite. Cependant, si le système en
question est à phase non-minimale, i.e., ses réponses en amplitude et en phase doivent être traitées
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indépendamment, et ses opérations peuvent être limitées dans une fenêtre bien définie en temps,
il est possible d’utiliser l’holographie en domaine spectral pour implémenter des systèmes à phase
non-minimale par l’utilisation de RDBF en transmission [14].

Le système optique à phase non-minimale (en négligeant le délai) de départ peut être décrit
entièrement par sa fonction de transfert HNMP (ω′) (domaine fréquentiel) ou par sa réponse im-
pulsionnelle ∝ ĥNMP (t) (domaine temporel). Pour la conception de l’hologramme spectral, nous
considérons le signal de référence ĥRef (t) = A · δ(t − tD). La réponse spectrale de l’hologramme
spectral est :

PHol(ω′) = A2 + AHNMP (ω′) exp
{

j tpω′
}

+ AH∗
NMP (ω′) exp

{

− j tpω′
}

. (14)

où le terme de convolution est omis afin de réduire la durée temporelle du processeur optique. Si
PHol(ω′) est implémenté par un RDBF opérant en transmission, l’amplitude de la réponse spectrale
à phase minimale peut être HMP (ω′) = PHol(ω′), tandis que la phase est donnée par une relation
de transformation de Hilbert . Il a été observé que la composante AH∗

NMP (ω′) exp{− j tpω′} dans
l’équation 14 est annulée après effet de la phase minimale sur la réponse du système global. Ainsi
le système MP résultant a une réponse impulsionnelle avec une enveloppe complexe :

ĥMP (t) ∝ Aδ(t) + ĥNMP (t− tp); (15)

et par conséquence, une fonction de transfert :

HMP (ω′) = A + HNMP (ω′) exp
{

− j tpω′
}

. (16)

Ce résultat concorde avec une propriété bien connue qui établit que n’importe quelle fonction
temporelle avec un pic dominant autour ou proche de l’origine, est soit une fonction à phase minimale
ou proche d’en être une [25]. La réponse du système avec la fonction de transfert HMP (ω′) peut
être synthétisée par des RDBF opérant en transmission.

Afin de valider cette technique, nous avons démontré l’implémentation d’un transformateur
de Hilbert photonique (PHT) avec une bande passante de l’ordre du THz dans une RDBF en
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transmission [15]. Un PHT est un processus de traitement d’impulsion qui fournit la transformée de
Hilbert d’une impulsion optique incidente. La fonction de transfert d’un PHT à un ordre quelconque
est définie comme

Hideal,P HT (ω′) ∝











e−jP π/2 if ω > ω0,
0 if ω = ω0,

ejP π/2 if ω < ω0,

(17)

où P est l’ordre fractionné. Dans le cas particulier de P = 1, le PHT est entier.

En particulier, nous avons ciblé l’implémentation de PHT entier et fractionné (P = 0.81) avec
une bande passante de 3 THz, utilisant un PL-RDBF avec L = 7 cm et D = 34.24 ps2. Ces
RDBF ont également été fabriqués dans le laboratoire de Prof. Sophie LaRochelle. La figure 21
montre la transmitivité et la phase minimale correspondante des dispositifs fabriqués comparées
avec celles idéalement visées. La transmitivité des réseaux présente la réponse attendue de type
interférométrique, où les sauts en phase sont encodés dans les variations en amplitude de la réponse
spectrale.

La figure 22 présente la caractérisation temporelle des PHT entiers (à gauche) et fractionnés
(à droite) pour différentes impulsions en entrée (leurs FWHM sont indiqués sur la figure) effectuée
avec un montage reposant sur ISTF [21]. L’évaluation de la performance du PHT entier montre un
TBP de 7.8 et celle du dispositif fractionné, un TBP de ∼ 17.9.

F. Conclusions

Dans cette Thèse, deux nouveaux concepts ont été présentés et démontrés pour la première fois à
notre connaissance. Il s’agit de l’holographie en domaine temporel et de l’holographie en domaine
spectral. Ces concepts peuvent être perçus comme de puissants outils pour le développement de
nouvelles techniques pour la génération, la mesure et le traitement d’ondes optiques temporelles
ultrarapides.
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Figure 22 – Composante transformée de Hilbert mesurée en sortie des PHT (ligne bleue) entiers (a)
et fractionné (b) pour des impulsions de type gaussien mesurées avec un FWHM de (1) 0.88 ps; (2)
1.18 ps et (3) 2 ps. La sortie correspondante simulée d’un PHT idéal entier et fractionné à 0.81 (ligne
rose en pointillé et tiret) sont également représenté pour comparaison. Les phases temporelles en
sortie (simulées et mesurées) sont présentées dans les encadrés. Les lignes vertes en tiret présentent
les sorties simulées des RDBF fabriqués (en utilisant les réponses spectrales mesurées dans la Fig. 21)
en supposant une impulsion en entrée idéalement gaussienne.

L’holographie temporelle s’impose comme un processus efficace pour le contrôle simultané de
l’amplitude et de la phase de signaux temporels. Elle a été utilisée pour démontrer expérimentale-
ment la synthèse, le traitement (e.g. CTP ou conversion en longueur d’onde) et détection d’onde
optique avec motifs de modulations aléatoires complexes (amplitude et phase) simplifiant ainsi de
façon significative les techniques existantes. D’un autre côté, l’holographie en domaine spectral a été
utilisée afin d’étendre les domaines d’applications de systèmes de traitements de signaux déjà con-
nues. En particulier, la mise en forme d’impulsions à valeur complexe a été obtenue via l’utilisation
de filtres optiques MFSDT, qui ont été typiquement limités à la mise en forme d’impulsions à valeurs
réelles. De plus, des traitements à phase non minimale ont été implémentés grâce à l’utilisation
de RDBF en transmission (limité aux fonctionnalités à phase minimale). En ce qui concerne ces
nouveaux composants, nous avons proposé une nouvelle méthodologie de conception de RDBF pour
obtenir des dispositifs tout optiques ultrarapides (dans le régime THz) de traitement de signaux,
surpassant ainsi les limitations typiques en bande passante (< 200 GHz).

De plus, le grand nombre d’applications dans l’holographie en domaine spatial nous permet de
prévoir une quantité similaire et varié d’applications pour l’holographie temporelle/spectrale. Ainsi
ce projet pourrait représenter une étape marquante pour le développement de nouveaux systèmes
optiques plus efficaces dans le domaine de la communication, du traitement de l’information et
au-delà.
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Chapter 1

Introduction

1.1 Optical signal processing for coherent systems

The technological advances of the last decades have completely changed our way of perceiving the

world. We are continuously surrounded by technology, e.g. when watching TV, reading the news

through an electronic device, sharing data online, etc. Technology improves our lives, not only by

enabling an easier, faster way of communicating with our peers, but also in many different areas,

such as in medicine, agriculture, environmental studies or astrophysics, to name just a few. Within

this frame, signal processing is a powerful enabler technology that has played a key role in reaching

the current degree of technological maturity.

Considerable research has allowed a fast development of electronic-based analog and digital sig-

nal processing systems. However, the available processing capacity and speed of electronic systems

is not enough to cope with current demands, particularly in the area of communications. Telecom-

munication networks need an ever-increasing bandwidth for networking applications such as data

and video sharing, cloud computing, or data collection systems. It is estimated that the Internet

traffic is growing by 40 percent annually [1]. This increase is not solely due to the information

shared by people using cell phones, tablets or computers. Nowadays, countless devices embedded

with sensors can connect and communicate their state via the Internet, e.g, toothbrushes, stovetops

and millions of other devices that now have IP addresses. This situation has led to a new concept,

the Internet of things (IoT), which is aimed to extend the benefits of the Internet access, i.e., con-
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stant connectivity, remote control ability, data sharing, and so on, to goods in the physical world.

Today, there are more connected devices than there are human beings on the planet. Estimates

show that there will be over 50 billion connected devices by 2020 (Fig. 1.1) [2].
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Figure 1.1 – Scheme of the expected growth in the number of devices connected to the Internet
network by 2020. The number of connected devices will exceed 50 million by then. IoT: Internet of
Things. Figure reproduced from Ref. [2].

To meet this increasing demand, technologies able to provide higher network capacity and pro-

cessing speeds in a sustainable, energy efficient fashion are fundamental. Optics communications

have proven to be a good solution to increase the data transmission rate and speed of communica-

tions systems. Recent progress in the development of new optical fibers, together with the use of

signal multiplexing techniques, have enabled transmissions that reach the record of 255 Tbps on a

multicore core fiber through 1 km of fiber [3]. However, the bandwidth per channel in wavelength

division multiplexing (WDM) systems is still limited to 40 GHz in commercial systems due to the

speed of electronic components employed for processing of information signals at the transmitter

and receiver of communication network links.

The transmission-capacity increase achieved by WDM systems relaunched the interest in co-

herent technologies over recent years. The motivation lies in increasing the spectral efficiency

and making better use of the capacity of currently existing fiber infrastructure by using multi-

level complex modulation formats. While the spectral efficiency of binary modulation formats,

e.g., on-off keying (OOK), is limited to 1 bit/s/Hz/polarization -which is called the Nyquist limit-,

modulation formats with M bits of information per symbol can achieve a spectral efficiency up to

M bit/s/Hz/polarization [4]. Also, the use of phase information extends the symbol distance on
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the constellation diagram or IQ (in-phase vs. quadrature) plane, what leads to a longer unrepeated

transmission distance. Another important advantage of coherent communications is the post-signal-

processing capabilities available at the coherent receiver. All the information on the complex ampli-

tude of the transmitted optical signal is recovered after detection, and signal-processing functions

acting on the optical carrier, such as filtering, chromatic dispersion compensation and polarization-

mode dispersion compensation, can be performed by customized electrical digital signal processing

(DSP) circuits after detection [4].

The combination of WDM and coherent systems imposes the need for opto-electronic (OE)

signal conversion circuits, individually set and operated for each different wavelength channel and

the management of the amplitude and phase (or the in-phase and quadrature components) of the

electromagnetic signal in an independent fashion. In general, the synthesis of high-order complex

(amplitude and phase) modulation formats requires the use of two properly synchronized electro-

optic (EO) modulation sub-systems (IQ modulators) [5], balanced arms with controlled phase lags

[6], or schemes that require a number of perfectly identical devices for a good performance1 [7,

8]. Therefore, the evolution to higher spectral efficient channels entails an impractical increase of

circuitry complexity and power consumption. Furthermore, the use of individual circuits for each

wavelength may lead to an asymmetric processing of the different channels.

All-optical signal processing arises as a promising solution to help electronics deliver high data

capacities, reducing OE-EO conversions and taking advantage of the high bandwidth intrinsic to

optics. It is based on the premise of exploiting the capabilities of switching speed and parallelism

offered by light to process the information at a high data rate. Moreover, the development of higher-

capacity systems for ultrafast processing of complex-envelope (amplitude and phase) optical signals

provides a platform for the development of new applications, e.g., those ones requiring the analysis

of huge dataset, such as geophysical data processing, drug discovery or environment and climate

modeling [9]. One promising approach to implement optical signal processors involves using design

strategies similar to the ones used for the implementation of current electronic signal processors.

Hence, photonic counterparts of fundamental devices that form “basic building blocks” in electronic

circuits have been designed and realized. Some examples of these building blocks are: wavelength

converters, optical multiplexers/demultiplexers, optical differentiators/integrators, optical systems

1For example, a quad-parallel Mach–Zehnder optical modulator (QPMZM) is a device that generates 16-QAM-
modulated signals. It requires four EO phase modulators and three π/2 phase shifters.
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performing multicasting, equalization, correlation, digital-to-analog (D/A) and analog-to-digital

(A/D) conversion, optical logic gates, all-optical tunable delays or optical clock recovery, among

others [10, 11].

The concept of optical signal processing encompasses a number of operations on the information

encoded in a traveling light wave. This concept has been traditionally classified into two main

categories, depending on whether the information is encoded in the spatial distribution of light

(typically propagating in free space) or in its temporal variation. Thus, we can talk about spatial

domain or temporal domain signal processing. Historically, the study and evolution of optics have

been mainly focused on the spatial nature of light, and therefore, classical optics have greatly

contributed to the development of the spatial-domain optical signal processing [12, 13] (see Fig.

1.2(a)). The invention of the laser, together with the emergence of low loss optical fibers and

semiconductor optical devices have contributed to the upswing of temporal optical signal processing

[12]. Nowadays, telecommunication systems mainly use time-domain signals and as such, they are

the main focus of interest in this Thesis.
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Figure 1.2 – Schematic of space domain (a) and time domain (b) optical signal processing. In space
domain processing, information is encoded in the spatial distribution of light, which propagates in
free space. In the time domain, information is encoded in temporal variations, and light typically
propagates through a guiding medium, such as an optical fiber or waveguide. This Figure illustrates
an example of intensity modulation of light in spatial domain (a) using a spatial light modulator (SML),
and in time domain (b) using an intensity temporal modulator (IM).

Temporal optical signal processors can be broadly categorized into nonlinear or linear proces-

sors, depending on whether they make use of optical nonlinear effects to perform their operation.
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Nonlinear optics describes the behavior of light when propagating in a nonlinear medium, i.e., a

medium in which the polarization density ~P responds nonlinearly to the electric field ~E. This non-

linear dependence is typically observed in optical fibers when the intensity of the propagating field

is very high. Within the context of optical signal processing, nonlinear effects are mainly employed

for the realization of all-optical processors implementing functionalities that require one or several

optical beams to interact with each other; for example, the modulation of an optical signal using

another optical beam, or all-optical demultiplexing and sampling [14, 15]. On the other hand, we

refer to optical linear processors as those ones that use discrete components to perform the target

functionality in such a way that the system satisfies the principle of superposition [16].

A fundamental review of both nonlinear and linear signal processors is presented in the following

Sections. Finally, we conclude this introductory Chapter with an outline of the state-of-the-art of a

particularly interesting application of optical signal processing of high relevance for this dissertation,

namely, optical pulse shaping.

1.2 Nonlinear optical signal processing

The development of ultrafast pulsed lasers made the generation of picosecond and femtosecond opti-

cal pulses readily feasible [17]. For many applications requiring optical pulses in the (sub)picosecond

regime, as optical metrology, advanced microscopy, image processing, or optical computing, tech-

niques based on EO processing are not suitable due to the operation bandwidth limitations imposed

by electronics [18]. Nonlinear optical signal-processing devices enable all-optical operations at ul-

trahigh speeds, i.e. down to the femtosecond regime [19]. Although further progress in nonlinear

signal processing needs to be achieved for practical viability, recent advances in quasi-phase matched

materials, semiconductor optical amplifiers, photonic crystal media and highly nonlinear fibers have

enabled more efficient nonlinear signal processing with relatively lower powers and small device sizes

[20].

When a sufficiently high power optical signal propagates through a dielectric medium, the optical

properties of this one, e.g., the refractive index and the absorption coefficient, exhibit a dependence

on the intensity of the propagating wave. As a consequence, new frequency components can be
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generated as light propagates along the medium, and also photons can interact to each other through

the matter [12].

In this Section, we focus on nonlinear effects that occur in centrosymmetric (with a center of

symmetry) media such as the silica glass (SiO2), as those are the nonlinear effects that appear in

optical fibers and, as such, they can be readily employed to implement in-fiber all-optical signal

processors. The nonlinear effects in centrosymmetric media, also called Kerr media, are governed

by the third term in the Taylor expansion of the polarization density ~P with respect to the optical

field ~E [19].

~P = ε0[χ(1)... ~E + χ(2)... ~E ~E + χ(3)... ~E ~E ~E + ...]

≃ ε0[χ(1)... ~E + χ(3)... ~E ~E ~E] = ε0χ(1)... ~E + ~PNL, (1.1)

where ε0 is the vacuum permitivity, χ(p) is the pth order susceptibility and ~PNL is the nonlinear

polarization component.

Depending on the number of optical waves (i.e., at different carrier frequencies) that propagate

together through a Kerr medium, third harmonics and sums and differences of triplets frequencies,

as well as modulation interactions between them can be generated. The most general case involves

the study of the effects induced by the propagation of three different input waves. The nonlinear

processes that concern the generation of new frequency components must satisfy the frequency

matching condition (Eq. 1.2a) and the phase matching condition (Eq. 1.2b):

ωout = ±ω1 ± ω2 ± ω3, (1.2a)

βout = ±β1 ± β2 ± β3, (1.2b)

where ωq and βq are the carrier angular frequency and propagation constant of each optical wave.

The dispersion characteristic of optical fibers makes that phase matching between the newly gener-

ated frequency components is not easily achieved, limiting the efficiency of nonlinear processes such

as third-harmonic generation (ω1 = ω2 = ω3, β1 = β2 = β3) or four-wave mixing (FWM). Most of

the nonlinear effects in optical fibers therefore originate from nonlinear refraction, a phenomenon

referring to the dependence of the refractive index to the intensity of the light propagating through

the medium. This dependence leads to interesting nonlinear effects; the two most widely studied
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are self-phase modulation (SPM) and cross-phase modulation (XPM). Nonlinear refraction involves

the spectral spreading of an optical signal due to a phase modulation process. Therefore, the newly

generated frequency components do not need to satisfy the phase matching condition [19].

Figure 1.3 shows an illustrative example of propagation of three input signals (two continuous

waves (CW) at 1543 nm and 1547 nm, and one train of Gaussian-like pulses at 1539 nm) through a

1 km-long highly nonlinear fiber (HNLF), that is, a specialty fiber with a high nonlinear coefficient2

and typically small group velocity dispersion. In the example, the parameters of the standard HNLF

from OFS [21] are employed. We can observe how new spectral components are generated along the

light propagation due to the effect of χ(3). In particular, the spectral broadening of the signal at

1539 nm is attributed to SPM, the spectral broadening of the two CW waves is attributed to XPM

induced by signal at 1539 nm (train of pulses), and the components around 1551 nm are attributed

to FWM of the three input signals.
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Figure 1.3 – Example of the evolution of the spectrum of three input optical signals (centered at differ-
ent carrier wavelengths) in their propagation along a HNLF (1 km-long). New frequency components
are generated due to the effect of χ(3). The simulation has been carried out solving the nonlinear
Schrödinger equation by using the split-step Fourier method [19].

For all the above-mentioned nonlinear effects, there is no exchange of energy between the elec-

tromagnetic field and the dielectric medium. In another class of observed nonlinear effects, there is

a transfer of energy between the optical field and the medium. The most important effects in this

category are stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) [19].

2The nonlinearity of an optical fiber is more practically expressed using the nonlinear coefficient γ. γ proportional
to the real part of χ(3) and inversely proportional to the effective area of the fiber.
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A vast number of all-optical signal processing operations have been investigated and experi-

mentally demonstrated based on the above-mentioned nonlinear effects. Among the most relevant

operations, we can mention wavelength conversion of intensity-only signals based on XPM [14, 22–

24] or complex-envelope signals based on FWM [25–30]; optical demultiplexing and sampling for

optical time division multiplexing (OTDM) bit streams based on XPM [15, 31] or FWM [32]; op-

tical regeneration based on SPM [33, 34], XPM [35] or FWM [36]; optical performance monitoring

[37, 38]; impairments compensation via time or spectral phase conjugation based on FWM [39–42];

and all-optical pulse shaping [18, 43–45].

To date, the high degree of control required on the characteristics of the input signals (e.g.,

power, central frequency, state of polarization, etc.) involved in a nonlinear processing operation

has hindered their application beyond a well-controlled laboratory environment. In general, optical

signal processing based on optical nonlinear effects is not energy efficient, and high optical powers

are commonly required. An additional drawback of nonlinear techniques is that highly nonlinear

fibers or waveguides with customized dispersion profiles are needed for an efficient processing, mak-

ing the system costly and bulky. Moreover, the implementation of more complex systems relying

on the concatenation of two or more nonlinear optical signal processors may notably degrade the

information signal. This degradation might be caused by the reduction of the signal-to-noise ratio

(associated to the low energy efficiency of these processors and the requirement of amplification

stages), and/or by the inclusion of spurious frequency components in the bandwidth of the infor-

mation signal.

1.3 Linear optical signal processing

Linear systems are those that possess the property of superposition. Thus, the output of a linear

processor to an input consisting of the weighted sum of several signals is simply the superposition,

that is the weighted sum of the response of the processor to each of those signals [16]. Among linear

systems, we are particularly interested in those that have the property of time-invariance, as many

physical processes possess this property (on the time scale of interest) and they can be analyzed in

a far simpler fashion. A system is time-invariant if a time shift in the input signal causes the same

time shift in the output signal. Fourier analysis provides a set of powerful tools and insights for
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the design and understanding of systems that have the properties of linearity and time-invariance

(LTI) [16].

The output of an LTI system can be easily computed by decomposing the input into a linear

combination of simpler, basic signals and providing the system’s response to each of these basic

signals. For example, any input signal can be represented as a set of shifted unit impulses. The

response of the system to an input temporal impulse provides the impulse response function h(t),

with t being the time variable, which completely characterized the LTI system: knowing the re-

sponse to this function, the response to any arbitrary input signal can be obtained. Alternatively,

the system can be described by the corresponding frequency response (spectral transfer function)

H(ω), i.e., the frequency-domain representation of the device’s temporal impulse response using a

Fourier transformation, where ω is the angular frequency variable. An excellent reference on the

fundamentals of linear signal processing is Ref. [46]. There is a myriad of interesting optical sig-

nal processing functionalities that can be described by an LTI system response, e.g., optical pulse

shapers, optical differentiators, integrators, pulse processors such as Fourier or Hilbert transformers

or dispersive media, among many others.

Nowadays, two main procedures are employed to implement time-domain linear optical signal

processors, usually referred to as optical temporal filters: (i) the development of time-domain analogs

of well-known spatial-domain filters, in which the filtering operation is carried out in the time domain

via modulation processes (Fig. 1.4(a))3, and (ii) the design of temporal filters based on discrete

components, e.g. ring resonators, interferometers or fiber gratings, where the filtering operation is

carried out by directly shaping the signal’s spectrum (Fig. 1.4(b)) [11, 47–55]. In this classification,

we have only considered systems that perform the processing operation directly in the time-domain.

There exists another kind of optical, temporal signal processors based on bulky, spatial-domain

setups that pre- and post- convert the spectral information of the signal to waves with different

propagation angles in the spatial-domain for its processing. An example of these signal processors

will be provided in Section 1.4.2.

Time-domain equivalents of spatial-domain optical filters have been identified and created owing

to the so-called space-time duality [56, 57]. The general space-time duality theory builds upon the

3These systems are time-variant due to the use of a modulation process. However, assuming synchronization
between the modulating and modulated signals and certain restrictions on the temporal duration of the modulating
signal, the total scheme acts as an optical filter and can be described by an impulse response over a defined temporal
window.
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Figure 1.4 – Procedures for implementing time-domain optical linear filters: (a) inspired in spatial-
domain filters, such as the one in the inset, and implemented for time-domain processing following the
space-time duality, and (b) based on discrete components, e.g., ring resonators or fiber gratings. The
system in (a) is time-variant, but when assuming synchronization between the modulating electrical
signal and the modulated optical input, it can be considered as an optical filter.

mathematical equivalence between the problems of paraxial diffraction and narrow-band dispersion.

Thus, a number of signal-processing tools previously developed in spatial optics have been exploited

for processing information in the time domain, including the time-lens concept, temporal imaging,

self-imaging systems, real-time Fourier transformation and filtering [56–64]. An example of the

latter is depicted in Fig. 1.4(a).

On the other hand, discrete components have been widely used to implement optical filters that

act directly on the spectral content of the input signal (Fig. 1.4(b)). Among the typically used

components, we can mention ring resonators [47–50], interferometers [51, 52] or periodic structures

such fiber or waveguide gratings [11, 53–55]. Bragg gratings in fibers are specially interesting

components due to their advantages such as low losses, polarization insensitivity, full compatibility

with fiber optical systems and the potential for low cost [53, 54].

In the following Sections, we delve deeper into the mathematical fundamentals of the two afore-

mentioned methods for designing and implementing linear optical signal processors. Thus, we first
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present the basis of the space-time duality. Then, we introduce the principle of operation of fiber

grating structures, namely fiber Bragg gratings (FBG) and long period gratings (LPG). In this

Thesis, we focus on FBG structures for the development of ultrafast all-optical linear signal pro-

cessors’ design techniques. It is worth mentioning that the design techniques introduced for these

components could be also applied to other periodic structures, such LPGs or thin-film filters.

1.3.1 Space-time duality

Pioneering optical signal processing systems were developed in the spatial domain [13]. The princi-

ples of Fourier optics made it possible to describe the propagation of light waves based on harmonic

analysis, which led to the development of the first space-domain optical filters and imaging systems.

Thus, a myriad of signal processing functionalities were achieved in the spatial domain, such as am-

plitude or frequency modulators [12], Fourier transformers, imaging (magnification/compression)

systems [13], or classical holography [65–67], among others.

The principle of Fourier optics establishes that any arbitrary wave in free space can be analyzed

as a superposition of plane waves with different complex amplitudes and propagation directions.

The complex amplitude of a plane wave is defined as êp(x, y, z) = A exp{− j(kxx+kyy +kzz)}, with

wavevector ~k = (kx, ky, kz), wavelength λ0 (i.e., the light has an angular frequency ω0 = 2πc0/λ0,

with c0 being the speed of light in vacuum), wavenumber k = (k2
x +k2

y +k2
z)1/2 = 2π/λ0 and complex

envelope A. The vector ~k makes angles θx = sin−1(kx/k) and θy = sin−1(ky/k) with the y − z and

x − z planes, respectively, as illustrated in the Fig. 1.5. The complex amplitude in the z = 0

plane ep(x, y, 0) = A exp{− j 2π(νxx + νyy)} is a spatial harmonic function with spatial frequencies

νx = kx/(2π) and νy = kx/(2π) (cycles/m). The angles of the wavevector are therefore related to

the spatial frequencies of the harmonic function by [12]

θx = sin−1(λ0νx)

θy = sin−1(λ0νy). (1.3)

In Fourier optics theory (spatial-domain), two hypotheses are typically assumed: (i) the propa-

gating wave is monochromatic, which means that it has a well defined wavelength λ0 or frequency

ω0, and (ii) it propagates within the paraxial approximation, that is, its wavefront normals make
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Figure 1.5 – Schematic illustrating the angles of propagation of a traveling plane wave with wavevector
~k.

small angles with the propagation axis. In the paraxial approximation, Eq. 1.3 can be approximated

as θx ≈ λ0νx and θy ≈ λ0νy. Under these hypotheses, the propagation of light in free space can be

described by the spatial “impulse response”

ĥz(x, y) ∝ exp
{

− j
π

λ0z
(x2 + y2)

}

, (1.4)

where x and y are the Cartesian coordinates in the plane transverse to the propagation direction.

There exists a well-known analogy between the equations that describe the paraxial diffraction

of beams in space and the dispersion of narrow-band pulses in dielectrics [56, 68].
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Figure 1.6 – Schematic diagram of the duality between spatial paraxial diffraction and first-order
temporal dispersion: (a) Propagation of a plane wave through a rectangular aperture in free space.
For simplicity, the problem has been reduced to the x-axis in the illustration. The same behavior
would be observed in the y-axis. (b) Propagation of a temporal rectangular pulse through a first-order
dispersion medium.

In the time domain, two different hypotheses are considered: (i) the spatial profile of the wave

is approximated as an infinite plane wave (or the spatial variables are simply not considered), and
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(ii) propagation of narrow-band pulses is assumed. The latter implies that the temporal-frequency

spectrum is limited to a suitable range, making it possible to describe the propagation of any spectral

component by a Taylor-series expansion of the propagation constant β(ω) [56], with ω being the

angular frequency variable. A dispersive medium can be modeled as an LTI system with transfer

function H(ω) = |H(ω)| exp{j Φ(ω)}, with Φ(ω) = β(ω) · L and L being the fiber length. For the

analogy with the spatial domain, let us consider just the two first terms of the Taylor expansion of

β(ω), leading to H(ω) having a flat amplitude and a quadratic phase response (i.e., linear group

delay) over a spectral bandwidth ∆ω centered at a pulsation frequency ω0;

Φ(ω) ≈ dβ(ω)
dω

∣

∣

∣

∣

ω=ω0

· (ω − ω0) L +
1
2

d2β(ω)
dω2

∣

∣

∣

∣

ω=ω0

· (ω − ω0)2 L

= β̇ (ω − ω0)L +
1
2

β̈ (ω − ω0)2L = Φ̇ (ω − ω0) +
1
2

Φ̈ (ω − ω0)2. (1.5)

The linear term of Φ(ω) represents a temporal delay and can be neglected without loss of

generality. The second-order dispersion coefficient, Φ̈, is constant within the considered spectral

bandwidth. Considering that the bandwidth of the input optical pulses is narrower than ∆ω, the

impulse response of the resulting dispersive medium, h(t′) = ĥ(t′) · exp{j ω0t′}, has a complex

envelope ĥ(t′) with the same mathematical structure as Eq. 1.4:

ĥ(t′) ∝ exp
{

j
1

2Φ̈
t′2
}

, (1.6)

where t′ represents the time variable with the group delay at ω0 taken as a reference, i.e., t′ = t−β̇L.

The observation of this mathematical duality led to the definition of the concept of time lens

[56, 60]. The time-lens concept enabled the implementation of time-domain analogs of imaging

systems, providing interesting applications as temporal magnification, compression, or time reversal

of temporal optical pulses [60]. The effect of a thin spatial lens can be described by a quadratic

phase transformation in the form,

tsl(x, y) = exp{− j knl∆l} exp
{

− j
k

2fl
(x2 + y2)

}

, (1.7)

at ω0, where ∆l is the maximum thickness of the lens, nl is its effective refractive index, fl is the

focal length and k is the wavenumber [12, 56]. The first term in Eq. 1.7 is a constant phase shift

and therefore, it can be ignored for this discussion. Consequently, a lens produces a quadratic phase
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modulation in space. In order to find the time-domain counterpart of the space lens, it is needed

to produce a quadratic phase modulation on the local time variable t′. Therefore, the time lens’

transmittance function can be written as

ttl(t
′) ∝ exp

{

− j
ω0

2ftl
t′2
}

, (1.8)

where ftl is the “focal time” of the time lens. Hence, the time lens can be easily implemented

with an EO phase modulator driven by a quadratic voltage (see Fig. 1.7). Reference [56] provides

the expressions for fl and ftl in terms of the lens curvature surface and modulation parameters,

respectively. A time lens works properly under the assumption of synchronization between the input

temporal waveform and the quadratic modulating (electrical) voltage. The spatial-domain analogy

of this assumption can be seen as the fact that the spatial information signal needs to be spatially

aligned with the lens.
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Figure 1.7 – (a) Conventional space lens; (b) Time lens implemented with a phase modulator driven
by a quadratic voltage.

Thereby, it is possible to exploit spatial-domain techniques in the temporal domain using space-

time duality. This approach has enabled more sophisticated and powerful methods to realize time-

domain signal processing and characterization [57, 58, 61, 63, 64].

1.3.2 Fiber grating structures

Fiber gratings are periodic perturbations of the refractive index along the core of an optical fiber,

typically generated by exposition of this optical fiber to a spatially varying pattern of ultraviolet

(UV) light [53, 69]. Since their discovery in 1978, fiber gratings have been extensively studied for

their application as linear passive filters, with interesting advantages over other filtering technologies,

such low losses, polarization insensitivity, full compatibility with fiber-optics systems and relatively
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low cost [53, 54, 69]. Still, the main advantage of fiber gratings is their flexibility to implement

nearly any desired linear optical filtering functionality, only constrained by practical fabrication

limitations. Mathematically, the perturbation of the effective refractive index of the guided mode

of interest along the fiber length z is described as

nF G(z) = nav + ∆n(z) · cos
{
∫ z

0

2π

Λ(z′)
dz′

}

, (1.9)

where nav is the “dc” index change spatially averaged over a grating period, ∆n(z) is the envelope

of the induced refractive index change, also defined as the apodization profile, and Λ(z) is the period

variation, or chirp, along the grating length. The grating is confined over a length L, i.e., nF G(z)

is defined for z ∈ [0, L]. Figure 1.8 shows a schematic of a fiber grating where the above-mentioned

grating parameters are represented.

nFG(z)

z

Fiber Grating

Lz( )

n z( )

nav

0

nmax

Figure 1.8 – Schematic of the sinusoidal perturbation at the core of an optical fiber, creating a fiber
grating. The lower figure depicts light coupling to a counter-propagating mode.

In order to achieve the target grating spectral response, nearly all the grating’s physical param-

eters can be varied: induced index change nav and ∆n(z), length L, period chirp Λ(z), and whether

the grating supports counterpropagating or copropagating coupling at a desired wavelength [54].

Much research effort has been devoted to develop design tools that provide a direct relationship

between the refractive index perturbation and the resulting grating spectral response. Thus, anal-

ysis [53, 54, 70–72] and synthesis tools [73–76] have been developed and they possess nowadays a

high level of technical maturity. Analysis tools provide the spectral response H(ω) of a grating

with a particular refractive index profile nF G(z), and they are used to study how variations in the

parameters of the grating (e.g., ∆n(z) and/or Λ(z)) affect the resulting spectral response. On the
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other hand, synthesis tools provide the required nF G(z) to achieve a target H(ω), and they are

widely employed in design procedures for obtaining the required grating parameters aimed at a

desired filtering functionality.

An important limitation of fiber grating solutions as signal processing units is the lack of re-

configurability. Fortunately, there are a broad range of applications for which a particular fixed

spectral response is required, e.g., differentiators, integrators, signal processors as Hilbert trans-

formers, or rectangular or parabolic pulse shapers [11, 77–92], to name just a few. In those cases,

a simple, highly efficient and easily reproducible component would be preferred over nonlinear or

EO schemes. Moreover, nowadays much effort is put into integrating these periodic structures on

photonics integrated chips (PICs) [55, 93–98].

The most widely extended theory to model and describe the functionality of fiber gratings is

the coupled-mode theory (CMT) [71, 72]. This theory considers the fiber grating as a device able

to couple optical power between two electromagnetic modes (with propagation constants, β1 and

β2) when the grating period verifies the phase-matching condition [54]

β1 − β2 = m
2π

Λ
; m = 1, 2, 3, ... (1.10)

where m is the Bragg-order and Λ is the nominal grating period. Depending of the value of Λ, fiber

gratings can be broadly classified into two types: fiber Bragg (short period) gratings and long period

gratings. In the next Sections, a brief review of the fundamentals of these two kinds of gratings is

presented.

1.3.2.1 Fiber Bragg gratings (FBG)

FBGs, also called reflection and short-period gratings, typically have a sub-micron period and couple

light from the forward-propagating fundamental core-mode to the counter-propagating (backward)

core-mode of the optical fiber, i.e, β2 = −β1 (Fig. 1.9). This coupling dominates at a specific

wavelength λ0, defined by the Bragg phase-matching condition (Eq. 1.10 considering m = 1).

An FBG operates as a band-pass filter in reflection and, consequently, as a band-stop filter in

transmsission (see Fig. 1.9).
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Figure 1.9 – Schematic diagram of a fiber Bragg grating (FBG), indicating two operation possibilities:
the reflection mode and the transmission mode. ω0 is the Bragg angular frequency, ω0 = 2πc0/λ0.

FBGs can be characterized in reflection and transmission by their spectral transfer functions

HR(ω) and HT (ω), or the corresponding temporal impulse responses hR(t) and hT (t), respectively:

HR(ω) =
E−(0, ω)
E+(0, ω)

; hR(t) = F
−1[HR(ω)]; (1.11)

HT (ω) =
E+(L, ω)
E+(0, ω)

; hT (t) = F
−1[HT (ω)], (1.12)

where F denotes Fourier transformation and ω is the angular frequency variable. The propagating

waves E(z, ω) at the input (z = 0) and output (z = L) of the FBG have the subindex + for waves

propagating in the direction of longitudinal variable z, and the subindex − for waves propagating

in the opposite direction. These input and output signals are represented in Fig. 1.9.

FBGs are typically used in reflection mode. The major advantage of this configuration is that the

grating can be designed to implement any desired arbitrary filtering functionality, within practical

limitations imposed by the fabrication process. The main practical constraints are (i) the limited

spatial resolution of the apodization profile, in the sub-millimeter range, and (ii) the maximum

refractive index modulation ∆nmax, typically restricted to values under ∼ 10−3. Those limitations

impose a stringent operation bandwidth limitation of a few hundreds of GHz (typically it is assumed

a limitation of ∼ 200 GHz, corresponding to temporal resolutions of at least several picoseconds).

Reflective FBGs also require additional elements to separate the output from the input, such as

an optical circulator or an optical coupler [99]. The use of FBGs operating in transmission pro-
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vides interesting advantages: transmissive FBGs avoid the requirement of an additional element

to separate the output signal from the input, reducing the complexity and cost of the processor

unit. Also, they are more robust against fabrication errors due to the weak interaction between

the transmitted optical signal and the grating. Hence, imperfections in the grating do not become

impressed upon the signal field [100]. However, FBGs in transmission have an important drawback

for their application as processing units of complex-valued transfer functions. The amplitude of

the grating’s spectral response in transmission HT (ω) uniquely determines its phase by means of a

Hilbert transformation, that is, the transmission spectral response is a minimum-phase (MP) func-

tion [101] (factoring out the delay and dispersion caused by the propagation length in the fiber).

Therefore, there is no freedom in choosing the complex spectral response to be implemented using

this configuration.

1.3.2.2 Long period gratings (LPG)

LPGs, also called transmission gratings, have a period typically in the range of hundreds of µm, and

induce coupling between the propagating fundamental core-mode and higher-order core or cladding

modes. In LPGs, phase matching occurs at discrete wavelengths associated with the excitation

of specific higher-order modes [54]. The period of the LPG is selected so that most of the power

from the fundamental mode is coupled to a particular high-order mode at the frequency of interest,

following Eq. 1.10. Figure 1.10 illustrates the wavelength-dependent attenuation resonances of a

LPG, in this example the period of the LPG has been chosen to couple most of the power from the

fundamental mode to the mode LP05 at ω0.

LPGs just work in transmission (no coupling occurs to a counter-propagating mode) offering two

possibilities: the core-to-cladding (c− cl) coupling mode or the core-to-core (c− c) coupling mode

operation. In the remainder of this Thesis, we assume LPGs implemented in a single mode fiber

(SMF), i.e., only the fundamental mode propagates through the core. In this case, the core-to-core

configuration is characterized by a multi-band rejection spectral response, while the core-to-cladding

mode has a multi-band pass response. Similarly to FBGs, the analogous spectral transfer functions

and temporal impulse responses for the two LPGs operation modes are obtained as:

Hc−cl(ω) =
E+

cl (L, ω)
E+(0, ω)

; hc−cl(t) = F
−1[Hc−cl(ω)]; (1.13)
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Hc−c(ω) =
E+

co(L, ω)
E+(0, ω)

; hc−c(t) = F
−1[Hc−c(ω)], (1.14)

where the input and output propagating waves are shown in Fig. 1.10. For coupling between

the core (fundamental) mode and the cladding mode of interest, the solution of the coupled-mode

equations reveals than LPGs can have a significantly broader bandwidth than FBG in its coupling

between the fundamental counter-propagating modes. The reason is that, whereas the bandwidth

of a FBG is inversely proportional to the effective refractive index of the fundamental mode, the

bandwidth of a resonance of an LPG is inversely proportional to the difference between the effective

refractive indices of the two involved modes (the analytic demonstration can be found in Ref. [54]).

This fact enables the large bandwidth typical for these fiber filters, scaling the filtering operation

well into the THz-bandwidth regime.
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Figure 1.10 – Schematic diagram of a long-period fiber grating (LPG), indicating two operation possi-
bilities, the core-to-core mode and the core-to-cladding mode. In the figure, coupling to a higher-order
cladding mode (LP05) is assumed.

LPGs have recently attracted a great deal of interest for linear optical pulse shaping and pro-

cessing applications [79, 80, 89, 92, 102–105], since they allow faster operation speeds (bandwidths)

than conventional FBG-based optical waveform generation and processing schemes. Fiber LPGs

are typically based on coupling between the core mode and a cladding mode, i.e., core-to-cladding

operation. In order to transfer the cross-coupling signal in the fiber cladding-mode to the fiber core-

mode it is necessary either to concatenate a core-mode blocker and a short, strong uniform LPG

[102], or to splice a suitably misaligned fiber in such a way that the cladding mode directly couples

into its core [106]. Moreover, as compared with FBG devices, LPGs suffer from serious limitations,
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particularly instabilities and high sensitivity to environmental fluctuations, and a significantly larger

footprint for implementation in integrated formats.

1.4 Optical pulse shaping

A relevant application of optical signal processing is pulse shaping. Optical pulse shaping involves

synthesizing the desired shape of the complex (amplitude and phase) temporal envelope of an optical

electromagnetic pulse, and it plays a fundamental role in communication, computation or control

systems [107–117]. Pulse shaping techniques are required to generate advanced pulse waveforms

that optimize the overall performance of a telecommunication system, e.g., with the aim of (i)

extending the transmission reach of the communication link, (ii) achieving optical multiplexing at

highest spectral efficiency or (iii) limiting nonlinear distortions [107–110, 117].

Arbitrary temporal pulse shaping of ultrashort optical pulses, with resolutions in the picosec-

ond regime and higher, is of great interest for a broad range of applications, such as high-speed

coding/decoding, all-optical switching, or wavelength conversion, among many others [107–117].

Several of the signal processing techniques investigated in this dissertation are aimed at achieving

picosecond-resolution pulse shaping functions. In this Section, a revision of approaches existing to

date for optical pulse shaping is performed.

1.4.1 Nonlinear optical pulse shaping

Realizing optical pulse shaping using nonlinear optics effects has attracted much interest, due to

the broad operation bandwidths that can be potentially obtained and the all-optical nature of the

processing operation. It has been recently demonstrated that various pulse profiles can be achieved

from the propagation of ultrashort strong pulses in nonlinear media with normal dispersion [18].

Pulses with parabolic intensity profiles with a linear frequency chirp (i.e., a parabolic phase

modulation), known as similaritons, have been generated from the propagation of ultrashort pulses

in media with varying dispersion [43, 44]. Moreover, the linear chirp achieved during the parabolic

amplification make it possible to compress the obtained pulses through their propagation in a

suitable dispersive medium. Thus, shaped pulses with much shorter temporal duration than the



Chapter 1. Introduction 21

initial seed pulse can be obtained. Also, the combination of a pulse prechirping and nonlinear

propagation in a normally dispersive medium has been introduced as a method for passive nonlinear

pulse shaping, which have proven useful for generating advanced field distributions, including flat-

top and triangular profiles with a linear chirp [43, 45]. The initial power value and chirp of the

input Gaussian-like pulse determines the reshaping process in the nonlinear propagation.

In spite of the fact that these nonlinear approaches are promising solutions to achieve all-

optical, ultrafast pulse shaping operations, nonlinear optical pulse shaping is still restricted to

few, well prescribed intensity-only shapes and under stringent control of the signals involved in

the process, only achieved nowadays in a laboratory. Moreover, the shaped pulses obtained by

these means have finite life distance (i.e., they conserve the target shape during a limited distance)

that depends sensibly on the initial conditions (pulse shape, energy, and chirp profile). These

circumstances, together with the general handicaps of nonlinear optical signal processing methods

already mentioned in Section 1.2, have strongly limited the practical use of nonlinear optical pulse

shaping techniques.

1.4.2 Linear optical pulse shaping

Linear photonic techniques are generally much more attractive than nonlinear solutions for realizing

optical pulse shaping in the context of telecommunication and information processing applications.

In this Section, a review of most relevant linear optical pulse shaping techniques is performed.

A straightforward technique for shaping of optical waveforms involves the use of high-speed

electronics to directly drive an external EO modulator. The modulating signal is an electronic

waveform with the target shape that carves the information in an input monochromatic optical

carrier [118, 119]. The speed limitation of electronics typically restricts the frequency content of

the generated optical waveforms below a few tens of GHz.

Pulse shaping methods based on spatial-domain Fourier optics filters are well known and have

been widely applied. These methods, also referred to as “spectral shaping”, routinely offer temporal

resolutions better than 100 fs. In the original technique, the temporal information is converted

into a one-dimensional spatial domain waveform through a diffraction grating, as illustrated in

Fig. 1.11 [120, 121]. This conversion is achieved by the spatial spreading of the different spectral
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components of the temporal information signal. The resulting waveform is shaped by a simple

spatial-domain linear filtering process based on the concatenation of two Fourier-transform systems

in a configuration called 4-fl system, with fl being the focal length of the involved thin lenses.

In the central plane of the system, the so-called Fourier plane, an amplitude or phase mask is

placed, which acts as the optical filter implementing modulation on the different spatial frequency

components of the input beam. The resulting shaped wave is converted back to the time-domain via

a second diffraction grating. In state-of-the-art schemes, conventional picosecond and femtosecond

pulse shaping techniques have been implemented by replacing the amplitude or phase mask by

advanced devices, such as liquid crystal spatial light modulators (SLM) [120–122], acousto-optic

modulators [120], or EO phase arrays [122], which impart user-specified spectral amplitude and

phase modulations on the pulse in a programmable fashion. The main drawback of this scheme is

the requirement of bulky optical components, which require strict tolerances in their alignment and

have limited integration with waveguide devices. Also, the need for coupling the shaped waveforms

back into an SMF introduces loss and further limits the temporal extent of the generated pulse

shapes [123].
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Figure 1.11 – Schematic of a spatial-domain filter for time-domain optical pulse shaping. The optical
pulses are pre- and post- converted to the spatial-domain by means of diffraction gratings.

To overcome this practical complexity problem, an important body of research has focused on

the search for alternative implementations of spectral shaping using optical fiber or integrated-

waveguide platforms. To give a first relevant example, an integrated version of the original Fourier

optics pulse shaping concept has been implemented using arrayed waveguide gratings, which have

been used to spatially distribute the temporal frequency components of an input waveform. The
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amplitude and phase profile of the spatially-dispersed pulse is subsequently manipulated with an

array of modulators and combined again using a second arrayed waveguide grating [124, 125]. These

pulse shapers are compact, integrated devices, but they are typically limited to time resolutions

above 10 ps.

A similar approach has been recently developed, but using an optical frequency comb (OFC) as

the input signal [126]. Each frequency line of the OFC is separately modulated using IQ modulators

and then, the spectral slices are combined to produce a target waveform. This technique is able

to generate broad bandwidth signals (scalable to THz frequencies) from narrow spectral slices with

bandwidths accessible by current electronics. However, the complexity, power consumption and

cost of the required electronic circuits quickly scale up with the bandwidth of the output signal.

With the understanding of the space-time duality, the equivalent of pulse-shapers based on

spatial-domain optical filtering has been implemented using in-line fiber-optic components. In

particular, the spatial 4-fl system can be substituted by two all-fiber dispersive elements with

opposite dispersion and a single EO modulator in between the dispersive elements (see Fig. 1.4(a)).

This configuration is just an approximation of the truly temporal counterpart of a spatial 4-fl

system: making use of the far-field diffraction and considering that waveguides can produce either

positive or negative group-velocity dispersion, the middle two regions of dispersion and both of the

time lenses can be eliminated, dramatically simplifying the system. This implementation based

on pure fiber optics offers the advantages of smaller size, lower loss, better stability and higher

potential for integration [123]. Different schemes have been proposed based on this configuration,

using either an EO intensity modulator [127, 128] or a phase modulator [129–131], all of them with

a resolution reaching the sub-picosecond range.

All the previously mentioned approaches are electronically programmable: either the target

shape or its spectral response is generated through an electrical bit pattern generator or arbitrary

waveform generator. Simpler, more compact optical pulse shapers have been explored using fiber-

optic or integrated-waveguide linear optical filters with customized spectral responses. A relevant

example is that of optical lattice filters [132–134]. They are a good all-purpose solution due to

their ability to generate complicated spectral transfer functions by cascading identical units cells.

In a widely used configuration, shown in Fig. 1.12, each unit cell employs a combination of a ring

resonator and a Mach-Zehnder interferometer, and it contributes a separately controllable pole and
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zero pair [134]. However, the phase-shifter employed as part of the interferometer in each unit cell

makes it difficult to achieve operation bandwidths above a few tens of GHz.
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Figure 1.12 – Schematic design of a single unit-cell lattice filter, at the top of the figure, and example
of an N-unit cell filter, at the bottom. Figure reproduced from Ref. [134].

Alternative pulse shaping techniques have been also demonstrated using the concept of temporal

coherence synthesization. They are based on the synthesis of the desired output pulse shape by

coherently combining a set of input pulse replicas with different time delays, as illustrated in Fig.

1.13 [52]; or similarly, using coherent overlapping of different (first and high-order) derivatives of

the input optical pulse with specific relative weights [135]. Programmability can be achieved by

properly programming the time-delays (first approach) or relative weights using amplitude and/or

phase optical modulators (second approach). A sub-picosecond resolution, silicon-based pulse-

shaper based on temporal coherence synthesization has been recently proposed in [136]. This

approach uses cascaded co-directional couplers to manipulate both amplitude and phase of the

input pulse to be shaped.

Finally, optical pulse shaping operation has been also investigated using fiber gratings. FBGs

operating in the weak-coupling condition (first-order Born approximation) have been employed as

pulse shapers [70, 86, 109, 112, 137, 138]. If the grating is sufficiently weak, the corresponding

reflection impulse response hR(t) is directly related to the spatial profile of the index-modulation

depth ∆n(z). This simple approach permits the synthesis of nearly any desired optical waveform

with resolutions in the picosecond regime. As relevant examples of this design approach, we can
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Figure 1.13 – (a) Conceptual diagram of the pulse shaping technique based on the concept of temporal
coherence synthesization; (b) Examples of synthesized temporal waveforms: flat-top, parabolic, trian-
gular and trapezoidal pulse; (c) Schematic of a single stage of the multi-stage interferometric setup
for pulse shaping based on this concept. B: 50:50 beam splitter; M: Mirror. Figure reproduced from
Ref. [52]

mention the implementation of flat-top [137, 138], parabolic [112] and saw-tooth (triangular) [109]

pulse shapers based on specially apodized FBGs.

Another approach for FBG-based pulse shaping based on the Born approximation is based on

a space-to-frequency-to-time mapping [139]. It enables the synthesis of arbitrary waveforms in

the picosecond/nanosecond regime, although with a lower energy efficiency. This method involves

using a specially designed apodized linearly chirped FBG (LC-FBG), in the regime of weak coupling

condition. If the FBG chirp induced dispersion is sufficiently large, the amplitude of the grating

impulse response is proportional to the amplitude of the spectral response of the filter, which is in

turn proportional to ∆n(z) (under the Born approximation). In this case, the desired temporal (or

spectral) waveform only needs to be spatially “recorded” in the apodization mask used to write the

grating. The application of this approach is limited to amplitude-only pulse shaping, and the time

duration of the output pulses is limited by the length of the grating that can be written, typically

in the nanosecond regime (corresponding to a physical fiber-grating length shorter than ∼ 10 cm).

More advanced solutions for the use of FBGs as pulse shapers involve the application of general

grating-synthesis algorithms [74–76] to determine the amplitude and phase profiles of the refractive-
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index modulation that are necessary to obtain a given temporal response. These methods allow

one to design high-reflectivity FBGs to achieve the desired pulse-shaping operation, leading to

increased energy efficiency. Employing these gratings design techniques, FBGs have been designed

to implement several optical pulse shapers [83, 140–147].

In regards to pulse shapers based on LPGs, some interesting LPG-based optical code generation

designs were first reported in [104] but they were limited to the synthesis of temporally symmetric

and binary intensity-only (OOK) optical codes, (sub-) picosecond flat-top shapes and first- and

high-order Hermite-Gaussian pulse waveforms from Gaussian-like optical pulses. A THz-bandwidth

optical pulse shaping theory has been recently developed using fiber LPG devices [105, 106, 148],

that has enabled the demonstration of complex-envelope optical code sequences and other intersting

pulse shapes (e.g., rectangular or triangular) with temporal resolutions that are not limited by the

spatial resolution of the grating fabrication technologies.

Nowadays, the trend is towards the realization of pulse shaping technologies in integrated for-

mats. For this purpose, compact, highly flexible grating systems appear as practical and promising

approaches for real-world applications. This represents a very interesting perspective for the future

development of fully integrated optical circuits for communications, information processing and

computing [149].



Chapter 2

Motivation and organization of the

Thesis

2.1 General motivation

As introduced in Chapter 1, there is a high interest in decreasing the complexity of the circuits

for processing information of complex-envelope temporal optical signals, aimed at reducing costs

and power consumption. Moreover, the design and implementation of all-optical signal processors

able to operate at ultrafast speeds (ideally, with processing bandwidths into the THz regime) is

critical to reduce electro-optical (EO) conversions and increase the capacity of current networks

and computing systems [150].

The problem of simultaneously controlling the amplitude and phase of an electromagnetic signal

has long been solved in the spatial domain. Holography in the spatial domain is a well-known

imaging process that was first introduced by D. Gabor in 1949 [65]. In this process, the entire

information (i.e., amplitude and phase) of a desired complex optical waveform can be recorded,

generated and/or processed by the employment of a photosensitive medium that responds only to

the intensity of light [66, 67]. Holography has been used not only for three dimensional (3D) imaging

processing, but also for the implementation of complex (amplitude and phase) optical filters in the

spatial domain, i.e., the so-called Vander-Lugt filters [151], among other interesting applications.

The basics of space domain holography will be reviewed in Chapter 3.
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In this Thesis, we propose the concept of time-domain holography, developed as the exact time-

domain counterpart of classical (spatial-domain) holography. The time-domain equivalent of the

recording process in holography involves photo-detection of the interference between the temporal

complex-envelope waveform under analysis (information signal) and a reference optical local oscil-

lator, typically a continuous wave light at a wavelength properly shifted from the spectral content

of the information signal. This procedure is already employed for complex optical signal character-

ization and it is referred to as heterodyne detection [152]. In a conventional heterodyne detection

scheme, the amplitude (or intensity) and phase temporal profiles of the optical information signal

are numerically recovered from the recorded interferogram using an algorithm based on Fourier

transforms. Also, if the detected signal is to be used for additional processing, the in-phase and

quadrature components need to be handled independently. The time-domain holography scheme

introduced here goes one important step further by using the detected electrical interferogram (the

temporal hologram) for generation and processing of an exact replica of the original complex in-

formation signal directly in the optical domain. Thus, time domain holography can be seen as a

signal processing methodology that enables the simultaneous control of the amplitude and phase

of a temporal optical waveform using EO or all-optical components sensitive to intensity-only vari-

ations, namely, temporal detection and/or amplitude modulation optical devices. The resulting

procedure greatly simplifies present approaches aimed to similar generation and processing tasks,

e.g. in the optical coherent transmitter and receiver. Indeed, the currently required circuitry can

be significantly reduced, as the IQ components of the coherent optical information signal will be

processed simultaneously, avoiding the independent detection, processing, and re-combination with

proper synchronization.

Further investigation on this concept leads us to the proposal of the frequency-domain coun-

terpart of time-domain holography, that is, the spectral-domain holography. The term “spectral

holography” has been already used in the literature to define systems in which a spatial-domain

filter is used to process a complex-envelope (amplitude and phase) time-domain optical signal.

Once the spectral information of the input signal is converted to the spatial-domain, the method

performs frequency-to-space mapping (with a 4fl system) within a holographic apparatus. In this

Thesis, the concept of spectral-domain holography involves creating a spectral interferogram that

allows one to control both the amplitude and phase spectral content of a temporal optical signal by

just manipulating the signal’s amplitude spectrum. This methodology enables the implementation
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of new kinds of optical filters and signal processors using different technologies. In particular, in this

Thesis we focus on two main technologies: first, we present picosecond-resolution, reconfigurable

optical processors and shapers based on Fourier optics EO filters. These processors make use of a

frequency-to-time mapping, and they can be seen as the “time-domain” counterpart of previously

presented spectral holography. Also, we go beyond Fourier optics-based filters and we investigate

the implementation of ultrafast arbitrary (minimum-phase (MP) and non-MP) signal processors

based on MP all-optical filters. These processors prove a promising solution to overcome the speed

limitation of current electronic systems.

The concept at the core of this Thesis, namely time/spectral-domain holography, can be in-

terpreted as a new milestone within the context of the space-time duality [56]. The mathematical

dual formalism between spatial holography and temporal optical heterodyning (or frequency mix-

ing) is introduced in this Thesis, and subsequently utilized in a number of applications inspired by

holographic concepts. Further exploration of the presented duality might contribute to bring new

understanding in the two domains.

2.2 Original contributions

First of all, the concept of time-domain holography is introduced and analytically formalized as

the dual process of spatial-domain holography [153]. Time-domain holography will be employed

for implementing functionalities at the transmitter and receiver of optical communications links.

In particular, the stage of generation of complex (amplitude and phase) optical waveforms will be

significantly simplified by the employment of holographic concepts. The proposed configuration is

based on a simple amplitude modulator and a band-pass filter, what substitutes current IQ modu-

lators or more complex configurations (e.g., quad-parallel Mach–Zehnder modulator [7]) requiring

stringent synchronization of the complex-envelope signal’s real and imaginary parts. Besides, a

new configuration to implement an impairment compensation system based on temporal phase

conjugation (TPC) will be also presented and experimentally demonstrated [154]. The proposed

configuration employs the same components than the previous generation system, avoiding the de-

tection and subsequent processing of the signal’s phase information in the electrical domain. TPC

is useful for compensation of even order dispersion and some nonlinear effects such as self phase

modulation or intra-Raman scattering. For the previously mentioned applications, time-domain
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holography is carried out using EO circuits. In this Thesis, we also introduce an all-optical ap-

proach to implement time-domain holography, based on nonlinear cross phase modulation (XPM)

[155]. This configuration will be applied to perform wavelength conversion of complex-envelope

ultrafast signals, improving the performance of previous XPM-based wavelength converters, which

are limited to the conversion of intensity-only or signals, and it avoids the stringent phase-matching

requirement of four-wave-mixing-based approaches.

By considering the Fourier transform property of duality between time domain and frequency

domain [46], we will introduce the concept of spectral-domain holography (referring to time-domain

optical signals). This concept mainly involves creating a “spectral interferogram” to implement op-

tical processors that control both amplitude and phase spectral responses of a temporal input signal

by just manipulating its amplitude spectral response. This approach is used to develop the time-

domain counterpart of Vander-Lugt filters [156], which allows the implementation of tunable and

reconfigurable coherent optical pulse processors, using a similar configuration than those presently

available for the development of optical processors with amplitude-only spectral responses. Also,

this spectral-domain holography approach is especially interesting for the design of arbitrary optical

signal processors based on MP optical filters (i.e. filters whose phase spectral response cannot be

engineered independently of the amplitude response, since amplitude and phase are related by a

Hilbert transform). Particular attention will be paid to the case of fiber Bragg gratings (FBGs)

operating in transmission. We will first develop a design technique to overcome the bandwidth lim-

itation of FBGs, enabling the achievement of operation bandwidths one order of magnitude higher

than the ones typically achieved in reflection. To prove the validity of the newly introduced design

technique, we will analyze the design of two MP signal processors with operation bandwidths in

the THz regime, namely arbitrary-order optical differentiators and a flat-top pulse shaper [84]. The

latter will be also experimentally demonstrated [157]. Then, by means of spectral-domain hologra-

phy, we will implement signal processing operations described by non-MP transfer functions on this

configuration (transmissive FBGs) [85]. As a proof of concept, an ultrafast (ultra-wide band) all-

optical non-MP processor, i.e., a Hilbert transformer, will be implemented based on a transmissive

FBG [158].
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2.3 Thesis organization

This Thesis is organized as follows:

Chapter 1 discusses the importance of signal processing in the present technological world and

highlights the advantages that the use of fiber optics systems have provided in current telecom-

munications networks, particularly in terms of information transmission rate. Also, it intro-

duces the limitations that optical communications are facing nowadays, due to the bottleneck

imposed by the processing speed of electronics and the scaling of circuitry complexity and

power consumption. The theory behind the basis of nonlinear and linear optical processing

systems is briefly introduced. Special attention is devoted to the theory of space-time duality,

which is employed to develop the novel concepts presented in this Thesis. Then, a brief intro-

duction to fiber grating devices, and in particular FBGs and long period gratings (LPGs) is

included, summarizing their main advantages and drawbacks as linear optical filters. Finally,

the state-of-the-art of pulse shaping methods is described, as this is a relevant application of

optical signal processing continuously revisited along this dissertation.

Chapter 2 exposes the general motivation of the work presented in the Thesis, which mainly

focuses on the search for solutions to the problems presented in Chapter 1. Also, the original

contributions of the Thesis are briefly commented.

Chapter 3 provides a comprehensive introduction to spatial-domain holography, where the ana-

lytic description of the method and its fundamental properties are discussed. Also, techniques

for the implementation of optical filters with complex-valued transfer functions based on

spatial-domain holography, i.e., the so-called Vander-Lugt filters, are studied. The concepts

reviewed in this Chapter will serve as the basis for the original ideas presented in the remainder

of the Thesis.

Chapter 4 introduces the concept of time-domain holography as an exact counterpart of classical

spatial-domain holography. Two approaches are presented and analytically studied for the

practical implementation of time-domain holography, namely an EO approach and an all-

optical approach. Then, three relevant applications of practical interest are numerically and

experimentally demonstrated by means of time-domain holography, namely, (i) complex-signal

generation and detection, (ii) temporal phase conjugation and (iii) wavelength conversion of
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complex-waveforms. Those applications are implemented using either the EO approach (for

the two former applications) or the all-optical approach (for the latter application).

Chapter 5 introduces the concept of spectral-domain holography and its use for implementation of

optical filters/processors with arbitrary complex-valued transfer functions using two different

technologies. One of them is an EO approach, which can be considered as the time-domain

counterpart of Vander-Lugh filters. The second one is an all-optical approach based on MP

optical filters (e.g., transmissive FBGs), where spectral domain holography is employed to

implement any arbitrary non-MP processing operation.

Chapter 6 summarizes the work presented in this Thesis and proposes potential prospects for

future work.



Chapter 3

Review of classical space-domain

holography

3.1 Introduction to space-domain holography

Classical (spatial domain) holography is a well-known lensless imaging process that was first in-

troduced by D. Gabor in 1949 [65]. The fundamental problem addressed by holography is that of

recording, and later reconstructing, both the amplitude and phase of an optical wave arriving from

a coherently illuminated object. All recording media respond only to light intensity. It is there-

fore required that the phase information is converted to intensity variations for recording purposes.

Holography accomplishes this task through the use of interferometry.

A great deal of research was carried out following the original proposal of Gabor in [65]. In

particular, the dramatic improvements accomplished in the 1960s vastly extended the applicability

and practicability of holography. One of the key breakthroughs was proposed by Leith and Upatnieks

[67]. They presented a methodology that solved the main practical problem of Gabor’s original

recording geometry, namely the fact that the target output image appeared overlapped with other

auxiliary waves, hindering its visibility. Leith and Upatnieks proposed a recording geometry able

to angularly separate the different output components, in such a way that they could be clearly

distinguished and isolated from each other. This method will be described in detail later in the

Chapter. In general, the important outcomes achieved in the last decades have led to an outstanding
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development of holography and have expanded its applicability to a myriad of fields, including 3D

imaging, optical signal processing, data storage or microscopy [159–161], among others. A review

of the historical evolution of holography can be found in several excellent references [162–164].

3.2 Mathematical formalism of space-domain holography

The holographic process comprises two steps, the recording and the subsequent retrieval of the

amplitude and phase of an optical information signal. Let us assume the information signal is an

unknown monochromatic wave with complex amplitude eSG(x, y) = |eS(x, y)| exp{j φS(x, y)}, where

x and y are the Cartesian coordinates in the plane transverse to the propagation direction. In the

recording process, a mutually coherent known reference wave eLO,1(x, y) = |eLO,1(x, y)| exp{j φLO,1(x, y)}
is added to eSG(x, y), making them interfere. The intensity of the sum of the two complex fields

can be written

iH(x, y) = |eSG(x, y) + eLO,1(x, y)|2

= |eSG(x, y)|2 + |eLO,1(x, y)|2

+2|eS(x, y)||eLO,1(x, y)| cos
(

φS(x, y)− φLO,1(x, y)
)

. (3.1)

The first two terms of the right hand side (RHS) of Eq. 3.1 depend only on the intensities of the

individual waves. However, the third term is dependent on both their amplitudes and their relative

phases. The reference wave is generally chosen to be a uniform plane wave propagating along the

z axis, eLO,1(x, y) = i
1/2
LO,1. The intensity pattern iH(x, y) can be then recorded in a photosensitive

medium, e.g., a photographic film or plate. For simplicity, let us consider a linear mapping of the

intensity variations into the amplitude transmittance tA of the photosensitive medium. Obviously,

intensity variations exceeding the linear region of the curve of tA vs. exposure (i.e., the energy

incident per unit area on the photographic film) would lead to aberrations at the output of the

imaging process. Thus, the amplitude transmittance tA is

tA(x, y) = β′
(

|eSG(x, y)|2 + iLO,1 + i
1/2
LO,1eSG(x, y) + i

1/2
LO,1e∗

SG(x, y)
)

, (3.2)
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where β′ is the slope of the curve of tA(x, y) vs exposure at the bias point and exposure time. The

recording of the pattern of interference between the information wave eSG(x, y) and the reference

wave eLO,1(x, y) is defined as a hologram.

The second step of holography entails the reconstruction of the complex information signal

eSG(x, y). To this purpose, the developed transparency must be illuminated by a coherent re-

construction wave eLO,2(x, y). The resulting wave transmitted by the transparency is expressed

as

eout(x, y) = eLO,2(x, y)tA(x, y)

= β′eLO,2(x, y)|eSG(x, y)|2 + β′eLO,2(x, y)iLO,1

+β′eLO,2(x, y)i1/2
LO,1eSG(x, y) + β′eLO,2(x, y)i1/2

LO,1e∗
SG(x, y). (3.3)

If the reconstruction wave is chosen to be a plane wave similar to the reference wave employed

in the recording process, Eq. 3.3 can be rewritten as

eout(x, y) = β′i
1/2
LO,2|eSG(x, y)|2 + β′i

1/2
LO,2iLO,1

+β′i
1/2
LO,2i

1/2
LO,1eSG(x, y) + β′i

1/2
LO,2i

1/2
LO,1e∗

SG(x, y). (3.4)

The first term in the RHS of Eq. 3.4 is proportional just to the intensity of the information

signal and therefore, it is of no interest in our analysis. This term, usually known as the ambiguity

term, can be neglected if the power of the reference signal eLO,1(x, y) is much higher than the power

of the information wave. Thus, the first term is then much smaller than the others since it is the

only one that does not involve iLO,1, as observed in Eq. 3.4. The second term is a plane wave

traveling down the optical axis. The third and four terms are proportional to the information wave

and its conjugate, respectively. At the observation point, the component proportional to the original

information wave originates a virtual image of the object, while the component proportional to the

conjugate of the information signal leads to the formation of a real image [13].

In Gabor’s original apparatus, the different output components appeared overlapped on the z

axis. Hence, when the virtual image was brought to focus, an observer saw a defocused real image

and vice versa, accompanied at least by a coherent background due to the output plane wave.
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To properly observe the reconstructed objects, it is necessary that the various wave compo-

nents of the transmitted light do not overlap in space. Leith and Upatnieks proposed an off-axis

holographic apparatus that solved the problem of Gabor’s recording geometry [67]. It consists of

applying different propagation angles to the information and the reference wave in the recording

process, as depicted in Fig. 3.1.
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Figure 3.1 – (a) Signal recording step and (b) signal retrieval step in classical holography. The figure
represents the geometry proposed by Leith and Upatnieks, from which the information signal and its
conjugate appear angularly separated from the reference and ambiguity components.

Assuming that the information wave propagates along a direction with angle of θy with respect

to the reference wave, its complex amplitude can be expressed as

eS(x, y) = |eS(x, y)| exp
{

j(φS(x, y)− k sin θy y)
}

, (3.5)

where k is the propagation number k = 2π/λ0, λ0 being the light’s wavelength. As reviewed in

Section 1.3.1, the angle of propagation of a lightwave is related to its spatial frequency. Therefore,

the central (or carrier) spatial frequency of eS(x, y) is

νSy =
sin(θy)

λ0
. (3.6)

The intensity pattern at the recording plane is

iH(x, y) = |eS(x, y)|2 + iLO,1

+i
1/2
LO,1eS(x, y) exp

{

− j k sin θy y
}

+ i
1/2
LO,1e∗

S(x, y) exp
{

j k sin θy y
}

. (3.7)

In this case, the third term in the RHS of Eq. 3.7 is a replica of the information signal arriving

from a direction at an angle θy, while the fourth term is proportional to the conjugated of the
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information signal, propagating with an angle −θy, as shown in Fig. 3.1(b). If the central spatial

frequency of eS(x, y) is sufficiently high, the third and fourth terms of Eq. 3.7 do not overlap

with the other two terms and therefore, they can be unambiguously recovered from the recorded

interference pattern iH(x, y).

In order to figure out which is the minimum spatial frequency of eS(x, y) required so that the

different output components do not overlap, it is necessary to study the spatial frequency spectrum

of iH(x, y). Applying the Fourier transform to Eq. 3.7, we obtain

IH(νx, νy) = ES(νx, νy)⊗ E∗
S(−νx,−νy) + iLO,1δ(νx, νy)

+i
1/2
LO,1ES(νx, νy − νSy) + i

1/2
LO,1E∗

S(−νx,−νy − νSy)
}

, (3.8)

where⊗ indicates the convolution operation, δ(νx, νy) represents the Dirac delta function, IH(νx, νy) =

F{iH(x, y)}, ES(νx, νy) = F{eS(x, y)}, and ELO,1(νx, νy) = F{eLO,1(x, y)}, where F denotes Fourier

transformation. We observe that the angular/spatial bandwidth of the third and fourth terms in

the RHS of Eq. 3.8 are identical to the bandwidth of the information signal, denoted as B cycles/m

(Fig. 3.2). The second term is a single tone at the (νx, νy) plane. The spectrum of the ambiguity

term is the convolution between two signals of bandwidth B, so its spectral content has a maximum

extent of 2B. Hence, in order to avoid any overlapping between the components of the intensity

pattern, the minimum spatial frequency of eS(x, y) should be (see Fig. 3.2(b))

νSy ≥ 3B/2. (3.9)
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Figure 3.2 – Spectral content of (a) information signal eS(x, y), (b) hologram, and (c) hologram con-
sidering that iLO ≫ |eS(x, y)|2.
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As discussed previously, if the reference wave eLO,1(x, y) is much stronger than eS(x, y), the

first term in the RHS of Eq. 3.7 can be neglected. Then, the minimum spatial frequency of the

information signal can be reduced to (see Fig. 3.2(c))

νSy ≥ B/2. (3.10)

3.3 Computer-generated holograms

It is possible to create a hologram by modeling the interference process in a digital computer and then

transferring the obtained interference pattern to a transparency by means of a plotting or printing

device, see Fig. 3.3. The hologram obtained by this means is generally known as a computer-

generated hologram (CGH). This concept was introduced some years after the development of

off-axis holography [165, 166], and provides the possibility to generate and process images without

the need for the real object.

The success in generating CGHs depends on the ability to mathematically describe the image of

the object to be displayed (two-dimensional or three dimensional) with sufficient resolution. This

problem reduces to find the minimum number of samples required to properly create a target real

or virtual image from the numerical model. The number of samples is dependent on the bandwidth

of the target signal. Its calculus is out of the scope of this Thesis, and further details can be found

in [13].

xy

Hologram

Intensity patternIntensity pattern

i  (x,y) 

|eLO,1(x,y)+eS(x,y)|
2

H

Figure 3.3 – The hologram can be created by computationally modeling the interference pattern
between an object and a reference plane wave, and transferring the result to a transparency.

As the CGH is artificially designed, one can create an intensity pattern that includes information

from the target complex (amplitude and phase) wave and a reference wave, but without including



Chapter 3. Review of classical space-domain holography 39

the plane wave and the ambiguity term components of Eq. 3.7, i.e.,

iCGH(x, y) = i
1/2
LO,1eS(x, y) exp

{

− j k sin θy y
}

+ i
1/2
LO,1e∗

S(x, y) exp
{

j k sin θy y
}

. (3.11)

As such, the condition for the required spatial frequency of eS(x, y) can be selected to match

Eq. 3.10 without the intensity constraint of eS(x, y) with respect to the intensity of the reference

wave. Therefore, the resulting hologram lacks a constant background and it is therefore possible to

increase the dynamic range of the information signal for the same transparency.

3.4 Vander-Lugt filters

Holography finds applications in much broader fields than that of recording and displaying three-

dimensional images. Holographic optical elements can perform the functions of mirrors, lenses,

gratings, or combinations of them, and they are currently used in a myriad of technical devices.

One particularly interesting application of holography is its use to implement complex field optical

filters in the spatial domain, using intensity-only spatial masks.

The traditional filtering process, briefly reviewed in Section 1.4.2, is illustrated in Fig. 3.4. A

converging lens can perform two-dimensional Fourier transforms with extraordinary simplicity in a

coherent optical system, taking advantage of the basic laws of propagation and diffraction of light [12,

13]. Let us assume an input waveform containing the information to be Fourier-transformed. This

optical wave, with complex waveform ein(x, y), may be generated from the illumination of a device

with a transmittance proportional to the function of interest (e.g., a photographic transparency or

a spatial light modulator) by a monochromatic light. The input waveform can be analyzed as a

superposition of harmonic functions (i.e., planes waves) of different spatial frequencies (νx, νy). The

spatial frequencies are related to the angle of propagation of the waves by the Eqs. 1.3. A lens

transform each plane wave into a paraboloidal wave focused to a single point in the lens focal plane,

located at a distance equal to its focal length fl. Thus, a plane wave traveling at the angles (θx, θy)

is mapped into a point (x, y) = (θxfl, θyfl) = (λ0flνx, λ0flνx), where the paraxial approximation

has been considered and λ0 is the wavelength of the incident light. The complete mathematical

derivation of this result can be found, e.g., in Refs. [12, 13]. It can be easily demonstrated that, if

the optical information waveform is placed at a distance d before the lens, the complex waveform



40

at the focal plane can be calculated as

eF P (x′, y′) =
[

(

ein(x, y)⊗ ĥd(x, y)
)

· tsl(x, y)
]

⊗ ĥfl
(x, y))

=
A

j λ0fl
exp

{

j
k

2fl

(

1− d

f

)

(

x′2 + y′2)
}

×
∫ ∞

−∞

∫ ∞

−∞
ein(x, y) exp

{

− j
2π

λ0fl

(

x′x + x′y
)

}

dxdy, (3.12)

where the impulse response of free space propagation ĥz(x, y) and the transmissivity of the lens

tsl(x, y) have been defined in Section 1.3.1, and (x′, y′) are the transverse Cartesian coordinates in

the Fourier plane. In the case d = fl, the quadratic phase term is canceled out and at the complex

amplitude of the signal at the Fourier plane is

eF P (x′, y′) ∝
∫ ∞

−∞

∫ ∞

−∞
ein(x, y) exp

{

− j
2π

λ0fl

(

x′x + y′y
)

}

dxdy,

= F

{

ein(x, y)
}

∣

∣

∣

∣

∣

νx= x′

λ0fl
,νy= y′

λ0fl

= Ein

(

x′

λ0fl
,

y′

λ0fl

)

. (3.13)

This system is known as Fourier-transforming. Then, the wave at the Fourier plane travels

through an amplitude and/or phase mask with transmittance tH(x′, y′), modulating the waveform.

Finally, the modulated wave (Eout(x′′/(λ0fl), y′′/(λ0fl)) = Ein(x′/(λ0fl), y′/(λ0fl)) · tH(x′, y′))

passes through a second Fourier-transforming system ((x′′, y′′) being the Cartesian coordinates at

the output plane). This second Fourier transformation process can be seen as an inverse Fourier

transformation where the coordinate plane at the output is inverted. Therefore, the complete pro-

cess can be seen as a convolution between the input signal and the inverse Fourier transform of the

transmittance of the mask, i.e., eout(−x′′,−y′′) = ein(x, y)⊗ F
−1{tH(x′, y′)}.

However, a mask with a complex-value transmittance (i.e., containing amplitude and phase

components) is difficult to fabricate using conventional printing techniques. Thus, coherent spatial

optical filters were originally limited to those that have very simple transfer functions.

In 1963, A. B. Vander Lugt proposed and experimentally demonstrated a holographic-based

configuration able to effectively control both the amplitude and phase of the filter’s transfer function

[151], using an amplitude-only mask. This configuration is known as Vander-Lugt filter and it can

be applied as long as the corresponding impulse response is a real-valued function (note that in this
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Figure 3.4 – Spatial filtering process. The first lens generates the Fourier transform of the object wave;
in the Fourier plane (at twice the focal length fl of the lens), an amplitude or phase mask modulates
the traveling wave; finally a second lens in the same configuration at the previous one generates the
Fourier transform of the modulated wave. The total system performs the operation of convolution.
For simplicity, the coordinates in all the planes have been labeled as (x, y).

case, the spatial impulse response-like waveform can be generated using a traditional amplitude-only

mask).

For consistency, the same nomenclature employed in the description of the spatial domain optical

filter will be used in the following derivation. The first step of the Vander-Lugt filtering process

consists in creating a hologram that contains the amplitude and phase information of the target

complex-valued transfer function HF (νx, νy). To this purpose, an input wave proportional to the

filter’s impulse response hF (x, y) = F
−1{HF (νx, νy)} is launched through a Fourier-transforming

system. At the Fourier plane, the propagating wave is proportional to the filter transfer function.

At this point, this wave is holographically recorded by interfering with a reference plane wave

eLO,1(x, y). The transmittance imprinted in the photosensitive plate is

tF (x′, y′) ∝ iLO,1 + i
1/2
LO,1HF

(

x′

λ0fl
,

y′

λ0fl

)

exp
{

− j k sin θy y′
}

+i
1/2
LO,1H∗

F

(

x′

λ0fl
,

y′

λ0fl

)

exp
{

j k sin θy y′
}

, (3.14)

where we have assumed that iLO,1 ≫ |HF (x/(λ0fl), y/(λ0fl))|2. The recording process of the filter

transfer function is illustrated in Fig. 3.5(a).

Once the hologram has been recorded, any input information wave eS(x, y) can be filtered with

the complex-valued transfer function HF (νx, νy) by simply applying the two-lens filtering procedure

described above, as depicted in Fig. 3.5(b). As expected from the holographic configuration, the

output wave will propagate with an angle equal to the angle between the reference wave and the

wave with the transfer function information, θy. The overall system performs the operation of

convolution between eS(x, y) and hF (x, y), which is the basis of spatial filtering.
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Figure 3.5 – Vander-Lugt filter: (a) Recording of the hologram, which contains information on the
amplitude and phase of the complex-valued filter transfer function and (b) signal filtering process based
on the concatenation of two Fourier-transforming systems and placing the hologram in the Fourier
plane.

It is worth noting that in case the conjugate wave (propagating at an angle −θy) is inverse Fourier

transformed, the operation of correlation is performed, instead of the convolution. The operation

of correlation is useful in image-processing operations, including pattern recognition [167].

3.5 Conclusions

Classical holography (in the spatial domain) has been one of the more recognized inventions in the

20th century, and D. Gabor was awarded the Nobel prize in Physics for its discovery. With the

maturity of holographic techniques, they have been widely employed in a broad range of areas. In

this Chapter, the mathematical formalism of spatial domain holography has been briefly reviewed,

with special interest in the configuration presented by Leith and Upatnieks. This configuration

solved the main problem of Gabor’s original recording geometry, by angularly separating the dif-

ferent components resulting from this imaging system using different carrier angular frequencies for

each of them. The concept of CGH has been also reviewed, which is an alternative to the tradi-

tional recording process. This procedure enables the generation of a target image by designing the

required hologram in a computer. Finally, a well-know holography-based technique to implement

signal processors has been discussed, namely the Vander-Lugt filter. Vander-Lugt filters enable

the implementation of processing functionalities with complex-valued transfer functions using an

amplitude-only mask. The concepts and mathematical formalism presented in this Chapter will

serve as the basis of the ideas proposed in the remainder of the Thesis.



Chapter 4

Time-domain signal processing based

on holographic concepts

4.1 Introduction to time-domain holography

Inspired by the space-time duality [56], the formal time-domain counterpart of spatial domain holog-

raphy (outlined in Chapter 3) is presented. The concept of time-domain holography may provide

appealing applications in a broad range of fields, since it allows the treatment of complex-envelope

optical temporal information by use of simple amplitude-only (or phase-only) modulation and pho-

todetection devices; significantly simplifying the generation and processing of complex-envelope

optical signals. Such capability has become increasingly important in several fields, particularly

in coherent high-speed optical telecommunications and ultrafast information–processing systems

[6, 8, 152, 168, 169]. In these systems, the desired information is typically encoded in both ampli-

tude and phase temporal variations. Additionally, the impairments undergone by data signals in

an optical communication link or a signal-processing device affect both the amplitude and phase

temporal signal profiles. In general, controlling the amplitude and phase temporal profiles in a

simultaneous fashion is a difficult task and requires complicated setups as well as synchronization

efforts, which are critical and very challenging when dealing with signals operating at ultra-high

(Gbps) data rates.
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It is important to note that generation of temporal interferograms containing amplitude and

phase temporal information is well known and routinely used to extract phase information from

intensity measurements. This process is known as heterodyne detection. In heterodyne detec-

tion schemes, the phase profile of a complex-envelope optical wave is retrieved using numerical

Fourier-based algorithms. Alternatively, if the detected signal is to be processed, their in-phase and

quadrature components need to be handled independently in the electrical domain, additionally

requiring stringent synchronization. Time-domain holography goes one important step further by

realizing that the detected interferogram can be readily used a temporal modulation function to

generate any desired complex-envelope optical time-domain waveform, with fully customized am-

plitude and phase profiles. Hence, the amplitude and phase information of the target signal can

be optically processed in a simultaneous fashion, using simplified schemes based on intensity-only

sensitive components, and avoiding the need for synchronization tasks.

In this Chapter, we present the mathematical formalism of time-domain holography, inspired

by the formalism reviewed in Chapter 3 for classical (spatial-domain) holography. Then, we discuss

two different approaches to physically implement this new concept; namely, an electro-optic (EO)

approach and an all-optical approach. The EO approach is based on the use of an opto-electronic

(OE) photodectector for the recording step, and an EO intensity modulator plus a band-pass filter

(BPF) for the signal reconstruction step. The all-optical approach is based on the nonlinear cross-

phase modulation (XPM) effect. In the latter case, an approximation needs to be done so that the

phase modulation process behaves as an amplitude modulation. Finally, several proof-of-concept

applications will be experimentally demonstrated to prove the potential of time-domain holography

for the generation, detection and processing of complex-envelope optical signals using significantly

simplified schemes as compared with previous approaches. In particular, we prove: (i) generation

and detection of optical data signals under complex-valued modulation formats, (ii) temporal phase

conjugation and (iii) wavelength conversion of complex-envelope signals.

4.2 Mathematical formalism of time-domain holography

Here, a scheme similar to the one presented in Section 3.2 will be followed. However, in this Section

and in the remainder of this Thesis, only temporal domain optical signals are considered, i.e.,

signals whose information is encoded in the temporal variation of electromagnetic waves. Time-
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domain holography is presented then as a time-domain imaging system that can be divided in two

steps. Although in the time domain, the name of these steps may not define properly the actual

processes, for consistency they will be referred to as the “recording process” and the “reconstruction

process” [153].

Let us define a complex-envelope optical information signal eS(t), which is a pure time-domain

variation, as eS(t) = êS(t) exp{j ωSt}, where êS(t) = |êS(t)| exp{j φS(t)} is the complex amplitude

envelope, and ωS denotes the optical carrier frequency. In the recording step, this signal interferes

with a mutually coherent reference signal, which is selected to be a continuous wave (CW) eLO,1(t) =

i
1/2
LO,1 exp{j ωLO,1t + φLO,1}, where iLO is the constant optical intensity of the CW reference, ωLO,1

is the reference optical carrier frequency and φLO,1 is an arbitrary constant phase. The interference

between the information and reference signals is observed at the output of an optical coupler (OC),

and the resulting time-domain intensity pattern iH(t) is

iH(t) = |eS(t) + j eLO,1(t)|2

= |êS(t)|2 + iLO,1 + 2|êS(t)| i1/2
LO,1 sin

(

ωit + φS(t)− φLO,1

)

, (4.1)

where j = (−1)1/2 is associated with the π/2 phase difference induced by the OC, and ωi is an

intermediate frequency ωi = ωS − ωLO,1. This recorded temporal interferogram can be interpreted

as the time-domain equivalent of a spatial hologram (Eq. 3.1) and consequently, it will be referred

here as the temporal hologram.

The frequency spectrum of this temporal hologram is

IH(ω) = Es0(ω)⊗ E∗
s0(−ω) + iLO,1δ(ω)

+2π i
1/2
LO,1Es0(ω − ωi) exp{− j(φLO,1 + π/2)}

+2π i
1/2
LO,1E∗

s0(−ω − ωi) exp{j(φLO,1 + π/2)}, (4.2)

where ⊗ represents convolution, ∗ represents complex conjugation, ω is the angular frequency and

Es0(ω) = F{êS(t)}. Thus, if the information signal êS(t) has an angular frequency bandwidth of

2πB rad/s, the first term in the right hand side (RHS) of Eq. 4.2 (the so-called autocorrelation

or ambiguity term) has a bandwidth of ∼ 2 (2πB) rad/s (the second component of the RHS is

an ideal delta, with zero spectral support around ω = 0). To avoid spectral overlapping between
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this first term and the sine term of Eq. 4.1, the intermediate frequency should be fixed so that

ωi ≥ 3(2πB)/2. As a result, the bandwidth of the temporal hologram is at least four times higher

than that of the optical signal under analysis, in consistency with the spatial-domain case for the

configuration proposed by Leith and Upatnieks [67], see Fig. 3.2. Inspired by spatial-domain

holography concepts, it is worth noting that in Eq. 4.1, the first term in the RHS may be neglected

if the reference intensity is sufficiently strong, i.e. whenever iLO,1 ≫ |êS(t)|2. If this condition is

accomplished, the intermediate frequency may be selected to be ωi ≥ (2πB)/2, leading to a two

fold decrease of the bandwidth specifications.

The next step in the time-domain holography process is the reconstruction of the original com-

plex information. To this purpose, a second optical CW reference signal, eLO,2 = i
1/2
LO,2 exp{j ωLO,2t},

is employed as a carrier in a simple modulation process, typically an amplitude modulation, which

is driven by a signal proportional to the temporal hologram iH(t) in Eq. 4.1. In exact analogy with

its spatial-domain counterpart (Fig. 3.1(b)), the generated optical signal has a frequency spectrum

composed by the four terms in Eq. 4.2, but spectrally shifted by the reference optical frequency,

ωLO,2:

Eout(ω) ∝ Es0(ω − ωLO,2)⊗+E∗
s0(−ω − ωLO,2) + iLO,1δ(ω − ωLO,2)

+2π i
1/2
LO,1Es0(ω − ωout,S) exp{− j(φLO,1 + π/2)}

+2π i
1/2
LO,1E∗

s0(−ω − ωout,−S) exp{j(φLO,1 + π/2)}, (4.3)

where the central frequencies of the terms proportional to the original information signal and to its

conjugate have been redefined as ωout,S = ωS − ωLO,1 + ωLO,2 and ωout,−S = −ωS + ωLO,1 + ωLO,2,

respectively.

In line with our discussions above, the first term in the RHS of Eq. 4.3 may be neglected when-

ever iLO,1 ≫ |êS(t)|2. Finally, the complex-field (amplitude and phase) information optical signal

can be recovered from the modulated waveform by simply filtering in the corresponding spectral

component, using a suitable optical BPF centered at ωout,S. The employed filter should ideally ex-

hibit a flat-top spectral amplitude response and a linear spectral phase profile over the bandwidth

of the information signal. The band-pass filtering procedure is the time-domain equivalent of the

image selection process by angular diffraction in spatial holography.
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The frequency of the CW source used to reconstruct the complex waveform ultimately determines

the central optical frequency of the information term to be filtered in. In general, this procedure

easily enables to locate the generated optical waveform around the wavelength of interest, effectively

implementing a complex-envelope signal’s wavelength conversion process. Wavelength conversion is

emerging as a fundamental functionality in WDM networks, allowing transparent interoperability,

contention resolution, wavelength routing, and, in general, better utilization of the network resources

under dynamic traffic patterns [14, 22–30, 170–180]. In the case the reconstructing reference signal

is selected to be a CW at the same frequency of the CW employed in the recording process, i.e., if

ωLO,2 = ωLO,1, the reconstructed information signal will be centered at the same frequency of the

original signal (at ωS), achieving wavelength-preserving operation.

Notice also that the modulating signal is composed by the target signal and its temporal con-

jugate. Thus, if the band-pass filtering procedure is implemented to select the spectral component

corresponding to the conjugated signal, one could directly achieve the temporal phase conjugation

(TPC) of the original optical waveform. TPC is an interesting tool for a variety of signal processing

functionalities in diverse areas such as laser technologies, optical data processing, or impairments

compensation (such as dispersion or nonlinear effects) for coherent-light transmission in fiber-optic

telecommunication links [39–42]. These two interesting applications of time-domain holography will

be described in detail and experimentally demonstrated below in this Chapter.

In this Section, the basis of time-domain holography has been introduced, but no physical

implementation has been presented. Next, we propose two different methods to implement time-

domain holography: (i) an electro-optical approach and (ii) and all-optical approach.

4.3 Electro-optical approach

A straightforward procedure to physically implement time-domain holography is based on the use of

EO components. A scheme of this EO approach is depicted in Fig. 4.1. For the recording step, the

interference pattern iH(t) between the original information signal and the reference signal eLO,1(t)

can be recorded using, e.g., a high-speed photodetector (PD). The temporal hologram iH(t) is then

an electrical signal that contains the complete information (in amplitude and phase) of the complex

envelope of eS(t).
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Figure 4.1 – Implementation of the concept of time-domain holography as the temporal counterpart
of spatial-domain holography. (a) Generation of the temporal hologram; (b) Retrieval of the complex
information signal. For the sake of simplicity, the optical temporal signals are represented by their
amplitude envelope. OC, optical coupler; PD, photodetector; MZM, Mach-Zehnder modulator.

This method for complex-envelope optical signal detection based on PDs is extensively employed

nowadays, known as heterodyne detection. Typically, current heterodyne detectors rely on two PDs,

following a configuration known as balanced photodetection [152]. The signals eS(t) and eLO,1(t) are

added in phase and counter phase in each PD, and the resulting electrical waveforms are conveniently

subtracted. Only the third term in the RHS of Eq. 4.1 remains, removing the autocorrelation term

(i.e., the so-called ambiguity term in Chapter 3). In this case, the bandwidth requirements of the

detection process are reduced by two fold, i.e., the photodetection bandwidth should be at least

twice that of the information signal, or, in other words, the intermediate frequency should be fixed

to satisfy ωi ≥ 2πB/2.

The use of a reference signal with an intensity much higher than the intensity of the information

signal can be readily exploited to relax by half the bandwidth requirements in the typical optical

heterodyne phase detection scheme using a single PD. If the above condition (iLO,1 ≫ |êS(t)|2) is

satisfied, the photodetection bandwidth should be only twice broader than the bandwidth of the

information signal (instead of four times). As already mentioned, this bandwidth requirement is

similar to that of balanced dual photodetection schemes, but in this case we use only one PD.

Nevertheless, balance photodetection is expected to provide higher performance in terms of signal-

to-noise ratio [181, 182], since it makes use of the power at the two outputs of the OC placed before

the balanced PD. Additionally, the two first terms of Eq. 4.3 are completely canceled out in the

electrical domain, offering a cleaner response for decreased reference signal power requirements.

On the other hand, the signal reconstruction step can be practically carried out using a single

Mach-Zehnder modulator (MZM). A MZM is an amplitude modulator implemented by interfer-

ometrically combining two waves with different phase change. The phase change is achieved via
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the the Pockels effect1 [19, 183, 184], where the refractive index of the medium (a crystal) changes

proportionally to the applied electric field, resulting in a change of the phase of the wave passing

through the crystal. The splitting and combination of waves is done by use of two directional OCs

in a Mach-Zehnder interferometer configuration [12]. The MZM modulates the CW signal eLO,2(t)

and the modulating signal is proportional to iH(t), as shown in Fig. 4.1(b). A graphic example of

the spectrum of the optical signal at the MZM output is represented in Fig. 4.1(b). The bias point

of the MZM must be chosen so that the bias voltage plus the DC value of the electrical signal (whose

modulated spectral response is described by the second term in the RHS of Eq. 4.3) corresponds

to the MZM’s minimum transmission point, eliminating the strong discrete tone at ωLO,2. Finally,

the spectral band proportional to the target information signal eS(t) is filtered in by a BPF. It is

important to note that no synchronization tasks are needed to generate the complex information

signal, contrary to the case in which an IQ modulator is used, which requires precise synchroniza-

tion between the in-phase and quadrature components. The price to pay for achieving full control

of complex-envelope information signals using e.g., intensity-only modulation is the fact that the

required processing bandwidth is at least two fold the bandwidth of the target optical signal.

The scheme employed for the holographic reconstruction step in temporal holography (i.e., an

intensity-modulator followed by a BPF) is similar to the scheme used to perform single-side band

modulation with carrier suppression (SSB-CS) [46]. However, both applications should not be

confused: in SSB modulation, the target signal carries information encoded only in amplitude.

The spectrum of this signal is then symmetrical. Thus, a BPF is employed to filter in half of the

total signal’s spectral content, allowing a more efficient utilization of the spectrum. Time-domain

holography deals with a different problem; the target signal has information encoded in amplitude

and phase, and the spectrum is duplicated to be able to employ an amplitude-only modulation

process for the generation of the target signal.

4.3.1 Computer-generated temporal holograms

The temporal hologram may be also created numerically through a process that can be interpreted

as the time-domain counterpart of CGH [165, 166], and therefore, we refer it to as a computer-

generated temporal hologram (CGTH). The recording step of holography is computationally mod-

1The Pockels effect is a nonlinear effect governed by χ2, see Eq. 1.1, which typically occurs in non-centrosymmetric
media.
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eled by numerically emulating the photodetected signal in Eq. 4.1, taking into consideration the

desired complex-envelope optical information signal, eS(t), to be subsequently generated. As in the

spatial domain (Section 3.3), the two first components of Eq. 4.1 can be directly omitted, which

translates into the above-described two-fold photodetection/modulation bandwidth decrease. The

numerically computed temporal hologram can be practically generated by means of an electrical

arbitrary waveform generator (AWG), as shown in Fig. 4.2(b).

t

AWG i  (t)H

Temporal 
hologram

Intensity patternIntensity pattern

i  (t) 

|eLO(t) +e S (t)|
2

H

Figure 4.2 – The temporal hologram can be created by computationally modeling the interference
pattern between the information signal and a reference CW signal, and generating this interference
pattern via an arbitrary waveform generator (AWG).

4.4 All-optical approach

The EO approach represents a straightforward method for implementing time-domain holography,

as it employs devices that are sensitive to temporal intensity-only variations. Although that proce-

dure significantly reduces the circuitry complexity and avoids the need for precise synchronization

between the in-phase and quadrature components of a complex-envelope signal in any generation

or detection scheme, still the use of electronics imposes a stringent limitation in the operation

bandwidth of the system.

To overcome this bandwidth limitation, we have developed a novel scheme to perform time-

domain holography in the all-optical domain [155]. The scheme relies on a phase-only modulation

process, instead of amplitude modulation, which is carried out all-optically by means of an XPM

process in a highly nonlinear fiber (HNLF). Note that, to date, XPM has been employed to perform

phase-only or intensity-only2 all-optical modulation.

Similarly to the described procedure in Section 4.2, the recording step of all-optical holography

involves the generation of a linear interference between the optical input signal to be processed,

eS(t), and the coherent CW light beam, eLO,1(t), by means of an OC. The temporal hologram, i.e.,
2Intensity modulation is achieved by using XPM inside an interferometer, similarly to the electro-optical MZM.
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the intensity of the interference pattern, is described by the expression in Eq. 4.1. However, in this

case, no PD is employed to generate this intensity signal. Instead, the interference signal acts as

the pump in the following XPM stage, and its power is defined as

Ppump(t) = iH(t) ·Aeff , (4.4)

where Aeff is the effective area of the waveguide through which the propagation mode is traveling

(a HNLF in the proposed configuration).

According to holography’s theory, amplitude modulation of a reference signal is required to gen-

erate the desired complex-envelope signal from the information encoded in the hologram. However,

under certain conditions, phase modulation can also be applicable, as we detail in what follows.

The reconstructing reference signal is a low-power CW light beam, eLO,2(t), with carrier frequency

ωLO,2. Both the pump and reference signals then propagate through a HNLF, and the expression

of the reference after undergoing XPM is [19]

eout(t) = eLO,2(t) · exp
{

j 2γPpump(t)L
}

, (4.5)

where γ and L are the nonlinear coefficient and the length of the HNLF, respectively. Substituting

Eq. 4.4 into Eq. 4.5 and expanding the terms of iH(t), the signal at the output of the HNLF is

eout(t) = eLO,2(t) · exp
{

j 2γLAeff i
1/2
LO,1|êS(t)| sin

(

ωit + φS(t)
)

}

. (4.6)

In Eq. 4.6, three assumptions have been done: (i) the constant term of iH(t) has been omitted,

as it just adds a constant phase to eout(t); (ii) the autocorrelation (ambiguity) term has been

neglected, considering that the condition iLO,1 ≫ |êS(t)|2 is accomplished, and (iii) as the reference

signal eLO,1(t) is a coherent CW light, its phase φLO,1 has been omitted for simplicity.

If the phase modulating term 2γLAeff i
1/2
LO,1|êS(t)| ≪ π, the process is within the limit of

narrowband phase modulation3 [46], and Eq. 4.6 can be further simplified to

eout(t) = i
1/2
LO,2 exp{j ωLO,2t} ·

(

1 + j 2γLAeff i
1/2
LO,1|êS(t)| sin

(

ωit + φS(t)
)

)

. (4.7)

3Note that the following approximation can be used: ej ε ≈ (1 + j ε) if ε ≪ π.
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Equation 4.7 shows that eout(t) has three components in the spectral domain: (i) a pure tone at

ωLO,2, (ii) a copy of the original information signal eS(t) centered at ωout,S = ωLO,2+ωS−ωLO,1, and

(iii) a copy of the temporal conjugate of eS(t) (e∗
S(t)) centered at ωout,−S = ωLO,2−ωS +ωLO,1 (Fig.

4.3). These components are well separated in the spectral domain if ωi (= ωS − ωLO,1) ≥ 2πB/2.

Finally, a BPF is required to select either the wavelength converted signal (at ωout,S) or its temporal

conjugate (at ωout,−S).

Figure 4.3(b) illustrates the spectra at the input of the HNLF and at its output, where a

component proportional to eS(t) and to its conjugate have been generated around eLO,2(t) through

XPM. An additional copy of e∗
S(t) (depicted in grey in Fig. 4.3(b.2)) is expected to be induced

around eLO,1(t) by degenerate four wave mixing (FWM) between this strong CW pump and the

input signal.

Note that an exact copy of eS(t) and e∗
S(t) appear at the frequencies ωout,S and ωout,−S only if

the condition 2γLAeff i
1/2
LO,1|êS(t)| ≪ π is fulfilled. In this case, the phase modulation affects the

reference signal eLO,2(t) in the same manner as an intensity modulation process, causing a spectral

broadening around ωLO,2 proportional to the spectrum of Ppump(t). In the described scenario, i.e.,

with three signals propagating through a HNLF, a FWM process may occur as long as the phase

matching condition is accomplished. If this was the case, an exact copy of the information signal and
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its conjugate would also appear at the frequencies ωout,S and ωout,−S. In this case, the occurrence

of FWM in the HNLF can add up power at the spectral regions of interest, which add coherently

with the results of the XPM process.

4.5 Applications of time-domain holography

Classical holography finds applications in a broad range of fields, including the highly spread appli-

cation of recording and displaying three-dimensional images, but also in optical signal processing,

data storage, microscopy, or security, among others [13]. Considering the vast range of applications

of classical holography, we foresee a similarly vast number of interesting uses for its time-domain

counterpart. Time-domain holography allows the treatment of complex optical temporal informa-

tion by use of amplitude-only or phase-only-based modulation and photodetection devices. Thus,

any application requiring the managing of complex-envelope signals can be significantly simplified

with respect to traditional approaches.

In this Section, we propose some interesting applications of the newly introduced concept. In

particular, we show the generation [153] and processing, i.e., TPC [158], of complex-envelope optical

signals based on the EO approach. Also, wavelength conversion of complex-envelope signals is

presented using the all-optical approach [155]. The validity of all the proposed ideas is proven

through experimental demonstrations.

4.5.1 Generation and detection of complex-envelope optical signals

The generation and detection of optical waveforms (e.g. data streams) with arbitrary complex (am-

plitude and phase) temporal profiles is a topic of increased interest, e.g. due to the introduction of

advanced complex modulation formats in optical telecommunication networks [152]. Solutions to

date require the use of EO modulators and OE detectors able to simultaneously detect or control

the amplitude and phase of complex-envelope optical waveforms. These devices are typically imple-

mented using interferometric schemes with suitable, precise phase adjustments, and as such, they

are generally costly and difficult to control [126, 152].
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Here, we apply time-domain holography concepts to the generation of arbitrary, user-defined

complex-envelope temporal signals by intensity-only modulation of CW light [153]. In particular, for

a proof of concept, two distinct optical complex-envelope signals are targeted. First, a stream of 16

arbitrarily chirped optical Gaussian pulses is generated to prove that the proposed technique has the

capability to generate optical waveforms with purely arbitrary, user-defined temporal phase profiles.

Secondly, as a more practically relevant example, a telecom 1024-symbol 3-Gbps optical data stream

under a 16-state Quadrature Amplitude Modulation (16-QAM) format is experimentally generated.

The generation of the target complex-envelope waveforms is based on the concept of CGTH

(Section 4.3.1). The experimental setup is shown in Fig. 4.4. A CW laser generates a reference

signal centered at fLO,2 = ωLO,2/2π = 193.381 THz (λLO,2 = fLO,2/c0 = 1550.27 nm, where c0 is

the speed of light in vacuum), which is split by a 10/90 OC for further use in the generation (90%

of the power) and the subsequent detection processes (10% of the power). fLO,2 is selected to be

the same carrier frequency as the one employed in the computer-based generation process, fLO,1.

The CW light acts as a carrier for a 10-GHz dual-drive MZM (5.1-V biased, corresponding to its

minimum transmission point). The modulator is driven by an electrical waveform iH(t) (temporal

hologram), which is numerically designed based on CGTH. The time-domain hologram iH(t) is then

practically generated using an electronic AWG, namely the AWG-7122C from Tektronix with an

analog 3dB-bandwidth of 9.6 GHz (sampling rate of 24 GSps). The MZM optical output has a

complex envelope proportional to iH(t) and is centered at fLO,2. Hence, the lobe corresponding to

the spectrum of eS(t), which is shifted by fi = ωi/2π = 4.5 GHz with respect to fLO,2, is centered at

fS = ωS/2π = 193.385 THz (λS = fS/c0 = 1550.24 nm). Obviously, the optical central frequency

of the generated signal can be easily tuned by correspondingly tuning the oscillator frequency fLO,2.

After an amplification stage, the resulting modulation signal is band-pass filtered using a tunable

optical filter (Santec OTF-350) centered at fS, and the complex desired data stream is finally

generated.

To validate this claim, the intensity and phase temporal profiles of the resulting optical signal

are measured by the time-domain holography-based recording step. The recording process is car-

ried out using a single 10-GHz PD attached to a real-time oscilloscope, namely, the DSO90254A

Infiniium from Agilent, with a sampling rate of 28 GSps. The losses in the upper arm of Fig.

4.4 intrinsically introduce a sufficiently high power difference to satisfy the above stated condition

iLO,1 ≫ |êS(t)|2, leading to the anticipated two-fold increased bandwidth efficiency. In all tested
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wave; MZM, Mach-Zenhder modulator; EDFA, Erbium-doped fiber amplifier; BPF, band pass filter;
PD, photodetector; OSC, real-time oscilloscope.

cases, the photodetected temporal interferogram is nearly identical to the numerically designed

temporal hologram, validating the above-described numerical design procedure and overall time-

domain holography theory. Finally, the intensity and phase temporal profiles of the signal under test

are numerically recovered from the recorded temporal interferogram using a conventional Fourier

transform – based algorithm [185], enabling further validation through a direct comparison with the

target data. Note that the frequency bandwidth of the modulating time-domain waveform (tempo-

ral hologram), which in turn determines the bandwidth of the generated complex-envelope optical

waveform, is limited by either the operation bandwidth of the MZM or the processing speed of the

employed AWG.

4.5.1.1 Arbitrary chirped Gaussian pulses

The complex envelope of the target optical stream of 16 chirped Gaussian pulses is given by

êS(t) = A ·
16
∑

m=1

exp
{

− (1− j Cm)
2

(t−mTS)2

T 2
0

}

, (4.8)

where A is the pulses’ constant peak amplitude, T0 (= 260 ps) defines the time width of each

Gaussian waveform, Cm is the chirp parameter and TS (= 1.3 ns) is the sequence period. The
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Figure 4.5 – 16-symbol sequence of arbitrary chirped Gaussian pulses. (a) Power spectral density
(PSD) of the optical signal after the intensity modulation; (b) PSD of the optical signal after the band
pass filtering; (c) Electrical signal iH(t) generated by the AWG; (d) Intensity of the generated waveform
(solid blue line) and target intensity (dashed red line); (e) Phase of the generated complex-envelope
waveform (solid blue line), obtained by applying off-line digital signal processing to the electrical
interferogram measured in the detection process, and target phase profile (dashed red line).

stream is designed such that each pulse in the data stream exhibits a different chirp value. In

particular, Cm ranges from C1 = 2 to C16 = −2. The computationally designed temporal hologram

iH(t) has a 3dB bandwidth of ∼6 GHz and is plotted in Fig. 4.5(c). The spectra of the optical

modulated signals after the MZM and after the optical BPF are represented in Fig. 4.5(a) and (b),

respectively. The latter corresponds to the spectrum of the target optical complex-envelope pulse

stream ∝ eS(t), centered at the desired optical frequency fS . Figures 4.5(d) and 4.5(e) show the

measured intensity and phase temporal profiles of the generated optical signal, together with the

target data. The figure shows an excellent agreement between the measured (blue curve) and the

target complex-envelope waveform (dashed red curve), in both amplitude and phase profiles.
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4.5.1.2 16-QAM modulated data stream

The second example proves the generation of a telecom 1024-symbol 3-Gbps 16-QAM modulated

data stream. Its complex envelope is defined as

êS(t) =
1024
∑

m=1

[

rm · exp
{

− 1
2

(t−mTS)2

T 2
0

+ j ·φm

}

]

,

rm =
√

i2
m + q2

m, φm = arctan

(

qm

im

)

, (4.9)

where im and qm are the in-phase and quadrature components of the signal, respectively, T0 (=

150 ps) defines the time-width of each Gaussian pulse in the data sequence and TS (= 1.3 ns)

is the inter-symbol period. The computationally designed temporal hologram iH(t) has a 3dB-

bandwidth of 6.8 GHz and is plotted in Fig. 4.6(a). The desired data stream is generated using

the intensity-only modulation scheme illustrated in Fig. 4.4. Figures 4.6(b) and (c) present the

measured temporal intensity and phase profiles of the generated data stream over 16 consecutive

symbols, showing an excellent agreement with the target data. Clearly, the desired data stream,

with 4 discrete levels of amplitude and 8 discrete levels of phase, is successfully generated: Figure

4.6(d) shows the constellation (or symbol diagram) obtained from the generated 1024-symbol data

stream.

To quantify the amount of error introduced by the generation scheme, we have calculated the

error vector magnitude (EVM) in the case of the 16-QAM signal, measured with respect to the

maximum power, EVMm [186]. The EVM provides a measurement of the deviation of a symbol in

the constellation in relation with its ideal position, and it is calculated as

EVMm =

√

√

√

√

√

√

1
M

∑M
m=1

(

(im − i′
m)2 + (qm − q′

m)2

)

(i2
max + q2

max)
, (4.10)

where M is the number of received symbols, im and qm represent the ideal in-phase and quadrature

components; i′
m and q′

m are the measured components and imax and qmax are the components of

the symbol of maximum power. The obtained value of EVM is equal to 15.5%. Note that the

constellation shown in Fig. 4.6(d) has been calculated by using the value of amplitude and phase

at the center of each symbol from the analog electrical signal measured in an oscilloscope, i.e.,
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Figure 4.6 – 1024-symbol 16-QAM optical data stream. (a) A portion of the numerically designed
temporal hologram, shown over 16 consecutive symbols, as generated by the electrical AWG; (b)
Intensity and (c) phase profiles of the generated complex-envelope optical signal (solid blue line) and
target data stream (dashed red line) over the signal portion (16 symbols) shown in (a); (d) Constellation
of the generated data stream (blue points) and ideal constellation of a 16-QAM signal.

no front-end correction or additional optimization algorithms have been employed. Hence, the

estimated EVM clearly indicates that the induced distortion in the generation process is relatively

small, considering that, for 16-QAM modulated signals, it is generally accepted that the transmitted

information is detectable if the EVMm remains lower than 18% [186]. It is worthy mentioning that

the measured error is induced not only by the generation process but also by the holographic

detection process (i.e., based on a single PD).

The results presented above convincingly prove the concepts introduced in this Chapter. Further

optimization of the employed experimental setups would enable to minimize some of the observed

deviations in the generated optical complex-envelope waveforms. A main source of deviations in

our specific experimental setup concerns the broad transition band of the used BPF, preventing a

complete and accurate filtering out of the unwanted spectral content from the modulated optical

signal. On the other hand, the plotted results of the output phase also present some deviations due

to the noise in the photodetection procedure.
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4.5.2 Temporal phase conjugation

Optical time-domain phase conjugation (TPC) involves conjugating the optical information in the

time domain, which translates into a conjugation and a spectral inversion of the original optical

information in the frequency domain. TPC has been widely investigated for mid-span spectral

inversion (MSSI), allowing the compensation of even-order chromatic dispersion and several kinds

of nonlinear impairments (such as self-phase modulation or intra-Raman scattering) on optical data

signals propagating along long-haul, high-speed optical fiber communication systems [41, 187]. More

generally, optical TPC is an interesting tool for a variety of signal processing functionalities, e.g.,

for direct recovery of the IQ components of an incoming complex-envelope optical waveform.

A straightforward scheme to perform TPC employs the detection of the amplitude and phase of

the complex-envelope signal to be conjugated by means of a balanced OE-PD. Then, the resulting

signal is conjugated in the electrical domain and converted again into the optical domain by the em-

ployment of e.g., an EO-IQ modulator [4]. As discussed above, EO-OE schemes require duplicated

circuitry for the IQ components of the signals, which have to be precisely synchronized.

To overcome these limitations, several techniques have been proposed and experimentally demon-

strated to carry out TPC directly in the all-optical domain. Most of them rely on parametric non-

linear effects, such as FWM in optical fiber [39–41], or in semiconductor optical amplifiers (SOAs)

[42]. TPC can be directly achieved through degenerate or quasi-degenerate FWM, which results in

an idler signal that is the temporal conjugate of the probe signal. One of the main drawbacks of this

parametric technique is the fact that the wavelength of the phase-conjugate light is generally shifted

from the original light. Whereas mechanisms have been demonstrated for wavelength-preserving

TPC based on a FWM process [41, 188, 189], they typically involve the use of two well-controlled

orthogonal pump beams, significantly hindering the practical realization and applicability of the

scheme. Furthermore, the efficiency of a FWM process is limited to the accomplishment of the

phase-matching condition between the pumps and the probe, which requires a very precise control

of the dispersion characteristics of the used nonlinear medium [19].

TPC based on time domain holography greatly simplifies the straightforward method based on

phase-sensitive OE detection and EO modulation, requiring only the use of intensity-only light de-

tection and modulation devices combined with a BPF. Moreover, this method provides a high degree
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of flexibility to center the conjugated output at the desired wavelength, including the possibility

of wavelength-preserving operation, and it also avoids the need for any processing in the electronic

domain (particularly, phase detection and conjugation). This method for TPC can be interpreted

as an exact time-domain dual procedure of the spatial holographic technique for generation of the

real image of an object (see Section 3.2).

The proposed setup for TPC is shown in Fig. 4.7 [158]. It comprises the concatenation of the

detection and the reconstruction steps of holography. The spectrum of the signal at the output of

the MZM is defined by the expression in Eq. 4.3 (Fig. 4.7(2)). Thus, the scheme enables centering

the generated TPC at the desired frequency by simply properly fixing the frequency of the reference

signal eLO,2(t). In particular, wavelength preserving TPC can be achieved when fLO,2 = 2fS−fLO,1.

Note that there is no need for signals’ synchronization in this scheme. In this case, a BPF centered

at fS allows selecting the conjugated component,

eBP F (t) ∝ i
1/2
LO,1|êS(t)| exp

{

j 2πfSt− j φS(t)
}

. (4.11)
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Figure 4.7 – Scheme to perform TPC based on time-domain holography. The scheme comprises the
concatenation of the detection and reconstruction steps of holography, in this case using two different
reference signals in each step.

In the following Sections, the proposed TPC methodology is experimentally validated by per-

forming conjugation of two different optical waveforms. For consistency, they have been chosen

to be the same set of waveforms employed in Section 4.5.1, illustrating the potential of the pro-

posed methodology to conjugate optical signals with arbitrary phase profiles of practical interest.

In particular, we first report TPC of a set of arbitrarily-chirped Gaussian-like pulses. Secondly,

a telecommunication optical information signal under a 16-QAM modulation is also successfully

conjugated. The used experimental setup follows the general scheme shown in Fig. 4.7.
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4.5.2.1 Arbitrary chirped Gaussian pulses

The experimental demonstration of the proposed scheme for TPC requires a previous step, i.e., the

generation of the complex-envelope temporal waveforms to be processed, in this case a set of 16

arbitrary Gaussian pulses. This step is carried out following the procedure described in Section

4.5.1.1. The complex envelope of the input optical stream is defined by Eq. 4.8. In this case,

T0 = 133 ps and TS = 666 ps. The input waveform has a 3dB-bandwidth of 2 GHz (bandwidth

at 1% of the maximum is 5.1 GHz). The spectrum of the signal is centered at fS = 193.408 THz

(i.e, at λS = 1550.05 nm). The interference between the input signal and a reference signal eLO,1(t)

centered at fLO,1 = 193.401 THz (λLO,1 = 1550.1 nm) is detected using a 40-GHz PD. The electrical

signal, i.e., the temporal hologram, directly drives a 40 GHz MZM that modulates the reference

signal eLO,2(t) centered at fLO,2 = 193.415 THz (λLO,2 = 1549.01 nm). The MZM is biased in such

a way that the electrical DC component plus the bias voltage are coincident with the minimum

transmission point of the modulator. Therefore, the optical component that is expected to appear

between the two spectral lobes in Fig. 4.8(a) is almost negligible, simplifying the filtering process.

A tunable BPF (Santec OTF-350) centered at fLO,2− fi = 193.408 THz after the modulator finally

filters in (selects) the time-conjugate spectral component (see Fig. 4.8(b)), which in this example

is centered at the same frequency as the original information signal fS (wavelength-preserving

operation).
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Figure 4.8 – Power spectral density of (a) the real optical signal after the modulation process; (b)
the complex-envelope optical signal after the BPF. The spectrum of the input signal eS(t) is nearly
coincident with (b).

To verify that we have conjugated the input signal, we detect the output signal using coherent

detection; in particular, the signal recording step of time-domain holography. For this purpose,

the signal to be characterized eBP F (t) = eout(t)⊗ hBP F (t), where hBP F (t) is the impulse response
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of the employed BPF, is beaten with eLO,2(t) in a PD. From the detected electrical signal, we

extract the temporal amplitude and phase of the conjugated waveform using an off-line numerical

algorithm, implemented using digital signal processing. As discussed above, this algorithm is based

on the traditional numerical scheme for phase reconstruction in heterodyne detection [12]. The

obtained results are plotted in Fig. 4.9. We can observe an excellent agreement in the recovery of

the intensity of the conjugated signal, while the obtained phase has the exact opposite sign with

respect to the input pulses’ phase, confirming that the conjugation process has been successfully

achieved (Fig. 4.9(c)-(d)). The peaks that appear in between the optical pulses in the second half of

Figs. 4.9(c) and (d) are 2π phase jumps that have been numerically removed from the graph. The

appearance of those peaks is attributed to the fact that the intensity at those instants is reduced

to almost null.
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Figure 4.9 – TPC of a 16-symbol sequence of arbitrary chirped Gaussian pulses. (a) Temporal hologram
of the input signal after the detection process; (b) Detected intensity of the conjugated signal after
modulation and band-pass filtering (solid orange line), compared with the intensity profile of the
input signal (dashed red line); (c) Detected phase of the conjugated signal after modulation and band-
pass filtering (solid orange line) and phase of the input signal (dashed red line), and (d) Comparison
between the detected output phase (solid orange line) and the phase of the ideally conjugated input
(dashed purple line).

4.5.2.2 16-QAM modulated data stream

The second example involves conjugation of a 1024-symbol 16-QAM signal, previously generated

using the approach described in Section 4.5.1.2. Each symbol consists of a Gaussian-like pulse with

a full-width at half maximum (FWHM) of 260 ps (FWHM = 2T0

√
ln 2), i.e. the 3dB-bandwidth

of the input signal is ∼1.7 GHz (full-bandwidth at 1% of the maximum is 4.3 GHz). The complex

envelope of the input data sequence is defined in Eq. 4.9, where TS = 1.3 ns (repetition rate of
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0.75 GHz). The same procedure as in the first example was employed, and the temporal output

intensity and phase are shown in Fig. 4.10(b)-(d). For comparison purposes, the detected phase

has been compared with the phase of the ideally conjugated waveform in Fig. 4.10(d), confirming

that the conjugation has been successfully achieved in this case as well. Also, we have calculated

the constellation of the output waveform (Fig. 4.10(e)), where relatively low amplitude and phase

noise is observed on the conjugated signal, mostly for the symbols of lower intensity.
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Figure 4.10 – TPC of a 1024-symbol 16-QAM optical data stream. (a) Temporal hologram of the
input signal; (b) Detected intensity of the conjugated signal; (c) Detected phase of the conjugated
signal (orange line); (d) Comparison between the detected phase (orange line) and phase of the ideally
conjugated input (dashed purple line), and (e) Output constellation (purple circles represent the
symbol’s ideal positions).

To quantify the amount of error introduced by the conjugator scheme, we have calculated the

EVMm in this case (16-QAM signal), following Eq. 4.10. The obtained value is EVMm = 10%. As

in the case of the 16QAM signal generation (Section 4.5.1.2), the constellation shown in Fig. 4.10(e)

has been calculated by using the value of amplitude and phase at the center of each symbol from

the analog electrical signal measured in an oscilloscope, i.e., without employing front-end correction

or any additional optimization algorithm. Also, the measured error is induced not only by the

conjugation process but also by the holographic detection process (i.e., based on a single PD).

Still, the estimated EVM remains lower than 18% [186], indicating a reduced distortion induced
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by the conjugator. In this case, the obtained symbols have generally less phase error than in the

case presented in Section 4.5.1.2, but higher amplitude error in the symbols of lowest intensity.

These differences are attributed to the fact that different equipment was used in the experiment

realization. Therefore, further improvement is expected if optimized components are employed (see

Section 6.2).

The limitation in the processing speed of the reported proof-of-concept experimental results

is due to intrinsic bandwidth constraints of the scheme used for generation of the input optical

waveforms [153]; in particular, the available AWG (AWG7122C) limits the complex-envelope sig-

nal bandwidth in our experiments to ∼5 GHz. However, current OE detectors and EO intensity

modulators can process data bandwidths exceeding 40 GHz, potentially enabling direct conjugation

of optical waveforms with bandwidths of at least ∼20 GHz. Furthermore, significantly broader

operation bandwidths could be achieved by implementing the intensity detection and modulation

processes in the all-optical domain, e.g. through the use of XPM [155], as detailed in the following

Section.

4.5.3 Wavelength conversion of complex-envelope optical signals

All-optical wavelength conversion is a fundamental process in high-speed WDM systems, ensuring

full flexibility in the network, preventing wavelength blocking, and allowing high-speed operation

while avoiding inefficient OE-EO conversion [14, 22–30, 170–180]. With the renewed interest in

coherent technologies [4, 29, 30] for increasing the spectral efficiency of optical telecommunications

systems, wavelength conversion of complex (amplitude and phase) information signals is especially

desired.

A number of all-optical wavelength conversion techniques have appeared in the last few decades.

Most of them rely on parametric nonlinear effects, such as FWM [25–30, 174]. However, FWM-

based schemes present several drawbacks that limit their practical application, which include (i) the

need to satisfy a stringent phase-matching condition, which either limits the wavelength conversion

tunability or requires using dispersion-engineered media [19, 28, 30]; (ii) the need to use very high

power for the involved signals (typically, > 10 dBm average powers) and (iii) the fact that the

wavelength converted signal is phase conjugated in time with respect to the original one when using

the higher efficiency configurations, e.g. one [25, 28–30] or two [26, 27] CW pumps (in general,
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phase conjugation depends on the configuration of the pumps and signal). Whereas all-optical

TPC of data signals is also desired for a range of operations in fiber-optics communication links

[41, 190], in order to achieve wavelength conversion of the original signal, a second conjugation

process, typically another FWM stage, is required. Alternatively, wavelength conversion schemes

have been proposed based on XPM. As introduced in Section 1.2, XPM is generally easier to excite

than FWM since it is not conditioned to a phase matching between the probe and the pump. In these

schemes, wavelength conversion is achieved from the intensity modulation of a probe CW light with

a high power pump signal (the information signal) through a stage of XPM into an interferometric

configuration, e.g., such as a Sagnac interferometer [14, 22, 23]; or through the sideband filtering

of the output [24, 176, 191]. However, these configurations are limited to wavelength conversion of

amplitude-only data signals.

Here, we propose and experimentally prove wavelength conversion of complex-envelope optical

signals based on time-domain holography [155]. Wavelength conversion can be seen as a modulation

process where the complex envelope of the information signal modulates a different carrier signal.

In the presented scheme, the temporal holograms are generated by phase-only modulation, namely

XPM, in a HNLF. Although the proposed configuration is similar to that of FWM-based schemes

[26, 27], it avoids the need to satisfy the phase matching condition and also significantly relaxes the

power requirements. In our experimental tests, we achieve down and up conversion of a train of

chirped Gaussian-like pulses with similar efficiency (∼ -20 dB [25–30]) but using much lower power

levels than previous FWM-based configurations, e.g., ∼0.4 dBm and ∼3 dBm signal and probe

powers, respectively.

To validate the proposed scheme, first two numerical simulations are carried out. In the first

example, we assume a HNLF with a dispersion curve that ensures that phase matching condition is

not satisfied. Thus, this example illustrates the capability of XPM-only for realizing the wavelength

conversion process of complex-envelope optical signals. In the second example, the parameters of

the HNLF available in our laboratory at the time of these experiments are employed. In both cases,

the input signal eS(t) is a train of 2 ps-FWHM Gaussian-like pulses with a repetition rate of 10

GHz, dispersed by 1-km single-mode fiber (SMF) section. The dispersed pulses are centered at

fS = 193.79 THz (i.e, at λS = 1547 nm) and have an average power of 0.4 dBm. The FWHM of

the pulses after the dispersion is 30 ps and the full bandwidth (at 1% of the maximum amplitude)

of eS(t) is B ∼ 800 GHz (6 nm). The reference signal of the recording step eLO,1(t) has a central
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frequency of fLO,1 = 193.41 THz (λLO,1 = 1550 nm) and an average power of 13 dBm. The reference

signal of the recovering step eLO,2(t) is centered at fLO,2 = 195.57 THz (λLO,1 = 1533 nm) and has

an average power of only 3 dBm. All these parameters well accomplish the conditions established

in Section 4.4, i.e., iLO,1 ≫ |êS(t)|2 and 2γLAeff i
1/2
LO,1|êS(t)| ≪ π. Based on these settings, the

wavelength converted signal is expected at λout,S = 1530 nm.

The specifications for the HNLF in the first example are γ = 11.3 W−1km−1, L = 1015 m,

the zero dispersion wavelength (ZDW) is 1540 nm and the dispersion slope S0 (at 1540 nm) =

0.092 ps/nm2/km. To check if the phase matching condition is accomplished in this case, we first

derive the equations for the phase mismatch. The spectral locations of the different involved signals

are illustrated in Fig. 4.11, where we define the parameters ∆ωp and ∆ωs to be employed in the

derivation of the phase mismatch.

ωωω ω
SLO,1 LO,2

ωc

ω
out,S

ω
out,-S

Δωp-Δωp

Δω s

Figure 4.11 – Scheme of the central frequency of the signals involved in the wavelength conversion
process and nomenclature given to the spectral separation between signals to develop the equations
of phase-matching condition (Eqs. 4.12 and 4.13).

Thus, the effective phase mismatch of the resulting wavelength-converted signal and conjugate

are defined as k4,1 and k4,2, respectively [19], which are derived as

k4,1 = ∆κ4,1 + γPLO,1 = βT,1 − βT,2 + βT,3 − βT, 4 + γPLO,1

= β̈[−2∆ω2
p − 2∆ωs∆ωp] +

...
β [−∆ω3

p − 2∆ωs∆ω2
p −∆ω2

s∆ωp] + γPLO,1; (4.12)

k4,2 = ∆κ4,2 + γPLO,1 = βT,1 − βT,2 − βT,3 + βT, 4 + γPLO,1

= β̈[2∆ω2
p − 2∆ωs∆ωp] +

...
β [−∆ω3

p + 2∆ωs∆ω2
p −∆ω2

s∆ωp] + γPLO,1. (4.13)

In Eqs. 4.12 and 4.13, ∆κ4,w, with w ∈ [1,2], is the phase mismatch due to the material

dispersion of the employed fiber; βT,v, with v ∈ [1,4] is the total dispersion value of the fiber at the
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frequencies of the four waves involved in the process (i.e., the three input signals plus the target

output at ωout,S in Eq. 4.12 or ωout,−S in Eq. 4.13). Those dispersion values are obtained from

decomposing the fiber dispersion curve β(ω) using the Taylor series expansion around ωc (see Fig.

4.11). β̈ and
...
β are the resulting values of the second and third order dispersion of the fiber4,

respectively. The last term of k4,w is the phase mismatch due to SPM of the strong reference signal

eLO,1(t), being PLO,1 its peak power value. The evaluation of Eqs. 4.12 and 4.13 using the values

presented above leads to k4,1 = 438 m−1 and k4,2 = 2.19 × 106 m−1, where the dispersion terms β̈

and
...
β have the values β̈ = −4.28× 10−2 ps2 and

...
β = 2.39 × 10−3 ps3.

The high values of k4,1 and k4,2 clearly indicate that the phase matching condition is not ac-

complished, impeding the build-up of FWM. In this example, the ZDW has been located at the

central wavelength between the probe and the pump. Thus, even with a strong dispersion slope,

the group delay values at the wavelengths of probe and pump are very similar, reducing the effects

of walk-off, which is a main cause of distortion in XPM processes. Our predictions are confirmed

through simulations based on the nonlinear Schrödinger equation, which is numerically solved by

the split-step Fourier method [19]. The spectrum at the output of the HNLF is plotted in Fig.

4.12(a). The different amplitude between the spectral components proportional to ES(λ) (at 1530

nm) and E∗
S(−λ) (at 1536) is attributed to the walk-off induced at 1536 nm, given the ZDW of

the fiber. The spectral component centered at 1530 nm is then filtered in, and the corresponding

temporal waveform is shown in Fig. 4.12(b), together with the original eS(t). To verify that the

output signal has preserved its original phase, we also include in Fig. 4.12(b) the resulting waveform

from propagation through a medium with the exact opposite dispersion to that of 1-km SMF, and

it is confirmed that the dispersion-induced pulse spectral phase has been well compensated for.

The difference between the complex envelope of the output signal with respect to the input is also

attributed to the high value of S0, which imposes different group delays to the different frequency

components of eS(t) in the propagation along the HNLF.

In the second example the characteristics of the three input signals are the same as in the

previous case. The specifications for the HNLF are γ = 11.3 W−1km−1, L = 1015 m, the ZDW

is 1545 nm and S0 (at 1545 nm) = 0.017 ps/nm2/km. In this case, the solution of Eqs. 4.12 and

4.13, leads to k4,1 = −3.3 m−1 and k4,2 = −1.8 m−1, for what the second and third order dispersion

evaluated at the frequency ωc result in β̈ = −7.53×10−5 ps2 and
...
β = 2.75×10−5 ps3. These values

4β̈ = d2β(ω)

dω2

∣

∣

∣

ω=ωc

;
...
β = d3β(ω)

dω3

∣

∣

∣

ω=ωc
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Figure 4.12 – Results from the numerical simulation of the proposed scheme (no phase-matching)
(a) Spectrum at the output of the HNLF; dashed red line represents the applied numerical BPF (b)
Resulting temporal waveform after the BPF (green line); transform-limited input before propagation
through the SMF (red line); input chirped signal to be conjugated (blue line); wavelength-converted
output after compensating the dispersion from the SMF (black line).

of phase mismatch suggest that parametric gain due to FWM might still occur in the system. As

discussed in Section 4.4, two idlers proportional to eS(t) and e∗
S(t) would appear at the frequencies

fout,S and fout,−S as a consequence of a mixing between the pumps eS(t) and eLO,1(t) and the probe

signal eLO,2(t). These idlers are proportional to the frequency components generated from XPM

around fLO,2, and consequently they are added coherently. The obtained spectrum at the output of

the HNLF and the resulting temporal output waveform (before and after dispersion compensation)

in comparison with the input signal are plotted in Fig. 4.13.

Still, it is worth noticing that in the proposed scheme, only one sufficiently strong CW signal,

eLO,1(t), is required as part of the pump, which is additionally undepleted [192]; in particular, before

the HNLF

iLO,1 ≫ |êS(t)|2, iLO,2 |eout(t)|2 = 0. (4.14)

This fact suggests that the mixing between the three input signals present at the input of the

HNLF would be weak at the output frequencies of interest.

Next, the experimental proof-of-concept of the proposed XPM-based wavelength conversion

scheme is presented. The experiment setup is shown in Fig. 4.14. We process a train of chirped
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Figure 4.13 – Results from the numerical simulation of the proposed scheme (a) Spectrum at the output
of the HNLF; dashed red line represents the applied numerical BPF. (b) Resulting temporal waveform
after the BPF (green line); transform-limited input before propagation through the SMF (red line);
input chirped signal to be conjugated (blue line); wavelength-converted output after compensating
the dispersion from the SMF (black line).

Gaussian-like pulses similar to the one assumed in the above numerical simulations. The specifica-

tions of the employed HNLF are identical to those of the second example presented. A configuration

with phase matching between signals has been employed due to the limitations imposed by the

equipment available in our laboratory.

OC

OC
HNLF

BPF

AMLL

1Km SMF28

CWL

PC

PC

PC
CWL

EDFA

OSO

non-

conjugate

conjugate

EDFA

EDFA

1Km SMF28

OSO

Figure 4.14 – Experimental setup of the XPM-based wavelength converted scheme for complex-
envelope optical signals. AMLL: Active mode-locked laser; PC: Polarization controller; CWL:
Continuous-wave laser; EDFA: Erbium-doped fiber amplifier. OSO: Optical sampling oscilloscope.

First, the information signal eS(t) is generated from a 10-GHz repetition-rate active mode-locked

laser (AMLL). The generated pulses have a FWHM of 2.2 ps. To add a quadratic spectral phase

to the pulses, the signal propagates through 1 km of SMF, as shown in Fig. 4.14. The resulting

chirped pulses have a FWHM of 27.5 ps. The average power values of the three signals involved in
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the process, i.e, eS(t), eLO,1(t) and eLO,2(t) just before the HNLF are coincident with the values

used for the numerical simulation, that is, 0.4 dBm, 13 dBm and 3 dBm, respectively. Figure

4.15 shows the results of the experimental demonstration in three different cases: (a) 17-nm down-

conversion of eS(t), (b) 17-nm up-conversion of eS(t) and (c) 10-nm down-conversion of e∗
S(t). The

first column of Fig. 4.15 shows the spectrum at the output of the HNLF and the second column

shows the corresponding temporal waveforms after filtering in the desired spectral component by a

tunable BPF (Santec OTF-350). A 500-GHz optical sampling oscilloscope (Exfo PSO-101) is used

to measure the resulting temporal waveforms.
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Figure 4.15 – (a) Down-conversion of eS(t); (b) Up-conversion of eS(t); (c) Down-conversion of e∗

S(t);
a-c (1) Spectrum after HNLF; a,b (2) Temporal signal after BPF (green line) vs input signal (dashed
blue line); c (2) includes output from AMLL (red line) and signal after dispersion compensation (black
line).

The conversion efficiency of the scheme, defined as the ratio of the wavelength converted power

at the output end of the HNLF to the input signal power, varies from -17 dB to -23 dB when the

wavelength conversion varies from 7 nm to 17 nm, as shown in Fig. 4.16. From Fig. 4.16 we observe

that the conversion efficiency for both down-conversion and up-conversion is very similar; this is

in sharp contrast to the expected behavior of parametric effects such a FWM, where the down-

conversion process is more efficient than the up-conversion due to increased phase mismatch for the

up-conversion case [25]. This suggests that the induced FWM process should be notably weaker

than the XPM at the output frequencies, which is consistent with the significant low power of two
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Figure 4.16 – Conversion efficiency of the XPM-based wavelength converter scheme as a function of
the wavelength shift ∆λ, for the cases of down-conversion (solid blue line) and up-conversion (dashed
black line).

of the three input signals involved in the mixing process. It is worth mentioning that the obtained

conversion efficiency depends on the power of the reference signal eLO,2(t), as observed from Eq. 4.7.

In this particular proof-of-concept experiment, the power of eLO,2(t) is kept one order of magnitude

lower than typical values of pump power in FWM-only based wavelength converters, still achieving

similar values of conversion efficiency [25–30]. In all the three reported cases, it is observed that the

pulse spectral and temporal shapes of the wavelength-converted signal coincide with those of the

original input, confirming that the quadratic phase induced by dispersion is preserved. Furthermore,

in the case of phase conjugation (Fig. 4.15(c)), we show the waveform of the conjugated signal after

propagating again through the 1-km SMF, black line in Fig. 4.15(c.2), and the results clearly prove

that the originally induced dispersion has been well compensated for. All experimental results show

an excellent agreement with the simulation results presented above.

4.6 Conclusions

In this Chapter, we have formally introduced the concept of time-domain holography. This concept

allows the generation, processing and detection of the amplitude and phase temporal profiles of a tar-

get complex-envelope optical signal in a simultaneous fashion, by use of intensity-only or phase-only

sensitive processes. In particular, two approaches have been presented to implement time-domain

holography. First, we presented an EO approach, in which the recording step is carried out by use

of a single PD and the retrieval step is implemented via an MZM and a BPF. We have also proposed

a configuration to generate CGTH, where the interference pattern is modeled computationally and
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the temporal hologram is generated using an AWG. The second proposed approach is an all-optical

approach, which enables the control of the amplitude and phase of a complex-envelope signal at a

data rate not limited by electronics. All-optical time-domain holography can be implemented via a

nonlinear XPM process, e.g., in a HNLF.

These approaches have been employed to experimentally demonstrate three appealing applica-

tions of time-domain holography. The first presented application has been the generation of optical

waveforms with arbitrary, user-defined complex (amplitude and phase) modulation patterns, i.e., a

sequence of arbitrarily chirped Gaussian pulses, and a 3-Gbps 16-QAM modulated data pattern,

by using an extremely simple setup involving intensity-only modulation of a CW light source and

band-pass filtering. The second application has been wavelength-preserving TPC of those same

optical waveforms. Our proposal significantly reduces the complexity and cost of previous OE-EO

approaches, as it avoids the detection, subsequent electronic processing of the phase of the optical

signal prior to the conjugation process, the conjugation in the electrical domain and the final genera-

tion of the optical conjugated waveform using an IQ modulation process. Finally, the last presented

application has been the all-optical wavelength conversion of a complex-envelope waveform (i.e. a

train of chirped Gaussian pulses) based on XPM. This scheme enables good conversion efficiency

for a broad wavelength range, without the need to accomplish the stringent phase matching condi-

tion of previous FWM-based schemes, while relaxing in at least one order of magnitude the power

requirements for the pump and probe signals and also providing a symmetrical conversion efficiency

for down- and up-conversion.



Chapter 5

Spectral-domain signal processing

based on holographic concepts

5.1 Introduction to spectral domain holography

There is a well-known property in Fourier transform’s theory that establishes a duality between the

time and the frequency domains,

If x(t) ←→ X(ω)

X(t) ←→ 2πx(−ω), (5.1)

where the arrows separate the time-domain (at the left hand side (LHS)) and the frequency-domain

(at the right hand side (RHS)) representation of a signal, related by the Fourier transform. In this

Chapter, this duality is used to develop a new concept, spectral-domain holography, presented as

the frequency-domain equivalent of time-domain holography (introduced in Chapter 4).

It is worth mentioning that the term “spectral holography” has been already used in the lit-

erature to define processes in which a spatial-domain Vander-Lugt filter (Section 3.4) is used to

perform complex (amplitude and phase) filtering to a time-domain optical signal. In those schemes,

two diffraction gratings are used to convert the spectral content of the temporal signal to angularly

spread waves in the spatial domain [193–195]. The main drawbacks of these schemes for processing
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temporal information are: the requirement of bulky optical components, which require strict tol-

erances in their alignment and have limited integration with waveguide devices, and the need for

coupling the shaped waveforms back into an optical fiber, which introduces high losses [123]. In

this Thesis, the concept of spectral-domain holography involves creating a temporal-spectral inter-

ferogram that allows one to control both the amplitude and phase spectral content of a temporal

optical signal by just manipulating the signal’s amplitude spectrum. Still, the same terminology

(“spectral holography”) is used for consistency within the presented work.

The proposed technique is of particular interest for the implementation of optical linear signal

processors with arbitrary complex-valued transfer functions based on optical components or systems

with a fundamental restriction in the processing operations that can implement, e.g., limited to

real-valued-only or minimum phase (MP) spectral responses. It is important to mention that the

processors presented here are not LTI. Still, they will be able to be defined by an impulse response

and the corresponding transfer function under certain restrictions: (i) the signal to be processed is

a single pulse or a signal defined over a prescribed temporal window, and (ii) in the cases in which

an optical amplitude modulator is used as part of the processing system, synchronization between

the input optical signal and the electrical modulating signal is assumed.

In this Chapter, we will derive the equations that describe spectral-domain holography, as the

frequency-domain dual process of time-domain holography. Then, we employ this formalism to

implement pulse processors based on two different technology solutions. First, we apply spectral-

domain holography to the implementation of electro-optical (EO) processors based on time domain

spectral shaping (TDSS) techniques. TDSS can be interpreted as the time-domain equivalent of a

Fourier-based spatial-domain optical filter (described in Section 1.4.2), and it is a very promising

fiber-optic technique for realization of electronically reconfigurable pulse shaping operations with

resolutions in the sub-picosecond regime [115, 128, 131, 196, 197]. Spectral domain holography

proves a solution to overcome the limitation in the operation capabilities of this optical system,

typically restricted to the control of the temporal intensity profile of the input optical waveform,

with no control of its temporal phase profile. Then, we apply spectral-domain holography to the

realization of arbitrary signal processors based on MP optical filters. MP filters have a spectral

response in which the spectral phase profile is uniquely related to the amplitude spectral response,

since the real and imaginary parts of the spectral response are inter-dependent in terms of the

Kramers-Kronig relationship [16]. This condition severely limits the functionalities susceptible to
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be implemented using these filters. Technologies having such a fundamental restriction include

fiber/waveguide Bragg gratings (F/W-BGs) operating in transmission [99], long period gratings

(LPGs) in their core-to-core configuration (under certain, commonly satisfied conditions1) [198], or

thin-film optical filters used in transmission. We will show how spectral domain holography can

be employed to extend the capabilities of MP filters to implement any desired, arbitrary (including

non-MP) signal processing operations.

5.2 Mathematical formalism of spectral domain holography

In this Section, we present the mathematical formalism that describes the spectral-domain holog-

raphy process, with focus on its application for designing optical processing systems with arbitrary

(complex-valued) transfer functions. Once again, the two steps involved in the holography process

will be referred to as “recording” and a “retrieval” steps for consistency with the conventional ter-

minology in spatial domain holography. Note that the following is a mathematical derivation of the

dual concept of time-domain holography in the frequency domain, without considering its physical

implementation. The practical application of spectral holography will be contemplated in Sections

5.3 and 5.4).

As starting point, we assume an optical signal processor to be implemented defined by the

transfer function HF (ω′), where ω′ = ω − ω0, with ω being the angular frequency and ω0 being

the central frequency. This processor can be also defined by the corresponding impulse response,

hF (t) = ĥF (t) ·exp{j ω0t}, whose complex envelope is obtained as ĥF (t) = F
−1{HF (ω′)}. A feasible

processor requires that its transfer function is limited over a finite spectral window ∆ωF , and its

impulse response is causal, i.e., the impulse response is zero at negatives values of the time variable.

We also assume that ĥF (t) is limited over a finite temporal window ∆tF and centered at t = tC . A

spectral hologram can be generated following the frequency-domain dual process of the temporal

holographic recording step, where the target transfer function interferes with a reference signal. In

this case, the reference signal must have an instantaneous temporal envelope, ĥRef (t) = A ·δ(t− tD)

(at ω0), with δ(t) being the Dirac delta function, corresponding to a uniform energy spectrum over

the bandwidth of interest, and tD is the time instant at which the reference signal is defined. Thus,

1LPGs have an MP spectral response in their core-to-core configuration when they are implemented in a single
mode fiber (only the fundamental mode propagates through the core) and in under-coupling conditions, that is, the
product κL < π/2, where κ is the grating coupling coefficient and L is its length.
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the spectral hologram is calculated as the square of the spectral interference between the signal and

reference,

PHol(ω
′) = |HF (ω′) + HRef (ω′)|2

= |HF (ω′)|2 + A2 + 2A|HF (ω′)| cos
(

tpω′ + 6 HF (ω′)
)

, (5.2)

where tp = tD − tC . The temporal profile of the resulting spectral hologram is

p̂Hol(t) = ĥF (t)⊗ ĥ∗
F (−t) + A2δ(t) + AĥF (t− tp) + Aĥ∗

F (−t− tp). (5.3)

Note that the first term of the RHS of Eq. 5.3 has a total duration of 2∆tF . Therefore, to avoid

any temporal overlapping between the different components of the output signal, tp must be set to

be tp > 3∆tF /2. It is possible to reduce in two fold the temporal duration of the spectral hologram

if the constant A is set to be A ≫ |ĥF (t)|, since in this case the first term in the RHS of Eq. 5.3

can be neglected. This procedure can be seen as the counterpart of the procedure carried out in

Section 4.2 to reduce the bandwidth requirements of temporal holograms.

The symmetric function p̂Hol(t) can be used as a filter’s impulse response, whose corresponding

transfer function PHol(ω′) is real-valued, but in turn contains information of the amplitude and

phase of the target arbitrary spectral response HF (ω′). Let us consider the propagation of an input

optical signal ein(t) = êin(t) exp{j ω0t} (êin(t) being the complex-envelope) through a system with

an impulse response equal to pHol(t). The output signal has a complex envelope given by

êout(t) ∝ êin(t)⊗ p̂Hol(t)

= êin(t)⊗
(

ĥF (t)⊗ ĥ∗
F (−t)

)

+ êin(t)⊗A2δ(t)

+êin(t)⊗AĥF (t− tp) + êin(t)⊗Aĥ∗
F (−t− tp). (5.4)

This output signal is composed of four different terms, one of them being proportional to the

desired processed signal, i.e., ∝ êin(t)⊗AĥF (t− tp). To be able to retrieve this target component,

it is necessary that the different terms in Eq. 5.4 do not overlap in time. Note that in this case,

the temporal window available for the processing operation will also depend on the temporal width

of the input signal to be processed, see Fig. 5.1. Thus, assuming that the input signal ein(t) has
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a temporal width of ∆tS and that the different components of eout(t) do not overlap, the total

temporal duration of eout(t) must be > 4∆tF + 3∆tS, as depicted in Fig. 5.1(a). To this purpose,

the temporal delay tp must be chosen to be tp > (3∆tF +2∆tS)/2. This imposes a severe limitation

in the effective operation temporal window of the target processor.
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Figure 5.1 – (a) Temporal width of the output signal resulting from convolving the input signal to
be processed with the impulse response of the spectral hologram; (b) Temporal width of the output
signal if the terms proportional to the intensity of the target impulse response and reference signal
are not considered in the generation of the spectral hologram.

If the condition A≫ |ĥF (t)| is satisfied, the first term in the RHS of Eq. 5.4 can be neglected,

relaxing the temporal window requirement in 2∆tF . Still, the temporal duration of the output

signal would be > 2∆tF + 3∆tS , due to the presence of a copy of the input signal at the output

(∝ êin(t) ⊗ A2δ(t)). In case the spectral hologram is computationally designed (instead of being

obtained from the physical implementation of the interferometry process), the two components

proportional to intensity-only variations of ĥF (t) or ĥRef (t) (first and second terms) in the RHS of

Eq. 5.3 can be omitted, significantly relaxing the temporal aperture of the output signal. In this

case, the spectral hologram has the following temporal profile,

p̂Hol(t) = AĥF (t− tp) + Aĥ∗
F (−t− tp). (5.5)

Then, as depicted in Fig. 5.1(b), the total time window of pHol(t) is reduced to 2∆tF + 2∆tS .

The output signal will be then composed of two terms, and the temporal overlapping between them

is avoided by imposing tp > (∆tF + ∆tS)/2.
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Finally, the target output component (∝ êin(t) ⊗ AĥF (t − tp)) can be isolated from the rest

of the output signal by using a time gating process. This can be implemented through a simple

temporal EO modulation process, of straightforward application for an output signal with a duration

of hundred of picoseconds [12]; or through a nonlinear optical switching process, e.g. using a Kerr

shutter, for output signals’ duration in the picosecond or sub-picosecond regime [199].

In the following Sections, the concept of spectral-domain holography will be employed for the

design of optical signal processors with arbitrary (complex-valued) impulse responses for their im-

plementation in two different component technologies, namely, TDSS-based methods and FBGs

operating in transmission. Thus, we will demonstrate how the typical limitation of the former, i.e.,

restricted to real-valued transfer functions; and the latter, i.e., limited to MP spectral responses,

can be overcome by the use of this newly presented concept.

5.3 Electro-optical approach: time-domain Vander-Lugt filters

The traditional scheme to implement optical filters in the spatial domain, reviewed in Section

3.4, performs a spectral shaping process by (i) Fourier transforming an incident wave using a

lens-based system; (ii) shaping the resulting Fourier transformed wave by means of a modulation

process using an amplitude and/or phase mask or a spatial light modulator (SLM), and (iii) inverse

Fourier transforming the resulting wave using a second lens-based system (Fig. 3.4) [12, 120–122].

Prior to the development of modern SLMs, Vander-Lugth filters were proposed as a holography-

based solution to implement complex-valued filtering in the spatial domain using amplitude-only or

phase-only masks.

The spectral shaping technique for performing spatial domain filtering has inspired a very

promising method for implementing fiber-based electronically reconfigurable temporal pulse pro-

cessors with resolutions in the sub-picosecond regime, following the space-time duality [56], see Fig.

5.2. This method is referred to as TDSS, and it employs: (i) an all-fiber dispersive medium, instead

of spatial diffraction, to temporally separate the input pulse spectral components, (ii) a single mod-

ulator device, typically an EO modulator, to carry out the desired filtering process along the time

domain, instead of the spatial mask or SLM of the space-domain case, and (iii) a second dispersive
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medium with opposite dispersion with respect to the first one to recombine the previously separated

spectral components of the modulated signal.
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time time
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Filtered
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Input 
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f l f lf lf l

Figure 5.2 – (a) Spatial domain spectral shaping setup, and (b) time-domain spectral shaping (TDSS)
setup. fl is the focal length of the lenses.

TDSS schemes based on an amplitude-only [115, 128, 196] or a phase-only [131, 197] modulation

process have been proposed. The main limitation of traditional schemes implementing TDSS is that

they are only capable of controlling the temporal intensity profile of the output waveform, and they

have been typically limited to the synthesis of purely symmetric temporal shapes [115, 128, 131]. A

novel technique to shape the pulse intensity profile into arbitrary, including non-symmetric, temporal

profiles using phase-only EO modulation has been theoretically demonstrated; in this technique the

radio frequency (RF) modulating signal is specially designed using an optimization algorithm [197].

Still, this method does not provide any control of the temporal phase profile of the synthesized

waveforms. Also, a method for implementing complex-valued pulse shaping has been theoretically

proposed [196]. This method requires however that the modulating signal is nonuniformly sampled

with a very high temporal resolution, significantly hindering the practical implementation of the

proposal. To date, no experimental demonstration has been reported of a complex-valued pulse

shaper based on a TDSS scheme using a single amplitude-only or phase-only modulator. In fact,

if an arbitrary (non-symmetric) complex-valued pulse shaper is to be implemented using previous

designs, an IQ modulator, or the concatenation of precisely synchronized amplitude and phase

modulators, would need to be used for realization of a complex-valued filter’s transfer function.

However, this configuration would significantly increase the complexity and cost of the system.

It is possible to implement a signal processor with a complex-valued transfer function still using

a similar setup to those previously used for TDSS techniques (Fig. 5.3), i.e., composed of a single
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amplitude EO modulator in between two opposite-dispersion media. This can be achieved through

the use of a spectral hologram as the driving signal in the EO modulation process. As described

above, a spectral hologram is a signal with a real-valued spectral response that contains complex

information of the target filter’s transfer function. The overall scheme can be interpreted as the

time-domain counterpart of Vander-Lugt filters [151], reviewed in Section 3.4. In our proposed

configuration, the spectral hologram is computationally designed following the derivation in Section

5.2, and then physically generated using an arbitrary waveform generator (AWG), i.e., similarly to

the computer-based design process to generate temporal holograms (Section 4.3.1) [153].
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3
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Figure 5.3 – Schematic of operation of the TDSS system. Vander-Lugt filters are based on this
configuration, but using a spectral hologram as the modulating signal. AM: amplitude modulation.

In general, this system using a temporal modulation process is a time variant system. However,

the response of this system can be approximated as LTI when assuming certain restrictions related

to the timing synchronization and the temporal duration of the input pulse. In particular, it is

necessary to assume that (i) the optical input pulse is synchronized with the electrical modulating

signal and (ii) the temporal width of the dispersed pulse is shorter than the modulating signal.

Under these restrictions, the system response can be characterized by a temporal impulse response

and the corresponding spectral transfer function. These requirements can be seen as the time-

domain equivalents of the need for imposing a spatial alignment between the input wave and the

optical components and the aperture limitation when using a spatial-domain optical filter.

It is important to notice the fundamental difference between the schemes for performing spectral

shaping in the spatial and the time domains (illustrated in Fig. 5.2). In the spatial domain

approach (Section 3.4), the lens-based Fourier transforming system placed before and after the

modulating mask is able to generate the exact Fourier transform (in amplitude and phase) of an

input waveform. Also, in the spatial-spectral hologram recording process (Fig. 3.5(a)), an additional

Fourier transforming system is used, which also computes the exact Fourier transform of the filter



Chapter 5. Spectral-domain signal processing based on holographic concepts 81

impulse response. In the time domain approach, however, dispersive media (operating within the

Fraunhofer condition) are used to separate and recombine the spectral components of the input

temporal signal. In this case, the Fourier transforming process is achieved only in amplitude, since

the resulting phase contains an additional quadratic term [200]. This circumstance must be taken

into consideration for the design of the spectral hologram PHol(ω′) (with temporal profile defined

in Eq. 5.5), which requires additional important considerations for the design strategy presented in

the previous Section 5.2.

In the following derivation of the spectral hologram, capital letters are employed for signals

proportional to spectral profiles, and lowercase letters for signals proportional to temporal profiles,

regardless of their domain of definition (t for time domain and ω for frequency domain).

Let us assume that the input signal is a transform-limited Gaussian pulse, defined as eS(t) =

êS(t) exp{j ω0t}, where êS(t) = exp{−t2/2T 2
0 }, T0 is the half width at 1/ e maximum and ω0 is the

carrier optical frequency. The envelope of the target filter’s temporal impulse response is ĥF (t) (at

ω0). The input signal eS(t) is first dispersed in a medium with transfer function

HΦ̈(ω′) = exp
{

− j
Φ̈ω′2

2

}

, (5.6)

where Φ̈ = β̈L is the chromatic dispersion, with β̈ and L being the second order chromatic dispersion

coefficient and the length of the medium, respectively. The dispersed signal is amplitude modulated

by an RF signal Hhc(t), which is a spectral hologram built from the function hF (t). The Fourier

transform of the signal at the output of the modulator is

EM (ω′) ∝ [ES(ω′) ·HΦ̈(ω′)]⊗ hhc(ω), (5.7)

where ES(ω′) = F{êS(t)}), and hhc(ω) = F{Hhc(t)}. Following the derivation in Section 5.2, the

modulating waveform would be defined as

Hh(t) ∝ HF (t) exp{− j ωpt}+ H∗
F (−t) exp{j ωpt}, (5.8)

which has been named as Hh(t) instead of Hhc(t) since an additional step has to be made on top

of the described algorithm, as detailed in what follows. The parameter ωp is chosen to avoid any

spectral overlapping between the two terms in the RHS of Eq. 5.8; namely ωp > ∆ωF /2, where
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∆ωF is the bandwidth of hF (ω) = F{HF (t)}. The parameter ωp should be associated with the delay

tp in Section 5.2. Both terms (ωp and tp) represent a shift between the target “impulse response”

and the reference signal that is used to generate the spectral hologram. The change of domain of

definition (frequency → time) in the spectral hologram for implementation of Vander-Lugt filters

is intrinsic to its setup. To provide an intuitive insight, it can be considered that the dispersion

medium brings the spectrum shape to the time domain to perform the target spectral shaping via

a temporal modulation process. Note that capital letters are used in Eq. 5.8 to point out the fact

that the signals HF (t) and Hh(t) have a temporal complex envelope with a shape proportional to

the corresponding spectral transfer functions.

When the dispersed input signal is amplitude modulated with Hh(t) (meaning that in Eq. 5.7:

hhc(ω) = F{Hh(t)}) and subsequently propagated through a medium with chromatic dispersion

−Φ̈, the resulting output signal is proportional to êS(t) ⊗ hhc(t) exp{− j t2/2Φ̈}, which exhibits an

additional quadratic temporal phase term that prevents to obtain the target output phase profile.

The reason of this additional chirp is the fact that a dispersive medium is not performing an exact

Fourier transformation (in amplitude and phase). In order to cancel out this undesired phase term,

a quadratic spectral phase term proportional to H−Φ̈(ω) needs to be added to the spectrum of

Hh(t), i.e., hh(ω). However, the modulating signal (the spectral hologram) must still be a real-

valued function. For this purpose, we use the following design strategy: the added phase terms

to the two corresponding spectral sidebands of Hh(t) must have opposite sign, in such a way that

the total spectral phase added is an odd symmetric function. Recall that a temporal signal with

even magnitude and odd phase has a real-valued spectral response [46]. This operation results in a

modulation signal with the following spectral response,

hhc(ω) ∝ hF (ω − ωp) exp
{

j
Φ̈ω2

2

}

+ h∗
F (−ω − ωp) exp

{

− j
Φ̈ω2

2

}

, (5.9)

where hhc(ω) = F{Hhc(t)}. Substituting Eq. 5.9 into Eq. 5.7, and assuming that the spectrum

of Hhc(t) is confined to a small spectral range such that T0ωm ≪ 1, where ωm is the maximum

frequency of Hhc(t), the modulated optical signal spectrum, EM (ω′), can be approximated as

EM (ω′) ∝ ES(ω′)HΦ̈(ω′)
[

HF (ω′) exp{j Φ̈ωpω′}+ H∗
F (ω′) exp{− j Φ̈ωpω′} ⊗ exp{− j Φ̈ω′2/4}

]

.(5.10)
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The interested reader can find the mathematical derivation of this result in Section A.2 of

Appendix A. Finally, the modulated optical signal propagates through a second dispersive medium

with a dispersion value of −Φ̈, as shown in Fig. 5.3. At the output, the complex envelope of the

resulting temporal waveform can be written as

êout(t) ∝ êS(t)⊗ hF (t− Φ̈ωp) + êS(t)⊗
(

h∗
F (−t− Φ̈ωp) exp(− j t2/Φ̈)

)

. (5.11)

Equation 5.11 shows that the output signal consists of two different terms, one of them being

proportional to the desired temporal waveform (first term in the RHS of the Equation). The two

terms are temporally shifted with respect to each other; therefore, the operation time window ∆Tout

of the scheme is reduced at least by half with respect to the case where a symmetrical intensity-only

system’s impulse response is targeted. In this latest case, the temporal aperture is determined

by the product of the modulating signal bandwidth (ωm ∝ 1/δthc, where δthc is the modulation

temporal resolution), and the employed dispersion value |Φ̈| [131]. The temporal resolution of the

output optical shape, δtout, is just limited by the input pulse time-width (∝ T0), assuming that the

input pulse frequency bandwidth is narrower than the pass band of the dispersive medium ∆ωD,

similarly to the case where intensity-only shapes are targeted [128, 131, 197]. Therefore, the time-

bandwidth product (TBP) of the Vander-Lugt filter (TBP = ∆Tout/δtout), which is typically used

as a figure of merit of pulse shaping systems, is directly proportional to the product ωm · Φ̈ ·∆ωD.

Thus, it is possible to increase the TBP by increasing the bandwidth of the modulating signal or

increasing the dispersion value. As observed from the mathematical derivation (see Appendix A),

there is not a condition imposed on the value of Φ̈ with respect to the temporal duration of eS(t),

i.e., there is no need to work within the Fraunhofer condition2 [201]. However, it is still important

to ensure that the temporal duration of the dispersed input signal is longer than the duration of

the modulating signal Hhc(t). Finally, the desired portion of the output temporal signal may be

filtered in by a time-gating process if needed.

2The time-domain analog of the spatial Fraunhofer condition is |Φ̈| ≫ ∆t2
0/(2π), where ∆t0 is the total temporal

duration of the input pulse [200].
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5.3.1 Application of time-domain Vander-Lugt filters as pulse shapers

Time-domain Vander-Lugt filters have been introduced as reconfigurable EO pulse processors that

generate an output signal with a complex envelope proportional to the convolution between an input

optical signal and the Fourier transform of a “cleverly designed” RF signal (Eq. 5.11). Convolution is

the basis of any linear, time invariant signal processing function and as such, Vander-Lugt filters have

a myriad of applications within the context of optical signal processing. As introduced in Section

5.1, time-domain Vander-Lugt filter can be considered as LTI system assuming synchronization

between the optical input pulse and the electrical modulating signal. This assumption can be seen

as the time-domain dual of assuming a spatial alignment between the waveform to be processed,

the holographic mask and the 4fl lens system in the classical (spatial-domain) case3. In this Section

we employ time-domain Vander-Lugt filters for fiber-based, truly arbitrary optical pulse shaping.

The required setup has the same circuitry complexity as previously proposed TDSS schemes, while

their shaping restrictions are overcome by the design of a prechirped spectral hologram [156].

Figure 5.4 shows the setup employed for experimental demonstration of optical pulse shaping

based on time-domain Vander-Lugt filters. In particular, this figure includes the setup required for

performing a time-domain Vander-Lugt filter and subsequently characterizing the synthesized out-

put waveforms. The capabilities of the proposed scheme are successfully demonstrated by synthesiz-

ing two different temporal waveforms of practical interest, namely, an asymmetric triangular-shaped

pulse with parabolic phase, and a 4-symbol 16-QAM pulse code sequence.

The input signal eS(t) is generated by a passive mode-locked laser (PMLL). It consists of a

train of 2 ps-FWHM Gaussian-like optical pulses with a repetition rate of 10 MHz, centered at

λ0 = 2πc0/ω0 = 1545 nm. This signal is dispersed using a reflective linearly-chirped FBG (LC-

FBG) providing a dispersion equivalent to 120 km of SMF, i.e., Φ̈ ∝ −2600 ps2 over the entire

optical telecommunication C band (1535-1565 nm). The dispersed output is modulated using a

Mach-Zehnder modulator (MZM). The MZM is biased in the minimum transmission point so that

it operates as an amplitude modulator [128].

The modulating signal, i.e., the spectral hologram Hhc(t), is generated using an AWG; namely

the AWG-7122C from Tektronix with a 3dB analog bandwidth of 9.6 GHz and a sampling rate of

3Note that certain restrictions are also applied on the width of the optical input signal to be processed, see Sections
5.1 and 5.3.
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Figure 5.4 – Setup employed for the experimental demonstration of pulse shapers based on time-domain
Vander-Lugt filters. The setup includes the time-domain Vander-Lugt filter in the upper arm of an
interferometry configuration (inside the green rectangle); the interferometry configuration is employed
for characterization of the output shaped signal via Fourier transform spectral interferometry (FTSI).
PMLL: passive mode-locked laser; OC: optical coupler; ODL: optical delay line; PC: polarization
controller; PBS: polarization beam splitter; LCFBG: linearly-chirped fiber Bragg grating, EDFA:
Erbium-doped fiber amplifier; APD: avalanche photodiode; LPF: low pass filter; ATT: attenuator.

20 GSps. The secondary output of the PMLL is used to synchronize the laser with the output of

the AWG. This low power laser output is first photodetected using an avalanche photodiode, in

order to have a sufficiently powerful electrical signal after the photodetection. The electrical signal

is filtered using a low pass filter (LPF) with a 3dB bandwidth of 14 MHz, which only keeps the

first harmonic of the RF signal at 10 MHz (the LPF’s insertion loss at the frequency of the second

harmonic, i.e., at 20 MHz, is 31.35 dB). Therefore, the output of the filter is a sinusoidal RF signal

with a frequency of 10 MHz, which is used by the AWG as a reference clock signal (the used AWG

only accepts a sinusoidal function as reference clock). The optical modulated signal is then reflected

from the opposite extreme of the LC-FBG, being thus affected by a dispersion value of −Φ̈. After

that, the desired output from the FBG is discriminated from the residual transmitted input by

using a polarization controller (PC) and a polarization beam splitter (PBS).

To characterize the system’s output, a Fourier transform spectral interferometry (FTSI) scheme

is employed [202]. The setup for implementing the Vander-Lugt filter is placed in one arm of a

Mach-Zehnder interferometer (depicted within the green rectangle in Fig. 5.4). The second arm,

i.e., the so-called reference arm, is set to provide a delay of about 100 ps difference with respect to

the delay introduced by the first arm. The spectrum of the signals at both arms plus the spectrum

of the interference are measured using a high resolution optical spectrum analyzer (OSA), namely

the AP2043B from Apex with a resolution of 0.04 pm.
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Figure 5.5(a) shows the designed spectral hologram Hhc(t) to generate the first target waveform,

namely an asymmetric triangular shape with parabolic phase (details of the specifications are given

below). The amplitude and phase profiles of the resulting temporal waveform are plotted in Fig.

5.5(b) and (c), respectively. As expected from the theoretical derivation, the output temporal signal

consists of two separated components (see Eq. 5.11). In this case, the spectral-domain hologram

is designed to properly re-shape the RHS of the resulting output signal (highlighted in Fig. 5.5(b)

and (c)), in both amplitude and phase.
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Figure 5.5 – Asymmetric triangular pulse with parabolic phase: (a) spectral hologram Hhc(t); (b)
temporal intensity of the output signal; and (c) temporal phase of the output signal: target (dotted
blue line) and measured (solid green line) output. The spectral hologram was designed so that the
right-hand side of the temporal output (highlighted and marked with a dashed red line) matches the
target profile.

The target triangular shape has a total duration (measured at 1% of its power peak) of 60

ps. The leading edge of the asymmetrical triangular shape has a total duration of 10 ps. The

quadratic phase has a chirp value (defined as the second derivative of the phase with respect to

the time variable) of 0.008 ps2. From Fig. 5.5 (b) and (c), we observe a good matching between

the numerically simulated (‘ideal’) amplitude and phase temporal profiles and those retrieved from

FTSI measurements. The small peak in between the two copies of the triangular shape (at the

center of Fig. 5.5(b)) is a residual DC component from an imperfect biasing of the MZM.

The second example shows the generation of a 4-symbol circular 16-QAM pulse code sequence.

Figure 5.6(a) presents the designed temporal hologram. The amplitude and phase of the obtained

temporal waveform are plotted in Fig. 5.6(b) and (c), respectively; in this case only the RHS of
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the resulting waveform is presented. The total length of the 4-symbol code is ∼72 ps, and the full

width at half maximum (FWHM) of each symbol is ∼6 ps. Again, a fairly good matching between

the target signal and the measured signal can be observed.
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Figure 5.6 – 4-symbol 16-QAM code: (a) spectral hologram Hhc(t); (b) temporal amplitude of the
output signal, just right-hand side is shown; (c) temporal phase of the output signal: target (dotted
blue line) and measured (solid green line) output.

In both reported experiments, considering the AWG bandwidth limitation (9.6 GHz) and em-

ployed dispersion (∼2600 ps2), the maximum duration of our target output signals is limited to

< ωmΦ̈/2 = 125 ps. The reduction in the experimental aperture with respect to the estimated max-

imum value is due to the fact that the temporal hologram was designed to have a bandwidth notably

lower than the maximum allowed by the AWG, in order to enhance the quality of the modulation

process and optical output. On the other hand, the temporal resolution of the output temporal

waveforms, δtout, and input optical pulses have been measured as the inverse of the full width at

1% of the maximum of the corresponding signal spectrum, considering that both the output and

input pulses are nearly transform limited. In the two reported examples, we estimate an output

temporal resolution of δtout ∼ 6.7 ps, very close to the temporal resolution of the input pulse, eS(t),

which is ∼5.8 ps. The slightly reduction in the resolution of the output signals with respect to the

resolution of the input is due to the fact that the spectral holograms have been designed to have a

temporal width shorter than the total temporal width (e.g., at 1% of its maximum) of the dispersed

Gaussian pulse.
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5.4 Spectral-domain holography for the design of arbitrary optical

filters based on minimum-phase structures

Fiber Bragg gratings and long period gratings are periodic perturbations of the refractive index in

the core of an optical fiber (defined in Eq. 1.9 and illustrated in Fig. 1.8). They have arisen as a

critical component technology for a broad range of applications, specially in optical communications

and sensor systems. In particular, in the last decade, this technology has attracted researchers’

attention to effectively implement a wide variety of optical signal processors and optical pulse

shapers based on linear filtering [11, 77–92, 102–105, 203, 204]. Advantages of fiber gratings include

their all-fiber geometry, low insertion loss, compact format and potential low cost. Furthermore, the

most distinctive feature of fiber gratings is the extraordinary flexibility they offer to achieve almost

any desired band-pass spectral filtering characteristics (in amplitude or/and phase) when working

in reflection, in the case of FBGs, or in a core-to-cladding configuration, in the case of LPGs.

For some applications, the use of FBGs in transmission may turn out to be more advantageous

than in reflection. When the grating is operating in transmission, the complexity and cost of the

system are reduced as it is not necessary to use a coupler or a circulator to retrieve the reflected

signal. This feature is particularly interesting for implementation of gratings in integrated-waveguide

platforms, where efficient optical circulators are not still available. In addition, the phase response in

transmission is often more robust to imperfections in the grating structure than the phase response

in reflection [100] (as reviewed in Section 1.3.2.1). Similarly, there are several reasons for preferring

the use of the LPG in their core-to-core configuration. First of all, it is not needed to use an

additional LPG [102] or a misaligned splicing [106] to couple the output signal back to the core.

Besides, the phase response of LPGs is less sensitive to environmental perturbations in the core-to-

core configuration than in the core-to-cladding configuration, due to a minor exposure of the mode

at the core (reviewed in Section 1.3.2.2).

In this Section we will focus on signal processors based on FBGs. In spite of the fact that

LPGs intrinsically provide operation bandwidths much broader than FBGs, i.e., well in the THz

regime (recall that FBGs are typically limited to operation bandwidths of ∼200 GHz) [79, 80, 105],

they suffer from serious limitations, particularly instabilities and high sensitivity to environmental

fluctuations, which notably hinder their use as signal processors. Also, their significantly larger
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footprint make their implementation in integrated formats very challenging. Still, it is anticipated

that the design method employed here for processors based on FBGs in transmission could be

potentially applied to LPGs in their core-to-core configuration (in under-coupling conditions) [198].

A couple of decades ago, there was a strong interest in the use of FBGs operating in transmission

due to their aforementioned advantages. In particular, several approaches for implementing disper-

sion compensators were proposed [100, 205–207]. Dispersion compensation is an example of optical

filter in which the amplitude and phase spectral response must be independently specified over a

limited operation bandwidth. As introduced in Section 1.3.2.1 and demonstrated in Ref. [101],

transmissive FBGs have a linear spectral response that is necessarily MP, i.e., the phase spectral

response of the grating transmission is uniquely related to its amplitude spectral response through

a Hilbert transform relationship. In this case, dispersion compensation operation was achieved by

using the highly dispersive (but narrow) spectral regions near the band edge of a uniform [205] or

apodized [100, 206, 207] FBG. Even though, the extremely restrictive MP condition of transmissive

FBGs made researchers disregard this configuration.

Recently, there has been a renewed interest in FBGs operating in transmission [91, 146, 147].

Hence, several optical signal processors such as optical differentiators, integrators or flat-top pulse

shapers have been recently proposed based on transmissive FBGs [91, 146, 147]. However, all the

presented processors were restricted to (i) have an MP spectral response and (ii) operate within an

operation bandwidth ≤ 200 GHz.

In this Section, we describe and numerically demonstrate a general and practical approach to

design THz-bandwidth all-optical linear signal processing devices based on especially-apodized LC-

FBGs working in transmission. The proposed methodology can be directly used to implement any

optical signal-processing device based on an MP linear optical filter, offering operation bandwidths

well into the THz regime (corresponding to sub-picosecond time features). Then, we extend the

applicability of ultra-broadband transmissive FBGs to non-MP processing functions by the use of

spectral-domain holography. Hence, spectral-domain holography arises as an interesting solution

to overcome the limitation in the functionalities susceptible to be implemented using transmissive

FBGs: any complex-valued spectral response with independent amplitude and phase profiles can

be encoded in amplitude-only variations of a second spectral response, i.e., the spectral hologram.

The presented methodologies are experimentally demonstrated through the design and implemen-
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tation of THz-bandwidth, MP and non-MP functionalities in transmissive FBGs; in particular, we

demonstrate an optical differentiator, a flat-top pulse shaper (MP functionalities) and a photonic

Hilbert transformer (non-MP functionality).

5.4.1 Increasing the operation bandwidth of fiber Bragg gratings

The proposed approach to increase the operation bandwidth of an FBG operating in transmission

exploits the degree of freedom that is available in fixing the FBG reflection spectral phase response

[99]. Thus, by inducing a suitable quadratic spectral phase profile in reflection, corresponding

to a linear period chirp along the grating length, it is possible to increase the FBG’s operation

bandwidth without increasing the spectral resolution of the apodization profile. This quadratic

phase in reflection does not affect the transmissive phase response due to its MP condition, as

detailed in what follows.

The problem under analysis concerns the design of a linear optical filter providing a prescribed

MP spectral transfer function, Hideal(ω′), over an ultra-broad bandwidth. Recall that ω′ = ω − ω0,

where ω0 is the spectral response’s central frequency. In the following derivation, we use the same

notation as the one used in the Section 1.3.2; therefore, HT (ω′) and HR(ω′) determine the FBG

transmissive and reflective spectral responses, respectively. As the processor to be designed is based

on an FBG working in transmission, HT (ω′) must be proportional to Hideal(ω′) over the target op-

eration bandwidth. In an MP filter (e.g. FBG in transmission), the filter’s spectral phase response

is necessarily determined by the desired spectral amplitude response since the real and imaginary

parts of the spectral response are related by means of the Kramers-Kronig relationship. In addition,

in an FBG, the transmissivity (T = |HT (ω′)|2) and reflectivity (R = |HR(ω′)|2) are necessarily re-

lated by T = 1−R. Thus, the specifications of |HT (ω′)| uniquely impose the functions 6 {HT (ω′)}
and |HR(ω′)|. Therefore, from the specifications of the desired transmission amplitude spectral

response, |HT (ω′)|, the design problem reduces to synthesizing an FBG providing the reflection

amplitude spectral response, |HR(ω′)|, with no additional constraints on the FBG reflection spec-

tral phase response, 6 {HR(ω′)}. Hence, the FBG reflection spectral phase can be suitably fixed to

achieve the simplest grating design according to the target specifications. Among different alterna-

tives, minimum-phase, maximum-phase, linear phase, quadratic phase, cubic phase profiles (and so

on) can be used [99].
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In previous designs of all-optical signal processing devices based on transmissive FBGs, the

selected reflection spectral phase has been linear [90] or maximum-phase [146]. Here, we make use

of a reflection quadratic spectral phase for the synthesis of a transmission FBG, i.e. reflection linear

group-delay which translates into a linear grating-period variation (or linear grating-period chirp)

along the device length [53]. As the reflected frequency components along the grating are related

to its period, the bandwidth of the spectral response in reflection, i.e. the corresponding rejected

bandwidth in transmission, can then be significantly higher than in the uniform grating-period case.

Our numerical simulations show that the reflective quadratic spectral phase enables the synthesis

of arbitrary amplitude spectral responses over bandwidths well in the THz range using feasible and

remarkably simple FBG apodization profiles.

In particular, the FBG reflection spectral response that must be synthesized can be mathemat-

ically expressed by

HR(ω′) = W (ω′)

√

Rmax

(

1− |HT (ω′)|2
)

exp

{

j
1
2

Dω′2 + τshiftω
′

}

, (5.12)

where HT (ω′) is proportional to Hideal(ω′) over the target operation bandwidth; Rmax is the max-

imum peak reflectivity; D is the dispersion parameter (s2) or equivalently, the group-delay slope;

W (ω′) represents a windowing function, which is introduced considering that the reflective response

of an FBG must be a limited band-pass filtering function; and τshift is a time delay, which trans-

lates into the linear spectral phase factor in Eq. 5.12, introduced to make the device causal. The

dispersion parameter D will determine the minimum grating length L, according to the relationship

D =
2Lnav/c0

2πB
, (5.13)

where nav is the average refractive index of the grating (see Eq. 1.9); c0 is the speed of light in

vacuum; and B is the full-width reflection bandwidth of the device (Hz). From the target reflective

spectral response specifications defined by Eq. 5.12, the proposed method obtains the grating

perturbation using a layer-peeling FBG synthesis algorithm [74] based on coupled-mode theory

(CMT) combined with a transfer-matrix method (TMM). The interested reader can find a detailed

description of the CMT-TMM algorithm in Section B.2.1 of Appendix B. The use of this exact FBG

synthesis approach is essential to obtain the correct grating profile since the weak-coupling space-

to-frequency mapping conditions that are typically assumed in previous designs based on LC-FBGs
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[208] are not usually fulfilled. This is associated with the fact that generally, the target spectral

response ought to be strong-coupling (Rmax ∼ 1).

It is worth mentioning that our numerical studies have confirmed that the resulting grating

apodization specifications (spatial resolution and maximum peak index modulation) can be easily

relaxed by suitably increasing the specified value of the dispersion parameter (D). The higher the

dispersion parameter, the longer the resulting grating device: there is higher group delay over the

same bandwidth, what implies longer length. This also leads to lower maximum peak refractive

index modulation as the reflection of light is distributed over this longer length.

5.4.2 Applications of ultra-broadband transmissive FBGs as MP processors

In this Section, we show examples of MP all-optical pulse processors and shapers with up to sev-

eral THz operation bandwidth using feasible transmissive FBGs incorporating a properly designed

grating period chirp. In particular, we present the design of two relevant MP optical processors,

namely, arbitrary order optical differentiators and a flat-top pulse shaper. Moreover, the flat-top

pulse shaper has been also successfully fabricated and characterized, and experimental results are

presented here as well.

5.4.2.1 Arbitrary order optical differentiators

A temporal optical differentiator is a signal processing device that provides at its output the deriva-

tive of the temporal complex envelope of an input optical signal. The ideal spectral transfer function

of an arbitrary order differentiator can be expressed as

Hdiff (ω′) ∝ (j ·ω′)N , (5.14)

where N is the differentiator order. A number of different approaches for first- and high-order

optical differentiators have been proposed based on FBGs operating in reflection, each of them

trying to improve their operation bandwidth or spectral resolution within practical limitations of

the employed technology [81, 87, 91, 208, 209]. Optical differentiators have been employed for the

generation of first- and high-order Hermite-Gaussian optical pulses [210]. Hermite-Gaussian polyno-

mials form a complete set of orthogonal temporal functions, a property that can be readily exploited
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in advanced coding for network access applications. Moreover, based on this property, a platform

has been proposed for programmable arbitrary optical pulse shaping involving the combination of

weighted first- and high-order derivatives of an input Gaussian-like pulse [135].

We have designed a first-order all-optical differentiator (N = 1) with a processing bandwidth of

B = 2 THz (full-width at 1% of the maximum spectral amplitude), using the approach described

in Section 5.4.1 [84]. In the design process, Eq. 5.12 is employed, where HT (ω′) = Hdiff (ω′), the

dispersion parameter D was set to 80 ps2, τshift = 1.356 ns, and Rmax was set to 99.9999%. In

this case, no windowing is required, W (ω′) = 1, as the reflective transfer function is inherently a

band-pass function.

A CMT-TMM synthesis tool [74] was employed to obtain the grating profile of the desired

FBG-based optical differentiator from the specifications in Eq. 5.12, which is plotted in Fig. 5.7(a).

The synthesized grating device is readily feasible with current fabrication technology, with (i) an

effective length of 10.37 cm (as expected from Eq. 5.13), (ii) a chirp value of -0.52 nm/cm, (iii) an

amplitude-only apodization function with a peak refractive index modulation ∆nmax = 0.72×10−3,

and (iv) an average spatial resolution of the ripples in the apodization profile of ∼0.3 mm. Therefore,

the fabrication parameters were significantly relaxed as compared with previous designs based on

uniform-period transmissive FBGs [91], while the achievable processing speed was increased in one

order of magnitude. To give a quantitative comparative analysis on the improvements of our design,

we have numerically simulated the same specified spectral response HT (ω′), but selecting a linear

phase for the reflection spectral response, i.e. D = 0. The synthesized FBG, which is in this case

has uniform period, requires a ∆nmax = 9.4× 10−3, more than one order of magnitude higher than

using a quadratic reflective spectral response. Moreover a challenging spatial apodization profile

with a resolution ≤0.05 mm and multiple discrete phase shifts is required to achieve the same target

processing bandwidth [84]. These results are in line with the ones presented in Ref. [91] for an

optical differentiator based on a uniform period transmissive FBG.

As this example has not been experimentally demonstrated, we have numerically analyzed its

robustness against realistic variations in the amplitude and phase grating profiles with respect to

the designed nominal values, as induced during a typical fabrication process [211]. Those deviations



94

have been modeled and included in the resulting grating profile shown in Fig. 5.7(a) as,

nF G(z) = nav + ∆n
(

1 + δn(z)
)

cos

(

2π

Λ
z + φ(z) + θ(z)

)

;

φ(z + ∆)− φ(z) =
∫ z+∆

z
δφ(ζ) · dζ, (5.15)

where nav is the average effective index and, among the deterministic grating parameters, ∆n

accounts for the obtained local grating strength (apodization), Λ is the reference period and θ(z)

determines the obtained phase variation and local period in the synthesis process. The random

properties of the grating are described by the amplitude and phase stochastic processes δn(z) and

δφ(z), respectively. The amplitude fluctuations in the refractive index have been modeled by a

zero-average, stationary Gaussian variable δn(z) whose standard deviation has been set equal to

2% of the maximum refractive index change. The random phase component is also described by

a zero-average, stationary Gaussian function δφ(z) with a standard deviation equal to 0.1% of its

grating period, which drives the phase term φ(z). These values are similar to typical values found in

practice [211]. The grating profile obtained from the synthesized LC-FBG, with the added stochastic

amplitude and phase variations, has been numerically analyzed using a CMT-TMM-based analysis

algorithm [54] (a description of this algorithm can be found in Section B.1.1 of Appendix B). Figure

5.7(b) shows the resulting transmission amplitude and phase spectral responses (after compensating

constant and linear phase terms). The target linear spectral amplitude variation over the desired

bandwidth is achieved with high accuracy. The π-phase shift required at the central frequency

f0 = ω0/2π is intrinsically generated due to the MP condition of the transmission spectral response.

As observed in the plot, the anticipated fabrication errors slightly modify the original expected

response, and in particular, they mainly have an impact on the random ripples observed over the

ideal linear-amplitude spectral response. The higher deviation occurs around the central frequency,

as observed in Fig. 5.7(c). Nevertheless, this deviation barely affects the device’s behavior as an

optical temporal differentiator, it just limits the duration of the pulses that can be processed (narrow

bandwidth), as numerically demonstrated in the following temporal characterization.

Figure 5.8 shows the synthesized grating apodization profiles for different chosen values of the

dispersion parameter. The dispersion parameter can be easily tuned by accordingly changing the

slope of the linear grating-period variation (for a fixed operation bandwidth). Figure 5.8 clearly

illustrates that the dispersion parameter is a fundamental design parameter which can be properly
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selected to ensure that the resulting grating apodization specifications match the fabrication con-

straints. In particular, a higher dispersion value translates into a more relaxed spatial resolution

and a lower refractive index modulation peak, but requiring a longer device.
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Figure 5.8 – First-order optical differentiator based on an FBG in transmission: Grating apodization
profiles and device lengths obtained for different values of the dispersion parameter.

The temporal characterization of the designed optical differentiator is presented in Fig. 5.9(a),

where a 1 ps-FWHM input Gaussian pulse centered at ω0 is considered. In the figure, the ideal

expected output signal and the output from an FBG with typical fabrication constraints are com-
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pared, showing an excellent match between the two curves. Besides, the accuracy and robustness of

the designed differentiator have been estimated through the cross-correlation coefficient (CC) [212].

The CC coefficient provides a precise estimate of the level of similarity of the processed waveform

with respect to that expected for an ideal processor, and it is calculated as

CC [%] =

∫+∞
−∞ êout(t) · êideal(t) · dt

√

∫+∞
−∞ ê2

out(t)dt ·
∫+∞

−∞ ê2
ideal(t)dt

× 100%, (5.16)

where êout(t) and êideal(t) represent the actual (experimentally measured) and the ideal amplitude

envelopes of the temporal output waveforms. In particular, Fig. 5.9(b) shows that the obtained

CC is higher than 90% when the input of the optical differentiator is a Gaussian pulse with a 3-

dB spectral bandwidth ranging between 6 GHz and 2.53 THz. Note that the maximum value of

bandwidth is higher than B = 2 THz, pointing out that the tails of the Gaussian-like spectrum of

the pulse being outside the lineal spectral region of the differentiator slightly affects the temporal

shape of the output pulse. This result allows us to make an estimation of the TBP of the device,

which is the product of the maximum time window of the processor and its maximum operating

bandwidth. The maximum bandwidth is related with the temporal resolution of the filter, and the

maximum time window is related to the spectral resolution. Therefore, an estimation of the TBP

can be calculated as the ratio between the maximum and the minimum temporal FWHM of an input

Gaussian pulse for which the CC of the output is higher than a predefined value (corresponding

to the ratio between the maximum and minimum 3dB-bandwidth of an input Gaussian pulse for

which the CC of the output holds higher than the predefined value). Even if the TBP is a commonly

employed metric to measure the performance of optical filters, in the literature there is no agreement

on the value of CC to be used for its calculus. In general, its choice is based on the observation of

the quality of the output pulses and it is left to the designer’s criterion. In this Thesis, we estimate

the TBP considering CC > 90%. Hence, the obtained TBP for the designed differentiator is ∼420.

Further simulations reveal that the values of CC are approximately the same for all the implemented

differentiators presented in Fig. 5.8 (variations within 0.01%). Secondly, to give numerical data

about the influence of the fabrication inaccuracies, CC has been also calculated from the spectral

response obtained after taking into account the aforementioned fabrication errors, results plotted

in red in Fig. 5.9(b). As observed in the figure, the range of input pulse-widths that gives a CC

coefficient higher than 90% is practically the same as the one without considering the anticipated

errors.
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The design of 2 THz higher order (up to N = 4) optical differentiators was also proposed based

on the same design methodology, shown in Fig. 5.10 [213]. All the design parameters were set

to similar values to those ones from the previous example. Only the specified transmission dip

varies from 20 · log (|HT (ω′ = 0)|) = -60 dB from the first order to -90 dB for the fourth order.

These values are related to the required Rmax for each order: as the differentiator order increases,

the value of |HR(ω′ = 0)| needs to be higher to guarantee quasi-zero transmission at ω′ = 0.

Numerical simulations are used to evaluate the output temporal waveforms when a Gaussian-like

850 fs-FWHM input pulse is launched at the input of the FBG. Figure 5.10(b) shows the first-to-

fourth order derivatives of the input pulse, exhibiting an excellent agreement with the expected

output waveforms from the ideal differentiators.
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5.4.2.2 Ultra-fast flat-top (rectangular) pulse shapers

A flat-top (rectangular) pulse shaper provides at its output an optical pulse with a rectangular-like

envelope. To define the transfer function of the flat-top pulse shaper, it is necessary to specify the

input pulse as well. The required spectral response is

Hft(ω
′) =

Eout(ω′)
Ein(ω′)

∝ sinc(ω′ · τF W HM/2π)
Ein(ω′)

, (5.17)

where the sinc function is defined as sin(πω′)/(πω′), and τF W HM is the FWHM duration of the

desired output flat-top pulse. Assuming a sufficiently short Gaussian input pulse, it is possible

to approximate its transfer function as Hft(ω′) ≃ sinc(ω′ · τF W HM/2π). Flat-top (rectangular)

pulses are of high interest for a wide range of applications. They are fundamental control signal in

nonlinear optical switching, most prominently in the context of temporal demultiplexing of optical

time-division multiplexing (OTDM) systems [107, 214]. The approximately constant intensity of

flat-top pulses defines a clean switching time window avoiding the problem of pulse breakup, which

is a main reason of degradation in the performance of optical temporal switches [113]. Another

application of rectangular pulses is wavelength conversion by optical time gating, where they are

employed as pump pulses. The duration of the gate opening time depends on the pump pulse width

and the wavelength tunability depends on their pump pulse power [114]. Additionally, flat-top

pulses are desired for orthogonal frequency division multiplexing (OFDM) applications, where the

system data is encoded onto subcarriers with a rectangular shaped impulse response [117].

Next, we present an experimental demonstration of a 2-ps rectangular pulse shaper based on

an FBG in transmission [157]. For fabrication of the LC-FBG, a 14.5 cm-long phase mask was

used, with a period of 1064.05 nm (i.e. grating Bragg wavelength of 1544.87 nm) and a chirp of

2.5 nm/cm. These parameters fixed the dispersion induced in the grating to D = 33.77 ps2. The

target output temporal waveform was set to be a 2-ps flat-top optical pulse, and therefore, τF W HM

= 2 ps. In this case, a raised cosine function was employed as the window function W (ω′). The

full-bandwidth of W (ω′) (measured at 1% of the maximum reflectivity) was 4.95 THz. The output

pulse spectrum was then fixed to extend over a full width of ∼5 THz, thus including a few sidelobes

of the sinc function. Rmax was set to 99.99% (transmission dip of -40 dB) to guarantee almost zero

transmission at the zeroes of the sinc-like transmissivity.
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Applying the CMT-TMM synthesis tool to the prescribed reflection spectral response HR(ω′),

the apodization and period profiles were obtained, which are shown in blue in Fig. 5.11(a) and

(b), respectively. The synthesized device has an effective length of 11 cm with a peak refractive

index of ∆nmax = 1.2 × 10−3. Due to the expected limitation in the fabrication resolution, the

apodization profile was subsequently smoothed to have a conservative spatial resolution of 1 mm.

The smoothed grating-apodization profile used for the LC-FBG fabrication, as well as the linear

period grating profile provided by the employed phase mask, are shown in red in Fig. 5.11(a) and

(b), respectively. Notice that no additional phase variations are needed on top of the linear grating

period chirp.

Based on the calculated refractive index profiles, the LC-FBG was fabricated via UV illumination

of hydrogen-loaded specialty single-mode fiber (UVS-INT from Coractive) by a frequency-doubled

argon-ion laser operating at 244 nm through the described linearly-chirped phase mask. The de-

signed refractive index apodization was implemented by dithering the phase mask during the fiber

scan in order to control the visibility of the interference pattern while keeping the average refractive

index constant. The FBG fabrication took place at Prof. Sophie LaRochelle’s laboratory, in Uni-

versity of Laval. Figures 5.11(d) and (e) show the resulting transmissivity and transmission phase

compared with the specified ideal ones.
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For full time-domain characterization, an FTSI scheme was implemented [202]. The employed

input optical source is composed by an optical parametric oscillator (OPO) followed by a 16-nm
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rectangular-shape band pass filter (BPF), so that the input signal matches the operation bandwidth

of the device. The input pulse spectrum is plotted in Fig. 5.11(c). The input and output temporal

waveforms are plotted in Fig. 5.12. The device is optimized for an input Gaussian-like pulse with

a FWHM of 400 fs, depicted in blue in Fig. 5.12. The experimental input pulse (OPO + BPF),

calculated by assuming a flat phase along the measured spectrum in 5.11(c), is shown in green. A

comparison between the measured data (red line) and the target data (black line) shows a good

agreement between the ideal and the experimentally obtained pulses, verifying the capability of the

fabricated grating for the target ultrafast pulse-shaping application. The FWHM of the measured

output pulse’s amplitude is 2.1 ps. The 5-THz operation bandwidth provides a rising/decaying

time (measured between the 10% and the 90% of the maximum amplitude) of 0.5 ps. Figure

5.12 also includes some numerical results for comparative purposes. The expected output from the

designed sinc-like spectral response is plotted with a black line when considering the ideal input

pulse; and with a purple line when considering the experimental input pulse. This analysis allows

us to conclude that the slight amplitude reduction at the center of the output flat-top waveform

is partly due to deviations in the input pulse with respect to its nominal Gaussian shape. The

measured output also suffers from this effect, but additionally, it does not fully recover the initial

amplitude at the trailing edge. This fact may be mainly attributed to numerical artifacts associated

to the FTSI phase-recovery algorithm. Deviations in the fabricated grating parameters (apodization

profile and period variation) with respect to the targeted ones may be also responsible for some of

the observed deviations in the output pulse waveform.
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Note that many other MP optical pulse shapers of practical interest, e.g., parabolic, triangular,

or Nyquist-pulse shapers, with resolutions in the sub-picosecond regime, could be implemented on

a transmissive FBG using the described design approach.

5.4.3 Spectral-domain holography for the design of non-MP optical filters on

transmissive FBGs

As explained in Section 5.4.1, if a THz-bandwidth MP optical signal processor is to be implemented

using an FBG operating in transmission, only the desired spectral magnitude response needs to be

specified to the algorithm described above (using Eq. 5.12). However, if the desired system is non-

MP, i.e., its amplitude and phase spectral responses need to be independently engineered, and its

operation can be limited over a well-defined, finite time window, it is possible to use spectral-domain

holography to implement this non-MP system using a transmissive FBG. Hence, a spectral hologram

can be designed, containing the complex information of the target spectral transfer function encoded

in amplitude-only variations. In this Section, we detail how the inherent minimum phase of a FGB’s

transmission response affects this spectral hologram.

A non-MP optical system can be fully described by its transfer function HNMP (ω′) (frequency

domain) or its impulse response ∝ ĥNMP (t) (time domain). For the design of the spectral hologram,

we consider a reference signal with complex envelope ĥRef (t) = A · δ(t− tD) (at ω0). As described

in Section 5.2, the spectral response of the spectral hologram is,

PHol(ω′) = |HNMP (ω′) + HRef (ω′)|2

= |HNMP (ω′)|2 + A2 + 2A|HNMP (ω′)| cos
(

tpω′ + 6 HNMP (ω′)
)

, (5.18)

and its temporal profile is

p̂Hol(t) = ĥNMP (t)⊗ ĥ∗
NMP (−t) + A2δ(t) + AĥNMP (t− tp) + Aĥ∗

NMP (−t− tp). (5.19)

In the spectral hologram’s design process, the first term in the RHS of Eqs. 5.18 and 5.19 can

be omitted to increase the time window of the optical processor, leading to

PHol(ω′) = A2 + AHNMP (ω′) exp
{

j tpω′
}

+ AH∗
NMP (ω′) exp

{

− j tpω′
}

. (5.20)
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p̂Hol(t) = A2δ(t) + AĥNMP (t− tp) + Aĥ∗
NMP (−t− tp). (5.21)

If A is chosen to be sufficiently high, namely A > max{|HNMP (ω′)|}, Eq. 5.20 corresponds to

a spectral response that involves amplitude-only variations. If PHol(ω′) is to be implemented using

an FBG operating in transmission, the magnitude of the MP spectral response can be HMP (ω′) =

PHol(ω′), while the phase will be given by the expression

6 {HMP (ω′)} =
ω′

π

[

P.V.

∫ ∞

−∞

ln
(

PHol(ω′)
)

Ω2 − ω′2
dΩ

]

, (5.22)

where P.V. stands for the principal value of the Cauchy integral and Ω is an integration variable

[101]. It has been observed that the minimum phase acts on the total system’s temporal impulse

response ĥMP (t) = F
−1{HMP (ω′) = |HMP (ω′)| ·exp{j 6 (HMP (ω′))}} by eliminating the component

Aĥ∗
NMP (−t−tp) in Eq. 5.21. Hence, the resulting MP system has an impulse response with complex

envelope

ĥMP (t) ∝ Aδ(t) + ĥNMP (t− tp); (5.23)

and, consequently, a transfer function,

HMP (ω′) = A + HNMP (ω′) exp
{

− j tpω′
}

. (5.24)

This result concurs with a well-known property that establishes that any causal temporal func-

tion with a dominant peak around or close to the origin will be either an MP function or close to one

[16, 215]. This property has proven useful to recover spectral phase profiles from frequency ampli-

tude interferograms, alternatively to conventional Fourier analysis-based phase recovery algorithms

[215, 216]. Indeed, the impulse response of the resulting MP system is composed of a dominant

peak close to the origin followed by a causal, non-MP temporal function ĥNMP (t).

The system response with transfer function HMP (ω′) can be then synthesized by means of an

FBG operating in transmission. Hence, HT (ω′) must approach HMP (ω′) over the device’s operation

bandwidth. To completely define HMP (ω′), the amplitudes of A and ĥNMP (t) have to be settled

considering the grating physical constraints. For clarity purposes, let us consider that ĥNMP (t) is
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normalized (max{|ĥNMP (t)| = 1}) and redefine Eq. 5.23 and consequently, Eq. 5.24, as

ĥMP (t) ∝ K1δ(t) + K2 · ĥNMP (t− tp), (5.25)

HMP (ω′) ∝ K1 + K2 ·HNMP (ω′) exp
{

− j tpω′
}

, (5.26)

where the constants K1 and K2 are the weights given to each of the two component terms, which

determine the signal energy distribution at the system output.

The fact that the system HMP (ω′) is MP can be verified by analyzing the evolution of the phasors

of HNMP (ω′) and HMP (ω′), illustrated in Fig. 5.13. The phase of HNMP (ω′) is represented by

the angle of the phasor, which is rotating in the complex plane. As this phasor completes a turn

around zero, a 2π indetermination is added to the phase of HNMP (ω′). Therefore the relationship

between the amplitude and phase spectral response of the system is not univocal. However, after

applying the transformation in Eq. 5.23 and properly choosing the values of K1 and K2, the phase

of the resulting spectral transfer function is no longer undetermined, since it is restricted to the

range from −π/2 and π/2. This translation in the complex plane leads to a spectral response with

a univocal relation between its amplitude and phase, satisfying the MP condition [216].

HNMP(ω’)

Im{HNMP(ω’)}

Re{HNMP(ω’)}

|HNMP(ω’)|

arg{HNMP(ω’)}

radious = 1

Im{HMP(ω’)}

Re{HMP(ω’)}

HNMP(ω’)

(a) (b)

HMP(ω’)

arg{HMP(ω’)}

K2
K1radious =1

Figure 5.13 – (a) Phasor diagram of HNMP (ω′); (b) Phasor diagram of HMP (ω′), illustrating how its
phase varies only between −π/2 and π/2.

In order to calculate the value of K1 and K2, two considerations must be taken into account.

On the one hand, since an FBG is a passive device, the maximum transmissivity Tmax = 1, and

consequently

|HT (ω′)| ≤
√

Tmax ⇒ K1 + K2 ≤ 1. (5.27)
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On the other hand, the maximum reflectivity Rmax achieved by the device imposes a limitation

on the minimum of |HT (ω′)|

|HT (ω′)| ≥
√

1−Rmax ⇒ K1 −K2 ≥
√

1−Rmax. (5.28)

This inequality becomes strict if Rmax = 1 to avoid singular points in HMP (ω′). As a 100%

reflectivity peak cannot be usually achieved in practice, K1 and K2 are obtained by solving the

equation system defined by Eqs. 5.27 and 5.28 with the equality signs, thus optimizing the amount

of energy that is transferred into the non-MP portion of the output signal. Nearly 50% of the output

signal energy could be transferred into the non-MP portion as the maximum reflectivity approaches

100%.

Due to the necessary MP condition of a transmissive FBG, the required spectral phase re-

sponse is intrinsically provided by the grating structure once its spectral magnitude response is

properly fixed. Thus, first the grating magnitude spectral response in transmission must be fixed,

|HMP (ω′)| → |HT (ω′)|, which in turn determines the FBG magnitude spectral response in reflec-

tion, |HR(ω′)|. As discussed above (Section 5.4.1), there is a degree of freedom in the spectral phase

in reflection, 6 {HR(ω′)}, which allows us to choose the one that simplifies the grating apodization

profile according to the desired system specifications. A quadratic phase term enables the achieve-

ment of an operation bandwidth in the THz regime. In this case, the complete reflection transfer

function to be synthesized can be expressed as in Eq. 5.12. Finally, introducing this equation into

a CMT-TMM-based FBG synthesis tool [74], the apodization profile and period for the required

grating can be obtained.

Let us consider an optical input pulse ein(t) = êin(t) · exp{j ω0t}, where êin(t) is the pulse’s

temporal complex envelope and ω0 is the optical carrier angular frequency (coincident with the

grating central Bragg frequency). If ein(t) is processed by an FBG implementing the impulse

response given in Eq. 5.25, the output eout(t) from the FBG has a complex envelope

êout(t) = êin(t)⊗ ĥMP (t) = K1 · êin(t) + K2 · êin(t)⊗ ĥNMP (t− tp)

= K1 · êin(t) + K2 · êNMP (t− tp), (5.29)



Chapter 5. Spectral-domain signal processing based on holographic concepts 105

where ⊗ refers to convolution and the properties of the Dirac delta function have been used.

The signal êout(t) is composed by two terms, the first one is a scaled version of the input signal,

and the second one êNMP (t) is proportional to the output of the non-MP processor, i.e., the desired

processed waveform. In order to be able to recover the desired processed waveform, these two

components must be properly separated in time. Therefore, the time delay tp between the delta

function and hNMP (t) in Eq. 5.25 must be suitably designed, which essentially imposes a limitation

on the input and output signal temporal duration. This design restriction will translate into a

constraint in the maximum TBP of the processor. Depending on the target application, the desired

processed waveform may need to be extracted through an additional temporal modulation process.

This situation should be identified with the output of time-domain Vander-Lugt filters (Section

5.3), i.e., the system’s output is composed of several delayed terms that can be isolated from each

other through a temporal gating process. This step may not be always required: since in this case

the input signal is transferred without distortion through the device, this interesting feature could

be eventually exploited for in-line processors requiring further use of this input signal.

5.4.4 Applications of ultra-broadband transmissive FBGs as non-MP processors

In this Section, we present the design and experimental demonstration of a THz-bandwidth non-MP

pulse processor, namely a photonic Hilbert transformer (PHT), based on an FBG in transmission.

In this case, we combine the two newly proposed methods for the design of arbitrary (non-MP)

ultra-broadband signal processors based on FBGs, presented in Sections 5.4.1 and 5.4.3.

5.4.4.1 Ultrafast photonic Hilbert transformers

A PHT is a pulse processor that provides the Hilbert transform of an incident optical pulse. The

transfer function of an arbitrary order PHT is defined as

HP HT (ω′) ∝























e−jP π/2 if ω > ω0,

0 if ω = ω0,

ejP π/2 if ω < ω0,

(5.30)

where P is the fractional order. In the particular case of P = 1, the PHT is integer. PHTs are

important components for a wide range of applications in the fields of computing and communi-
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cations, such as for single-sideband (SSB) modulation, characterization of broadband microwave

signals or image processing [217]. Moreover, as pulse shapers, PHTs are particularly useful for gen-

eration of phase-shifted monocycle or doublet pulses, of high interest for ultra-wide band (UWB)

communications [218, 219]. A monocycle pulse is characterized by two lobes with opposite phase,

and can be directly obtained from integer Hilbert transformation of a Gaussian-like input pulse.

On the other hand, a doublet pulse is the first derivative of a monocycle pulse, and can be synthe-

sized from the combination of an optical differentiator and a PHT. Besides, the order of the PHT

allows one to control the amplitude ratio between the two resulting pulse lobes, enabling further

pulse tunability. FBG-based reflective PHTs have been previously proposed and experimentally

demonstrated [78, 88, 203, 220], and in those previous cases, the maximum practically achievable

operation bandwidth has been limited to < 100 GHz.

To demonstrate the potential of the spectral-holography-based proposed method for encoding an

arbitrary phase shift in an MP spectral response, we target the realization of two PHTs; an integer

PHT, i.e., P = 1 and a fractional one, P = 0.81. In both cases we use the design strategy in Eq. 5.12

for the target FBG reflection spectral response. We impose HT (ω′) = HMP (ω′) in Eq. 5.26, with

HNMP (ω′) = HP HT (ω′). In our analysis, we consider tp ∼17 ps, D = 34.24 ps2, corresponding to a

grating chirp of C = 1.25 nm/cm, τshift is set to 0.21 ns, and W (ω′) is chosen to be a raised cosine

function with a full-width bandwidth (measured at 1% of the maximum amplitude) of 3.4 THz and

a roll-off factor of 0.03. A raised cosine is used as windowing function because it maintains the

desired spectrum over the bandwidth of interest while having smooth transition bands. We impose

different maximum reflectivities Rmax for the two devices. This is intended to evaluate the influence

of grating strength or peak reflectivity in the PHT device performance, see discussions below. Thus,

the integer PHT has K1 = 0.88 and K2 = 0.11, corresponding to a peak reflectivity Rmax = 0.4. The

fractional PHT has K1 = 0.97 and K2 = 0.02, corresponding to Rmax = 0.12. The power spectral

response (reflectivity) and group delay in reflection of the integer PHT are plotted in Fig. 5.14,

dashed black curves. The power spectral response follows the anticipated interferogram-like profile

with nearly uniform envelope, corresponding to the constant amplitude spectral response of the

all-pass PHT filter; the phase shift in the middle of the sinusoidal interferogram profile corresponds

to the target discrete shift in the phase spectral response of the PHT filter, see Eq. 5.30. This

desired spectral response can be practically achieved using two superimposed, unapodized, LC-

FBGs in a Fabry-Perot configuration [221], i.e., where the gratings are suitably spatially shifted
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with respect to each other. In particular, Table 5.1 shows the grating parameters used to achieve

the spectral–response specifications given above:

Table 5.1 – Grating’s specifications for the integer and fractional PHTs

PHT Type Length ∆nmax Shift Chirp
Integer 7 cm 2.4×10−4 1.7 mm 1.25 nm/cm

Fractional 7 cm 2.8×10−5 1.8 mm 1.25 nm/cm

In Table 5.1, ∆nmax represents the maximum peak-to-peak refractive index modulation and the

column labeled as Shift provides the spatial shift induced between the two gratings in the fabrication

process. These values of shift impose tp ∼ 16.76 ps for the integer PHT and tp ∼ 18 ps for the

fractional PHT. Besides, one of the gratings that compose the Fabry-Perot structure must have a

phase transition of π rad and 0.81π rad, respectively, at the center of its length. The comparison

between the target spectrum for the integer PHT and the reflective spectral response of the FBG-

based Fabry-Perot structure is plotted in Fig. 5.14. In this case, the expected spectral response from

the designed superimposed FBGs has been numerically obtained using a multi-layer (ML) method

based on TMM, due to the fact that CMT is not effective for the analysis of superimposed grating

structures. The interested reader can find a description of the ML-TMM algorithm in Section B.1.2

of Appendix B.
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Figure 5.14 – PHT based on an FBG in transmission: (a) Reflectivity and (b) Group delay. The
dashed black line represents the specified spectral response and the red line represents the spectral
response of an FBG-based π-phase shifted Fabry-Perot structure.

The gratings were fabricated in Prof. LaRochelle’s laboratory at University of Laval. The

fabrication was carried out in two steps via UV illumination of hydrogen-loaded specialty SMF

(UVS-INT from Coractive) by a frequency-doubled argon-ion laser operating at 244 nm. First, the

UV beam swept a linearly-chirped phase mask with the required phase shift at the middle of its



108

length. The desired refractive index modulation was implemented by controlling the exposure time

using an average power of 35 mW. Then, a second linearly-chirped phase mask without phase shift

was scanned by the UV beam with the same average power and sweep time to achieve the same

refractive index modulation as the first grating.

The transmission spectral transfer function of the fabricated gratings was measured by an optical

frequency-domain reflectometer (Optical vector analyzer (OVA) from Luna Tech.) with a spectral

resolution of 48 pm. The measured transmissive power spectra for the integer and fractional PHTs

are shown in Fig. 5.15(a) and (c), respectively. We observe a close approach to the ideally expected

interferogram-like responses, which are also shown in the figures. In particular, both the expected

and the measured spectra have a similar quasi-periodic spectral response with coincident transmis-

sion peaks over the whole operation bandwidth (3 THz). Besides, the expected phase shift in the

interferogram response is observed around the device’s central frequency (f0 = ω0/2π = 192.85

THz). The MP responses associated to each of these power spectra are plotted in Fig. 5.15(b) and

(d), after removing the linear phase term.
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Figure 5.15 – PHT based on an FBG in transmission: (a) Simulated transmissivity of the integer PHT
to be fabricated (red line) and measured transmissivity of the fabricated device (dashed blue line);
(b) Simulated minimum phase (red line) and measured phase in transmission (dashed blue line); (c)
Simulated transmissivity for the fractional (P = 0.81) PHT to be fabricated (red line) and measured
transmissivity of the fabricated device (dashed blue line); (d) Simulated minimum phase (red line)
and measured phase in transmission (dashed blue line).

Next, we carried out the full time-domain characterization of the fabricated devices by means

of an FTSI [202] scheme. The employed input optical source consists of an OPO followed by a

tunable Gaussian-like BPF. By adjusting the bandwidth of the tunable filter, pulses with different

durations/bandwidths can be applied to the PHT. Figure 5.16 (solid blue curves) provides the

temporal output profiles measured by the FTSI method for input pulse widths of 0.88 ps (1), 1.18

ps (2) and 2 ps (3) at FWHM for the cases (a) integer PHT and (b) 0.81-order PHT. The dotted-
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dashed pink lines in Fig. 5.16 are for the numerically simulated outputs from the spectrum of

the measured inputs (OPO + Gaussian-like filter) and an ideal integer PHT. As we observe from

the figure, there is a good agreement between the obtained temporal waveforms and the output

of the ideal PHTs. In the integer PHT cases, there is a pronounced tail in the leading edge of

the output pulse. Such a tail is also observed in the numerically simulated temporal output using

the measured spectral response of the fabricated FBG (results in Fig. 5.15) and an ideal Gaussian

input. As such, we attribute the observed leading-edge tails to the non-uniform, irregular envelope

of the interferogram-like pattern of the device transmissive spectral response.

On the other hand, the 0.81-order fractional PHT offers an improved performance, as observed

in its time-domain characterization results (Fig. 5.16(b)), where the leading-edge trails are much

less pronounced than for the integer PHT.
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Figure 5.16 – PHT based on an FBG in transmission: Measured Hilbert-transformed output compo-
nent of the fabricated integer (a) and fractional (b) PHTs (blue line) for the measured Gaussian-like
input pulses with a FWHM of (1) 0.88 ps; (2) 1.18 ps and (3) 2 ps. The corresponding simulated
output of an ideal integer PHT and a 0.81-order fractional PHT (dotted-dashed pink line) are also
represented for comparative purposes. The insets show the corresponding (simulated and measured)
temporal output phases. The dashed green lines show the simulated output from the fabricated FBG
(using the measured spectral responses in Fig. 5.15) assuming an ideal Gaussian input.
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To analytically evaluate the performance of the two fabricated PHT devices, we calculate the

TBP. To this purpose, the values of the maximum and minimum FWHM of the input pulse that this

device is able to process (i.e. FWHMmax and FWHMmin, respectively) with a prescribed accuracy

are obtained by calculating the CC between the temporal Hilbert transformed pulses at the output

of (i) the fabricated gratings and (ii) an ideal PHT, as a function of the temporal FWHM of an

input Gaussian pulse. In this case, the values of FWHM for what the output pulse has a CC > 90%

with respect to the ideal output are selected. The results plotted in Fig. 5.17(a) show that the

integer PHT is able to successfully process pulses with a FWHM time-width ranging between 0.18

ps and 1.42 ps, corresponding to a TBP of 7.8. The performance evaluation of the fractional device

shows a TBP ∼ 17.9 (Fig. 5.17(b)). As expected from the temporal characterization, the TBP of

the fractional PHT is notably higher than that of the integer PHT. Whereas both devices exhibit

a similar maximum operation bandwidth (∼2.5 THz), the fractional PHT allows processing longer

pulses with higher precision; we attribute this to the use of a lower grating strength (refractive index

modulation peak), which translates into a transmissivity with more uniform spectral envelope, while

also approaching more precisely the target interferogram pattern around the phase transition (at

ω0).
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Figure 5.17 – PHT based on an FBG in transmission: Cross-correlation coefficient between the output
of the measured PHT and an ideal PHT vs. the temporal FWHM (or 3dB bandwidth) of an input
Gaussian pulse; (a) integer PHT; and (b) fractional PHT. The position of the input pulses in the
temporal characterization is marked by a blue cross.

Obviously, a trade-off of this design is that a smaller grating strength translates into a lower

peak reflectivity and therefore, lower device energy efficiency. One alternative to overcome this

problem is to apply a CMT layer peeling algorithm to the specified spectral response (Eq. 5.12)
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and grow an FBG with the resulting apodization profile (as detailed in Section 5.4.3). However,

this solution may require a higher precision in the fabrication process. The values of FWHM of the

input pulses employed in the temporal characterization process are marked in the curves of Fig.

5.17 by blue crosses. Note that the input pulse in Fig. 5.16(a.3) is outside the range of operation

of the integer PHT, according to the above-defined criterion (CC > 90%).

To further evaluate the validity of the fabricated structure as a PHT, we numerically isolate

the measured Hilbert transformed pulses and calculate its Fourier transform. Figure 5.18(a) shows

the result in the case of the integer PHT when the input pulse has a FWHM of 1.18 ps. We

can observe an amplitude spectral response similar to the one of the input pulse and a π-phase

transition, as expected at the output of an integer PHT (see Eq. 5.30). Figure 5.18(b) shows the

Fourier transform of the isolated measured Hilbert transformed pulse for the case of the fractional

PHT when the input pulse has a FWHM of 2 ps, validating once again the correct functionality of

the fabricated device as a 0.81-order PHT. The ripples observed in the spectral phase in Fig. 5.14

are due to the dissimilar envelope of the interferometric-like transmissive response of the FBG. It is

worth noting that they do not affect the proper functionality of the devices as PHT, as previously

confirmed by the temporal characterization and the values of CC coefficient obtained.
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Figure 5.18 – PHT based on an FBG in transmission: Amplitude (blue line) and phase (dashed purple
line) of the spectrum of the isolated Hilbert transformed pulse at the output of the integer PHT.
Orange line shows the input pulse: (a) Integer PHT; and (b) 0.81-order fractional PHT.

5.5 Conclusions

In this Section, we have introduced the concept of spectral-domain holography, as the frequency-

domain counterpart of time-domain holography. Spectral-domain holography consists in the genera-

tion of a real-valued spectral response that contains information on the amplitude and phase profiles

of the target arbitrary (complex-valued) spectral response. As such, spectral-domain holography

proves to be an interesting technique to design optical signal processors implemented using circuits
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or components with a fundamental limitation in the functionalities (spectral responses) that can

perform (e.g., structures that can implement real-only impulse responses or minimum-phase trans-

fer functions). In particular, we have employed spectral domain holography in two different pulse

processing configurations. First, we have used this concept for the design of an arbitrary complex-

valued picosecond-resolution optical pulse shaping scheme using an in-fiber, reconfigurable setup

with identical circuitry complexity than those previously used for real-valued-only time-domain

pulse shaping, Also, spectral domain holography has been applied for the generation of arbitrary

(non-MP) optical signal processors based on FBGs operating in tranmsission. Transmissive FBGs

offer a simpler, more robust configuration that additionally enables operation bandwidths in the

THz regime (by using a design methodology also introduced in this Thesis), but they have been

typically limited to MP-only functionalities.

The use of spectral-domain holography in a TDSS configuration can be seen as the time-domain

counterpart of Vander-Lugt filters. In this Chapter, we have derived an analytic expression for

the required modulation signal, which can be directly calculated from the target impulse response,

avoiding the use of complex and time-consuming optimization algorithms [197]. To validate this

newly proposed approach, we have successfully generated (i) an asymmetrical triangular pulse with

a raising time of 10 ps and decaying time of 50 ps and a controlled quadratic phase, and (ii) a

4-symbol 16-QAM pulse code sequence in which each symbol has a FWHM of ∼6 ps.

On the other hand, we have described a general approach for designing ultra-fast (THz-bandwidth)

all-optical (all-fiber) signal processing devices based on apodized LC-FBGs operating in transmis-

sion. This approach has been successfully demonstrated through the realization of (i) two MP signal

processing functionalities, namely arbitrary-order optical differentiators and a picosecond flat-top

pulse shaper, and (ii) a non-MP processor, a PHT, where spectral-domain holography has been

employed as a key part of the design methodology. The general design approach presented in this

Chapter could be applied to a variety of optical filtering technologies with similar inherent restric-

tions to those of a transmissive FBG, possibly including thin-film optical filters, fiber/waveguide

long-period gratings, and other resonator-based filter structures [54, 222].



Chapter 6

Conclusions

6.1 Conclusions of the Thesis

In this Thesis, we have introduced two novel concepts in the frame of optical communications and

information processing systems, namely the formal time-domain and spectral-domain counterparts

of spatial-domain (classical) holography. The two concepts are aimed at improving current technolo-

gies for two key sub-systems in any optical network: the coherent transmitter/receiver and ultrafast

optical signal processing units. On the one hand, time-domain holography can be useful to sim-

plify functionalities in the transmitter and receiver of any coherent optical communication system,

not only in the generation and measurement stages, but also to potentially enable new, simpli-

fied schemes for impairment compensation in optical telecommunication links. On the other hand,

spectral-domain holographic techniques can also allow the development of new design techniques

for ultrafast temporal optical signal processors (in the sub-picosecond and femtosecond regime). In

fact, the introduction of ultra-fast communication systems based on optical signal processing is con-

sidered to be one of the most promising ways to handle the rapidly increasing global communication

traffic.

The extraordinary applicability of classical holography is due to its capacity to simultaneously

control the amplitude and phase of an arbitrary complex-envelope optical waveform by use of

simpler, more widely available intensity-only control techniques. The interferometry-based recording

and reconstruction steps of this lensless imaging system have been reviewed in Chapter 3. Gabor’s
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original apparatus has been presented, highlighting the main problem of its recording configuration,

namely the fact that the output target image appeared overlapped with other auxiliary waveforms

generated in the process. To overcome this problem, an alternative configuration has been described,

which was introduced by Leith and Upatnieks few years after Gabor’s original proposal. In this

new configuration, the light scattered from an object (information wave) and the reference wave

propagate with different angles of propagation; or equivalently, they have different carrier spatial-

frequencies. Thus, in the recording process, the different output waves can be angularly separated

just by applying a sufficiently separated carrier spatial frequencies of both incident waves. In

Chapter 3, we also reviewed the concept of Vander-Lugt filters. Vander-Lugt filters are a technology

solution to enable the implementation of complex-valued optical filters using a configuration similar

to previous Fourier-optics-based 4fl spatial optical filters, employing amplitude-only spatial filtering

masks. For this purpose, the transparency placed at the Fourier plane consists of an intensity-only

varying pattern that has been holographically recorded through the interference between the target

complex-valued transfer function and a reference signal. All the concepts reviewed in Chapter 3

constitute the basis of the original ideas introduced in this Thesis.

In Chapter 4 the concept of time-domain holography is introduced as the time-domain coun-

terpart of classical holography. The strong potential of time-domain holography is its capacity

for simultaneously controlling the complex information of a temporal electromagnetic waveform by

using components sensitive to intensity-only or phase-only variations, i.e., without requiring ad-

ditional synchronization of the amplitude and phase, or equivalently the in-phase and quadrature

components, of the original complex-envelope optical signal. The price to pay for achieving full

control of complex information signals using e.g., intensity-only sensitive devices is the fact that the

required processing bandwidth is at least two fold the bandwidth of the target complex-envelope

signal. Two practical configurations have been proposed, namely an electro-optical (EO) approach

and an all-optical approach. Both configurations have been experimentally demonstrated by imple-

menting interesting applications of time-domain holography in the frame of optical communications.

In particular, the EO approach has been employed to generate and subsequently reconstruct the

amplitude and phase temporal profiles of two user-defined complex modulation patterns, i.e., a se-

quence of arbitrarily chirped Gaussian pulses and a 3-Gbps 16-QAM modulated data pattern; using

an extremely simple setup involving intensity-only modulation of a continuous wave (CW) light

source and band-pass filtering. Also, this EO recording and generation holographic method has
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been modified to implement a simple, general technique for wavelength-preserving temporal phase

conjugation of optical waveforms. The proposed scheme significantly simplifies previous OE-EO

approaches by (i) using intensity-only photodetection and modulation components, combined with

a simple band pass filter (BPF), reducing the complexity and the cost and (ii) avoiding the detec-

tion and subsequent processing of the phase of the optical signal prior to the conjugation process,

minimizing errors and simplifying the procedure. Finally, an all-optical approach has been demon-

strated for implementing a wavelength conversion process of complex-envelope optical signals based

on nonlinear cross phase modulation (XPM). This proposed scheme allows achieving temporal con-

jugation of the original signal as well. The use of XPM is particularly interesting for wavelength

conversion schemes as it enables good conversion efficiency for a broad wavelength range, without

the need for accomplishing the stringent phase matching condition of previous four wave mixing

(FWM)-based implementations (previous XPM-based wavelength converters were limited to the

conversion of intensity-only information signals). Moreover, the obtained conversion efficiency is

symmetrical for down- and up-conversion. If the conditions for occurrence of FWM are satisfied,

the generated idlers add coherently with the results from XPM, increasing the output power at the

frequencies of interest. An additional advantage is that, compared with standard FWM-based im-

plementations, the proposed scheme relaxes the power requirements for the information signal and

the output-wavelength CW in more than one order of magnitude for a similar conversion efficiency.

The second novel concept introduced in this Thesis (Chapter 5) is spectral-domain holography,

derived as the frequency-domain counterpart of the previously presented time-domain holography

concept. Spectral-domain holography is an advantageous technique to enhance the capabilities

of current technologies for ultra-fast optical signal processing. Spectral-domain holography en-

ables the design of amplitude-only transfer functions containing the information of a second target

complex-valued transfer function. In this case, the time window of the target complex-valued func-

tionality is reduced in at least two-fold with respect to the case where a functionality defined by an

amplitude-only transfer function is targeted. This technique has been applied to the development

of time-domain Vander-Lugt filters. Similarly to the classical (spacial domain) Vander-Lugt filters,

time-domain Vander-Lugt filters are based on a time-domain spectral shaping configuration, where

the temporal modulating signal is generated holographically. This methodology has been applied

for realization of electronically reconfigurable complex-valued and asymmetric pulse shapers with

resolution in the picosecond regime, using a setup similar to the one previously employed for gen-
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eration of real-only temporal pulse shapes. In particular, the capabilities of the proposed scheme

have been successfully demonstrated by synthesizing two different temporal waveforms of practi-

cal interest, namely, an asymmetric triangular-shaped pulse with parabolic phase, and a 4-symbol

16-QAM coded sequence.

The versatility of spectral-domain holography is also applied to a substantially different technol-

ogy, namely, to the design of signal processors based on fiber Bragg gratings (FBGs). In Chapter

5, we have presented a novel, general approach for designing ultra-fast (THz-bandwidth) all-optical

(all-fiber) signal processing devices based on apodized linearly chirped (LC)-FBGs operating in

transmission. This methodology can be used, in principle, as long as the signal-processing device is

based on an MP linear optical filter. The use of an FBG in transmission translates into important

practical advantages, such as avoiding the use of additional mechanisms to retrieve the reflected

signal and the associated losses, and an improved robustness against the expected grating fabrica-

tion errors. By taking advantage of the degree of freedom in the FBG reflection spectral phase,

we have numerically demonstrated that the use of a quadratic phase in reflection (i.e. constant

group-velocity dispersion) allows one to achieve processing bandwidths easily of a few THz using

readily feasible and greatly simplified grating apodization profiles. The insertion of a quadratic

phase in reflection is actually achieved through the use of an LC-FBG with a proper linear grating-

period variation. Indeed, we have shown that the FBG dispersion (or equivalent grating-period

variation slope) is a fundamental design parameter, which must be properly chosen to ensure that

the resulting grating-apodization specifications are within the fabrication constraints. This new de-

sign approach has been successfully demonstrated through the numerical design of 2-THz arbitrary

order (up to fourth order) optical differentiators and through the experimental demonstration of a

2 ps flat-top (rectangular) pulse shaper. In spite of the fact that there are a myriad of interesting

optical processors described by an MP transfer function, the extremely restrictive MP condition

has severely limited the functionalities susceptible to be implemented using this configuration. To

overcome this limitation, we have applied spectral-domain holography to develop a new, general

approach that enables the design of non-MP linear optical pulse processors based on MP optical

filters. In this case, spectral-domain holography allows us to encode the required processor’s spec-

tral phase in amplitude variations. The proposed approach has been proven through the successful

design of a 3-THz real-time photonic Hilbert transformer (PHT) based on a transmission FBG,
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showing an unprecedented operation bandwidth for a non-MP pulse processing device implemented

in an FBG.

As a general conclusion, considering the broad range of applications of classical holography, we

can foresee a similarly vast number of interesting uses for its time/spectral-domain counterpart. Due

to the broad set of applications where this newly introduced concept can be applied (some of them

have been experimentally demonstrated in this Thesis), this project may inspire the development

of new, more efficient optical systems in the areas of communication and information processing.

Advantages of these new subsystems include (i) a significant simplification of the currently required

setups to achieve the same sort of functionalities, (ii) the possibility of developing all-optical pro-

cessors with operation speeds difficult to achieve so far through technology widely used nowadays

and (iii) the significant relaxation of practical difficulties in the device fabrication processes. All the

proposed schemes arise as stable and reliable solutions for readily practical applications and they

may be also well positioned for short time-to-market and a vast knowledge base. Overall, we ex-

pect that the research outcome of our proposed project will have an extremely important scientific,

social and economical impact in such diverse fields as communication, computing and information

processing.

6.2 Future perspectives

Next, we briefly discuss several potential lines of future research considered as of higher relevance

by the author:

1. In Chapter 4, we have proposed an implementation of time-domain holography for the gen-

eration of complex modulation formats which is based on a single Mach-Zehnder modulator

and a BPF. However, the limitation in the operation bandwidth imposed by the employed

arbitrary waveform generator (analog bandwidth of 9.6 GHz), and the wide transition band of

the employed tunable BPF (in GHz range) led to a very weak output complex-envelope signal.

In particular, the two spectral lobes of the generated temporal hologram were separated <

4.5 GHz. Thus, in order to have sufficient suppression of the spectral lobe corresponding to

the conjugated temporal component, it was necessary to attenuate part of the target spectral

lobe. As described in Chapter 4, there is an analogy between the presented configuration
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and the scheme for single sideband amplitude modulation with carrier suppression (SSB-CS).

Therefore, it should be possible to employ a setup in which the BPF is substituted by a PHT-

based configuration (as the one presented in Ref. [223]), in order to improve the performance

of the proposed scheme in terms of energy efficiency.

2. The design procedure developed for the implementation of MP optical filters based on FBGs

in transmission should enable the synthesis of a myriad of important ultra-fast linear optical

signal processing and shaping devices in compact and robust all-fiber formats. Among them,

we can mention:

(a) First and high-order all-optical integrators [90, 224–228]: they are of high interest for the

implementation of optical unit memories [229], photonic bit counters [230], or reconfig-

urable unit-step time-domain functions, e.g., flat-top pulse shapers. In the last example,

reconfigurability of the flat-top temporal width can be achieved by using two opposite

phase control pulses to be integrated [224, 227].

(b) Parabolic pulse shaping: parabolic pulses are widely employed to achieve ultra-flat self

phase modulation (SPM)-induced spectral broadening in super continuum generation

experiments [111, 117]. They are also interesting as pump signals in nonlinear signal

processing methods, such as for implementation of nonlinear pulse retiming or time-lens

processes [112, 116].

(c) Triangular pulse shaping: Triangular pulses are required for the implementation of tun-

able delay lines, time-domain add-drop multiplexing, wavelength conversion, doubling of

optical signals, time-to-frequency mapping of multiplexed signals, among other applica-

tions [109, 111].

(d) Nyquist pulse shape shaping: Nyquist pulses are of high interest for orthogonal time

division multiplexing systems [110, 231].

3. In Chapter 5, the introduced design technique for Vander-Lugt filters has been employed for

the implementation of reconfigurable optical pulse shapers. However, that approach could

be easily modified to implement other signal processing functionalities. For example, if the

spectral-domain hologram is designed so that the quadratic phase component that compen-

sates the induced dispersion is added to the term proportional to the conjugate of the target

impulse response, the overall system acts as a correlator between the input signal and the
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electrical modulating signal. Also, if the designed hologram has constant amplitude and the

odd-symmetric quadratic phase, the system would act as a spectral phase conjugator (SPC).

SPC systems are of high interest for the compensation of even and odd-order chromatic dis-

persion and several nonlinear effects, including SPM and self-steepening [187].

4. The general design approach presented in Chapter 5 for implementation of non-MP optical

signal processors based on FBG operating in transmission could be applied to a variety of

optical filtering technologies with similar inherent restrictions to those of a transmissive FBG,

possibly including thin-film optical filters, fiber/waveguide long period gratings (LPGs) in

their core-to-core configuration, and other resonator-based filter structures. In particular, it

would be of high interest the implementation of a non-MP optical processor, e.g., a PHT, in

the core of a LPG, and study if the addition of a linearly chirp would enable the achievement

of a broader operation bandwidth than the one typically achieved by non-chirped LPGs.
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Appendix A

Auxiliary mathematical
demonstrations for the analysis of
time-domain Vander-Lugt filters

This Appendix contains auxiliary mathematical derivations that complete the theoretical study
of the design of spectral holograms for their use in time-domain Vander-Lugt filters, presented in
Chapter 5. In particular, we derive the equations that model the signal at the output of the system
in Fig. 5.3. Also, we prove the need for adding an odd-symmetry auxiliary quadratic phase term
to the fundamental spectral hologram of the target transfer function.

Figure 5.3 shows the scheme for carrying out time-domain spectral shaping (TDSS). As de-
tailed in Section 5.3, the input signal is a transform-limited Gaussian pulse defined as eS(t) =
êS(t) exp{j ω0t}, where êS(t) = exp{−t2/2T 2

0 } is its complex envelope, T0 is the half width at 1/ e
maximum and ω0 is the carrier frequency. This input signal is dispersed in a medium with transfer
function

HΦ̈(ω′) = exp
{

− j
Φ̈ω′2

2

}

, (A.1)

where ω′ = ω − ω0, ω is the optical angular frequency and Φ̈ is the chromatic dispersion of the
medium. The dispersed signal is amplitude modulated by an RF signal Hhc(t), and the Fourier
transform of the signal at the output of the modulator is

EM (ω′) ∝ [ES(ω′) ·HΦ̈(ω′)]⊗ hhc(ω), (A.2)

Next, we derive the complex envelope of the signal at the output of a time-domain Vander-Lugt
system implemented using a simple spectral hologram and a prechirped spectral hologram. The
results and conclusions obtained from the following mathematical derivations have been employed
in descriptions of Chapter 5.
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A.1 Time-domain Vander-Lugt filter using a simple spectral holo-

gram

Let us first assume that the spectral hologram used as a modulating signal is defined as derived in
Section 5.1, i.e.,

Hhc(t) ∝ HF (t) exp{− j ωpt}+ H∗
F (t) exp{j ωpt}, (A.3)

where HF (t) is a temporal signal with a complex envelope proportional to the spectrum of the
impulse response of the target filter, hF (t), assuming a time-frequency proportionality factor t = Φ̈ω;
and ωp is a shift parameter employed to avoid any spectral overlapping between the two terms in
the RHS of Eq. A.3 (Eq. 5.8). The signal at the output of the modulator has a spectral response
defined as

EM (ω′) ∝
∫ ∞

−∞
hF (Ω− ωp) exp

{

− 1
2

T 2
0

(

ω′ − Ω
)2
}

exp
{

− j
Φ̈
2
(

ω′ − Ω
)2
}

dΩ

+
∫ ∞

−∞
h∗

F (−Ω− ωp) exp
{

− 1
2

T 2
0

(

ω′ − Ω
)2
}

exp
{

− j
Φ̈
2
(

ω′ − Ω
)2
}

dΩ. (A.4)

Let us call the first integral in the RHS of Eq. A.4 as I1 and the second integral as I2. Also,
we assume that the spectrum of Hhc(t) is confined to a small spectral range such that T0ωm ≪ 1,
where ωm is the maximum frequency of Hhc(t).

I1 =
∫ ∞

−∞
hF (Ω− ωp) exp

{

− 1
2

T 2
0 ω′2

}

exp
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− 1
2

T 2
0 Ω2

}

exp
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T 2
0 ω′Ω

}

· exp
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− j
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2

ω′2
}

exp
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− j
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2

Ω2
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exp
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j Φ̈ω′Ω
}

dΩ

= exp
{

− 1
2

T 2
0 ω′2

}

exp
{

− j
Φ̈
2

ω′2
}
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−∞
hF (Ω − ωp)

· exp
{

− 1
2

T 2
0 Ω2

}

exp
{

T 2
0 ω′Ω

}

exp
{

− j
Φ̈
2

Ω2
}

exp
{

j Φ̈ω′Ω
}

dΩ. (A.5)

Note that the first exponential term in the RHS of Eq. A.5 is equal to ES(ω′) and the second
exponential term is equal to HΦ̈(ω′). The maximum value that the variable Ω can take inside
the integral is ωm, as hF (Ω − ωp) is zero outside the range of frequencies for which hhc(ω) is
defined. Then, T 2

0 Ω2 ≤ (T0ωm)2 and the exponential term exp{−T 2
0 Ω2/2} ≃ 1. On the other

hand, the variable ω′ is the domain of definition of the convolution integral between a Gaussian-like
spectrum and the function hhc(ω). Observing Eq. A.5, we can conclude that the exponential terms
dependent on ω′ are defined for ω′ ≤ (2π/T0 + ωm). Therefore, T 2

0 ω′Ω ≤ T 2
0 ωm(2π/T0 + ωm)) =

2πT0ωm + (T0ωm)2 ≪ 1, and the exponential term exp{T 2
0 ω′Ω} can be also approximated as 1.

Equation A.5 can then be written as

I1 = exp
{

− T 2
0 ω′2

2

}

exp
{

− j
Φ̈
2

ω′2
}
∫ ∞

−∞
hF (Ω− ωp) exp

{

− j
Φ̈Ω2

2

}

exp
{

j Φ̈ω′Ω
}

dΩ. (A.6)
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Applying the same approximation in the integral I2, the spectrum of the modulated signal is

EM (ω′) = ES(ω′)HΦ̈(ω′)
∫ ∞

−∞

[

hF (Ω− ωp) + h∗
F (−Ω− ωp)

]

exp
{

− j
Φ̈
2

Ω2
}

exp
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j Φ̈ω′Ω
}

dΩ

= ES(ω′)HΦ̈(ω′)
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hhc(Ω) exp
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− j
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2
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exp
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j Φ̈ω′Ω
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dΩ

= ES(ω′)HΦ̈(ω′) ·
[

Hhc(ω
′)⊗ exp

{

− j
1
2

Φ̈ω′2
}]

, (A.7)

where we have considered the term exp{j Φ̈ω′Ω} as the kernel of an inverse Fourier transformation.
The variables related by this Fourier transformation are Ω↔ t = Φ̈ω′.

Next, the amplitude modulated signal propagates through a dispersion medium with transfer
function

H−Φ̈(ω′) = exp
{

j
Φ̈ω′2

2

}

. (A.8)

The resulting signal at the output of the system has a spectral response

Eout(ω′) = ES(ω′) ·
[

Hhc(ω
′)⊗ exp

{

− j
1
2

Φ̈ω′2
}]

; (A.9)

or equivalently, its temporal envelope is

êout(t) = êS(t)⊗ hhc(t) exp
{

− j
t2

2Φ̈

}

= êS(t)⊗
[

hF (t− Φ̈ωp) exp
{

− j
t2

2Φ̈

}

+ h∗
F (−t− Φ̈ωp) exp

{

− j
t2

2Φ̈

}]

. (A.10)

Hence, under the above-presented condition (T0ωm ≪ 1), the output signal envelope of a TDSS
system with a modulating signal proportional to the spectral hologram defined in Section A.3 is,
within a quadratic phase factor, proportional to the convolution between the input signal and the
target impulse response. Therefore, this system would enable the synthesis of non-symmetrical,
but intensity-only pulse shapes, due to the fact that the output phase would be distorted by the
above-mentioned quadratic phase.

A.2 Time-domain Vander-Lugt filter using a prechirped spectral
hologram

In order to cancel out the undesired quadratic phase term in the resulting waveform (Eq. A.10),
an additional quadratic phase term proportional to H−Φ̈(ω) needs to be added to the spectrum of
Hhc(t). In other words, it is necessary to prechirp the spectral hologram. The phase term added
to hhc(ω) has to be an odd function so that the modulating temporal signal is real-valued. The
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resulting prechirped spectral hologram has the following spectral response,

hhc(ω) ∝ hF (ω − ωp) exp
{

j
Φ̈ω2

2

}

+ h∗
F (−ω − ωp) exp

{

− j
Φ̈ω2

2

}

. (A.11)

Substituting Eq. A.11 into Eq. A.2, EM (ω) can be written as

EM (ω′) ∝
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(A.12)

Again, the two integral terms of Eq. A.12 are called I1 and I2, respectively. Also, it is assumed
that the spectrum of Hhc(t) satisfies that T0ωm ≪ 1, with ωm being the maximum frequency of
Hhc(t). The integral I1 can be derived as

I1 =
∫ ∞
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dΩ. (A.13)

The quadratic phase term used to prechirp the spectral hologram compensates the quadratic
phase term exp{− j Φ̈Ω2/2} inside the first integral in Eq. A.13. Hence, by employing a similar
treatment as in the previous Section, the convolution integral of Eq. A.13 can be approximated as

I1 = exp
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0 ω′2

}

exp
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}
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dΩ. (A.14)

Next, we apply the same approximation in the integral I2,

I2 =
∫ ∞
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(A.15)
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Finally, the spectrum of the signal at the output of the amplitude modulator (Eq. A.12) can be
written as

EM (ω′) ∝ exp
{

− 1
2

T 2
0 ω′2

}

exp
{

− j
Φ̈
2

ω′2
}
∫ ∞

−∞
hF (Ω− ωp) exp

{

j Φ̈ω′Ω
}

dΩ

+ exp
{

− 1
2

T 2
0 ω′2

}

exp
{

− j
Φ̈
2

ω′2
}
∫ ∞

−∞
h∗

F (−Ω− ωp) exp
{

− j Φ̈Ω2
}

exp
{

j Φ̈ω′Ω
}

dΩ.

(A.16)

This integral can be solved by considering exp{j Φ̈ω′Ω} as the kernel of an inverse Fourier
transformation, where the variables related by the Fourier transform are Ω ↔ t = Φ̈ω′. Then, we
obtain,

EM (ω′) ∝ ES(ω′)HΦ̈(ω′) ·
[

HF (ω′) exp{j Φ̈ωpω′}+ H∗
F (ω′) exp{− j Φ̈ωpω′} ⊗ exp{− j Φ̈ω′2/4}

]

.

(A.17)

The propagation of this modulated signal through a dispersion medium with transfer function
H−Φ̈(ω′) compensates the quadratic phase term HΦ̈(ω′) and the resulting signal has a temporal
complex envelope,

êout(t) ∝ êS(t)⊗ hF (t− Φ̈ωp) + êS(t)⊗
(

h∗
F (−t− Φ̈ωp) exp(− j t2/Φ̈)

)

. (A.18)

This result, shown in Chapter 5 as Eq. 5.11, demonstrates that the output of the system
is composed of two delayed, non-overlapped terms, and one of them (first term in the RHS of the
equation) is proportional to the desired temporal waveform in both amplitude and phase. Therefore,
the use of a prechirped spectral hologram in a TDSS configuration enables the synthesis of non-
symmetrical and complex-valued pulse shapes.





Appendix B

Design of arbitrary filters based on
fiber Bragg gratings

The numerous advantages of fiber Bragg gratings (FBGs) have made them a fundamental compo-
nent technology of high interest for a myriad of applications in optical communications and sensor
systems [11, 77–92]. In the linear regime, i.e., when the intensity of the propagating electromag-
netic wave is not sufficiently high to excite nonlinear effects, FBGs operate as optical band-pass
filters in reflection and, consequently, as band-stop filters in transmsission. Besides their numerous
advantages, described in Chapters 1 and 5, one of the most distinctive features of FBGs is the
extraordinary flexibility they offer to achieve almost any desired band-pass spectral filtering char-
acteristic (in amplitude or/and phase) when working in reflection. To achieve the target grating
spectral response, nearly all the grating physical parameters can be varied, e.g., the induced refrac-
tive index modulation, the length, and/or the period chirp [54]. A great deal of research has been
carried out to develop methods to predict the behavior of electromagnetic fields in periodic media.
In particular, in the case of FBGs, algorithms able to provide the reflective spectral response HR(ω)
from the grating’s refractive index profile nF G(z), also known as analysis algorithms [53, 54, 70–72],
and vice versa, i.e., algorithms that provide the required nF G(z) from a targeted HR(ω), or synthesis
algorithms [73–76], have been developed and they are widely employed nowadays for the design of
efficient optical filters based on this technology.

Among the different existing techniques to carry out the analysis and synthesis of FBGs, in this
Thesis we have devoted special attention to two of them; namely one technique based on coupled-
mode theory (CMT) [53, 54, 75], and one based on the multi-layer (ML) method [232–234]. These
two techniques (CMT and ML) have been employed in this Thesis for the design of the optical signal
processors presented in Section 5.4 of Chapter 5. Both algorithms provide numerical solutions to
perform analysis and synthesis of arbitrary FBGs in an accurate and intuitive fashion.

In this Appendix, we present a comprehensive mathematical description of the algorithms for
the analysis and synthesis of FBGs based on the CMT and the ML methods. Then, we discuss
their applicability considering the type of FBG to be examined (i.e., tapered, chirped, phase-shifted,
superimposed, etc. [54]).
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B.1 Analysis of fiber Bragg gratings

In this Section, we describe the two previously mentioned algorithms for carrying out analysis of
FBGs, namely those based on CMT and ML methods. These algorithms provide the complex
spectral response in reflection, HR(ω), and transmission, HT (ω), of a particular grating structure,
nF G(z). Two hypotheses are considered for the development of both algorithms. First, we consider
a uni-dimensional variation (along the z-axis) of the refractive index in the core of a single mode
fiber (SMF), which follows Eq. 1.9 (see also Eqs. B.3 and B.13). Secondly, it is assumed that the
electric fields propagating through the grating are ideal monochromatic plane waves [53, 54, 72, 232].

CMT provides an analytic solution for the propagation of the electromagnetic fields along a
uniform FBG, i.e., an FBG whose refractive index modulation and period are constant along the
grating’s length. In this case, the grating’s transmissive and reflective spectral responses can be
directly obtained, as explained below. If a non-uniform FBG is to be analyzed, the CMT-based
algorithm makes use of the transfer-matrix method (TMM). TMM is a powerful tool for the analysis
of periodic structures, consisting in the division of the whole structure into simpler sections that
can be defined by 2×2 transfer matrices. Then, the complete response of the system can be simply
obtained from the multiplication of all the transfer matrices. Thus, in the case of a non-uniform
FBG, the complete grating is divided into layers containing few periods, and each layer is described
by the 2×2 transfer matrix corresponding to a uniform FBG. On the other hand, the ML-based
algorithm also employs the TMM, in this case for the study of any arbitrary perturbation. The
grating structure is divided into layers shorter than the smaller period, in such a way that each layer
can be considered as a dielectric medium with constant refractive index. Then, the complete grating
response is obtained from the alternative multiplication of 2×2 transfer matrices corresponding to
media with constant refractive index and interfaces between two dielectrics with different refractive
indexes.

Once the grating’s spectral responses in reflection, HR(ω), and transmission, HT (ω), are known,
other interesting parameters can be readily obtained. These responses, usually referred as reflective
and transmissive field coefficients, respectively, are generally complex and thererefore, they can be
written as HR(ω) = |HR(ω)| exp{j φR(ω)} and HT (ω) = |HT (ω)| exp{j φT (ω)}. The reflectivity and
the transmissivity of the FBG are obtained as R(ω) = |HR(ω)|2 and T (ω) = |HT (ω)|2, respectively.
Besides, the group delays in reflection and transmission can be also obtained from the reflective and
transmissive coefficients, as

τR(ω) = −∂φR(ω)
∂ω

; (B.1)

τT (ω) = −∂φT (ω)
∂ω

. (B.2)

The length of the layers into which the grating is divided makes the ML method a general and
accurate technique that is able to analyze any arbitrary perturbation with high level of precision.
However, the required computation workload is extremely heavy for gratings longer than e.g. ∼1
cm. On the other hand, CMT cannot detect grating variations at the period level, and therefore it
is only applicable in certain specific cases. Still, CMT-based algorithm is accurate for most of the
common cases of practical interest (apodized or chirped gratings) and it is much more efficient in
terms of computation time, what make it the preferable choice whenever it can be applied.
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B.1.1 Coupled-mode theory (CMT)

Coupled-mode theory is a simple and efficient tool for obtaining quantitative information about
the spectral dependence of fiber gratings. It is a widely spread technique that relates electromag-
netic waves propagating in opposite directions along the grating structure using coupled differential
equations. The CMT has been extensively used for the analysis of periodic structures because of
its simplicity and flexibility. Here, we do not provide a derivation of the CMT from the Maxwell’s
equations, as it can be found in numerous references [53, 70–72], but we just use its results to build
the CMT-based FBG analysis algorithm.

In case the perturbation of the refractive index is defined by a uniform cosenoidal function (i.e.,
the refractive index modulation and the grating period are constant along the grating length), CMT
provides an analytic solution to model the dynamics of the electromagnetic waves propagating along
the perturbed structure. In this case, the refractive index perturbation at the core of an SMF can
be written as

nF G(z) = nav + ∆nmax · cos
{

2π

Λ

}

, (B.3)

where nav is the “dc” index change spatially averaged over a grating period, ∆nmax is the maximum
refractive index change, and Λ is the period of the grating perturbation, being all of them constant
values. This FBG is confined over a length L, i.e., nF G(z) is defined for z ∈ [0, L]. Due to the
variation of the refractive index in the medium, the light is reflected in a distributed fashion. The
relative phase of each reflected signal is determined by the wavelength of the light and the grating
period. The reflected waves along the periodic structure interfere constructively in a narrow band
around one particular wavelength, namely the Bragg wavelength λ0, which is given by the Bragg
condition

λ0 = 2navΛ. (B.4)

The Bragg condition can be obtained from Eq. 1.10, assuming β2 = −β1 and m = 1. At other
wavelengths, the multiple reflections interfere destructively and cancel each other out, and as a
result, light is transmitted through the grating. The solution of the coupled-mode equations provides
the expressions of the complex amplitudes of the waves that propagate forward and backwards on
the perturbed structure. The boundary conditions required for the solution of the equation system
are the values of the optical waves at the extremes of the grating, as shown in Fig. B.1 [53, 72].

E+(z, ω) =
exp(− j β0z)

γ cosh(γL) + j(∆β/2) sinh
(

γL
)

·
{

[

γ cosh
(

γ(L− z)
)

+ j(∆β/2) sinh
(

γ(L− z)
)

]

E+(0, ω)

−
[

j κ sinh(γz) exp
(

j(∆β/2)L
)

]

E−(L, ω)

}

, (B.5)
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E−(z, ω) =
exp(j β0z)

γ cosh(γL) + j(∆β/2) sinh
(

γL
)

·
{

[

− j κ∗ sinh
(

γ(L− z)
)

]

E+(0, ω)

−
[

γ cosh(γL) + j(∆β/2) sinh(γz)
]

exp
(

j(∆β/2)L
)

E−(L, ω)

}

, (B.6)

where ∗ stands for conjugation, the propagation constant is

β0 =
π

Λ
, (B.7)

and the parameter γ is defined as

γ2 = |κ|2 −
(

∆β

2

)2

. (B.8)

The parameter κ is the coupling coefficient of the grating, which provides the relative amount of
power coupled between two modes per unit length, and it is defined as

κ =
ω∆nmax

2c0
exp

{

j 2π

∫ z

0

( 1
Λ(z′)

− 1
Λ0

)

dz′

}

. (B.9)

On the other hand, the detuning ∆β is given by the following expression,

∆β = 2β − 2π

Λ
= 2

nav

c0
(ω − ω0), (B.10)

where ω0 = 2πc0/λ0 is the Bragg angular frequency.
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Figure B.1 – Nomenclature for the optical waveforms at the two extremes of an FBG of length L.
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From the expressions of the optical waves propagating through the grating, it is straightforward
to obtain the reflection and transmission spectral responses of the uniform FBG, which are

HR(ω) =
E−(0, ω)
E+(0, ω)

∣

∣

∣

∣

∣

E−(L,ω)=0

=
− j κ∗ sinh(γL)

γ cosh(γL) + j(∆β/2) sinh(γL)
; (B.11)

HT (ω) =
E+(L, ω)
E+(0, ω)

∣

∣

∣

∣

∣

E−(L,ω)=0

=
γ exp(− j β0L)

γ cosh(γL) + j(∆β/2) sinh(γL)
. (B.12)

This theory can be extended to allow the treatment of non-uniform gratings, i.e., gratings with
a non-uniform refractive index modulation or period. The induced refractive index of a non-uniform
FBG can be then expressed as in Eq 1.9, that is,

nF G(z) = nav + ∆n(z) · cos
{
∫ z

0

2π

Λ(z′)
dz′

}

. (B.13)

This problem does not have an analytic solution based on CMT, and therefore, it has to be
solved using numerical methods. The typically used method is based on transfer matrices (i.e.,
the TMM). The whole grating is divided into layers containing several periods, and each layer is
considered as a uniform grating, as shown in Fig. B.2. The transfer matrix of a uniform FBG of
length δli is

[

E+(zi, ω)
E−(zi, ω)

]

=

[

Mi,11 Mi,12

Mi,21 Mi,22

] [

E+(zi + δli, ω)
E−(zi + δli, ω)

]

=
[

MU,i

]

[

E+(zi + δli, ω)
E−(zi + δli, ω)

]

. (B.14)

The elements of the matrix MU,i can be obtained from the analytic expression of the waves
E+(z, ω) and E−(z, ω) (Eqs. B.5 and B.6), as

Mi,11 =
γ cosh(γδli) + j(∆β/2) sinh(γδli)

γ
exp(j β0δli) (B.15a)

Mi,12 =
j κ sinh(γδli)

γ
exp(− j β0δli) (B.15b)

Mi,21 =
j κ∗ sinh(γδli)

γ
exp(j β0δli) (B.15c)

Mi,22 =
γ cosh(γδli)− j(∆β/2) sinh(γδli)

γ
exp(− j β0δli). (B.15d)

Then, each section is described by a transfer matrix, and the total grating response is calculated
by multiplying each matrix in the proper order:

[MF BG] = [MU,1] · [MU,2] · · · [MU,i] · · · [MU,N−1] · [MU,N ], (B.16)
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where N is the number of sections and MU,i is the transfer matrix of the i−th section. The reflection
and transmission coefficients can be obtained as

HR(ω) =
E−(0, ω)
E+(0, ω)

∣

∣

∣

∣

∣

E−(L,ω)=0

=
MF BG,21

MF BG,11
, (B.17)

HT (ω) =
E+(L, ω)
E+(0, ω)

∣

∣

∣

∣

∣

E−(L,ω)=0

=
1

MF BG,11
. (B.18)
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Figure B.2 – Schematic of the division into layers of a non-uniform FBG for its analysis using CMT.
The complete grating structure is divided into layers containing few periods, and each layer is treated
as a uniform FBG. The analysis of the complete structure is done based on TMM. The propagating
waves’ dependence with the angular frequency has been omitted in the figure for simplicity.

Generally, the number of sections (N) needed for the piecewise-uniform calculation is determined
by the required accuracy. Still, N may not be made arbitrarily large, since the CMT approximations
that lead to Eqs. B.5 and B.6 are not valid when a uniform grating section is only a few grating
periods long [54]. Thus, we require δli ≫ Λmax, Λmax being the longer period in the grating
structure. This method provides accurate results for FBGs containing arbitrary apodization profile,
period profile or phase shifts. To implement the piecewise-uniform method for apodized and chirped
gratings, we simply assign constant values γ, κ and ∆β/2 to each uniform section, where these might
be the z-dependent values of these parameters evaluated at the center of each section. For phase-
shifted gratings, we insert a phase-shift matrix Mps between the factors Mi and Mi+1 in the product
in Eq. B.14 for a phase shift after the i−th section. The phase-shift matrix is of the form

[Mps] =

[

exp
(

− j φi

2

)

0
0 exp

( j φi

2

)

]

, (B.19)

where φi is the shift in the phase of the grating itself [54].

One of the main advantages of CMT combined with TMM is that it provides accurate results for
the majority of FBGs of practical interest (i.e., apodized, chirped or phase-shifted) with relatively
low computational time. However, CMT-TMM is not applicable for the analysis of special grating
structures, such as superimposed gratings [158] or gratings with non-constant nav.
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B.1.2 Multi-layer based on transfer-matrix method (ML-TMM)

The algorithm of ML-TMM represents a general and accurate model to analyze FBGs. This analysis
algorithm has been widely employed not only for the characterization of FBGs, but also thin film
filters [235] or periodic perturbations in optical waveguides [236]. It employs a sampling rate of the
refractive index modulation that is below the grating period, as shown in Fig. B.3. This sampling
rate allows analyzing FBGs with any type of nonuniformity, including a non-cosenoidal or even
non-periodic perturbation. Moreover, it enables the calculus of the wave distributions at any point
of the grating device, so it is possible to study the dynamics of operation of the FBG [232, 233].
The main drawback of ML-TMM is that, due to the high sampling rate, the required computation
workload becomes extremely heavy for gratings longer that ∼1 cm.
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Figure B.3 – Schematic for division into layers of a non-uniform FBG for its analysis using ML-TMM.
The complete grating structure is divided into layers with a length at least one order of magnitude
shorter than the minimum value of the period, and each layer is treated as medium of constant
refractive index. The analysis of the complete structure is done based on TMM. The optical waves’
dependence with the angular frequency has been omitted in the figure for simplicity.

Similarly to the previous case, we consider a unidimensional refractive index variation nF B(z)
(Eq. B.13). ML-TMM divides the complete grating into sections, but in this case the length of each
section δli is sufficiently short so that it can be considered as a medium with constant refractive
index, typically δli << Λmin, with Λmin the shorter period found in the grating. The segmented
structure can be treated as a multi-layer system composed of an alternation of two different elements:
(i) a dielectric medium of constant refractive ni index and length δli, and (ii) a interface between
two dielectric media of different refractive indexes ni and ni+1. Each of these elements can be
characterized using a 2×2 transfer matrix, and then, the transfer matrix of the complete structure
can be obtained from the multiplication of these individual matrices.

The transfer matrix that characterizes the interface between two dielectric media of different,
constant refractive index (Fig. B.4(a)) can be derived from the conditions of continuity of the
tangential components of the electric and magnetic fields in this interface [235, 237]. Assuming
normal incidence,

[

E+(z−
i , ω)

E−(z−
i , ω)

]

=
1

2ni

[

ni + ni+1 ni − ni+1

ni − ni+1 ni + ni+1

] [

E+(z+
i , ω)

E−(z+
i , ω)

]

=
[

MI,i

]

[

E+(z+
i , ω)

E−(z+
i , ω)

]

. (B.20)

Assuming the propagation of a plane wave along the z axis on a lossless medium with constant
refractive index ni and length δli (Fig. B.4(b)), the transfer matrix that characterizes this medium
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Figure B.4 – Schematic of the two elements that compose the whole grating structure for its analysis
following ML-TMM.

is
[

E+(zi, ω)
E−(zi, ω)

]

=
1

2ni

[

exp(j k0niδli) 0
0 exp(− j k0niδli)

] [

E+(zi + δli, ω)
E−(zi + δli, ω)

]

=
[

MM,i

]

[

E+(zi + δli, ω)
E−(zi + δli, ω)

]

, (B.21)

where k0 = ω/c0 is the wavenumber in vacuum.

The transfer matrix of the complete grating MF BG can be obtained as

[MF BG] = [MI,1] · [MM,1] · · · [MI,i] · [MM,i] · · · [MI,N ] · [MM,N ] · [MI,N+1]. (B.22)

The first transfer matrix MI,1 characterizes the interface between the unperturbed medium n0

and the first layer of the grating, while the last matrix MI,N+1 characterizes the interface between
the last layer of the grating and the unperturbed fiber core. Finally, the reflective and transmissive
field coefficients HR(ω) and HT (ω) can be obtained from the elements of the transfer matrix MF BG

using the Eqs. B.17 and B.18.

As introduced above, ML-TMM is a general algorithm that can be employed for the charac-
terization of any arbitrary refractive index perturbation, including those gratings profiles to which
CMT-TMM cannot be applied. Moreover, this algorithm also provides the internal electric field
distributions of an FBG versus the distance along the grating and light frequency [232, 233]. The
study of the microscopic characteristics of FBGs allows a better understanding of the macroscopic
behavior of these devices. However, due to the high number of operations that needs to be per-
formed for the characterization of an FBG (multiplication of > 20 matrices per period), the required
computation workload makes this algorithm unpractical for the analysis of relatively long FBGs.
Therefore, in this Thesis, its use has been restricted for those cases where the previous method
(CMT-TMM) cannot be used.
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B.2 Synthesis of fiber Bragg gratings

The FBG design usually starts from the specification of the required spectral transfer function
upon reflection and must produce both the device length and the required variation of the period
and amplitude of the sinusoidal perturbation of the refractive index. This problem of inferring the
grating profile from a specified spectrum is referred to as the inverse scattering or grating synthesis
problem [75].

In this Section, two techniques for synthesizing FBGs are described, namely those based on
CMT and ML methods, combined with TMM. These two methods are built following a methodology
similar to that of the corresponding analysis tool. Thus, the CMT-based synthesis tool provides
discrete values for the grating apodization and period profiles, with a sampling rate given by the
specified length of the layers in which the grating structure is to be divided. On the other hand,
the ML-based synthesis algorithm provides the total grating refractive index modulation, i.e., nF G,
due to the fact that the length of the pre-defined layers is at least one order of magnitude lower
than the period, which can be estimated from the Bragg frequency.

B.2.1 Coupled-mode theory (CMT)

This technique provides the local coupling coefficient κ(z) from the reflection coefficient HR(ω).
The obtained κ(z) encodes all the information about the refractive index modulation ∆n(z) and
the grating period Λ(z), following Eq. B.9. The advantage of the method described here is that
it utilizes the direct solution of exactly the same coupled-mode equations that are used in grating
analysis and thus has a straightforward description [74, 75].

The inverse Fourier transform of the reflective coefficient, hR(t), can be expressed as a sum over
all the possible space-time propagation paths between the (z, τ) points (0, 0) and (0, τ), where τ is
a truncated time variable. Each path contains information of the scattering events occurred in it.
The impulse response can be written as

hR(τ) = −1
2

κ

(

τc0

2nav

)

+ htr(τ), (B.23)

where htr(τ) is the impulse response at time τ corresponding to a medium which has been truncated
at z = (τc0/(2nav))−, having a coupling function κtr(z) defined by

κtr(z) =

{

κ(z) 0 ≤ z < (τc0/(2nav))

0 (τc0/(2nav)) ≤ 0
. (B.24)

Equation B.23 allows us to reconstruct the value of the coupling function κ(zi) at the space
point zi from knowledge of both the impulse response hR(τ) at τ = 2zinav/c0 and the value of
the coupling function κ(z) at previous z < zi. For the reconstruction process to be accurate, the
impulse response htr(τ) of the truncated medium must be calculated taking into account all the
multiple reflections [74].
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To implement this algorithm efficiently, the propagation problem has to be discretized. Then,
we built a layered medium that is equivalent to the grating structure within a certain degree of
approximation. This layered medium will then be described in terms of transfer matrices that
relate the counterpropagating waves E+(z, ω) and E−(z, ω) at different locations along the grating.

The solution of the propagating equation for a uniform medium of length δli and constant
coupling coefficient κ can be expressed in term of the well-known transfer matrix MU,i,
[

E−(zi + δli, ω)
E+(zi + δli, ω)

]

=

[

cosh(γ δli)− j κ
γ sinh(γ δli) κ

γ sinh(γ δli)
κ∗

γ sinh(γ δli) cosh(γ δli) + j κ
γ sinh(γ δli)

] [

E−(zi + δli, ω)
E+(zi + δli, ω)

]

=
[

MU,i

]

[

E−(z, ω)
E+(z, ω)

]

. (B.25)

Equation B.25 describes the distributed nature of the reflection from a grating that occupies
the space interval (zi, zi + δli). The use of this approximation is very advantageous in terms of
efficiency, reducing drastically the computation time with respect the method based on ML-TMM,
described later in this Appendix. Let us assume that we have already constructed the first S layers
of the grating {κ(0), ..., κ(Sδli)} and consequently, the accumulated transfer matrix M′

F BG(Sδli, ω).
The impulse response htr(τ) (Eq. B.23) corresponding to this matrix matches accurately the target
impulse response hR(τ) for the time interval [0, 2Sδli]. The steps to calculate the next coupling
coefficient κ((S+1)δli) are as follows. First, from M′

F BG(Sδli, ω), we calculate the impulse response
htr(τ) of the truncated grating [0, Sδli] at τ = 2(S + 1)δlinav/c0. Then, we compute the difference
∆hR(τ) between the target impulse response hR(τ) and the truncated impulse response htr(τ) at
τ = 2(S + 1)δlinav/c0. The next step is to calculate κ((S + 1)δli) so as to match the impulse
response hR(τ) at τ = 2(S + 1)δlinav/c0 with the desired degree of accuracy. This involves solving
the equation

∆hR

(

2(S + 1)δlinav

c0

)

=
−κ((S + 1)δli)

2
tanh(|κ((S + 1)δli)| · δli)
|κ((S + 1)δli)| · δli

·
S
∏

m=0

[cosh(|κ(mδlm)|)]−2, (B.26)

which is the discrete counterpart of Eq. B.23. Finally, we should compute the new accumulated
transfer function M′

F BG((S + 1)δi, ω) and carry out the same sequence of steps to identify the next
layer [74].

This algorithm represents an efficient layer-peeling algorithm for the design of complex fiber
gratings. As its complexity scales with the square of the number of points in the grating, it provides
enhanced performance for the design of long gratings.

B.2.2 Multi-layer based on transfer-matrix method (ML-TMM)

The synthesis method based on ML-TMM presents the advantages of generality and accuracy over
the previously described method. CMT-TMM algorithm provides the coupling coefficient κ(z)
from the grating’s reflective field coefficient HR(ω), which provides information about the grating
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apodization profile ∆n(z) and period variation Λ(z). The method presented in this Section, on the
other hand, directly provides the grating refractive index profile, nF G(z). Therefore, this method
can be applied to synthesize grating structures with local defects or discontinuities of the order of
the local period, e.g., phase shifted gratings or superimposed gratings. Also, this synthesis tool is
useful for detecting defects in a fabricated device.

ML-TMM is based on the reconstruction of the local refractive index nF B(z) and the Fourier
equivalent scattering, produced at discrete points with a spatial resolution below the local period
(δli ≪ Λ), as opposed to discrete layer peeling CMT-TMM where layers are of the order of tens
of grating periods. This minimum discretization step also allows for the synthesis of very strong
gratings since the reflection spectrum is sampled with the minimum bandwidth resolution [234].

The starting point is the sampling of the grating reflective impulse response with a rate ∆t,

hR(t) = F
−1{HR(ω)} =

∞
∑

p=0

hRS(p)δ(t − 2p∆t), (B.27)

where ∆t is chosen to be equal to the round-trip delay in a layer of length δl, which is the spatial
resolution set for the synthesis process, ∆t = navδl/c0 (see Fig. B.5(a)).
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Figure B.5 – (a) Layout of the division of the FBG in layers and the contribution to the total sampled
impulse response; (b) The calculation of the refractive index of each layer is obtained from the non-
recursive component of the impulse response in this layer. To this purpose, the total sampled impulse
response is decomposed into the recursive component and the non-recursive component, where the
total impulse response and its non-recursive component are known.

The algorithm to obtain the refractive index modulation of the FBG is described as follows
[234]. First, from the value of the first sample of the impulse response hRS(0) it is straightforward
to calculate n1 (we take n0 for the unperturbed refractive index of the waveguide, which is known
in advance):

n1 = n0

[

1− hRS(0)
1 + hRS(0)

]

. (B.28)

Observing Fig. B.5(a), we have that

hRS(1) = t01r12t10, (B.29)

where txy represents the field transmission coefficient under normal incidence for the transition
between dielectric x and dielectric y, and rxy represents the field reflection coefficient under normal
incidence for the transition between dielectric x and dielectric y. Then, the reflection coefficient r12
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can be obtained from the sampled reflective impulse response as

r12 =
hRS(1)
t01t10

=
(n0 + n1)2hRS(1)

4n0n1
. (B.30)

The value of the refractive index in the second layer n2 is calculated as

n2 = n1

[

1− r12

1 + r12

]

. (B.31)

It can be observed in Fig. B.5(b) that, starting from the third coefficient of the impulse response,
hRS(2), hRS(t) can be obtained as the sum of a recursive contribution (left part) and a non-recursive
one (right part). In particular, the non-recursive part of hRS(2) is given by

hnr
RS(2) = t01t12r23t21t10 = r23

1
∏

i=0

(

4nini+1

(ni + ni+1)2

)

, (B.32)

where all the parameters are known except for r23 which is essential to obtain n3 since

n3 = n2

[

1− r23

1 + r23

]

. (B.33)

This parameter r23 is obtained from the recursive part hr
RS(2). Assuming that the grating

perturbation is finished at the second layer, i.e., the second layer is infinitely long, and applying the
analysis techniques based on the V-I transmission matrix [238], we have

r23 =
hnr

RS(2)
∏1

i=0
4nini+1

(ni+ni+1)2

=
hRS(2) − hr

RS(2)
∏1

i=0
4nini+1

(ni+ni+1)2

. (B.34)

Once r23 is known, the value of n3 is obtained using Eq. B.33. The generalization for a time
instant 2(S − 1)∆t > 2∆t, which results on the computation of the refractive index of layer S, i.e.,
nS, is straightforward. This procedure must be repeated until the last sample of hRS(N).

B.3 Discussion on the applicability of CMT and ML techniques

and conclusions

The suitability of the two described techniques to analyze/synthesize FBGs has already been dis-
cussed in the corresponding Sections on this Appendix. Table B.1 summarizes which of these two
methods is applicable to several kinds of FBGs. In general, CMT is suitable for most FBGs of
practical interest, namely apodized, chirped or phase-shifted FBGs (or with a combination of these
features). Therefore, the higher efficiency of this method in terms of computation time makes it
the preferable technique in the cases in which it can be applied. The ML method, on the other
hand, is more precise, enabling the detection of grating defects or perturbations within the period
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regime. Moreover, it also provides the internal dynamics of the FBGs, which is useful for a better
understanding of the FBGs’ operation.

Table B.1 – Types of FBGs and suitable method to analyze/synthesize each type.

Type of FBG CMT-TMM ML-TMM
Apodized structures ✓ ✓

Chirped structures ✓ ✓

Phase-shifted structures ✓ ✓

Structures with non-constant nav(z) ✗ ✓

Superimposed structures ✗ ✓
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