www.impactjournals.com/Genes&Cancer Genes & Cancer, Vol. 6 (5-6), May 2015 3,3'-Diindolylmethane (DIM) and its ring-substituted halogenated analogs (ring-DIMs) induce differential mechanisms of survival and death in androgen-dependent and -independent prostate cancer cells ## Alexander A. Goldberg^{1,2,*}, Hossam Draz^{1,3,*}, Diana Montes-Grajales⁴, Jesus Olivero-Verbél⁴, Stephen H. Safe⁵ and J. Thomas Sanderson¹ Correspondence to: J. Thomas Sanderson, email: thomas.sanderson@iaf.inrs.ca Keywords: prostate cancer, LNCaP, C42B, DU145, mitochondrial function Received: January 29, 2015 Accepted: April 16, 2015 Published: April 26, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ## ABSTRACT We recently reported that novel ring-substituted analogs of 3,3'-diindolylmethane (ring-DIMs) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. In this paper, we have focused on the mechanism(s) associated with ring-DIM-mediated cell death, and on identifying the specific intracellular target(s) of these compounds. The 4,4'- and 7,7'-dichloroDIMs and 4,4'- and 7,7'-dibromoDIMs induced the death of LNCaP, C42B and DU145 prostate cancer cells, ¹ INRS-Institut Armand-Frappier, Laval, Québec, Canada ² Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, ³ Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt ⁴ Environmental and Computational Chemistry Group, University of Cartagena, Colombia ⁵ Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States ^{*}These authors have contributed equally to this work