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1. Introduction
Context

I When dealing with natural hazards, proper estimation of the risk of occurrence is crucial for balancing

the safety and the design cost of human settlements.

I A risk is usually quantified as the quantile of an statistical distribution and its severity is characterized

by a return period, which corresponds to the time separating two events of specific magnitude.

I Collecting valuable observations for studying annual flood peaks of rivers discharge requires times

and resources. Consequently, to respond to the needs of information at new locations, Prediction at
Ungauged Basins (PUB) are required.

I The physiographical properties of a basin determines its run-off and two contiguous basins may

possess very different physiographical properties. Consequently, contiguous basins may present

different hydrological behaviours that should be account in PUB.

I PUB can be carried out by the same methodology initially developed for geostatistics, such as

kriging, but where the dependance structure is determined instead by the physiographical proximity
defines as the distance between basin characteristics.

Problematic

I Usually, flood quantiles share log-log relationships with basin characteristics. In traditional kriging

context, the transformation necessary to recover the normality assumption creates bias and leads
to suboptimal predictions.

I Another limitation of the traditional kriging techniques is their incapacity to account for

heteroscedasticity.

I The problem with traditional kriging techniques can be resolved by Spatial Copula, an extension of

traditional geostatistical framework where the spatial dependance is characterized by a copula.

2. Spatial copula
I A multivarite distribution G can be expressed as

G(x) = C [(F1(x1), . . . ,Fn(xn)]

where {Fi}n
i=1 are margins for x′ = (x1, . . . , xn) and C is a copula

I Spatial copula must allows for strong dependance

Ch → Mn when h→ 0

where Mn is the copula upper bound and perfect independence

Ch → Πn when h→∞

I With copulas, margins are treated separately from the dependence. Hence, a model includes 2 set of

parameters : the marginal part η and the copula part θ.

I Estimation can be performed by maximum likelihood or alternatively by optimizing a pairwise likelihood

function

L(z | η, θ) =
∏
i<j

f (zi, zj | η, θ)

where z′ = (z1, . . . , zn) are spatial observation and f is the bivariate density of two sites i and j .

I For known parameters (η̂, θ̂), the plug-in predictive distribution (PPD) at ungauged location is the

product of the marginal density and the conditional copula [2] :

p(z | z, θ) = fη̂(z)× cθ̂
[
F−1
η̂ (z) | w

]
where w′ = (w1, . . . ,wn) and wi = F−1

η̂ (zi)

I Predictors can be calculated from the mean or the median of the PPD. For instance, the median is the

quantity F−1
η̂ (w∗) for which

1/2 =

∫ w∗

0
cθ̂(u | w)du

3. Case study
Hydrological data

I Response variable : Flood quantiles with 100

years return period

I Predictions from 5 basin characteristics

I To reduce the dominant scale effect of the

drainage area, the flood quantiles are

standardized.

At-site analysis

I 151 gauged site in Quebec, Canada

I Minimum record length: 15 years

I Rivers with natural flow regime

I Individual time series tested for

independence, stationarity
Fig 1 : Map of the stations

4. Physiographical space
I At-site analysis provide flood quantile estimates Zi at gauged basins i = 1, . . . ,n. PUB is used to

transfer this information at ungauged basins.

I Typically, spatial methods in PUB consider meaningful basin characteristics that characterizes the

physiographical proximity. In practice, the basin characteristics are usually correlated, hence a

physiographical space of lower dimension is built (e.g. r = 2) from multivariate techniques.

I The basin characteristics Xi becomes coordinates in the

physiographical space

Si = AXi

where A is a transition matrix.

I Canonical correlation analysis (CCA) has been shown to

provide more appropriate physiographical spaces than

principal component analysis [3].

I Let Y be r.v of hydrological variables at a gauged site with

basin characteristics X , CCA provides canonical pairs

sk = akX and uk = bkY

that sequentially optimizes cor(sk,uk). Therefore,

A′ = (a1, . . . ,ar) also implies hydrological proximity.
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Fig 2 : Predictions in physiographical space

5. Model
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Fig. 3 : Normalized QQ-plot

Marginal part(η)

I Regional distribution of a flood quantiles Zi is log-normal.

log(Zi)→ N
[
µ(Si), σ

2(Si)
]

I By construction, a linear trend must be added to account for the

trend resulting from the strong correlation of first canonical

coordinates Si ,1 and the flood quantiles:

µ(Si) =βµ,0 + βµ,1 Si ,1

σ(Si) =βσ,0 + βσ,1 Si ,1

Copula part (θ)

I The dependance is characterized by a Gaussian copula
with pairwise correlation

ρ(Si,Sj | λ, τ ) = (1− τ ) exp
[
−3

d(Si,Sj)

λ

]
where λ > 0 (practical range) controls the correlation as

d(Si,Sj)→∞ and τ is a local measurement error (nugget

effect)

I A correlogram in respect of the physio. distance is

estimated from binned observations.

I A Goodness-of-fit on bivariate copulas [1] validates the

Gaussian copula for each bins (p-values > 20%).
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Fig 4 : Correlogram QS100

6. Results
I Leave-one-out cross-validation is used to assess the predictive performance of the model. In turn

each gauged basin is considered as ungauged and a predicted value is obtained as the median of the
PPD.

I The analysis of the residuals shows the

presence of large relative discrepancies

(Fig. 5-Left) corresponding to

problematic stations previously

identified for this database [3].

I Absolute residuals at logarithm scale

(Fig. 5-Right) show heteroscedasticity
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Fig 5 : Residuals
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Fig 6 : Performance criteria

I The prediction power of the spatial

copula approach (SCop) is compared to

other methods on the same database:
I Multiple regression with CCA-delineation

(CCA)
I Residual drift kriging (Krig)
I Generalized additive model (GAM)
I Artificial neural networks (ANN)

I In comparison with traditional kriging (Krig), the results of spatial copula (Scop) is associated with an

important reduction of the relative bias.

I Overall, Scop and ANN have the best rel .RMSE from the methods considered here.

7. Conclusion
I The spatial copula framework has competitive performance with the best methods. In particular, it

improves over traditional kriging.

I The important relative bias associated to simple transformation is reduced greatly with the spatial

copula approach.

I The spatial copula framework offers a full probabilistic model that account for heteroscedasticity.

I The spatial copula framework appears more appropriate in presence of problematic stations in

comparison with traditional kriging.
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