Dépôt numérique

A Regionalization of Downscaled GCM Data Considering Geographical Features in a Mountainous Area.


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Kim, Soojun, Kwak, Jaewon, Kim, Hung Soo, Kim, Yonsoo, Kang, Narae, Hong, Seung Jin et Lee, Jongso (2014). A Regionalization of Downscaled GCM Data Considering Geographical Features in a Mountainous Area. Advances in Meteorology , vol. 2014 . p. 473167. DOI: 10.1155/2014/473167.

[thumbnail of P2612.pdf]
Télécharger (2MB) | Prévisualisation


This study establishes a methodology for the application of downscaled GCM data in a mountainous area having large spatial variations of rainfall and attempts to estimate the change of rainfall characteristics in the future under climate change. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. neural network-simple kriging with varying local means (ANN-SKlm) has been built by combining the artificial neural network, which is one of the general downscaling techniques, with the SKlm regionalization technique, which can reflect the geomorphologic characteristics. The ANN-SKlm technique was compared with the Thiessen technique and the ordinary kriging (OK) technique in the study area and the SKlm technique showed the best results. Future rainfall levels have been predicted by downscaling the data from CNRM-CM3 climate model, which was simulated under the A1B scenario. According to the results of future annual average rainfall by each regionalization technique, the Thiessen and OK techniques underestimated the future rainfall when compared to the ANN-SKlm technique. Therefore this methodology will be very useful for the prediction of future rainfall levels under climate change, most notably in a mountainous area.

Type de document: Article
Mots-clés libres: climate change; model output; atmospheric circulation; local climate; United-States; precipitation; temperature; variability; Europe; scale
Centre: Centre Eau Terre Environnement
Date de dépôt: 28 nov. 2019 16:29
Dernière modification: 28 nov. 2019 16:29
URI: https://espace.inrs.ca/id/eprint/4259

Actions (Identification requise)

Modifier la notice Modifier la notice