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LETTER

Biomass offsets little or none of permafrost carbon release from
soils, streams, and wildfire: an expert assessment
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Abstract
As the permafrost regionwarms, its large organic carbon pool will be increasingly vulnerable to
decomposition, combustion, and hydrologic export.Models predict that some portion of this release
will be offset by increased production of Arctic and boreal biomass; however, the lack of robust
estimates of net carbon balance increases the risk of further overshooting international emissions
targets. Precise empirical ormodel-based assessments of the critical factors driving carbon balance are
unlikely in the near future, so to address this gap, we present estimates from98 permafrost-region
experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results
suggest that contrary tomodel projections, total permafrost-region biomass could decrease due to
water stress and disturbance, factors that are not adequately incorporated in currentmodels.
Assessments indicate that end-of-the-century organic carbon release fromArctic rivers and collapsing
coastlines could increase by 75%while carbon loss via burning could increase four-fold. Experts
identifiedwater balance, shifts in vegetation community, and permafrost degradation as the key
sources of uncertainty in predicting future system response. In combinationwith previousfindings,
results suggest the permafrost regionwill become a carbon source to the atmosphere by 2100
regardless of warming scenario but that 65%–85%of permafrost carbon release can still be avoided if
human emissions are actively reduced.

Introduction

Permafrost zone carbon balance
The United Nations has set a target of limiting
warming to 2 °C above pre-industrial temperatures to
mitigate risk of the most damaging consequences of
climate change (UNEP 2013). Maintaining global
climate within this target depends on understanding
ecosystem feedbacks to climate change so that ade-
quate limits on human emissions can be set. As high
latitudes warm, more of the large permafrost carbon
pool will be exposed to decomposition, combustion,
and hydrologic export (Harden et al 2012, Schuur
et al 2015). Up to 220 Petagrams (Pg) carbon could be
released from permafrost-region soil by 2100, and 500
Pg by 2300 (MacDougall et al 2012, Schuur et al 2013),
representing 10%–30% of greenhouse gas emissions
required to push the global climate system beyond the
2 °C target (Schaefer et al 2014). Models project that
some permafrost carbon release will be offset by
increases in Arctic and boreal primary productivity
due to extended growing season, CO2 fertilization, and
nutrient release from decomposing soil organic mat-
ter. However, many processes and dynamics known to
influence biomass accumulation, such as ecosystem
disturbance and nutrient limitation, are incompletely
represented or absent in current models (Qian
et al 2010, Koven et al 2011, Schaefer et al 2011, Koven
et al 2015b). Likewise, only a few models projecting
future permafrost carbon release consider wildfire
emissions, and none include hydrologic carbon flux
(Qian et al 2010, Koven et al 2011, Schaefer et al 2011,
MacDougall et al 2012, Schaefer et al 2014), though
past hydrologic flux has been simulated (McGuire
et al 2010, Laudon et al 2012, Kicklighter et al 2013).
Despite clear policy implications of this climate feed-
back, considerable uncertainty of both carbon inputs

and outputs limits our ability tomodel carbon balance
of the permafrost region. To bring to bear the best
available quantitative and qualitative scientific infor-
mation (Joly et al 2010) on this climate feedback, we
present results from expert assessment surveys indi-
cating that there is little consensus on the magnitude
and even sign of change in high-latitude biomass,
whereas most researchers expect fire emissions and
hydrologic organic carbon flux to substantially
increase by the end of the century.

Expert assessment
When data are sparse but management decisions are
pressing, expert judgements have long been used to
constrain possible system response and risk of danger-
ous or undesired outcomes (Zickfeld et al 2010, Mor-
gan 2014). There are multiple methods for collecting
and combining expert opinion including formal expert
elicitation interviews, interactive software, and surveys
(Aspinall 2010, Javeline et al2013,Morgan 2014).While
expert assessment cannot definitively answer questions
of future system response, it complements modeling
and empirical approaches by allowing the synthesis of
formal and informal system information and by
identifying research priorities (figure 1; Sutherland
et al 2013,Morgan 2014). The approach is similar to the
concept of ensemble models where multiple estimates
built on different assumptions and data provide a more
robust estimate and measure of variance. Because the
experimental unit is an individual researcher, each data
point represents an integration of quantitative knowl-
edge from modeling, field, and laboratory studies as
well as qualitative information based on professional
opinion and personal experience with the system.
Expert assessment has been used in risk assessment and
forecasting of natural disasters, human impacts on
ecosystems, and tipping points in the climate system
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(Halpern et al 2008, Lenton et al 2008, Aspinall 2010).
In a data-limited environment such as the permafrost
region, expert assessment allows formal consideration
of a range of factors known to affect carbon balance but
insufficiently quantified for inclusion in models. For
permafrost carbon balance, these factors include nutri-
ent dynamics, nonlinear shifts in vegetation commu-
nity, human disturbance, land–water interactions, and
the relationship of permafrost degradation with water
balance.

Because precise empirical or model-based assess-
ments of the critical factors driving permafrost-region
carbon balance are unlikely in the near future (Harden
et al 2012), we collected estimates of the components
of net ecosystem carbon balance from 98 permafrost-
region experts (table 1). We had two major goals: (1)
Assess current understanding of the timing and mag-
nitude of non-soil biomass accumulation, hydrologic
organic carbon flux, and wildfire carbon emissions,
and (2) Identify major sources of uncertainty in high-
latitude carbon balance to inform future research.

Methods

Survey development and design
In the fall of 2013 we administered three expert
assessments to address knowledge gaps concerning the
response of permafrost-region biomass, wildfire, and
hydrologic carbon flux to climate change. Develop-
ment of assessment methodology began in early 2009
as a part of theDangerous Climate Change Assessment
Project administered by the University of Oxford. We
iteratively revised questions, response format, and
background information based on four rounds of
input from participants, including at the Vulnerability

of Permafrost Carbon Research Coordination Net-
work meeting in Seattle 2011 (Schuur et al 2013). To
help survey participants consider all of the evidence
available from field and modeling studies, we distrib-
uted a system summary document for each question-
naire including regional and pan-Arctic estimates of
current carbon pools and fluxes, a brief treatment of
historical trends, and a summary of model projections

Figure 1.Conceptualmodel of the role of expert assessment in generating and communicating scientific understanding.Modeling
andfield research generate quantitative and qualitative understanding of the system (in this case the permafrost zone). Expert
assessment synthesizes current understanding including qualitative information not yet included in numericalmodels orfield studies.
These syntheses provide perspective to the scientific community andwholistic summaries of the state of the knowledge to the non-
scientific community with the goal of improvingmanagement of the system.

Table 1.Composition and characteristics of participant group.

Biomass Wildfire Hydrologic flux

Number of

respondents

46 34 35

Average responses per

questiona
41 28 32

Primary region of study

Asia 10 3 8

Europe 12 5 9

North America 27 27 18

Circumpolar 12 6 9

Primary biome of study

Arctic 31 13 27

Boreal 27 29 18

Both 14 9 12

Averagemodeling/

field self ratingb
3.6 3.7 4.1

Combined years of

experience

762 533 521

Ratiomale:female 2.6 2.8 4.9

Background information on survey participants. Experts could

indicatemultiple regions and biomes of study.
a Not all experts provided estimates for all questions.
b Experts rated themselves on a 1–5 scale where 1=exclusive
modeler and 5=exclusivefield researcher.
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where available (table 2; supplementary information
questionnaires and system summaries).

Participants were selected based on contribution
to peer-reviewed literature or referrals from other

experts and had experience in all major boreal and

Arctic regions (table 1). We identified potential parti-

cipants by querying Thomas Reuters Web of Science

(webofknowledge.com) with applicable search terms

(e.g. Arctic, boreal, biomass, dissolved organic carbon,

fire, permafrost). To reach researchers with applicable
expertise who were underrepresented in the literature,

we supplemented the list with personal referrals from

lead experts and all participants. In total 256 experts

were invited to participate. We distributed the surveys

and system summaries via email with a two-week

deadline. After sending out three reminders and

accepting responses for three months after initial invi-

tation, we received 115 responses from 98 experts

(38% response rate), with 15 experts participating in

more than one survey (supplementary information list

of experts). Experts who provided estimates and input
to this paper are coauthors.

Experts provided quantitative estimates of change
in biomass, hydrologic flux, or wildfire for three time
points (2040, 2100, and 2300), and four regional
warming scenarios based on representative concentra-
tion pathway (RCP) scenarios from the IPCC Fifth
Assessment Report (Moss et al 2010). Warming sce-
narios ranged from cessation of human emissions
before 2100 (RCP2.6) to sustained human emissions
(RCP8.5) and corresponded to permafrost-region
mean annual warming of 2 °C–7.5 °Cby 2100. All sur-
veys were driven by the same scenarios of high-latitude
warming generated from RCP2.6, 4.5, 6.0, and 8.5
with the National Center for Atmospheric Research's
Community Climate System Model 4 (Lawrence
et al 2012). For the purposes of this survey, warming
was assumed to stabilize at 2100 levels for all scenarios
so that estimates for the 2300 time point would
account for lags in ecosystem responses to climate dri-
vers. While climate scenarios were defined by

Table 2.Estimates of current permafrost region organic carbon pools and fluxes. Literature-based estimates of belowground biomass were
calculated from aboveground or total biomass with ratios fromSaugier et al (2001). POCdelivery to freshwater ecosystemswas calculated
fromocean POCdeliverywith downscaled global ratio of 0.75 for sedimentation. POC from coastal erosion is the sumofVonk et al (2012)
andMcGuire et al (2009). Considerable uncertainty remains aroundmany of these estimates.

Biomass

Aboveground

biomass

Belowground

biomassa Deadwoodb Litter

Total non-

soil biomass

Boreal forest (PgC) 43.6c 16.1 16 27b 102.7

Arctic Tundra (PgC) 2.4d 4.0 2e 8.4

Wildfire

Boreal forest

(Eurasia)
Boreal forest

(N.America)
Total Boreal

forestf
Total

Tundra

Area burned (km2 yr−1) 62 100 22 500 84 600 4200g

CO2 emissions fromfire

(TgC yr−1)
194 56 250 8h

Hydrologic organic carbonflux

DOC POC

(Riverine)
POC

(coastal)
TotalOC

Delivery to freshwater eco-

systems (Tg yr-1)
100c 20i na 120

Delivery to ArcticOcean

and surrounding seas

(Tg yr-1)

36j 6c 18ck 60

a Saugier et al (2001).
b Pan et al (2011).
c McGuire et al (2009).
d Epstein et al (2012).
e Potter andKlooster (1997).
f Balshi et al (2007), Giglio et al (2010), Hayes et al (2011), van derWerf et al (2010).
g Rocha et al (2012).
h Mack et al (2011).
i Aufdenkampe et al (2011), Battin et al (2009).
j Holmes et al (2012).
k Vonk et al (2012).
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temperature, we asked experts to consider all accom-
panying direct climate effects (e.g. temperature, pre-
cipitation, and atmospheric CO2) and indirect effects
(e.g. vegetation shifts, permafrost degradation, inva-
sive species, and disturbance). Experts were encour-
aged to consider all available formal and informal
information when generating their estimates includ-
ing published and unpublished modeled and empiri-
cal data as well as professional judgment. Participants
listed the major sources of uncertainty in their esti-
mates, self-rated their confidence and expertise for
each question, described rationale for their estimates,
and provided background information (table 1
and S1).

The biomass survey consisted of a single question
asking for cumulative change in tundra and boreal
non-soil biomass including above and belowground
living biomass, standing deadwood, and litter. The
wildfire survey asked for estimates of change in wild-
fire extent and CO2 emissions for the boreal and tun-
dra regions to assess changes in both fire extent and
severity. The hydrologic flux survey asked for esti-
mates of dissolved and particulate organic carbon
(DOC and POC, respectively) delivery to freshwater
ecosystems in the pan-Arctic watershed and delivery
to the Arctic Ocean and surrounding seas via riverine
flux and coastal erosion, allowing the calculation of
losses during transport due to burial or mineraliza-
tion. Dissolved inorganic carbon fluxes were not
included in this survey.

The original questionnaires in 2009 asked for par-
ticipants to estimate subjective 95% confidence inter-
vals of the whole system response (e.g. total change in
high-latitude biomass). Based on expert input during
subsequent testing we disaggregated the system into
different components to encourage detailed con-
sideration of possibly competing dynamics (e.g. asking
for separate estimates of boreal forest and Arctic tun-
dra response; Morgan 2014). This resulted in a large
response table for each question (72–102 quantitative
estimates), which we found caused respondent fatigue
and decreased the number of experts willing to partici-
pate. As a compromise, we asked respondents to pro-
vide a single best estimate and indicate confidence
with a five-point scale (table S1). While analysis of best
estimates can return narrower uncertainty ranges than
subjective probability distributions (Morgan 2014),
we believe this tradeoff resulted in broader expert par-
ticipation, better representing diversity of opinion
across disciplines and compensating for possible
underestimation of variability and uncertainty.

Analysis and calculations
We calculated basic summary statistics, using median
values to estimate center and interquartile ranges
(IQR) to estimate spread. To calculate the portion of
permafrost carbon release offset by biomass accumu-
lation, we combined estimates from this study with

reanalyzed data from Schuur et al (2013). The low IQR
for carbon release offset by biomass growth was
calculated by dividing the low IQR of uptake by the
upper IQR of carbon release and conversely for the
high IQR (figure 3). All analyses were performed in R
3.0.2. The complete dataset of quantitative estimates
and comments from survey participants stripped of
personal identifiers is available at www.aoncadis.org/
dataset/Permafrost_carbon_balance_survey.html.

Results

Carbon pools andfluxes
Expert estimates revealed diverging views on the
response of boreal biomass to warming, with over a
third of estimates predicting a decrease or no change
in boreal biomass across scenarios and time periods
(figure 2).Whilemedian change in boreal biomass was
similar across warming scenarios for each time step
(3%, 9%, and 11% increases by 2040, 2100, and 2300,
respectively; figure 2 and S1), variability was much
higher for warmer scenarios. Consequently, all of the
IQR of change in boreal biomass for RCP6.0 and
RCP8.5 included zero. Experts projecting a decrease in
boreal biomass attributed their estimates primarily to
water-stress and disturbance such as fire and perma-
frost degradation. In contrast, there was general
agreement that tundra biomass would respond posi-
tively to warming, with end-of-century increases of
6%–30% projected for RCP2.6 and 10%–90% for
RCP8.5. Because of these contrasting responses to
increased warming, tundra accounted for 40% of total
biomass gain by 2300 for RCP8.5, though it currently
constitutes less than 10% of total permafrost region
biomass (based onmedian values in figures 2, 3(a) and
table 2). Estimates of boreal biomass were generally
symmetrically distributed while tundra biomass esti-
mates were right-skewed, and most datasets had 1–4
estimates beyond 1.5 times the interquartile range
(figure S2). Self-rated confidencewas higher for tundra
than for boreal forest, but was below 3 (moderately
confident) in both cases (table S1), highlighting
considerable uncertainty of individual estimates in
addition to variability among respondents.

Experts projected major shifts in both fire and
hydrologic carbon regimes, with up to a 75% increase
of riverine organic carbon flux to the ocean and a four-
fold increase in fire emissions by 2100 for RCP8.5
based on IQR (figure 2 and S1). Fire and hydrologic
carbon release estimates peaked at 2100, followed by a
10%–40% decrease by 2300. In contrast to biomass,
the response of both fire-driven and hydrologic car-
bon flux varied strongly by warming scenario, with
RCP8.5 resulting in 2–6 times more carbon release
than RCP2.6. While the boreal forest dominated total
wildfire emissions, the relative change in tundra fire
emissions was 1.5- and 2-fold greater than the relative
boreal response for 2100 and 2300, respectively (figure

6

Environ. Res. Lett. 11 (2016) 034014

http://www.aoncadis.org/dataset/Permafrost_carbon_balance_survey.html
http://www.aoncadis.org/dataset/Permafrost_carbon_balance_survey.html


S1). Increases in fire emissions were attributed to
changes in fire extent rather than severity, which var-
ied less than 5% among scenarios and time periods.
Though dissolved organic carbon (DOC) represented
the majority of total hydrologic organic carbon
release, experts projected higher relative increases for
coastal POC, with end-of-the-century increases of
6%–50% for RCP2.6 and 13%–190% for RCP8.5.
There was a lack of consensus on the response of DOC
delivery to the ocean, with 21%of estimates predicting
a decrease or no change. Experts predicting a decrease
attributed their estimates to increased mineralization,
changes in hydrologic flowpath, and changes in DOC
photo- and bio-lability (Cory et al 2014, Abbott
et al 2014). Responses indicated no change in the

proportion of organic carbon mineralized or trapped
in sediment before reaching the ocean, with 63%–69%
of DOC and 68%–74% of POC lost in transport. Fire
and hydrologic carbon flux estimates were strongly
right-skewed with a few experts projecting extreme
change well beyond 1.5 times the interquartile range
for each timestep and warming scenario combination
(figures S3 and S4). Average self-rated confidence was
between 2 and 3 for all questions except tundra fire
emissions which had average confidence of 2.0 and 1.7
(table S1).

Sources of uncertainty
Along with quantitative estimates of carbon balance,
experts identified sources of uncertainty currently

Figure 2.Estimates of change in non-soil biomass, wildfire emissions, and hydrologic carbon flux from the permafrost region for four
warming scenarios at three time points. All values represent change from current pools or fluxes reported in table 2. Biomass includes
above and belowground living biomass, standing deadwood, and litter. Dissolved and particulate organic carbon (DOCandPOC
respectively)fluxes represent transfer of carbon from terrestrial to aquatic ecosystems. ‘Coast’ represents POC released by coastal
erosion. Representative concentration pathway (RCP) scenarios range from aggressive emissions reductions (RCP2.6) to sustained
human emissions (RCP8.5). Box plots representmedian, quartiles, andminimumandmaximumwithin 1.5 times the interquartile
range. Relative change (percent change from current state) is presented infigure S1 and full distributions are presented infigures
S2–S4.
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limiting the prediction of system response to climate
change (table 3). Water balance, including precipita-
tion, soil moisture, runoff, infiltration, and discharge,
was the most frequently mentioned source of uncer-
tainty for both biomass and hydrologic organic carbon

flux, and the second most mentioned for wildfire.
Many experts noted that water balance is as or more
important than temperature in controlling future
carbon balance, yet projections of water balance are
less well constrained (Zhang et al 2013, Bintanja and

Figure 3.Total change in non-soil biomass (a) and percentage of permafrost region carbon release offset by change in non-soil
biomass (b). Estimates of permafrost carbon release used in estimating percentage offset are recalculated fromdata presented in
Schuur et al (2013). See figure 2 for definition of RCP scenarios and symbology. Error bars represent propogated error between the
interquartile ranges of carbon release frompermafrost soil and carbon uptake by biomass (seemethods).

Table 3. Sources of uncertainty in system response to climate change.

Biomass Wildfire Hydrologic OCflux

Source of uncertainty % Source of uncertainty % Source of uncertainty %

Water balance 56 Vegetation shift 73 Water balance 41

Wildfire 47 Water balance 58 Hydrologic flowpath 39

Permafrost degradation 40 Humandisturbance 27 Permafrost degradation 24

Human disturbance 29 Permafrost degradation 18 Photo and bio-lability 24

Insect damage 27 Seasonality 15 Vegetation shift 20

Vegetation shift 24 Regional differences 12 Fluvial erosion 11

Treeline dynamics 16

Nutrient availability 13

Non-insect herbivores 11

Major factors contributing uncertainty to projections of future system response based on expert comments.

Rank is based on percent of experts who listed each factor in their responses. All sources listed by 10% or more

of each group are included here. Water balance includes comments mentioning precipitation, soil moisture,

runoff, infiltration, or discharge. Permafrost degradation includes comments referring to permafrost collapse

(thermokarst) and active layer deepening.
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Selten 2014). Almost three-quarters of wildfire experts
identified the future distribution of vegetation as the
primary source of uncertainty in projecting wildfire,
noting strong differences in flammability between
different boreal and tundra species. Permafrost degra-
dation was identified as an important source of
uncertainty for biomass, hydrologic flux, and wildfire,
due to both disturbance from ground collapse (ther-
mokarst) and interactions with water-table dynamics
and surface soil moisture as deeper thaw affects soil
drainage.

Discussion

Carbon balance
Arctic tundra and boreal forest have accumulated a
vast pool of organic carbon, twice as large as the
atmospheric carbon pool and three times as large as
the carbon contained by all living things (Hugelius
et al 2014, Schuur et al 2015). Over the past several
decades, the permafrost region has removed an
average of 500 Tg carbon yr−1 from the atmosphere
(McGuire et al 2009, Pan et al 2011, Hayes et al 2011).
Combining our estimates of biomass uptake with a
recent projection of permafrost soil carbon release

(Schuur et al 2013) suggests that the permafrost region
will become a carbon source to the atmosphere by
2100 for all warming scenarios (figure 3(b)). Experts
predicted that boreal and Arctic biomass could
respond more quickly to warming than soil carbon
release, offsetting −33% to 200% of mid-century
emissions from permafrost-region soil (figure 3(b)).
However, because estimates of change in biomass are
similar across warming scenarios but permafrost
carbon release is strongly temperature-sensitive, the
emissions gap widens for warmer scenarios, resulting
in five-times more net carbon release under RCP8.5
than RCP2.6. This suggests that 65 to 85% of
permafrost carbon release could be avoided if human
emissions are actively reduced—i.e. if emissions
followRCP2.6 instead of RCP8.5 (figure 4).

Comparisonwith quantitativemodels
Model projections of future boreal and Arctic biomass
agree in sign but vary widely in magnitude, with
increases of 9–61 Pg carbon projected by 2100 (Qian
et al 2010, Koven et al 2011, Schaefer et al 2011, Falloon
et al 2012). While some of these models fall within the
range estimated here of−20 to 28 Pg carbon by 2100,
none include zero or negative change in biomass as

Figure 4.A comparison of soil carbon release recalculated fromSchuur et al (2013) and non-soil biomass uptake in the permafrost
region from this study for the business as usual scenario (RCP8.5) and the active reduction of human emissions scenario (RCP2.6).
Polygons representmedian cumulative change and dotted lines represent the interquartile range. Biomass carbon uptake is overlayed
on soil carbon release to show the proportion of carbon release potentially offset by biomass. Linear rates of changewere assumed
between the three dateswhere estimates were provided.
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predicted by over a third of participants in our expert
assessment. Two potential reasons for this disagree-
ment are an overestimation of the effect of CO2

fertilization or an underestimation of the role of
disturbance in some models. Firstly, CO2 fertilization
exerts a larger effect on carbon balance than all other
climate effects inmanymodels (Balshi et al 2009), with
up to 88 Pg carbon difference between model runs
with and without CO2 fertilization effects for some
models (Koven et al 2011). However, there is little field
evidence that CO2 fertilization results in long-term
biomass accumulation in tundra and boreal ecosys-
tems (Hickler et al 2008, Gedalof and Berg 2010,
Peñuelas et al 2011). Additionally, many models with
large CO2 effects do not include other limiting factors,
such as nutrients and water, known to interact with
CO2 fertilization (Hyvonen et al 2007, Thornton
et al 2007, Yarie and Van Cleve 2010, Maaroufi
et al 2015, Koven et al 2015a). Secondly, models that
do not account for disturbance such as wildfire,
permafrost collapse, insect damage, and human
resource extraction likely overestimate the positive
response of biomass to climate change (Kurz
et al 2008, Abbott and Jones 2015,Hewitt et al 2015).

Considering the scenario of a complete biome shift
is useful in evaluating both model projections of
change and estimates from our expert assessment. If
all boreal forest became temperate forest, living bio-
mass would increase by 27%, resulting in the uptake of
16 Pg carbon based on average carbon densities from
both ecosystems (Pan et al 2011). However, 22 Pg car-
bon would be lost due to decreases in dead wood and
litter, resulting in a net circumboreal loss of 6 Pg car-
bon. If all tundra became boreal forest, non-soil bio-
mass would increase by 205% (Saugier et al 2001,
Epstein et al 2012, Raynolds et al 2012), taking up
17 Pg carbon. This scenario may not represent the
upper limit of possible carbon uptake if other unfore-
seen shifts in C allocation take place; however, it high-
lights the relatively modest carbon gains probable on
century timescales.

While regional projections from models of boreal
wildfire vary in sign and magnitude (supplementary
information system summaries), most models agree
that at the circumboreal scale, fire emissions will
increase several-fold, with increases of 200%–560%
projected by the end of the century (Flannigan
et al 2009, Kloster et al 2012). IQR from our study are
somewhat lower (40% to 300%, median 170%), but
participant confidence in these estimates was low, sug-
gesting considerable uncertainty in the future
response of boreal fire. The 60%–480% increase in
tundra fire projected by our study would represent an
even larger ecological shift than experienced by the
boreal forest, with implications for regional biomass,
habitat, and carbon balance, though there are few
models that project changes in tundra fire (Rupp
et al 2000) and none at a circumarctic scale (Mack
et al 2011).

The production of Arctic DOC and POC depends
on abundance of carbon sources in terrestrial ecosys-
tems (influenced by biomass, wildfire, temperature,
and permafrost degradation) and the ability of hydro-
logic flow to transport that carbon (determined by fac-
tors such as precipitation, runoff, depth of flow
through soil, and coastal erosion; Guo et al 2007, Kick-
lighter et al 2013, Abbott et al 2015, Larouche
et al 2015). Due to these complexities and others, there
are currently no quantitative projections of future
DOC and POC flux from the circumarctic. However,
estimates from our study suggest a substantial depar-
ture from historical rates of change. For RCP8.5,
hydrologic organic carbon loading would increase
4–20 times faster in the 21st century than it did in the
20th (Kicklighter et al 2013), representing a nonlinear
response to high-latitude warming. The lack of con-
sensus on the response of DOC, the largest component
of hydrologic organic carbon flux, highlights the
importance of developing and testing conceptual fra-
meworks to be incorporated into models (Laudon
et al 2012).

An alternative explanation for differences between
expert estimates and modeled projections is the possi-
bility of bias in the group of experts. Participants in
our assessment tended to have more field thanmodel-
ing experience (table 1) and may have therefore been
skeptical of simulated ecosystem responses that have
not been observed in the field such as CO2 fertilization
and rapid migration of treeline (McGuire et al 2009).
Because future dynamics cannot always reliably be
predicted on the basis of past systembehavior, this bias
may ormay not result in overly conservative estimates.
Furthermore, because experts are likely to base projec-
tions on the study areas with which they are most
familiar, regional differences could be a source of bias.
Fundamental differences among regions in the
response of DOC flux and fire-regime to warming
have been observed (Kicklighter et al 2013, de Groot
et al 2013; supplementary information system sum-
maries). Asia, which represents more than half of the
total permafrost region, was under-represented in all
three surveys, particularly wildfire (table 1). However,
the regional bias in this study may not be greater than
that of model projections, which depend on observa-
tional and experimental data that are not evenly dis-
tributed throughout the permafrost region.

Reducing uncertainty surrounding the permafrost
carbon feedback
Experts identified water balance, vegetation distribu-
tion, and permafrost degradation as the most impor-
tant sources of uncertainty in predicting the timing
and magnitude of the permafrost carbon feedback
(table 3). These three processes are closely intercon-
nected by several internal feedbacks (Anisimov and
Reneva 2006, Shur and Jorgenson 2007, Jorgenson
et al 2013, Girardin et al 2016). For example, wildfire
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or drought can trigger a transition from coniferous to
deciduous dominance, warming permafrost by up to
7 °C due to loss of insulating moss and associated
changes (Sturm et al 2001, Shur and Jorgenson 2007,
Yarie and Van Cleve 2010). The subsequent recovery
trajectories of vegetation and permafrost, as well as the
proportion of thawed carbon released CO2 or CH4,

then depend largely on near-surface hydrologic condi-
tions (Payette et al 2004, Myers-Smith et al 2008,
Jorgenson et al 2010, Chapin et al 2010, O'Donnell
et al 2011, Lawrence et al 2015). These interdepencies
mean that improving projections of the permafrost
carbon feedback will require conceptualizing these
parameters together. The question of water balance is
additionally important in Arctic and boreal ecosys-
tems where hydrologic carbon flux can be the deter-
mining factor causing net carbon uptake or release
(Kling et al 1991, Aufdenkampe et al 2011, Raymond
et al 2013). The lack ofmodel projections of hydrologic
carbon fluxes is a major gap in our ability to estimate
the permafrost carbon feedback.

The permafrost region has responded differently
to various climatic perturbations in the past, repre-
senting another tool to constrain possible future
response (Zachos et al 2008). During the Paleocene–
Eocene thermal maximum, high-latitude temperature
warmed more than 10 °C, causing almost complete
loss of permafrost and the mineralization of most per-
mafrost soil organic matter (Bowen and Zachos 2010,
DeConto et al 2012). More recently, the 2 °C–4 °C
warming at high-latitudes during the early Holocene
caused active-layer deepening throughout the perma-
frost region but did not trigger complete permafrost
loss or widespread carbon release (French 1999,
Schirrmeister et al 2002, Jorgenson et al 2013). While
there are many differences between the Paleozoic and
Holocene warming events, one clear distinction is the
degree of warming. There may have been a threshold
between 4 °C and 10 °C high-latitude warming due to
positive feedbacks such as a shift from a coniferous to a
deciduous dominated system or an abrupt change in
hydrology. If a tipping point does exist between 4 and
10 °C high-latitude warming, it would fall between
scenarios RCP4.5 and RCP8.5, representing max-
imum atmospheric CO2 of 650 ppm and 850 ppm,
respectively (Moss et al 2010, Lawrence et al 2012).
RCP4.5 is still widely accepted as politically and tech-
nically attainable, though it assumes global CO2 emis-
sions peak before 2050 and decrease by half by 2080
(Moss et al 2010).

Conclusions

The permafrost climate feedback has been portrayed
in popular media (and to a lesser extent in peer-
reviewed literature) as an all-or-nothing scenario.
Permafrost greenhouse gas release has been described
as a tipping point, a runaway climate feedback, and,

most dramatically, a time bomb (Wieczorek et al 2011,
Treat and Frolking, 2013, Whiteman et al 2013). On
the other extreme, some have dismissed the impor-
tance of this feedback, asserting that increases in
biomass will offset any carbon losses from soil, or that
changes will occur too slowly to concern current
governments (Idso et al 2014). Our study highlights
that Arctic and boreal biomass should not be counted
on to offset permafrost carbon release and suggests
that the permafrost region will become a carbon
source to the atmosphere by 2100 regardless of
warming scenario. Perhaps more importantly, our
results indicate a 5-fold difference in emissions
between the business as usual scenario (RCP8.5) and
active reduction of human emissions (RCP2.6), sug-
gesting that up to 85% of carbon release from the
permafrost region can still be avoided, though the
window of opportunity for keeping that carbon in the
ground is rapidly closing. Models projecting a strong
boreal carbon sink and models that do not consider
hydrologic and fire emissions may substantially
underestimate net carbon release from the permafrost
region. If such projections are used as the basis for
emissions negotiations, climate targets are likely to be
overshot.
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