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A nonparametric simulation model (𝑘-nearest neighbor resampling, KNNR) for water quality analysis involving geographic
information is suggested to overcome the drawbacks of parametric models. Geographic information is, however, not appropriately
handled in the KNNR nonparametric model. In the current study, we introduce a novel statistical notion, called a “depth function,”
in the classical KNNRmodel to appropriately manipulate geographic information in simulating stormwater quality. An application
is presented for a case study of the total suspended solids throughout the entire United States. The stormwater total suspended
solids concentration data indicated that the proposed model significantly improves the simulation performance compared with the
existing KNNR model.

1. Introduction

Human activities in urban areas create a large number of
pollutants. These pollutants are carried by stormwater into
inland water bodies such as streams, rivers, and lakes, endan-
gering the local ecosystems. During the last few decades,
governments and communities have developed strategies to
reduce urban stormwater pollution. Tomeet these objectives,
a number of approaches for water quality analysis and
modeling such as the environmental probability plot, the
box-whisker plot, and the 𝑘-𝐶∗ model method have been
developed; see [1–5]. For instance, in 1983, the United States
Environmental Protection Agency (US EPA) established the
national pollutant discharge elimination system (NPDES),
imposing water quality requirements for urban storm sewer
systems to secure the environment around water bodies.
However, stormwater quality data are inherently difficult
to collect and analyze due to their uncertain nature in
both the time and space domains; see [6, 7]. Furthermore,
the modeling of stormwater quality generally involves the

difficult task of organizing and processing large amounts of
spatially referenced data; see [2, 8]. It is thus essential for
modelers and decision-makers to take into consideration the
uncertainty in the data.

Monte Carlo simulation (MCS) has frequently been
employed in the literature to determine the uncertainty
in stormwater pollutant concentrations; see [5, 9–11]. The
general MCS procedure is to fit a probability density function
(pdf), for example, the log-normal distribution, to the
observed data and then generate “samples” from the fitted pdf
model.This traditional approach has a number of drawbacks,
such as the limited number of feasible pdfs for stormwater
quality data, the large effects of outliers, the limited choice of
distributions (other than the normal distribution) for more
than one variable, and the bias induced by the normality
assumption, especially for the multivariate case; see [4].
Furthermore, the limited stormwater quality records hinder
the application of the traditionalMCS approach, especially in
stormwater management.
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Towler et al. [4] adapted the 𝑘-nearest neighbor resam-
pling (KNNR) method (see [12–14]) to simulate influent
concentration scenarios using the information collection rule
(ICR) database of the US EPA. The KNNR method applied
by Towler et al. [4] for wastewater quality simulation takes
into account extensive spatial data to overcome the common
limits of temporal concentration datasets. In this method,
geographical information (GI) is included as variables along
with the concentration variable. The results of Towler et al.
[4] indicated that the KNNR model is a good alternative
to the traditional parametric MCS approach for regulatory,
treatment, and risk assessments regarding concentrations.

However, the way GI is handled as a general variable in
Towler et al. [4] might lead to the underperformance of the
KNNR model. The primary reason for this is that, as the
modeling dimension increases from the insertion of the GI,
the model becomes more intricate and subtle. Consequently,
the model loses its focus on the water quality concentration
variable. Second, the variability of the GI is quite different
from the variability of the concentration variables because
of the differences in their characteristics. The GI changes
only spatially, whereas the pollutant concentration variable
varies both temporally and spatially. Third, adding other GI
variables such as the altitude and the area of the watershed is
not advised in KNNR due to dimensionality problems.

To alleviate this problem, we propose a novel resampling
approach based on depth functions (see [15, 16]), which
adapts a different GI from the target stormwater quality
variable in the KNNR simulation model. The proposed
algorithm involves the combination of KNNR and a depth
function and is denoted as “depth-neighbor resampling”
(DNR). It is tested with a stormwater quality dataset in this
study.

The study is organized as follows. The background of the
KNNR model of Towler et al. [4] and depth functions are
presented. The overall model procedure is described in the
following methodology section. In the application section,
the DNRmodel and the existing KNNRmodel are applied to
the stormwater qualitymodel, and their results are compared.
Finally, the conclusions and final remarks are presented.

2. Methodology

The KNNR is a simple analogous model for fitting the con-
ditional distribution and then generating simulations from it
in a data-driven manner. The KNNRmodel for water quality
simulation was proposed by Towler et al. [4]. The generation
of an ensemble of the variable of interest (𝑥) (e.g., pollutant
concentration for a given month), conditioned on a feature
vector y = [𝑦(1), 𝑦(2), . . . , 𝑦(𝑝)] of 𝑝 explanatory variables,
is based on the evaluation of a conditional distribution, that
is, 𝑓(𝑥 | y). Then, the distance between the current feature
vector and the feature vectors constructed fromobserved data
is measured, and one of the 𝑘-nearest neighbors is selected.
Finally, the corresponding pollutant concentration value of
the selected neighbor is assigned as the simulation value.
Towler et al. [4] employed three explanatory variables (i.e.,
𝑝 = 3): pollutant concentration, latitude, and longitude. Note

that the GI is included as explanatory variables through the
latitude and longitude.

However, some drawbacks are expected, as discussed
in the introduction section, when handling the GI in the
form of explanatory variables. A special solution to handle
the GI is proposed in the present study by employing the
statistical notion of a “depth function.” Starting from the
half-space depth proposed by Tukey [15], a number of depth
functions have been formulated in the literature; see [17–22].
Although depth functions have been widely used in statistics
and econometrics (see [20, 23, 24]), they have just recently
begun to be used in the environmental and hydrological
fields; see [16, 25].

A depth function is a statistical notion for providing an
outward ordering of points in a multivariate framework. The
key properties of the depth function are (a) affine invariance,
(b) maximality at the center, (c) monotonicity relative to the
deepest point, and (d) vanishing at infinity; see [19].

For a given cumulative distribution function 𝐹 on 𝑅𝑠 (𝑠 ≥
1), the corresponding depth function is any bounded and
nonnegative function, denoted as 𝐷(z; 𝐹), which provides
an 𝐹-based center-outward ordering of a point z in 𝑅𝑠 to
satisfy the properties mentioned above. A number of depth
functions can be described, among which the following two
are commonly used.

(a) The half-space depth (see [15]) is defined with respect
to a probability, Pr, associated with a distribution𝐹 on
𝑅
𝑠 as

𝐷
𝐻
(z; 𝐹)

= inf {Pr (𝐻) : 𝐻 a closed halfspace that contains z}

for z in 𝑅𝑠.
(1)

(b) The Mahalanobis depth (MHD) (see [26]) is defined
on the basis of the Mahalanobis distance 𝑑2

Ψ
(z,𝜇) =

(z − 𝜇)𝑇Ψ−1(z − 𝜇) between two points, z and 𝜇,
with respect to a positive definite matrix Ψ. The
Mahalanobis depth is given by

𝐷
𝑀
(z; 𝐹) = 1

1 + 𝑑2
Ψ
(z,𝜇)

for z in 𝑅𝑠, (2)

where 𝜇 and Ψ are, respectively, any location and
covariance measures corresponding to 𝐹.

Employing the above depth functions, the basic idea of
the proposed model in the current study is to convert the GI
(location and longitude) into a real-valuedweight vector.This
process involves reducing the dimension of the GI variables.
In doing so, the information is appropriately handled through
the distance measurement in the KNNR model without any
increase in the dimension. In other words, the elements of
the GI (latitude and longitude) are mapped using a depth
function. The MHD (2) is employed in the current study
because it is easy to evaluate and flexible to adapt to the
current situation and converted to the weight vector for the
distance measurement of the KNNR model.
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The overall procedure of the depth-based KNNR model
denoted as “depth-neighbor resampling” (DNR) as a surro-
gate of 𝑓(𝑥 | y) for the stormwater quality simulation (𝑥) is
as follows.

(1) The user-specified feature vector is defined as y
𝑐
=

[𝑄
𝑐
], which is known in advance for the current

time 𝑐. Note that the element of the feature vector is
now only with the stormwater quality variable (i.e.,
𝑝 = 1) unlike the one in Towler et al. [4] as y

𝑐
=

[𝑄
𝑐
, LAT

𝑐
, LON

𝑐
]
𝑇 (i.e., 𝑝 = 3), where LAT and LON

represent the latitude and longitude at the location
where𝑄

𝑐
ismeasured. In the current proposedmodel,

the GI (latitude and longitude) is taken into account
through the depth function shown below in step (3).

(2) The observed feature vectors of all pollutant concen-
tration available sources are constructed as

YDB = [𝑄1 𝑄2 ⋅ ⋅ ⋅ 𝑄𝑖 ⋅ ⋅ ⋅ 𝑄𝑛] , (3)

where 𝑄
𝑗
(𝑗 = 1, . . . , 𝑛) represents the pollutant

concentration, which is the variable of interest, and
𝑛 denotes all the available records of the database
employed. The ICR database of the USEPA for YDB
was employed by Towler et al. [4] (see the introduc-
tion section). The employed database (YDB) for the
current study is described in the next section.

(3) The depth function is evaluated by 𝐷
𝑀
(g
𝑖
; 𝐹) in

(2), where 𝜇 = g
𝑐
, g
𝑗
= [LAT

𝑗
, LON

𝑗
]
𝑇 at

location𝑗, and Ψ is the covariance matrix of g
𝑖
. Note

that g
𝑐
is the GI where the measurement y

𝑐
was taken

and g
𝑖
are the GI for the measurements in YDB.

(4) The weights 𝑤
𝑖
= 𝜂(𝐷

𝑀
(g
𝑖
; 𝐹)) for 𝑖 = 1, . . . , 𝑛 are

computed where 𝜂(⋅) is a known weight function.
Some examples of weight functions are presented
below.

(5) The distances between the user-specified feature vec-
tor y
𝑐
= [𝑄
𝑐
] and the observed feature vectors are

computed as

𝑑
𝑖
= 𝑤
𝑖

𝑄𝑐 − 𝑄𝑖
 , 𝑖 = 1, . . . , 𝑛. (4)

(6) The distances 𝑑
𝑖
are arranged in ascending order, and

the first 𝑘 values are selected. Next, one of these 𝑘
values is randomly assigned with the selection prob-
ability given by (1/𝑗)/∑𝑘

𝑙=1
1/𝑙, where 𝑗 = 1, . . . , 𝑘.

This probability gives a higher chance of selection
to the nearest neighbor and a lower chance to the
farthest neighbors. Suppose the corresponding index
of the selected value is assigned as 𝑖∗. The number of
nearest neighbors (𝑘) is estimated using the heuristic
approach (i.e., 𝑘 = √𝑛) with its theoretical justifica-
tion; see [12, 27].

(7) The simulation of the stormwater quality variable
can be performed by selecting the stormwater quality
variable of the corresponding index as [𝑄

𝑖
∗]; that is,

𝑥 = 𝑄
𝑖
∗ .
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Figure 1: Weight functions ((5) and (6)) with different parameter
sets.

(8) The steps above (all steps 1–7 except step 2) are
repeated to generate the desired number of data
points (𝑁𝐺).

To obtain 𝑤
𝑖
in step 4 and (4), a weight function 𝜂(⋅) that

is positive and monotonically increasing is employed. In the
current study, two common weight functions are tested: the
one proposed by Lin and Chen [22] and the simple linear
weight function (see [16]). The weight function of Lin and
Chen [22] is given by

𝜂LC (𝐷) =
{{

{{

{

exp [−𝛼{1 − (𝐷/𝛽)𝛾}2] − exp (−𝛼)
1 − exp (−𝛼)

if 𝐷 ≤ 𝛽

1 otherwise
(5)

with coefficients 𝛼, 𝛽, and 𝛾, where 𝛼 defines the support of
the weight function and 𝛽 represents the slope of decay to
zero. If 𝛾 = 1, then it is equivalent to the weight function of
Zuo et al. [28]. The simple linear weight function mentioned
in Chebana and Ouarda [16] is expressed as

𝜂CO (𝐷) =

{{{

{{{

{

0 if 𝐷 < 𝜆
1

𝐷 − 𝜆
1

𝜆
2
− 𝜆
1

if 𝜆
1
≤ 𝐷 ≤ 𝜆

2

1 if 𝐷 > 𝜆
2
,

(6)

where 𝜆
1
and 𝜆

2
are the coefficients with 0 ≤ 𝜆

1
≤ 𝜆
2
≤ 1.

A trial-and-error approach was applied in the current
study for the parameter estimation of the weight functions.
The above two weight functions 𝜂LC and 𝜂CO are illustrated in
Figure 1 using strategically selected coefficients to show their
roles. Figure 1 reveals that the weight function 𝜂LC decays to
zero quickly with high values of 𝛼 (solid line with triangle).
Extremely high values of 𝛽 (solid line) lead this function to
jump from zero to one. An extremely high value of𝛽was used
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Figure 2: Locations of the retrieved stations of stormwater quality.

Table 1: Selected 20 stations list employed in Figures 2 and 3.

Station Latitude (Decimal) Longitute (Decimal) Site Name
1 28.54 −81.37 Greenwood Urban Wetland
2 39.69 −74.25 Stafford NJ Subdiv. Colony Lakes EMCON
3 39.69 −74.26 Stafford NJ Subdivision Colony Lakes OCB
4 38.02 −78.55 29 South Buffer Strip
5 43.88 −79.46 Heritage Estates Stormwater Manag. Pond
6 39.69 −74.25 Stafford NJ Sub. Colony Lakes Soil Save
7 28.54 −81.37 Lake Olive VVRS
8 43.14 −70.86 University of New Hampshire A1
9 28.39 −80.71 FL Blvd Detention Pond
10 35.23 −80.84 Hal Marshall Bioretention Cell
11 40.04 −75.35 Villanova Traffic Island
12 47.33 −122.24 WA Ecology Embankment at SR 167 MP 16.4
13 27.17 −80.69 Lake O Sediment Demo
14 27.92 −82.77 Largo Regional STF
15 27.96 −82.45 Florida Aquarium Test Site
16 33.38 −117.57 San Onofre RVTS
17 33.87 −117.74 Yorba Linda RVTS
18 38.04 −78.48 Jensen Precast (UVA)—Phase I
19 27.99 −82.37 East Lake Outfall
20 34.28 −118.40 I-210/Filmore Street

in Chebana and Ouarda [16] and other studies. Furthermore,
it is evident that 𝜆

1
and 𝜆

2
are the lower and upper limits in

𝜂CO (see the dotted line with circles in Figure 1) beyondwhich
the weights 0 and 1, respectively, are assigned.

3. Application

The stormwater quality datasets were obtained from the
international stormwater best management practice (BMP)
database (http://www.bmpdatabase.org/), which has been
assembled since 1996 by the American society of civil

engineers and the USEPA, as shown in Figure 2. The
database was established to foster a better understanding of
factors influencing urban stormwater quality; see [3, 5]. The
stormwater quality data as the event mean concentration of
total suspended solids (TSS) was retrieved with 𝑛 ≈ 800

(see (4)), as shown in Table 1, because it contains a relatively
large number of records (approximately 800). The latitude
and longitude were also retrieved as the GI.

As mentioned in the introduction, the KNNR is a simple
model based on the conditional distribution 𝑓(𝑥 | y). In
Towler et al. [4], the annual average of wastewater influent
concentration, longitude, and latitude were used for the
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conditional variables y
𝑐
to simulate the corresponding

monthly wastewater influent concentration variables. The
stormwater quality data used in the present study, however,
is rarely available for a continuous full year. Therefore, we
use the immediate preceding monthly TSS value as the
conditional variable y

𝑐
instead of the annual average as in

Towler et al. [4]. In other words, the conditional variable
y
𝑐
to simulate the stormwater quality for a certain month

𝜏, denoted as 𝑥
𝜏
, is the stormwater quality of the preceding

month (i.e., y
𝑐
= 𝑥
𝜏−1

). Subsequently, YDB in (3) consists of
all the stormwater TSS data in month 𝜏 − 1. In the current
study, the TSS value of the current month is simulated from
the proposed DNR model by treating the GI with the depth
function.

Among other coefficient sets, 𝜂LC with [𝛼 = 2, 𝛽 = 3, and
𝛾 = 0.8] and 𝜂CO with [𝜆

1
= 0.1 and 𝜆

2
= 0.9] performed

comparably well in the application of the current study.
Therefore, the results using these coefficient sets for each
weight function are presented.Themodels andparameter sets
used in this application are:

(1) the KNNRmodel with the depth function (𝐷
𝑀
in (2))

and the weight function 𝜂LC in (5) with [𝛼 = 2, 𝛽 = 3,
and 𝛾 = 0.8]: DNRLC;

(2) the KNNR model with the depth function (𝐷
𝑀
) and

the weight function 𝜂CO in (6) with [𝜆
1
= 0.1 and

𝜆
2
= 0.9]: DNRCO.

Each TSS value is simulated 500 times with the three
models above. Their performances are evaluated through the
mean absolute log error (MALE) and the root mean square
log error (RMSLE), given, respectively, as:

MALE =
∑
𝑁
𝐺

𝑡=1


log (𝑥) − log (𝑥𝐺

𝑡
)


𝑁𝐺
(7)

RMSLE = √
∑
𝑁
𝐺

𝑡=1
(log(𝑥) − log(𝑥𝐺

𝑡
))
2

𝑁𝐺
,

(8)

where 𝑁𝐺 is the number of simulated times (here, 𝑁𝐺 =
500 is used) and 𝑥𝐺

𝑡
is the data generated as a surrogate

of the observed data 𝑥 at the 𝑡th time. Note that (i) a low
value of MALE or RMSLE indicates a better reproduction
of the characteristics of the observed data; (ii) RMSLE is
more sensitive to outliers than MALE due to the squared
formulation; and (iii) the statistics in (7) and (8) are the log-
scale version of the mean absolute error (MAE) and the root
mean square error (RMSE), respectively, because stormwater
quality data are commonly analyzed with log-scaling; see
[1, 4].

In Figure 3, parts of the generated sequences (20 stations
among 𝑛 ≈ 800, as shown in Table 1 and Figure 2) are illus-
trated using boxplots along with the corresponding observed
TSS data. The typical KNNR model often generates values
that are much lower or higher than those corresponding to
the observed data. The generated TSS quantities from the
proposed KNNR models with depth function (DNRCO and
DNRLC) show better agreement with the observed TSS values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

lo
g 

(T
SS

) (
m

g/
L)

Stations

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

lo
g 

(T
SS

) (
m

g/
L)

Stations

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

lo
g 

(T
SS

) (
m

g/
L)

Stations

(c)

Figure 3: Observed value (circle) and simulated data (boxplot) of
log(TSS) for (a) KNNR, (b) DNRCO, and (c) DNRLC in 20 stations
as shown in Figure 2. Boxes display the interquartile range (IQR) and
whiskers extending to 1.5×IQR.Thehorizontal lines inside the boxes
depict the median of the data. Data beyond the whiskers (1.5× IQR)
are indicated by a plus marker (+). Note that a circle placed inside a
box indicates a good agreement between the observed and simulated
data.

Figure 4: Locations of all the 118 stations of stormwater quality.

than the ones from the typical KNNR model. The remaining
generated values (data not shown) have a behavior similar to
that described above.

To check the agreement between the observed and
generated data, using all the TSS data from 118 stations, as
shown in Figure 4, the MALE and RMSLE in (7) and (8)
are employed. These statistics are presented in Figures 5-
6 and Table 2. The MALE statistics of the TSS-generated
data at each month are illustrated in Figure 5. The DNRCO
shows consistently better performance than KNNR during
the summer and fall months. The DNRLC presents the best
performance compared with the other models, except in July
when DNRCO is slightly better. The overall superiority of
DNRLC with the average MALEmetric over all the simulated
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Figure 5: Average of MALE for each month. Note that the lower
value of MALE indicates better reproduction of the characteristics
of all the observed TSS data shown in Figure 4.
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Figure 6: Overall RMSLE for the three different nonparametric
simulation models regardless of the month. Refer to Figure 3.

values is briefly presented in the second row of Table 1 (the
smallest MALE value among the three different models is
illustrated).

The overall simulation performance of the three models
is illustrated through RMSLE, as shown in Figure 6. It
shows that the RMSLEs of KNNR and DNRCO are similar,
whereas the RMSLE of DNRLC is significantly lower than the
former two. The average over all the simulated values of the
RMSLE (summarized in the third row of Table 1) supports the
results of Figure 6, indicating that the DNRLC model has the
lowest RMSLE, whereas KNNR and DNRCO lead to similar
performances.This implies that the DNRLC is superior to the
other models.

An extensive sensitivity analysis of the coefficients for
the weight function 𝜂LC in (5) was performed with different
parameter sets of 𝛼 and 𝛽 while fixing 𝛾 = 2, as favored

Table 2: Overall MALE and RMSLE of the three selected nonpara-
metric simulation models.

KNNR DNRCO DNRLC

MALE 0.8933 0.8588 0.7219
RMSLE 0.7652 0.6685 0.5039
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Figure 7: Overall RMSLE with the different parameter sets [𝛼 and
𝛽] for the weight function 𝜂LC (5) after setting 𝛾 = 2.

in Chebana and Ouarda [16]. This analysis is performed to
further investigate the role of the coefficients of the weight
function 𝜂LC. The analysis of the coefficients of 𝜂CO (𝜆

1
and

𝜆
2
) is omitted because their role is obvious. The average

RMSLE of each parameter set (𝛼 and 𝛽) from 500 simulations
is shown in Figure 7. Note that 𝛼 is attributed to the shape
of the weight function and 𝛽 is the location parameter
beyond which the weight is assigned as the value 1.0 (see
Figure 1). Figure 7 illustrates that (1) the RMSLE increases
as 𝛼 increases for all values of the parameter 𝛽 and (2) the
RMSLE decreases as 𝛽 increases for high values of 𝛼, whereas
the decrease of RMSLE is minimal for low values of 𝛼. The
results indicate that 𝛼 has a high impact on the performance
of the model, whereas 𝛽 has little impact. Therefore, it is
concluded that a low value of the parameter𝛼 and a high value
of the parameter 𝛽 are preferred for the currently applied TSS
data.

4. Conclusion

The uncertainty in stormwater quality data has hindered the
accurate analysis and physical modeling of water quality.
Fitting a parametric pdf model to stormwater quality data
is sometimes unfavorable primarily due to the lack of data.
As an alternative, the nonparametric KNNR model was
recently applied for simulating the ensemble of pollutant
concentration data. In the current study, we adapted a sta-
tistical approach involving “depth functions” to improve the
simulation performance of the KNNR for stormwater quality
data. Different weight functions are incorporated with the
depth function. The results illustrate that the integration of
the depth function in the KNNR model, with an appropriate
choice of the weight function and its coefficients, leads to
an improved performance in the simulation of stormwater
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quality data. The weight function 𝜂LC is superior to 𝜂CO in
the simulation performance.

Automatic models for the identification of the optimal
weight function and the estimation of its coefficients still
remain to be developed. One feasible option to find the
optimal weight function and its coefficients is to build an
objective function to optimize (such as minimizing MALE
and RMSLE) and then using an optimization technique such
as a genetic algorithm (see [29]) or an adaptive metropolis
algorithm (see [30]) to solve the optimization problem.
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