
 

 

 

 

 

 
CORRELATION ANALYSIS OF SEDIMENT 

DREDGING VOLUMES AND HYDRO-
METEOROLOGICAL VARIABLES IN THE 

SAINT JOHN RIVER, NB 
 
 

 
 



 

 

 

 

CORRELATION ANALYSIS OF SEDIMENT DREDGING VOLUMES 
AND HYDRO-METEOROLOGICAL VARIABLES IN THE SAINT JOH N 

RIVER, NB 
 

 

 

By 

 

Sébastien Ouellet-Proulx 
Katy Haralampides 

André St-Hilaire 
 
 
 

Institut national de la recherche scientifique  
Centre Eau, Terre et Environnement 

(INRS-ETE) 
490 De la Couronne, Québec, G1K 9A9 

 
 
 
 

 

June 2013 

 

 

 

 

© INRS-ETE, 2013 



 

iii 

TABLE OF CONTENTS 

TABLE DES MATIÈRES ....................................................................................................................................... III 

LISTE DES TABLEAUX ......................................................................................................................................... IV 

LISTE DES FIGURES .............................................................................................................................................. V 

1. INTRODUCTION ............................................................................................................................................. 1 

2. ORIGINAL MODEL......................................................................................................................................... 2 

2.1 DATA AND METHOD ............................................................................................................................................. 2 

2.2 RESULTS .............................................................................................................................................................. 2 

3. NEW MODEL.................................................................................................................................................... 4 

3.1 DATA  ................................................................................................................................................................... 4 

3.2 METHOD .............................................................................................................................................................. 5 

3.3 RESULTS .............................................................................................................................................................. 6 

4. DISCUSSION AND CONCLUSION ............................................................................................................. 11 

5. ACKNOWLEDGMENTS ............................................................................................................................... 12 

6. REFERENCES ................................................................................................................................................ 13 

 



 

iv 

LISTE OF TABLES 

TABLE 1. R2
 AND P-VALUES OBTAINED FROM THE ORIGINAL DATASET AND EXTENDED DATASET ................................. 3 

TABLE 2. LIST OF POTENTIAL PREDICTORS ..................................................................................................................... 4 

TABLE 3. PEARSON CORRELATION COEFFICIENT BETWEEN DREDGING VOLUMES AND EXPLANATORY VARIABLES. 

(ONLY P-VALUE < 0.05 ARE SHOWN) .................................................................................................................... 8 

TABLE 4. PERFORMANCE CRITERIA FOR THE MULTIPLE REGRESSION AND THE LOOCV .............................................. 10 

 



 

v 

LISTE OF FIGURES 

FIGURE 1. TIMES SERIES OF DREDGING VOLUMES, JUNEQMAX AND PCPNSPRING .......................................................... 7 

FIGURE 2. EXHAUSTIVE SELECTION OF INPUT PREDICTORS BY THE MAXIMISATION OF THE ADJUSTED R2 ..................... 9 

FIGURE 3. FORWARD-BACKWARD STEPWISE SELECTION OF INPUT PREDICTORS BY THE MAXIMISATION OF THE 

ADJUSTED R2........................................................................................................................................................ 9 

FIGURE 4. BAR PLOT OF THE OBSERVED DREDGING VOLUMES, THE VOLUMES ESTIMATED FROM THE REGRESSION AND 

THE VOLUMES ESTIMATED FROM THE LOOCV ................................................................................................... 10 

 

 



 

 1 

1. INTRODUCTION 

The Saint John Port Authority (SJPA) dredges fine material from the Saint John Harbor, NB 

every year in order to maintain the required depth for the navigation of large commercial ships. 

However, the large inter-annual variability in the amount of sediment that they have to dredge 

induces an uncertainty in the budget allocated for this task. In order to explain a part of that 

variability, Higgins (2010) tested correlations between hydro-meteorological variables and the 

volumes of material dredged from the harbor’s bed from 2004 to 2009 using dredging data 

provided by the SJPA. Significant correlation were found between dredging volumes and mean 

water level (r2 = 0.63) and total discharge (r2 = 0.73). A multiple linear regression model was 

built from those variables that explained 83% of the total variance of dredged volumes for those 

years. Now that additional dredging data have been made available by the SJPA, the work 

accomplished by Higgins (2010) needs to be re-evaluated. Therefore, the objectives of the 

present study are to: 

1) Verify if the analysis performed by Higgins in 2010 still yield good results 

when eight more years of data are added;  

2) Investigate if dredging volumes can be linked to other hydro-meteorological 

variables; 

3) Build a multiple linear regression model using the variables found in 

objective 2. 
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2. ORIGINAL MODEL 

2.1 Data and method 

The volume of sediment dredged annually is considered proportional to the sedimentation 

occurring in the harbor. Therefore, a simple statistical model that could relate hydro-

meteorological variables to the volume of sediment dredged would be a valuable tool to estimate 

the sedimentation in the Saint John Harbor. The model proposed by Higgins (2010) was made 

from two significantly correlated predictors, mean water level and total discharge of the 

hydrological year (i.e. October to September). Since then, eight additional years of dredging data 

were made available by the SJPA (1998 - 2011) for a total of 14 years of data. Therefore, in 

order to evaluate if the results of Higgins (2010) are still significant when tested on a 14 year 

time series, the analysis performed by Higgins has been reproduced, with the inclusion of the 

new data.  

 

Correlation was tested between the predictors used by Higgins (2010; mean water level and total 

discharge) with additional years and the dredging volumes. A variable was considered 

significantly correlated when p-value < 0.05.  

2.2 Results 

When the original model was rerun on a longer time series, the value of the coefficient of 

determination dropped drastically for both mean water level and total discharge (i.e. the 

independent variables used in Higgins’ model) and the correlation were no longer significant 

(Table 1). Therefore, no significant correlation was found for any of the variables considered in 

Higgins’ work and it was impossible to use the same predictors to build a multiple linear 

regression model.  
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Table 1. R2 and p-values obtained from the original dataset and extended dataset 

Variable R2             
(2004-2009) 

P-value             
(2004-2009) 

R2               
(1998-2011) 

P-value               
(1998-2011) 

Mean 
Level 

0.63 0.01 0.09 0.28 

Qtot 0.73 0.06 0.06 0.38 
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3. NEW MODEL  

3.1 Data 

Since reproducing the analysis with the same variables with additional years did not yield any 

significant correlation, alternative variables were tested. First, the discharge used by Higgins 

(2010) was estimated using the ratio area method from the discharge recorded by the Water 

Survey of Canada (WSC) at Grand Falls. For more precision, we used the discharge recorded at 

the Mactaquac dam which is located about 200 km further downstream.  

 

Table 2. List of potential predictors 

Variable Units Definition 

PcpnSpring  
mm 

Total precipitation of spring months (i.e. March, April and May) 

Pcpn April Total precipitation of April 

JanQmax 

m3/s 

Mean maximum discharge of January 

FebQmax Mean maximum discharge of February 

JunQmax Mean maximum discharge of June 

AugustQmax Mean maximum discharge of August 

FebQmin Mean minimum discharge of February 

MarQmin Mean minimum discharge of March 

AprQmin Mean minimum discharge of April 

MayQmin Mean minimum discharge of May 

JunQmin Mean minimum discharge of March 

FebQtot Total discharge of February 
 

As for the meteorological data, Higgins (2010) used a single meteorological station located in 

Saint John to account for the whole Saint John River watershed. Since the Grand Falls region is 

known to be a sediment producing area because of its dense agricultural activity, we 

hypothesized that sediment transport could be related to precipitation falling in the upper part of 

the watershed.  As an attempt to improve the precision of the estimation of the precipitation data, 

we used total precipitations interpolated on a 10 km grid, using the ANUSPLIN technique 
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developed by Hutchinson et al. (2009), on the Canadian portion of the watershed (i.e. 64% of the 

total area). In addition, for both the hydrological and the meteorological variables, correlations 

were tested on annual, monthly and seasonal data to verify if certain periods of the year could be 

critical to sediment mobilization. 

3.2 Method 

From the significantly correlated variable, an exhaustive search was used for the selection of the 

input variables to build a multiple regression. That method verifies all possible combinations of 

predictors and selects the combination that returns the best results based on a certain 

performance criterion (Cornillon and Matzner-Løber, 2006). In this case, the choice was made by 

maximising the adjusted R2:  

 

 
����

� = 1 −
	 − 1

	 − 
 − 1
(1 − ��)	 

[1] 

 

Where n is the number of observations, m is the number of predictors included in the model and 

R2 is the coefficient of determination, traditionally used to assess model performances. By using 

the adjusted R2, in opposition to the standard R2, we ensure that the algorithm takes into account 

the number of predictors when choosing the best model and penalise a model that includes more 

variables.  

 

A stepwise forward-backward regression, which iteratively adds or removes a predictor based on 

the results of Fisher test, was also tested. This second method was implemented to support the 

choice of predictors to be included in the multiple regression. 

 

In both cases, a maximum of four predictors was prescribed to avoid overfitting, given the large 

number of potential predictors and the small sample size. The package leaps of the R software 

was used to performed the analysis. 

 

To assess the robustness of the multiple linear regression for such a small sample size (14 years), 

a leave-one-out cross validation (LOOCV) was executed. LOOCV is used to validate model 
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performances fitted on small datasets. The algorithm iteratively removes the ith observation from 

dataset to adjust the model and utilizes the resulting model to estimate that observation. When 

each observation has been estimated, the performance indices can be can be calculated to 

compare the estimated values to the observed values. In this case, the performance of the model 

was verified through the calculation of R2, relative root mean square error (RRMSE) and relative 

bias (RBIAS). R2 was used instead of adjusted R2 to assess the performances of the final model 

for ease of comparison with similar studies. 

 

Pearson correlation coefficients and their corresponding p-values were calculated to assess the 

relationship between the volume dredged and the hydro-meteorological variables. A level of 

significance of 5% was used to determine which variable to include as potential predictors, 

meaning that only variables with a p-value lower than 0.05 were retained.  

 

For both the variables used by Higgins and the new variables added in this study, we tested 

annual values calculated for the hydrological year (October to September) instead of the calendar 

year (January to December) because the dredging usually occurs from July to November 

(Higgins, 2010).  

 

3.3 Results 

Significant correlations were found for 12 new potential predictors drawn for either interpolated 

precipitation or discharge at the Mactaquac dam. The significantly correlated variables are listed 

in Table 3. The highest correlation coefficient was found for January mean maximum discharge 

(JanQmax; r = 0.66) followed by June mean maximum discharge (JunQmax; r = 0.63) and the 

total precipitation recorded during springtime (PcpnSpring; r = 0.59). All the other significantly 

correlated variables have a Pearson correlation coefficient above 0.54 (absolute value). 
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Figure 1. Times series of dredging volumes, JunQmax and PcpnSpring 
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Table 3. Pearson correlation coefficient between dredging volumes and explanatory 
variables. (Only p-value < 0.05 are shown) 

Variable Pearson 
Corr. Coef. P-value 

PcpnSpring  0.59 0.02 

JanQmax 0.66 0.01 

FebQmax 0.54 0.05 

JunQmax 0.63 0.02 

AugustQmax 0.54 0.05 

FebQmin -0.54 0.05 

MarQmin -0.56 0.04 

AprQmin -0.55 0.04 

MayQmin -0.58 0.03 

JunQmin -0.58 0.03 

FebQtot 0.57 0.03 

Pcpn April 0.58 0.03 
 

Figures 2 and 3 graphically show which predictors should be used in order to adjust the best 

possible model on the available data, if respectively an exhaustive search or a stepwise 

regression is used. Both the exhaustive and the forward-backward stepwise method retained the 

same predictors to build the multiple regression, namely the total precipitation recorded during 

springtime (PcpnSpring) and the mean maximum discharge of June (JunQmax; Figures 1 and 2). 

A linear equation was adjusted using these two predictors by minimizing the sum of the squared 

error (Equation 1). 

 ���� = 	−3177.4 + 69.78 ∗ ���	��� 	! + 1.2 ∗ #$	%
&' + ℇ [2] 

 

When the regression was fitted on the whole dataset, it returned a R2 of 0.68 while this 

coefficient dropped to 0.59 when the LOOCV was implemented. As for the RRMSE, it was 0.16 

when the whole dataset was used and it increased to 0.19 for the LOOCV. It both cases, the 

model was not biased (Table 4). Considering the small sample size, 59% of variance explained 

on LOOCV data is satisfactory. 
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Figure 2. Exhaustive selection of input predictors by the maximisation of the adjusted R2. 
The blocks correspond to the predictors of the x axis selected to build a model that would 
return the adjusted R2 shown on the y axis. The different shades of gray represent the 
magnitude of the adjusted R2. 
 

 

Figure 3. Forward-backward stepwise selection of input predictors by the maximisation of 
the adjusted R2. The blocks correspond to the predictors of the x axis selected to build a 
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model that would return the adjusted R2 shown on the y axis. The different shades of gray 
represent the magnitude of the adjusted R2. 
 

Table 4. Performance criteria for the multiple regression and the LOOCV 

Method R2 RRMSE RBIAS 

Regression 0.68 0.16 0 

LOOCV 0.59 0.19 0.001 
 

 

 

Figure 4. Bar plot of the observed dredging volumes, the volumes estimated from the 
regression and the volumes estimated from the LOOCV 
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4. DISCUSSION AND CONCLUSION 

 

Higgins (2010) stated that the SJPA hypothesised that the volumes dredged annually “should be 

related to the magnitude of the previous spring flood”. This could not be confirmed by Higgins’ 

analysis. She suggested that annual total discharge and annual mean water level would be the 

most appropriate predictors of the dredging volumes according to the available data at the time. 

 

However, the results of the present study seem to support the hypothesis of the SJPA. Among the 

12 significantly correlated variables, seven were spring or early summer hydro-meteorological 

statistics. Also, both the exhaustive and the stepwise selection of predictors obtained highest 

adjusted R2 from JunQmax (r = 0.63) and PcpnSpring (r = 0.59) which are spring and early 

summer variables. It can be seen on Figure 1 that some years with high dredging volumes (e.g. 

2000, 2006 and 2011) correspond to high discharge in June and high spring precipitations. 

However, such observation should be interpreted with some caution considering that the sample 

was made of only 14 years of data. 

 

From five other significantly correlated variables, four of them are winter discharge statistics 

(Table1) and three of these five are from the month of February. Also, for both the exhaustive 

and the stepwise approaches, if a third predictor was considered in the model, the February total 

discharge (FebQtot; r = 0.57) was retained (Figures 2 and 3). Although no winter variables were 

included in the regression built in this study, winter hydro-meteorological should be part of 

future work. Alternative statistical approaches, such as model trees, or longer time series of 

dredging volumes may prove that variables characterizing winter conditions to be adequate 

predictors of the variability in the sedimentation in the Saint John harbor. 
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