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Abstract The spatial heterogeneity of hydraulic conductivity (K) exerts a major control on groundwater
flow and solute transport. The heterogeneous spatial distribution of K can be imaged using indirect geo-
physical data as long as reliable relations exist to link geophysical data to K. This paper presents a nonpara-
metric learning machine approach to predict aquifer K from cone penetrometer tests (CPT) coupled with a
soil moisture and resistivity probe (SMR) using relevance vector machines (RVMs). The learning machine
approach is demonstrated with an application to a heterogeneous unconsolidated littoral aquifer in a
12 km2 subwatershed, where relations between K and multiparameters CPT/SMR soundings appear com-
plex. Our approach involved fuzzy clustering to define hydrofacies (HF) on the basis of CPT/SMR and K data
prior to the training of RVMs for HFs recognition and K prediction on the basis of CPT/SMR data alone. The
learning machine was built from a colocated training data set representative of the study area that includes
K data from slug tests and CPT/SMR data up-scaled at a common vertical resolution of 15 cm with K data.
After training, the predictive capabilities of the learning machine were assessed through cross validation
with data withheld from the training data set and with K data from flowmeter tests not used during the
training process. Results show that HF and K predictions from the learning machine are consistent with
hydraulic tests. The combined use of CPT/SMR data and RVM-based learning machine proved to be power-
ful and efficient for the characterization of high-resolution K heterogeneity for unconsolidated aquifers.

1. Introduction

Inferring the heterogeneous spatial distribution of hydraulic conductivity (K) in aquifers is a prerequisite to
tackle groundwater flow and transport problems. Indeed, since K may vary over several orders of magnitude
and impacts both the magnitude and direction of advective transport, the primary focus of aquifer charac-
terization is generally on the measurement of K [Koltermann and Gorelick, 1996]. Aquifer K is mostly meas-
ured using hydraulic tests carried out in wells (e.g., slug tests, pumping tests). Although such tests are
generally reliable sources of data about K, they are however costly and time consuming. Consequently,

these measurements are usually available only from a few wells and at a too low spatial resolution that pre-
vent to adequately define K heterogeneities at the scale needed for most practical groundwater flow and
mass transport studies [Butler, 2005].

Due to these limitations of conventional hydraulic characterization, hydrogeophysics is increasingly recog-
nized as an effective alternative to better image spatial distribution of hydraulic properties, which requires
the translation of indirect geophysical data into hydraulic properties [e.g., Day-Lewis et al., 2005; Rubin and
Hubbard, 2005]. The value of using geophysical data for hydrogeological characterization lies in the exten-
sive spatial coverage offered by geophysical methods, which may be helpful to provide spatial continuity in
K heterogeneities. Reliable predictions in K from geophysical data should however be based on sound rela-
tions between hydraulic and geophysical data, which are usually subject to a large degree of uncertainty
under field conditions [Chen et al., 2001]. The major problem with the integration of hydro-geophysical data
is nonuniqueness in the hydro-geophysical relations. Typical causes of nonuniqueness are the scale and the
resolution disparity between hydraulic and geophysical measurements, and the uncertainty associated with
field data acquisition and interpretation (e.g., noisy measurements, location errors). Another fundamental
aspect with nonuniqueness is the degree of sensitivity between hydraulic and geophysical parameters,
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which for a particular geological material may result in a fairly weak correlation. That problem is exacer-
bated under heterogeneous field conditions where sensitivities may vary for different geological materials
and thus preclude reliable estimations of hydraulic properties from geophysical data. Thus, the overall moti-
vation of this work is the need to develop efficient and robust aquifer characterization and data analysis
approaches that can provide more information about K: higher number of control points, relatively fine ver-
tical resolution, continuous vertical profiles, based on repeatable physical measurements. Such larger high-
quality data set is needed to define K heterogeneity using geostatistical interpolation schemes (estimation
or simulation) in order to develop more realistic numerical groundwater flow and solute transport models
[Anderson, 1997].

This paper explores the potential of using cone penetrometer tests (CPT) coupled with a soil moisture and
resistivity probe (SMR) to infer hydrofacies (HF) and K in unconsolidated aquifers. The paper is focused on
the assessment of the usefulness of CPT/SMR soundings for HF and K estimation and on the integration of
hydraulic and geophysical data through a learning machine approach based on relevance vector machines
(RVMs). CPT/SMR is a multiparameter probe that simultaneously provides vertical profiles of mechanical (tip
stress, sleeve stress, pore pressure) and electrical (dielectric constant, bulk electrical resistivity) parameters
of sediments. Thus, due to the number of simultaneously measured geophysical parameters and their simi-
lar volumes of investigation, CPT/SMR soundings have the potential to reduce nonuniqueness between
geophysical measurements and K. From a practical viewpoint, the value of using CPT/SMR data for aquifer
characterization lies in the vertical decimeter-scale resolution offered by this direct-push technique [Lunne
et al., 1997; Schulmeister et al., 2003], which can be hardly obtained by surface-based geophysical methods.
Moreover, the number of continuous vertical profiles that can be obtain by direct-push soundings over a
given period of time is significantly higher in comparison to wells or core-based hydraulic tests, allowing
the definition of aquifer heterogeneities over larger investigation areas [Lafuerza et al., 2005; Paradis et al.,
2014]. While there have been important improvements recently in the ability of direct-push tools to esti-
mate K from hydraulic testing, such as direct-push slug testing [Butler et al., 2002], direct-push permeameter
[Butler et al., 2007], direct-push injection logging [Liu et al., 2009; Lessoff et al., 2010] and hydraulic profiling
[K€ober et al., 2009], the approach followed in this paper differs significantly. Instead of relying only on direct
hydraulic data, the proposed approach is based on the conversion of CPT/SMR data into indirect hydraulic
data through site-specific hydro-geophysical relationships. The establishment of hydro-geophysical relation-
ships is based on the collection of collocated data (training data set) of both geophysical and hydraulic
data, where the locations of CPT/SMR sounding and well sites for hydraulic testing are carefully selected.
Once those relationships are defined, CPT/SMR soundings without well installation are carried out else-
where over the study area and direct-push data are converted into hydraulic information using previously
defined relationships. With this approach, hydraulic tests are carried out with parsimony only at representa-
tive locations within the study aquifer, making the aquifer characterization process more time efficient than
conventional hydraulic testing alone, as documented by Paradis et al. [2014]. Finally, the spatial distribution
of hydraulic information over the study area can be obtained through geostatistical interpolation or simula-
tion of direct and converted hydraulic data. Note however that the topic of geostatistical estimation is not
covered in this paper.

CPT soundings for geological applications have been mostly used to deduce sediment texture from
mechanical parameters [e.g., Robertson, 1990; Fellenius and Eslami, 2000]. Farrar [1996] also proposed a chart
to evaluate K from sediment texture, but it only provides order-of-magnitude K estimates and it does not
make full use of electrical parameters provided by the SMR probe. Our objective is thus to develop a general
approach to define site-specific relations to reliably predict K from CPT/SMR data. Also, to facilitate the spa-
tial interpretation of K heterogeneity over a study area and to allow a better integration with geological
depositional models, we also wish to use direct-push data to define hydrofacies (HF) [e.g., Anderson, 1997;
Koltermann and Gorelick, 1996; Ouellon et al., 2008; Paradis et al., 2014]. A HF is a homogeneous unit that is
hydrogeologically meaningful for the purposes of flow and transport modeling [Anderson, 1989] and it is
defined here as a distinct unit in terms of K distribution.

Quantitative hydro-geophysical (H-G) data integration is usually achieved by linking hydraulic and geophys-
ical parameters through theoretical or semiempirical petrophysical relations such as Archie’s law [Archie,
1942] [e.g., Copty et al., 1993; Yamamoto et al., 1994; Gloaguen et al., 2001; Garambois et al., 2002]. For
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application in heterogeneous aquifers, this approach is however limited because petrophysical relations are
often complex to model due to the strong dependence to the geological material. Thus, the site-specific
applicable petrophysical model is often difficult to select and converted hydraulic data may be unreliable
[Steelman and Endres, 2011].

A fundamentally different approach to model H-G relations involves the application of statistical techniques, either
simple parametric relations [e.g., Hyndman et al., 2000] or more complex nonparametric methods [e.g., Moha-
ghegh et al., 1997; Wong et al., 1998; Lee and Datta-Gupta, 1999; Chen et al., 2001; Chen and Rubin, 2003; Paasche
et al., 2006; Shokir et al., 2006; Dubois et al., 2007; Al-Anazi et al., 2009; Elshafei and Hamada, 2009; Kharrat et al.,
2009; Al-Anazi and Gates, 2010a, b; Dubreuil-Boisclair et al., 2011; Ruggeri et al., 2013; Rumpf and Tronicke, 2014].
Unlike general theoretical or semiempirical models, statistical techniques are much more flexible and do not
require prior knowledge about physical relations between various H-G parameters or geological material.

In this paper, the definition of relations to predict profiles of HF and K from CPT/SMR soundings is made
through a nonparametric learning machine approach because of the complex relations that generally exist
between H-G parameters [e.g., Mohaghegh et al., 1997; Lee and Datta-Gupta, 1999; Dubois et al., 2007]. Learn-
ing machines do not assume a rigid functional form, they rely on the available data to build up a model of the
system, and no a priori assumptions on parameter relations are made [Mitchell, 1997]. Artificial neural net-
works (ANNs), which follow an empirical risk minimization of the training errors, are common form of learning
machines that have been already considered. Different architectures of ANNs have been applied successfully
for the prediction of lithofacies [Chen and Rubin, 2003; Dubois et al., 2007] or hydraulic properties in petroleum
reservoirs [Mohaghegh et al., 1997; Wong et al., 1998; Lee and Datta-Gupta, 1999; Shokir et al., 2006; Al-Anazi
et al., 2009; Elshafei and Hamada, 2009; Kharrat et al., 2009; Iturrar�an-Viveros and Parra, 2014] from cross hole
or borehole geophysics data. However, despite their potential effectiveness, ANNs present some important
drawbacks [Camps-Valls et al., 2006]: (i) design and training often results in a complex, time-consuming task,
in which many parameters must be tuned; (ii) minimization of the training errors can lead to poor generaliza-
tion performance; and (iii) performance can be degraded when working with small (sparse) data sets.

To alleviate problems associated with ANNs, support vector machine (SVM) was developed to solve both
classification and regression problems [Vapnik, 1995, 1998]. Unlike ANNs, SVM follows a structural risk mini-
mization of generalization performance, and model complexity is controlled through a regularization term.
The main idea behind SVM is to perform a linear regression in a high dimension feature space, through a
kernel function, which returns a nonlinear regression in the original input space. SVM has yielded good
results for the prediction of lithofacies, permeability, and porosity of petroleum reservoirs with high dimen-
sional and sparse borehole geophysics data sets [Al-Anazi and Gates, 2010a, b].

The rationale for selecting RVM approaches for this study over ANNs and SVM is that many studies have
shown that RVM performs better than either ANNs or SVM in many applications for accuracy and sparsity of
the solution [Khalili et al., 2005; Camps-Valls et al., 2006; Samui, 2007; Ghosh and Mujumdar, 2008]. A RVM is
a Bayesian extension of the SVM to solve nonlinear classification and regression models using an expecta-
tion maximization-like learning method [Tipping, 2001]. The most important characteristic of the RVM is to
produce sparse predictive models, which are less prone to overfit the training data. Along with its ability to
produce relations with good generalization capability with sparse and complex data sets, which is typical in
most geosciences applications, RVM produces probabilistic outputs that can capture uncertainty in the pre-
dictions. Model selection with RVM is also easier, since it has no regularization term needing to be adjusted,
and are less sensitive to model parameter setting [Camps-Valls et al., 2006].

The remainder of this paper is organized as follows. Section 2 describes the study area and the training data
set used to develop classification and regression models. Section 3 outlines the learning machine approach
and provides a description of the main algorithms, which includes fuzzy clustering and RVMs for classifica-
tion and regression. Section 4 presents the development and the verification of the learning machine to
recognize HF and estimate K. Conclusions about the key findings of this study are listed in section 5.

2. Study Area and Hydro-Geophysical Training Data Set

Since learning machines are based on empirical data, the collection of a representative training data set for
a given study area is fundamental to establish meaningful relations between hydraulic and geophysical
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parameters. Paradis et al. [2014] described the general data acquisition approach that was followed for the
characterization of the study area, which includes the collection of the hydro-geophysical training data set
used in this paper. This data acquisition approach specifically allowed, through regional geology, GPR sur-
veys and CPT/SMR soundings analysis, the targeting of specific locations for well installations and K testing
in order to cover the whole range of hydro-geophysical responses (K and CPT/SMR) observed over the study
area. In this section, we thus only briefly describe the study area, provide a summary of the data acquisition
process for CPT/SMR and K data, and describe the hydro-geophysical training data set. Field data used in
this study are provided as downloadable supporting information.

2.1. Saint-Lambert Study Area
The proposed methodology was developed and applied in relation with a study carried out in St-Lambert-
de-Lauzon, located 30 km south of Quebec City, Canada (Figures 1a and 1b). As illustrated in Figure 1c, the
study area encompasses a 12 km2 subwatershed surrounding a decommissioned sanitary landfill where an
assessment of the migration of a leachate plume was underway [Tremblay et al., 2014]. As reported by Bol-
duc [2003], the surficial sediments of the study area (Figure 1c) consist primarily of Late Quaternary sandy

Figure 1. (a and b) General location of the St-Lambert study area, with the (c) Quaternary sediments map for the subwatershed surround-
ing the decommissioned sanitary landfill, showing the locations of direct-push soundings and observation wells used for aquifer character-
ization. The main depositional direction of sediments making up the granular aquifer is assumed to have been oblique to the orientation
of the paleoshore in a littoral environment. The Quaternary map was modified from Lamarche and Tremblay (unpublished data, 2012).
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and silty sediments that were deposited in the receding Champlain Sea, which was an arm of the Atlantic
Ocean that had invaded the St. Lawrence Valley during the last deglaciation. More specifically, mainly long-
shore currents that redeposited in littoral and sublittoral settings, the sediments supplied to the Chaudière
River paleodelta controlled deposition at the St-Lambert site. This is indicated in Figure 1c by the south-
westward fining of the littoral sediments in conjunction with the southwest-northeast trend of the beach
ridges (L. Lamarche and L. Tremblay, G�eologie des formations superficielles pour le site de St-Lambert-de-
Lauzon, Qu�ebec, unpublished data, 2012). These ridges and the associated nearshore bars are mostly com-
posed of medium to fine sand while the intervening troughs are composed of finer, silty sediments with
poor to very poor grain-size sorting. Thus, the littoral and sublittoral depositional environments resulted in
superposition of long (>100 m) interdigitized sand and silt strata with lateral intrastratal transitions in grain
size as a result of changing energy levels along Champlain Sea shorelines. A more detailed description of
the aquifer heterogeneity of the St-Lambert site is provided by Paradis et al. [2014] and Tremblay et al.
[2014].

2.2. Geophysical Measurements From CPT/SMR Soundings
According to the regional surficial sediments geology and GPR surveys carried out for the St-Lambert study
[Paradis et al., 2014], the locations of 53 CPT/SMR soundings were selected (Figure 1c). As described in the
next section, the geophysical data of eight soundings are used to establish relations with hydraulic data
according to the proposed methodology in this paper. The remaining 45 soundings are left as a data set of
mechanical and electrical properties of sediments that eventually will be converted into K data and serve as
a base of interpolation to image the heterogeneity in hydraulic properties of the site [e.g., Paradis et al.,
2014]. Direct-push soundings were carried out using a Geotech 605-D rig equipped with a CPT system
including pore pressure measurement combined with a SMR probe. As illustrated in Figure 2 (red lines) for
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location P17 (shown in Figure 1c), CPT and SMR probes allow the simultaneous measurement of two
mechanical and two electrical properties of sediments, respectively, with support of measurements that
range approximately from 3 to 17 cm (Table 1). A 15 cm2 penetrometer cone with a 60� conical tip was
used according to ASTM D3441 standards [American Society for Testing and Materials (ASTM), 2012]. The pen-
etrometer is advanced vertically into the soil at a constant rate of 2 cm/s, though this rate must be reduced
when compact layers are met. This rate of penetration provides then vertical resolution for all CPT/SMR
parameters in the range of 2 cm (Table 1). Inside the probe, two load cells independently measure the verti-
cal stress against the conical tip and the side friction along the sleeve [Lunne et al., 1997]. The support of
measurement of the tip stress (T) and sleeve stress (S) with the CPT probe are 4 and 17 cm, respectively,
according to the probe geometry. A pressure transducer in the cone is also used to measure the pore water
pressure as the probe is pushed into the ground. Despite pore pressure may be an indicator of the presence
of clay, this parameter was used in this study only to correct T data for the overburden stress. The SMR
probe is composed of four electrodes that are connected directly behind the penetrometer [Shinn et al.,
1998]. The inner two rings are used to measure soil capacitance and the spacing between the two rings is
3 cm. The soil moisture probe operates at 100 MHz, thereby reducing the effects of the electrical conductiv-
ity of the soil on the measured dielectric constant. The instrument measures shifts in the frequency reso-
nance of the emitted electro-magnetic signal as it passes through the soil that may be related empirically to
soil moisture content or the dielectric constant (D). The bulk electrical resistivity (R) measurement employs
the outer two rings of the SMR probe, that are spaced 9 cm apart, to apply the current and to measure the
voltage drop (pole-pole configuration). According to the spacing between the electrodes, supports of mea-
surement for D and R are approximately 3 and 9 cm, respectively. The probe operates at a frequency of
1000 Hz to avoid soil polarization effects.

2.3. Hydraulic Conductivity Data From Multilevel Slug Tests
Based on CPT/SMR data obtained in real time during sounding operations, 25 of the 53 direct-push sound-
ings were converted into observation wells (Figure 1c). K values used to establish relations with CPT/SMR
data were obtained by high-resolution multilevel slug tests in eight of the fully screened direct-push wells
(wells labeled in black in Figure 1c). The remaining 17 wells were essentially used for geochemical sampling
in relation to the migration of the leachate plume [Tremblay et al., 2014]. Each well was installed into the
same hole created by the sounding to obtain colocated hydraulic and direct-push data and thus reduce
uncertainty in data analysis related to disparity in interval measurements. The observation wells were
installed with well screen in direct contact with sediments (without sand-pack), which is more suitable for
hydraulic tests carried out over small intervals because it reduces hydraulic short-circuit and skin effects on
test data. Observation wells that are fully screened across the saturated zone were also installed to provide
continuous profiles of K and to obtain hydraulic data for all kind of sediments present over the study area.

Multilevel slug tests were made over 15 cm vertical intervals using a dual-packer assembly to isolate tested
intervals [e.g., Ross and McElwee, 2007], as for the K profile shown in Figure 2. Slug tests were performed
using a pneumatic method to induce an initial lowering of the water level [Levy and Pannell, 1991] and
hydraulic responses were interpreted using the Bouwer and Rice [1976] method. More detailed descriptions
of direct-push well installation and hydraulic testing procedure are provided by Paradis et al. [2014] and

Table 1. Original and Up-Scaled Vertical Resolutions and Vertical Support of Measurements for Direct-Push Parameters (CPT/SMR) and
Hydraulic Conductivitya

Parameter

Original Upscaled

Vertical Resolution
(cm)

Vertical Support
(cm)

Vertical Resolution
(cm)

Data for Moving
Average

Vertical Support
(cm)

Direct-Push Parameters (CPT/SMR)
Mechanical resistance: Tip stress (T) 2.6 6 3.6 4 2 7 16
Mechanical friction: Sleeve stress (S) 2.6 6 3.6 17 2 1 17
Dielectric constant (D) 2.6 6 3.6 3 2 7 15
Bulk DC electrical resistivity (R) 2.6 6 3.6 9 2 4 15

Hydraulic Parameter
Hydraulic conductivity (K) 15 15 15 15

aSupports of measurements are approximations according to the CPT/SMR probe specifications.
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Paradis et al. [2011], respectively. Thus, a total of 280 intervals
were tested and selected according to the range and occur-
rence of CPT/SMR responses, as depicted in Figure 3. Note
that all available 25 wells and the eight selected wells were
not systematically tested due to the time associated with
slug testing (30–60 min per interval), but specific sections in
selected wells deemed representative of the CPT/SMR
responses were instead tested.

2.4. Data Resampling and Rescaling
Statistical techniques require that the different variables be
measured at the same scale and on the same support. How-
ever, this is not the case with CPT/SMR data where data are
taken at a regular time interval but at a rate of penetration
that is not necessarily constant. Therefore, CPT/SMR data
were resampled on a regular grid of 2 cm, a vertical resolu-
tion close to the original resolution (Table 1), using trapezoi-
dal integration [Davis, 1973]. In addition, the vertical support
of measurement for the different hydraulic and geophysical
parameters is not identical (Table 1). In order to properly
compare all measurements (T, S, R, D, and K), the variations in
their support need to be taken into account [Isaaks and Sri-
vastava, 1989]. Hence, all the parameters with the smaller
support (T, S, R, D) were upscaled to the scale of the parame-
ter with the larger support (K). First, each CPT/SMR parameter
was upscaled with a moving average to a vertical support of
15 cm that corresponds to the 15 cm intervals of the multile-
vel slug tests. The number of regularly spaced 2 cm data
used in the moving average was varied according to the orig-
inal support of each direct-push parameter (Table 1). Then,
all direct-push data were resampled using linear interpola-
tion to the 15 cm interval that corresponds to the K intervals
over which hydraulic testing was carried out. Consequently,

all hydro-geophysical data represent both the same vertical resolution and approximately the same vertical
support of measurement (Table 1).

2.5. Descriptive Statistics of the Hydro-Geophysical Training Data Set
Since we are interested in defining relationships between K and CPT/SMR data, descriptive statistics
presented here are for geophysical data available in the same intervals where K measurements are
available, which together form the hydro-geophysical training data set. Statistics for the hydro-
geophysical training data set are presented in Table 2, and histograms for each parameter are
depicted in Figure 4. Since the range in parameter values for most parameter vary over a few
orders of magnitude, a logarithmic transform was applied to make their distribution closer to a
Gaussian distribution. Even though, histograms of the logarithm of geophysical parameter are all
slightly asymmetric: negatively skewed for mechanical parameters (logS and logT) and positively
skewed for electrical parameters (logD and logR). The distribution for logK is rather symmetrical
and uniform (not normally distributed), which suggests weak correlations with direct-push parame-
ters that have different distributions. Indeed, the scatterplots in Figure 4 and the Kendall rank cor-
relation matrix in Table 3 shows no or low correlations between geophysical parameters together
except for logS and logT where the correlation is relatively high (s 5 0.53) and may indicate
redundancy in those two parameters. The correlations between logK and geophysical parameters
are generally significant but very low, except with logS where the correlation is almost null. Stand-
ard deviation for logK is also at least twice the standard deviation of geophysical parameters (even
an order of magnitude greater with respect to logD), which suggests that K may be more sensitive
to changes in sediment types than any direct-push parameter. Thus, all the above indicates that
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the relations between K and direct-push parameters are not strait forward because of the weak
and complex relationships among the parameters that could exist. In the next section, we describe
the learning machine approach to handle this challenge.

3. Description of the Learning Machine Approach

In this section, we first present an outline of the learning machine approach proposed to establish relations
between hydraulic and geophysical data. Then, we briefly review the main algorithms used by the learning
machine: (i) the Gustafson-Kessel fuzzy clustering method employing an adaptive distance norm, which is
an extension of the well-known fuzzy c-means (FCM) algorithm; and relevance vector machine (RVM) that is
a Bayesian probabilistic extended linear model with a prior on the model weights to achieve sparse solu-
tions, which can be used for (ii) regression and (iii) classification problems.

Table 2. Descriptive Statistics for the Logarithmic Distribution of Colocated Direct-Push and Hydraulic Conductivity Data of the Training
Data Seta

Parameter Number Mean Median Minimum Maximum Range Standard Deviation Skewness Kurtosis

logS 280 1.74 1.76 0.15 2.51 2.36 0.31 20.96 2.94
logT 280 3.94 4.00 2.41 4.42 2.01 0.29 21.44 3.63
logD 280 1.39 1.39 1.24 1.53 0.29 0.06 0.36 0.85
logR 280 2.16 2.16 1.61 3.08 1.47 0.25 1.09 3.25
logK 280 25.04 25.05 26.24 23.92 2.32 0.57 0.09 21.10

aParameter symbols are defined in Table 1.
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3.1. Outline of the Learning Machine
Approach
The proposed learning machine algorithm
used to predict hydraulic information from
CPT/SMR data is a two-step sequential pro-
cedure inspired by Lee and Datta-Gupta
[1999] for permeability prediction in com-
plex petroleum reservoirs from borehole
geophysics logs, as illustrated in Figure 5.
The proposed procedure requires that for
each set of direct-push data, HF is first iden-

tified using HF models, and then the associated hydro-geophysical (H-G) relation is used to predict K. While
the knowledge of HF may ease spatial interpretation of K and geological heterogeneity, the selection of the
appropriate H-G relation through HF identification prior to K estimation is also important to provide accu-
rate K estimate, as various geological materials represented by HF may have different hydro-geophysical
behaviors.

Prior using the procedure in Figure 5 to predict HF and K from CPT/SMR data, HF models and H-G relations
need to be developed. The development of the learning machine includes a training and verification phase.
The training phase is a three-step procedure that is schematically illustrated in Figure 6 and described
below:

1. Step 1—HFs definition: the first step in the training process is the definition of homogeneous groups
using unsupervised fuzzy clustering (section 3.2) with K and direct-push data of the training data set.
Clustering involves the grouping of observations in such a way that observations in the same group (clus-
ter) are more similar to each other than to those in other groups. The main rationale behind using cluster-
ing for this study is that various geological materials may have different hydro-geophysical behaviors and
clustering allows the grouping of similar hydro-geophysical characteristics without any prior geological
knowledge. This grouping can thus contribute to alleviate weak correlations among hydro-geophysical
parameters and thus provide more accurate regression equations between K and direct-push data. The
integration of K data in the clustering process is also helpful to define HFs that are hydrogeologically
meaningful. Note here that HFs are defined in the hydro-geophysical space. Moreover, to ensure optimal
predictive capability of the learning machine, an exhaustive search procedure using clustering is applied
to find the most relevant CPT/SMR parameters and to detect intrinsic HF structures in the hydro-
geophysical training data set.

Table 3. Correlation Matrix Showing the Values of the Kendall Rank Cor-
relation for the Logarithm of Direct-Push Data and Hydraulic
Conductivitya

Parameter logS logT logD logR logK

logS 1 0.53 20.09 0.06 20.05
logT 1 0.05 0.34 0.18
logD 1 0.30 0.26
logR 1 0.40
logK 1

aParameter symbols are defined in Table 1.
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Figure 5. General stages for the training of the learning machine to define hydrofacies (HF) models and hydro-geophysical (H-G) relations
from the hydro-geophysical training data set. RVM stands for relevance vector machine. Abbreviations: class., classification; reg., regression.
Parameter symbols are defined in Table 1. Note that HF models and H-G relations are defined independently (in parallel).
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2. Step 2—HF models definition: SINCE clustering is
only a tool applicable to make associations among
observations and cannot be used as a predictive
tool, a multiclass RVM for classification (section 3.4)
is trained to learn how to recognize each previously
defined HF using CPT/SMR data alone. The training
of the RVM to define site-specific HF models is
made with HF labels and corresponding data of the
most relevant CPT/SMR parameters, as defined by
clustering. Note that HF models are defined in the
geophysical space. That is, we are trying to recog-
nize HFs based on their projection from the hydro-
geophysical space to the geophysical space, as geo-
physical data are basic information used to predict
HF and subsequently K (Figure 5).

3. Step 3—Hydro-geophysical relations definition: in
parallel with Step 2, a site-specific hydro-geophysi-
cal (H-G) relation is developed for each HF using dis-
tinct RVMs for regression (section 3.3). Each RVM are
trained using colocated K and direct-push data
(most relevant direct-push parameters) associated
to each HF, as defined by clustering.

Finally, the performance of the trained learning
machine is verified using the sequential procedure
illustrated in Figure 5 to predict HF and K from direct-
push data. In this paper, the verification of the learn-
ing machine is made through an internal and an exter-
nal procedure using cross validation with the training

data set used for the development of the machine and with K data obtained from hydraulic tests not used
in the development process, respectively. As depicted in Figures 5 and 6, the learning machine also includes
a feedback path where the outputs obtained at any stage of the development process can be reconsidered
in a previous stage. The remainder of this section presents the general algorithms used by the learning
machine that involves fuzzy clustering and RVMs for both regression and classification.

3.2. Gustafson-Kessel Fuzzy Clustering
In this study, the Gustafson-Kessel (GK) algorithm [Gustafson and Kessel, 1979] was selected for the cluster-
ing because fuzzy c-means (FCM) methods are known to be stable with small and complex (e.g., outliers,
overlapping clusters) data sets [Mingoti and Lima, 2006; Qiu and Tamhane, 2007; Qiu, 2010], as the hydro-
geophysical training data set described in section 2. In particular, Gustafson and Kessel, [1979] extended the
standard FCM algorithm [Dunn, 1973; Bezdek, 1981] by employing an adaptive distance norm, in order to
detect clusters of different geometrical structures. The GK algorithm aims to find fuzzy partitioning of a
given training data set, by minimizing of the basic c-means objective functional:

JðX; U;V;AÞ5
Xc

k51

XN

i51

lm
ki D2

kiAk
(1)

where X5 xin½ � is N 3 n data matrix which contains N colocated observations, each having n parameters
that correspond to K and direct-push parameters. U5 lik½ � is N 3 c fuzzy partition matrix with c clusters,
which represents the partial memberships of each xi in X. Fuzzy partition allows lik attaining real values in
0; 1½ �. m5ð1;1Þ is the fuzziness weighting exponent, that determines the fuzziness of the resulting clusters.

V5 vc½ � is a vector of cluster centers, which have to be determined. D2
kiAk

5kxi2vkk2
Ak

5ðxi2vkÞTAkðxi2vkÞ is
the squared inner-product distance norm for the GK algorithm. This distance norm is known as the squared
Mahalanobis distance. A is n 3 n norm-inducing diagonal matrix that accounts for the variance of each
parameter n. Each cluster has its own norm-inducing matrix Ak.

Verification/Prediction

HF
models

HF recognition

HF
class

K value

Predicted
HF and K

New direct-push data 
(salient parameters only)

RVM
(class.)

RVM
(reg.)

H-G relations
(per HF)

K prediction

Figure 6. General stages for the prediction of hydrofacies (HF)
class and hydraulic conductivity (K) value from direct-push
data using the trained learning machine. This sequence is also
used for the verification of the learning machine during the
training phase. Parameter symbols are defined in Table 1.
Note that HF recognition and K prediction are carried out
sequentially.
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For a predefined numbers of c clusters, the minimization of J that is carried out with respect to the partition
matrix and the prototypes gives rise to the structure in X. The generic optimization scheme involves a
sequence of iterations, in which we successively update the values of the partition matrix:

lki5
1Xc

j51
ðDkiAk=DjiAk Þ

2=ðm21Þ ; 1 � i � c; 1 � k � N (2)

and the centers:

vi5

XN

i51
lm

ki xiXN

i51
lm

ki

; 1 � k � c (3)

This iterative process terminates when the difference between the fuzzy partition matrices in the following
iterations is lower than a maximum termination tolerance value. The matrices Ak5 qk det ðFkÞ½ �1=nF21

k are
also used as optimization variables in the c-means functional, thus allowing each cluster to adapt the dis-
tance norm to the local topological structure of the data. Fk is the fuzzy covariance matrix of the kth cluster
defined by:

Fk5

XN

i51
lm

ki ðxi2vkÞðxi2vkÞTXN

i51
lm

ki

; 1 � k � c (4)

and it is updated in addition to the partition matrix and the centers in the iterative process leading to the
minimization of J.

3.3. RVM for Regression
In a regression problem, a predictor model y(x) is inferred from a set of input data xif gN

i51 2 Rd along with
corresponding responses (targets) tif gN

i51 2 R. The objective is to make accurate predictions of the targets ti

(e.g., K) from new values of xi (e.g., direct-push parameters). A common approach to express y(x) is as an
extended linear model with a set of M kernel functions /jðxÞ

� �M

j51
, of the following form:

yi5yðxi ; wÞ5
XM

j51

wj/jðxiÞ1w05wT/ðxiÞ (5)

where yi are the model targets, w5 w0;;w1; :::;wM
� �T

are the weights of the model, w0 represents the bias in
the regression model, /jðxiÞ is the response of the jth kernel function to input data, xi, and
/ðxiÞ5 1;/1ðx1Þ; :::;/MðxiÞ½ �T. Note that equation (5) follows the standard probabilistic formulation, where
observed targets, ti differ from the corresponding model targets, yi by a Gaussian noise of zero mean and
variance r2, i.e., ei5ti2yi � Nð0;r2Þ. The extended linear model described in equation (5) is thus a linearly
weighted sum of M kernel functions, where the weights of the model can be inferred using standard proce-
dures for linear models, and nonlinear kernel functions can be employed to model complex training data
set. Then to obtain a predictor model from equation (5), the kernel function has to be chosen and the
weights of the model need to be estimated.

Once the basis functions of the extended linear model described in equation (5) are defined, a likelihood
function is first used for estimating the model weights, w. By assuming an independent zero mean Gaussian
noise model of variance r2, the likelihood of the complete data set can be written as:

pðtjw; r2Þ5
YN

i51

Nðtijwi; r
2Þ

5ð2pr2Þ2N=2exp 2
1

2r2 kt2Uwk2
� � (6)

where U is a N3(M11) design matrix with that contains the responses of all kernel functions /ðxiÞ to the
input data xi.

Then, within a probabilistic Bayesian framework, the likelihood defined in equation (6) is regularized with
an a priori model of weight distribution to alleviate overfitting problems. For regression problems, a
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noninformative Gaussian prior distribution of zero mean and variance aj � 1=r2
wj

is indeed imposed over
each weight:

pðwjaÞ5
YM

j51

Nðwjj0; a21
j Þ (7)

where sparsity is obtained by the use of M independent hyperparameters a5ða0; a1; :::; aMÞT, one per
weight to moderate the strength of the prior. To complete the specification of this hierarchical prior,
hyperpriors are also defined over a and r2 with Gamma distributions as proposed by Tipping, [2001].

Finally, having defined the prior and the likelihood, Bayesian inference proceeds by computing, from Bayes’
rule, the posterior over all unknowns given the data:

pðw; a; r2jtÞ5pðwjt; a; r2Þpða; r2jtÞ (8)

Now, the posterior distribution over the weights pðwjt;a;r2Þ is be computed analytically using:

pðwjt; a; r2Þ5 pðtjw; r2ÞpðwjaÞ
pðtja; r2Þ

5ð2pÞ2ðN11Þ=2jRj21=2exp 2
1
2
ðw2lÞTR21ðw2lÞ

� � (9)

where the posterior covariance and mean are respectively:

R5ðr22UTU1AÞ21 (10)

l5r22RUTt (11)

with A5diagða0; a1; :::; aNÞ.

And, the hyperparameter posterior pða; r2jtÞ is approximated as a delta-function at its most probable values
aMP, r2

MP, which for the case of uniform hyperpriors leads to the maximization of the following marginal
likelihood:

pða; r2jtÞ / pðtja; r2Þ5
ð

pðtjw; r2ÞpðwjaÞdw

5ð2pÞ2N=2jr2I1UA21UTj21=2exp 2
1
2

tTðr2I1UA21UTÞ21t
� � (12)

where I5R21R. Values of a and r2 that maximize the marginal likelihood are obtained using an iterative
approximate Expectation-Maximization (EM) procedure, as described by Tipping [2001]. Essentially, this pro-
cedure proceeds by iterative computation of the updating rules for a and r2, defined as:

anew
i 5

ð12aiRiiÞ
l2

i
(13)

ðr2Þnew
5

kt2Ulk2

N2Rið12aiRiiÞ
(14)

concurrent with updating the posterior statistics R and l from equations (10) and (11), until some suitable
convergence criteria is satisfied. In the iterative maximization of equation (12), many of the hyperpara-
meters aj tend to infinity and the corresponding weights wj are thus deleted from the model, as well as their
associated kernel functions /jðxÞ, leading to a sparse solution. The remaining observations that have non-
zero weights are the relevance vectors.

At the convergence of the hyperparameter estimation procedure, predictions are made on the basis of the pos-
terior distribution over the weights, conditioned on maximizing values aMP and r2

MP. Thus, given new input data
x�, the probability distribution of the corresponding target y� is given by the Gaussian predictive distribution:

pðt�jt; aMP; r
2
MPÞ5

ð
pðt�jw; r2

MPÞpðwjt; aMP; r
2
MPÞdw � Nðt�jy�; r2

�Þ (15)
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where the mean and the variance of the prediction are, respectively:

y�5lT/ðx�Þ (16)

r2
�5r2

MP1/ðx�ÞTR/ðx�Þ (17)

The predictive mean is thus the basis functions evaluated for the new input data x� weighted by the
posterior mean weights (relevance vectors), whereas the predictive variance comprises the sum of
the estimated noise on the data (first term) and due to uncertainty in the prediction of the weights
(second term).

3.4. RVM for Classification
RVM for classification follows an essentially identical framework as previously detailed for regression, except
that the likelihood function is adapted to account for the target quantities (discrete data). In this section, we
consider a two-class classification problem with a set of input data xif gN

i51 2 Rd along with corresponding
targets tif gN

i51 (e.g., HF) that may take discrete values of 0 or 1 (class labels). Thus, applying the logistic sig-
moid link function rðyÞ51=ð11e2yÞ to yðx; wÞ and adopting a Bernoulli distribution to account for the dis-
crete probability distribution of the target data, the likelihood function is expressed as:

PðtjwÞ5
YN

i51

r yðxn; wÞf g
ti

12r yðxn; wÞf g½ �12ti (18)

A Bernoulli distribution is a discrete distribution having two possible outcomes n that takes value of 1 with
success probability p and value of 0 with failure probability q5ð12pÞ with probability density function of
PðnÞ5pnð12pÞ12n. And, the logistic sigmoid function is a S-shaped curve between 0 and 1 that is used to
model the Bernoulli probability distribution as a continuous variable. Note that there is no noise variance r2

expressed in the likelihood function.

The likelihood defined in equation (18) is then regularized with an a priori model of Gaussian distribution of
zero mean and variance aj imposed over each weight, as defined in equation (7). Hyperpriors are also
defined with Gamma distributions, but only over a because there is no noise variance r2 considered for
classification problems. Finally, from Bayes’ rule, and considering uniform hyperpriors, the posterior over all
unknowns is given as:

pðw; ajtÞ5pðwjt; aÞPðtjaÞ (19)

For the classification case, the posterior distribution over the weights pðwjt; aÞ cannot be evaluated analyti-
cally, and posterior statistics are evaluated using the Laplace approximation [MacKay, 1992], as proposed by
Tipping [2001]. With this approach, since pðwjt; aÞ / PðtjwÞpðwjaÞ, the most probable weights wMP are
found by iteratively maximizing the following logistic log likelihood function over the weights w:

log PðtjwÞpðwjaÞf g5
XN

i51

ti log yi1ð12tiÞlog ð12yiÞ½ �2 1
2

wTAw (20)

with yi5r yðxi; wÞf g. And, the posterior covariance R is obtained by a quadratic approximation to the log-
posterior around its mode that is estimated using the previous logistic log likelihood. Thus, at the mode of
the posterior distribution, the covariance and most probable weights are, respectively:

R5ðUTBU1AÞ21 (21)

wMP5RUTBt (22)

where B5diagðb1; b2; :::; bNÞ is a diagonal matrix with bi5r yðxiÞf g 12r yðxiÞf g½ �.

Identical to the regression case, the hyperparameter posterior PðtjaÞ is approximated as a delta-function at
its most probable value aMP, and values of a that maximize the marginal likelihood are obtained iteratively
using the posterior statistics R and wMP from equations (21) and (22), and updating hyperparameters a until
convergence:

Water Resources Research 10.1002/2014WR015452

PARADIS ET AL. VC 2014. Her Majesty the Queen in Right of Canada
Water Resources Research VC 2014. American Geophysical Union.

493



anew
i 5

ð12aiRiiÞ
w2

MP
(23)

At the end of the maximization procedure of the marginal likelihood, predictions are made on the basis of
the posterior distribution over the weights, conditioned on maximizing values aMP. Thus, given new input
data x�, the probability distribution of the corresponding target y� is given by the logistic sigmoid predictive
distribution:

y�5r wT
MP/ðx�Þ

� �
(24)

which vary from 0 to 1. Thus, the probability of membership to one of the class (class 0 or 1) can be eval-
uated using equation (24).

For a model with more than two classes, a multiclass classification approach for which a series of binary
classifications is performed should be adopted. Two of the common methods for multiclass classification
include the one-against-all (1AA) and the one-against-one (1A1) techniques. The 1A1 approach is adopted
here because it generally produces better classification performance over the 1AA approach [Allwein et al.,
2000; Hsu and Lin, 2002]. In the 1A1 approach, each class is compared to each other class [Hastie and Tibshir-
ani, 1998] and a binary model is built to discriminate between each pair of classes, while discarding the rest
of the classes. This requires building c(c21)/2 binary models. When testing new input data x�, a voting is
performed among the various binary models and the class with the maximum number of vote wins, and
this class label is assigned to the new input data x�.

4. Development of the Learning Machine

In this section, we present results of the training of the learning machine, as proposed in section 3,
using the training data set described in section 2. Predictions for HF and K from the trained learning
machine are also verified through a cross-validation procedure using the training data set, and with K
data from hydraulic tests not used for the development of the learning machine. In addition, robust-
ness as a function of reduced training data set and computational cost of the learning machine are
also discussed.

4.1. Fuzzy Clustering for HF Definition
The first step of the training phase is the definition of HFs through fuzzy clustering (Figure 5). The clustering
was carried out with the Matlab Fuzzy Clustering and Data Analysis Toolbox [Balasko et al., 2005] with all
the 280 colocated K and CPT/SMR measurements of the training data set. To avoid the largest-valued
parameters to bias the clustering, the logarithm distribution of the original data for each parameter was
normalized to a common scale using their respective distribution range. Every clustering simulation was
also initialized with random seeds. Experiments were done with different seeds not reported here and those
results were very similar to the ones given in this paper.

In this study, a systematic procedure was applied to search for the combination of CPT/SMR parameters
and the number of HFs to include in the clustering to obtain the learning machine with the best predictive
capability. As suggested in Table 3, each direct-push parameter contains information about K to various
degrees, which used alone or in combination with other parameters may affect in different ways the predic-
tive capability. Also, according to the geological materials present over the study area, hydro-geophysical
responses may show different behaviors than what we wish to detect in order to have meaningful relations
for each material. Thereby, the systematic search procedure indicated the most salient CPT/SMR parameters
and the distinct structures in the training data set.

The predictive capability of the learning machine during clustering was estimated as the overlapping
between HFs defined in the geophysical space, which results from the lost of information due to the non-
uniqueness between hydraulic and geophysical parameters. It should be remembered that HFs are defined
here in the hydro-geophysical space with K and direct-push data, but the prediction of HF and K is made in
the geophysical space only using direct-push data. As illustrated in Figure 6, an improper HF recognition
during the prediction process will indeed results in the selection of the wrong hydro-geophysical relation to
predict K. To assess the degree of HF overlapping for each examined combination of geophysical
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parameters and HF number, we define the HF overlapping index (HFOL) as the percentage of misclassified
observations resulting from the projection of HFs from the hydro-geophysical to the geophysical space:

HFOL5
jHFhg2HFgj
jHFhg [ HFgj

x100 (25)

where HFhg and HFg are HF labels in the hydro-geophysical and geophysical spaces, respectively. This is sim-
ply the number of HF labels different to both spaces divided by the total number of HF labels in both
spaces. A lower value of HFOL indicates less overlapping between HFs and a better potential of recognition
from direct-push data. HFOL is estimated through clustering by imposing HF coordinate centers obtained in
the hydro-geophysical space to new HFs using only geophysical data. Note that only the coordinate centers
of the direct-push parameters are used for the new clustering to simulate dimensionality reduction from
the hydro-geophysical space to the geophysical space. HFOL is thus obtained by comparing labels for each
observation in the two spaces after fuzzy memberships are transformed to integer numbers by using the
HF label with the maximum fuzzy membership.

The results of the exhaustive search procedure for direct-push parameters and HF number are presented in Figure
7. During this procedure, all combinations of geophysical parameters with various numbers of HFs were individu-
ally clustered using the GK algorithm to find HF structures with the lowest HFOL value (less HF overlapping). A total
of 84 combinations were thus examined with the number of HFs varied between 2 and 7, and K data included in
all clustering experiments. The fuzziness weighting exponent m was fixed to a value of 2 for all experiments. Note
that varying m between 1 and 4 did not provide significant differences in HFOL values for our data set.

Several observations can be made from Figure 7. First, HF overlapping generally decreases with the number
of geophysical parameters used to define HFs, as expressed by decreasing HFOL values. For instance, HFOL
for a subset using only one geophysical parameter is up to 66% (e.g., SK with 4 HFs), while HF overlapping
is as low as 13% for subsets using three or four direct-push parameters (e.g., TDRK with 4 HFs). Our interpre-
tation is that for perfectly correlated geophysical parameters with K, only one geophysical parameter is nec-
essary to predict K from geophysical parameters, and dimensionality reduction is not leading to HF
overlapping (assuming noise-free data). However, with weakly correlated geophysical parameters with K,
and possibly heterogeneous correlations varying according to the geological materials, more geophysical
parameters are needed. For that case, any degree of correlation is stretching the cloud of observations in
the direction of the correlation. The larger the correlation, or anticorrelation, the stronger is the stretching.
Thus, the larger is number of geophysical parameters, even with weak correlation with K, the larger is the
distortion of the cloud and the more distinct are the HFs projected in the geophysical space.

Another important observation from Figure 7 is that some CPT/SMR parameters are better suited to define
HFs with minimal overlapping. According to Figure 7, the clustering experiment that provides lower HFOL
value is the subset with direct-push parameters T, D, and R with 4 HFs (thereafter referred as the TDRK_GK_4
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Figure 7. Hydrofacies (HF) overlapping index (HFOL) values resulting from the projection of the HFs defined in the hydro-geophysical
space with Gustafson-Kessel (GK) clustering to the geophysical space for different number of HFs and subset of direct-push parameters.
Note that hydraulic conductivity (K) is included in all clustering subsets. The arrow indicates the parameter subset (parameters T, D, R, and
K with 4 HFs: TDRK_GK_4 subset) with the best predictive capability based on HFOL values, which was used to illustrate the development
of the learning machine. Parameter symbols are defined in Table 1.
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subset), which do not includes parameter S. Examination of the correlation matrix in Table 3 suggests that
the null correlation of S with K and the redundancy with T (high correlation) may explains why this parame-
ter was not retained in the search procedure with geophysical parameters. From Figure 7, we also observe
that for the same number of parameters, subsets with S generally present the higher HFOL values.

Data distribution for each HF and parameter for the TDRK_GK_4 subset are illustrated in Figure 8, where we
assigned observations to the highest HF membership. The median and range of values for K and each
retained direct-push parameter are fairly distinct between HFs with only a few outliers. Particularly, the
median values for K gradually increase from HF1 to HF4, with slight overlaps between HFs that may be
attributed to the complexity of the hydro-geophysical responses and to the transitional nature of the littoral
depositional environment. Moreover, each HF presents distinct profiles of K and direct-push parameters, as
expected from the various sediments composing the aquifer that may present different hydro-geophysical
responses. As depicted in Table 4, clustering also results in distinct rank correlation between parameters for
each HF and higher rank correlations between geophysical parameters and K.
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Figure 8. Data distribution for each of the four hydrofacies (HF) resulting from the clustering experiment with the best predictive capabil-
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size values are based on sieve analyze of 62 sediment samples colocated with direct-push and hydraulic measurement intervals [see Para-
dis et al., 2014]. Parameter symbols are defined in Table 1.

Table 4. Correlations Matrix Showing the Values of the Kendall Rank Correlation for the Logarithm of Direct-Push Parameters and
Hydraulic Conductivity for Each Hydrofacies of the TDRK_GK_4 Subseta

Parameter logT logD logR logK Parameter logT logD logR logK

Hydrofacies 1 Hydrofacies 2
logT 1 0.17 0.34 0.18 logT 1 20.22 0.06 20.39
logD 1 20.18 0.13 logD 1 0.50 0.36
logR 1 0.02 logR 1 0.12
logK 1 logK 1
Hydrofacies 3 Hydrofacies 4
logT 1 0.51 0.58 0.38 logT 1 20.26 0.07 0.26
logD 1 0.70 0.44 logD 1 20.40 20.08
logR 1 0.27 logR 1 20.04
logK 1 logK 1

aParameter symbols are defined in Table 1.
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We note that few other parameter subsets could
provide alternative solution to the TDRK_GK_4 sub-
set (e.g., TDRK_GK_2, TDRK_GK_6, STDK_GK_6,
DRK_GK_2). But, we selected the TDRK_GK_4 sub-
set because it separates the data set into 4 HFs that
can be correlated to available lithological informa-
tion to allow a better integration with the littoral
depositional model [Paradis et al., 2014]. These
alternative-clustering solutions could however be
used within a geostatistical framework to account
for model selection uncertainties. In this paper,
only the TDRK_GK_4 subset is explored. Note that
the reexpression of the principal component analy-
sis of the data set and features construction as
product of original parameters were also tested
[e.g., Guyon and Elisseeff, 2003]. Those experiments
did not however provide lower HFOL values than
TDRK_GK_4, likely due to the loss of information
caused by the filtering process and dimensionality
reduction.

4.2. Multiclass RVM Training for HF Models
Definition
In order to build predictive HF models for our study
site, a multiclass RVM is trained to recognize HFs of
the TDRK_GK_4 subset using data for parameters T,
D and R (Step 2 in Figure 5). Note that HF data used
for the training are integer numbers obtained from
the transformation of fuzzy memberships resulting
from clustering. Figures 9a and 9b show graphs
used for the selection of the optimal kernel window
length of the multiclass RVM using a Gaussian ker-
nel function. To find the optimal kernel window
length, the classifier performance (Figure 9a) and

complexity (Figure 9b) are assessed for various kernel functions and kernel window lengths using training
and testing data sets. The classifier performance is defined here by the HF misclassification error associated
to the RVM (HFRVM) that is evaluated using an equation similar to equation (25):

HFRVM5
jHFc2HFRVMj
jHFc [ HFRVMj

x100 (26)

where HFc and HFRVM are HF labels from clustering and RVM classification, respectively. Note that HFc are
integers obtained from the transformation of fuzzy memberships, whereas HFRVM are integers resulting
from the multiclass voting process. A lower value of HFRVM indicates a better HF predictive capability of the
RVM. The model structural complexity (sparsity) of the classifier is expressed by the total number of rele-
vance vectors used by the RVM classifier as follow:

RV5
Xc

k51

RVk (27)

where RVk is the number of the relevance vectors per HF. A lower RV value produces a smoother solution.

Thus, for a given kernel function and a kernel window length, relevance vectors are first determined with
the procedure in section 3.4 using the training data set. Then, HFs are predicted using the testing data set
with equation (24) and previous relevance vectors. Finally, performance and sparsity of the classifier are
assessed using equations (26) and (27), respectively. This procedure was repeated for different kernel win-
dow lengths to produce Figures 9a and 9b with a Gaussian kernel function. Note that we are using
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Figure 9. Graph of: (a) the hydrofacies (HF) misclassification error
(HFRVM) associated with the classifier performance of the rele-
vance vector machine (RVM), and (b) the number of relevance
vector (RV), versus the kernel window length. The arrow on each
figure indicates the optimal kernel window length for the training
of the RVM for classification. Each curve represents a pair of HF
used for the one-against-one (1A1) classification. Results are for a
Gaussian kernel function.
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normalized parameters and kernel window
widths; so different parameters can thus be plot-
ted on the same axis in Figures 9a and 9b. Differ-
ent kernel functions can also be tested. The
supervised classification with RVM was carried
out with the SPARSEBAYES Matlab Toolbox [Tip-
ping and Faul, 2003; Tipping, 2009] using Ber-
noulli likelihood.

To avoid bias in the selection of training and test-
ing data sets, a 10-fold cross-validation proce-
dure [Geisser, 1975] was followed to produce
Figures 9a and 9b. Cross validation with partial
data splitting is reported to be a robust proce-
dure for model selection of classification prob-
lems [Arlot and Celisse, 2010]. With this
procedure the entire training data set is split ran-
domly into 10 groups of similar size and each
group is used in turn as a testing set, while the
other nine groups are used together to form a
single training set. The average value of the 10
experiments for each kernel window length of a
given kernel function is then used to plot HFRVM
and RV curves. We note in Figures 9a and 9b that
statistics for HFRVM and RV are also provided for
each of the six binary models used by the 1A1
approach for the training of the multiclass RVM.

According to Figures 9a and 9b, we selected a
unique kernel window length of 0.1 as the opti-
mal value for best predictive capability of the
RVM classifier with a Gaussian kernel function.
Note that other kernel functions were also
tested, but those experiments did not provide
better predictive capabilities as verified by the
procedure presented in section 4.4. The selection
of the kernel window length followed the elbow-
criterion, to find the optimal number of rele-
vance vectors that strike a balance between
overfitting and oversmoothing the testing data,
while obtaining a RVM classifier with low HFRVM
value. On one hand, using a large number of
relevance vectors generally leads to a good clas-
sifier performance with training data, but to poor
generalization capability when used with testing
data because the overfitted model describes the
random error instead of the underlying relation-

ship [Tetko et al., 1995]. On the other hand, using very few relevance vectors leads to poor classifier perform-
ance with both training and testing data due to the oversmoothing of the underlying relationship.

4.3. RVM Regression Training for H-G Relations Definition
Similar to the definition of HF models with RVM classification, kernel functions and kernel window lengths
are tested to define H-G relations with the best predictive capabilities using K, T, D, and R data of the
TDRK_GK_4 subset (Step 3 in Figure 5). As illustrated in Figures 10a–10c for a given Laplace kernel function,
a H-G relation is independently defined for each of the four HFs. Note that for developing H-G relation for a
given HF, we assign each observation (K, T, D, R data) to the HF with the maximum membership after the
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fuzzy memberships of each observation obtained from clustering are transformed to integer numbers. Reli-
ability of the H-G relations is defined in terms of goodness-of-fit statistics that also reflect the adequacy and
significance of the predicted model. These key statistics are mean error (Bias) and root-mean-square error
(RMS):

Bias5N21
XN

i51

ðt�i2y�iÞ (28)

RMS5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N21

XN

i51

ðt�i2y�iÞ2
vuut (29)

Additionally, we used the number of relevance vector defined in equation (27) as an index of structural
complexity of the RVM regressor.

For the training of RVM regressors, a LOO cross-validation procedure [Stone, 1974] is followed, where each
observation is successively left out from the entire training data set and used for testing. This procedure is
generally well suited for model selection of regression problems and produces almost unbiased assessment
of performances [Arlot and Celisse, 2010]. Thus, for a given kernel function and kernel window length, rele-
vance vectors are determined with the procedure described in section 3.3 using all available data except
one observation, and K prediction is made using equation (16) with the observation left out. This process is
repeated until all observations have been used as testing data and the average for all experiments is used
to assess performances (Figures 10a and 10b) and sparsity (Figure 10c) of the RVM regression models. The
supervised regression was carried out with the SPARSEBAYES Matlab Toolbox [Tipping and Faul, 2003; Tip-
ping, 2009] using Gaussian likelihood. According to Figures 10a–10c, the optimal kernel window lengths for
HF1 to HF4 are 0.4, 0.15, 0.4, and 0.5, respectively. Note that the Laplace kernel function used in Figures
10a–10c provided the best predictive capabilities as verified by the procedure presented in section 4.4.

4.4. Cross Validation of HF and K Predictions
In this section, we assess the error associated with the application of the previously trained learning
machine to identify HF and predict K from CPT/SMR data for our study site. The verification process follows
the same sequential steps for prediction illustrated in Figure 6 using training and testing data sets. First, the
training data with parameters of the RVMs (kernel function and window length) are used to build HF mod-
els and H-G relations. Then, for a given CPT/SMR observation (T, D, R for this example) of the testing set, HF
is predicted using HF models, and the H-G relation corresponding to this HF is then applied to estimate K
using the same CPT/SMR data. Predicted HF and K are then compared to known values of the testing set to
assess performances. Note that predicted HFs here are the result of the multiclass voting process. To assess
classification and regression errors, we randomly selected 80% of the available colocated H-G data and
used it as a training set while the remaining 20% was used as a testing set. This procedure was repeated
100 times to provide error distributions associated with the selection of training and testing sets. The same
RVM parameters (kernel function and window length) found in sections 4.2 and 4.3 were used for all
simulations.

In order to illustrate the performance of the learning machine, we selected the cross-validation simulation
with median HFRVM value, along with corresponding K values predicted for this simulation, as depicted in
Figures 11a and 11b. Figure 11a presents a confusion matrix comparing the HF classification obtained by
the RVM classifier to the original classification made by clustering for the simulation with the median HFRMS
value. The classification error is fairly well distributed over all HFs with HFRMS for each HF ranging from 10%
to 21%, with a median HFRMS value for all HFs of 14%. The median value obtained from the cross-validation
procedure is similar to the HFOL value of 13% obtained from clustering to evaluate the degree of HF over-
lapping associated with nonuniqueness between K and CPT/SMR parameters. This means that the classifica-
tion with the RVM is almost perfect, as expressed by close HFRMS and HFOL values, and the obtained
HFRMS value is associated with nonuniqueness as discussed in section 4.2.

Figure 11b also presents a scatter plot comparing logK estimates obtained by the RVM regressors to the
value obtained from slug tests for the same testing data set used in Figure 11a. The correlation coefficient
between predicted and field logK estimates is 84% and there is no bias in the estimate as the regression
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line overlaps the 1:1 perfect fit line. This is in
agreement with results of the cross valida-
tion for all the 100 simulations that indicate
that there is no significant bias in K esti-
mates, as expressed by a median Bias value
of 0.016, and median RMS error of 0.327,
which represents approximately 14% of the
total range in logK values. According to the
sequential procedure to estimate K in Figure
6, we note that reported error for predicted
K is cumulative and depends on both the
capability to recognize HFs, which depends
on nonuniqueness and accuracy of the HF
models, and the accuracy of the H-G rela-
tions used to make K predictions.

4.5. External Verification of K Predictions
To further assess the prediction capabilities
of the developed learning machine to esti-
mate K, we predict K values for 3 wells (wells
labeled in red in Figure 1c) where colocated
CPT/SMR and K data were available. A total
of 64 K data were obtained from flowmeter
tests according to the field data acquisition
procedure provided by Paradis et al. [2011],
while direct-push data were rescaled to the
same 15 cm intervals of the flowmeter tests
following the procedure in section 2.4.
Direct-push values used for external verifica-
tion are within the range of geophysical
responses of the training data set (Figures 3
and 4 and Table 2), except for few D meas-
urements at well P7 that are slightly above
the training range. Predictions of K values
followed the predictive procedure in Figure
6 with the same kernel functions and kernel
window lengths previously used for cross-
validation (internal verification) purposes.

Figure 12 presents a composite well plot
comparing logK estimates obtained by the

learning machine to the value obtained from flowmeter tests for the same 15 cm intervals. Several observa-
tions can be made from Figure 12. First, the correlation coefficient and RMS error between predicted and
flowmeter logK estimates are 84% and 14%, respectively, which is similar to results of the previous cross-
validation procedure. Indeed, because the actual predictive process for external verification uses 100% of
the available training data set instead of 80% for the cross validation, equal or slightly better K estimates
could be expected with new data representative of the data set used for the training of the learning
machine. We should note however that the learning machine was trained with K data from slug tests that
may differ from K estimates from flowmeter tests. Indeed, the study of Paradis et al. [2011] that compared K
estimates from flowmeter and multilevel slug tests, for 123 of the 280 intervals of the training data set used
to develop the learning machine, showed correlation coefficient and RMS error of 88% and 10%, respec-
tively. While there are certainly differences between the various methods to estimate K, it appears that the
proposed indirect method to estimate K from CPT/SMR data compares fairly well with direct methods based
on hydraulic tests (slug and flowmeter tests). Finally, although the general trend in logK values is similar for
both predicted and flowmeter distributions, the range in predicted logK is slightly narrower than the
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Figure 11. (a) With a testing data set (n 5 56 observations), the confusion
matrix compares the hydrofacies (HF) classification obtained by the rele-
vance vector machine (RVM) classifier to the original classification made by
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21%; HF4 2/15, 13%; overall 8/56, 14%). (b) Comparison of the logarithm of
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estimation made using RVM regressors with the same verification data set
shown in Figure 11a.
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observed range. This indicates that the learning
machine smooths logK estimations, which is inherent
to any estimation process (classification and
regression).

4.6. K Estimates at New Locations: Geophysical or
Spatially Informed?
In previous sections, we demonstrated that CPT/SMR
data could provide accurate information about K
through a learning machine process. However, it may
be interesting to see if such an approach is worth the
effort in term of prediction accuracy with respect to a
kriging approach that make uses only of available
direct K data from hydraulic testing. This would help
answer a fundamental question for the study site,
which is to assess whether accuracy of K predicted at
new locations is the result of spatial correlation
between K estimates at sampled and new locations, as
spatial correlation could be implicitly inscribed into the
hydro-geophysical relations that we previously defined,
or instead if the geophysical data really contributing to
information about K at new locations.

Figure 12 presents K estimates at P15, P21, and P7
using kriging of the 280 K values of the training data
set. The modeling of the spatial structure for kriging
interpolation consists in distinct three nested struc-
tures in the horizontal and vertical directions. The mod-
eled variogram defined using K data estimated from
slug tests along P4, P6, P11, P17, P10, P1, and P3 (Fig-
ure 1) has the following characteristics: nugget value of
0.023 (m/s)2 and two spherical models (horizontal
ranges 5 500/4000 m and vertical ranges 5 3.1/1 3

106 m) with sills 5 0.129/0.5 (m/s)2. Those semivario-
gram parameters were needed to match the nonsta-
tionary (quasi-linear) experimental semivariogram,
which is the result of the transitional littoral environ-

ment of the study area that shows spatially varying grain-size sediments, and then hydraulic properties,
according to the distance from the paleoshoreline [Paradis et al., 2014]. Due to the strong difference in scale
between horizontal and vertical semivariograms, a search radius procedure for interpolation using the six
closest observations was defined to avoid numerical instability and to compensate for the nonstationary of
the geostatistical model.

Examination of Figure 12 reveals that kriging results do not match very well flowmeter estimates, especially
for wells P7 and P15 that are far (more than few hundreds meters) from well with available direct K data
(Figure 1). Except for well P21, that is very close to well P17 (<10 m), information about K at new locations
is hardly provided by spatial correlation and converted geophysical data better predict K information over
the study area. This is obviously expected from the complex geology and the size of the study area with
respect to the number of direct K data available, which both preclude developing a meaningful geostatisti-
cal model and conditioning of the interpolation.

4.7. Robustness of the Learning Machine to Reduce Training Data Set
An important unknown in aquifer characterization is the number of data needed to appropriately character-
ize a site, which are often limited due to the cost associated to data collection. In the context of this study,
it is worth asking when a sufficient number of data have been acquired to train the learning machine. Thus,
we tested the robustness of the learning machine as a function of its accuracy when reducing the size of
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the training data sets. Figure 13
shows the evolution of the RMS
error evaluated using the flow-
meter testing set versus the size
of the training data set used by
the learning machine. For each
decimated data set, we randomly
selected 100 training data sets
and plotted the RMS error distri-
bution as illustrated in Figure 13.
Note that the full data set with
100% use all of the 280 observa-
tions of the training data set, and
its statistics corresponds to the
external verification discussed in
section 4.5. Predictions for all data
sets followed the procedure in
Figure 6 using previous optimal
RVMs parameters.

Several observations can be made
from Figure 13. First, while the
median RMS error increases with
reducing data set size, the mini-
mum RMS error is approximately

constant for all reduced data sets and close to the RMS error with 100% of the training data set. This suggests
that as long as the reduced training data set has the same statistical characteristics as the full training data
set, the accuracy of the predictions will remain the same even with a reduced data set. RVMs are thus robust
predictors with sparse data set, as theoretically claimed. However, accuracy of K predictions may decrease
drastically with a reduced data set, as expressed by the spreading between minimal and maximal RMS errors.
This raises the question of representativeness of a training data set to train a learning machine, and conse-
quently to properly characterize hydraulic properties of a site. While analysis of Figure 13 cannot tell us
whether the actual training data set used to develop the learning machine for our site is adequate, the use of
a larger data set certainly increases the chance to get a representative training data set, as expressed by the
narrowing of RMS error spreading for larger data sets. Finally, the spreading of the RMS error for different
reduced data sets may be an indication of the complexity of the training data set. Statistically, more homoge-
nous data sets would present narrower RMS error spreading, and better precision for a reduced data set.

4.8. Computational Cost
Typically, the computational cost of RVMs increases with the number of observations used since the com-
plexity and memory storage of the computational operations scale with the square and the cubic of the
number of basis functions M, respectively. Thus, for problems with a high number of training data
(N> 1000), using RVM could be prohibitively expensive [e.g., Khader and McKee, 2014]. In our case study,
the computational burden was not a problem because training a single model requires only a few seconds
using 280 observations (QuadCore i7@2.2Ghz on OSX platform). The computational cost for our application
is thus mostly related to the number of simulations used for cross validation (e.g., kernel window length
selection, performances assessment). For instance, the computation of Figure 9 for classification model
selection was carried out in less than 15 min. Note that in this study, we used a fast implementation of
RVMs that optimizes the marginal likelihood function through sequential addition and deletion of candidate
basis functions [Tipping and Faul, 2003].

5. Summary and Conclusions

This paper presented a learning machine approach to define site-specific relationships in order to estimate
aquifer hydraulic properties based solely on geophysical measurements. Specifically, we explored the use of
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CPT/SMR soundings data for K estimation using a statistical framework combining fuzzy clustering and RVMs.
HFs reflecting geological materials present within the studied aquifer were first extracted from a training data
set composed of K data measured in wells using 15 cm vertical resolution packer slug tests and CPT/SMR data
that include resistance to penetration (tip stress, T), mechanical friction (sleeve stress, S), dielectric constant of
bulk sediments (D) and DC electrical resistivity (R). All colocated K and CPT/SMR data were up-scaled to a com-
mon vertical resolution of 15 cm for the purpose of establishing H-G relations. RVMs for classification and
regression were then trained independently using previous clustering data to define predictive HF models
and H-G relations, respectively. Accuracy of HF and K estimates using the developed learning machine was
assessed, through a cross-validation procedure with the training data set and by external verification with K
data not used during the training process, to evaluate the potential of CPT/SMR data for K estimation. Impor-
tant conclusions and observations resulting from this study, which can be generalized to successfully employ-
ing geophysical data for hydraulic property characterization, include the following:

The combined use of CPT/SMR soundings and RVM-based learning machine hold the potential to estimate
K at a high-vertical resolution under real field conditions, as indicated by results of the cross-validation and
external verification. Factors that contributed to these promising results are twofold:

1. First, in addition to the vertical decimeter-scale resolution offered by direct-push soundings, the multipara-
meter CPT/SMR probe contributes to reduce nonuniqueness between geophysical and hydraulic parame-
ters by providing a series of complementary geophysical parameters to correlate with K. As seen in Figure
7, a better potential of accurate estimation of hydraulic data is generally achieved when using more geo-
physical parameters. However, despite up to four geophysical parameters from the CPT/SMR probe were
available to correlate with K, it was not possible to completely resolve nonuniqueness, as expressed by the
nonzero degree of HFs overlapping. This remaining uncertainty is inherent to measurement and interpreta-
tion errors, but also to the fundamental nature of the relationships between geological materials and corre-
sponding hydro-geophysical responses. While the degree of limitation to fully represent hydraulic
properties through indirect geophysical approaches may vary from site to site, the choice and number of
geophysical parameters to use are crucial to ensure meaningful hydrogeological interpretation of geophysi-
cal data.

2. Second, the learning machine composed of fuzzy clustering and RVMs offers a robust and flexible
approach to build meaningful relations between hydraulic and geophysical data. Indeed, the division of
the training data set in HFs with distinct hydro-geophysical responses, which can be associated to differ-
ent geological materials, contributes to alleviate the complexity in the established relations. In addition,
RVMs for classification and regression are effective to establish HF models and H-G relations with good
generalization capabilities, which is critical for successfully employing geophysical data for hydraulic
properties characterization.

As nonparametric learning machines are based on empirical data, the selection of a representative training
data set is fundamental to establish meaningful relationships for a particular study area. Three aspects here
have to be pointed out:

1. First, as suggested in Figure 13, no single statistical algorithm can compensate for an unrepresentative
training data set. Whether a training data set is ‘‘truly’’ representative of a specific study area is an unan-
swered question because the ‘‘reality’’ would be always hidden. In this context, a comprehensive data
acquisition approach should be developed and adopted [e.g., Bradford and Babcock, 2013; Paradis et al.,
2014] to ensure a more representative training data set. Such approaches are needed to ensure the cov-
erage of the entire range of hydraulic and geophysical responses present over a study area.

2. Second, the acquisition of K data for aquifer characterization based on H-G relations leads to new ways to
target hydraulic tests, which are carried out in the perspective of providing K values over the observed
range of geophysical responses in a given study area. Such a perspective and approach can contribute to
a more efficient aquifer characterization process because less time-consuming hydraulic tests are needed.
This is especially true for study area with complex geology where difficult to obtain direct K data from
hydraulic tests in few wells are not sufficient to provide a meaningful geostatistical model.

3. Third, high-resolution hydraulic testing has to meet more specific criteria than conventional testing over
long screens. Notably, in the design of suitable observation wells for reliable K estimates (e.g., sand-pack
free and fully screened well), and more efficient hydraulic testing approaches (e.g., direct-push hydraulic
testing, flowmeter tests) to acquire larger high-resolution K training data sets.
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