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Abstract: The expansion of shrub vegetation in Arctic and sub-Arctic environments observed
in the past decades can have significant effects on northern ecosystems. There is a need for
efficient tools to monitor those changes, not only in terms of the spatial coverage of shrubs, but
also their vertical growth. The objective of the current paper is to evaluate the performance of
polarimetric C-band SAR datasets for land cover classification in sub-Arctic environments. A series
of RADARSAT-2 quad-pol images were acquired between October 2011 and April 2012. The Support
Vector Machine (SVM) classification scheme was used on three sets of features: the elements of
the polarimetric coherency matrix [T], the parameters extracted from a polarimetric decomposition
based on the eigenvalues and eigenvectors of [T] and the parameters extracted from a model-based
decomposition. Using a single image, the results show that the best classification accuracies (≈ 75%)
are obtained using the [T] matrix with the October images. When adding a second image to the
feature set, either from two different dates or two incidence angles, the classification accuracy is
improved and reaches 90.1% with two images from October 2011 and April 2012 at 27◦ incidence.
The results show that C-band polarimetric SAR imagery is an adequate tool to map shrub vegetation
in sub-Arctic environments.
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1. Introduction

The expansion of shrub vegetation in Arctic and sub-Arctic environments, or Arctic greening,
is a phenomenon that has received much attention in the past few decades [1–4]. This process is
characterized by an increase in shrub vegetation abundance [3,5,6], which generally expands at the
detriment of lichens [7,8]. While the increase in vertical and radial growth of shrub vegetation was
shown to correlate with rising summer air temperatures observed in northern environments [9,10],
multiple other mechanisms are affecting the phenomenon. For instance, snow cover protects shrubs
during the winter, while keeping soil temperatures relatively warmer during the winter, favouring
biological processes and the availability of nutrients [2,11]. Shrubs also capture wind drifted snow,
which creates a positive feedback by providing enhanced conditions for shrub growth [1,2,12].
The replacement of lichens with shrubs can have major impacts on these ecosystems, and rapid

Remote Sens. 2016, 8, 697; doi:10.3390/rs8090697 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 697 2 of 21

changes in land cover can also affect the climate through increased albedo and changes in the
output of greenhouse gases [13–15]. The monitoring of shrub vegetation is therefore important
for the understanding of the ongoing changes in northern environments. Current methods rely
either on field sampling or aerial and satellite imagery in the visible and infrared spectrum to
assess changes in shrub coverage or growth [6,8,16–20]. However, these methods have certain
limitations as the field sampling methods can be very costly and do not provide a high spatial
coverage, while satellite imagery in the visible and infrared spectrum is affected by the presence
of clouds, which can be persistent in northern regions [16,21]. Previous studies have shown that
SAR imagery can be a suitable tool to detect, quantify and map shrub vegetation, but mostly in arid
or semi-arid environments [22–25]. More recently, it has been demonstrated that C- and X-band SAR
backscattering is sensitive to shrub height in sub-Arctic environments [26]. In particular, it was shown
that C-band SAR backscattering is most sensitive to shrub height when the stands are shorter than
one meter and is most sensitive to changes in shrub coverage when it is below 20%. This indicates
that C-band SAR would be most sensitive to the early stages of shrub growth and a good tool to
study the expansion of shrub vegetation in Arctic and sub-Arctic environments. The production of
land cover classifications using satellite imagery is an effective tool to produce useful maps of the
studied environment and to facilitate the monitoring of temporal changes, especially in the complex
environments found in sub-Arctic regions [8]. To our knowledge, however, no attempt has been made
to use SAR imagery to classify and map out these types of environments. The objective of this paper
is to demonstrate the potential of C-band polarimetric SAR imagery for land cover classification of
sub-Arctic environments, in particular of the shrub vegetation cover. Polarimetric decompositions
are widely used methods in SAR polarimetry to extract information on the physical nature of natural
targets from scattered electromagnetic waves [27]. These decompositions can be used to enhance the
response of various targets of interest in order to provide a better separability of the different classes
and improve classification accuracies. As a secondary objective, two widely-used decomposition
algorithms, one based on scattering models [28] and another based on the eigenvalues and
eigenvectors of the coherency matrix [27,29], will be used as input features of the classification scheme
in order to assess their individual performance for the classification of sub-Arctic environments.

2. Methodology

2.1. Study Area

The study area is a 60-km2 region situated in the vicinity of the Inuit community of Umiujaq
(56.55°N, 76.55°W) on the eastern shore of the Hudson Bay, Nunavik (Northern Quebec, QC, Canada;
see Figure 1), it has been used in many studies and described in a prior paper by Duguay et al. [26].
It is a discontinuous permafrost zone positioned at the northern tree line, forming a transition
between the forest tundra to the south and the shrub tundra to the north. The geomorphology
of the area is characterized by a cuesta formation sloping gently eastward from Hudson Bay for
nearly 5 km, up to an altitude of 330 m, at which point it forms steep, mainly east-facing cliffs.
At the foot of these cliffs, we find Tasiapik Valley to the north and the Guillaume-Delisle Lake to
the southeast. The vegetation cover in the coastal portion of the study area is made up of a range
of tundra plant communities dominated by graminoids, forbs, prostrate dwarf shrubs, lichens and
mosses. Areas covered with erect shrubs are relatively common, mostly composed of dwarf birch
(Betula glandulosa Michx.), green alder (Alnus viridis (Chaix) DC. subsp. crispa (Ait.) Turrill) and
willow species (Salix argyrocarpa Andersson, S. glauca L. var. cordifolia (Pursh) Dorn, S. planifolia
Pursh, S. vestita Pursh). Scattered black spruce (Picea mariana (Mill.) BSP) krummholz can also be
found. Tasiapik Valley is mainly erect shrub tundra dominated by dwarf birch mixed with a few
willows (mainly Salix planifolia), Labrador tea (Rhododendron groenlandicum (Oeder) Kron and Judd)
and green alder. Prostrate dwarf shrub-lichen tundra is found on lithalsa summits and at higher
valley-side elevations. The lichen cover found in the valley is dominated by Cladonia stellaris ((Opiz)
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Pouzar & Vezda, 1971), which used to cover a greater portion of the area according to the local
population and was confirmed by Provencher-Nolet et al. [8]. Clusters of black spruce are found in
the upper part of the valley, while extended patches are present in the lowermost portion of the valley.
Small wetlands and thermokarst ponds are also scattered in the Tasiapik Valley. Some peatlands and
wetlands are also found on plateaus to the northeast of the Tasiapik Valley. Figure 1 shows a GeoEye-1
satellite image of the area, overlayed with polygons of the training and validation areas, as well as
an overview of the region. Vascular plant nomenclature follows the Database of Vascular Plants of
Canada (VASCAN) by Brouillet et al., 2010 [30].

Figure 1. The regional image tiles (left) are a courtesy of MapQuest; portions courtesy of
NASA/JPL-Caltech and the U.S. Depart. of Agriculture, Farm Service Agency. RADARSAT-2
polarimetric span image of the study area (right) acquired on 19 October 2011 overlayed with the
training/validation polygons for each class.

2.2. Satellite, GIS and In Situ Datasets

A series of RADARSAT-2 Single-Look Complex (SLC) Fine Quad-pol (FQ) scenes (HH, HV,
VH, VV polarization) were acquired over the study area between October 2011 and April 2012.
RADARSAT-2 operates at the C-band with a frequency of 5.4 GHz; the nominal resolution for the FQ
beam is 5.2 m× 7.6 m (slant range× azimuth). All of the acquisitions were made on descending orbits
with two incidence angle modes, one at low incidence with θ ≈ 27° and one at high incidence with
θ ≈ 38° (Table 1). The choices for the orbit and incidence modes were made in order to maximize the
coverage of the study area while capturing a good range of incidence angles. Unfortunately, no images
from the summer months were available for the study, so only fall and winter images were used.

A Digital Elevation Model (DEM) of the area was created by combining a high resolution
LiDAR DEM (1-meter horizontal resolution) with topographic data generated from the Shuttle Radar
Topography Mission (SRTM) to fill the areas that were not covered by the LiDAR DEM. The produced
DEM was used to perform terrain corrections on the SAR images. A high-resolution GeoEye-1
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multispectral image (1.65-m resolution), as well as a mosaic of aerial photographs (0.15-m resolution)
were used to select the training and validation areas for the classification.

Table 1. Acquisition dates and characteristics of SAR images. Date format: yy/mm/dd.

Date Sensor Polarizations Incidence Angle (θ)

2011/10/19 RADARSAT-2 quad-pol 38◦

2011/10/22 RADARSAT-2 quad-pol 27◦

2011/11/12 RADARSAT-2 quad-pol 38◦

2011/11/15 RADARSAT-2 quad-pol 27◦

2011/12/06 RADARSAT-2 quad-pol 38◦

2011/12/09 RADARSAT-2 quad-pol 27◦

2012/03/11 RADARSAT-2 quad-pol 38◦

2012/03/14 RADARSAT-2 quad-pol 27◦

2012/04/04 RADARSAT-2 quad-pol 38◦

2012/04/07 RADARSAT-2 quad-pol 27◦

In situ measurements of vegetation characteristics were collected during the summer of 2009
on a total of 238 circular plots (10 meter-diameter). Each species of shrub and tree was identified;
the percentage of the ground that they covered within the plot was assessed visually using abundance
classes (Table 2); their heights were assessed using height classes (Table 2); and up to three height
measurements were made for each species. Note that the height and percent coverage intervals of
the classes are not equally distributed. The type of soil, its moisture conditions and the topographic
position were also documented.

Table 2. Classes used for sampling vegetation height (m) and vegetation coverage (%) during
field measurements.

Classes 0 1 2 3 4 5 6 7

Height (m) 0 0–0.25 0.25–0.50 0.50–1 1–1.5 1.5–2.5 2.5–5 >5
Coverage (%) 0 0–5 5–15 15–25 25–50 50–75 75–90 90–100

2.2.1. SAR Processing

Polarimetric SAR images contain the full polarization spectrum of a scattered electromagnetic
wave through the 2 × 2 complex scattering matrix [S]. In the case of RADARSAT-2, the complex
elements of [S] are in the linear basis (H and V) and expressed as the combination of transmitted and
scattered polarization in the form SHH , SHV , SVH , SVV . Since RADARSAT-2 is a monostatic system,
reciprocity is assumed, and the cross- polarized scatterings are considered equal (SHV = SVH).
The scattering matrix is used to represent coherent targets; however, natural targets are generally
incoherent, and a statistical representation is needed in order to characterize these types of random
mediums. In this case, the second order statistics of [S] are generated by averaging over a number of
independent samples and represented with the covariance 〈[C]〉 or coherency 〈[T]〉 matrices, where
〈〉 denotes the ensemble averaging.

Averages are provided through the multi-looking process, which is described below.
The covariance matrix results from the outer product of the target vector kL, which is based on
a lexicographic reordering of [S] and is expressed as follows:

〈[C]〉 =

 〈|SHH |2〉
√

2〈SHHS∗HV〉 〈SHHS∗VV〉√
2〈SHVS∗HH〉 2〈|SHV |2〉

√
2〈SHVS∗VV〉

〈SVVS∗HH〉
√

2〈SVVS∗HV〉 〈|SVV |2〉

 (1)
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The diagonal elements correspond to the backscattering coefficients in the different polarization
channels. For natural environments, the reflection symmetry of the target is generally
assumed [27,31], which means that 〈SHHS∗HV〉 ≈ 〈SVVS∗HV〉 ≈ 0.

The coherency matrix results from the outer product of the target vector kP, which is based on a
linear combination of the Pauli matrices, and is expressed as follows:

〈[T]〉 =

 〈|SHH + SVV |2〉 〈(SHH + SVV)(SHH − SVV)
∗〉 2〈(SHH + SVV)S∗HV〉

〈(SHH − SVV)(SHH + SVV)
∗〉 〈|SHH − SVV |2〉 2〈(SHH − SVV)S∗HV〉

2〈SHV(SHH + SVV)
∗〉 2〈SHV(SHH − SVV)

∗〉 4〈|SHV |2〉

 (2)

This representation provides an interpretation that is more closely related to the physical
properties of the scattered wave. Generally speaking, T11 is linked to Bragg-type surface scattering;
T22 is linked to scattering from a dihedral; and T33 is related to volume scattering. The coherency and
covariance matrices are symmetric hermitian matrices and contain nine independent parameters.

The PolSARpro software Version 5.0 [32] was used to read the single-look complex RADARSAT-2
images and to perform the subsequent polarimetric analyses. The covariance and coherency matrices
were extracted, and a first multi-look processing was applied during the operation by averaging the
values of 2 pixels in the azimuth direction of the SAR image. In order to generate the first and second
order statistics necessary for the production of the covariance and coherency matrices, a second
multi-looking step is applied through the speckle filtering procedure. The improved Lee sigma [33]
polarimetric speckle filter was applied with a 5 × 5 window, which brings the total number of looks
to 50 before geo-corrections. As described in [34], the variance of the eigenvalues of the coherency
matrix decreases with the number of looks and tends to become relatively stable at around 50 looks,
and the mean values become relatively close to the values of true eigenvalues. A larger number
of looks brings little benefit in terms of reducing the variance and approaching the true values of
the eigenvalues and also produces a more important spatial smoothing, which could blur the edges
between classes, especially in a heterogeneous environment.

The filtered covariance images were re-projected from slant range to ground range and
orthorectified using the Alaska Satellite Facility (ASAF) MapReady software [35]. The process
simulates an SAR image using a DEM and co-registers the SAR images on the simulated images.
The pixel localization accuracy was on the order of 0.5 pixels on average (≈4–5 m). The polarimetric
parameters were then extracted from the co-registered images.

2.2.2. Polarimetric Decompositions

The scatterers represented by the diagonal elements of the coherency matrix [T] are theoretical
or pure geometrical objects and cannot adequately represent the complexity of natural targets and
their associated scattering mechanisms. Polarimetric decompositions are therefore used to extract
information on naturally occurring scattering mechanisms from fully-polarimetric images. Two types
of decompositions were considered for this study, one based on a scattering model and another based
on the eigenvalues and eigenvectors of the coherency matrix. The model-based decomposition used
is the one developed by Yamaguchi et al. [28], which decomposes the covariance matrix into four
scattering mechanisms:

Pt = Ps + Pd + Pv + Pc (3)

where Pt is the total scattering power (span), Ps is the surface scattering power generated by the
ground or water surfaces, Pd is the double-bounce scattering power generated by double reflections
of the radar signal on the ground and tree trunks or sufficiently large rock boulders, Pv is the volume
scattering power generated by the randomly-oriented branches of the vegetation canopy and Pc is
the helix scattering power, which arises when the reflection symmetry condition does not apply to a
target (〈SHHS∗HV〉 6= 0 and 〈SVVS∗HV〉 6= 0).
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The eigenvalue-based decomposition considered for this study is the one developed by Cloude
and Pottier [27,29]. This decomposition method extracts information on the nature of the scattering
mechanisms found within a pixel through the use of the eigenvalues and eigenvectors of the
coherency matrix. It introduces the concept of scattering entropy to take into account the randomness
of the scattering mechanisms found within a given target. Three main parameters can be extracted
from this analysis, namely entropy (H), anisotropy (A) and the alpha angle (α). Entropy is calculated
from the logarithmic sum of the eigenvalues:

H =
n

∑
i=1
−Pilogn(Pi) (4)

Pi =
λi

n
∑

j=1
λj

(5)

where n = 3 in the case of a monostatic system and Pi can be referred to as the pseudo-probability of
a given eigenvalue λi. Entropy can fluctuate between 0 and 1, where H = 0 represents a pure target,
which can be described in its entirety by the first eigenvalue and eigenvector, while H = 1 indicates
that all of the eigenvalues are equal and that the target generates completely random polarization.
Anisotropy is complementary to the entropy and describes the relative importance of λ2 and λ3:

A =
λ2 − λ3

λ2 + λ3
(6)

Anisotropy is useful in cases where entropy is high to determine the contribution of secondary
mechanisms. It ranges from 0–1, where A = 0 indicates that both λ2 and λ3 have the same value,
while A = 1 indicates that there are only two scattering mechanisms contributing to the signal and
that all of the information is contained in the first and second eigenvalues.

The alpha angle (α) is an element of the eigenvectors of [T], which identifies the nature of the
scattering mechanism. The mean of the α angles from each eigenvector is used to estimate the
dominant scattering mechanisms through the relation:

α = P1α1 + P2α2 + P3α3 (7)

the value of α ranges between 0◦ and 90◦, where α = 0◦ represents scattering from a Bragg-type
surface; α = 90◦ represents double-bounce scattering, and when α = 45◦, it is considered to be
volume scattering from a cloud of randomly-oriented dipoles.

2.3. Classification

For the purpose of the classification, nine (9) different types of environments were identified.
These environments are typically found in sub-Arctic areas and were chosen mainly by considering
the scale and resolution of the images, as well as the inherent capabilities of radar systems. The final
classes were inspired by the Earth Observation for Sustainable Development of Forests (EOSD)
land cover classification legend [36] with some adaptations (Table 3). An example for each class
is demonstrated through aerial photographs in Figure 2. The main differences between the EOSD
legend and the classes used for this study are found within the shrub- sparse and wetland-low
vegetation classes. The first represents a land covered with a mixture of lichens and herbs with the
presence of a sparse shrub cover regardless of their height, which would be a combination of the herbs
and bryoids classes from EOSD. The wetland-low vegetation class is mostly composed of peatlands
with some herb and prostrate shrubs, which did not fit with the definition of any of the EOSD classes.
Those types of environments are similar to the shrub-sparse class in terms of the physical structure
of the vegetation, but they differ in the hydrological regime, which highly affects SAR backscattering.
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The creation of this class was therefore necessary to distinguish it from the shrub-sparse during
the classification process, since the SAR signature should be different between the two due to the
differences of the dielectric properties of the ground.

Table 3. Definition of the classes used, adapted from the Earth Observation for Sustainable
Development of Forests (EOSD) land cover classification legend. The symbol for each class used in
this paper, the number of training polygons used for the classifier and the total area of these polygons
(in m2) are also presented.

Class Symbol
Number of

Training
Polygons

Total Area of
Training

Polygons (m2)
Description

Water W 8 926,900
Lakes, rivers, ponds larger than

3 × 3 pixels (27 × 27 m)

Rock/Rubble R 8 317,900 Exposed bedrock, block field or rubble

Exposed Land EL 36 204,800 Exposed soil, mostly sand

Shrub-Tall ST 14 216,800

Covered with at least 50% shrub;
average shrub height greater than

or equal to 1 m.

Shrub-Low SL 33 194,500 Covered with at least 50% shrub;
average shrub height less than 1 m.

Shrub-Sparse SS 16 248,800

Covered with less than 50% shrub,
regardless of shrub height; lichen
and herbaceous vegetation cover

at least 50% of the ground.

Coniferous-Open CO 9 409,000
25%–50% crown closure;

coniferous trees make up 75%
or more of the stands.

Wetland-Shrub WS 31 230,000

Land with a water table near,
at or above the soil surface for

enough time to promote wetland
or aquatic processes,

the vegetation is composed in the
majority of low or tall shrubs.
This can also be composed of

smallponds(less than 3 × 3 pixels)
surrounded by shrubs.

Wetland-Low
vegetation WL 36 210,100

Land with a water table near,
at or above the soil surface for

enough time to promote wetland
or aquatic processes;

the vegetation is composed in the
majority of mosses, herbs and

some prostrate shrub.
This is generally composed of

peatlands with
small ponds (less than 3 × 3 pixels).
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Figure 2. Aerial photographs acquired in the summer of 2010 of some of the training areas for the nine
land cover classes: (a) water; (b) rock/rubble; (c) exposed land; (d) shrub-tall; (e) shrub-low; (f) sparse
shrubs; (g) coniferous-sparse; (h) wetland-shrub; (i) wetland-low vegetation.

The Support Vector Machine (SVM) method is a widely-used algorithm for pattern recognition
and classification [37] and has demonstrated its capabilities for the classification of remote sensing
imagery in a variety of applications [38–40]. The basic principle behind the SVM classifier is to find
an optimal separating hyperplane that will divide the training data points from two distinct classes.
When the elements are not linearly separable, a kernel function is applied to the datasets, which maps
them to a higher dimensional space in order to find a linear separating hyperplane in this higher
dimensional space. The original SVM algorithm was designed for binary classifications; to apply the
method to a multi-class case, some adaptations were made through various techniques, two of the
most common being one-versus-all or one-versus-one algorithms.

SAR datasets generally have high variations due to speckle or to different types of scattering
mechanisms, so the ability of SVM classifications to delimit non-linearly separable classes is well
adapted for the classification of SAR data [41]. The SVM method is also a non-parametric approach,
which does not rely on the assumption that the dataset follows a specific statistical distribution; this
makes it well adapted to polarimetric SAR data, which can have different distributions depending
on the studied target and the polarimetric parameter [42]. It has demonstrated its potential for land
cover classification using SAR imagery [41,43–45] and has been used for various types of applications,
such as the classification of rice crops [46], for the delimitation and mapping of snow and sea
ice [47–49], as well as forest vegetation classification [43,50,51].

The choice of features for the classification is one of the most important parts of the methodology
in order to provide the best separability between classes and yield higher classification accuracies.
The advantage of having fully- polarimetric images lies in the possibility to retrieve information from
the polarization state of the electromagnetic wave that will provide information that is well adapted
to the studied target. However, it might be difficult to choose the right parameters for a specific
application. This study will look at three different sets of parameters to compare the efficiency for
the distinction and classification of different types of land covers found in sub-Arctic environments.
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The first feature set is composed of the full coherency matrix (all 9 elements of the [T] matrix);
the second feature set is composed of the scattering powers from the model-based decomposition;
and the third feature set is composed of the parameters from the eigenvalue-based decomposition.

Combining multiple images with sufficient differences in acquisition parameters can also
provide further separability between classes and improve classification accuracy. For the current
study, two distinct incidence angles, as well as the different acquisition dates spanning two seasons
were expected to provide sufficient variability in the acquisition conditions to enhance the class
separability. Incidence angle has a significant effect on SAR backscattering and affects differently the
various scattering mechanisms. Lower incidence angles generally produce stronger backscattering,
regardless of the scattering mechanism considered. However, surface scattering mechanisms tend
to show stronger responses at low incidence angles relative to volume scattering from the
vegetation [52]. On the other hand, the relative importance of volume scattering from vegetation
compared to surface scattering from the ground generally increases at higher incidence angles [52].
By combining two images with two sufficiently different incidence angles and acquired at a short time
interval in order to keep sufficiently similar ground conditions, it would be possible to have a better
separability between classes that are dominated by surface scattering (e.g., water, exposed land) and
classes dominated by volume scattering (e.g., shrub-tall, wetland-shrub).

Similarly, by combining images acquired at different dates, in particular from different seasons,
it is possible to enhance the separability between classes and to provide better classification
accuracies [53]. For the studied environment, some classes will react differently to changes in
temperatures during the transition from fall to winter. For example, the rock/rubble class will have
very little variations in dielectric properties from fall to winter, while exposed land will experience a
drop in its dielectric constant as the ground water freezes. Classes with shrub coverage tend to retain
more snow, as demonstrated in [1,2,12], which causes ground temperatures to be warmer during the
winter, enabling a better differentiation from classes with little or no shrub coverage. The volume
scattering component from the vegetation is also affected by snow cover, as snow tends to attenuate
the scattering from the vegetation due to the lower dielectric contrast between the shrub branches
and the snow [26].

The Orfeo Toolbox [54] tools were used to perform the SVM classifications, which uses the
LIBSVM [55] library as a back end for the SVM learning tools. The kernel function used for
the classification was the radial basis function, as it proved to be the most reliable for the current
application compared to the linear, polynomial and sigmoid kernel functions. For the multi-class
algorithm, the one-versus-one method was used; the cost parameter C and the γ kernel parameter
were optimized using cross-validation to provide the best possible classification accuracy; and the
probabilities for each classes were estimated [56] to produce a confidence map of the classification.
The training and validation pixels were sampled randomly within the training polygons (Table 3)
with half of the pixels assigned to training and half to validation. The classes with smaller total
training areas were used to limit the number of samples selected in the classes with larger training
areas, and the number of training pixels per class ranged between 1165 pixels and 1240 pixels.

3. Results

3.1. Classification with a Single Image

The first series of classifications was performed on the three sets of polarimetric parameters
extracted from each SAR acquisition listed in Table 1. The accuracies and kappa coefficients (κ)
were calculated for each classification (Table 4). The highest overall classification accuracies were
generally obtained using the full coherency matrix (T), with the best accuracy achieved with the 22
October 2011 image at 27◦ incidence. The classification accuracies achieved with decompositions
are generally 5–15 percentage points lower than with [T], and there is little difference between the
two types of decomposition.
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Table 4. Classification accuracies for each SAR image with each feature set: the full [T] matrix, the
model-based decomposition scattering powers and the eigenvalue-based parameters. Date format:
yy/mm/dd.

[T] Matrix Model-Based Eigenvalue-Based

Date Incidence
Angle Accuracy κ Accuracy κ Accuracy κ

2011/10/19 38◦ 74.9% 0.72 66.8% 0.63 65.1% 0.61
2011/10/22 27◦ 74.9% 0.72 67.2% 0.63 66.9% 0.63
2011/11/12 38◦ 70.0% 0.66 63.9% 0.59 62.3% 0.58
2011/11/15 27◦ 66.9% 0.63 58.2% 0.53 56.7% 0.51
2011/12/06 38◦ 64.4% 0.60 56.8% 0.51 54.4% 0.49
2011/12/09 27◦ 65.9% 0.62 55.9% 0.50 55.4% 0.50
2012/03/11 38◦ 58.4% 0.53 44.3% 0.37 49.0% 0.43
2012/03/14 27◦ 54.6% 0.49 43.1% 0.36 44.7% 0.38
2012/04/04 38◦ 60.7% 0.56 46.5% 0.40 50.0% 0.44
2012/04/07 27◦ 58.9% 0.54 45.6% 0.39 46.2% 0.39

Looking at the producer’s and user’s accuracies from the classifications generated with each
feature set with the 22 October 2011 image at 27◦ (Table 5), as well as the confusion matrix for the
classification created with the [T] matrix (Table 6), we can see that the class with the lowest accuracy
is the wetland-shrub class with significantly more omission errors than commission errors. Most of
the confusion happens with the classes that have significant amounts of double bounce, such as the
coniferous-open, the shrub-tall and, to a lesser extent, the shrub-low classes.

Table 5. Producer’s and user’s accuracies for each class from the classifications generated using
the image from 22 October 2011 at 27◦ for each feature set: the full [T] matrix, the model-based
decomposition scattering powers and the eigenvalue-based parameters.

[T] Matrix Model-Based Eigenvalue-Based

Class Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Water 98.7% 95.8% 99.1% 94.9% 75.6% 80.3%
Rock/Rubble 79.4% 75.7% 72.8% 71.7% 25.9% 41.3%
Exposed Land 81.2% 86.8% 77.4% 89.7% 60.4% 59.2%
Shrub-Tall 77.2% 69.3% 70.2% 57.0% 53.9% 48.3%
Shrub-Low 60.4% 68.2% 52.7% 49.9% 45.3% 41.8%
Shrub-Sparse 80.0% 81.4% 75.6% 79.0% 69.2% 53.9%
Coniferous-Open 70.1% 62.2% 61.9% 52.4% 66.7% 55.8%
Wetland-Shrub 47.6% 58.7% 19.8% 38.5% 25.2% 38.4%
Wetland-Low Vegetation 79.7% 75.5% 75.4% 67.1% 66.8% 62.6%

Table 6. Confusion matrix for the classification using the image from 22 October 2011 at 27◦. The
classes are identified as: W, Water; R, Rock/Rubble; EL, Exposed Land; ST, Shrub-Tall; SL, Shrub-Low;
SS, Shrub-Sparse; CO, Coniferous-Open; WS, Wetland-Shrub; WL, Wetland-Low vegetation.

aaaaaaaaa
Reference

Predicted
W R EL ST SL SS CO WS WL Total

W 1163 0 13 0 0 1 0 0 1 1178
R 2 955 89 5 3 34 39 6 70 1203
EL 49 93 967 1 4 71 0 1 5 1191
ST 0 0 0 929 68 0 88 118 0 1203
SL 0 7 2 118 711 28 130 93 88 1177
SS 0 78 42 1 28 949 1 0 87 1186
CO 0 24 0 92 59 1 860 163 28 1227
WS 0 13 0 194 121 1 261 562 29 1181
WL 0 91 1 1 49 81 4 14 947 1188
Total 1214 1261 1114 1341 1043 1166 1383 957 1255 10,734
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3.2. Classification with Multiple Images

The addition of an image from a different date or with a different incidence angle acquired
at close dates significantly increases the overall accuracy. The results for the classifications with
two images at different incidence angles are detailed in Table 7, and results for the classifications
with two images at different dates are detailed in Table 8. The accuracies presented only include
the classifications using the full coherency matrix ([T]) images; classifications using multiple images
from the model-based decomposition were tested, but the accuracies were lower. The best results
for each type of combination (multi-angle and mutlti-date) were obtained by combining two Ocotber
images for the multi-angle case and by combining an image from October and and image from April
at 27◦ incidence for the multi-date case. The producer and user accuracies for each class from these
two classifications are shown in Table 9.

Table 7. Classification accuracies for pairs of images from two different r incidence angles with the
full [T] matrix. Date format: yy/mm/dd.

Dates Incidence
Angles Accuracy κ

2011/10/19 + 2011/10/22 27◦ + 38◦ 89.0% 0.88
2011/11/12 + 2011/11/15 27◦ + 38◦ 85.8% 0.84
2011/12/06 + 2011/12/09 27◦ + 38◦ 80.2% 0.78
2012/03/11 + 2012/03/14 27◦ + 38◦ 74.8% 0.72
2012/04/04 + 2012/04/07 27◦ + 38◦ 78.1% 0.75

Table 8. Classification accuracies for pairs of images from two different dates using the full [T] matrix.
Only the year and month of the image acquisitions are displayed to simplify the table. Date format:
yy/mm.

θ = 27◦ θ = 38◦

First Date Second Date Accuracy κ Accuracy κ

2011/10 2011/11 89.4% 0.88 87.0% 0.85
2011/10 2011/12 88.2% 0.87 86.6% 0.85
2011/10 2012/03 88.4% 0.87 87.3% 0.86
2011/10 2012/04 90.1% 0.89 88.2% 0.87
2011/11 2011/12 86.9% 0.85 85.0% 0.83
2011/11 2012/03 84.4% 0.82 85.8% 0.84
2011/11 2012/04 84.7% 0.83 86.7% 0.85
2011/12 2012/03 84.3% 0.82 84.0% 0.82
2011/12 2012/04 86.3% 0.85 83.7% 0.82
2012/03 2012/04 79.2% 0.77 79.9% 0.77

The best results with two images at different incidence angles were obtained with the images
acquired in October 2011, with an overall accuracy of 89%. The accuracy decreases during the winter
when the ground and vegetation are frozen and the presence of snow within the vegetation reduces
the sensitivity of the SAR signal to variations in vegetation cover [26].

The confusion matrix of the classification using the two images from October 2011 is displayed
in Table 10, where it can be seen that the classes with the lower accuracies are those containing taller
and denser vegetation cover: the shrub-tall and wetland-shrub classes. The errors found within these
two classes are generally due to confusions with other shrub classes. The wetland-shrub class has
more omission errors than commission errors, while the opposite is true for the shrub-tall class, and
the main reason stems from the confusion between the two classes.
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Table 9. Producer and user accuracies for each class from two classifications generated using dual
images that had the best κ index: the combination of the October images with two different incidence
angles; the combination of the October and April images at 27◦ incidence.

Multi-Angle Multi-Date

Class Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Water 99.7% 99.5% 98.4% 97.6%
Rock/Rubble 90.8% 88.7% 87.5% 89.0%
Exposed Land 90.4% 95.0% 85.2% 91.4%
Shrub-Tall 90.9% 82.1% 93.4% 85.0%
Shrub-Low 82.7% 88.2% 86.1% 89.4%
Shrub-Sparse 92.2% 90.9% 93.8% 92.1%
Coniferous-Open 87.7% 89.8% 90.4% 88.2%
Wetland-Shrub 75.7% 80.0% 82.0% 86.1%
Wetland-Low Vegetation 90.9% 87.6% 93.6% 92.3%

Table 10. Confusion matrix for the classification using the combined images of 20 October 2011 at 27◦

and 19 October 2011 at 38◦. The classes are identified as: W, Water; R, Rock/Rubble; EL, Exposed
Land; ST, Shrub-Tall; SL, Shrub-Low; SS, Shrub-Sparse; CO, Coniferous-Open; WS, Wetland-Shrub;
WL, Wetland-Low vegetation.

aaaaaaaaa
Reference

Predicted
W R EL ST SL SS CO WS WL Total

W 1175 0 3 0 0 0 0 0 0 1178
R 1 1080 39 17 1 17 4 1 30 1190
EL 5 64 1072 1 1 32 0 1 10 1186
ST 0 0 0 1093 32 0 19 59 0 1203
SL 0 1 1 49 968 22 24 66 40 1171
SS 0 26 10 0 11 1099 1 1 44 1192
CO 0 1 0 48 14 0 1081 88 0 1232
WS 0 0 0 122 61 0 74 887 28 1172
WL 0 45 4 2 10 39 1 6 1074 1181
Total 1181 1217 1129 1332 1098 1209 1204 1109 1226 10,705

The use of two images from different months acquired at the same incidence angle provided
similar results as the use of twin incidence angles in terms of overall accuracy. The best result
is obtained when using an image from October 2011 combined with an image from April 2012 at
θ = 27◦, but there is very little difference in the accuracies between the classifications using the
October 2011 image. The accuracies steadily decrease when using the combination of images acquired
in late fall and during the winter. The classifications using images at higher incidence angles (θ = 38◦)
generally result in slightly lower accuracies than those using images at a lower incidence angle. The
confusion matrix for the classification using images from 22 October 2011 and 7 April 2012 (θ = 27◦)
is detailed in Table 11. Comparing to the confusion matrix from the classification using two images at
different incidence angles (Table 10), it is possible to see an improvement in the classification accuracy
of the wetland classes.

A map of a classification produced with the combination providing the best accuracy, using the
22 October and 07 April images at θ = 27◦, is presented in Figure 3. Figure 3b shows an aerial
photograph of a subset area in the Tasiapik valley where a good variety of environment types can be
found. The lighter areas are representative of the shrub-sparse, class which is dominated by a lichen
cover. These areas are surrounded by relatively short shrubs representative of the shrub-low class, as
well as some small ponds in the northwest and southeast of the area, which are generally surrounded
by shrubs and are representative of the wetland-shrub class. The area in darker green in the north of
the image is representative of the shrub-tall class. Figure 3d is the result of the classification of this
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area, and Figure 3e represents the confidence map overlayed on the classification where the darker
areas are an indication of the lower confidence in the classification results.

Table 11. Confusion matrix for the classification using the combined images of October 2011 and
April 2012 at 27◦. The classes are identified as: W, Water; R, Rock/Rubble; EL, Exposed Land;
ST, Shrub-Tall; SL, Shrub-Low; SS, Shrub-Sparse; CO, Coniferous-Open; WS, Wetland-Shrub; WL,
Wetland-Low vegetation.

aaaaaaaaa
Reference

Predicted
W R EL ST SL SS CO WS WL Total

W 1162 0 14 4 0 1 0 0 0 1181
R 0 1047 63 34 7 9 6 3 28 1197
EL 28 80 1007 7 5 47 0 2 6 1182
ST 0 1 0 1127 18 0 19 41 0 1206
SL 0 3 0 41 1001 9 38 55 15 1162
SS 0 8 11 0 9 1112 3 3 39 1185
CO 0 5 0 39 20 5 1111 48 1 1229
WS 0 8 1 74 52 0 75 978 4 1192
WL 0 25 6 0 8 24 7 6 1115 1191

Total 1190 1177 1102 1326 1120 1207 1259 1136 1208 10,725

Figure 3. Example of a classified image using the [T] matrix from two images at θ = 27◦, one image
from 22 October 2011 and the other from 7 April 2012. The image in (a) is a GeoEye-1 satellite image
from 24 September 2009; the image in (b) is an aerial photograph from 12 august 2010 of a smaller area
in the Tasiapik valley representing a heterogeneous environment typically found in the area; the image
in (c) represents a classification result of the region, covering the same extent as image (a); image (d) is
the classified image from the same sub-area as image (b) and the image in (e) is the classified image
overlayed with the confidence map where the darker areas are indicative of a lower confidence in the
classification results.
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4. Discussion

4.1. Classification with a Single Image

Overall, the classifications using the elements of the [T] matrix provide better results than the
polarimetric decompositions. While polarimetric decompositions are generally used to emphasize
or better represent the scattering mechanisms found in natural environments, they are general
models that may not apply to the specific classes used for this study. These findings are consistent
with the conclusions from [43] where they considered that the coherency matrix is optimal for
classification purposes using the SVM algorithm, as the addition of other polarimetric parameters
did not provide significant improvements. The findings in [53] also show that combining all of the
parameters from the various polarimetric decompositions adds little benefit to the overall accuracy
of a classification using the random forest algorithm. The [T] matrix contains the full polarimetric
information enclosed within the signal, so it seems that even if the decompositions emphasize the
main scattering mechanisms, the SVM scheme is able to better pick out small differences in the
signal that characterizes the different classes. For example, the double-bounce scattering mechanism
from the model-based decomposition shows little differentiation between classes compared to the T22

element from the coherency matrix, which is generally associated with the double-bounce mechanism
(Figure 4). The violin plots introduced in Figure 4 illustrate the distribution of the T22 and Pd values
found within each class. Since SVM classifications do not assume any statistical distribution about
the input data or the different classes, they are well suited for extracting the variations of the signal
within the [T] matrix characterizing each class. However, the classes with the lowest user’s and
producer’s accuracies are the wetland-shrub, shrub-low, coniferous-open and shrub-tall, which have
significant overlap in double-bounce scattering, as seen in Figure 4. These classes also display similar
distributions for the T33 element (Figure 5).
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Figure 4. Violin plots of the values of the T22 element from the coherency matrix and the
double-bounce component of the model-based decomposition from the 22 October image (θ = 27◦)
extracted from the training areas of each class.
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Figure 5. Violin plots of the values of the T33 element from the coherency matrix and the volume
component of the model-based decomposition from the 22 October image (θ = 27◦) extracted from
the training areas of each class.

4.2. Classification with Multiple Images

The use of two incidence angles with a sufficient difference between them produced distinct
responses from the surface scattering from the underlying ground, as well as the volume scattering
component of the shrub vegetation, which improves the separability of these classes and the
classification accuracy as a consequence. As an example, the values of the T11 parameter, which is
related to surface scattering, exhibits different responses for certain classes during the fall (October
2011) depending on the incidence angle used (Figure 6). It can be seen that the classes dominated
by surface scattering, such as rock/rubble, exposed land and wetland-low vegetation display greater
differences in scattered power between each angle compared to other classes. It should be noted
however that the difference in scattering within the water class is not solely due to the difference in
incidence angles, but rather to differences in wind conditions between the two dates. The stronger
winds on 19 October produced more wavelets, which increased the surface scattering.

The changes in the dielectric properties of the different types of soil and the presence of snow
accumulations in areas with denser shrub vegetation during the winter [26] help the classification
algorithm with separating the classes. The increase in classification accuracy when combining two
images acquired at different dates and the fact that the best results are obtained when combining
two images from different seasons are consistent with the results from [53]. Again, looking at the
variations of the T11 element of the coherency matrix within individual classes, but this time for each
acquisition date at θ = 27◦ (Figure 7), it can be observed that the response varies from one class to
the other. It can be observed that shrub classes display a steady increase in T11 power, which can
be mostly associated with surface scattering, and is correlated with a decrease in the sensitivity of
the SAR signal to the volume scattering of shrub vegetation during the winter [26]. The wetland
classes also display some variations, but to a lesser degree, and there are even less variations in
classes dominated by ground scattering, such as rock/rubble and exposed land. The strong increase
in scattering from the water class is due to the formation of ice, which increases the T11 power, as well
as the span of the SAR signal as a whole.

Furthermore, the improvement in the classification accuracy of the wetland classes compared to
the multi-angle classification can be explained by the significant changes in surface scattering between



Remote Sens. 2016, 8, 697 16 of 21

October and April due to the freezing of the water=saturated ground and shallow ponds. There is
also a slight increase in the classification accuracy of the shrub classes due in part to the decrease
of confusion with the wetland classes. The exposed land and water classes, which are dominated
by surface scattering, have slightly lower accuracy when compared to the classification using two
incidence angles, but the differences are very minor.

When looking at the details of the classification map in Figure 3, the first thing that can be
observed is the high spatial variability of the environments found in the sub-area, which is reflected
in the confidence map. The wetland-shrub class has the lowest accuracy, and it can be seen that it
incurs commission errors, classifying areas that are not wetlands as wetlands, as well as omission
errors, areas that should be classified as wetlands, but are not. Even with these types of errors, the
confidence remains relatively high in areas where these errors occur, such as the northern part of the
area where a few ponds and their surroundings are classified as rock/rubble. This could be due to
the fact that both classes are predominantly surface scatterers (water surface and rock surface) with
relatively low surface roughness. There is however one pond in the western part of the image that
is classified as a combination of many classes, but this confusion is reflected in the confidence map,
which is very dark in this area, meaning that there is very little confidence in the classified pixels. This
would suggest that this specific environment has a polarimetric signature that could be associated
with many classes and is probably situated near the hyperplane separating those classes in the
SVM algorithm.
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Figure 6. Violin plots of the values of T11 extracted from the training areas of each class for
two different incidence angles. The data on the left are from the image acquired on 22 October 2011 at
θ = 27◦, and the data on the right are from the image acquired on 19 October 2011 at θ = 38◦.

Many areas were also classified as coniferous-open, but there was no black spruce in the area.
This is consistent with the results displayed in the confusion matrix (Table 11), which shows that the
class is the third worst class in terms of commission errors, after the wetland-shrub and the shrub-tall
classes. The coniferous-open generates volume scattering from the canopy of the black spruce trees,
but the fact that it is a sparse cover means that there is a significant amount of surface scattering
occurring, so it is normal to see some confusion with wetland-shrub, which can generate a similar
response, but also with the shrub-low and shrub-tall classes, which also have a significant amount of
surface scattering coming from the ground underneath the shrubs. However, all of the images used
to produce the classifications where acquired during the fall and the winter seasons, so it would be
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interesting to see the results with images acquired during the summer when the shrubs still have their
leaves. This would probably affect the penetration of the SAR signal through the canopy and change
the contribution of the surface scattering in the shrub classes.
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Figure 7. Violin plots of the values of T11 extracted from the training areas of each class for each SAR
acquisition date at θ = 27◦.

The results are also consistent with our previous study [26], which concluded that SAR
backscattering is most sensitive to the early stages of shrub growth when the vegetation is shorter
than one meter and where the shrub density is lower than 20%. The shrub-sparse class has been
defined as being covered with less than 50% shrub vegetation; it is the shrub class that consistently
has the highest accuracy compared to the shrub-tall and shrub-low classes and one of the classes with
the highest accuracy in general.
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5. Conclusions

The main objective of this paper was to assess the capabilities of polarimetric C-band SAR data to
perform land cover classification in sub-Arctic environments. Of particular interest is the classification
and mapping of shrub vegetation to study the Arctic greening phenomenon. A secondary objective
focused on the analysis of the usefulness of widely-used polarimetric decomposition algorithms,
which are generally used to enhance the scattering mechanisms found in SAR scenes, to classify the
images. The results show that it is possible to achieve overall classification accuracies of ≈ 75% with
the data contained directly in the polarimetric coherency matrix ([T]) of images acquired in early fall.
The polarimetric decompositions used independently yielded lower classification accuracies. It was
also demonstrated that the use of two images acquired at different times or two images acquired
at different incidence angles within a few days of each other provided a substantial increase in
classification accuracies over the classifications performed with single images. The best classification
accuracy was achieved using two images from October 2011 and April 2012 at an incidence angle
of 27◦, which yielded an overall classification accuracy of 90.1% and a κ index of 0.89. These results
are comparable in terms of accuracy to a previous study in the area, which used high resolution aerial
photographs and object-oriented classification algorithms [8]. This points to the possibility to classify
land cover, and in particular shrub vegetation, in sub-Arctic environments using polarimetric SAR
imagery at the C-band, depending on the spatial scale of the study. The advantage of this method
over classifications using satellite or aerial imagery acquired in the visible and infrared range of the
electromagnetic spectrum is the ability to acquire data under any lighting or meteorological condition.
The results are also consistent with our previous study [26], which concluded that SAR backscattering
is most sensitive to the early stages of shrub growth when the vegetation is shorter than one meter
and where the shrub density is lower than 20%. The shrub-sparse class has been defined as being
covered with less than 50% shrub vegetation; it is the shrub class that consistently has the highest
accuracy compared to the shrub-tall and shrub-low classes and one of the classes with the highest
accuracy in general. This points to the possibility to classify shrub vegetation in other sub-Arctic
regions, but further testing would be necessary, especially in environments where wetlands are more
prevalent, as this type of land cover is very complex and caused the most problems in the current
study. Furthermore, looking at the results shown in [22–25], it seems that polarimetric SAR data
could be used to classify shrub vegetation cover in arid and semi-arid environments using a similar
method. In these cases, however, the effects of seasonality might not be as apparent as the current
study, and the temporal contrasts might be more related to rainfall and soil moisture cycles.

While it would be possible to enhance the classification results by classification merging
methods, this is outside the scope of this study, and it could prove to be impractical and costly to
acquire multiple SAR images for each single classification, especially in the context of long-term
monitoring of shrub vegetation. Overall, the method yields relatively good classification results and
could provide a useful tool for shrub monitoring in sub-Arctic environments. Further research will
focus on the the estimation of snow mass accumulations within shrub vegetation using SAR data.
It has already been demonstrated that snow accumulations are affected by shrub height [57], and the
classification results could provide a good basis for the mapping of snow accumulations in
sub-Arctic environments.
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