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Abstract. Regional climate models (RCMs) are valuable
tools to evaluate impacts of climate change (CC) at regional
scale. However, as the size of the area of interest decreases,
the ability of a RCM to simulate extreme precipitation events
decreases due to the spatial resolution. Thus, it is difficult to
evaluate whether a RCM bias on localized extreme precip-
itation is caused by the spatial resolution or by a misrepre-
sentation of the physical processes in the model. Thereby,
it is difficult to trust the CC impact projections for local-
ized extreme precipitation. Stochastic spatial disaggregation
models can bring the RCM precipitation data at a finer scale
and reduce the bias caused by spatial resolution. In addition,
disaggregation models can generate an ensemble of outputs,
producing an interval of possible values instead of a unique
discrete value.

The objective of this work is to evaluate whether a stochas-
tic spatial disaggregation model applied on annual maximum
daily precipitation (i) enables the validation of a RCM for a
period of reference, and (ii) modifies the evaluation of CC
impacts over a small area. Three simulations of the Canadian
RCM (CRCM) covering the period 1961–2099 are used over
a small watershed (130 km2) located in southern Québec,
Canada. The disaggregation model applied is based on Gibbs
sampling and accounts for physical properties of the event
(wind speed, wind direction, and convective available poten-
tial energy – CAPE), leading to realistic spatial distributions
of precipitation. The results indicate that disaggregation has
a significant impact on the validation. However, it does not
provide a precise estimate of the simulation bias because

of the difference in resolution between disaggregated values
(4 km) and observations, and because of the underestimation
of the spatial variability by the disaggregation model for the
most convective events. Nevertheless, disaggregation illus-
trates that the simulations used mostly overestimated annual
maximum precipitation depth in the study area during the
reference period. Also, disaggregation slightly increases the
signal of CC compared to the RCM raw simulations, high-
lighting the importance of spatial resolution in CC impact
evaluation of extreme events.

1 Introduction

Extreme precipitation events may cause disasters, such as
flooding, dam failure, soil erosion, and landslide, which may
have substantial social, economic and environmental im-
pacts. In many cases, as for instance dam building or devel-
opment of new habitable zone, a good knowledge of the oc-
currence of extreme events is required to properly evaluate
the risk (i.e., the expected cost of damage caused by extreme
precipitation). In a context of climate change (CC), past im-
pact studies made with a stationary climate assumption must
be reconsidered.

There is a consensus in the scientific community about
the existence of CC (IPCC, 2007). While an increase of the
mean global temperature is expected from climate model
projections (IPCC, 2007), there is uncertainty associated
with precipitation change. The effect of CC on precipitation
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varies spatially and temporally. With regards to extreme pre-
cipitation, Sunyer et al. (2012) used four regional climate
model (RCM) projections in Denmark and obtained discor-
dant results for 20- and 100-year return periods. Fowler and
Ekström (2009) found an increase in extreme precipitation
intensities projected by climate models in United Kingdom,
but the results varied between regions and the variability in-
creased with the return period. Using different projections
from a single climate model, Mladjic et al. (2011) detected
significant increases in extreme precipitation depths in 7 out
of 10 climatic regions in Canada.

Because of this uncertainty, a robust CC impact evaluation
for a given area must include several future climate projec-
tions, coming from various climate models and greenhouse
gas (GHG) emission scenarios. A valuable criterion in the se-
lection of a climate model is the ability to simulate the recent
past in the study area. This performance is evaluated through
a comparison between observed and simulated values of the
variable of interest.

For extreme events, the spatial resolution becomes very
important. This implies that, for a proper validation of a sim-
ulation, the spatial resolutions of observed and simulated
values must be similar. When the area of interest is small
(e.g., an area smaller than a climate model grid box within
which observations come from a single station), the raw sim-
ulated values must be downscaled to a finer scale. In this
case, the validation of a simulation depends on the down-
scaling technique. Therefore, it is primordial that the down-
scaling technique be realistic and robust to enable a precise
evaluation of the simulation bias.

Without an adequate downscaling technique, one can as-
sume that the CC impact in the area is the same as that in
the grid box. However, this assumption does not stand if the
types of events, affecting the spatial distribution of precipita-
tion, change in the future (e.g., if there are more convective
events due to an increase in temperature). A popular method
is the use of a single multiplicative factor that accounts for
the change in the mean (Sunyer et al., 2012). However, it is
not suitable for extreme precipitation since for a given loca-
tion, the projected mean annual precipitation may decrease
while the number and magnitude of high precipitation events
might increase (Amengual et al., 2012). Also, the CC signal
may be stronger for extreme than for moderate events (Hanel
and Buishand, 2012).

There exist two approaches that bring a simulated field to
a finer spatial scale. The first approach is to run a climate
model nested in a spatial domain smaller than the original
simulation. The smaller spatial domain permits the refining
of the spatial resolution of the grid for the same computa-
tional requirements. This approach is often referred to asdy-
namical downscaling(Boé et al., 2007). The most common
example is the use of a RCM to refine the resolution of global
climate models (GCMs). It is also possible to run a RCM two
or more times in domains nested one inside the other (Yu
et al., 2002). Dynamical downscaling produces physically

sound data, but it in the end requires intensive computational
resources.

The second approach is to apply a stochastic model, for
which each climate model grid box is subdivided into sev-
eral elements (pixels) whose precipitation depth is a random
variable depending on neighboring pixels and possibly other
relevant variables. This kind of model is often referred to as a
disaggregation model(e.g., Mackay et al., 2001). Disaggre-
gation models may be applied after dynamical downscaling.
The most popular technique used by the existing disaggre-
gation models is the multiplicative cascade (see e.g., Over
and Gupta, 1996; Harris and Foufoula-Georgiou, 2001; and
Sharma et al., 2007). The advantages of this technique are
its relative rapidity and simplicity of use, but it often pro-
duces precipitation fields with unrealistic spatial structures,
with visible discontinuities (Lovejoy and Schertzer, 2010).
In order to account for the type of precipitation event, Per-
ica and Foufoula-Georgiou (1996) developed a disaggrega-
tion model based on wavelet transform with parameters re-
lated to the convective available potential energy (CAPE).
Gagnon (2012) recently proposed a stochastic disaggregation
model accounting for CAPE, wind speed and wind direction.
To our knowledge, there is no other spatial disaggregation
model using a stochastic algorithm and the physical prop-
erties CAPE, wind speed and wind direction as covariates.
This approach provides a way to produce spatially coherent
fields, which is the main challenge for spatial disaggregation
models. This model has not been applied yet to downscale
precipitation from a climate model projection.

There are two objectives here. First, we want to de-
termine whether the disaggregation model proposed by
Gagnon (2012) enables the validation of the annual maxi-
mum daily precipitation (AMDP) simulated by a RCM over
a small area when only a single observation point is available.
Second, for the same small area and using the same disaggre-
gation model, we want to quantify the difference, if any, in
the evaluation of the CC impact on AMDP between raw and
downscaled RCM simulations. The general motivation be-
hind these two objectives is to provide reliable information
to policymakers, who must manage the risk associated with
CC projection for extreme precipitation over a small area.

The next section introduces the study area along with
a description of the observed and simulated data. Sec-
tion 3 presents the disaggregation model used in this study
(Gagnon, 2012; Gagnon et al., 2012). Section 4 describes the
methodology applied to evaluate the capability of the dis-
aggregation model to validate a RCM simulation and to en-
hance the CC impact evaluation. Section 5 shows the results
of the validation and the CC evaluation exercises. A conclu-
sion (Sect. 6) completes the paper.
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2 Case study

2.1 Study area

The study area is a 132 km2 sub-watershed of the Yamaska
River, located south of the St. Lawrence River, Québec,
Canada. The outlet of this sub-watershed is the Choinière
dam (Fig. 1). It is one of the several small dams located in the
Yamaska River watershed, but is a high-risk dam with respect
to the city of Ste. Hyacinthe, located downstream. A study of
the impact of CC on the probable maximum flood (PMF) has
already been done for this sub-watershed (Rousseau et al.,
2012), but no downscaling technique was used.

The climate is continental wet, characterized by large vari-
ations of temperature and no dry season. The mean an-
nual precipitation of the Yamaska River watershed is about
1200 mm, of which more than 900 mm is liquid (Rousseau et
al., 2012). Most of winter precipitation falls as snow, while
summer precipitation can come from either large-scale or
convective events. The Choinière dam watershed, as most of
the Yamaska River watershed, is located in the St. Lawrence
Lowlands, characterized by a flat topography and arable
soils. The extreme southeast or upstream region of the area
is covered by the Appalachian Mountains.

2.2 Observed data

Daily observed precipitation data come from the Québec
Centre of Water Expertise (Centre d’Expertise Hydrique du
Québec, CEHQ) meteorological grid (CEHQ, 2012). This
grid has a 0.1◦ resolution (approximately 10 km) and the data
at each grid node are generated by kriging interpolation of
the surrounding weather station data (CEHQ, 2012). The ob-
served daily rainfall data retained for the validation exercise
come from the only grid node covering the Choinière water-
shed (45.4◦ N, 72.5◦ W; star, Fig. 1). The data set covers the
1961–2000 period and only the data from May to October are
analyzed. November to April data are not used in this work,
as we focus on liquid precipitation. In addition to precipi-
tation, daily minimum and maximum temperatures are also
available on the CEHQ grid, but are not used in the present
study.

As the observed data come from interpolation, the exact
spatial resolution of the observations is unknown, affecting
the comparison between raw simulated values and those pro-
duced by the disaggregation model. However, resolution of
the weather station network is relatively high in this area,
improving confidence in the interpolation results.

2.3 Simulated data

The simulated data come from three simulations of the Cana-
dian RCM version 4.2.3 (CRCM, Caya and Laprise, 1999;
de Elía and Côté, 2010; Paquin, 2010), referred asafx, agr
andaha. The CRCM has a three-dimensional grid with hor-
izontal resolution of about 45 km (true at 60◦ N). The three
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Fig. 1. Study area: Choinière watershed (132 km2), CEHQ grid
node (star), CRCM tile (red), 12 km (purple), 8 km (green) and 4 km
(blue) pixels. The pixels covering the watershed are in yellow. The
dashed line is the west–east axis of the CRCM grid.

simulations analyzed cover a domain of 111× 87 grid nodes
centered over the province of Québec, Canada. The runs were
driven by atmospheric fields taken from members 4 and 5 of
the third generation of the Canadian Coupled Global Climate
Model (CGCM3; Flato et al., 2000; Flato and Boer, 2001;
Scinocca et al., 2008) forafxandagr, respectively, and from
member 1 of the German Coupled Global Climate Model
ECHAM5 (Junglaus et al., 2006) foraha. The data cover the
1961–2099 period and both global and regional simulations
were performed using the IPCC SRES A2 GHG and aerosol
projected evolution (Nakicenovic and Swart, 2000). Precip-
itation data from 1961 to 2000 are used for the comparison
between observed and simulated data, while the 1961–2099
period is used for the CC impact assessment. As previously
mentioned, only data from May to October are retained for
the analyses.

In addition to precipitation, daily mean wind speed and
wind direction at the 700 hPa level as well as the daily mean
CAPE simulated fields are required to run the disaggrega-
tion model (Sect. 3). Five by five CRCM tiles, covering the
Yamaska watershed, are disaggregated, but the outcomes of
only one tile (tile (3, 4) of the 5× 5 computational domain),
covering the studied watershed, are retained for the analyses
(red tile, Fig. 1). The three simulations used were the only
RCM simulations available for our pilot study. The authors
are aware that a CC impact assessment study cannot be made
with only three simulations coming from only one RCM. The
aim of this work is to evaluate a methodology; the results of
this work must not be taken as a complete CC impact assess-
ment study.
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3 Disaggregation model

The disaggregation model used is a stochastic model that en-
ables the use of information produced using a 45 km reso-
lution field to generate realistic fields at a finer spatial scale
(from 4 to 23 km resolution). The model is described in de-
tail in Gagnon (2012) and a slightly different anterior version
of the model is also presented in Gagnon et al. (2012). This
section describes the main features of the model.

Since observed and simulated data are both available on
a daily time step, temporal disaggregation of precipitation
was not considered. The authors are aware that for some
hydrological applications on small watersheds, a finer time
step (e.g., hourly) would be required. The actual version of
the disaggregation model described herein does not perform
temporal disaggregation.

3.1 Mathematical framework

Let Ri,j be the precipitation on pixel (i, j ) for a
given day. In this study, the spatial resolution of the
pixel may be 4, 8 or 12 km. The eight surrounding pix-
els are used to define the mean precipitation in the
four directions: A/ =

Ri−1,j−1+Ri+1,j+1
2 , A| =

Ri−1,j +Ri+1,j

2 ,

A\ =
Ri−1,j+1+Ri+1,j−1

2 , andA− =
Ri,j−1+Ri,j+1

2 . It is assumed
thatRi,j has a lognormal distribution with the expected value
µ given by (Gagnon, 2012; Gagnon et al., 2012)

µ = A + βd

(
A| + A−

2
−

A\ + A/

2

)
+ β×

(
A/ − A\

)
+ β+

(
A| − A−

)
, (1)

whereA is the mean precipitation of the eight surrounding
pixels andβd , βx andβ+ are parameters to estimate. The pa-
rameterβd accounts for the distance of the surrounding pix-
els while the two others account for anisotropy. Equation (1)
is the expected value equation of Gagnon et al. (2012). In
Gagnon (2012), this equation is modified by expressing the
two anisotropy parameters as functions of daily mean wind
speed (V ; m s−1) and wind direction (W ; degree) at 700 hPa:

β× = βv V cos
(
2
(
W − 45◦

))
(2)

and

β+ = βv V cos
(
2
(
W − 90◦

))
. (3)

Anisotropy is thereby accounted for by one parameter,βv,
instead of two. In the present study,V and W at 700 hPa
come from CRCM simulations and the reference axis forW

is the west–east axis of the CRCM grid (dashed line; Fig. 1).
The standard deviationσ is assumed to increase with the

expected value and to linearly increase with the daily mean
convective available potential energy (CAPE) value (J kg−1)
of the CRCM tile (C):

σ = (θ0 + θ1C) µθ2, (4)

whereθ0, θ1 andθ2 are parameters to estimate.

The parameter values were estimated for the southeast re-
gion of the US since there was a high amount of precipitation
data at a high spatial resolution. A total of 9216 3.8 km pix-
els, covering about 130 000 km2, from the National Centers
for Environmental Prediction (NCEP) Stage IV project (Lin
and Mitchell, 2005) were used for the calibration. More than
5 million wet pixel-days were available during the 4-year cal-
ibration period (2002–2005; Gagnon, 2012). The Stage IV
data set covers only a small part of the southernmost region
of Québec (near the study area) with 4.4 km pixels. Parameter
values estimated for about 60 000 wet pixel-days in summer
in that region of Québec were similar to those estimated for
southeastern United States (Gagnon, 2012). In this work, the
parameter values from southeastern United States are used
due to the larger calibration data set.

3.2 Algorithm

Section 3.1 provided the statistical distribution of the daily
precipitation at a pixel when precipitation depths of the
neighboring pixels are known. However, since only precip-
itation of the RCM tile is known, a stochastic algorithm,
based on Gibbs sampling (Geman and Geman, 1984; Roberts
and Smith, 1994), is used to produce finer-scale precipita-
tion fields using the aforementioned mathematical frame-
work (Sect. 3.1).

Recall that 5× 5 CRCM tiles are disaggregated, but only
the values of the tile (3, 4), covering the Choinière water-
shed, are used. The disaggregation model needs a buffer zone
around the area of interest to produce realistic precipitation
fields (Gagnon, 2012). For each 45 km CRCM tile, the disag-
gregation will producen × n pixels per tile (n = 12, 6 and 4
for pixel sizes of 4, 8 and 12 km, respectively). The algorithm
proceeds as follows for each day of each CRCM simulation:

1. First, set the precipitation of each pixel equal to the
precipitation of the coarser CRCM tile. Thus, all pix-
els within a CRCM tile have the same amount of
precipitation.

2. Generate a new value for pixel (1, 1) according to the
distribution set in Sect. 3.1. If it is the first iteration,
the expected value is equal to the precipitation of the
coarser CRCM tile.

3. Generate new values for the other pixels, one at a time,
according to the distribution set in Sect. 3.1. The ex-
pected value and the standard deviation for a pixel are
updated according to the new precipitation values of
the neighboring pixels. When all pixels have been up-
dated once, oneiteration is completed.

4. Repeat steps (b) and (c) 300 times to annihilate the
impact of the initial condition (step a). The firstdisag-
gregated fieldis retained.

Hydrol. Earth Syst. Sci., 18, 1695–1704, 2014 www.hydrol-earth-syst-sci.net/18/1695/2014/
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5. Repeat steps (b) and (c) 100 times to annihilate the au-
tocorrelation with the last retained disaggregated field.
Then, a second disaggregated field is retained.

6. Repeat step (e) as many times as desired to retain
several disaggregated fields. In this work, 100 dis-
aggregated fields are retained for each day of each
simulation.

Note that for pixels located on a boundary of the disag-
gregation domain, Eq. (1) is slightly modified to account
for the fact that the pixel has less than eight neighbors
(Gagnon, 2012). Also note that this version of the disag-
gregation model does not explicitly account for topogra-
phy. Gagnon (2012) showed that it is not necessary in areas
with no abrupt variations in elevations (like the study area),
since the impact of topography is indirectly accounted for in
the CRCM precipitation fields. For a version of the model
adapted for highly variable topography, the reader is referred
to Gagnon et al. (2013).

4 Methods

4.1 Validation of the simulations (1961–2000)

Climate simulation bias may be caused by a misrepresenta-
tion of the physical processes by the climate model (physical
bias) and/or by the difference between the spatial resolution
of the model and that of the observation (spatial resolution
bias). In this work, the disaggregation model is applied to
eliminate, or at least reduce the spatial resolution bias. This
would allow a proper evaluation of the physical bias of the
climate simulation in the area of interest.

RCM simulated data driven by a GCM have no simul-
taneity with observations. Thus, the distributions of simu-
lated and observed AMDP must be compared without corre-
lation measures. Instead, the cumulative observed and simu-
lated distributions of the 40 AMDPs (May to October, 1961–
2000) are compared. The 40 maximum observed values come
from the unique CEHQ grid node covering the watershed
(Sect. 2.2; star, Fig. 1).

The annual maximum simulated series(Y45km,t ; t ∈

{1961, . . . , 2000}) comes from the CRCM grid node cover-
ing the watershed (raw values; red tile, Fig. 1) and from the
results of the disaggregation model for the 4 km pixel cov-
ering the CEHQ grid node (disaggregated values; blue pixel,
Fig. 1). There are 40 raw values (1961 to 2000) and 100 se-
ries of 40 disaggregated values. Formally, letY

(k)
4km,t,d be the

precipitation on the 4 km pixel covering the CEHQ grid node
(blue pixel, Fig. 1) for thekth retained disaggregated field
(k = {1, . . . , 100}; Sect. 3.2) of dayd of the yeart . The max-
imum daily precipitation for yeart and disaggregated fieldk,
Y

(k)
4km,t , is given by

Y
(k)
4km,t = max

d∈{May,...,October}

(
Y

(k)
4km,t,d

)
. (5)

The Mann–Kendall test (Mann, 1945; Kendall, 1975) did not
detect any trend for the observed, raw simulation, and for
most of the disaggregated series for the 1961–2000 period.
Thus, it can be assumed that the 40 values of each series
come from the same distribution.

Let X(p) be the pth percentile of the observed
AMDP distribution for the reference period. For concise-
ness, letX ≡ X(p). In the same manner, letY45km and

Y ∗

4km = 1
100

100∑
k=1

Y
(k)
4km(p) be thepth percentile of the AMDP

for the raw simulation and for the mean disaggregated series,
respectively, for the same reference period. Also, letT be
the true (unknown)pth percentile of the AMDP values at the
CEHQ grid node scale (i.e., (X − T ) = measurement error).
The difference betweenY45km (raw simulated value) andT
(“target” value) can be written as follows:

(Y45km− T ) =
(
Y45km− Y ∗

4km

)
+

(
Y ∗

4km− X
)
+(X−T ). (6)

The idea is to estimate each term according to percentilep.
The term (Y45km− Y ∗

4km) is the impact of the disaggregation
and can be estimated from the disaggregated and raw sim-
ulated data. This term accounts for most of the spatial res-
olution bias. The difference between the disaggregated and
observed values(Y ∗

4km − X) can also be estimated from the
data. However, this latter term contains three sources of er-
rors: (i) the CRCM simulation bias (physical bias), (ii) the
disaggregation model bias and (iii) the difference in resolu-
tion between the 4 km pixel and the observation. The purpose
of the validation exercise is to evaluate (i); (ii) and (iii) can
be seen as noise. For point (ii), Gagnon (2012) showed, for
convective events, that the disaggregation can underestimate
the 4 km daily precipitation by up to 50 % at worst. Since the
calibration of the disaggregation model was performed using
4 years only, the bias cannot be expressed as a function of
p over 40 years. The exact value of point (iii) is unknown,
but its order of magnitude can be roughly estimated from the
analyses of the disaggregation results at 12, 8 and 4 km (pur-
ple, green, and blue pixels of Fig. 1, respectively). The last
term (X − T ) is the difference between the observed and the
real value. It is caused by measurement errors. Measurement
errors are more important for solid than for liquid precipita-
tion (Goodison et al., 1998; Yang et al., 1999; Fortin et al.,
2008). As only precipitation from May to October are an-
alyzed, this term is assumed negligible compared to other
terms and is not considered here. It is thereby assumed that
the left-hand side of Eq. (6) (Y45km− T ) is approximately
equal to (Y45km− X).

To estimate the relative importance for a givenp of the
aforementioned effects, for each climate simulation, each ef-
fect will be expressed with respect to the range of the distri-
bution of the 4 km disaggregated values.

www.hydrol-earth-syst-sci.net/18/1695/2014/ Hydrol. Earth Syst. Sci., 18, 1695–1704, 2014
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Fig. 2.Relative difference (%) between simulated and observed dis-
tributions of daily precipitation for the reference period (May to Oc-
tober, 1961–2000). The dotted lines are the mean relative bias for
the three simulations over the whole reference period.

4.2 Impact of climate change (1961–2099)

For the evaluation of the impact of CC on the watershed, the
raw simulation and the 100 disaggregated series of AMDP
(May to October, 1961–2099) are analyzed for each CRCM
simulation. Contrary to the validation exercise (Sect. 4.1),
the disaggregated values come from the mean of the values
of the 13 pixels covering the Choinière watershed (yellow
pixels, Fig. 1).

The CC impacts are compared in two manners. The first
comparison is on the magnitude and on the statistical sig-
nificance of the long-term trend. The statistical significance
is evaluated from the non-parametric Mann–Kendall test
(Mann, 1945; Kendall, 1975) and the magnitude is evaluated
assuming a linear relationship between annual maximum and
time (year). Formally, the regression equation for a given raw
simulation (afx, agr or aha) and for any of thek disaggre-
gated series (k = {1, . . . , 100}) are given by

Y45km,t = β0,45km + β1,45kmt (7)

and

Y
(k)
4km,t = β

(k)
0,4km + β

(k)
1,4km t, (8)

respectively, wheret is the year. The estimatedβs minimize
the sum of squared errors for each series over the period
1961–2099.

The second comparison is on the relative change between
the maximum daily precipitation value over 50 years for the
past (1961–2010) and the future (2050–2099). Formally, let

Y45km,P = max
t∈{1961,...,2010}

(
Y45km,t

)
(9)

and

Y45km,F = max
t∈{2050,...,2099}

(
Y45km,t

)
(10)

be the raw simulated maximum daily precipitation over
50 years for the past and the future, respectively. The rela-
tive change145km for the raw simulation is given by

145km = 100%

(
Y45km,F − Y45km,P

Y45km,P

)
. (11)

The valuesY (k)
4km,P andY

(k)
4km,F are defined in the same man-

ner to calculate the relative change1(k)
4km for each disag-

gregated seriesk. The comparison of the relative changes
is interesting from a practical point of view. In many cases
(e.g., design of water infrastructures), the aim is to evaluate
whether the highest expected extreme over a given period of
time will increase or not in the future.

5 Analyses of the results

5.1 Validation of the simulations (1961–2000)

In this subsection, we intend to distinguish the sources of er-
rors accounted for in Eq. (6) (Sect. 4.1). Before doing so,
however, Fig. 2 presents the relative differences between the
raw simulated and observed distribution of daily precipita-
tion from 1961 to 2000 (May to October), along with the
mean difference (bias) for the whole period. It illustrates that
despite the high positive overall bias for the three simula-
tions (from 59 to 65 %); the more intense precipitation depths
are sometimes underestimated (i.e.,Y45km− X < 0 for higher
percentiles). The fact that the bias is strongly negatively cor-
related with the intensity of precipitation suggests that the
difference between the spatial resolution of the observed and
simulated data has a substantial impact on the daily bias.
In all likelihood, the relatively good agreement between ob-
served and simulated high intensity daily precipitation occurs
because the positive bias of the simulations is counterbal-
anced by the negative bias induced by the bulk spatial reso-
lution of the CRCM grid node.

Figure 3 shows the difference between the 45 km CRCM
tile and the mean 12, 8 and 4 km disaggregated pixels
AMDPs. The impact of disaggregation seems to increase
with the intensity (return period) and to decrease with the
pixel size, but the variability prevents the exact appraisal of
both effects. For the maximum value of daily precipitation
over 40 years (May to October, 1961–2000), the differences
between the raw simulations and the mean 12 km disaggre-
gated pixel (Y45km− Y ∗

12km) vary between−13 and−23 mm
(disaggregated values higher than raw values) for the three
simulations. For the 8 and the 4 km disaggregated pixels,
the differences (Y45km− Y ∗

8km) and (Y45km− Y ∗

4km) vary be-
tween−16 and−28 mm and−22 and−38 mm, respectively.
These results suggest that if the disaggregation model was
calibrated and applied at a finer resolution (i.e., finer pixels),
the impact would have been greater, but it cannot be quanti-
fied with precision.
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Table 1.Estimation of the sources of errors (Eq. 6) for the highest daily precipitation value in the entire 1961–2000 period (May to October
only). In parentheses, the values are expressed as the percentage of the half distance between the 5th and the 95th percentiles of the 4 km
disaggregated data.

Simulation afx agr aha
term

(Y45km − X) −13.4 mm (−66.5 %) −3.6 mm (−12.0 %) 32.2 mm (73.9 %)(
Y45km − Y ∗

4km

)
−26.0 mm (−129.1 %) −38.2 mm (−126.4 %) −22.2 mm (−51.0 %)(

Y ∗
4km − X

)
12.6 mm (62.6 %) 34.6 mm (114.4 %) 54.4 mm (124.9 %)

Fig. 3. Difference (mm) between raw and mean disaggregated
(at 12, 8 and 4 km) AMDPs for the three simulations during
the reference period (May to October, 1961–2000). Data are
sorted out according to the magnitude of the annual maximum
value (year 1 = year with the smallest annual maximum value;
year 40 = year with the highest annual maximum value).

Figure 4 illustrates AMDPs (May to October, 1961–2000)
extracted from the observations, the raw climate simulations
and the 5th, 50th and 95th percentiles of the disaggregated
series. The uncertainty band of disaggregation (difference
between the 5th and the 95th percentile) increases with in-
tensity (return period), which is expected. The overall fit, be-
tween the raw simulated and the observed curves, is good for
simulationsafx andagr. However, as stipulated above, this
good fit is the effect of a negative bias caused by the differ-
ence in spatial resolution and, in all likelihood, a positive bias
caused by the physics of the simulations.

In order to identify the bias of the climate simulations for
the most extreme events, Table 1 summarizes for each simu-
lation the values of the terms of Eq. (6) for the highest daily
precipitation over the entire 1961–2000 period. It shows that
the impact of the disaggregation (Y45km− Y ∗

4km) is signifi-
cant for simulationsafx andagr. It also shows that the term
(Y ∗

4km− X) containing the bias of the CRCM simulation, the
bias of the disaggregation model and the effect of the resolu-
tion difference between the 4 km pixel and the observation is
positive for all simulations (12.1, 31.2 and 47.2 mm forafx,
agr, andaha, respectively).
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Fig. 4. Observed (black line), raw simulated (red line), and dis-
aggregated (blue solid line: median; blue dotted lines: 5th and
95th percentile) AMDPs for simulationsafx (left panel),agr (mid-
dle panel) andaha (right panel). The series are sorted in ascending
order.

The estimation of the CRCM simulation bias, which is
the purpose of the validation exercise, cannot be made with
precision since the two other factors contained in the term
(Y ∗

4km− X), that is the bias of the disaggregation model and
the difference in resolution between the 4 km pixel and the
observations, are not known with exactitude. That being said,
it is possible to get rough estimations of the impacts of both
disaggregation model bias and the difference in resolution
between the 4 km pixel and the observations. The results in
Gagnon (2012) suggest that 4 km precipitation depths gener-
ated from the disaggregation model are more likely underes-
timated than overestimated for the most intense events. Also,
Fig. 3 suggests that precipitation depths increase as the pixel
size decreases (in other words with increasing resolution),
implying that the impact of the difference in resolution be-
tween the 4 km pixel and the observations should be negative
as well. It implies that the value of (Y ∗

4km− X) should be a
lower bound for the positive bias of the CRCM simulation.
For the present case, it implies that the bias of the CRCM
simulation for the AMDP in the 1961–2000 period (May to
October) is at least as high as the difference between the dis-
aggregated distribution and the observation series in Fig. 4.
As most 5th percentile disaggregated values are greater than
observed values, it can be said in these cases that the bias
is positive with a significance level at least as high as 90 %
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Fig. 5. Intercept (β0) and slope (β1) of the linear regression of the
AMDP on the year for the 1961–2099 period for the disaggregated
series (circles) and the raw simulations (stars) forafx (blue), agr
(green) andaha (red). The size of the symbols increases with the
level of significance of the trend (from the Mann–Kendall test).

(maybe more). Notable exceptions are the three highest max-
imum annual daily values forafx and the smaller maximum
annual values for the three simulations. The most biased sim-
ulation isaha; even the raw simulated annual maximums are
higher than the observed maximums.

5.2 Impact of climate change (1961–2099)

Figure 5 shows the intercept (β0) and the slope (β1) of the lin-
ear regression of the AMDP on the year over the 1961–2099
period for the disaggregated series and the raw simulations.
The maximum daily precipitation depths for 1960 estimated
from the linear regression are 40.4, 43.6 and 48.0 mm for raw
simulationsafx, agr andaha, respectively. The 1960 maxi-
mum daily precipitation depths estimated in the same manner
from the disaggregated values over the Choinière watershed
are about 2 to 10 mm higher.

The mean increases over 100 years estimated from the lin-
ear regression are 4.5, 4.1 and 6.6 mm for raw simulations
afx, agr andaha, respectively. The corresponding increases
for each simulation are 11.1, 9.4 and 13.8 % of the maximum
annual estimated for 1960. The increase is statistically signif-
icant at the 90 % level for the three raw simulations according
to the Mann–Kendall test.

The mean increases for the disaggregated series are gener-
ally higher. Over 100 years, the median of the disaggregated
increases are 5.8, 7.3 and 11.1 mm for simulationsafx, agr
andaha, respectively. Relative to the median disaggregated
daily maximum estimated for 1960, these increases are 12.3,
14.9 and 20.8 %, respectively. The trends of most disaggre-
gated series are significant at the 90 % level according to the
Mann–Kendall test.
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Fig. 6. Boxplot of the relative change (%) in the highest daily pre-
cipitation between the future (2050–2099) and recent past periods
(1961–2010) for the 100 disaggregated series of each simulation.
The stars are the relative change for the raw simulations.

The higher increases for the disaggregated series are in all
likelihood due to the variable CAPE. CAPE is accounted for
in the standard deviation equation (Eq. 4) of the disaggre-
gation model (Sect. 3). The Mann–Kendall test applied on
the mean daily CAPE value of the AMDPs indicates that
CAPE significantly increases for most series, raw and dis-
aggregated. It means that extreme precipitation intensities
come from more convective events in the future. Convective
events produce more intense local precipitation than large-
scale events. For a given convective event, the local maxi-
mum may or may not fall on the watershed, but over several
events, some local maximum will fall on the watershed and
may produce higher annual maximum.

Figure 6 illustrates the relative difference between the
highest daily precipitation for the past (1961–2010) and fu-
ture (2050–2099) for each raw and disaggregated series. Both
periods contain 50 years to ensure a fair comparison. It shows
that the maximum is higher for the future than it is for the
past for most series, but not for all cases. In fact, for the raw
agr simulation, the maximum decreases. For the disaggre-
gated series, 23, 29 and 12 % of the series of simulationsafx,
agr andaha have negative relative changes, respectively. It
highlights the fact that for the most extreme events, the natu-
ral climate variability is very important and can hide the CC
signal.

To evaluate whether the disaggregation modifies signifi-
cantly the relative change of the raw simulations, we calcu-
lated the percentage of disaggregated series for which the rel-
ative change is higher than the relative change of the raw sim-
ulation. If this percentage is large, say larger than 90 %, the
relative change induced by the disaggregation will be consid-
ered significant. The results indicate that the relative change
is higher than for the raw simulations for 58, 84 and 33 % of
the disaggregated series ofafx, agr andaha, respectively. It
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indicates that the disaggregation may have an impact in the
evaluation of the CC signal, but it is not significant for the
most extreme daily values of the three simulations.

6 Conclusions

In this work, a stochastic disaggregation model (Gagnon,
2012) was used as a tool to validate annual maximum daily
precipitation (AMDP) for a reference period (May to Oc-
tober, 1961–2000) and to evaluate the impact of CC on a
small watershed (Choinière watershed, sub-watershed of the
Yamaska River, province of Québec, Canada). Three simu-
lations coming from the same RCM (CRCM version 4.2.3)
were analyzed.

The validation results indicate that disaggregation has a
significant impact for most AMDP events (Fig. 4). Never-
theless, the disaggregation model did not permit the precise
evaluation of the simulation bias (caused by a misrepresenta-
tion of the physical processes) for daily extreme because of
two main factors.

First, even if the disaggregation model refines the spatial
resolution from 45 to 4 km, the gap between 4 km and the
resolution of the observations might have a non-negligible
impact on the validation results. To apply the disaggregation
model at a finer scale, one needs to estimate the model pa-
rameters at the target scale first. This can be done for ex-
ample with radar composite data as performed in Gagnon et
al. (2012, 2013). However, if the observed data come from
rain gauges, there will always be a gap between the resolu-
tion of the radar and the rain gauge data.

The second factor is the bias of the disaggregation model
for the most convective events (Gagnon, 2012). Although the
model already accounts for this type of event, more work
needs to be done to better understand the role of CAPE on
the spatial distribution of the precipitation at the local scale.

Despite these two limitations, the disaggregation model
provided a way to illustrate that the AMDPs were signifi-
cantly positively biased for most years for the three simula-
tions, and in particular for the maximum over 40 years for
simulationsagr andaha(Table 1, Fig. 4).

For the CC evaluation, the results indicate that AMDPs
tend to increase for both raw simulated and disaggregated se-
ries (Fig. 5). For the comparison of the maximum daily pre-
cipitation over 50 years between the past (1961–2010) and
the future (2050–2099), the CC signal is slightly stronger for
the disaggregated series compared to the raw simulation, but
not significantly. It would be interesting to test whether an
enhanced version of the disaggregation model, with a better
representation of the role of CAPE, would increase the im-
pact of the CC signal at local scale.

Despite the fact that the disaggregation does not sig-
nificantly change the CC signal, disaggregation provides
valuable information. In this work, each day was disaggre-
gated 100 times, allowing for the calculation of confidence

intervals for each simulation. It is noteworthy considering the
small amount of extreme event data and their high variability.
From a practical point of view, the ensemble of disaggregated
series could be used to estimate an exceedance probability
for a given future horizon.

Climate models are continuously improving their physical
representation and their spatial resolution. For example, the
CRCM now runs at a 15 km horizontal resolution. Nonethe-
less, stochastic disaggregation models will remain relevant
since it produces a distribution of results for a unique event,
and there will always be a need for high-resolution rainfall
estimates.

To sum up, the difference in spatial resolution between cli-
mate models and the area of interest must be accounted for
when investigating extreme precipitation events over a small
area. For validation purposes, this difference in spatial reso-
lution represents an important source of errors and might be
more important than the bias of the climate models. For CC
projections, it is one source of uncertainty among others and
should be considered as well as uncertainty of climate mod-
els, size of the domain (when RCM are used), GHG emis-
sion scenarios, etc. While the disaggregation model used in
this work could be improved, this study has illustrated that
it could be a valuable tool to conduct an impact assessment
study. In addition to the fact that the model preserves the spa-
tial structure of the field, one advantage is that parameteriza-
tion is related to physical properties of the events (CAPE,
wind speed and wind direction). It allows the model to be
more robust to CC or to applications in non-calibrated areas.
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