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Abstract

The use of language models in automatic speech recognition helps to find the best next
word, to increase recognition accuracy. Statistical language models (LLMs) are trained on
a large collection of text to automatically determine the model’s parameters. LMs encode
linguistic knowledge in such a way that can be useful to process human language. Generally,
a LM exploits the immediate past information only. Such models can capture short-length
dependencies between words very well. However, in any language for communication,
words have both semantic and syntactic importance. Most speech recognition systems are
designed for a specific task and use language models that are trained from a large amount
of text that is appropriate for this task. A task-specific language model will not do well for
a different domain or topic. A perfect language model for speech recognition on general
language is still far away. However, language models that are trained from a diverse style
of language can do well, but are not perfectly suited for a certain domain. In this research,
we introduce new language modeling approaches for automatic speech recognition (ASR)
systems incorporating probabilistic topic models.

In the first part of the thesis, we propose three approaches for LM adaptation by cluster-
ing the background training information into different topics incorporating latent Dirichlet
allocation (LDA). In the first approach, a hard-clustering method is applied into LDA train-
ing to form different topics. We propose an n-gram weighting technique to form an adapted
model by combining the topic models. The models are then further modified by using latent
semantic marginals (LSM) using a minimum discriminant information (MDI) technique. In
the second approach, we introduce a clustering technique where the background n-grams
are directed into different topics using a fraction of the global count of the n-grams. Here,
the probabilities of the n-grams for different topics are multiplied by the global counts of the
n-grams and are used as the counts of the respective topics. We also introduce a weighting
technique that outperforms the n-gram weighting technique. In the third approach, we pro-
pose another clustering technique where the topic probabilities of the training documents
are multiplied by the document-based n-gram counts and the products are summed up for

all training documents; thereby the background n-grams are assigned into different topics.



In the second part of the thesis, we propose five topic modeling algorithms that are
trained by using the expectation-maximization (EM) algorithm. A context-based proba-
bilistic latent semantic analysis (CPLSA) model is proposed to overcome the limitation of
a recently proposed unsmoothed bigram PLSA (UBPLSA) model. The CPLSA model can
compute the correct topic probabilities of the unseen test document as it can compute all
the bigram probabilities in the training phase, and thereby yields the proper bigram model
for the unseen document. The CPLSA model is extended to a document-based CPLSA
(DCPLSA) model where the document-based word probabilities for topics are trained. To
propose the DCPLSA model, we are motivated by the fact that the words in different doc-
uments can be used to describe different topics. An interpolated latent Dirichlet language
model (ILDLM) is proposed to incorporate long-range semantic information by interpo-
lating distance-based n-grams into a recently proposed LDLM. Similar to the LDLM and
ILDLM models, we propose enhanced PLSA (EPLSA) and interpolated EPLSA (IEPLSA)
models in the PLSA framework.

In the final part of the thesis, we propose two new Dirichlet class language models that
are trained by using the variational Bayesian EM (VB-EM) algorithm to incorporate long-
range information into a recently proposed Dirichlet class language model (DCLM). The
latent variable of DCLM represents the class information of an n-gram event rather than the
topic in LDA. We introduce an interpolated DCLM (IDCLM) where the class information
is exploited from (n-1) previous history words of the n-grams through Dirichlet distribution
using interpolated distanced n-grams. A document-based DCLM (DDCLM) is proposed

where the DCLM is trained for each document using document-based n-gram events.

In all the above approaches, the adapted models are interpolated with the background
model to capture the local lexical regularities. We perform experiments using the ’*87-89
Wall Street Journal (WSJ) corpus incorporating a multi-pass continuous speech recognition
(CSR) system. In the first pass, we use the background n-gram language model for lattice
generation and then we apply the LM adaptation approaches for lattice rescoring in the sec-

ond pass.

Supervisor: Douglas O’Shaughnessy, Ph.D.

Title: Professor and Program Director
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Chapter 1
Introduction

The primary means of communication between people is speech. It has been and will be the
dominant mode of human social bonding and information exchange from human creation
to the new media of future. Human beings have envisioned to communicate with machines
via natural language long before the advancement of computers. Over the last few decades,
research in automatic speech recognition has attracted a great deal of attention, which con-
stitutes an important part in fulfilling this vision.

In our daily life, we may find many real applications of automatic speech recognition
(ASR). For example, in most of the latest cellular phones, especially smartphones, ASR
functions are available to do simple tasks such as dialing a phone number, writing a message,
or to run an application using voice instead of typing. An automotive navigation system
with ASR capability can be found inside cars, which let the driver to focus on driving while
controlling the navigation system through voice. Besides, there are many applications of
ASR systems that perform advanced tasks such as dictation. Those are just a few examples
that describe how the ASRs bring a real value on the daily life [79].

Early stages of ASR systems were based on template-matching techniques. Template-
matching refers to the incoming speech signal being compared to a set reference patterns, or
templates. The first known template-based ASR system was developed by Davis et al. [25]
in 1952. That was a very simple task, which was to recognize a digit (isolated words) from
a speaker. Ever since, many small vocabulary (order of 10-100 words) ASR tasks were
carried out by several researchers. In the 1970’s, significant developments in ASR research
began where the size of vocabulary was increasing to a medium size (100-1000 words), with
continuous words and these methods were using a simple template-based pattern recogni-
tion. In 1980’s, the vocabulary size of ASR was further increasing from medium to a large

vocabulary size (> 1000 words) and the method was shifted from a template-based approach
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to a statistical modeling framework, most notably the hidden Markov model (HMM) frame-
work [31, 79]. In the large vocabulary ASR systems, potential confusion increases between
similar sounding words. An ASR system concentrating on the grammar structure (language
model) of the language was proposed by Jelinek et al. [62], where the language model
was represented by statistical rules that can distinguish similar sounding words and can tell
which sequence (phonemes or words) that is likely to appear in the speech.

Language modeling is the challenge to capture, characterize and exploit the regularities
of natural language. It encodes the linguistic knowledge that is useful for computer systems
when dealing with human language. Language modeling is critical to many applications
that process human language with less than complete knowledge [28]. It is widely used
in a variety of natural language processing tasks such as speech recognition [6, 57], hand-
written recognition [74], machine translation [17], and information retrieval [86]. However,
one of the most exciting applications of language models is in automatic speech recognition
(ASR), where a computer is used to transcribe the spoken text into written form. An ASR
system consists of two components: the acoustic model and the language model (LM). The
LM combines with the acoustic model to reduce the acoustic search space and resolve the
acoustic ambiguity. It not only helps to disambiguate among acoustically similar phrases
such as (for, four, fore) and (recognize speech, wreck a nice beach), but also guides the
search for the best acoustically matching word sequence towards ones with the highest lan-
guage probabilities [55]. ASR systems cannot find the correct word sequence without a LM.
They provide a natural way of communication between human and machine as if they were

speaking as humans using natural language.

1.1 Background

There is a great deal of variability in natural language. Natural language grammar can be
taught by two approaches: rule-based language models and statistical language models.
In rule-based language models, grammar is defined as a set of rules that are accurate, but
difficult to learn automatically. These rules are manually created by some experts such
as linguists. In this approach, a sentence is accepted or rejected based on the set of rules
defined in the grammar. This approach may be useful for a small task, where the rules for
all possibilities of sentences can be defined. However, in natural language, there are more
chances for the sentences to be ungrammatical. Statistical language models are useful to
model natural language by creating several hypothesis for a sentence. They can model the

language grammar by a set of parameters, which can learn automatically from a reasonable
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amount of training data. Therefore, it can save more time as the parameters can be learned

automatically.

The most powerful statistical models are the n-gram models [61, 63, 75]. These models
exploit the short-range dependencies between words in a language very well. To learn its
parameters (n-gram probabilities) from a given corpus, the n-gram models use maximum
likelihood (ML) estimation. However, n-gram models suffer from the data sparseness prob-
lem as many n-grams do not appear in a training corpus, even with a large amount of training
corpus. For example, if we use a vocabulary V of size 10,000 words in a trigram model,
the total number of probabilities to be estimated is [V|* = 10'2. For any training data of
manageable size, many of the probabilities will be zero. The data sparseness problem is
also caused by the n-grams with low frequency of occurrences in a large training corpus that

will have an unreliable probability.

To deal with the data sparseness problem, a smoothing technique is considered that en-
sures some probabilities (>0) to the words that do not appear (or appear with low frequency)
in a training corpus. The idea of smoothing is to take out some probability mass from the
seen events and distribute it to the unseen events. The method can be categorized depending
on how the probability mass is taken out (discounting) and how it is redistributed (back-
off). Examples of some smoothing techniques are additive smoothing [70], Good-Touring
estimate [36], Jelinek-Mercer smoothing [61], Katz smoothing [64], Witten-Bell smooth-
ing [9], absolute discounting [81], and Kneser-Ney smoothing [66]. The details of them can
be found in [19].

Class-based n-gram LMs [16] have also been proposed to solve the data sparseness
problem. Here, multiple words are grouped into a word class, and the transition probabili-
ties between words are approximated by the probabilities between word classes. However,
class-based n-grams work better only with a limited amount of training data with fewer
parameters than in the word n-gram model [16]. The class-based n-gram LM is improved
by interpolating with a word-based n-gram LM [15, 99]. A word-to-class backoff [83]
was introduced where a class-based n-gram LM is used to predict unseen events, while the
word-based n-gram LM is used to predict seen events. However, when the class-based and
word-based LMs are used together, the parameter size increases more than the independent
case, which is not good for low resource applications [80]. In [103], multi-dimensional word
classes were introduced to improve the class-based n-grams. Here, the classes represent the
left and right context Markovian dependencies separately. A back-off hierarchical class-
based LM was introduced to model unseen events using the class models in various layers
of a clustering tree [106]. In [18], a new class-based LM called Model M was introduced
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by identifying back-off features that can improve test performance by reducing the size of
a model. Here, the n-gram features were shrunken for n-grams that differ only in their his-
tories. Unsupervised class-based language models such as Random Forest LM [102] have
been investigated that outperform a word-based LM.

The neural network language model (NNLM) was also investigated to tackle the data
sparseness problem by learning distributed representation of words [12, 90]. Here, the (n —
1) history words are first mapped into a continuous space and then the n-gram probabilities
given the history words are estimated. Later, a recurrent neural network-based LM was
investigated that shows better results than NNLM [76, 77].

1.1.1 Incorporating Long-range Dependencies

The improvement of n-gram models can fall into two categories, whether one is introducing
a better smoothing method or incorporating long-range dependencies. Statistical n-gram
LMs suffer from shortages of long-range information, which limit performance. They use
the local context information by modeling text as a Markovian sequence and capture only
the local dependencies between words. They cannot capture the long-range information of
natural language. Several methods have been investigated to overcome this weakness. A
cache-based language model is an earlier approach that is based on the idea that if a word
appeared previously in a document it is more likely to occur again. It helps to increase the
probability of previously observed words in a document when predicting a future word [69].
This idea is used to increase the probability of unobserved but topically related words, for
example, trigger-based LM adaptation using a maximum entropy framework [88]. However,
the training time requirements (finding related word pairs) of this approach are computation-

ally expensive.

1.1.2 Incorporating Long-range Topic Dependencies

Language models perform well when the test environment matches nicely with the training
environment. Otherwise, adaptation for the test set is essential because the smoothing ap-
proaches do not consider the issues such as topic and style mismatch between the training
and test data. Actually, it is impossible to collect all forms of topics and styles of a language
in the training set. So, in most cases of practical tasks, adaptation of a language model is
required. Many approaches have been investigated to capture the topic related long-range
dependencies. The first technique was introduced in [67] using a topic mixture model.

Here, topic-specific language models are trained using different corpora with different top-
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ics and combined in a linear way. Another well-known method is the sentence-level mixture
models, which create topic clusters by using a hard-clustering method where a single topic
is assigned to each document and used in LM adaptation. Improvements were shown both

in perplexity and recognition accuracy over an unadapted trigram model [58].

Recently, various techniques such as Latent Semantic Analysis (LSA) [10, 26], Proba-
bilistic LSA (PLSA) [33, 54], and Latent Dirichlet Allocation (LDA) [13] have been inves-
tigated to extract the latent topic information from a training corpus. All of these methods
are based on a bag-of-words assumption, i.e., the word-order in a document can be ignored.
These methods have been used successfully for speech recognition [10, 33, 39, 72, 73, 78,
80, 95, 96]. In LSA, a word-document matrix is used to extract the semantic information.
In PLSA, each document is modeled by its own mixture weights and there is no generative
model for these weights. So, the number of parameters grows linearly when increasing the
number of documents, which leads to an overfitting problem. Also, there is no method to
assign probability for a document outside the training set. On the contrary, the LDA model
was introduced where a Dirichlet distribution is applied on the topic mixture weights cor-
responding to the documents in the corpus. Therefore, the number of model parameters is
dependent only on the number of topic mixtures and the vocabulary size. Thus, LDA is less
prone to overfitting and can be used to compute the probabilities of unobserved test docu-
ments. However, the LDA model can be viewed as a set of unigram latent topic models.
The LDA model is one of the most widely used topic-modeling methods used in speech
recognition that capture long-distance information through a mixture of unigram topic dis-
tributions. In the idea of an unsupervised language model adaptation approach, the unigram
models extracted by LDA are adapted with proper mixture weights and interpolated with the
n-gram baseline model [95]. To extend the unigram bag-of-words models to n-gram models,
a hard-clustering method was employed on LDA analysis to create topic models for mixture
model adaptation and showed improvement in perplexity and recognition accuracy [72, 73].
Here, the mixture weights of the topic clusters are created using the latent topic word counts
obtained from the LDA analysis. A unigram count weighting approach [39] for the topics
generated by hard-clustering has shown better performance over the weighting approach
described in [72, 73]. LDA is also used as a clustering algorithm to cluster training data into
topics [51, 87]. The LDA model can be merged with n-gram models and achieve perplexity
reduction [91]. A non-stationary version of LDA can be developed for LM adaptation in
speech recognition [22]. The LDA model is extended by HMM-LDA to separate the syn-
tactic words from the topic-dependent content words in the semantic class, where content

words are modeled as a mixture of topic distributions [14]. Style and topic language model



6 Introduction

adaptation are investigated by using context-dependent labels of HMM-LDA [56]. A bigram
LDA topic model, where the word probabilities are conditioned on their preceding context
and the topic probabilities are conditioned on the documents, has been recently investi-
gated [100]. A similar model but in the PLSA framework called a bigram PLSA model was
introduced recently [82]. An updated bigram PLSA model (UBPLSA) was proposed in [7]
where the topic is further conditioned on the bigram history context. A topic-dependent
LM, called topic dependent class (TDC) based n-gram LM, was proposed in [80], where
the topic is decided in an unsupervised manner. Here, the LSA method was used to reveal
latent topic information from noun-noun relations [80].

Although the LDA model has been used successfully in recent research work for LM
adaptation, the extracted topic information is not directly useful for speech recognition,
where the latent topic of n-gram events should be of concern. In [20], a latent Dirichlet
language model (LDLM) was developed where the latent topic information was exploited
from (n-1) history words through the Dirichlet distribution in calculating the n-gram prob-
abilities. A topic cache language model was proposed where the topic information was
obtained from long-distance history through multinomial distributions [21]. A Dirichlet
class language model (DCLM) was introduced in [21] where the latent class information
was exploited from the (n-1) history words through the Dirichlet distribution in calculat-
ing the n-gram probabilities. The latent topic variable in DCLM reflects the class of an
n-gram event rather than the topic in the LDA model, which is extracted from large-span

documents [21].

1.2 Overview of this Thesis

We began this thesis by stating the importance of language modeling for automatic speech
recognition. The history of language modeling is then stated followed by the improvement
of LMs incorporating smoothing algorithms and long-range dependencies. The remainder

of this thesis is organized into the following chapters:
Chapter 2: Literature Review

In this chapter, we illustrate the basics of language modeling in speech recognition, lan-
guage modeling theory, n-gram language models, the language model’s quality measure-
ment metrics, the importance of smoothing algorithms, the class-based language model, the

language model adaptation techniques, and semantic analysis approaches.
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Chapter 3: LDA-based LM Adaptation Using LSM

We form topics by applying a hard-clustering method into the document-topic matrix of the
LDA analysis. Topic-specific n-gram LMs are created. We introduce an n-gram weighting
approach [40] to adapt the component topic models. The adapted model is then interpo-
lated with a background model to capture local lexical regularities. The above models are
further modified [49] by applying an unigram scaling technique [68] using latent semantic
marginals (LSM) [96].

Chapter 4: Topic n-gram Count LM

We propose a topic n-gram count LM (TNCLM) [42] using the features of the LDA model.
We assign background n-grams into topics with counts such that the total count of an n-
gram for all topics is equal to the global count of the n-grams. Here, the topic weights for
the n-gram are multiplied by the global count of the n-grams in the training set. We apply
hard and soft clustering of the background n-grams using two confidence measures: the
probability of word given topic and the probability of topic given word. The topic weights
of the n-gram are computed by averaging the confidence measures over the words in the

n-grams.

Chapter 5: Novel Topic n-gram Count LM

The TNCLM model does not capture the long-range information outside of the n-gram
events. To tackle this problem, we introduce a novel topic n-gram count language model

(NTNCLM) using document-based topic distributions and document-based n-gram counts [48].

Chapter 6: Context-based PLSA and Document-based CPLSA

We introduce a context-based PLSA (CPLSA) model [43], which is similar to the PLSA
model except the topic is conditioned on the immediate history context and the document.
We compare the CPLSA model with a recently proposed unsmoothed bigram PLSA (UB-
PLSA) model [7], which can calculate only the seen bigram probabilities that give the incor-

rect topic probability for the present history context of the unseen document. An extension
of the CPLSA model defined as the document-based CPLSA (DCPLSA) model is also in-
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troduced where the document-based word probabilities for topics are trained in the CPLSA
model [50].

Chapter 7: Interpolated LDLM

Since the latent Dirichlet LM (LDLM) model [20] does not capture the long-range informa-
tion from outside of n-gram events, we present an interpolated LDLM (ILDLM) by using
different distanced n-grams [44]. We also incorporate a cache-based LM into the above
models, which model the re-occurring words, through unigram scaling to adapt the LDLM
and ILDLM models that model the topical words.

Chapter 8: Enhanced PLSA and Interpolated EPLSA

Similar to the LDLM and ILDLM approaches, we introduce an enhanced PLSA (EPLSA)
and an interpolated EPLSA (IEPLSA) model in the PLSA framework. Default background
n-grams and interpolated distanced n-grams are used to derive EPLSA and IEPLSA mod-
els [45]. A cache-based LM that models the re-occurring words is also incorporated through
unigram scaling to the EPLSA and IEPLSA models, which models the topical words.

Chapter 9: Interpolated DCLM

The Dirichlet class LM (DCLM) model [21] does not capture the long-range information
from outside of the n-gram window that can improve the language modeling performance.
We present an interpolated DCLM (IDCLM) by using different distanced n-grams [47].

Chapter 10: Document-based DCLM

We introduce a document-based DCLM (DDCLM) by using document-based n-gram events.
In this model, the class is conditioned on the immediate history context and the document
in the original DCLM model [21] where the class information is obtained from the (n-1)
history words of background n-grams. The counts of the background n-grams are the sum
of the n-grams in different documents where they could appear to describe different topics.
We consider this problem in the DCLM model and propose the DDCLM model [46].

Chapter 11: Conclusions and Future Work
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We summarize the proposed techniques and the possible future work, where our proposed

approach could be considered.






Chapter 2
Literature Review

In this chapter, we describe the foundation of other chapters. We first review the basic uses
of language models in speech recognition, the n-gram language models, and the importance
of smoothing algorithms in speech recognition. Then, we briefly describe the semantic
analysis approaches that extract the semantic information from a corpus. The necessity of
language model (LM) adaptation and some adaptation techniques that are relevant to our
thesis are illustrated. Finally, the quality measurement parameters of the language models

and the experimental setup are explained.

2.1 Language Modeling for Speech Recognition

In reality, human-like performance of speech recognition cannot be achieved through acous-
tic modeling alone; some form of linguistic knowledge is required. In speech recognition,
language modeling tries to capture the properties of a language and predict the next word
in a speech sequence. It encodes the linguistic knowledge in a way that helps computer
systems that deal with human language. However, a speech recognizer is generated by a
combination of acoustic modeling and language modeling. It can be described as in Fig-
ure 2.1. The speech input is placed into the recognizer through acoustic data O. The role of

the recognizer is to find the most likely word string W’ as:
W' = argmua/le(W|O) 2.1)

where P(W|O) represents the probability that the word W was spoken, given that the evi-

dence O was observed. The right-hand side probability of Equation 2.1 can be re-arranged
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by using Bayes’ law as:

P(W)P(O[W)
P(O)

where P(W) is the probability that the word W will be uttered, P(O|W) is the probability

that the acoustic evidence O will be observed when the word W is spoken by the speaker,

and P(0O) is the probability that O will be observed. So, P(O) can be ignored as P(O) is not

dependent on the word string that is selected. Therefore, Equation 2.1 can be written as:

P(W|0) = (2.2)

W = argmu?}le(W|O) = argmuelle(W)P(O|W), (2.3)

where P(O|W) is determined by the acoustic modeling and P(W) is determined by the

language modeling part of a speech recognizer.

Acoustic Data Speech Transcription
> i > Data
o Recognizer o

A A

Speech L Acoustic Acoustic Language< Language< Text
Corpora Modeling | Model Model Modeling | | Corpora

Lexicon

Fig. 2.1 Speech recognition system

2.2 Language Modeling Theory

In recognition and understanding of natural speech, the knowledge of language is also im-
portant along with the acoustic pattern matching. It includes the lexical knowledge that is
based on vocabulary definition and word pronunciation, syntax and semantics of the lan-
guage, which are based on the rules that are used to determine what sequences of words
are grammatically meaningful and well-formed. Also, the pragmatic knowledge of the lan-
guage that is based on the structure of extended discourse and what people are likely to say
in particular contexts are also important in spoken language understanding (SLU) systems.
In speech recognition, it may be impossible to separate the use of these different levels of
knowledge, as they are tightly integrated [57].
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2.2.1 Formal Language Theory

In formal language theory, two things are important: grammar and the parsing algorithm.
The grammar is an acceptable framework of the language and the parsing technnique is the
method to see if its structure is matched with the grammar.

There are three requirements of a language model. These are:
* Generality, which determines the range of sentences accepted by the grammar.
 Selectivity, which determines the range of sentences rejected by the grammar, and

» Understandability, which depends upon the users of the system to create and main-

tain the grammar for a particular domain.

In a SLU system we have to have a grammar that covers and generalizes most of the
typical sentences for an application. It should have the capability to distinguish the kinds of

sentences for different actions in a given application [57].

2.2.2 Stochastic Language Models

Stochastic language models (SLMs) provide a probabilistic viewpoint of language mod-
eling. By these models we need to measure the probability of a word sequence W =
wi,...,wy accurately. In formal language theory, P(W) can be computed as 1 or O depend-
ing on the word sequence being accepted or rejected respectively, by the grammar [57].
However, this may be inappropriate in the case of a spoken language system (SLS), since
the grammar itself is unlikely to have complete coverage, not to mention that spoken lan-
guage is often ungrammatical in real conversational applications. However, the main goal
of a SLM is to supply adequate information so that the likely word sequences should have
higher probability, which not only makes speech recognition more accurate but also helps to
dramatically constrain the search space for speech recognition. The most widely used SLM

is the n-gram model, which is described in the next section.

2.2.3 N-gram Language Models

Language modeling in speech recognition is important to differentiate the words spoken

like meat or meet, which cannot be recognized by acoustic modeling alone. It also helps in
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searching to find the best acoustically matching word sequence with the highest language

model probabilities. The probability of a word sequence W = wy,...,wy can be defined as:
P(W)=P(wi,...,wn)
= P(Wl)P(Wzywl) (W3’W1W2) .. .P(Wlel,Wz, A 7WN—1> (2 4)
N .
=[1Pwilwi,wa,... . wi1)
i=1
where P(w;|wy,wa,...,w;_1) is the probability that the word w; will follow, given the word
sequence wi,wy,...,w;_1. In general, P(w;) is dependent on the entire history. For a vo-
cabulary size of v, vi values have to be estimated to compute P(w;|wi,wa,...,w;_1) com-

pletely as there are vi—l different histories. However, in practice, it is impossible to com-
pute the probabilities P(w;|wy,wy,...,w;_1) for a moderate size of i, since most histories
wi,wa,...,w;_1 are unique or have occurred only a few times in most available datasets [57].
Also, a language model for a context of arbitrary length would require an infinite amount
of memory. The most common solution to this problem is to assume that the probability
P(wilwi,wa,...,w;_1) depends on some equivalence classes that are based on some previ-

ous words W;_,+1,W;_n+2,...,w;_1. Therefore, Equation 2.4 can be written as:

N
:HP(W,'|W1,W2,...,W,'_1) 2.5)

N
~ [TPWilwiznst,-- - wic1).

This leads to the n-gram language model, which is used to approximate the probability of a
word sequence using the conditional probability of the embedded n-grams. Here, "n-gram"
refers to the sequence of n words and n=1,2, and 3 represents the unigram, bi-gram and
tri-gram respectively. At present, tri-gram models yield the best performance depending on
the available training data for language models. However, the interest is also growing in
moving to 4-gram models and beyond.

Statistical n-gram language models have been successfully used in speech recognition.
The probability of the current word is dependent on the previous (n — 1) words. In com-
puting the probability of a sentence using an n-gram model, we pad the beginning of a
sentence using a distinguished token < s > such that w_, 1o =--- =wg = < s >. Also,
to make the sum of the probability of all sentences equal to 1, it is necessary to add a

distinguished token < /s > at the end of the sentence and include it in the product of the
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conditional probabilities. For example, the bigram and trigram probabilities of the sentence
LIFE IS BEAUTIFUL can be computed as:

Pyigram( LIFE IS BEAUTIFUL) = P(LIFE| < s >)P(IS|LIFE)...P(< /s > |BEAUTIFUL)

Prrigram( LIFE IS BEAUTIFUL) = P(LIFE| < s >,< s >)P(IS| <5 >,LIFE)...P(< /s > |IS,BEAUTIFUL)

To compute P(w;|w;_1) in a bi-gram model, i.e., the probability that the word w; occurs
given the preceding word w;_; , we need to count the number of occurrences of (w;_1,w;)
in the training corpus and normalize the count by the number of times w;_; occurs [57].

Therefore,
C(wi—1,wi)

Yo, C(wio1,w;)

This is known as the maximum likelihood (ML) estimate of P(w;|w;_1) as it maximizes the

P(wi|w,~_1) = (26)

bi-gram probability of the training data. For n-gram models, the probability of the n-th word
depends on the previous (n — 1) words. With Equation 2.6, we can compute the probability

of P(W,‘|Wi,n+1, N ,Wl',l) as:

C(Wi—n-l-l; cee 7Wi)
Yo, COWinsts-. o wi)

Let us consider the following 2 sentences in the training data. LIFE IS BEAUTIFUL and
LIFE IS GOOD. The bigram probability of the sentence LIFE IS BEAUTIFUL using max-

imum likelihood estimation can be computed as:

PWilwi—pi1,...,wim1) = (2.7)

C(<s>,LIFE 1
P(LIFE| < s >) = $52H08 ]
1

C(LIFE IS
P(IS|LIFE) = zw(c@—mi) =2

P(BEAUTIFUL|IS) = C(’Sfég‘gg ﬁ)’ uL 1

C(BEAUTIFUL,
P(< /s> |[BEAUTIFUL) = z( . Aumffﬁ)) —1-

Therefore,

P( LIFE IS BEAUTIFUL) = P(LIFE| < s >)P(IS|LIFE)P(BEAUTIFUL|IS)P(< /s > |BEAUTIFUL)
1 1
= - x1x=x1
3 X 1 X 3 X
1
4

(2.8)
However, this technique cannot estimate the probability of unseen data. For example,
if we want to find the probability of a sentence LIFE IS WELL, the maximum likelihood
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estimate assigns zero probability, but the sentence should have a resonable probability. To
resolve this problem, various smoothing techniques have been developed, which are dis-
cussed in section 2.3.

The n-gram models have some advantages and disadvantages. On the positive side, the
models can encode both syntax and semantics simultaneously and they can train easily from
a large amount of training data. Also they can easily be included in the decoder of a speech
recognizer. On the negative side, the current word depends on much more than the previous
one or two words. Therefore, the main problem of n-gram modeling is that it cannot capture
the long-range dependencies between words. It only depends on the immediate previous
(n—1) words. In reality, the training data is formed by a diverse collection of topics. So,

we have to find a model that includes the long-range dependencies too.

2.3 Smoothing

When the training corpus is not large enough, many possible word successions may not be
actually observed, which leads to many small probabilities or zero probabilities in the LM.
For example, by using the training data in subsection 2.2.3, we see that the ML estimate
assigns zero probability to the sentence LIFE IS WELL as the count of bigrams (1S, WELL)
and (WELL, </s>) are zero. However, the sentence should have a reasonable probability;
otherwise it creates errors in speech recognition. In Equation 2.2, we can see that if P(W) is
zero, the string can never be considered as a possible transcription, regardless of how unam-
biguous the acoustic signal. So, when P(W) = 0, it will create errors in speech recognition.
This is actually the main motivation for smoothing.

Smoothing describes the techniques to adjust the maximum likelihood estimate to find
more accurate probabilities. It helps to find more robust probabilities for unseen data.
Smoothing is performed by making the distributions more uniform, by adjusting the low
probabilities such as zero probabilities upward, and high probabilities downward. The sim-
ple smoothing technique assumes that each n-gram occurs one more time than it actually

does, i.e.,
1 +C(Wi_1,W,')

Yo [1+C(wi—1,w;)]
14+ C(wig,wy)

— VI+ L Cwint,wi)
where V is the vocabulary. Let us consider the training data from section 2.2.3. Here, V = 6
(with both < s > and < /s >). The probability of P(LIFE IS WELL) can be computed using

P(wilwi—1) =

(2.9)
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Equation 2.9 as:

_ 14+C(<s>,LIFE)
P(LIFE| <s>)= VY, C(<s> )

_ 1+C(LIFEJS) 3
PUSILIFE) = vTiy canigw = 8

_ 14C(SWELL) _ |
PWWELL|IS) = 5y, crsa) = s

__ 1+C(WELL,</s>) _ 1
P(< /s> WELL) = [y WELLw) — 6

Therefore

P( LIFE IS WELL) = P(LIFE| < 5 >)P(IS|LIFE)P(WELL|IS)P(< /s > |WELL)

33 1 1
= X=-X=X-=
8 886
~ 0.0029,

(2.10)

which is more reasonable than the zero probability obtained by the ML estimate.
However, smoothing not only helps for preventing zero probabilities, but also helps to
improve the accuracy of the model as it distributes the probability mass from observed to
unseen n-grams. There are various smoothing techniques that have been discussed in [19].

Here, we briefly describe only the general form of most smoothing techniques with Witten-

Bell smoothing (see section 2.3.2) and modified Kneser-Ney smoothing (see sections 2.3.3,2.3.4),

which are used in all the experiments of this thesis.

2.3.1 General Form of Smoothing Algorithms

In general, most smoothing algorithms take the following form:

Psmoolh(wi|wi—n+la e ;Wi—l) =
FWilWwizng1,. ., wiz1), if C(Wi—ps1,...,w;) >0
bow(Wi—n+15- - s Wi—1)Psmooth (Wil Wi—nt2, - ,wi—1),  if C(Wi—py1,...,w;) =0

This means that when an n-gram has a non-zero count, we used the distribution f(w;|w;_,11,...

Typically, f(wi|Wi—n+1,-..,wi—1) is discounted to be less than the ML estimate. Different
algorithms differ on how they discount the ML estimate to get f(w;|w;_ni1,---,Wi—1).

On the other hand, when an n-gram has not been observed in the training data, we used
the lower-order n-gram distribution Py,,p0, (Wi|Wi—ni2,...,wi_1), where the scaling factor

bow(Wi_p+1,...,wi—1) is computed to make the conditional distribution sum to one.

Wis1).
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Let us consider V to be the set of all words in the vocabulary, V) be the set of all w; words
with C(W;i_p+1,...,w;) =0, and V| be the set of all w; words with C(w;_p1,...,w;) > 0.

Now, given f(wi|wi—n+t1,...,Wi—1), bow(Wi_p+1,...,w;—1) can be obtained as follows:

ZV Psmooth("vi‘wi—n—i—la e 7Wi—l) =1

Yv, fFWilwiny1, oo, wis1) + Xy bow(Wini 15 s Wi 1) Pamooth Wil Wi—ni2, - wio1) = 1.

Therefore,

=Yy, fWilwi—ny1,...,wi1)

bow(Wi_pi1,...,wi_1)=
( b ) ZVOPsmoolh(Wi|Wi—n+2w~>Wi—l)
=Yy fWilwicn1, - wic1) @.11)
I— Zvl Psmooth (Wi’Wi—n—O—Z? e 7Wi—l) '

=Yy fWilwiopg1, . wier)
1=Yy, fWilWicpg2,- . wiz1)

Smoothing is generally performed in two ways. The back-off models compute Py00tn (Wi|Wi—p+1, - - -

based on the n-gram counts C(w;_p11,...,w;) =0 and C(w;_,4+1,...,w;) > 0. This first
method considers the lower order counts C(w;_p+2,...,w;) only when C(w;_p41,...,w;) =
0. The other way is an interpolated model, which can be obtained by the linear interpolation

of higher and lower order n-gram models as:

Rsmooth(wi|wifn+la et 7Wl'fl) = A’W,',nﬂ,...,WiflpML(Wl'|Wi*n+1 - ,ijl) (2 12)
+ (1 - )vwi_,1+17..,,w,~_] )Psmooth (Wi’Wifn+27 s 7Wi71)
where A, | +1.....wi_; 18 the interpolation weight, which depends on w;_11,...,w;—1. The

key difference between the interpolated models and the back-off models is that for the prob-
ability of n-grams with nonzero counts, only interpolated models use additional information
from the lower-order distributions. Both the models use the lower order distribution when

computing the probability of n-grams with zero counts.

2.3.2 Witten-Bell Smoothing

In Witten-Bell smoothing, the nth-order smoothed model can be defined as a linear interpo-
lation of the nth-order maximum likelihood model and the (n — 1)th-order smoothed model

as:

Pya(WilWiensts- - Wict) = Moy PUL (Wil Wispg15 - wi1)

2.13)
+ (1 - )vwi_,1+],...,wi_] )P‘VB(Wi’Wi—n—O—Z) e )Wi—l)'

7Wi—l)
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To compute the parameters A, .w;_;» we need the number of unique words with one or

i—n+15--
more counts that follow the history w;_, 11, ...,w;_1, which is denoted by Ny (Wj—p41,...,Wi_1,%)

[19] and defined as:

NiyWicngts- s Wis, %) = {Wi :C(Wi—ng1y---,wi) >0 (2.14)
The weight given to the lower model should be proportional to the probability of observing
an unseen word in the current context (w;_,+1,...,w;—1). Therefore,

Nit (Wimpt 15 Wim1,%)
Wi—n+15--sWi—1 7*)+Zwi C(W,‘,,H,] 7'“7Wi) ’

1- A’Wifn+17~~-7wi71 = Nia(

Therefore Equation 2.13 can be written as:

CWi—ni1y---sWi) N1y (Wit 1, Wit %) Pwp(Wilwi—ni2,. .., wi1)

NipWicng 15 Wic1,%) + X0, CWiipg 1, ..., W)
(2.15)

Equation 2.15 is an interpolated version of the Witten-Bell smoothing. Therefore, the back-

Pyg(WilWi—nt1,...,Wi—1) =

off version of this smoothing can be expressed as:

Psmooth (Wi’Wi—n—o—l yoon 7Wi—l) =
f(wi|Wi,n+1,...,Wi,1), if C(Wi,nJrl,...,Wi) >0
bow(Wi—pt1,- - s Wi—1)Pamooth(WilWizng2, - -, wi—1),  if C(Wi—ps1,...,w;) =0

(2.16)
where
Tagy. , _ CWi—ng1,mWi)
FWilWinr,- - wiot) = Nip (Wimp 15 Wim 1 %)+ oy, COWimpt 150, Wi)
bOW(Wi_pit,. . Wiit) = 1=Y v fWil Wi 1, Wiz1)

T =Yy fWilwing2sewio1)

2.3.3 Kneser-Ney Smoothing

Kneser-Ney (KN) smoothing is an extension of absolute discounting [81] where the lower-
order distribution combines with a higher-order distribution in a novel manner. The KN

smoothing can be described as Equation 2.16 with

— max(C(w;i_p11,...,w;)—D,0)
Filwicni1s - win1) = =GRS
1

bow(Wini1,- - Win1) = 5 & Niy(Wicng1se s Win1,%).
1

Wi7n+17“-7wi)
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where

_ nl
D= nl+2n2

where n1 and n2 are the number of n-grams that appear exactly once and twice in the training

corpus.

2.3.4 Modified Kneser-Ney Smoothing

Instead of using a single discount D for all counts, modified KN smoothing [19] has shown
better performance, incorporating three different parameters, Dy, D, and D3 for the n-
grams with one, two, and three or more counts respectively. Therefore, the modified KN

smoothing can be described as Equation 2.16 with

max(c(wi7n+l 3e- ,W,‘) 7D(C(Wi7n+1 )e- '7wi) /0)

f(Wi|Wi—n+1,...,Wi—1) = Lo, COWimp1 50 sWi)
, o\ — DINt(Wimnt 1,0 Win1,8) FD2Ny (Wi 1o esWim 1,%) +D34 N3y (Wimp 1505 Wim1,%)
bOW(WZ—n+17 ERE) Wl—l) - Yo, C(Wi_pa1yeesWi) ’
where Ny (Wi—pi1,-..,wi—1,%) and N3 (W;_p41,...,W;_1,*) are defined analogously as Ny (W;_p11,...,Wi—1,%
and
D(c) =
)
0 ifc=0
D1 ife=1
D2 ifc=2
D3+ if¢c>3

\

The discounts can be estimated as [19]:

Y=-"1 _ Dl=1-2v2 p2=2_3y2

_ 4
nl+2n27 nl> n2’ D3+ =3 - 4YZ_3

2.4 Class-based LM

To compensate for the data-sparseness problem, class-based LM has been proposed [16].

Here, the transition probabilities between classes are considered rather than words:

Perass(WilWi—nt1, .., wi—1) = P(wilci—1,wi—1, ¢i)P(cilci—1,wi—1) (2.17)
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Assume that P(wj|c;—1,w;_1,c¢;) is independent of ¢;_j,w;_1, and P(c;|c;—1,w;—1) is inde-

pendent of w;_;. Therefore, the equation 2.17 becomes:

Peiass WilWiznt1, - -, wi—1) = P(wilci)P(cil¢i—n+1, - - -, Cim1) (2.18)

where ¢; is the class assignment of word w;, P(w;|c;) is the probability of word w;, generated
from class ¢;, and P(cj|¢i—p+1,---,ci—1) is the class n-gram. The class-based LM generates
the parameters for word classes instead of words. Therefore, the model significantly reduces
the parameter sizes by mapping the words into classes. As a result, the performance of this
model is slightly worse compared to a word-based n-gram LM. So, the class-based n-gram

model is generally linearly interpolated with the word-based n-gram LM as [80]:

PWilWi—ns1s-- s Wim1) R APClags(WilWimns 1, - s Wic1) + (1= 2) Pygram (Wil Wimpg 1, - - -, Wiz 1).
(2.19)

2.5 Semantic Analysis

2.5.1 Background

Significant progress has been made for the problem of modeling text corpora by informa-
tion retrieval (IR) researchers [5]. The basic method proposed by IR researchers is that a
document in a text corpus can be reduced to a vector of real numbers, each of which rep-
resents a ratio of counts. In the popular #f-idf scheme [89], a term-by-document matrix is
formed by using tf-idf values where the columns contain the #f-idf values for each of the
documents in the corpus. The #f-idf value is calculated by using the number of occurrences
of each word or term for each document, which is then compared with its inverse document
frequency count, i.e., the number of occurrences of the corresponding word or term in the
entire corpus. The scheme reduces the corpus to a fixed-size matrix V x M, where V is the
number of words in the vocabulary and M is the number of documents in the corpus. There-
fore, the scheme reduces documents of arbitrary length to fixed-length lists of numbers.
However, there are two problems that arise in #f-idf schemes such as: (i) synonyms, i.e.,
different words may have a similar meaning, and (ii) polysemes, i.e., a word may have mul-
tiple senses and multiple types of usage in different contexts. Therefore, the #f-idf scheme
provides a small amount of reduction in description length.

Various dimensionality reduction techniques such as LSA, PLSA, and LDA have been

proposed to address these issues. They are mainly developed to find out the hidden meaning
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behind the text. All of these methods are known as bag-of-words models as they collect

words in the documents regardless of their word order.

2.5.2 LSA

Latent semantic analysis (LSA) was first introduced in [26] for information retrieval. In [10],
it was brought to the area of LM for ASR. LSA is an approach in natural language process-
ing, which is used to describe the relationships between a set of documents and the words
they contain, by producing a set of concepts related to the documents and words. LSA as-
sumes that words that are close in meaning will occur in similar pieces of text. It uses a
word-document (V x M) matrix G. The rows V and columns M of the matrix G represent
the words and documents respectively. Each word can be described by a row vector of di-
mension M, and each document can be represented by a column vector of dimension V.
Unfortunately, these vector representations are impractical for three reasons [10]. First, the
dimensions V and M can be extremely large; second, the word and document vectors are
typically very sparse; and third, the two spaces are distinct from one another. To address
these issues, a mathematical technique called singular value decomposition (SVD) is used to
project the discrete indexed words and documents into a continuous (semantic) vector space,
in which familiar clustering techniques can be applied. For example, words or documents
are compared by taking the cosine of the angle between the two vectors formed by any two
rows or columns. Values close to 1 represent very similar words or documents while values
close to O represent very dissimilar words or documents [10]. The SVD decomposes the

matrix G into three other matrices X, S, and Y as:
G=XxsyT (2.20)

where X is the (V x R) left singular matrix with row vectors x;(1 <i <V), S is the R X R di-
agonal matrix of singular values, Y is the (M x R) right singular matrix with column vectors
yi(1 <j<M),S,R < min(V,M) is the order of decomposition; and T is transposition.
The LSA model has some limitations. It cannot capture polysemy (i.e., multiple mean-
ings of a word). Each word is represented by a single point in the semantic vector space,
and thus each word has a single meaning. The LSA model does not introduce a generative
probabilistic model of text corpora. It uses a dimensionality reduction technique to map the
term-document matrix into a continuous vector space in which familiar clustering methods

are applied to obtain topic clusters.
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2.5.3 PLSA

PLSA was introduced to overcome the limitation of LSA. It extracts the semantic informa-
tion from a corpus in a probabilistic framework. PLSA uses an unobserved topic variable
with each observation, i.e., with each occurrence of a word in a document. It is assumed
that the document and the word are independently conditioned on the state of the latent topic
variable. It models each word in a document as a sample from a mixture model, where the
mixture models can be viewed as representations of topic distributions. Therefore, a doc-
ument is generated as a mixture of topic distributions and reduced to a fixed set of topics.
Each topic is a distribution over words. However, the problem with the PLSA model is that
it does not provide any probabilistic model at the level of the documents. Each document
is modeled by its own mixture weights and there is no generative model for these weights.
So, the number of parameters grows linearly when increasing the number of documents,
which leads to an overfitting problem. Also, there is no method to assign probability for a
document outside the training set [33]. The PLSA model can be described in the following
procedure. First a document is selected with probability P(d;) (I =1,...,M). A topic #;
(k=1,...,K) is then chosen with probability P(#|d;) and finally a word w; (i=1,...,N) is
generated with probability P(w;|f;). The graphical representation of the model is described
in Figure 2.2. The joint probability of a word w; and a document d; can be estimated as:

>q

P(d;,wi) = Z (wilt ) P(te|d)). (2.21)

N

M

Fig. 2.2 Graphical structure of the PLSA model. The shaded circle represents observed
variable.

The topics of the model are generated from the statistics of the corpus of training doc-
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uments. The numbers of topics are assumed fixed in this approach. The model parame-
ters P(w;|t;) and P(t¢|d;) are computed by using the expectation maximization (EM) algo-
rithm [33].

254 LDA

To address the limitations of the PLSA model, the LDA model [13] was introduced where
a Dirichlet distribution is applied on the topic mixture weights corresponding to the docu-
ments in the corpus. Therefore, the number of model parameters is dependent only on the
number of topic mixtures and the vocabulary size. Thus, LDA is less prone to overfitting
and can be used to compute the probabilities of unobserved test documents. However, LDA
is equivalent to the PLSA model under a uniform Dirichlet prior distribution.

LDA is a three-level hierarchical Bayesian model. It is a generative probabilistic topic
model for documents in a corpus. Documents are represented by the random latent topics’,
which are characterized by a distribution over words. The graphical representation of the
LDA model is shown in Figure 2.3. Here, we can see the three levels of LDA. The Dirichlet
priors o and B are the corpus level parameters that are assumed to be sampled once in
generating the corpus. The parameters 0 are document-level variables and sampled once
per document. The variables ¢ and w are word-level variables and sampled once for each
word in each document [13].

The LDA parameters (a,f) are estimated by maximizing the marginal likelihood of
training documents. o = {o,, ..., a, } represents the Dirichlet parameter for K latent top-
ics and B represents the Dirichlet parameter over the words and defined as a matrix with
multinomial entry f;, ,, = P(w;i|tx). The LDA model can be described in the following
way. Each document d; = [wy,...,wy| (I =1,...,M) is generated as a mixture of unigram
models, where the topic mixture vector 6 is drawn from the Dirichlet distribution with
parameter ¢. The corresponding topic sequence ¢ = [1,. .., fy] is generated using the multi-
nomial distribution 6,,. Each word wy is generated using the distribution P(wy|ty,8). The
joint probability of d;, topic assignment 7 and topic mixture vector 6, is given by:

=

P(dy,1,64| 0, B) = P(64|ct) [ [ P(2:]64,)P(wilti, B). (2.22)
i=1

The probability of the document d; can be estimated by marginalizing unobserved vari-

ITopics are unobserved in LDA.
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.
e

Fig. 2.3 Graphical model representation of LDA. The shaded circle represents observed
variable.

N

M

ables 64 and 1 as:

N
P(dilec.) = | (6 ) [T (104 Pl B)d6y (2.23)
=11
where 6y, is a K-dimensional random variable that can take values in the (K — 1)-simplex
(a K-vector 6, lies in the (K — 1)-simplex if 6, > 0, ¥, 64, = 1), and has the following
probability density on this simplex:

P(0y| ) = %ejﬁl g (2.24)
where the parameter « is a K-vector with components ¢y, > 0, and I'(x) is the Gamma
function. The Dirichlet distribution is used as the prior for the multinomial distributions.
This is because of the conjugate property of the Dirichlet distribution, which results in the
posterior integrals in a Dirichlet distribution, which simplifies the model inference. The
product of a Dirichlet prior with the multinomial likelihood will yield another Dirichlet
distribution of a certain form [13].

The parameters of the LDA model can be estimated using variational inference [13] or
Gibbs sampling [35]. The variational inference method uses the variational parameters and
Jensen’s inequality to obtain an adjustable lower bound on the likelihood. The optimizing
values of the variational parameters are obtained by minimizing the KL divergence between
the variational distribution and the true posterior P(6y,,|d;, o, B). For details of calculation,

see [13]. In the Gibbs sampling method, an algorithm is described for extracting a set of top-
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ics from a large corpus that uses Gibbs Sampling, which is a form of Monte Carlo Markov
chain [35]. It simulates a high-dimensional distribution by sampling on lower-dimensional
subsets of variables where each subset is conditioned on the values of the others. The sam-
pling is done sequentially and proceeds until the sampled values approximate the target
distribution. For details, see [37].

2.6 Language Model Adaptation

Language model (LM) adaptation plays an important role for many research areas like
speech recognition, machine translation, and information retrieval. Adaptation is required
when the styles, domains or topics of the test data are mismatched with the training data.
It is also important as natural language is highly variable since the topic information is
highly non-stationary. In general, an adaptive language model seeks to maintain an ade-
quate representation of the domain under changing conditions involving potential variations
in vocabulary, content, syntax and style [11].

The training text will be the representative of the style of language that one is attempting
to model. If this is not the case, the model is going to be useless. For example, trigram
language models are trained by using the training data of a more common corpus like the
Wall Street Journal (WSJ). When these models are used in speech recognizers, they yield
high accuracy if the speech input is coming from the Wall Street Journal. However, if
the models are used for spontaneous conversational speech, the recognizers provide worse
results as the Wall Street Journal uses a very different style of language than conversational
speech. So, language modelers make a ‘general model” by using available training data and
consider a little amount of data that is specific to the recognition task and referred to as the
adaptation data [23].

2.6.1 Adaptation Structure

The general framework of the adaptation process is shown in Figure 2.4. For a string of N
words W = wy,...,wy, the language model probability can be written as:

N
P(W) = HP(WM)

where h represents the history. In the n-gram model, the history is the previous (n — 1)
words as:

h=Wi_pnt1, Wi—nt2,-.. Wi
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Adaptation Task Specific
Corpus Information R

A Extraction

SLM Adapted LM

Adaptati P(w,, ...,

Background SLM daptation (e )
Corpus Estimation
B Py(w,,...,wy)

Fig. 2.4 General structure of SLM adaptation

The robust estimate of the language model probability can be found by leveraging two
knowledge sources. These are the well-trained background LM with initial estimate Pg(W)
but mismatched data with the recognition task and the adaptation LM that is more familiar
with the recognition task. For details of various adaptation ideas, see [11]. Here we will

briefly describe some adaptation methodologies that are related to our thesis.

2.6.2 Model Interpolation

In this approach, the adaptation corpus A takes the form of the relevant recognition task and
then is combined with the background LM to yield better results.
The simplest way to merge two models is via linear interpolation. Given the estimate of

word w; denoted by Pg(w;|h) and P4 (w;|h), the linear interpolation can be defined as:
P(wilh) = APp(wilh) + (1 — A)Pa(wilh) (2.25)

where A is the interpolation coefficient whose value is in the range of 0 < A < 1. This pa-
rameter can be estimated on the adaptation corpus A under the maximum likelihood criterion
using the EM algorithm [30].

2.6.3 MDI Adaptation Using Unigram Constraints

In this approach, the adaptation corpus A is used to extract features such that the adapted
LM is constrained to satisfy. This kind of adaptation is more powerful than the model
interpolation because a different weight is assigned separately for each features [11]. The
constrained-based adaptation has been associated with exponential models trained using the
maximum entropy (ME) criterion that leads to minimum discriminant information (MDI)
estimation [34, 68].
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The development of exponential models in an adaptation context is referred to as MDI
adaptation. The unigram features can be reliably estimated from the adaptation corpus A.
The adaptation approach [34, 68] forms an adapted model by minimizing the KL-divergence
between the background model and the adapted model subject to a marginalization con-

straint for each word w; in the vocabulary [96] as:
ZPA (h) .PA (W,’|h) == PA (W,’). (226)
h

The constraint optimization problem has close connection to the maximum entropy ap-

proach [88], which provides that the adapted model is a re-scaled version of the background

model: 5

Pa(wilh) = Z((v};’)) Py (wilh) (2.27)
with

Z(h) =Y 8(wi).Ps(wilh) (2.28)

where P4 (w;|h) is defined as the adapted model, Pg(w;|h) is the background model. Z(h) is
a normalization term, which guarantees that the total probability sums to unity, and o (w;) is

a scaling factor that is usually approximated as:

5(w;) ~ (PA(W")). (2.29)

Pg(w;)

2.6.4 Mixture Model Adaptation

The mixture model adaptation is based on several component models, each of which is
specific to a particular topic or style of language. The probabilities of these component
models are then linearly interpolated to obtain the overall language model probability. The
idea is that the training corpus is divided into a pre-defined number of topic clusters. Then
the n-gram model can be trained for each component. The interpolation weights of the
component language models are created in such a way that the interpolated model best

matches with the adaptation corpus:

K
P(wilh) =Y An Poy (wilh) (2.30)
k=1

where A4, is the interpolation weight of the " component model and Pg, (w;|h) is the

tf{h component model. There are many methods that have investigated about how the topic
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clusters are formed and how the interpolation coefficients are computed [4, 24, 29, 59].

2.6.5 Explicit Topic Models

Topic information is included indirectly in mixture modeling by using topic-specific LMs
that constitute the overall background model. Topic information can also be incorporated

directly as:

>§

W,‘dl = Z Wl‘l‘k l‘k|dl) (2.31)

where P(w;|t;) are the word probabilities for topics and P(#;|d;) are the topic factors for
the document d;. The main difference of this kind of topic contribution with the clustering
approaches for example in [59] is that we do not need to assume that a document belongs to
exactly one topic. The example of direct contribution of topic information can be seen in the
language modeling using LSA [10], PLSA [33], and LDA [13]. However, as these model do
not consider the use of syntax or ignore the word order, we need to integrate these models

with a background n-gram model to capture the local lexical regularities of the language.

2.7 Performance Measurements

In the literature, there are two metrics that are widely used to measure the performance of a
speech recognition system. The most common metric is the perplexity on test data, which
is an information theoretic measure of cross entropy, and the second one is the word error

rate, which is the most popular method for rating a speech recognition system.

2.7.1 Perplexity

Perplexity is the most common metric for evaluating a language model for speech recogni-
tion. It can be calculated efficiently and it does not require a speech recognizer. The role
of an n-gram language model is to measure how well it predicts the sentences from the test

set. For example, let a test set have T sentences as st st

, where s = w/...w/,. The
probability of the test set can be computed as the product of the probability of individual

sentence probabilities:

P(T) = Hszlp(St) = Hthlnftzlp(Wﬂht) = f-VZIP(w,-|h)

where we mapped the words w! and histories 4’ of all the sentences of the test set into a

sequence w; and h;. Here, N is the length of the text 7 measured in words [55].
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Now, we can derive a compression algorithm that can encode the text T using —log, P(T')
bits. The cross entropy H(T) of the language model P(w;|w;_,+1,...,w;—1) on text data T
can be defined as:

N
H(T) = —§log:P(T) = — ) logaP(wilh).
i=1

The perplexity PP(T) of a language model P(T) is related to the cross entropy and is
the reciprocal of the average probability assigned by the model to each word of the test set

T. This is known as test set perplexity.

PP(T) =2HT) = 1 N
N N
(HP(Wi|h)>

The perplexity can be roughly interpreted as the geometric mean of the branching factor of

the test set when applied to the language model. In general, it is true that a lower perplexity
model provides better speech recognition performance as the perplexity is a statistically
weighted branching measure of the test set [S7]. However, in reducing the errors in a speech
recognition system, one should have to consider the acoustic similarities between words and
a language model that will help to discriminate acoustically similar words. Moreover, the
accuracy of the speech recognition system depends not only on the probability of the correct
hypotheses but also on the probability of the other candidate hypotheses. By the way, these
probabilities are ignored by the perplexity measure [23]. That’s why the performance of a

speech recognition system should not be measured by perplexity alone.

2.7.2 Word Error Rate

The most popular metric for rating a speech recognition system is the word error rate
(WER). It is derived from the Levenshtein distance, working at the word level instead of
the phoneme level. WER is defined as the total number of errors (word insertions (1), dele-
tions (D) and substitutions (S)) divided by the total number of words (V) actually spoken,
ie.,

_ (S+D+)
WER = >0

Sometimes word recognition rate (WRR) is used when reporting the performance of a
speech recognition system. It records the proportion of words that was correctly recognized,

and therefore ignores insertion errors.

_ _ (N=S-D-I) _ H-I
WRR=1-WER = =— == = -

where H is N — (S + D), the number of correctly recognized words.



2.8 Decoding 31

2.8 Decoding

In section 2.1, we saw how a language model is combined with the acoustic model in a
speech recognition system. In this section, we describe how a language model is used
practically to decode a speech signal into one or more hypothesised transcriptions.

The decoding process of a speech recognition system is to find a sequence of words
whose corresponding acoustic and language models best match the input signal. The process

is described in Figure 2.5.

Acoustic Data > Front End . a | Transcription
o Parameterisation o Decoder o Data W
Acoustic Models Language Model
POIW) Pw)

Fig. 2.5 A typical speech recognition system

The input to the system is acoustic data in the form of a waveform. This data is processed
by the system’s front end to create a set of feature vectors that capture the spectral properties
of the speech signal at discrete time intervals. These feature vectors are then passed to the
decoder. The role of the decoder is to search for the string of words that best matches the

feature vectors, i.e., to find W’ such that
W = argmua}xP(W|O) = argmue}xP(W)P(O|W). (2.32)

It is not necessary that the acoustic model P(O|W) should be a word model. In a large
vocabulary speech recognition system, sub-word models such as phoneme models, demi-
syllables and syllables are often used. In that case, the word models P(O|W) are obtained by
concatenating the sub-word models according to the pronunciation dictionary of the words.
When word models are available, the speech recognition becomes a search problem. It
searches the sequence of word models that best describes the input waveform against the
word models.

As the search space is the set of all possible word strings, it is necessary to find the
methods that can reduce the search space to make the search more tractable. Therefore, the
decoding process of the system is often considered as a search process. In general, there
are two main search approaches: depth- first and breadth- first. In depth- first search, the

most promising hypothesis is pursued until the end of the speech is reached. The examples
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of a depth- first decoder are stack-decoders and A* decoders [60, 65, 84, 85]. In breadth-
first designs, all hypotheses are pursued in parallel. They exploit the Bellman’s optimality
principle and are often called Viterbi decoding. In a large vocabulary recognition (LVR)
system, the search space is complex and it is necessary to prune the search space. This
typically is done by a process called a beam search [38, 92]. The hidden Markov model
toolkit (HTK) decoder uses the beam search and Viterbi decoding [104].
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Fig. 2.6 Fragment of decoder network

The decoding problem can be easily described by using a branching tree network. In
Figure 2.6(a), at the start node there is a branch to every possible start word. After that, all
first words are then connected to all possible following words and so on. It is clear that this
tree will become very large for a LVR system. In a small vocabulary system, all the words
can be put in parallel and a loop placed around them. However, this arrangement does not
allow a trigram model as the available history is limited to one word. Next, consider each
word in Figure 2.6(a) is replaced by the sequence of models representing its pronunciation.
This is shown in Figure 2.6(b). The models can be joined in parallel within the word if
there are multiple pronunciations. All the identical phone models in identical context are

then merged. This is shown in Figure 2.6(c). Here, we can notice the cross-word triphones
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significantly limit the amount of sharing models possible [104].

b.
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Fig. 2.7 Early application of language models

Therefore, the above network can be viewed as a branching tree of HMM state nodes
connected by state transitions and word-end nodes connected by word transitions. Any path
from the start node to any point in the tree can be evaluated by adding all the log state
transition probabilities, all the log state output probabilities and the log language probabil-
ities. Such a path can be represented by a movable token placed in the node at the end
of the path. The token has a score which is the total log probability up to that point and
a history that records the sequence of word-end nodes that the token has passed through.
Any path can be extended by moving the token from its current node to the adjoining node
and updating its score according to its state transition probability, state output probability
and the language model probability. So, it can considered as a token passing algorithm.
Here, a token is placed at the start node of the tree. Then, for each input acoustic vector,
every token is copied into all connecting nodes and the scores are updated. If more than
one token lands in a node, only the best scoring node is kept. When all the acoustic vectors
have been processed, the word end nodes are scanned and the token with the highest score
represents the best path and the most likely word sequence. Although this technique helps
to find the best possible path, it takes too much space and time to compute the path. So,
pruning is employed to make the algorithm more tractable. In every time frame, the best
score in any token is noted and any token whose score lies more than a beam width below
this best score is destroyed. Therefore, only a part of the branching tree described above
is needed at one time as only the active tokens that are lying within the beam width need

to be kept in memory. As tokens move forward, a new tree structure is created in front of
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them and the old structure behind is destroyed. So, it is necessary to apply pruning as soon
as possible. However, as the identity of each new word is not known until we reach its end
node, the merging of phone models in the branching tree causes a problem. The language
model provides a powerful constraint that needs to be applied as soon as it is practical in
order to keep the number of tokens as small as possible. The HTK decoder allows a list of
possible current words in every token (Figure 2.7). When the token is reached at the end
of the word, the list is minimized and it contains just a single word. Tokens then receive a
language model score, which equals to the most likely word in the current list. As this gets

updated on every model transition, the token gets pruned accordingly [104].

2.9 Experimental Tools and Data Sets

We evaluated the LM adaptation approaches using the Wall Street Journal (WSJ) corpus [71].
The SRILM toolkit [94] and the HTK toolkit [105] are used for generating the LMs and
computing the WER respectively. The acoustic model from [98] is used in our experiments.
The acoustic model is trained by using all WSJ and TIMIT [32] training data, the 40 phones
set of the CMU dictionary [2], approximately 10000 tied-states, 32 Gaussians per state
and 64 Gaussians per silence state. The acoustic waveforms are parameterized into a 39-
dimensional feature vector consisting of 12 cepstral coefficients plus the 0 cepstral, delta
and delta delta coefficients, normalized using cepstral mean subtraction (MFCCy_p_a_z).
We evaluated the cross-word models. The values of the word insertion penalty, beam width,
and the language model scale factor are -4.0, 350.0, and 15.0 respectively [98]. The de-
velopment test set is the si_dt_05.odd (248 sentences, 4074 words) and the evaluation test
sets are the Nov’ 92 and Nov’93 test data from the November 1992 (330 sentences, 5353
words) and November 1993 (215 sentences, 3849 words) ARPA CSR benchmark test data
respectively for SK vocabularies [71, 101].

2.10 Summary

In this chapter, the use of language models in a speech recognition system is described. The
importance of statistical language models over grammar-based models, and smoothing of
language models are also discussed. The history of semantic analysis techniques are briefly
stated. Then, the importance of adaptive language models and some adaptation techniques

that are used in this thesis are explained. A brief overview of the decoding technique in a
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speech recognizer in HTK is also described. Finally, the experimental tools, data sets, and

measurement metrics that we used in this thesis are described.






Chapter 3

LDA-based LM Adaptation Using LSM

In this chapter, we present unsupervised language model (LM) adaptation approaches using
latent Dirichlet allocation (LDA) and latent semantic marginals (LSM). The LSM are the
unigram probability distribution over words that are calculated using LDA-adapted unigram
models. The LDA model is used to extract topic information from a training corpus in an
unsupervised manner. The LDA model yields a document-topic matrix that describes the
number of words assigned to topics for the documents. A hard-clustering method is ap-
plied on the document-topic matrix of the LDA model to form topics. An adapted model is
created by using a weighted combination of the n-gram topic models. The interpolation of
the background model and the adapted model gives further improvement. We modify the
above models using the LSM. The LSM are used to form a new adapted model by using
the minimum discriminant information (MDI) adaptation approach called unigram scaling,
which minimizes the distance between the new adapted model and the other model. We
perform experiments using the ’87-89 Wall Street Journal (WSJ) corpus incorporating a
multi-pass continuous speech recognition (CSR) system. In the first pass, we used the back-
ground n-gram language model for lattice generation and then we apply the LM adaptation

approaches for lattice rescoring in the second pass [49].

3.1 Introduction

The simple technique to form a topic from an unlabeled corpus is to assign one topic label
to a document [58]. This hard-clustering strategy is used with leveraging LDA and named
entity information to form topics [72, 73]. Here, topic-specific n-gram language models
are created and joined with proper mixture weights for adaptation. The adapted model is

then interpolated with the background model to capture the local lexical regularities. The
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component weights of the n-gram topic models were created by using the word counts
of the latent topic of the LDA model. However, these counts are best suited for the LDA
unigram topic models. A unigram count weighting approach [39] for the topics generated by
hard-clustering has shown better performance over the weighting approach described in [72,
73]. An extension of the unigram weighting approach [39] was proposed in [40] where the
weights of the n-gram topic models are computed by using the n-gram count of the topics
generated by a hard-clustering method. The adapted n-gram model is scaled by using the
LDA-adapted unigram model called latent semantic marginals (LSM) [96] and outperforms
a traditional unigram scaling of the background model using the above marginals [41]. Here,
the unigram scaling technique [68] is applied where a new adapted model is formed by using
a minimum discriminant information (MDI) approach that minimizes the KL divergence
between the new adapted model and the adapted n-gram model, subject to a constraint that
the marginalized unigram distribution of the new adapted model is equal to the LSM. In this
chapter, we present an extension to the previous works [40, 41] where we apply the unigram
scaling technique to the interpolation of the background and the adapted n-gram model and
note better results over the previous works. In addition, we perform all the experiments
using different corpus sizes (’87 WSJ corpus (17 million words) and *87-89 WSJ corpus
(37 million words)) instead of using only the 1 million words WSJ training transcription
data used in [40, 41] and using different test sets. Also, we use various topic sets instead of

using a single topic set.

3.2 Mixture Language Model Using N-gram Weighting

3.2.1 Topic Clustering

We have used the MATLAB topic modeling toolbox [93] for LDA analysis that uses a
Gibbs sampler for parameter estimation. We have formed the word-topic matrix, WP, and
the document-topic matrix, DP, using LDA analysis [93]. In the WP matrix, an element
W P(wj, 1) shows the number of occurrences of word w; in topic #; over the training set. In
the DP matrix, an element DP(d;, ;) contains the total number of occurrences of words in
document d; that are from a topic #x(k = 1,2,...,K).

We have formed the topic set by applying a hard-clustering approach [58, 72, 73] to the

DP matrix. Here, we assign a document d to a topic #; as:

tx = argmaxDP(d,, t) (3.1)
1§lk§K
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1.e., a document is assigned to a topic from which it takes the maximum number of words.
Therefore, all the training documents are assigned to K topics. The n-gram topic LM’s for
K topics are trained. The models are then combined with proper mixture weights to form an
adapted model (see section 3.2.2). The idea is portrayed in Figure 3.1.

Background | || LDA | || Hard Test
Corpus Analysis| ~ |Clustering Set
| J
Y ‘ N gram
Background Topic > weighting
Model \J
P,(wlh) v Adapted
Topic > Model
LM
3 PA(W[|h)
> Perplexity & WER |

bl

Fig. 3.1 Topic clustering and LM adaptation using n-gram weighting

3.2.2 Adapted Model Generation

A document is generated by a mixture of topics in the LDA model. So, for a test document
d; = wi,...,wy, a dynamically adapted n-gram model can be created by using a mixture of
n-gram topic LMs as:

K
Py(wilh) =Y ¢, P (wilh) (3.2)
k=1

where P, (w;|h) is the 71" n-gram topic model, ¢, is the 2" mixture weight, and 4 is the
preceding n-1 words of the current word w;. To find topic mixture weight ¢y, the n-gram
count of the topics, generated by Equation 3.1, is used [40]. Therefore,

Ny

¢tk = Z P(tk\wjn, ce. ,le)P(an,. .. ,Wj1|dt) (33)
j=1

with o )
W'n,...,le,lk
P(telWin, ..., wip) = —pro? (3.4)
. ’ YK CoWiny -y wit, )

C(an,...,wjl)

P(an,...,leydt) =5
ZJLIC(W]’/’?""WJI)

(3.5)
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where C;, (W), ...,wji, 1) describes the number of times the n-gram (wj,,...,w; ;) is seen
in topic #, which is created by Equation 3.1. C(w e W jl) and N,, are the counts of the
n-gram (wjy,,...,w;) and the number of different n-grams respectively in document d;.

The adapted (A) n-gram model is then interpolated with the background (B) n-gram

model to capture the local constraints using linear interpolation as:
PL(Wi|h) :)LPB(W,'VZ)-F(I —)L)PA<W,'|h), (3.6)

where A is an interpolation weight.

3.3 LM Adaptation using Latent Semantic Marginals (LSM)

3.3.1 LSM

We computed the LSM by using the technique described in [96]. At first the automatic tran-
scription (recognition results after first pass decoding) is treated as a single document [96].
Then, a Gibbs sampler is applied for the test document to estimate the posterior over the

topic mixture weights [53]. The LDA-adapted marginal is then computed as follows [96]:

K
Puaawi) = Y P(wilte, B) ——, (3.7)
=1 Yi—1 Y

where ¥, 1s the weight of topic #; for the test document d; obtained after LDA inference and

computed as:

"= DP(d,, )+ Ka’

(3.8)

where DP(d;,.) is the total occurrences of words in document d; in all topics. K, DP(d;, ;)
and « are defined as above. P(wjltx,B) is the probability of word w; for topic #;, obtained
after applying LDA over the training set and is computed as [37, 53]:

WP(W,‘, tk) + ﬁ

POl B) = gy T VB

(3.9)

where WP(.,1;,) is the total count of words in topic #, V' is the size of the vocabulary, and f3

18 defined as in section 2.5.4.
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3.3.2 New Adapted Model Generation Using LSM

The unigram scaling technique [34, 68] forms an adapted model by minimizing the KL-
divergence between the background model and the adapted model subject to the marginal-

ization constraint for each word w; in the vocabulary [96] as:
Y Pa, (). Py, (wilh) = Piga(wi). (3.10)
h

The constraint optimization problem has close connection to the maximum entropy ap-

proach [88], which provides that the adapted model is a re-scaled version of the background

model: 5(w)
Pa, (wilh) = TV;ZI)-PB/A/L(Wi‘h) (3.11)
with
Z(h) =Y 8(wi).Pgar(wilh) (3.12)

where Py, (w;|h) is defined as the new adapted model, Pg/s/(wilh) is the background,
adapted (Equation 3.2) or the interpolated (Equation 3.6) model. Z(h) is a normalization
term, which guarantees that the total probability sums to unity, and o (w;) is a scaling factor

that is usually approximated as:

u
5(wi) ~ (%) | (3.13)

where (1 is a tuning factor between 0 and 1. In this paper, we used u = 0.5 [41, 96]. To
compute the normalization term Z(h), we used the same procedure as [41, 68, 96]. To
accomplish this, an additional constraint is considered where the total probability of the

seen transitions is unchanged:

Y Pywilh)= Y Pgas(wilh). (3.14)

wiiseen(h,w;) wizseen(h,w;)
The new adapted LM is then computed as:

By, (wilh) = { &0 8 /a/L(Wilh) if (h,wi) exists

bow(h).Py, (wi|h) otherwise

where
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o Zwizseen(h.wi) S(Wi)~PB/A/L(Wi|h)
ZS (h) o Zwi:seen(h,wi) PB/A/L(Wi|h)

and

_ 172wi:seen(h,wi)PB/A/L(Wi|h)
bOW(h) N lfzwi:seen(h,wi) PAl (WlVAl) '

Here, Z;(h) is used to compute the normalization similar to Equation 3.12 except the sum-
mation is performed only on the seen alternative words with the same word history # in the
LM [96], bow(h) is the back-off weight of the context /& to ensure that Py, (w;|h) sums to
unity and / is the reduced word history of 4. The idea is described in Figure 3.2.

LDA
Analysis

v

Background || Latent Semantic Marginals (3D - adapted
Model A
Py(w]h) Pu(w)=2 P(wt,B)— Model
B i k=1 PA (Wl|h)
i >V
k=1
v ,
Unigram Unigram

Scaling <_Zh: P, (wlh).P,(h)=P,(w,) > Scaling

PL(wilh):)\‘PA(Wi|h)+(l_k)PB(Wi
»| Unigram
Scaling

)

6(W;)'PB/A/L(Wi|h)

P, (wlh)=
O ) P )
5 = PA\(Wi) g
) PB/A/L(Wi)
‘ Test
Perplexity & WER [ Set

Fig. 3.2 New adapted model generation Using LSM
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3.4 Experiments

3.4.1 Data and Parameters

The *87-89 WSJ corpus is used to train the tri-gram background model and the tri-gram topic
models using the back-off version of the Witten-Bell smoothing. The language models are
closed-vocabulary language models, i.e., the models are generated using the n-gram counts
without considering n-grams with unknown words. To reduce the computational cost, we
incorporated the cutoffs 1 and 3 on the bi-gram and tri-gram counts respectively. The LDA
and the language models are trained using the WSJ 20K non-verbalized punctuation closed
vocabulary. We define the o and B for LDA analysis as 50/K and 0.01 respectively [37,
53]. The interpolation weights ¢ and A are computed using the compute-best-mix program
from the SRILM toolkit. They are tuned on the development test set. The latent semantic
marginals (LSM) are created by the automatic transcription. Automatic transcription is the
recognition result obtained after first-pass decoding of the evaluation data. The results of the
experiments are noted on the evaluation test set. The bold values describe the best results

among all topic sizes for the corresponding model.

3.4.2 Unsupervised LM Adaptation Using N-gram Weighting

The perplexities on the November 1993 and November 1992 test sets for different sizes of

corpus are described in Tables 3.1 and 3.2 respectively.

Table 3.1 Perplexity results of the tri-gram language models using n-gram weighting on
November 1993 test data

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | 87 ’87-89 | '87 ’87-89
Background (B) 101.7 889 | 101.7 88.9 | 101.7 88.9
Adapted (A) Model | 98.8 87.9 | 105.3 91.7 | 107.5 89.6
(B+A) Model 82.1 73,5 | 81.5 73.0 | 81.2 734

From Tables 3.1 and 3.2, we can note that for the stand-alone adapted (A) model,
only models with topic size 25 give better results than other topic sizes. This is due to
the limitation of the SRILM toolkit that can mix only 10 models at a time and the lack of

the local lexical regularities of the background model. However, the interpolation of the
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Table 3.2 Perplexity results of the tri-gram language models using n-gram weighting on

November 1992 test data

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | °87 °87-89 | ’87 ’87-89
Background (B) 854 710 | 854 71.0 | 854 71.0
Adapted (A) Model | 89.4 783 | 95.6 82.1 | 1004 78.8
(B+A) Model 72.2 62.1 | 71.6 61.6 | 71.5 61.9

background and the adapted models (B+A) outperforms all the other above approaches for

all topic and corpus sizes.

The WER results of the experiments on different test sets for different corpus sizes are

described in Tables 3.3 and 3.4 respectively.

Table 3.3 WER results (%) of the tri-gram language models using n-gram weighting on

November 1993 test data

Language Model Topic 25 Topic 50 Topic 75

87 ’87-89 | °87 ’87-89 | 87 ’87-89
Background (B) 9.2 83 9.2 83 9.2 83
Adapted (A) Model | 84 7.4 8.4 7.7 83 79
(B+A) Model 7.6 7.2 7.8 1.3 7.6 7.5

Table 3.4 WER results (%) of the tri-gram language models using n-gram weighting on

November 1992 test data

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | °87 °87-89 | ’87 ’87-89
Background (B) 4.8 4.6 4.8 4.6 48 4.6
Adapted (A) Model | 5.3 4.5 5.6 4.7 55 43
(B+A) Model 42 4.0 42 3.9 41 39

From Tables 3.3 and 3.4, we can note that the stand-alone adapted (A) model for all
topic and corpus sizes outperforms the background model for the November 1993 test set,
and the best WERs are achieved for topic size 75 using the *87 corpus (9.8% (9.2% to 8.3%))
and topic size 25 using the *87-89 corpus (10.8% (8.3% to 7.4%)). For the November 1992
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test set, the best result is obtained only for the *87-89 corpus using topic size 75 (6.5%
(4.6% to 4.3%)). Here the WERSs are over the background model. The interpolation of the
background (B) and the adapted model (A) outperforms all the other above models [40].

3.4.3 New Adapted Model Using LSM

In [41], the unigram scaling of the adapted (A) model through MDI adaptation using LSM
was proposed, which outperforms the MDI adaptation of the background (B) model using
LSM [96]. Here, we introduce the MDI adaptation to the (B+A) model using the LSM.
The idea of MDI adaptation is to minimize the Kullback-Leibler (KL) distance between the
adapted model and the other model [34, 68]. The perplexity results of the experiments using
the November 1993 and November 1992 test sets for different sizes of corpus are explained

in Table 3.5 and 3.6 respectively.

Table 3.5 Perplexity results on the November 1993 test data using tri-gram language models
obtained by using LSM

Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | ’87 °87-89 | '87 ’'87-89
Background (B) 101.7 88.9 | 101.7 88.9 | 101.7 88.9
Adaptation of (B) model 98.8 859 | 97.8 857 | 97.2 84.8
Adaptation of A model 97.9 86.7 | 103.5 89.9 | 105.1 87.0
Adaptation of (B+A) model | 80.7 72.0 | 79.3 71.0 | 78.5 70.8

Table 3.6 Perplexity results on the November 1992 test data using tri-gram language models

obtained by using LSM
Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | 87 ’87-89 | °87 ’87-89
Background (B) 854 71.0 | 854 71.0 | 854 71.0
Adaptation of (B) model 84.2 70.2 | 839 69.9 | 83.6 69.7
Adaptation of A model 88.5 782 | 940 814 | 98.3 773
Adaptation of (B+A) model | 71.4 61.6 | 704 60.8 | 70.1 60.7

From Tables 3.5 and 3.6, we can note that all the models outperform the background

model except for the adapted model using the November 1992 test set. The unigram scaling




46 LDA-based LM Adaptation Using LSM

of the interpolation of the background (B) and the adapted (A) models outperforms the uni-
gram scaling of the background model [96], the unigram scaling of the adapted model [41],
and the (B+A) model [40] for all topic and corpus sizes.

The WER results of the experiments on different test sets for different corpus sizes are
described in Tables 3.7 and 3.8.

Table 3.7 WER results (%) on the November 1993 test data using tri-gram language models
obtained by using LSM

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | ’87 ’87-89 | °87 ’87-89
Background (B) 9.2 83 9.2 83 92 83
Adaptation of (B) model 9.2 8.0 9.0 8.0 9.1 8.1
Adaptation of A model 84 7.5 85 7.7 86 79
Adaptation of (B+A) model | 7.6 6.9 7.7 7.2 7.6 7.2

Table 3.8 WER results (%) on the November 1992 test data using tri-gram language models

obtained by using LSM
Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | ’87 °87-89 | °87 ’87-89
Background (B) 4.8 4.6 4.8 4.6 4.8 4.6
Adaptation of (B) model 4.8 4.6 48 4.7 49 4.6
Adaptation of A model 5.3 45 5.6 4.6 56 44
Adaptation of (B+A) model | 4.2 3.8 42 3.8 4.1 3.7

From Tables 3.3, 3.4, 3.7, and 3.8, we can note that the unigram scaling of the adapted
(A) models using LSM outperforms the unigram scaling of the background (B) model using
LSM for all topic sizes except for the November 1992 test set using the 87 corpus [41]. For
the *87 corpus, the proposed unigram scaling of the B+A model does not give any improve-
ment over the n-gram-weighting [40] adaptation approaches except for the November 1993
test set with topic size 50. However, the proposed unigram scaling of the (B+A) models out-
performs all the other above approaches [40, 41, 96] and the best results obtained for topic
sizes 25 and 75 for the November 1993 and November 1992 test sets respectively using the
’87-89 corpus. For the November 1993 test set using topic size 25 and the *87-89 corpus,
it gives about 16.9% (8.3% to 6.9%), 13.7% (8.00% to 6.9%), 8.0% (7.5% to 6.9%), and
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4.2% (7.2% to 6.9%) over the background model, the unigram scaling of the background
model [96], the unigram scaling of the adapted model [41], and the interpolation of the
background and the adapted models [40] respectively. For the November 1992 test set using
topic size 75 and the *87-89 corpus, it gives about 19.6% (4.6% to 3.7%), 19.6% (4.6% to
3.7%), 15.9% (4.4% to 3.7%), and 5.1% (3.9% to 3.7%) over the background model, the un-
igram scaling of the background model [96], the unigram scaling of the adapted model [41],
and the interpolation of the background and the adapted models [40] respectively. From the
above experiments, we can note that adding more data we get better improvement for all

topic sizes and test sets.

3.4.4 Statistical Significance and Error Analysis

The significance improvement in WER is done by using a matched-pair-test where the mis-
recognized words in each test utterance are counted. The p-values of the proposed unigram
scaling of the B+A model are measured relative to the background model, the unigram scal-
ing of the background model [96], the unigram scaling of the adapted model [41] and the
interpolation of the background model and the adapted models [40], respectively. For the
November 1993 test set using topic size 25 and the *87-89 corpus, the p-values are 4.0E-9,
0.00081, 7.4E-8, and 0.00175. For the November 1992 test set using topic size 75 and the
’87-89 corpus, the p-values are 4.9E-6, 0.0071, 8.3E-7, and 0.00989. At a significance level
of 0.01, the proposed approach is significantly better than the other models.

Tables 3.9 and 3.10 are used to describe the ASR results for deletion (D), substitution
(), and insertion (/) errors, and also the correctness (Corr) and accuracy (Acc) of the tri-
gram language models. From the tables, we can note that the proposed unigram scaling of
the B+A model reduces all types of errors, and improves correctness and accuracy relative
to the background and other models [40, 41, 96]. Using the proposed approach, the deletion
and insertion errors do not change much compared to the background and other models.
Therefore, the substitution errors play an important role to improve the performance, i.e.,
more words can be recognized accurately using the proposed method than the background
and other models. We can also note that the improvement of the A model can help to reduce

the existing errors in the current approach.
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Table 3.9 For the November 1993 test set using topic size 25 and the *87-89 corpus, ASR
results for deletion (D), substitution (S), and insertion (/) errors, and also the correctness
(Corr) and accuracy (Acc) of the tri-gram language models

Language Model D S I Corr | Acc

Background (B) 0.010 | 0.064 | 0.009 | 0.926 | 0.917
Adaptation of B model using LSM 0.010 | 0.061 | 0.008 | 0.929 | 0.920
Adaptation of A model using LSM 0.010 | 0.058 | 0.006 | 0.931 | 0.925
(B+A) model 0.010 | 0.055 | 0.007 | 0.935 | 0.928
Adaptation of (B+A) model using LSM | 0.009 | 0.054 | 0.006 | 0.937 | 0.931

Table 3.10 For the November 1992 test set using topic size 75 and the *87-89 corpus, ASR
results for deletion (D), substitution (S), and insertion (/) errors, and also the correctness
(Corr) and accuracy (Acc) of the tri-gram language models

Language Model D S I Corr | Acc

Background (B) 0.003 | 0.033 | 0.010 | 0.965 | 0.954
Adaptation of B model using LSM 0.003 | 0.033 | 0.010 | 0.964 | 0.954
Adaptation of A model using LSM 0.003 | 0.030 | 0.011 | 0.967 | 0.956
(B+A) model 0.002 | 0.027 | 0.009 | 0.970 | 0.961
Adaptation of (B+A) model using LSM | 0.002 | 0.026 | 0.009 | 0.973 | 0.963

3.5 Summary

In this chapter, we have proposed unsupervised language model adaptation approaches using
LDA, LSM, and unigram scaling. A hard-clustering approach is applied on the document-
topic matrix obtained in LDA analysis to form a topic set. Then, an n-gram weighting ap-
proach is used to compute the mixture weights of the component topic models. An adapted
model is computed using the weighted combination of n-gram topic models. We have per-
formed the experiments for various topic sizes. We have formed new adapted models by
modifying the adapted models using unigram scaling, which minimizes the KL divergence
between the new adapted models and the adapted models subject to a constraint that the
marginalized unigram probability distributions of the new adapted models are equal to the
unigram probability distributions estimated by using the LDA models, called LSM. We cre-
ated LSM for the automatic (recognition results after first-pass decoding of the evaluation
test set) transcriptions. We have interpolated the background model with the adapted model

to capture the local lexical regularities and scaled the interpolated model using the above
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LSM. We performed the experiments using the WSJ corpus with varying sizes on two dif-
ferent test sets and used the LM adaptation approaches in the second pass of decoding. We
compared our approaches with traditional MDI adaptation approaches. We have seen that
our proposed approach gives significant reductions in perplexity and WER over the tradi-
tional approaches used in the literature. Moreover, we have found that adding more data

helps to get better improvement.






Chapter 4
Topic n-gram Count LM

In this chapter, we introduce a novel language model (LM) adaptation approach using the
latent Dirichlet allocation (LDA) model. Observed n-grams in the training set are assigned
to topics using soft and hard clustering. In soft clustering, each n-gram is assigned to topics
such that the total count of that n-gram for all topics is equal to the global count of that
n-gram in the training set. Here, the normalized topic weights of the n-gram are multiplied
by the global n-gram count to form the topic n-gram count for the respective topics. In hard
clustering, each n-gram is assigned to a single topic with the maximum fraction of the global
n-gram count for the corresponding topic. Here, the topic is selected using the maximum
topic weight for the n-gram. The topic n-gram count LMs are created using the respective
topic n-gram counts and adapted by using the topic weights of a development test set. We
compute the average of the confidence measures: the probability of word given topic and
the probability of topic given word. The average is taken over the words in the n-grams and
the development test set to form the topic weights of the n-grams and the development test

set respectively [42].

4.1 Introduction

We propose a new LM adaptation approach by considering the features of the LDA model.
As a bag-of-words model, each word is independent in LDA. Therefore, each word has
equal weight in determining the topic mixtures. Also, latent topics are independent of each
other in the LDA topic set. So, we induce a constraint that the total count of an n-gram
for all topics is equal to the count of that n-gram in the training set. Here, we compute the
topic mixture weights of each n-gram in the training set using the probability of word w;
given topic #;, P(w;|t;) and the probability of topic #, given word w;, P(f;|w;) as confidence
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measures for the words in the n-gram under different LDA latent topics. The normalized
topic mixture weights are then multiplied by the global count of the n-gram to determine
the topic n-gram count for the respective topics. In soft clustering, each n-gram is assigned
to all topics with the corresponding topic n-gram count. In hard clustering, each n-gram
with the maximum fraction of the global count is assigned to a single topic, where the topic
is selected by the maximum topic weights for the n-gram. The topic n-gram count LMs
are then created using the respective topic n-gram counts and adapted by using the topic

mixture weights obtained by averaging the confidence measures over the seen words of a

development test set. The complete idea is described in Figure 4.1.
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Fig. 4.1 Topic n-gram count LM Adaptation
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4.2 LDA Training

We have used the MATLAB topic modeling toolbox [93] to get the word-topic matrix WP,
using LDA. Here, the words correspond to the words used in LDA analysis. In the WP
matrix, an entry WP(w;,1;) represents the number of times word w; has been assigned to

topic #; over the training set.

The probability of word w; under LDA latent topic # is computed as [37, 53]:

WP(w;,t) + B
WP(.,t;)+ VP ’

P(wilte, B) = (4.1)
where WP(.,1;) is the total count of words in topic #, V is the total number of words, and 3

is defined as in section 2.5.4.

4.3 Topic N-gram Count Language Model

4.3.1 Language Model Generation

We computed the topic mixture weights of the background n-grams in the training set. The
topic weights are used to determine the counts of the n-grams for the corresponding topics.
Since each word is an independent and equally reliable observation under the LDA model,
the probability of each word has equal weight in computing the topic mixtures [52]. Using
these features of the LDA model, we proposed two confidence measures (the probability of
word w; given topic #; (P(w;lt;)) in equation 4.2 and the probability of topic #; given word
w; (P(tx|w;)) in equation 4.3) to compute the topic mixture weights for each n-gram:

n

1
T =~ Y POwilt), (4.2)
i=1

n

1
Y == Y Ptelwi), (4.3)
ni=3

where 7, is the weight of the n-gram in topic #. P(x|w;) is computed using the Bayes’s

formula:
P(wiltx)P(tr)

Yo P(wilte)P(t)

P(t|wi) = (4.4)
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where P(#;) is the prior topic probability and P(w;|t;) is the word probability in topic #.

P(t;) is computed as:
Zwi WP(Wi,tk) + ﬁV

YK (T WP(wi )+ BV)

We normalize the topic weights for each n-gram so that the total topic counts for each

P(1) (4.5)

n-gram is summed to one and then multiply the topic weights with the original count of that
n-gram in the training set. The results of the multiplication are the topic n-gram counts for
the corresponding topics. This is soft clustering of the background n-grams to all topics
with different topic n-gram counts. For example, a tri-gram “a b ¢" is seen 20 times in the
training corpus and for 4 topics, the topic weights of the tri-gram “a b ¢" are 0.2, 0.3, 0.1
and 0.4, which are computed using equations 4.2 or 4.3. Therefore, the counts for the “a b
c" in 4 topics are 4, 6, 2 and 8. We also perform a hard clustering, where each background
n-gram is assigned to a single topic with the maximum fraction of the original count of the
n-gram in the training set for the corresponding topic. In the above example, the n-gram “a

b c" is assigned to topic number 4 with count 8. Here, the topic selection is done as:
fj = argmaxy,. (4.6)
I

The topic n-gram language models are then generated using the topic n-gram counts and
defined as TNCLM.

4.3.2 Language Model Adaptation

In the LDA model, a document can be generated by a mixture of topics. So, for a test
document d; = wy,...,wy, the dynamically adapted topic model by using a mixture of LMs

from different topics is computed as:

K
Pancev(wilh) = Y 8, Py (wilh), 4.7
k=1
where P, (wi|h) is the t,’ch TNCLM, ¢, is the t,’ch topic mixture weight and Paycra(wilh) is
the adapted n-gram count LM. The topic mixture weights are computed as equations 4.2
and 4.3. In those equations, n represents the total number of seen words in the test data.
The ANCLM is then interpolated with the background (B) n-gram model to capture the

local constraints using the linear interpolation as:

PL(W,'|h) = APB(Wi’h) —+ (1 — A>PANCLM(Wi|h>7 4.8)
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where A is an interpolation weight.

4.4 Experiments

4.4.1 Data and Parameters

The *87-89 WSIJ corpus is used to train the tri-gram background model and the tri-gram
TNCLM using the back-off version of the Witten-Bell smoothing. To reduce the computa-
tional cost, we incorporated the cutoffs 1 and 3 on the bi-gram and tri-gram counts respec-
tively. The Witten-Bell smoothing from the SRILM toolkit is used as the TNCLM models
are generated using the floating counts. The LDA and the closed vocabulary language mod-
els are trained using the 5K non-verbalized punctuation closed vocabulary. We define the o
and B for LDA analysis as 50/K and 0.01 respectively [37, 53]. The interpolation weight
A is computed using the compute-best-mix program from the SRILM toolkit. The topic
mixture weights 6 and the interpolation weight A are tuned on the development test set.
The results of the experiments are noted on the evaluation test set November 1993 (215
sentences, 3849 words) ARPA CSR benchmark test data for 5K vocabularies [71, 101].

4.4.2 Experimental Results

We tested our proposed approaches for topic sizes 20 and 40. The perplexity results of
the ANCLM models are listed in Table 4.1 and Table 4.2, where the topic n-gram counts
for the TNCLM models are generated using the confidence measures P(w;|t;) and P(t;|w;)

respectively.

Table 4.1 Perplexity results of the ANCLM model generated using the confidence measure
P(wj|ty) for the hard and soft clustering of background n-grams

Language Model 20 Topics | 40 Topics
Background (B) 83.4 83.4
ANCLM (Hard) 277.3 378.2
ANCLM (Soft) 101.2 109.2
B+ANCLM (Hard) 72.6 72.5
B+ANCLM (Soft) 71.5 70.8

For the stand-alone ANCLM models, the perplexity increases with the number of top-

ics as the models are trained using the bigram cutoff 1 and trigram cutoff 3. However, the
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Table 4.2 Perplexity results of the ANCLM model generated using the confidence measure

P(t;|w;) for the hard and soft clustering of background n-grams

Language Model 20 Topics | 40 Topics
Background (B) 83.4 83.4
ANCLM (Hard) 227.9 287.25
ANCLM (Soft) 92.9 101.45
B+ANCLM (Hard) 71.65 71.5
B+ANCLM (Soft) 70.15 69.9

interpolation of ANCLM with the background LM yields improved perplexity results with
increasing topics. The perplexity using the background trigram model is 83.4. Therefore
the interpolation of background LM and the ANCLM with both the confidence measures
outperforms the background LM. From Tables 4.1 and 4.2, we can also note that the AN-
CLM with the confidence measure P(f;|w;) outperforms the ANCLM with the confidence

measure P(w;lty).

We evaluated the proposed approaches for speech recognition. We used the unigram
scaling approach of the LDA-adapted model (LDA unigram scaling) [96] and the inter-
polation of the background model with the LDA-adapted n-gram model obtained using the
n-gram weighting approach (LDA n-gram weighting) [40] for comparison. We evaluated the
WER experiments using lattice rescoring. In the first pass, we used the background n-gram
language model for lattice generation. In the second pass, we applied the LM adaptation
approaches for lattice rescoring. The experimental results are plotted in Figures 4.2 and
4.3 for the confidence measures P(w;|t;) and P(;|w;) respectively. From Figures 4.2 and
4.3, we can note that the LMs generated using the confidence measure P(f;|w;) give better
results than the LMs generated by the confidence measure P(w;|f). This is obvious as we
formed the topic weights of the n-grams in LM generation. Using the P(;|w;) confidence
measure, we also found the higher number of bigrams and trigrams over the P(w;|t;) confi-
dence measure after considering cutoffs 1 and 3 for the bigrams and trigrams respectively.
Using confidence measure P(w;|f;) in Figure 4.2, we can see that the hard clustering AN-
CLM outperforms the LDA unigram scaling, the soft clustering ANCLM outperforms both
the LDA unigram scaling and the LDA n-gram weighting for the topic size 20. For topic
size 40, only the soft clustering ANCLM outperforms the LDA unigram scaling. In contrast,
the hard and soft clustering ANCLM, generated by using the P(;|w;) confidence measure,

outperform the LDA unigram scaling and the LDA n-gram weighting approaches respec-
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tively for both 20 and 40 topics. We obtained improved WER results for topic size 40. We
achieved the WER of 8.1% using the background n-gram LM in the first pass. The LDA uni-
gram scaling, LDA n-gram weighting, ANCLM hard clustering and ANCLM soft clustering
approaches with 40 topics reduce WER to 7.9%, 7.5%, 7.6% and 7.3% respectively. These
results indicate that the proposed ANCLM with the confidence measure P(t;|w;) performs
better than the LDA unigram scaling [96] and LDA n-gram weighting [40] approaches. The
soft clustering ANCLM generated using P(#;|w;) gives significant WER reductions of about
9.9% (8.1% to 7.3%), 7.6% (7.9% to 7.3%), and 2.7% (7.5% to 7.3%) over the background
n-gram LM, LDA unigram scaling [96], and LDA n-gram weighting [40] approaches re-
spectively.

B Background (B) i LDA unigram scaling B LDA n-gram weighting

¥ B+ANCLM (Hard) O B+ANCLM (Soft)

8.2

7.8
7.6
7.4

7.2

Topic 20 Topic 40

Fig. 4.2 WER results (%) for the ANCLM model developed by using confidence measure
P(wiltr)

4.5 Summary

In this chapter, we proposed novel LM adaptation approaches where the topic mixture
weights of the background n-grams were used to train the topic models. In soft cluster-
ing of n-grams, each n-gram of the training set is assigned to all topics using the fraction
of the global count of the n-gram for the respective topics. The fraction is determined by
the multiplication of the global count with the normalized topic weights for the n-gram such
that the total count of that n-gram for all topics is equal to the global count in the training
set. In hard-clustering, each n-gram is assigned to a single topic with the maximum frac-

tion of the global n-gram count and the topic is selected with the maximum topic weight.
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B Background (B) % LDA unigram scaling B LDA n-gram weighting
¥ B+ANCLM (Hard) OB+ANCLM (Soft)

8.2

7.8
7.6
7.4

7.2

6.8

Topic 20 Topic 40

Fig. 4.3 WER results (%) for the ANCLM model developed by using confidence measure
P(tiwi)

The topic weights of the n-grams are computed by using the average of the probability of
word given topic and the probability of topic given word confidence measures for the words
in the n-grams under different latent topics of the LDA model. We also introduced a new
weighting approach for the LDA topic model adaptation where the topic mixture weights
were computed using the average of the confidence measures for the seen words in the de-
velopment test set. We compared our approaches with recent LDA topic LM adaptation

approaches and have seen that our approaches yield better performance.
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Novel Topic n-gram Count LM

In this chapter, we introduce a novel topic n-gram count language model (NTNCLM) us-
ing topic probabilities of training documents and document-based n-gram counts. The
topic probabilities for the documents are computed by averaging the topic probabilities of
words seen in the documents. The topic probabilities of documents are multiplied by the
document-based n-gram counts. The products are then summed-up for all the training doc-
uments. The results are used as the counts of the respective topics to create the NTNCLMs.
The NTNCLMs are adapted by using the topic probabilities of a development test set that
are computed as above. We compare our approach with a recently proposed TNCLM [42]
described in chapter 4, where the long-range information outside of the n-gram events is
not encountered. Our approach yields significant perplexity and word error rate (WER)

reductions over the other approach using the Wall Street Journal (WSJ) corpus [48].

5.1 Introduction

We extend our previous work (Chapter 4) [42] to incorporate the long-range useful infor-
mation outside of n-gram events. In [42], the features of the LDA model were used to
create the topic n-gram count language model (TNCLM) [42]. Because of bag-of-words
characteristics of the LDA model, each word has equal weight in determining the topic mix-
tures. Also, latent topics are independent of each other in the LDA topic set. A constraint
was taken such that the total count of an n-gram for all topics is equal to the count of that
n-gram in the training set. TNCLMs were formed by computing the topic probabilities
of background n-grams P(fx|wy,...,w,), (k= 1,...,K) by averaging the topic probabilities
of the words P(t;|w;) present in the n-grams. P(t;|wy,...,w,) were multiplied with the

global count of the n-gram C(h,w;) and then used as the counts of the topics to create the
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TNCLMs. The probability of topic #; given word w;, P(f;|w;) and the probability of word
w; given topic t, P(w;|ty) were used as confidence measures in determining the topic prob-
ability of the n-grams P(fx|wy,...,wy,), where P(t;|w;) outperforms P(w;|t;) [42]. In this
chapter, we used only the confidence measure P(#;|w;). For details of the TNCLM genera-
tion, please see chapter 4. However, the TNCLMs do not capture the long-range important
information outside of the n-gram events. Here, we propose a novel TNCLM (NTNCLM)
where P(f;|wy,...,w,) are derived by using the topic probabilities of the training documents
P(t|d)),(I=1,...,M). P(t;|d;) are calculated by averaging the P(t;|w;) for words seen in
the documents. P(#|d;) are multiplied with the document-based n-gram counts C(h,w;,d;)
and then summed-up for all training documents. The results are used as the counts of top-
ics to create the NTNCLMs. The TNCLMs and NTNCLMs are both adapted by using the
topic mixture weights obtained by averaging the P(;|w;) over the seen words of a devel-
opment test set d;. The adapted models are interpolated with a background tri-gram model
to capture the local lexical regularities. The complete idea is described in Figure 5.1. In
the figure, %, , and ¥, 4, represent P(fx|wy,...,w,) and P(t|d;) respectively. Ny and N,
describe the the number of words seen in the training document d; and the development test
set d;. We compare our approach with an adapted n-gram LM obtained by unsupervised
language model adaptation using latent semantic marginals [96] and the interpolation of the
adapted TNCLM with the background model [42]. We apply the LM adaptation approaches
after the first pass decoding and have seen that our approach outperforms the conventional

approaches.

5.2 LDA Training

The parameters of the LDA model are computed by using the MATLAB topic modeling
toolbox [37, 93]. Here, we obtain a word-topic matrix W P and a document topic matrix DP.
An entry WP(w;,t;) describes the number of times the word w; has been assigned to topic 7
over the training set. An entry DP(d),t;) of the DP matrix contains the total occurrences of
words in document d; that are from a topic #;. We used the above matrices to compute the

probability of words given topics and the probability of topics given documents as [37, 53]:

. _ WP(Wiatk)+B
P(Wl‘tkvﬁ) - WP(.,Z‘k)-{-Vﬁ, (5.1)
P(t|d;, 8q)) = DP(dity) 1 o (5.2)

DP(d;,.)) + Ko’
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where WP(.,1;) is the total count of words in topic #;, DP(d;,.) contains the occurrences of

words from all topics in document d;, V is the total number of words, and f3 is defined as in

section 2.5.4.

5.3 Proposed NTNCLM

The TNCLM model does not capture the information outside the n-gram events as it di-
rectly uses topic probabilities of words P(#;|w;) in generating topic probability of n-grams
P(t|lwi,...,wn). To compensate for the weakness of this model, we introduce a novel
TNCLM (NTNCLM) that uses topic probabilities of training documents P(t;|d;) in com-

puting topic probabilities of n-grams P(fx|wy, ..., wy).
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The topic probabilities of the training documents d; (I = 1,...,M) are created by aver-
aging the topic probabilities of words present in the respective documents as:

1
P(t|d;) = Ny Y P(telwi), (5.3)

where Ny, is the number of words seen in training document d;. The topic probabilities for
each document d; are then normalized so that the total topic probabilities for each document

are summed to one.

The topic probability for an n-gram is created as:

M
P(tk‘Wl,...,Wn) = ZP(tk|dl)P(dl’W17 7Wn)
=1
(5.4)
_ %P(tﬂdl)c(wl’m’wn’dl)
=1 C(Wl,...,wn) ’

The topic probability of the n-gram is then multiplied with the global n-gram count C(wy, ...,
and the product is used as the count of the n-gram for the respective topic. The results can

be written as:
CWi,y..o,wn,ty) = P(telwi,...,wy) *C(wy, ..., wy)

M (5.5)
=Y P(tld))C(wr,...,wp,dy),
=1

where P(t|d;) are the topic probabilities for training documents created by Equation 5.3.
The NTNCLMs are then created by using the respective topic n-gram counts. We also
introduce other TNCLMs defined as LDA TNCLMs (LTNCLMs) by using Equation 5.5
where the P(1;|d;) is computed by using the document-topic matrix DP (Equation 5.2).

5.4 LM Adaptation Approach

In the LDA model, a document can be generated by a mixture of topics. So, for a test
document d; = wy,...,wy, , the dynamically adapted topic model by using a mixture of

LMs from different topics is computed as:

K
Pancrm/anncrm/aincim(Wilh) = Z Oy Pr, (wilh), (5.6)

Wy)



5.5 Experiments 63

where I)lk (Wl|h) is the l'lt(h TNCLM/NTNCLM/LTNCLM, PANCLM/ANNCLM/ALNCLM(Wi|h) are
the adapted n-gram count LMs and 9§, is the t,tf‘ topic mixture weight. The mixture weights
for the TNCLMs and NTNCLMs are computed as:

Ny,
P(ilds) = —— ZP felws), (5.7)

where Ny, is the number of words seen in the development test document d;. For the LT-
NCLMs, the mixture weights are computed using LDA inference [53].
The ANCLM/ANNCLM/ALNCLMs are then interpolated with the background (B) n-

gram model to capture the local constraints using linear interpolation as:

Pr(wilh) = APg(wilh) + (1 — ) Pancra/annermacnery (Wilh), (5.8)

where A is an interpolation weight.

5.5 Experiments

5.5.1 Data and Parameters

The *87-89 WSJ corpus is used to train the tri-gram background (B) model and the tri-gram
TNCLMs/NTNCLMs/LTNCLMs using the back-off version of the Witten-Bell smoothing.
To reduce the computational cost, we incorporated the cutoffs 1 and 3 on the background
bi-gram and background tri-gram counts respectively. The Witten-Bell smoothing from
the SRILM toolkit is used as the TNCLMs/NTNCLMs/LTNCLMs are generated using the
floating counts. The LDA and the closed vocabulary language models are trained using the
5K non-verbalized punctuation closed vocabulary. We define the @ and B for LDA analysis
as 50/K and 0.01 respectively [37, 53]. The development and the evaluation test sets are the
si_dt_05.odd (248 sentences from 10 speakers) and the Nov’93 Hub 2 5K test data from the
ARPA November 1993 WSJ evaluation (215 sentences from 10 speakers) [71, 101]. The
topic mixture weights 0 and the interpolation weight A are tuned on the development test

set. The results are noted on the evaluation test set.

5.5.2 Experimental Results

We tested our proposed approaches for various topic sizes. The perplexity results of the

models are explained in Table 5.1. From Table 5.1, we can note that the proposed approaches
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Table 5.1 Perplexity results of the language models

Language Model 25 50
Topics | Topics
Background (B) 83.4 83.4
ANCLM 105.5 | 134.0
ALNCLM 86.5 | 1114
ANNCLM 86.2 | 1104
B+ANCLM 75.3 75.6
B+ALNCLM 74.6 74.8
B+ANNCLM 74.7 74.9

outperform the ANCLM [42] in both stand-alone and interpolated form for all topic sizes.

We also evaluated the LM adaptation approaches for speech recognition. We used the
unigram scaling approach of the LDA adapted model (LDA unigram scaling) [96] and the
interpolation of background models with the ANCLM model [42] for comparison. We eval-
uated the WER experiments using lattice rescoring. In the first pass, we used the background
tri-gram language model for lattice generation. In the second pass, interpolation of the back-
ground and the adapted models are applied for lattice rescoring. The experimental results are
plotted in Figure 5.2. From Figure 5.2, we can note that the proposed B+ANNCLM gives
significant WER reductions of about 9.9% (8.1% to 7.3%), 7.6% (7.9% to 7.3%), 3.9%
(7.6% to 7.3%), and 1.4% (7.4% to 7.3%) for 25 topics, and about 7.4% (8.1% to 7.5%),
5.1% (7.9% to 7.5%), 3.8% (7.8% to 7.5%), and 1.3% (7.6% to 7.5%) for 50 topics over the
background trigram, LDA unigram scaling [96], B+ANCLM [42] and B+ALNCLM (also
proposed by us) approaches respectively. However, the B+ ALNCLM model outperforms
the background, LDA unigram scaling [96] and B+ANCLM [42] approaches respectively.
The significance improvement in WER using the proposed B+ ANNCLM is done by using
a match-pair-test where the misrecognized words in each test utterance are counted. We ob-
tain the p-values of 0.03 and 0.02 relative to B+ANCLM [42] for the topic sizes 25 and 50
respectively. At a significance level of 0.05, our proposed B+ ANNCLM model outperforms
the B+ANCLM model [42].
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M Background (B) M LDA unigram scaling ® B+ANCLM
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Fig. 5.2 WER results (%) of the language models

5.6 Summary

In this chapter, we proposed a novel TNCLM (NTNCLM) using document-based topic dis-
tributions and n-gram counts. The topic probabilities for training documents are created by
averaging the confidence measure (topic probability given words) of the words present in
the documents. Then, they are multiplied by the document-based n-gram counts and the
products are summed up for all the training documents. The results are used as the n-gram
counts for the respective topics to create the NTNCLM. We also introduce an LDA TNCLM
(LTNCLM) as above where the topic probabilities for documents are created by using the
document-topic matrix obtained from the LDA model training. We compare our approaches
with a recently proposed TNCLM [42], which uses the above confidence measures to com-
pute the probability of background n-grams and is used as the count of the n-grams for the
respective topics. The normalized topic probabilities of the n-gram are multiplied by the
global n-gram count to form the topic n-gram count for the respective topics. However,
TNCLM does not capture the long-range information outside of the n-gram events. To com-
pensate for the weaknesses of the TNCLMs, the NTNCLMs and LTNCLMs are proposed
here. Both TNCLMs, NTNCLMs and LTNCLMs are adapted and then interpolated with a
background trigram model to capture the short-range information. The proposed approaches

yield better performance over the conventional approaches.






Chapter 6

Context-based PLSA and
Document-based CPLSA

In this chapter, we propose a novel context-based probabilistic latent semantic analysis
(CPLSA) language model [43] for speech recognition. In this model, the topic is condi-
tioned on the immediate history context and the document in the original PLSA model. This
allows computing all the possible bigram probabilities of the seen history context using the
model. It properly computes the topic probability of an unseen document for each history
context present in the document. We compare our approach with a recently proposed un-
smoothed bigram PLSA (UBPLSA) model [7] where only the seen bigram probabilities are
calculated, which causes computing the incorrect topic probability for the present history
context of the unseen document. The proposed CPLSA model requires a significantly less
amount of computation time and memory space requirements than the unsmoothed bigram
PLSA model. In the CPLSA model, the word probabilities for topics are computed by the
sum of bigram events in all documents. However, in different documents words can appear
to describe different topics. To solve this problem, we also introduce a document-based
CPLSA model (DCPLSA) [50]. This model is similar to the CPLSA model except that the
probability of a word is conditioned on both topic and document. However, it requires larger

memory and computation time than the CPLSA model.

6.1 Introduction

In the UBPLSA model [7], the bigram probabilities for each topic are modeled and the
topic is conditioned on the bigram history and the document. For each topic, it requires V

distributions, where V is the size of vocabulary. So, it needs high computation time and
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huge memory space. However, this approach is not practical as it assigns zero probability to
the unseen bigrams. Furthermore, in testing, the model computes the topic probabilities for
the bigram histories that are present in the test document. However, it cannot compute the
topic probabilities for some bigram history contexts that are present in both the training and
test set as the bigram probabilities for the corresponding bigram histories are zero because
the model assigns zero probability to the unseen bigrams. Therefore, the model cannot
compute some bigram probabilities of the test document that should be computed by the
training model. However, those bigram probabilities of the test document are computed
later by the smoothing process.

In this chapter, we propose a context based PLSA (CPLSA) model where the topic is
further conditioned on the history context in the original PLSA model. It allows computing
all the possible bigram probabilities for the seen history context in the training set. There-
fore, the topic probabilities for the history contexts of the test document can be computed
properly. We have seen that the proposed approach gives significantly better results over
the UBPLSA model [7]. In addition, it reduces the complexity and memory requirements
as it uses unigram probabilities for topics. Moreover, we propose a new document-specific
context PLSA (DCPLSA) model. The CPLSA model [43] uses the sum of bigrams in all
documents to compute the word probabilities for topics. However, words in the bigrams
may describe different topics in different documents. For example, the bigram White House
can occur in a document where it describes a real estate topic. Also, it can occur in another
document that describes a political topic. Therefore, the probability of word given only the
topics may not give the appropriate results. This motivates us to introduce a new DCPLSA
model where the word probabilities are trained by conditioning on the topics and the docu-
ments. However, the DCPLSA model requires more complexity and memory requirement
than the CPLSA model.

6.2 Review of PLSA and UBPLSA Models

6.2.1 PLSA Model

The PLSA model [33] extracts semantic information from a corpus in a probabilistic frame-
work. It uses an unobserved topic variable with each observation, i.e., with each occurrence
of a word in a document. It is assumed that the document and the word are independent
conditioned on the state of the latent topic variable. It models each word in a document as a

sample from a mixture model, where the mixture models can be viewed as representations
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of topic distributions. Therefore, a document is generated as a mixture of topic distributions
and reduced to a fixed set of topics. Each topic is a distribution over words. The model [33]
can be described in the following procedure. First a documentd; (I =1,2,...,M) is selected
with probability P(d;). A topic #; (k= 1,2,...,K) is then chosen with probability P(t|d;),
and finally a word w; (i =1,2,...,N) is generated with probability P(w;|t;). The probability

of word w; given a document dl can be estimated as:

a

P(wild) :Z (wilti)P(te|dy). (6.1)

The model parameters P(w;|t;) and P(t|d;) are computed by using the expectation maxi-
mization (EM) algorithm [33].

6.2.2 UBPLSA Model

The PLSA model yields unigram models for topics. To improve the performance, a bigram
PLSA model [82] was introduced where the bigram probabilities for topics were trained in-
stead of unigrams in the PLSA model. Before describing the UBPLSA model, the previous
bigram PLSA model is briefly explained. Instead of P(w;|f;) in Equation 6.1, the bigram
PLSA model uses P(w;|w;,#) in computing the probability of word w; given the bigram

history w; and the document d;:

a

W,’W],dl Z Wlle,tk tk’dl) (6.2)

The model parameters are computed using the EM procedure [82].

The UBPLSA model was recently proposed in [7], which outperforms the previous bi-
gram PLSA model [82]. Here, the topic probability is further conditioned on the bigram
history context. It can model the topic probability for the document given a context, using
the word co-occurrences in the document. In this model, the probability of the word w;

given the document d; and the word history w; is computed as:

>§

P(wilwj,d)) = Z (wilwj, tx)P(telw;,dy). (6.3)
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The EM procedure for training the model takes the following two steps: E-step:

P(Z‘ |W- W d): P(W,‘|Wj,tk)P(tk|wj,dl) (6 4
KT A Zk’P(Wi|Wj7tk’)P(tk’|Wj7dl>, :

M-step:
' Wi, dy )P(t i Wi dy
P<W1|Wj,tk) — Zl }’l(W],Wl, [ ) (k|W.]7W [ ) , (65)
Zi’Zl’n(Wj7Wi/adl’)P(tk’Wjawiladl’)

Yin(wj,wi,dp)P(te|lwj,wy,dp)
Zk’ Zi’n(wjawi/vdl)P(tk’|Wj7Wi/adl)

where n(w;,w;,d;) is the number of times the word pair w;w; occurs in the training docu-

P(tk|wj7dl) =

(6.6)

ment d.

In the UBPLSA model [7], the bigram probabilities for each topic are modeled and the
topic is conditioned on the bigram history and the document. For each topic, it requires V
distributions, where V is the size of vocabulary. So, it needs high computation time and
huge memory space. However, this approach is not practical as it assigns zero probability
to the unseen bigrams. Furthermore, in testing, the model computes the topic probabilities
for the bigram histories that are present in the test document. However, it cannot compute
the topic probabilities for some bigram history contexts that are present in both the training
and test sets as the bigram probabilities for the corresponding bigram histories are zero
because the model assigns zero probability to the unseen bigrams. Therefore, the model
cannot compute some bigram probabilities of the test document that should be computed by
the training model. However, those bigram probabilities of the test document are computed

later by the smoothing process.

6.3 Proposed CPLSA Model

A problem of the UBPLSA model is that it uses only seen bigrams for training. Therefore,
it cannot compute all the possible bigram probabilities in the training phase. It results in
incorrect topic probabilities of the test document. This is because the model cannot compute
topic probabilities for some history contexts that are present both in the training and test sets.
To overcome the limitations of the UBPLSA model, the CPLSA model was introduced [43].

The CPLSA model is similar to the original PLSA model except the topic is further
conditioned on the history context as is the UBPLSA model. To better understand the model,
the matrix decomposition of the CPLSA model is described in Figure 6.1. Using this model,
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documents topics
words documents
words
P(Wi|wl,d1) = P(W1|tk) toplcs P(tk|W1’d1)
. documents . topics .
words words documents
P(wlw,.d)) = P(wlt,) | topics|  p(¢|w,.d,)
normalized Mixture components  Mixture weights
co-occurrence matrix for context words
for context words
Fig. 6.1 Matrix decomposition of the CPLSA model
we can compute the bigram probability using the unigram probabilities of topics as:
K
W,’WJ,dl Z Wzltk tk|Wj,dl). (6.7)
The parameters of the model are computed as: E-step:
P(wilty)P(tx|wj, d))
P(tx|wj,wi,d;) = , (6.8)
s Y P(wiltw)P(ty|w;,di)
M-step:
(W |Z ) Z] Zl’n(wjl7wl7dl') (tk|Wj/,Wi,d[/) (6.9)
k , .
l Yi Xy Xon(wj,wy,dp)P(te|wjp,wy,dy)
sn(wi,wy,d))P(te|wi,wy,d

Zk’Zl’n(WjaWt )Pty |wj,wy,dp)

From Equations 6.8 and 6.10, we see that the model can compute all the possible bigram

probabilities of the seen history context in the training set. Therefore, the model can over-

come the problem of computing topic probabilities of the test document using the UBPLSA

model, which causes the problem in the computation of the bigram probabilities of the test
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document.

6.4 Proposed DCPLSA Model

In the CPLSA model, the word probabilities for topics are computed using the sum of the

bigram events in all training documents where the words may appear to describe different

topics in different documents. In this section, we describe a new topic model where the

document-based word probabilities for topics are trained. The DCPLSA model is similar

to the original CPLSA model except that the document-based word probabilities for topics

are computed instead of the global word probabilities for topics in the CPLSA model. To

better understand the model, the matrix decomposition of the DCPLSA model is described

in Figure 6.2. Using this model, we can compute the n-gram probability for a document as:

documents topics,documents
words documents
words
P(Wi|wl,d1) = P(W[|tk’dl) toplcs P(tk|W|.d1)
_ documents . topics,documents
words words documents
P(wlw,,d)) = |P(wlt,.d,)| topics|  p(t|w,.d,)
normalized Mixture components  Mixture weights
co-occurrence matrix for context words

for context words

Fig. 6.2 Matrix decomposition of the DCPLSA model

a

P(wilwj,d;) = Z (Wiltg, dp) p(telwj,dp).

6.11)
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The parameters of the model are computed as: E-step:

P(wilte,d))P(tx|w,dp)

P(t j i)d = ’
(te[wj,wi, di) Y P(wiltw, dp)P(ty|wj,dp)

(6.12)

M-step:
P(W|t d)_ Z/n(wj/aWladl)P(lk|Wj7Wl7dl) (6.13)
et Yo Xyn(wy,wy,d)P(tx|lwj,wy,dp)’ '

Yon(wj,wy,dp)P(t|lwj,wi,dp)
Yo Xon(wi,wy,dp)P(ty|wj,wy,dp)

P(t|wj,d) = (6.14)

6.5 Parameter Estimation of the DCPLSA Model Using
the EM Algorithm

E-step:

In the E-step, we use Bayes formula to calculate the posterior probability of the latent

variable 7; given the observed data d;, wj, and w; as [7]:

P(te,wj,wi,dy)
Z,’f:lP(tk,wj,wi,dl)
_ POwj,u)P(difti, wj) P(wilty, dy)
Yie1 P(wj, 0 P(dy|tx, w ) P(wilt, dy)
_ P(lw)P(di|ti, w ) P(wilte, di)
Y1 P(telw))P(dy|ti, wj) P(wilt, dy)
_ POwilie )Pl d)
Y1 P(wilte, dp)Ptx|wj, dp)

P(txlwj,wi,d;) =

(6.15)

In the M-step, the parameters are updated by maximizing the log-likelihood as:

=TT P(dr,wj,wi) i, (6.16)
Bl
where n(d;, wj,w;) is the frequency of word pair w;w; in document d; and P(d;,w;,w;) is

the occurrence probability of the word pair wjw; in document d;.

To estimate the parameters (6 = P(w;|t,d;), P(tx|wj,d;)), MLE is used to maximize the
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log-likelihood as [7]:

Oy = argmeaxlog(ﬁ)
= argmax Y n(dy,wi, wi)log(P(dy,w, wi))
Bl

= argmeaxZn(dl,wj,w,-) x [log P(d;,w;) +log P(wilwj,d))].
Joil

(6.17)

Using Equation 6.11, the above equation is written as:

OML = argmglx Z l’l(dl,Wj, W,’) logP(dl, Wj)
Jobid
+argmax Y n(di,wj,wi)log (Y P(wiltw, dp)P(t|wj,di))
il k (6.18)

= argmg-xzn<dlawjawi)log(ZP(Wi’tk,dl)P(tk|Wj;dl))
Bl k

In Equation 6.18, the factor independent of the parameters 0 is omitted. Equation 6.18 needs
to be differentiated to maximize the log-likelihood. The differentiation of Equation 6.18
with respect to the parameters does not lead to well-formed formulae, so we try to find a

lower bound for Equation 6.18 using Jensen’s inequality [7]:

H =Y n(di,wj,wi)log (Y P(wilte,d)P(te|w;,dp))
Jsi,l k
= Zn(dl,wj,wi)
Joil
P(Wi‘tk,dl)P(tkle',dl)
1 P(ty\wi,wi,d
X Og(; (k|W]7W17 l) P(tk‘wijiydl) )
> Zn(dl,Wj,Wi)ZP(fk|Wj7Wi,d[)
il 3
P(Wi|tkadl)P(lk|Wj7dl))
P(lk’Wj,W,',dl)

(6.19)

x log (

The right-hand side of the Equation 6.19 should be maximized. Estimating the parameters
by maximizing the lower-bound is a constrained optimization problem as all parameters in-

dicate probability distributions. Therefore, the parameters should satisfy the constraints [7]:
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Y P(wiltg,dy) = 1 Vk

Y P(tlwj,d;) =1V,1 (6.20)
k

To consider the above constraints, the right-hand side of Equation 6.19 has to be aug-

mented by appropriate Lagrange multipliers as [7]:

H= Zn(dl,wj,wi)ZP(tk|Wj7Wi,dl)
il k
P(Wi’tk»dl)P(tk|Wj’dl))
P(txlwj,wi,dp)

+Y w1 =Y P(wiln,d))
P j
+Y pji(1 =Y Pltlwj.dr)),

Bl k

x log (
(6.21)

where 7, and p;; are the Lagrange multipliers related to the constraints described in Equa-
tion 6.20 [7]. Now, differentiating Equation 6.21 partially with respect to the parameters
yields [7]:

0H Yi P(te|wj,wi,dy)
——— =) n(d;,wj,w; -7
SP(wilty,dy) ZJ: (i wim) P(wiltk,dp) ¢
=0,
(6.22)
0H Y n(di,w; W.>ZkP(tk’WjaWiadl) —pi,
3P(tk|Wj,dl) : . P(tk|wjadl) o
=0.

By solving Equation 6.22 and applying the constraints in Equation 6.20, the M-step re-
estimating formulae, described in Equations 6.13 and 6.14, are obtained as [7]:
Zj/I’l(Wj/,Wi,d[)P(lk|Wj/,Wi,dl)

Dol 4 — 6.23
(Wl| ks l) Zl,Z],]/1/(1/\}‘]/7\/1/'11’dl)P(l‘kh’V]/y"Vl/ydl>7 ( )

Zi/n(Wj,Wi/,dl)P(tk’Wj7wi’7dl)
Pl d) — , 6.24
() Yo Xy n(wj, wir, di)Pty|wj, wy,dp) 02

The E-step and M-step are then repeated until convergence is achieved.
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6.6 N-gram Probabilities of the Test Document

We used the folding-in procedure [33] to compute the n-gram probabilities of the test docu-
ment d; using the above models. For the PLSA model, we keep the unigram probabilities for
topics P(w;|t;) fixed and used them to compute the topic probabilities P(#|d;) using EM it-
erations and then compute the unigram probabilities P(w;|d;) using Equation 6.1. In the UB-
PLSA model, the bigram probabilities P(w;|w,#) remain unchanged while computing the
topic probabilities P(fx|w;,d;) using EM iterations. The bigram probabilities P(w;|w;,d;)
are then computed using Equation 6.3. However, the topic probabilities P(fx|w;,d;) for
some histories w; were assigned zeros (Equations 6.4 and 6.6), as the training model gives
zero probabilities to the unseen bigrams in the training model. Therefore, some bigrams of
the test document with history context w; were assigned zero probabilities. The problem is
solved by the CPLSA model, which is able to assign probabilities to all the bigrams of the
seen history context in the training set. In the CPLSA model, P(w;|f;) remains fixed in the
EM iterations of the test phase in computing P(#x|w;,d;). Finally, the bigram probabilities
P(wilwj,d;) are computed using Equation 6.7.

For the DCPLSA, we have word probabilities P(w;|f,d;) for topics of each training
document d;. During testing, we keep P(w;|fy,d;) unchanged and used them to compute
P(tx|wj,d;,d;) for the test document d;.

The seen bi-gram probabilities of the test document d; are then computed as:

I
M=

P(Wi|wj7dt) P(W,‘W],d[,dl)P(dl‘W])

N
I
—_

(6.25)

I
M=
M

P(wilty, dp)P(tx|wj,dr,d1)) <37
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where C(wj,d;) is the count of w; in the training document d;. However, for some seen
bigrams of the test document, the words of the bi-gram cannot be found together in any of

the training documents. Their probabilities are computed as:

M K

P(wilwi,di) =Y (Y. P(wjltx,d;)P(te|wi,dy,d;))P(d)) (6.26)
=1 k=1

~

where P(d;) = 1/M.
The remaining zero probabilities of the obtained matrix P(w;|w;,d;) are then computed
by using back-off smoothing. To capture the local lexical regularities, the model is then

interpolated with a back-off trigram background model.
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6.7 Comparison of UBPLSA, CPLSA and DCPLSA Mod-

els

In all the models, the topic is conditioned to the bigram history context and the document.
The UBPLSA, CPLSA and DCPLSA models are differentiated by the word probabilities. In
the UBPLSA model [7], bigram probabilities for topics are trained, which are unsmoothed
in the training procedure that results an incorrect topic weights of the unseen test docu-
ment. This is because, for some history contexts, the topic probabilities are assigned zeros
as the bigram probabilities in the training model are unsmoothed. So, using the UBPLSA
model, some of the bigram probabilities of the test document cannot be computed. How-
ever, they are later smoothed in the test phase. That approach is not practical, as for the
corresponding history context some other bigrams may be present in the training set. The
CPLSA model [43] solves this problem as it uses unigram word probabilities for topics,
which helps to assign probabilities to all possible bigrams of the seen history context in the
training procedure. Therefore, the model can compute the seen bigram probabilities of the
test document. The word probabilities in the CPLSA model are trained by using the sum
of the bigram events in all documents. However, the words may appear in different docu-
ments to describe different topics. In the DCPLSA model, the unigram word probabilities
for topics are further conditioned on the document, which helps to compute the word prob-
abilities for topics in different documents. The CPLSA model requires less memory and
complexity than the other models. The memory and complexity requirements for the DC-
PLSA model [50] are less than the UBPLSA model if the number of seen bigrams is higher
than the product of the number of vocabulary words and the documents. As the UBPLSA
model, the CPLSA model and the proposed DCPLSA model can also be extended to the

n-gram case with increasing complexity and memory space requirements.

6.8 Complexity Analysis of the UBPLSA, CPLSA and DC-
PLSA Models

The numbers of free parameters for the UBPLSA, CPLSA and DCPLSA models are V (V —
DK+ (K—1)VM, (V—-1)K+ (K—1)VM, and (V — 1)KM + (K — 1)VM respectively.
Here, V, K, and M represent the number of words, the number of topics and the number
of documents, respectively. From the above discussion, we note that the CPLSA model

needs fewer parameters, hence requires smaller memory space than the other models. The



78 Context-based PLSA and Document-based CPLSA

DCPLSA model requires fewer parameters than the UBPLSA model as long as the number
of documents M is less than the number of vocabulary words V.

In the E-step of the EM algorithm, we have to compute P(tx|w;, w;,d;) for all i, j, k, 1.
Therefore, the time complexity of the UBPLSA model [7], the CPLSA model [43] and
the DCPLSA model is O(V2MK). The time complexities for the M-step are O(KMB),
O(VMK) and O(VM?K) for the UBPLSA, the CPLSA and the proposed DCPLSA models
respectively. Here, B is the average number of word pairs in the training documents [7]. The
size of B is obviously greater than the size of V. Therefore, the CPLSA model also needs
less training time than the other models. The DCPLSA model can require less training time

as long as V x M is less than B.

6.9 Experiments

6.9.1 Data and Parameters

We randomly selected 500 documents from the *87-89 WSIJ corpus [71] for training the UB-
PLSA, the CPLSA and the DCPLSA models. The total number of words in the documents
is 224,995. We used the 5K non-verbalized punctuation closed vocabulary from which
we removed the MIT stop word list [3] and the infrequent words that occur only once in the
training documents. After these removals, the total number of vocabulary words is 2628. We
could not consider more training documents due to the higher computational cost and huge
memory requirements for the UBPLSA model [7] and the DCPLSA models. For the same
reason, we train only the bigram UBPLSA, CPLSA and DCPLSA models. Also, we used
the same number of documents for the PLSA and CPLSA models for valid comparison. To
capture the local lexical regularity, the topic models are interpolated with a back-off trigram
background model. The trigram background model is trained on the ’87-89 WSIJ corpus
using the back-off version of the Witten-Bell smoothing; SK non-verbalized punctuation
closed vocabulary and the cutoffs 1 and 3 on the bi-gram and tri-gram counts respectively
are incorporated. The interpolation weights are computed by optimizing on the held-out
data. The results of the experiments are noted on the evaluation test set November 1992
(330 sentences, 5353 words) ARPA CSR benchmark test data for SK vocabularies [71, 101].

6.9.2 Experimental Results

We tested the above LM approaches for various sizes of topics. We performed the ex-

periments five times and the results are averaged. The perplexity results are described in
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Table 6.1.

Table 6.1 Perplexity results of the topic models

Language Model | 20 Topics | 40 Topics
Background (B) 69.0 69.0
B+PLSA 62.0 61.9
B+UBPLSA 59.0 58.7
B+CPLSA 57.5 55.8
B+DCPLSA 55.5 53.8

From Table 6.1, we can note that the perplexities are decreased with increasing topic
size. The UBPLSA model [7] outperforms the PLSA [33] models and the CPLSA model
shows better results than the PLSA [33] and the UBPLSA [7] models respectively. The pro-
posed DCPLSA model outperforms the PLSA [33], the UBPLSA [7] and the CPLSA [43]
models respectively. The B+DCPLSA model [50] yields perplexity reduction of about
19.6% (69.0 to 55.5), 10.5% (62.0 to 55.5), 5.9% (59.0 to 55.5) and 3.8% (57.5 to 55.5)
for 20 topics and about 22.0% (69.0 to 53.8), 13.1% (61.9 to 53.8), 8.3% (58.7 to 53.8) and
3.6% (55.8 to 53.8) for 40 topics, over the background (B) model, B+PLSA model [33], the
B+UBPLSA [7] and the B+CPLSA [43] approaches respectively.

We performed the paired ¢-test on the perplexity results of the above models with a sig-
nificance level of 0.01. The p-values for different topic sizes are described in Table 6.2.

From Table 6.2, we can note that all p-values are less than the significance level of 0.01.

Table 6.2 p-values obtained from the paired ¢ test on the perplexity results

Language Model 20 Topics | 40 Topics
B+UBPLSA and B+CPLSA | 6.0E-11 | 2.8E-14
B+CPLSA and B+DCPLSA | 6.5E-12 | 3.1E-13

Therefore, the perplexity improvements of the proposed DCPLSA model [50] over the
CPLSA model [43] are statistically significant. Also, the CPLSA model [43] is statistically
better than the UBPLSA model [7].

We evaluated the WER experiments using lattice rescoring. In the first pass, we used
the back-off trigram background language model for lattice generation. In the second pass,
we applied the interpolated form of the PLSA, UBPLSA, CPLSA and DCPLSA models for
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lattice rescoring. The experimental results are explained in Figure 6.3. From Figure 6.3,
we can note that the proposed DCPLSA model [50] yields significant WER reductions of
about 25% (4.0% to 3.0%), 14.3% (3.5% to 3.0%), 9.1% (3.3% to 3%) and 6.25% (3.2%
to 3.0%) for 20 topics and about 27.5% (4.0% to 2.9%), 17.1% (3.5% to 2.9%), 14.7%
(3.4% t0 2.9%) and 9.4% (3.2% to 2.9%) for 40 topics, over the background model, PLSA
model [33], the UBPLSA [7] and the CPLSA [43] approaches respectively.

M Background (B) ™ B+PLSA ® B+UBPLSA ' B+CPLSA M B+DCPLSA

4.5

4 4

4

35 35
3.5 3.4
33 3, 3.2

3 3 29
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Topic 20 Topic 40
Fig. 6.3 WER results (%) for different topic sizes
We also performed a paired ¢ test on the WER results for the interpolated models with
a significance level of 0.01. The p-values of the test are explained in Table 6.3. From Ta-

Table 6.3 p-values obtained from the paired ¢ test on the WER results

Language Model 20 Topics | 40 Topics
B+UBPLSA and B+CPLSA | 4.7E-06 | 9.3E-06
B+CPLSA and B+DCPLSA | 6.9E-06 | 1.5E-07

ble 6.3, we can see that the p-values are smaller than the significance level of 0.01. There-
fore, the WER improvements of the proposed DCPLSA model are statistically significant.

6.10 Summary

In this chapter, we introduce a new document-based CPLSA language model for speech

recognition. This is an extended work of the CPLSA [43] model, which was investigated
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to overcome the limitations of an UBPLSA [7] model. The CPLSA model is similar to
the PLSA model except that the topic is further conditioned on the history context. As the
UBPLSA model assigns probabilities to the seen bigrams only in the training phase, the
model gives zero topic probabilities for some history context of the test document that are
seen in the training set. Therefore, some of the bigram probabilities of the test document
cannot be computed using the training model, which is not practical. The CPLSA model
can compute all the possible bigram probabilities of the seen history context in the training
set. It helps to find the topic weights of the unseen test documents correctly and hence gives
the correct bigram probabilities to the test document. However, the CPLSA model trains
the unigram probabilities for topics by using the sum of bigram events in all documents
where the words may appear to describe different topics in different documents. We identify
this problem in the CPLSA model and propose the DCPLSA model where document-wise

unigram probabilities for topics are trained.






Chapter 7

Interpolated LDLM

In this chapter, we propose a language modeling (LM) approach using interpolated dis-
tanced n-grams in a latent Dirichlet language model (LDLM) [20] for speech recognition.
The LDLM relaxes the bag-of-words assumption and document topic extraction of latent
Dirichlet allocation (LDA). It uses default background n-grams where topic information is
extracted from the (n-1) history words through Dirichlet distribution in calculating n-gram
probabilities. The model does not capture the long-range information from outside of the
n-gram events that can improve the language modeling performance. We present an interpo-
lated LDLLM (ILDLM) by using different distanced n-grams. Here, the topic information is
exploited from (n-1) history words through the Dirichlet distribution using interpolated dis-
tanced n-grams. The n-gram probabilities of the model are computed by using the distanced
word probabilities for the topics and the interpolated topic information for the histories. In
addition, we incorporate a cache-based LM, which models the re-occurring words, through
unigram scaling to adapt the LDLM and ILDLM models that model the topical words [44].

7.1 Introduction

In [8], a PLSA technique enhanced with long-distance bigrams was used to incorporate the
long-term word dependencies in determining word clusters. This motivates us to use the
long-distance n-grams using interpolation to induce the long-term word dependencies into
the LDLM model. In this chapter, we capture the long-range information into the LDLM
using the interpolated distanced n-grams and cache based models. The n-gram probabilities
of the proposed ILDLM model are computed by mixing the component distanced word
probabilities for topics and the interpolated topic information for histories. Furthermore, we
incorporate a cache-based LM into the LDLM and ILDLM models as the cache-based LM
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models different parts of the language than the topic models.

7.2 LDLM

LDA is used to compute the document probability by using the topic structure at the doc-
ument level, which is inconsistent with the language model for speech recognition, where
the n-gram regularities are characterized [20]. The LDLM was developed to model the
n-gram events for speech recognition. The graphical model for LDLM is described in Fig-
ure 7.1. Here, H and V represent the number of histories and the size of vocabulary, respec-
tively [20]. In this model, the topic mixture vector 6 is generated by the history-dependent
Dirichlet parameter. A parameter matrix U is merged in the Dirichlet model to consider the
word occurrence in each history. The history is represented as a vector 4 [20]. The model

can be described as:

* For each history vector 4, the topic mixture vector 6 is drawn by a Dirichlet distribu-
tion:

P(O|h,U) He”’k : (7.1)
where u,Tk is the /" row vector of the matrix U [20].

* For each predicted word w; of the n-gram events from a multinomial distribution with
parameter f3, a topic #; is chosen by using a multinomial distribution with parameter
0. The joint probability of the variable 0, #;, and w; conditioned on /4 can be computed

as:
P(G,tk,wi|h,U,[3) :P(e‘haU)P(tkle)P(Wle’ﬁ) (72)

* The conditional probability in the n-gram language model can thus be obtained as:

K
POsin.U.B) = [ P(OIRU) Y2 P(l0)P (il 6, 13)

where the integral is computed as:

ulh
L (7.4)

P(t|h,U) = /P(9|h,U)P(tk|6)d9 i
J

which is an expectation of a Dirichlet distribution of latent topic #; [20].



7.3 Proposed ILDLM 85

Therefore, the probability of an n-gram event using the LDLM (Equation 7.3 and 7.4) can
be written as [20]:

uih
PLDLM W,|]’l U ﬁ ZP Wl‘l‘k, h (75)
] 1

The parameters (U, 3) of the model are computed using the EM procedure [20].

OanOnm O

H

Fig. 7.1 The graphical model of the LDLM. Shaded circles represent observed variables.

7.3 Proposed ILDLM

In [8], a PLSA technique enhanced with long-distance bigrams was used to incorporate the
long-term word dependencies in determining word clusters. This motivates us to use the
long-distance n-grams using interpolation to induce the long-term word dependencies into
the LDLM model.

The LDLM does not capture the long-range information from outside of the n-gram
events [20]. To incorporate the long-range information into the LDLM, we propose an
ILDLM where the topic information is extracted from interpolated distance n-gram histories
through a Dirichlet distribution in calculating the language model probability. In this model,
we interpolate the distanced n-gram event into the original n-gram events of the LDLM. The

n-gram probability using the ILDLM can be defined as [8]:

a

T
h

PipLm(wilh) = Z Z;LDPD wilty, ﬁD)]—h (7.6)
k=1 j=1%;
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where Ap are the weights for each component probability estimated on the held-out data
using the EM algorithm. D represents the distance between words in the n-gram events.
D =1 describes the default n-grams. For example, the distanced n-grams of the phrase
“Speech in Life Sciences and Human Societies” are described in Table 7.1 for the distance

D=1,2.

Table 7.1 Distanced n-grams for the phrase “Speech in Life Sciences and Human Societies”

D Bigrams Trigrams

1 Speech in, in Life, Life | Speech in Life, in Life
Sciences, Sciences and, | Sciences, Life Sciences
and Human, Human | and, Sciences and Hu-
Societies man, and Human Soci-

eties

2 Speech Life, in Sci- | Speech Life and, in Sci-
ences, Life and, Sci- | ences Human, Life and
ences Human, and So- | Societies
cieties

The parameters of the ILDLM model are computed using the EM procedure by maxi-

mizing the marginal distribution of the training data:

Y. np(h,wi)log Prora (wilh), (1.7)

h,wi,D

where np(h,w;) are the distanced n-grams. In the E-step, the auxiliary function of the new
estimates U’, B/, given current estimates U, Bp is calculated by taking the expectation of the
marginal likelihood function of Equation 7.7 over the hidden variable #; [20]:

Q(U',BplU,Bp) = Y, np(h,wi)ApE; [log Po(wir, 1|, U', Bp)|U, Bp]

h,i'.D

Z I’LD h wyr ZlDPD l‘k|h wp, U, BD)lOgPD(Wl/,l‘k|h U’ BD)

hi'.D k=1
/Th
Up,
=Y np(h,wy Z ApPp(tilh,wy, U, Bp) x lOg[PD(Wt’|tk7BD)K—/T]
h,l/7D J 1 tj h
(7.8)

where Pp(tx|h,w;,U,Bp) are the posterior probabilities of the latent variables, which are
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calculated based on the current estimates as:

Pp(wilt, Bp )ui h
Y51 Po(wiltj, Bp)ulh

PD(fk|h,Wi,U,ﬁD) = (79)

In the M-step, the new estimates f3/, and U’ are computed. The parameter Bt/k w;,p 1 updated

as:
Zh nD(h7 Wi)PD(tk’hv Wi, U7 ﬁD)

/ _
P = 5 5 (o we) ot wi, U, Bo)

To compute the parameter U’, the gradient ascent algorithm is used for maximization [1].

(7.10)

The gradient of the auxiliary function vu;kQ(U "'B'p|U, Bp) is given by

Yoo 00 (hwir) ApPp (ti|h,wy U, Bp) [ ﬁ]h

Glh TF Ty
Therefore, the new parameter ugk at the (¢ + 1) iteration is updated by:

u ™ =+, QW BHIU.BD), (7.11)

where 1 is the learning parameter. The model parameters are then estimated with several

EM iterations.

7.4 Incorporating Cache Models into LDLM and ILDLM
Models

A Cache-based language model was used to increase the probability of words appearing

earlier in a document that are likely to occur in the same document. The unigram cache

model for a given history h. = w;_F,...,w;, where F is the cache size, is defined as:
C(wi,he)
P, )= ——", 7.12
cacHE (Wi) Clhe) (7.12)

where C(wj,h.) is the number of occurrences of the word w; within A, and C(h.) is the
number of words within /. that belong to the vocabulary V [69, 97]. The LDLM/ILDLM
capture topical words. To capture the local lexical regularities, the models are interpolated

with a background (B) n-gram model as:

Pr(wilh) = yPg(wilh) + (1 — V) Prpram/iprm (Wil h). (7.13)
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The cache-based LM models re-occurring words that are different from the background
model (i.e., models short-range information), LDLM and ILDLM models (i.e., models top-
ical words). Therefore, the cache model can be used to adapt the model Pr(w|h) using

unigram scaling as [68, 80]:

PL(W,' |h>5(W,’)

PA(Wi|]’l) = Z(h) 5

(7.14)

with
Z(h) =Y 8(wi).PL(wilh), (7.15)

where Z(h) is a normalization term, which guarantees that the total probability sums to unity

and O (w;) is a scaling factor, which is usually approximated as:

S(w;) ~ (PPCACHE(WZBJ{ Mil) —p)Ps(wi) )

, (7.16)

where U is a tuning factor between O and 1. In our experiments we used the value of u
as 1. We used the same procedure as [68] to compute the normalization term. To do this,
an additional constraint is employed where the total probability of the seen transitions is

unchanged:

Y, Pwilh)= Y, Pu(wilh). (7.17)

wi:seen(h,w;) wizseen(h,w;)

The model P (w;|h) has standard back-off structure and the above constraint, so the model

P4 (wji|h) has the following recursive formula:

S(wi) P( . 3 . 1
Pr(wilh) if (h,w;) exists
Py(wilh) = Zs(h)

bow(h).Py(wi|h) otherwise

where
_ Zwi:seen(h.wi) S(Wi)APL(W,“h)
ZS (h) - Zwi:seeﬂ(hﬁwi) PL(Wi |h)
and
bOW(h) . 1 _Zwi:seen(lywi) PL(W,‘ |{l) ,

1 _Zwi:seen(h,wi) Py (wilh)

where bow(h) is the back-off weight of the context 4 to ensure that Py (w;|h) sums to unity.
h is the reduced word history of h. The term Z(h) is used to do normalization similar to

Equation 7.15 except the summation is considered only on the observed alternative words
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with the equal word history £ in the LM [96]. We describe the adaptation using the unigram
scaling of cache models as (B+LDLM/ILDLM)*CACHE.

7.5 Experiments

7.5.1 Data and Parameters

The *87-89 WSJ corpus is used to train language models. The models are trained using
the WSJ 5K non-verbalized punctuation closed vocabulary. A tri-gram background model
is trained using the modified Kneser-Ney smoothing incorporating the cutoffs 1 and 3 on
the bi-gram and tri-gram counts respectively. To reduce the computational and memory
requirements using MATLAB, we trained only the bi-gram LDLM and ILDLM models.
For ILDLM models, we considered bigrams for D = 1,2. The learning parameter 1) is set
to 0.01. A fixed cache size of F' =400 is used for the cache-based LM. The interpolation
weights Ap, ¥ and p are computed using the compute-best-mix program from the SRILM
toolkit. They are tuned on the development test set. The results of the experiments are
noted on the evaluation test set November 1993 (215 sentences, 3849 words) ARPA CSR
benchmark test data for 5K vocabularies [71, 101].

7.5.2 Experimental Results

We keep the unigram (Equations 7.5 and 7.6) probabilities for topics of LDLLM and ILDLM,
and Ap of component probabilities for ILDLM unchanged, and used them to compute the
matrix U for the test document’s histories [33]. The language models for LDLM and
ILDLM are then computed using (Equations 7.5 and 7.6). The models are then interpo-
lated with a back-off trigram background model to capture the local lexical regularities.
Furthermore, a cache-based LM that models re-occurring words is integrated through uni-
gram scaling with the LDLM/ILDLM that models topical words. We also show the results
for PLSA models using unigram scaling where the PLSA unigrams are used in place of
cache unigrams in Equation 7.16 and denoted as B*PLSA [33].

We tested the proposed approaches for various sizes of topics. The perplexity results
of the experiments are described in Table 7.2. From Table 7.2, we can note that all the
models outperform the background model and the performances are better with increasing
topics. However, the proposed ILDLM model outperforms the PLSA and LDLM models in

all forms (stand-alone, interpolated and unigram scaling) for all topic sizes.
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Table 7.2 Perplexity results of the language models

Language Model 40 Topics | 80 Topics
Background (B) 70.3 70.3
PLSA 517.8 514.8
LDLM 251.6 153.6
ILDLM 86.9 65.25
B*PLSA 66.6 66.5
B+LDLM 65.1 62.5
B+ILDLM 53.6 52.7
(B+LDLM)*CACHE 59.9 57.5
(B+ILDLM)*CACHE 49.3 48.5

We evaluated the WER experiments using lattice rescoring. In the first pass, we used
the back-off trigram background language model for lattice generation. In the second pass,
we applied the LM adaptation approaches for lattice rescoring. The experimental results
are explained in Figure 7.2. From Figure 7.2, we can note that the proposed ILDLM model
yields significant WER reductions of about 20.4% (7.6% to 6.05%), 18.2% (7.4% to 6.05%),
and 12.3% (6.9% to 6.05%) for 40 topics and about 22.1% (7.6% to 5.92%), 20.0% (7.4%
to 5.92%), and 11.6% (6.7% to 5.92%) for 80 topics, over the background model, PLSA
model [33], and the LDLM [20] approaches respectively. The integration of cache-based
models improves the performance as they carry different information (capture the dynam-
ics of word occurrences in a cache) than the LDLM and ILDLM approaches. The cache
unigram scaling of the ILDLM approach gives 9.4% (6.6% to 5.98%) and 8.3% (6.4% to
5.87%) WER reductions over the cache unigram scaling of the LDLM approach for 40 and
80 topics respectively. We can note that the addition of cache models improves the perfor-
mance of LDLM (6.9% to 6.6% for 40 topics and 6.7% to 6.4% for 80 topics) more than
for ILDLM (6.05% to 5.98% for 40 topics and 5.92% to 5.87% for 80 topics). This might
be due to the fact that the ILDLM approach captures long-range information using the in-
terpolated distanced bigrams. Therefore, it is proved that the proposed ILDLM approach

includes long-range information into the LDLM model.

7.6 Summary

In this chapter, we proposed an integration of distanced n-grams into the original LDLM
model [20]. The LDLM model extracted the topic information from the (n-1) history words

through a Dirichlet distribution in calculating the n-gram probabilities. However, it does
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Fig. 7.2 WER Results (%) of the Language Models

not capture the long-range semantic information from outside of the n-gram events. The
proposed ILDLM overcomes the shortcomings of LDLM by using the interpolated long-
distance n-grams that capture the long-term word dependencies. Using the ILDLM, the
topic information for the histories is trained using the interpolated distanced n-grams. The
model probabilities are computed by weighting the component word probabilities for topics
and the interpolated topic information for histories. We have seen that the proposed ILDLM
approach yields significant perplexity and WER reductions over the LDLM approach using
the WSJ corpus. Moreover, we incorporate a cache-based model into the topic models
using unigram scaling for adaptation and have seen improved performances over the topic
models. However, cache unigram scaling of the LDLM gives much better performance than
the cache unigram scaling of the ILDLM. This proves that the proposed ILDLM approach
captures long-range information of the language.






Chapter 8

Enhanced PLSA and Interpolated
EPLSA

In this chapter, we introduce language modeling (LM) approaches using background n-
grams and interpolated distanced n-grams for speech recognition using an enhanced prob-
abilistic latent semantic analysis (EPLSA) derivation. PLSA is a bag-of-words model that
exploits the topic information at the document level, which is inconsistent for the language
modeling in speech recognition. We consider the word sequence in modeling the EPLSA
model. Here, the predicted word of an n-gram event is drawn from a topic that is chosen
from the topic distribution of the (n-1) history words. The EPLSA model cannot capture
the long-range topic information from outside of the n-gram event. The distanced n-grams
are incorporated into interpolated form (IEPLSA) to cover the long-range information. A
cache-based LM that models the re-occurring words is also incorporated through unigram
scaling to the EPLSA and IEPLSA models, which models the topical words [45].

8.1 Introduction

In [8], a PLSA technique enhanced with long-distance bigrams was used to incorporate the
long-term word dependencies in determining word clusters. This motivates us to present
LM approaches for speech recognition using distanced n-grams. In this chapter, we use
default n-grams using enhanced PLSA derivation to form the EPLSA n-gram model. Here,
the observed n-gram events contain the history words and the predicted word. The EPLSA
model extracts the topic information from history words and the current word is then pre-
dicted based on the topic information of the history words. However, the EPLSA model

does not capture the topic information from outside of the n-gram events. We propose in-
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terpolated distanced n-grams (IEPLSA) and cache based models to capture the long-term
word dependencies into the EPLSA model. The n-gram probabilities of the IEPLSA model
are computed by mixing the component distanced word probabilities for topics and the in-
terpolated topic information for histories. Furthermore, a cache-based LM is incorporated
into the EPLSA and IEPLSA models as the cache-based LM models a different part of the
language than EPLSA/IEPLSA models.

8.2 Proposed EPLSA and IEPLSA Models

8.2.1 EPLSA

Representing a document d; as a sequence of words, the joint distribution of the document
and the previous (n-1) history words 4 of the current word w; can be described as [8]:

P(dj,h) =P(h) T Po(wilh), (8.1)

wi€d;

where Pp(w;|h) is the distanced n-gram model. Here, D represents the distance between
the words in the n-grams. Therefore, the probability Pp(w;|h) can be computed similar to
the PLSA derivation [8, 33]. For D = 1, Pp(w;|h) is the default background n-gram and we
define it as the enhanced PLSA (EPLSA) model. The graphical model of the EPLSA model
can be described in Figure 8.1. The equations for the EPLSA model are:

H

Fig. 8.1 The graphical model of the EPLSA model. The shaded circle represents the ob-
served variables. H and V describe the number of histories and the size of vocabulary.

a

Peprsa(wilh) = Z (wiltx)P(tx|h). (8.2)
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The parameters of the model are computed using the EM algorithm as: E-step:

P(wilt)P(t|h)
ZIIC(/:I P(Wl'|tk/)P(tk/ |I’l> ’

P(tk\h,wi) = (8.3)

M-step:
1oy Xan(h,wi) P(tlh, wi)
POl = S (o Pl (54

_ Yon(h,wy)P(telh,wyir)
Plilh) = Yo Yo n(h,wy)P(tp|h,wy) (8:3)

8.2.2 IEPLSA

In [8], a PLSA technique enhanced with long-distance bigrams was used to incorporate the
long-term word dependencies in determining word clusters. This motivates us to use the
long-distance n-grams using interpolation to induce the long-term word dependencies into
the EPLSA model.

The EPLSA model does not capture the long-distance information. To incorporate the
long-range characteristics, we used the distanced n-grams in the EPLSA model. Incorpo-

rating the interpolated distance n-grams in the EPLSA, the model can be written as [8]:

K
Pigprsa(wilh) = Y [} ApPo(wilt) 1P(1|h), (8.6)
k=1 D

where Ap are the weights for each component probability estimated on the held-out data
using the EM algorithm and Pp(w;|ty) is the word probabilities for topic #; obtained by using
the distanced n-grams in the IEPLSA training. D represents the distance between words in
the n-gram events. D = 1 describes the default n-grams. For example, the distanced n-grams
of the phrase “Speech in Life Sciences and Human Societies” are described in Table 8.1 for
the distance D =1, 2.

The parameters of the IEPLSA model can be computed as: E-step:

PD(Wi’tk>P(l‘k‘h)

PD<tk|h7W') - )
U YK Po(wiln)P(t|h)

(8.7)

M-step:
Yoo (hywi) Po (1|, wy)
o 8.8
p(Wilty) Y. ZhnD(h,Wi’)PD(tklh’Wi’), (8.3)
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Table 8.1 Distanced n-grams for the phrase “Speech in Life Sciences and Human Societies”

D Bigrams Trigrams

1 Speech in, in Life, Life | Speech in Life, in Life
Sciences, Sciences and, | Sciences, Life Sciences
and Human, Human | and, Sciences and Hu-
Societies man, and Human Soci-

eties

2 Speech Life, in Sci- | Speech Life and, in Sci-
ences, Life and, Sci- | ences Human, Life and
ences Human, and So- | Societies
cieties

o Zl-/ZD)LDnD(h,Wi/)PD(tHh,WI-/)
Plulh) = Yw Yo Yo Apnp(h,wi)Pp(tx|h,wy) (59

8.3 Comparison of PLSA, PLSA Bigram and EPLSA/IEPLSA

PLSA [33] is a bag-of-words model where the document probability is computed by using
the topic structure at the document level. This is inappropriate for the language model in
speech recognition. PLSA bigram models were introduced where the bigram probabilities
for each topic are modeled and the topic is conditioned on the document [82] or bigram
history and the document [7]. In either approach, the models require V distributions for
each topic, where V is the size of the vocabulary. Therefore, the size of the parameters
grows exponentially with increasing n-gram order. In contrast, the EPLSA/IEPLSA models
developed the word distributions given the history words. The history information is used
to form the topic distributions, then the probability of the predicted word is computed given
the topic information of the histories. Therefore, the parameter number grows linearly with
V [20].

8.4 Incorporating the Cache Model Through Unigram Scal-
ing

A Cache-based language model was used to increase the probability of words appearing in

a document that are likely to re-occur in the same document. The unigram cache model for
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a given history h, = w;_f,...,w;, where F is the cache size, is defined as:
n(wi, he)
Py )= ——"" 8.10
c che(W ) n(hc) ( )

where n(w;,h.) is the number of occurrences of the word w; within %, and n(h;) <= F is

the number of words within 4. that belongs to the vocabulary V [69, 97].

The EPLSA/IEPLSA models capture topical words. The models are then interpolated

with a background (B) n-gram model to capture the local lexical regularities as:

Pr(wilh) = (1 —Y)Pgprsa/ieprsa(wilh) + YPs(wil h). (8.11)

As the cache-based LM (i.e., models re-occurring words) is different from the back-
ground model (i.e., models short-range information), EPLSA and IEPLSA models (i.e.,
model topical words), we can integrate the cache model to adapt the P (w;|h) through uni-

gram scaling as [68, 80]:

PL(Wi|h)5(W,')

Py(wilh) = 70

) (8.12)

with
Z(h) =Y 8(wi)-Pe(wilh). (8.13)

wi
where Z(h) is a normalization term, which guarantees that the total probability sums to
unity, P (w;|h) is the interpolated model of the background and the EPLSA/IEPLSA model

and 8 (w;) is a scaling factor that is usually approximated as:

aPcache<Wi) + (1 B a)PB(Wi)
PB(W,')

S (wi) ~ ( ), (8.14)
where U is a tuning factor between 0 and 1. In our experiments we used the value of u
as 1. We used the same procedure as [68] to compute the normalization term. To do this,
an additional constraint is employed where the total probability of the seen transitions is

unchanged:

Y, Pwilh)= Y, Pu(wilh). (8.15)

wiiseen(h,w;) wizseen(h,w;)

The model P (w;|h) has standard back-off structure and the above constraint, so the model

P4 (w;|h) has the following recursive formula:
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1) wi . .
Py(wilh) = %.PL(WI'M) if (h,w;) exists
bow(h).Py(wi|h) otherwise
where
.. o) i).P i\
Zs(h) _ Zw,.seen(h,w,) (W) L(W ‘ ) (8.16)
Zwi:seen(h,w,-) PL<Wi |h)
and
1— wiseen(h,w; P ih
bow(h) = — wiseen(h) z(wilh) (8.17)

L= Yoeseen(hoy) PA(Wil )
where bow(h) is the back-off weight of the context /4 to ensure that Py (w;|h) sums to unity.
h is the reduced word history of 4. The term Z(h) is used to do normalization similar to
Equation 8.13 except the summation is considered only on the observed alternative words
with the equal word history /4 in the LM [96].

8.5 Experiments

8.5.1 Data and Parameters

The ’87-89 WSIJ corpus is used to train language models. The models are trained using
the WSJ 5K non-verbalized punctuation closed vocabulary. A tri-gram background model
is trained using the modified Kneser-Ney smoothing incorporating the cutoffs 1 and 3 on
the bi-gram and tri-gram counts respectively. To reduce the computational and memory
requirements using MATLAB, we trained only the bi-gram EPLSA and IEPLSA models.
For IEPLSA models, we considered bigrams for D = 1,2. A fixed cache size of F' = 400
is used for the cache-based LM. The interpolation weights Ap, ¥ and & are computed using
the compute-best-mix program from the SRILM toolkit. They are tuned on the development
test set. The results of the experiments are noted on the evaluation test set November 1993
(215 sentences, 3849 words) ARPA CSR benchmark test data for 5K vocabularies [71, 101].

8.5.2 Experimental Results

We used the folding-in procedure [33] to compute the PLSA, EPLSA and IEPLSA model
probabilities. We keep the unigram probabilities for topics of PLSA, EPLSA and IEPLSA,
and Ap of component probabilities for IEPLSA unchanged, and used them to compute
P(ty|d;) for the test document d; of the PLSA model and P(#|h) for the test document
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histories of the EPLSA and IEPLSA models. The language models for PLSA, EPLSA
and IEPLSA are then computed. The remaining zero probabilities of the obtained matrix
Peprsa/ieprsa(wilh) are computed by using back-off smoothing. The EPLSA and IEPLSA
models are interpolated with a back-off trigram background model to capture the local lex-
ical regularities. Furthermore, a cache-based LM that models re-occurring words is in-
tegrated through unigram scaling with the EPLSA and IEPLSA models, which describe
topical words. We compared our approaches with a PLSA-based LM approach [33] using
unigram scaling where the PLSA unigrams are used in place of cache unigrams in Equa-
tion 8.14 and denoted as B*PLSA.

We tested the proposed approach for various sizes of topics. The perplexity results are

described in Table 8.2. From Table 8.2, we can note that all the models outperform the back-

Table 8.2 Perplexity results of the language models

Language Model 40 Topics | 80 Topics
Background (B) 70.3 70.3
PLSA 517.8 514.8
EPLSA 192.9 123.3
[EPLSA 101.2 93.0
B*PLSA 66.6 66.5
B+EPLSA 62.9 59.7
B+IEPLSA 55.1 55.1
(B+EPLSA)*CACHE 58.0 55.1
(B+IEPLSA)*CACHE 50.7 50.7

ground model and the performances are better with increasing topics. The proposed EPLSA
and IEPLSA models outperform the PLSA models in every form (stand-alone, interpolated,
unigram scaling).

We evaluated the WER experiments using lattice rescoring. In the first pass, we used
the back-off trigram background language model for lattice generation. In the second pass,
we applied the LM adaptation approaches for lattice rescoring. The experimental results
are explained in Figure 8.2. From Figure 8.2, we can note that the proposed EPLSA model
yields significant WER reductions of about 10.5% (7.6% to 6.8%) and 8.1% (7.4% to 6.8%)
for 40 topics, and about 15.8% (7.6% to 6.4%) and 13.5% (7.4% to 6.4%) for 80 topics, over
the background model and the PLSA [33] approaches respectively. For the IEPLSA models,
the WER reductions are about 19.6% (7.6% to 6.11%), 17.4% (7.4% to 6.11%), and 10.1%
(6.8% to 6.11%) for 40 topics and about 20.4% (7.6% to 6.05%), 18.2% (7.4% to 6.05%),
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and 5.5% (6.4% to 6.05%) for 80 topics, over the background model, PLSA [33] and EPLSA
approaches respectively. The integration of cache-based models improves the performance
as it carries different information (captures the dynamics of word occurrences in a cache)
than the EPLSA and IEPLSA approaches. The cache unigram scaling of the IEPLSA ap-
proach gives 6.74% (6.52% to 6.08%) and 1.63% (6.13% to 6.03%) WER reductions over
the cache unigram scaling of the EPLSA approach for 40 and 80 topics respectively. We can
note that the addition of cache models improves the performance of EPLSA (6.8% to 6.52%
for 40 topics and 6.4% to 6.13% for 80 topics) more than for IEPLSA (6.11% to 6.08% for
40 topics and 6.05% to 6.03% for 80 topics). This might be due to the fact that the [IEPLSA

approach captures long-range information using the interpolated distanced bigrams.

% Background (B) %B*PLSA W B+EPLSA
@ (B+EPLSA)*CACHE B B+IEPLSA {if (B+IEPLSA)*CACHE

76 74 76 74

64 613 605 6.03

o = N W > O O N

Topic 40 Topic 80

Fig. 8.2 WER Results (%) of the Language Models

8.6 Summary

In this chapter, we have proposed the EPLSA and IEPLSA models for speech recognition
by using the background n-grams and the interpolated distanced n-grams respectively. The
EPLSA model extracted the topic information from the (n-1) history words in calculating
the n-gram probabilities. However, it does not capture the long-range semantic informa-
tion from outside of the n-gram events. The IEPLSA model overcomes the shortcomings
of EPLSA by using the interpolated long-distance n-grams that capture the long-term word
dependencies. Using the IEPLSA, the topic information for the histories are trained using
the interpolated distanced n-grams. The model probabilities are computed by weighting the

component word probabilities for topics and the interpolated topic information for the his-
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tories. We have seen that the proposed EPLSA and IEPLSA approaches yield significant
perplexity and WER reductions over the PLSA-based LM approach using the WSJ corpus.
Moreover, we incorporate a cache-based model into the EPLSA and IEPLSA models using
unigram scaling for adaptation and have seen improved performances. However, cache uni-
gram scaling of the EPLSA gives much better performance over the EPLSA than the cache
unigram scaling of the IEPLSA over the IEPLSA. This proves that the IEPLSA approach

captures long-range information of the language.






Chapter 9

Interpolated DCLM

In this chapter, we propose a language modeling (LM) approach using interpolated dis-
tanced n-grams in a Dirichlet class language model (DCLM) [21] for speech recognition.
The DCLM relaxes the bag-of-words assumption and document topic extraction of latent
Dirichlet allocation (LDA). The latent variable of DCLM reflects the class information of
an n-gram event rather than the topic in LDA. The DCLM model uses default background n-
grams where class information is extracted from the (n-1) history words through a Dirichlet
distribution in calculating n-gram probabilities. The model does not capture the long-range
information from outside of the n-gram window that can improve the language modeling
performance. We present an interpolated DCLM (IDCLM) by using different distanced n-
grams. Here, the class information is exploited from (n-1) history words through the Dirich-
let distribution using interpolated distanced n-grams. A variational Bayesian procedure is
introduced to estimate the IDCLM parameters [47].

9.1 Introduction

In [21], the DCLM model was proposed to tackle the data sparseness and to extract the
large-span information for the n-gram model. In this model, the topic structure in LDA
is assumed to derive the hidden classes of histories in calculating the language model. A
Bayesian class-based language model was presented where a variational Bayes-EM proce-
dure was used to compute the model parameters. Also, a cache DCLM model was pro-
posed to capture the long-distance information beyond the n-gram window. However, in
the DCLM model [21], the class information of the history words was obtained from the
n-gram events of the corpus. Here, the long-range information outside the n-gram window

is not captured. In this chapter, we present an IDCLM model to capture the long-range
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information in the DCLM using the interpolated distanced n-grams. The n-gram probabili-
ties of the proposed IDCLM model are computed by mixing the component distanced word
probabilities for classes and the interpolated class information for histories. Similar to the
DCLM model, the parameters of the IDCLM model are computed by using the variational

Bayesian-EM procedure.

9.2 DCLM

LDA is used to compute the document probability by using the topic structure at the docu-
ment level, which is inconsistent with the language model for speech recognition where the
n-gram regularities are characterized [21]. The DCLM was developed to model the n-gram
events of the corpus for speech recognition. In DCLM, the class structure is described by

Dirichlet densities and estimated from n-gram events. The graphical model of the DCLM
i—1
;—n—ﬁ—l’
i—1
i—n+1
respectively. The (n-1) history words w

for a text corpus that comprises n-gram events {w w; } is described in Figure 9.1. Here,

and the number of collected words
i—1 i—1
i—n+1° i—n—+

represented by a (n-1)V x 1 vector h, consisting of n-1 block subvectors, with the entries

H and N, represent the number of history events w
that occur following the history w | are
of the seen words assigned to ones and those of unseen words assigned to zeros [21]. Here,
V represents the size of the vocabulary. The vector 4 is then projected into a C-dimensional

continuous class space using a class-dependent linear discriminant function:
(h) =ugh ©.1)
8c uchn, .

where u! is the ¢/ row vector of matrix U = [uy, --- ,uc] [21]. The function g.(h) describes
the class posterior probability P(c|h), which is used in predicting the class information for

an unseen history [21]. The model can be described as:

* For each history vector A, the class information ¢ is drawn from a history-dependent

Dirichlet prior 6, which is related to a global projection matrix U

C
P(6]h,U) o< [T 65", 9.2)
c=1

* For each predicted word w; of the n-gram events from a multinomial distribution with
parameter 3, the associated class c; is chosen by using a multinomial distribution with

parameter 6. The joint probability of the variable 6, ¢;, and w; conditioned on & can
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W@,

Fig. 9.1 The graphical model of the DCLM. Shaded circles represent observed variables.

be computed as:

PO, ci,wilh,U, B) = P(8|h,U)P(ci|0)P(wilci, B). 9.3)

* The conditional probability in the n-gram language model can thus be obtained as:
P(wilh,U,B) /P 0/h,U) Z P(ci|0)P(wilci, )0, 9.4)
ci=1

where the integral is computed as:

; = . _ 8alh)
P(ei|h,U) = / P(6]h,U)P(ci|0)d6 = o) 9.5)

which is an expectation of a Dirichlet distribution of latent class ¢; [21].

Therefore, the probability of an n-gram event using the DCLM (Equation 9.4 and 9.5) can

be written as [21]:

_ 8c(h)
P(wj|h, wilc, 9.6
h,U,B) = ZP e, B T o) 9.6)

The parameters (U,3) of the model are computed by using the variational bayesian EM
(VB-EM) procedure [21].
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9.3 Proposed IDCLM

The DCLM does not capture the long-range information from outside of the n-gram win-
dow [21]. To incorporate the long-range information into the DCLM, we propose an ID-
CLM where the class information is extracted from interpolated distance n-gram histories
through a Dirichlet distribution in calculating the language model probability. In this model,
we interpolate the distanced n-gram events into the original n-gram events of the DCLM.
The graphical model of the IDCLM is described in Figure 9.2. In Figure 9.2, H; contains the

@

By

O
o

@

Fig. 9.2 The graphical model of the IDCLM. Shaded circles represent observed variables.

histories of all the distanced D n-grams, D represents the distance between words in the n-
gram events, and R describes the maximum length of distance D. When D = 1, the n-grams
are the default background n-grams. For example, the distanced tri-grams of the phrase
“Interpolated Dirichlet Class Language Model for Speech Recognition” are described in
Table 9.1 for the distances D = 1,2, 3.

Here, the (n-1)V dimensional discrete history vector Ay is projected into a C-dimensional

continuous class space using a class-dependent linear discriminant function:

ge(hy) = ul by 9.7)

where h; are the combined histories of all the distanced histories 4p and are defined as
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D Trigrams
1 | Interpolated Dirichlet Class, Dirichlet Class Language, Class Language Model,
Language Model for, Model for Speech, for Speech Recognition

2 Interpolated Class Model, Dirichlet Language for, Class Model Speech,
Language for Recognition
3 Interpolated Language Speech, Dirichlet Model Recognition

Table 9.1 Distanced tri-grams for the phrase “Interpolated Dirichlet Class Language Model
for Speech Recognition”

h = Zki):1 hp. Here, ) represents the logical OR operator. uCT 7 1s the ¢! row vector of the

matrix Uy and g.(hy) describes the class posterior probability P(c|hy).

The n-gram probability of the IDCLM model is computed as:

Cc

Py(wilhg,Ur, Bp) = Y {[%"XDPD(WﬂCi,ﬁD)] X /P(91|h1,U1)P(C,'|91)d91}

ci=1

- L[pos] 00

(9.8)

where Ap are the weights for each component probability estimated on the held-out data
using the EM algorithm [8, 27].
The parameters of the IDCLM model are computed using the variational Bayes EM

(VB-EM) procedure by maximizing the marginal distribution of the training data that con-

tains a set of n-gram events S, = {w'!_ nH,wi}:

log P(SulUr,Bp) = ). logPi(wilhs,Ur,Bp)
(Wi7h1)€S,1

_Zlog{/ 9]’h[,U[

Nip €
Y11 Z ApPp(wjlcj, Bp)P (c,-\e,)] dGI}
D j=lc;=1

(9.9)

where S, contains all the distanced n-gram events, Ny, represents the number of collected

words that occur following the history Ap in D-distanced n-grams. In Equation 9.9, the
summation is over all possible histories in training samples S,. However, directly opti-
mizing the Equation 9.9 is intractable [21]. A variational IDCLM is introduced where the
marginal likelihood is approximated by maximizing the lower bound of Equation 9.9. The

VB-EM procedure is required since the parameter estimation involves the latent variables
N
Of {GI,C;ZD = {Ci}izlf}.
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The lower bound L(Uy, Bp; 1, @p) is given by:

Z{mg(f‘,gc(fu) Zlogf ge(hr) +ZC: (8c(hr) —1) ( (Yi.c) (2”1’1’))}

hy c=1 c=1 c=1
Nuy € C
+§h2 Zl Z D¢hD,lc (T ’}/hI, ( Z h[,]))
p i=1c=1 j=1
Nip ¢ v C
+Z Z )LD(PhD ic Ww Wi) log BD,vc - Z { 10gr< Z YhI,c> - Z lOgF(YhI,c)
D hp i=1c=1v=1 hy c=1 c=1
C Nup €
Z th, ( ’}/hI c ( Z }%1,])) } - ;Z Z{ Z D(PhD ic lOg ¢hD,lc
c=1 hD l =

where W(.) is the derivative of the log gamma function, and is known as a digamma func-
tion [21]. The history-dependent variational parameters {f, = ?hhc,‘f;hD = (ﬁhD,vc}, corre-
sponding to the latent variables 6y,cy,,, are then estimated in the VB-E step by setting the
differentials (dL(y))/(9dYn,c) and (JL(9))/(dPpy.ic) to zero respectively [21]:

Nip
T = 8e(hr) + Y. Y Apon ic (9.10)
D i=1

Bo.icexp [ (Vi) — ¥ (X5 Why.j)]
1 Bo,aexp [¥(Vy0) — (X5 Wrj)]

Onpic = (0.11)
In computing q%,w-c the corresponding ¥y, - is used in Equation 9.11. With the updated
s qShD in the VB-E step, the IDCLM parameters {U;, Bp} are estimated in the VB-M step
as [21]:
N, A
A ZhD Zi:hll) lD¢)hl),i65(wv» Wi)
Bove=— 7 — : (9.12)
m—1 Lhp i) ADOhp ic® (Wi, Wi)

where Z‘V/: 1 Bp,ve=1 and 8(w,,w;) is the Kronecker delta function that equals one when

vocabulary word w, is identical to the predicted word w; and equals zero otherwise. The
gradient ascent algorithm is used to calculate the parameters Uy = [ii 1.1, ,lc ] by updating
the gradient <7, ,as [21]:

(Xj ) W(ge(hr)) +¥(Thy.c) (ZZ:?,J)]JU (9.13)

vuc.l — vuc,[ + Z
hy
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The n-gram probabilities Py, (w;|h:,Ur, Bp) of the test document d; are then computed
using Equation 9.8. To capture the local lexical regularities, the model Py, (w;|h;, Uy, Bp) is

then interpolated with the background (B) trigram model as:

PL(W,'|h) = ‘LLPB(W,"h) + (1 — ,ll)Pdl (Will’l,, U],ﬁD). (9.14)

9.4 Comparison of DCLM and IDCLM Models

In the DCLM model, the class information for the (n — 1) history words is obtained by using
the n-gram counts in the corpus. The current word is predicted from the history-dependent
Dirichlet parameter, which is controlled by a matrix U and corpus-based histories & [21].
In contrast, the IDCLM model captures long-range information by incorporating distanced
n-grams. Here, the class information is exploited for the interpolated (n — 1) history words
h; that are obtained from all the distanced n-gram events. Both the DCLM and IDCLM
exploit the word distribution given the history words. They perform the history clustering
of the corpus. For the DCLM model, the number of parameters {U, 3} increases linearly
with the number of history words and is given by (n — 1)CV 4+ CV. For the IDCLM model,
the number of parameters {U;, Bp} increases linearly with the number of history words and
distance D and is given by ((n—1)CV +CV D). The time complexity of DCLM and IDCLM
are O(HVC) and O(H;VCD) with H corpus-based histories, H; corpus-based interpolated
histories, V vocabulary words, D distances and C classes.

9.5 Experiments

9.5.1 Data and Parameters

The LM approaches are evaluated using the Wall Street Journal (WSJ) corpus [71]. The *87-
89 WSJ corpus is used to train language models. The background trigrams are trained using
the back-off version of the Witten-Bell smoothing and the SK non-verbalized punctuation
closed vocabulary. We train the trigram IDCLM model using R =2 and R = 3. Ten EM
iterations in the VB-EM procedure were used. The initial values of the entries in the matrix
B, Bp were set to be 1/V and those in U, U; were randomly set in the range [0,1]. To update
the variational parameters in the VB-E step, one iteration was used. The VB-M step was
executed to update the parameters U, U; by three iterations [21]. To capture the local lexical

regularity, trigrams of various methods are interpolated with the background trigrams. The
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interpolation weights Ap and u are computed by optimizing on the held-out data according
to the metric of perplexity. The experiments are evaluated on the evaluation test, which is
a total of 330 test utterances from the November 1992 ARPA CSR benchmark test data for
vocabularies of 5K words [71, 101].

9.5.2 Experimental Results

Due to the higher memory and training time requirements for the IDCLM model, we trained
the DCLM and IDCLM models for class sizes of 10 and 20. The perplexity and WER results
are described in Table 9.2 and Figure 9.3 respectively.

Table 9.2 Perplexity results of the models

N W A~ o0 O N

@ Background (B) Model
5 (B+IDCLM (R=2)) Model ® (B+IDCLM (R=3)) Model

Language Model | 10 Classes | 20 Classes
Background (B) 109.4 109.4
B+Class 106.65 107.0
B+DCLM 100.2 100.45
B+IDCLM (R=2) 98.0 97.9
B+IDCLM (R=3) 95.6 95.4

5.8

5.7

. 4

.2
10

. (B+Class) Model

B (B+DCLM) Model

Fig. 9.3 WER results (%) for different class sizes

@ N

N W A~ O,

From Table 9.2, we can note the proposed IDCLM model outperforms the other models
for all class sizes. The performance of IDCLM improves with more distances (R = 3).
We evaluated the WER experiments using lattice rescoring. In the first pass decoding,

we used the background trigram for lattice generation. In the second pass, we applied
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the interpolated model for lattice rescoring. The WER results are described in Figure 9.3.
From Figure 9.3, we can note that the proposed IDCLM (R = 3) model yields a WER
reduction of about 34.5% (5.8% to 3.8%), 33.3% (5.7% to 3.8%), and 9.5% (4.2% to 3.8%)
for 10 classes and about 34.5% (5.8% to 3.8%), 33.3% (5.7% to 3.8%), and 11.6% (4.3% to
3.8%) for 20 classes over the background trigram, class trigram [16], and the DCLM [21]
approaches respectively. The significance improvement in WER is done by using a match-
pair-test where the misrecognized words in each test utterance are counted. The p-values are
described in Table 9.3. From Table 9.3, we can note that the IDCLM (R = 2) is statistically

Table 9.3 p-values obtained from the match-pair test on the WER results

Language Model 10 Classes | 20 Classes
B+Class & B+IDCLM (R=2) 3.8E-10 4.3E-10
B+Class & B+IDCLM (R=3) 47E-12 4.7E-12
B+DCLM & B+IDCLM (R=2) 0.04 0.01
B+DCLM & B+IDCLM (R=3) 0.004 0.006

significant to the class-based LM [16] and DCLM [21] at a significance level of 0.01 and
0.05 respectively. However, the IDCLM (R = 3) model is statistically significant to the
above models at a significance level of 0.01. We have also seen that the cache DCLM

model also gives the same results as DCLM [21] for a smaller number of classes [21].

9.6 Summary

In this chapter, we proposed an integration of distanced n-grams into the original DCLM
model [21]. The DCLM model [21] extracted the class information from the (n-1) history
words through a Dirichlet distribution in calculating the n-gram probabilities. However, it
does not capture the long-range semantic information from outside of the n-gram events.
The proposed IDCLM overcomes the shortcomings of DCLM by incorporating the inter-
polated long-distance n-grams that capture the long-term word dependencies. Using the
IDCLM, the class information for the histories is trained using the interpolated distanced n-
grams. The IDCLM yields better results with including more distances (R = 3). The model
probabilities are computed by weighting the component word probabilities for classes and
the interpolated class information for histories. A variational Bayesian EM (VB-EM) pro-

cedure is presented to estimate the model parameters.






Chapter 10

Document-based DCLM

In this chapter, we propose a document-based Dirichlet class language model (DDCLM) for
speech recognition using document-based n-gram events. In this model, the class is condi-
tioned on the immediate history context and the document in the original DCLM model [21].
In the DCLM model, the class information was obtained from the (n-1) history words of n-
gram events of a training corpus. Here, the model uses the counts of the n-grams, which are
the number of appearances of the n-grams in the corpus. These counts are the sums of the
n-gram counts in different documents where they could appear to describe different topics.
Therefore, the n-gram counts of the corpus may not yield the proper class information for
the histories. We encounter this problem in the DCLM model and propose a new DDCLM
model that overcomes the above problem by finding the class information from the history

context of the document-based n-gram events [46].

10.1 Introduction

In the DCLM model [21], the class information of the history words was obtained from the
n-gram events of the corpus. Here, the count of an n-gram is the global count of the n-gram
in the corpus i.e., the sum of counts in all the documents of the training corpus. However,
the n-gram can occur in various documents to represent different topics. For example, the
bi-gram White House can occur in a document where it describes a real estate topic. Also,
it can occur in another document that describes a political topic. Therefore, the class in-
formation obtained from the history words of the n-gram events of the corpus may not be
appropriate. This motivates us to introduce a document-based DCLM (DDCLM) that uses
DCLM for each document. In the DDCLM model, for each document, the class information

is calculated from the document-based n-gram events. The predicted word probabilities for
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classes are then drawn for the corresponding document. The n-gram probabilities for the

test document are computed by averaging the document-based n-gram probabilities.

10.2 Proposed DDCLM

The training of DDCLM is similar to the DCLM model except the document-based n-gram
events are used in place of the global n-gram counts in the corpus. The graphical model of
the DDCLM model is described in Figure 10.1. For each document d;, the (n-1)V dimen-
sional discrete history vector Ay, is projected into a C-dimensional continuous class space

using a class-dependent linear discriminant function [21]:

gc(ha) = ul 4hq, (10.1)

where ucT 4, 18 the ¢ row vector of matrix Ug = [u1,4,, - ,uc,q). The function g.(hy,)
describes the class posterior probability P(c|hy, ).

The n-gram probability for each document is computed as [21]:

Pdl(wl’hdedpﬁdl ZPdl Wl’Cthl /P 9d1|hd17Ud1) (Cl|6d1)d9d1

c,—l
= Z Py, (wilci, Ba, ) P(cilhay,Ugy) (10.2)
C,‘—l
8c(ha))
Z ﬁd,,u#
c=1 1g1<hdl)

G @,

M

Fig. 10.1 The graphical model of the DDCLM. Shaded circles represent observed variables.
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The DDCLM parameters {Uy,, B4 } are estimated by maximizing the marginal log like-
lihood of the training data that contains a set of n-gram events S, = {wﬁ: ,11 Y wit:

M M
0gP(SulUq) Ba)) =Y, Y, logPy(wilha,Us,,Ba,)
=1 =1 (Wi ,ha;)ESn

M N"d, C
= Zzlog{/P(edIMded,) T1 Y PulwjleiBa)x  (103)
=1 hdl j=1cj=1

P(leedl)] dby, }

where M is the total number of training documents that comprise the corpus, N, 4, fepresents
the number of collected words that occur following the history /4. In Equation 10.3, the
summation is over all possible histories in training samples S,,. However, directly optimiz-
ing Equation 10.3 is intractable [21]. A variational DDCLM is used where the marginal
likelihood is approximated by maximizing the lower bound of Equation 10.3. The VB-

EM procedure is required since the parameter estimation involves the latent variables of
Ni,

{edl’chd[ = {Ci}iZIZ .

The history-dependent variational parameters {f/;,dl = {?hdl,c}, éhdl = {(Ishdl,vc}}, which

correspond to the latent variables 6, cj, 4> ATe estimated in the VB-E step as [21]:

N,
Tngyc = 8c(hay) + Y, Png e (10.4)
i=i

Bdl,ic eXp [‘P(Yhdl,c) - lP(Z]C‘:I ,}/hdlzj)}
5:1 ﬁd[,ic exXp [‘{](Yhdl ,C) - \P(Zle ’yhdl ]):|

where B, ;. is the probability of the i"" word for class ¢ in document d, Y(.) is the derivative

Ony, ic = , (10.5)

of the log gamma function, and is known as a digamma function [21]. With the updated
{th " o dz} in the VB-E step, the DDCLM parameters {Uy,, 34 } are estimated in the VB-M

step as [21]:
th A

R Zhd] Y| Pny, icO(wy,wj)

dhvc - V N]‘ld ~
Zm:l Zhdl Zizll ¢hd1,ic5(wma Wi)

, (10.6)

where Z‘v/:l Bi, ve=1 and 8(w,,w;) is the Kronecker delta function that equals one when

vocabulary word w, is identical to the predicted word w; and equals zero otherwise. The
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gradient ascent algorithm is used to calculate the parameters Ud, = [ﬁhdw e ,ﬁc,d,] by up-

dating the gradient ¥/, 4,38 [21]:

v140.,dl A vMc,t/fl +Z
hdl

o i (k) ¥(ge(hg)

(10.7)
C
’}/hd,, (Z yd,J)] ha;-
The n-gram probabilities of the test document d; are computed as:
M
P(wilhg,) =Y, Py, (wilha,,Ua,, Ba,)P(di|hg,)
=1
(10.8)
M
C(hg,,di)
= (Wz|hd,aUdaﬁd)—t
L fulelbaCac B g cin,.ay

where Py, (wi|h;,Uy,, Bg,) is computed by using Equations 10.2 and C(hy,,d;) is the count of
hg, in the training document d;. However, for some n-grams of the test document, the words
of the n-gram cannot be found together in any of the training documents. Their probabilities

are computed as:

<
a

C(hq,,dr)
P(wilhg,) = (wile)P(clha,,Ua) ) <irrr— (10.9)
l z; <c¥’ l l ) 121 C(ha,dy)
where P(w;|c) is computed as:
P(wilc) ZPd, (wilc, Ba,)-P(dy), (10.10)

where P(d;) = 1/M. The remaining zero probabilities of the obtained matrix P(w;|h,,) are
then computed by using back-off smoothing.

To capture the local lexical regularities, the model P(w;|hy, ) is then interpolated with the

background (B) trigram model as:

PL(W,"h) ZAPB(W,‘V’Z)—I-(I—A)P(Wi’hdl). (10.11)
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10.3 Comparison of DCLM and DDCLM Models

In the DCLM model, the class information for the (n — 1) history words is obtained by
using the n-gram counts in the corpus. DCLM exploits the word distribution given the
history words. DCLM performs the history clustering of the corpus. The current word is
predicted from the history-dependent Dirichlet parameter, which is controlled by a matrix
U and corpus-based histories £ [21]. In contrast, document-based class information for the
(n— 1) history words /,, is obtained by using the document-based n-gram events in the DD-
CLM model. The model performs the history clustering of the documents. The DDCLM
exploits the document-based word distribution given the history words of the document-
based n-grams. Both DCLM and DDCLM models are adopted to characterize the order of
sequential words and to estimate the language model for both seen and unseen histories.
For the DCLM model, the number of parameters {U, 8 } increases linearly with the number
of history words and is given by (n— 1)CV + CV. For the DDCLM model, the number of
parameters {Uy,, B4 } increases linearly with the number of history words and documents
and is given by Y | ((n— 1)CVy, +CVy,). Here, V, is the number of words present in docu-
ment d; from the vocabulary V. The time complexities of DCLM and DDCLM are O(HVC)
and O(ZﬁlHled]C) with H corpus-based histories, H;, document-based histories, V' vo-
cabulary words, V;, document-based observed words from vocabulary V, M documents that

comprise the corpus, and C classes.

10.4 Experiments

10.4.1 Data and Parameters

We randomly selected 1000 documents from the *87-89 WSJ corpus [71] for training the
DCLM and DDCLM models. The total number of words in the documents is 439,212.
We used the 5K non-verbalized punctuation closed vocabulary from which we removed
the MIT stop word list [3] and the infrequent words that occur only once in the training
documents. After these removals, the total number of words in the vocabulary is 3169.
We could not consider more training documents due to higher computational cost and huge
memory requirements for the DDCLM model. However, trigram models give better results
than the bigram models when more training data are considered. As a small amount of
training data can be considered in the DDCLM model, the reliability of trigrams decreases

more severely than that of bigrams and the bigrams are more robust than the trigrams [103].
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For this reason, we train the DCLM and DDCLM models using the bigrams only. The
models are trained by using only those bigrams that contain words from the vocabulary.
To capture the local lexical regularity, the models are interpolated with a back-off trigram
background model, which is trained on the *87-89 WSJ corpus using the back-off version
of the Witten-Bell smoothing; the SK non-verbalized punctuation closed vocabulary and the
cutoffs 1 and 3 on the bi-gram and tri-gram counts respectively are incorporated. However,
ten EM iterations in the VB-EM procedure were used. The initial values of the entries in
the matrix 3,8, were set to be 1/V and those in U, U, were randomly set in the range [0,1].
To update the variational parameters in the VB-E step, one iteration was used. The VB-M
step was executed to update the parameters U, Uy, by three iterations [21]. The interpolation
weight A is computed by optimizing on the held-out data. The experiments are evaluated on
the evaluation test, which is a total of 330 test utterances from the November 1992 ARPA
CSR benchmark test data for vocabularies of 5K words [71, 101].

10.4.2 Experimental Results

The models are trained for various numbers of class sizes. We trained the DCLM and
DDCLM models for five times and the results are averaged. The perplexity and WER results
are described in Table 10.1 and Figure 10.2. From Table 10.1, we can note the proposed

Table 10.1 Perplexity results of the models

Language Model | 20 Classes | 40 Classes
Background (B) 69.0 69.0
B+DCLM 61.6 61.4
B+DDCLM 59.8 59.9

DDCLM model outperforms the other models for all class sizes.

We performed the paired z-test on the perplexity results of the DCLM and the DDCLM
models with a significance level of 0.01. The p-values for different class sizes are described
in Table 10.2. From Table 10.2, we can note that all p-values are less than the significance
level of 0.01. Therefore, the perplexity improvements of the proposed DDCLM model over
the DCLM model [21] are statistically significant.

We evaluated the WER experiments using lattice rescoring. In the first pass decoding, we
used the back-off trigram background language model for lattice generation. In the second

pass, we applied the interpolated model for lattice rescoring. We record WERSs (%) and error
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Table 10.2 p-values obtained from the paired ¢ test on the perplexity results

Language Model 20 Classes | 40 Classes
B+DCLM & B+DDCLM | 8.58E-07 | 9.24E-05

¥ Background (B) Model ® (B+DCLM) Model [ (B+DDCLM) Model

4.5

4

3.5

2.5

1.5

0.5

20 40

Fig. 10.2 WER results (%) for different class sizes

rate reductions (%) using different LMs for various sizes of classes. The background LM
yields a WER of 4.0%. From Figure 10.2, we can note that the proposed DDCLM model
yields a WER reduction of about 17.5% (4.0% to 3.3%) and 5.7% (3.5% to 3.3%) for 20
classes and about 17.5% (4.0% to 3.3%) and 5.7% (3.5% to 3.3%) for 40 classes over the
background and the DCLM [21] approaches respectively.

We also performed a paired ¢ test on the WER results for the B+DCLM and the B+ DDCLM
models with a significance level of 0.01. The p-values of the test are explained in Table 10.3.

From Table 10.3, we can see that the p-values are smaller than the significance level of 0.01.

Table 10.3 p-values obtained from the paired ¢ test on the WER results

Language Model 20 Classes | 40 Classes
B+DCLM & B+DDCLM | 0.00024 0.00092

Therefore, the WER improvements of the proposed DDCLM model are statistically signifi-

cant.
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10.5 Summary

In this chapter, a document-based Dirichlet class language model (DDCLM) for speech
recognition using document-based n-gram counts is proposed. The class information in
the DDCLM model is exploited from the (n — 1) history words of the document-based -
grams. This helps to extract the class information correctly for the histories of the n-gram
events that appear in different documents to describe different topics whereas in the DCLM
model the class information may not be appropriate as it used the global count of the n-
grams in the corpus. The n-gram model of the test document is computed by averaging the
document-based n-gram models. We compared our approach with the DCLM [21] model
where the class information was exploited from the histories of the n-gram counts of the
corpus. We have seen better perplexity and WER results using the WSJ corpus over the
DCLM model [21].



Chapter 11
Conclusion and Future Work

The two components of the current ASR’s system are the acoustic model (the spectral repre-
sentation of sounds or words) and the language model (the representation of the grammar or
syntax). To obtain a robust ASR system, they are very important. Thus, the system’s overall
performance can be improved by improving the LM. In this research, we have incorporated
the probabilistic topic models to improve the LM. In this chapter, we describe our research
into three parts in the contributions section, followed by the summary of the experimental

results and the future work.

11.1 Contributions

In the first part (chapters 3, 4 and 5) of the thesis, we performed language model adapta-
tion through mixture language models and unigram scaling [68]. Mixture models are the
component models created from background corpora. The background corpus is analysed
by using the LDA model. The mixture models are adapted in such a way that the adapted

model can be best matched with the test environment. The contributions of this part are:

* The mixture component models are created by employing a hard-clustering method
into an LDA model. We proposed a weighting approach [40] to adapt the component
models. We considered an adaptation technique called unigram scaling, that forms
a new adapted model [41, 49] by using a minimum discriminant information (MDI)
approach [34, 68], that minimizes the Kullback-Leibler (KL) divergence between the
new adapted model and the other model, subject to a constraint that the marginalized
unigram distribution of the new adapted model is equal to the LSM. The LSM is the

unigram probability distribution over words that are calculated using LDA-adapted
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unigram models [96].

* The component models are created by using the features of the LDA model. As
LDA is a bag-of-words model, each word has equal importance in determining topic
mixtures. We computed the topic probabilities of the n-grams by averaging the topic
probabilities for words in the n-grams and then assigned them as the count of the n-
grams for different topics. We create the component models using these counts and
adapt them by applying a weighting approach, where the mixture weights are created

by averaging the topic probabilities for words in the development test set [42].

* We created the component models by using the document-based topic probabilities
and document-based n-gram counts. The topic probabilities of the training documents
are computed by averaging the topic probabilities of words seen in the documents.
The topic probabilities of documents are multiplied by the document-based n-gram
counts. The products are then summed-up for all the training documents. The results
are used as the counts of the respective topics to create the component models. The
component models are then adapted by using the topic probabilities of a development

test set that are computed as above [48].

In the second part (chapters 6, 7, and 8) of the thesis, we proposed five new probabilistic
topic models that are trained using the expectation-maximization (EM) algorithm. Here,
we trained the model parameters by using the observed training data. A folding-in proce-
dure [33] is then applied to compute the topic probabilities of the unseen test data. The
n-gram language model of the test set is calculated using the n-gram probabilities for topics
and the topic probabilities of the (n — 1) history words of the test data. The contributions of
this part are:

* We introduced a context-based PLSA (CPLSA) model [43] to overcome the problems
of a recently proposed unsmoothed bigram PLSA (UBPLSA) model [7]. Observed
n-grams of the training documents are used to train the models. The unigram proba-
bilities for topics are trained using the CPLSA model that helps to compute the correct
topic probabilities of the unseen test document as the model allows one to compute

all the possible n-gram probabilities of the seen history context.

* We presented a document-based CPLSA (DCPLSA) model [50] that outperforms the
CPLSA model. The DCPLSA model can best describe the words that appear in dif-

ferent documents to represent different topics. The model trains the document-based
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unigram probabilities for topics instead of corpus-based unigram probabilities for top-
ics in the CPLSA model.

* To improve the LDLM model [20], we proposed an interpolated latent Dirichlet lan-
guage model (ILDLM) [44] using the distanced n-gram counts, where the topic is
drawn from the (n — 1) history context using the Dirichlet distribution in computing
the n-gram probabilities. We computed the n-gram probabilities of the model by using
the distanced word probabilities for the topics and the interpolated topic information

for the histories.

* Similar to the LDLM and ILDLM approaches, we introduced an enhanced PLSA
(EPLSA) and an interpolated EPLSA (IEPLSA) model in the PLSA framework. In the
EPLSA model, the predicted word of observed n-gram events is drawn from a topic
that is chosen from the topic distribution of the (n-1) history words. The EPLSA
model cannot capture the long-range information outside of the n-gram events. To
tackle this problem, we presented an IEPLSA model that uses the distanced n-grams.
We computed the n-gram probabilities of the model by using the distanced word prob-

abilities for the topics and the interpolated topic information for the histories [45].

In the final part (chapters 9 and 10) of the thesis, we proposed two new Dirichlet class-
based language models that are trained using variational Bayesian EM (VB-EM) algorithm.
Here, we trained the model parameters using the observed training data. Then, the n-gram
probabilities for the unseen test set are computed by using the model parameters. The

contributions of this part are:

* We introduced an interpolated DCLM (IDCLM) [47] incorporating interpolated dis-
tanced n-grams. Here, the class information is exploited from (n — 1) history words
through the Dirichlet distribution using interpolated distanced n-grams. We computed
the n-gram probabilities of the model by using the distanced word probabilities for the

classes and the interpolated class information for the histories.

* We presented a document-based Dirichlet class language model (DDCLM) [46] us-
ing document-based n-gram events. Here, the class is conditioned on the immediate
(n— 1) history words and the document. The model helps to find the proper class
information for the n-grams that are used to describe different classes in different

documents.



124 Conclusion and Future Work

11.2 Summary of the Experimental Results

In chapter 3, we proposed unsupervised LM adaptation approaches [49] using the unigram
scaling technique [68] incorporating the LDA model [13] and LSM [96]. A hard-clustering
approach [72] was applied to form topic sets, topic-specific LMs were adapted by applying
a n-gram weighting method [40] to form an adapted model and then interpolated with a
background model. All the above models are further modified by using the unigram scaling
approach incorporating LSM. We performed experiments on the WSJ corpus using vari-
ous topic sets for different test sets. The proposed unigram scaling of the interpolation of
background and adapted models gives best results for topic sizes 25 and 75 for the Novem-
ber 1993 and November 1992 test sets respectively using the *87-89 corpus. It gives about
16.9% (8.3% to 6.9%), 13.7% (8.00% to 6.9%), 8.0% (7.5% to 6.9%), and 4.2% (7.2% to
6.9%) for the November 1993 test set using topic set 25 and about 19.6% (4.6% to 3.7%),
19.6% (4.6% to 3.7%), 15.9% (4.4% to 3.7%), and 5.1% (3.9% to 3.7%) for the November
1992 test set using topic set 75 over the background model, the unigram scaling of the back-
ground model [96], the unigram scaling of the adapted model [41], and the interpolation
of the background and the adapted models [40] respectively. The data and parameters are

described in section 3.4.1.

In chapter 4, we performed soft-clustering and hard-clustering assignments of back-
ground n-grams into different topics with counts of the fraction of the global count. The
topic weights of the n-grams are computed by averaging two confidence measures namely:
the probability of topics given words P(f;|w;) and the probability of words given topics
P(wi|t;). The weights are then normalized, multiplied by the global count of the count, and
then assigned to different topics as the count of the n-grams. The soft-clustering approach
gives better results than hard-clustering and the confidence measure P(f;|w;) outperforms
the confidence measure P(w;|t;) as expected. The data and parameters of the experiments
are described in section 4.4.1. We performed experiments for various topic sizes (20 and 40)
and the best results obtained by topic set 40. The soft clustering approach using P(z;|w;)
gives significant WER reductions of about 9.9% (8.1% to 7.3%), 7.6% (7.9% to 7.3%),
and 2.7% (7.5% to 7.3%) over the background model, unigram scaling of the background
model [96], and LDA n-gram weighting [40] approaches respectively.

In chapter 5, a novel LM adaptation approach was proposed using the document-based
topic distribution and n-gram counts. The topic weights of the training documents are cre-
ated by averaging the topic probabilities given words that are present in the documents. The

topic weights of the documents are then multiplied by the document-based n-gram counts,
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the products are summed up for all training documents, and the results are then used as
the n-gram counts of the respective topics. We also introduce another approach called AL-
NCLM where the topic probabilities for documents are created by using the document-topic
matrix obtained from the LDA model training. However, we performed experiments for dif-
ferent topic sizes (25 and 50) and the best results obtained by topic set 25. The description
of the data and parameters are given in section 5.5.1. For topic set 25, the proposed method
gives significant WER reductions of about 9.9% (8.1% to 7.3%), 7.6% (7.9% to 7.3%),
3.9% (7.6% to 7.3%), and 1.4% (7.4% to 7.3%) over the background (B) trigram, LDA
unigram scaling [96], B+ANCLM [42] and B+ ALNCLM (also proposed by us) approaches

respectively.

In chapter 6, we introduced a context-based PLSA (CPLSA) model [43], which can
compute the correct topic probabilities of the unseen test document and thus can compute
the correct bi-gram probabilities of the test document. Furthermore, we extend the CPLSA
model into document-based CPLSA (DCPLSA) model [50], where we used the document-
based word probabilities for topics, as the words can appear in different documents to de-
scribe different topics. We performed experiments for different sizes of topics (20 and 40),
and the best results were achieved by topic set 40. The data and parameters of the ex-
periments are described in section 6.9.1. The proposed DCPLSA model [50] yields about
about 22.0% (69.0 to 53.8), 13.1% (61.9 to 53.8), 8.3% (58.7 to 53.8) and 3.6% (55.8 to
53.8) relative improvement for perplexity and about 27.5% (4.0% to 2.9%), 17.1% (3.5%
to 2.9%), 14.7% (3.4% to 2.9%) and 9.4% (3.2% to 2.9%) relative improvement for WER
using the 40 topic set, over the background model, PLSA model [33], the UBPLSA [7] and
the CPLSA [43] approaches respectively.

In chapter 7, to incorporate the long-range information into the LDLM [20], we intro-
duced a interpolated LDLLM (ILDLM) [44] using the interpolated long-distanced bi-grams.
We performed experiments using various topic sizes (40 and 80) and the best results were
achieved by topic set 80. The data and parameters for the experiments are described in sec-
tion 7.5.1. The proposed ILDLM yields WER reductions of about 22.1% (7.6% to 5.92%),
20.0% (7.4% to 5.92%), and 11.6% (6.7% to 5.92%) for 80 topics, over the background
model, PLSA model [33], and the LDLM [20] approaches respectively. Furthermore, we
incorporated the cache unigram scaling into the LDLM and ILDLM as the cache-based
models capture different information than the LDLLM and ILDLM. Here, the experiments
over topic set 40 give more WER reductions as there is more room (because of the smaller
topic set) to add cache information. Also, the addition of cache models improves the per-

formance of LDLM more than ILDLM as the ILDLM captures the long-range information
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by using the interpolated distanced n-grams.

In chapter 8, we introduced enhanced PLSA (EPLSA) and interpolated EPLSA (IEPLSA) [45]
in the PLSA framework. The training methods of the models are similar to the LDLM and
ILDLM models. We performed experiments using different topic sizes (40 and 80) and
achieved the best results by using topic set 80 as expected. The experimental parameters
and data are explained in section 8.5.1. The proposed IEPLSA model gives relative WER
improvement of about 20.4% (7.6% to 6.05%), 18.2% (7.4% to 6.05%), and 5.5% (6.4%
to 6.05%) for 80 topics, over the background model, PLSA [33] and EPLSA approaches
respectively. We also incorporated the cache-models into EPLSA and IEPLSA models and
have seen the same characteristics as above.

In chapter 9, we proposed an interpolated DCLM (IDCLM) [47] to incorporate the long-
range information into the DCLM [21] by using the long-distanced tri-grams. The model
is trained by using the variational Bayesian EM (VB-EM) procedure. We conducted exper-
iments for various sizes of classes (10 and 20) and achieved the best results by class size
20. We also performed experiments for different lengths of distance (R =2 and R = 3). The
data and parameters of the experiments of the experiments are described in section 9.5.1.
The proposed IDCLM (R = 3) yields significant WER reductions of about 34.5% (5.8%
to 3.8%), 33.3% (5.7% to 3.8%), 11.6% (4.3% to 3.8%), and 5.0% (4.0% to 3.8%) for 20
classes, over the background trigram, class trigram [16], the DCLM [21], and the IDCLM
(R = 2) approaches respectively.

In chapter 10, we introduced a document-based DCLM [46] where the class information
for the histories of the document-based bi-gram events is computed correctly. The bi-gram
probabilities of the test document are computed by averaging the document-based bi-gram
models. We performed experiments for class sizes of 20 and 40. The data and parameters
of the experiments are described in section 10.4.1. The proposed DDCLM model yields a
significant WER reduction of about 17.5% (4.0% to 3.3%) and 5.7% (3.5% to 3.3%) over
the background model and the DCLM [21] approaches respectively.

11.3 Future Work

In chapter 3, the n-gram probabilities of the adapted (A) mixture model can be used as fea-
tures in a maximum entropy (ME) [88] adaptation framework. In the CPLSA and DCPLSA,
the performance can be improved by incorporating more training documents and higher or-
der n-grams. In our future work, we intend to do similar approaches in the LDA framework

with more training documents and higher order n-grams. We will incorporate the larger
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distance-based n-grams and higher order n-grams in the ILDLM, EPLSA, and IEPLSA
models to improve the performance. We will evaluate the proposed IDCLM and DDCLM
approaches with neural network-based language models [12, 76, 77, 90] and exponential
class-based language models [18]. For the IDCLM, we will find out a way to perform the
experiments for higher numbers of classes. For the TNCLM, NTNCLM, ILDLM, EPLSA,
and IEPLSA models, we will test our experiments on the evaluation test set November 1992
(330 sentences, 5353 words) ARPA CSR benchmark test data for 5K vocabularies [71, 101].






Chapter 12

Résumé en francais

12.1 Introduction

La modélisation de la langue (LM) est le défi de capturer, de caractériser et d’exploiter les
régularités de la langue naturelle. Autrement dit, c’est le fait d’encoder les connaissances
linguistiques qui sont utiles pour les systemes informatiques lorsqu’il s’agit de la langue hu-
maine [28]. Elle est largement utilisée dans une variété de taches de traitement du langage
naturel telles que la reconnaissance de la parole [6, 57], la reconnaissance manuscrite [74],
la traduction automatique [17], et la récupération de I’information [86]. Cependant, 1’une
des applications les plus passionnantes de modeles de langage est en reconnaissance au-
tomatique de la parole (ASR), ou un ordinateur est utilisé pour transcrire le texte parlé en

forme écrite.

12.1.1 La modélisation de la langue pour la reconnaissance vocale

Un dispositif de reconnaissance de la parole est constitué d’une combinaison de la mod-
élisation acoustique et de la modélisation du langage. Il peut étre décrit comme dans la
Figure 12.1. La parole est entrée dans le systeme de la reconnaissance vocale sous forme
des données acoustiques O. Le rdle de la reconnaissance est de trouver le mot le plus prob-

able W/ comme suit:
W = arngaleP(Wyo) (12.1)

ol P(W|0) représente la probabilité que le mot W a été prononcé, étant donné que I’ observation

de la séquence acoustique O. La partie droite de I’équation 12.1 peut étre réorganisée en se
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basant sur la loi de Bayes comme suit:

P(W)P(O[W)

POW|0) = == 0

(12.2)
ol P(W) est la probabilité que le mot W sera prononcé, P(O|W) est la probabilité que la
séquence acoustique O sera observée lorsque le mot W est prononcé par le locuteur, finale-
ment, P(O) est la probabilité que O sera observée. De ce fait, P(O) peut étre ignorée car elle
n’est pas dépendante de la séquence de mots sélectionnée. Par conséquent, I’équation 12.1

peut étre réécrite comme suit :
W = argmua}xP(W|0) = argmuelle(W)P(O|W), (12.3)

ou P(O|W) est déterminée par la modélisation acoustique et P(W) est déterminée par la

partie de la modélisation du langage du systeme de la reconnaissance vocale.

Acoustic Data Speech Transcription
o) ™ Recognizer > Data
w
A A
Speech L Acoustic | || Acoustic Language< Language Text
Corpora Modeling Model Model Modeling | | Corpora
Lexicon

Fig. 12.1 Systéme de reconnaissance vocale

12.1.2 Outils expérimentaux et les bases de données

Nous avons évalué les approches de 1’adaptation LM en utilisant le corpus du Wall Street
Journal (WSJ) [71]. La boite a outils SRILM [94] est utilisée pour générer les Modeles de
langage. De plus, la boite a outils HTK [105] est utilisée pour le calcul du WER. Le mod-
ele acoustique présenté dans [98] est utilisé dans nos expériences. Le modele acoustique
est entrainé en utilisant toute les données d’apprentissage de WSJ et de TIMIT [32], les 40
ensembles téléphoniques de la Dictionnaire CMU [2], environ 10000 états liés, de 32 gaussi-
ennes par état modélisant la parole ainsi que 64 gaussiennes par état modélisant le silence.

Les formes d’ondes acoustiques sont paramétrisées dans un vecteur de caractéristiques de
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dimension 39 composé de 12 coefficients cepstraux plus le coefficient cepstral d’ordre zéro,
coefficients delta et double delta. Le tout est normalisé en utilisant la soustraction cepstrale
moyenne (MFCCy_p_4—_z). Nous avons évalué les modeles de mots croisés. Les valeurs
de pénalité d’insertion du mot, la largeur du faisceau, et le facteur d’échelle du modele de la
langage sont respectivement -4.0, 350.0 et 15.0 [98]. La base de données du développement
si_dt_05.odd (248 phrases, 4074 mots) et la base de données de tests sont respectivement,
les données de test Nov’ 92 et Nov’ 93 de novembre 1992 (330 phrases, 5353 mots) et
novembre 1993 (215 phrases, 3849 mots), données de test de référence ARPA CSR pour
vocabulaires 5K [71, 101].

12.1.3 Contributions

Les deux composantes du systeme de I’ASR actuel, a savoir, le modele acoustique (la
représentation spectrale de sons ou de mots) et le modele de langage (la représentation
de la grammaire ou de la syntaxe), sont treés importantes pour obtenir un systeme ASR ro-
buste. Ainsi, les performances globales du systeme peuvent étre améliorées en améliorant le
Modele de langage (LM). Dans cette recherche, nous proposons I’intégration des modeles
probabilistes pour améliorer le Modele de langage (LM). Nous décrivons la recherche en

trois parties dans les trois sections suivants.

12.2 Adaptation LM en utilisant LDA

Dans la premiere partie de la these, nous avons effectué une adaptation de modele de langage
par le mélange de modeles de langage et I’échelle unigramme [68]. Les modeles de mélange
sont les modeles de composantes créés a partir d’un corpus d’apprentissage. Ce corpus est
analysé en utilisant le modele d’allocation latente de Dirichlet (LDA) [13]. Les modeles de
mélange sont adaptés de maniere a ce que le modele produit soit adapté a I’environnement

de test. Les contributions de cette partie de la these sont :

12.2.1 Adaptation LM a base de LDA en utilisant la Sémantique la-
tente marginale (LSM)

Dans cette section, nous présentons les approches non supervisées d’adaptation du modele
de langue (LM) utilisant 1’ Allocation latente de Dirichlet (LDA) et LSM. La LSM est la

distribution de probabilité unigramme sur les mots qui sont calculés en utilisant des mod-
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eles unigramme LDA adaptés. Le modele LDA est utilisé pour extraire des informations
dépendantes du sujet a partir d’un corpus d’apprentissage de maniere non supervisée. Le
modele LDA fournit une matrice du document-sujet qui décrit le nombre de mots attribués
a des sujets pour les documents. Une méthode du regroupement a décision stricte utilise la
matrice document-sujet du modele LDA pour former des sujets. Un modele adapté est créé
en utilisant une combinaison pondérée des modeles n-grammes du sujet. L’interpolation du
modele d’arriere-plan et le modele adapté donne une nouvelle amélioration. Nous modi-
fions les modeles ci-dessus a I’aide de la LSM. La LSM est utilisée pour former un nouveau
modele adapté. Il utilise une approche d’adaptation, a base de I’information minimale dis-
criminante (MDI), appelée 1’échelle unigramme, qui minimise la distance entre le nouveau

modele adapté et I’autre modele [49].

Les données et parametres

Le corpus *87-89 WSJ est utilisé pour entrainer le modele de base de tri-gramme et les
modeles tri-gramme du sujet. Les modeles sont entrainés en utilisant la version back-of f
de lissage de Witten-Bell. Les modeles de langage sont a vocabulaire fermée, c’est a dire,
les modeles sont générés en utilisant les comptes de n-grammes sans tenir compte des n-
grammes avec des mots inconnus. Pour réduire le colit du calcul, nous avons intégré les
seuils 1 et 3 respectivement sur les comptes de bi-grammes et de tri-grammes. Le LDA
et les modeles de langage sont entrainés en utilisant le WSJ 20K de vocabulaire fermée a
ponctuation non-verbalisée. Nous définissons respectivement et 3 pour I’analyse de LDA
50/K et 0,01 [37, 53]. Les poids d’interpolation ¢ et A sont calculés selon la compute-
best-mix programme de la boite a outils de SRILM. Ils sont optimisés sur I’ensemble du
développement du test. Les sémantiques latentes marginales (LSM) sont créés par une
transcription automatique. La transcription automatique est le résultat de reconnaissance
obtenu apres une premiere passe de décodage des données d’évaluation. Les résultats des

expériences sont rapportés sur I’ensemble du test.

Adaptation LM non supervisée en utilisant la pondération N-gram

Les perplexités sur les ensembles du test de Novembre 1993 et Novembre 1992 pour les
différentes tailles de corpus sont respectivement décrites dans les tableaux 12.1 and 12.2.

Les résultats tels que mesurés par le WER des expériences sur les différents ensem-
bles du test pour les différentes tailles de corpus sont respectivement rapportés dans les
tableaux 12.3 et 12.4.
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Table 12.1 Résultats tels que mesurés par la perplexité des modeles de langage trigramme
utilisant la pondération n-gramme sur les Caractéristiques de test Novembre 1993

Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | 87 ’87-89 | '87 ’87-89
Background (B) 101.7 88.9 | 101.7 88.9 | 101.7 88.9
Adapted (A) Model | 98.8 87.9 | 105.3 91.7 | 107.5 89.6
B+A Model 82.1 73.5 | 81.5 73.0 | 81.2 734

Table 12.2 Résultats tels que mesurés par la perplexité des modeles de langage tri-gramme

utilisant la pondération n-gramme sur les données de test Novembre 1992

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | 87 ’87-89 | '87 ’87-89
Background (B) 854 71.0 | 854 71.0 | 854 71.0
Adapted (A) Model | 89.4 78.3 | 95.6 82.1 | 100.4 78.8
B+A Model 72.2 62.1 | 71.6 61.6 | 71.5 61.9

Table 12.3 Résultats WER (%) des modeles de langage a I’aide de pondération tri-gramme

sur les données de test Novembre 1993

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | 87 ’87-89 | '87 ’87-89
Background (B) 9.2 8.3 9.2 8.3 9.2 8.3
Adapted (A) Model | 84 7.4 8.4 7.7 83 79
B+A Model 7.6 7.2 7.8 7.3 7.6 7.5

Table 12.4 Résultats tels que mesurés par le WER (%) des modeles de langage a 1’aide de
pondération tri-gramme sur les données de test Novembre 1992

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | 87 ’87-89 | '87 ’87-89
Background (B) 4.8 4.6 4.8 4.6 4.8 4.6
Adapted (A) Model | 5.3 4.5 5.6 4.7 55 43
B+A Model 42 4.0 42 3.9 41 3.9
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Nouveau modele adapté a ’aide de la LSM

Les résultats tels que mesurés par la perplexité des expériences utilisant les ensembles du
test Novembre 1993 et Novembre 1992 pour les différentes tailles de corpus sont respec-

tivement rapportés dans les tableaux 12.5 and 12.6.

Table 12.5 Résultats tels que mesurés par la perplexité sur les données du test Novembre
1993 a I’aide de modeles de langage tri-gramme obtenus en utilisant la LSM

Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | ’87 °87-89 | °87 ’87-89
Background (B) 101.7 88.9 | 101.7 88.9 | 101.7 88.9
Adaptation of (B) model 08.8 859 | 97.8 857 | 97.2 84.8
Adaptation of A model 97.9 86.7 | 103.5 89.9 | 105.1 87.0
Adaptation of (B+A) model | 80.7 72.0 | 79.3 71.0 | 78.5 70.8

Table 12.6 Résultats tels que mesurés par la perplexité sur les données du test Novembre

1992, utilisant des modeles de langage tri-gramme obtenus en utilisant la LSM

Language Model Topic 25 Topic 50 Topic 75

87 °87-89 | ’87 ’87-89 | °87 ’87-89
Background (B) 854 71.0 | 854 71.0 | 854 71.0
Adaptation of (B) model 842 70.2 | 839 699 | 83.6 69.7
Adaptation of A model 88.5 78.2 | 940 814 | 98.3 773
Adaptation of (B+A) model | 71.4 61.6 | 704 60.8 | 70.1 60.7

Les résultats tels que mesurés par le WER des expériences sur les différents ensembles

du test pour les différentes tailles de corpus sont rapportés dans les tableaux 12.7 and 12.8.

Signification statistique et analyse des erreurs

L’amélioration significative du WER est réalisée en utilisant un test de paire assortie ou les
mots mal reconnus dans chaque énoncé du test sont comptés. Les valeurs p de I’unigramme
proposé€ du modele (B + A) sont respectivement mesurées par rapport au modele d’arriere-
plan, 'unigramme du modele d’arriere-plan [96], I’'unigramme du modele adapté [42] et
I’interpolation du modele d’arriere-plan et les modeles adaptés [40]. Pour ’ensemble du

test Novembre 1993 utilisant la taille du sujet 25 et le corpus *87-89, les valeurs de p sont
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Table 12.7 Résultats tels que mesurés par le WER (%) sur les données du test Novembre
1993 a I’aide des modeles de langage tri-gramme obtenus en utilisant LSM.

Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | °87 °87-89 | ’87 ’87-89
Background (B) 9.2 8.3 9.2 83 9.2 8.3
Adaptation of (B) model 9.2 8.0 9.0 8.0 9.1 8.1
Adaptation of A model 84 175 85 1.7 8.6 7.9
Adaptation of (B+A) model 7.6 6.9 7.7 7.2 7.6 7.2

Table 12.8 Résultats tels que mesurés par le WER (%) sur les données du test Novembre
1992, utilisant des modeles de langage tri-gramme obtenus en utilisant LSM.

Language Model Topic 25 Topic 50 Topic 75
87 °87-89 | ’87 ’87-89 | °87 ’'87-89
Background (B) 4.8 4.6 4.8 4.6 4.8 4.6
Adaptation of (B) model 4.8 4.6 48 4.7 49 4.6
Adaptation of A model 5.3 45 5.6 4.6 5.6 44
Adaptation of (B+A) model | 4.2 3.8 42 3.8 4.1 3.7

4,0E-9, 0,00081, 7,4E-8, et 0,00175. Pour I’ensemble de test Novembre 1992, utilisant
des tailles du sujet 75 et le corpus *87-89, les valeurs de p sont 4,9E-6, 0,0071, 8,3E-7, et
0,00989. A un niveau de signification de 0,01, 1’approche proposée est nettement meilleure

que les autres modeles.

Les tableaux 12.9 et 12.10 sont utilis€s pour présenter les résultats de I’ASR pour la
suppression (D), la substitution (S), et I’'insertion (I) des erreurs, ainsi que 1’exactitude (Corr)
et la précision (Acc) des modeles trigrammes de langage. En observant ces tableaux, nous
pouvons noter que 1’'unigramme proposé du modele B + A réduit tous les types d’erreurs
et améliore I’exactitude et la précision relative a 1’arricre-plan et a d’autres modeles [40,
42, 96]. L utilisation de 1’approche proposée, la suppression et les erreurs d’insertion ne
changent pas beaucoup par rapport a I’arriere-plan et a d’autres modeles. Par conséquent,
les erreurs de substitution jouent un réle important pour améliorer la performance, a savoir,
plusieurs mots peuvent étre reconnus avec précision en utilisant la méthode proposée a
I’arriere-plan et a d’autres modeles. Nous pouvons également noter que 1’amélioration du

modele A peut aider a réduire les erreurs existantes dans 1’approche actuelle.
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Table 12.9 Résultats tels que mesurés par I’ ASR pour les erreurs de la suppression (D), la
substitution (S), et I’insertion (I), et aussi pour I’exactitude (Corr) et la précision (Acc), des
modeles de langage tri-gramme obtenus en utilisant I’ensemble du test Novembre 1993 avec
la taille du sujet 25 et le corpus 87-89.

Language Model D S I Corr | Acc

Background (B) 0.010 | 0.064 | 0.009 | 0.926 | 0.917
Adaptation of B model using LSM 0.010 | 0.061 | 0.008 | 0.929 | 0.920
Adaptation of A model using LSM 0.010 | 0.058 | 0.006 | 0.931 | 0.925
B+A model 0.010 | 0.055 | 0.007 | 0.935 | 0.928
Adaptation of B+A model using LSM | 0.009 | 0.054 | 0.006 | 0.937 | 0.931

Table 12.10 Résultats tels que mesurés par I’ASR pour les erreurs de la suppression (D),
la substitution (S), et I’insertion (I), et aussi pour I’exactitude (Corr) et la précision (Acc),
des modeles de langage tri-gramme obtenus en utilisant I’ensemble du test Novembre 1992
avec la taille du sujet 75 et le corpus 87-89.

Language Model D S I Corr | Acc
Background (B) 0.003 | 0.033 | 0.010 | 0.965 | 0.954
Adaptation of B model using LSM 0.003 | 0.033 | 0.010 | 0.964 | 0.954
Adaptation of A model using LSM 0.003 | 0.030 | 0.011 | 0.967 | 0.956
B+A model 0.002 | 0.027 | 0.009 | 0.970 | 0.961
Adaptation of B+A model using LSM | 0.002 | 0.026 | 0.009 | 0.973 | 0.963

12.2.2 Sujet n-gramme compte LM (TNCLM)

Dans cette section, nous présentons des nouvelles approches d’adaptation du modele de
langue (LM) utilisant le modele d’allocation latente de Dirichlet (LDA) [13]. Les N-
grammes observés dans 1’ensemble d’apprentissage sont affectés aux sujets en utilisant
des méthodes de regroupement strict et souple. Lors d’un regroupement souple, chaque
n-gramme est affecté aux sujets de telle sorte que le nombre total des n-grammes pour tous
les sujets est égal au nombre global de n-grammes dans I’ensemble d’apprentissage. Dans
ce cas, les poids du sujet normalisés de la n-gramme sont multipliés par le nombre global
des n-grammes utilisés pour former le n-gramme du sujet pour les sujets respectifs. Dans
le regroupement strict, chaque n-gramme est affecté a un seul sujet avec la fraction maxi-
male du nombre global des n-grammes pour le sujet correspondant. Dans ce cas, le sujet
est sélectionné a 1’aide du poids maximum pour le sujet du n-gramme. Les comptes de

n-grammes des LMs sont créées en utilisant les n-grammes respectifs des sujets et adaptés
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en utilisant les poids des sujets d’un ensemble développement. Nous calculons la moyenne
des mesures de confiance : la probabilité d’un mot étant donné le sujet P(w;lt;) et la prob-
abilité du sujet étant donné le mot P(f;|w;). La moyenne est calculée sur les mots dans les
n-grammes et dans I’ensemble du développement pour former respectivement les poids du

sujet des n-grammes et de 1I’ensemble de développement [42].

Données et parametres

Les données et les autres parametres sont exactement les mémes que dans la section 12.2.1,
sauf le LDA et les modeles de langage sont entrainés en utilisant le vocabulaire fermé non

verbalisé de ponctuation WSJ 5K.

Résultats expérimentaux

Nous avons testé nos approches proposées pour les tailles du sujet 20 et 40. Les résultats de
perplexité des modeles de ANCLM sont présentés dans le tableau 12.11 et le tableau 12.12,
ou les comptes des n-grammes du sujet pour les modeles de TNCLM sont respectivement

générés en utilisant les mesures de confiance P(w;|t;) et P(t|w;).

Table 12.11 Résultats de la perplexité des données de test Novembre 1993 en utilisant le
modele de ANCLM généré en utilisant la mesure de confiance P(w;|t) pour les regroupe-
ments durs et mous de n-grammes de fond.

Language Model 20 Topics | 40 Topics
Background (B) 83.4 83.4
ANCLM (Hard) 277.3 378.2
ANCLM (Soft) 101.2 109.2
B+ANCLM (Hard) 72.6 72.5
B+ANCLM (Soft) 71.5 70.8

Les résultats WER des expériences sont décrites respectivement dans les figures 12.2 et

12.3 pour la mesures de confiance P(w;|t) et P(tx|w;).

12.2.3 Nouveau compte de n-gramme du sujet du LM

Dans cette section, nous présentons un nouveau compte de n-grammes du sujet du modele de
langage (NTNCLM) obtenu a 1’aide des probabilités du sujet des documents d’apprentissage

et des comptes de n-grammes basés sur des documents. Les probabilités du sujet pour les
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Table 12.12 Résultats de la perplexité des données de test Novembre 1993 en utilisant le
modele de ANCLM généré en utilisant la mesure de confiance P(#;|w;) pour les regroupe-

ments durs et mous de n-grammes de fond.

Language Model 20 Topics | 40 Topics
Background (B) 83.4 83.4
ANCLM (Hard) 227.9 287.25
ANCLM (Soft) 92.9 101.45
B+ANCLM (Hard) 71.65 71.5
B+ANCLM (Soft) 70.15 69.9

B Background (B) & LDA unigram scaling B LDA n-gram weighting
® B+ANCLM(Hard) OB+ANCLM(Soft)

8.2 54

7.8
7.6
7.4

7.2

Topic 20 Topic 40

Fig. 12.2 Résultats WER (%) sur les données de test Novembre 1993 pour le modele de
ANCLM développé en utilisant la mesure de la confiance P(w;|ty)

documents sont calculées en prenant la moyenne des probabilités du sujet des mots ob-
servés dans les documents. Les probabilités du sujet des documents sont multipliées par
les comptes des n-grammes basés sur des documents. Les produits sont ensuite additionné
pour tous les documents d’apprentissage. Les résultats sont utilisés comme les comptes
de leurs sujets respectifs pour créer les NTNCLMs. Les NTNCLMs sont adaptés en util-
isant les probabilités du sujet d’un ensemble de développement qui sont calculés comme
ci-dessus. Nous comparons notre approche avec une autre récemment proposée, nommée
TNCLM [42], ou les informations extérieurs a distance des événements du n-gramme ne
sont pas rencontrées. Notre approche donne une perplexité et un taux d’erreur de mots
(WER) significativement réduits par rapport a I’autre approche lorsque testé sur le corpus
de Wall Street Journal (WSJ) [48].



12.3 Cing nouveaux modeles probabilistes du sujet 139

B Background (B) % LDA unigram scaling B LDA n-gram weighting
® B+ANCLM(Hard) O B+ANCLM(Soft)
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7.2

6.8

Topic 20 Topic 40

Fig. 12.3 Résultats WER (%) sur les données de test Novembre 1993 pour le modele de
ANCLM développé en utilisant la mesure de la confiance P(t;|w;)

Données et parametres

Les données et les autres parametres sont exactement les mémes que dans la section 12.2.1,
sauf le LDA et les modeles de langage sont entrainés en utilisant le vocabulaire fermé non

verbalisé de ponctuation WSJ 5K.

Résultats expérimentaux

Nous avons testé nos approches proposées pour différentes tailles du sujet. Les résultats en
termes de la perplexité et du WER sont respectivement présentées par le tableau 12.13 et
par la graphique figure 12.4.

L’amélioration significative du WER en utilisant B+ ANNCLM est obtenue par I’ utilisation
d’un de paire assortie du test ou les mots mal reconnus dans chaque énoncé du test sont
comptés. Nous obtenons les valeurs p de 0,03 et 0,02 par rapport a B+ANCLM [41] re-
spectivement pour les tailles du sujet de 25 et 50. Au niveau 0,05, notre modele proposé
B+ANNCLM a surpassé le modele B+ANCLM [41].

12.3 Cinq nouveaux modeles probabilistes du sujet

Dans ce section, nous proposons cinq nouveaux modeles probabilistes du sujet qui sont en-

trainés a 1’aide d’algorithme d’espérance-maximisation (EM). Dans ce cas, nous entrainons
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Table 12.13 Résultats tels que mesurés par la perplexité obtenus sur les données de test
Novembre 1993 en utilisant le trigramme du langage modeles.

Language Model 25 50
Topics | Topics
Background (B) 83.4 83.4
ANCLM 105.5 | 134.0
ALNCLM 86.5 | 1114
ANNCLM 86.2 | 1104
B+ANCLM 75.3 75.6
B+ALNCLM 74.6 74.8
B+ANNCLM 74.7 74.9

W Background (B) M LDA unigram scaling ® B+ANCLM
B B+ALNCLM M B+ANNCLM

8.2 8.1

7.8
7.6
7.4
7.2

6.8
Topic 25 Topic 50

Fig. 12.4 Résultats tels que mesurés par le WER (%) obtenus sur les données de test Novem-
bre 1993 a I’aide des modeles de langage

les parametres du modele a I’aide des données d’apprentissage observées. Une procédure de
pliage est ensuite appliquée pour calculer les probabilités du sujet des données du test non
disponibles. Les modeles n-gramme de langage de I’ensemble du test sont calculés en util-
isant les probabilités n-grammes pour les sujets et les probabilités des sujets de I’historique

des (n-1) mots de données du test. Les contributions de cette partie sont :

12.3.1 PLSA LM basée sur le contexte

Dans cette section, nous proposons un nouveau modele de langue a base du contexte pour
la reconnaissance vocale nommée I’analyse probabiliste sémantique latente a base du con-

texte (CPLSA). Dans ce modele, le sujet est conditionné sur le cadre de I’historique im-
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médiat et le document dans le modele PLSA original [33]. Ce permet le calcul de toutes
les probabilités de bi-grammes possibles du 1’historique du contexte vu a 1’aide du mod-
ele. Il calcule correctement la probabilité du sujet d’'un document invisible pour chaque
historique du contexte présent, dans le document. Nous comparons notre approche avec un
autre récemment proposé, nommée le modele bi-gramme non lissée PLSA (UBPLSA) [7]
ou seules les probabilités bi-grammes observées sont calculées, ce qui provoque le calcul de
probabilité du sujet incorrect pour I’historique présente du contexte du document non vu.
Le modele de CPLSA proposé nécessite beaucoup moins de temps du calcul et d’espace
mémoire que pour le modele bi-gramme non lissée PLSA [43]. Dans le modele de CPLSA,
les probabilités de mots pour les sujets sont calculées par la somme des événements des bi-
grammes dans tous les documents. Toutefois, dans différents documents les mots peuvent
apparaitre pour décrire les différents sujets. Pour résoudre ce probleme, nous introduisons
également un Modele CPLSA a base du documents (DCPLSA) [50]. Ce modele est simi-
laire au modele de CPLSA sauf que la probabilité du mot est conditionnée a la fois au sujet
et au document. Cependant, il nécessite une plus grande taille de mémoire et du temps du
calcul que le modele de CPLSA.

Données et parametres

Nous avons choisi au hasard 500 documents du corpus *87-89 WSJ [71] pour I’entrainement
de la UBPLSA, la CPLSA et les modéeles DCPLSA. Le nombre total de mots dans les doc-
uments est de 224,995. Nous avons utilisé 5K de vocabulaire fermé de ponctuation non ver-
balisé a partir de laquelle nous avons éliminé la liste de mots éliminatoires de MIT [3] et les
mots peu fréquents qui se produisent qu’une seule fois dans les documents d’apprentissage.
Apres ces éliminations, le nombre total de mots du vocabulaire est de 2628 mots. Nous
ne pouvions pas envisager plus de documents d’entrainement en raison du colt de calcul
plus élevé et besoin énorme en termes de mémoire pour le modele de UBPLSA [7] et les
modeles DCPLSA. Pour la méme raison, nous entrainons seulement les modeles bi-gramme
UBPLSA, CPLSA et DCPLSA. De plus, nous avons utilisé le méme nombre de documents
pour les modeles PLSA et CPLSA pour une vraie comparaison. Pour capturer la régularité
lexicale locale, les modeles du sujet sont interpolés avec un modele trigramme back-of f
d’arriere plan. Le modele trigramme de d’arriere plan est entrainé a partir du corpus le
87-89 WSIJ en utilisant la version de back-of f de lissage de la Witten-Bell; 5K de vocab-
ulaire fermé de ponctuation non verbalisé et les seuils de 1 et 3 sont respectivement in-
corporés sur les comptes de bi-grammes et de tri-gramme. Les coefficients de pondération

d’interpolation sont calculés en optimisant sur la lieu de départ des données. Les expéri-
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ences sont évaluées sur I’ensemble d’évaluation, qui est un total de 330 énoncés d’essai
des données de référence de Novembre 1992 (ARPA CSR) pour les vocabulaires de 5K
mots [71, 101].

Résultats expérimentaux

Nous avons testé les approches LM ci-dessus pour différentes tailles de sujets. Nous avons
effectué les expériences cinq fois, et les résultats sont moyennés. Les résultats en termes
de la perplexité et du WER sont respectivement présentés par le tableau 12.14 et par la

graphique figure 12.5.

Table 12.14 Résultats de la perplexité des modeles sujets

Language Model | 20 Topics | 40 Topics
Background (B) 69.0 69.0
B+PLSA 62.0 61.9
B+UBPLSA 59.0 58.7
B+CPLSA 57.5 55.8
B+DCPLSA 55.5 53.8

Nous avons effectué le test ¢ apparié sur les résultats de la perplexité des modeles ci-
dessus avec un un niveau de signification de 0,01. Les valeurs de p pour différentes tailles

du sujet sont décrites dans le tableau 12.15.

Table 12.15 p-valeurs obtenues a partir de la # test apparié sur les résultats de la perplexité

Language Model 20 Sujets | 40 Sujets
B+UBPLSA and B+CPLSA | 6.0E-11 | 2.8E-14
B+CPLSA and B+DCPLSA | 6.5E-12 | 3.1E-13

D’apres le tableau 12.15, on peut noter que toutes les valeurs de p sont inférieures a la
limite de signification de 0,01. Par conséquent, les améliorations de la perplexité du modele
DCPLSA proposé sur le modele CPLSA [43] sont statistiquement significatifs. En outre, le
modele de CPLSA [43] est statistiquement meilleur que le modele de UBPLSA [7].

Nous avons également effectué un test ¢ apparié sur les résultats du WER pour les mod-
¢les interpolés avec un niveau de signification de 0,01. Les valeurs p du test sont représen-
tées dans le tableau 12.16.
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Fig. 12.5 Résultats tels que mesurés par le WER (%) des modeles de langue

Table 12.16 p-valeurs obtenues a partir de la 7 test apparié sur les résultats WER

Language Model 20 Sujets | 40 Sujets
B+UBPLSA and B+CPLSA | 4.7E-06 | 9.3E-06
B+CPLSA and B+DCPLSA | 6.9E-06 | 1.5E-07

D’apres le tableau 12.16, nous pouvons voir que les valeurs de p sont inférieures a la
limite de signification de 0,01. Par conséquent, les améliorations en terme du WER du

modele proposé DCPLSA sont statistiquement significatives.

12.3.2 La LDLM interpolée

Dans cette section, nous proposons une approche de la modélisation de la langue (LM) util-
isant les n-grammes éloignés interpolées dans un modele de langage de Dirichlet latente
(de LDLM) [20] pour la reconnaissance vocale. Le LDLM relaxe I’hypothese d’ensemble
de mots et I’estimation du sujet du document d’Allocation latente de Dirichlet (LDA). 11
utilise par défaut les n-grammes d’arriere plan ou I’information du sujet est extraite des
(n-1) mots d’historique a travers la distribution de Dirichlet dans le calcul des probabilités
de n-gramme. Le modele ne tient pas compte des informations a longue distance a partir
de I’extérieur des événements des n-grammes qui peuvent améliorer les performances de la
modélisation du langage. Nous présentons une interpolation LDLM (ILDLM) en utilisant

différents n-grammes éloignés. Dans ce cas, I'information du sujet est exploitée de (n-1)
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mots d’historique a travers la distribution de Dirichlet en utilisant 1’interpolation €loignée
des n-grammes. Les probabilités des n-grammes du modele sont calculées en utilisant les
probabilités des mots éloignés pour les sujets et les informations des sujets interpolées pour
les historiques. De plus, nous intégrons un LM a base de caches, qui modélise les mots re-
produisant, par I’ajustement une unigramme pour adapter les modeles de LDLM et ILDLM

qui modélisent les mots d’actualité [44].

Données et parametres

Le corpus 87-89 WSJ est utilisé pour entrainer des modeles de langage. Les modeles
sont entrainés a 1’aide le WSJ 5K de vocabulaire fermé de ponctuation non verbalisé. Un
modele de base de tri-gramme est entrainé en utilisant le lissage Kneser-Ney modifié en
intégrant les seuils des comptes 1 et 3 respectivement pour les bi-grammes et tri-gramme.
Afin de réduire les exigences de calcul et de mémoire a I’aide de MATLAB, nous avons
entrainé seulement les modeles bi-gramme LDLM et ILDLM. Pour les modeles de ILDLM,
nous avons considéré les bigrammes pour D=1,2. Le parametre d’apprentissage N est fixé
a 0,01. Une taille de mémoire de cache fixe de F' = 400 est utilisée pour le LM a base
de cache. Les poids d’interpolation Ap, ¥ et p sont calculés en utilisant le programme
de calcul-meilleur-mix de la boite a outils SRILM. Ils sont optimisés sur 1’ensemble de
développement. Les expériences sont évaluées sur I’ensemble d’évaluation, qui est un total
de 215 énoncés d’essai des données de référence de Novembre 1993 (ARPA CSR) pour les
vocabulaires de SK mots [71, 101].

Résultats expérimentaux

Nous avons testé les approches proposées pour différentes tailles de sujets. Les résultats en
termes de la perplexité et du WER sont respectivement présentés par le tableau 12.17 et par

la graphique figure 12.6.

12.3.3 La PLSA améliorée et EPLSA l’interpolée

Dans cette section, nous présentons de la modélisation de la langue (LM) des approches
utilisant les n-grammes d’arriere plan et les n-grammes interpolées €éloignés pour la recon-
naissance de la parole en utilisant une dérivation d’analyse probabiliste sémantique latente
renforcée (EPLSA). PLSA est un modele d’ensemble de mots qui exploite les informations
de sujets au niveau du document, ce qui est incompatible avec la modélisation de la langue

en reconnaissance de la parole. Nous considérons la séquence de mots dans la modélisation
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Table 12.17 Résultats tels que mesurés par la perplexité des modeles de langage

Language Model 40 Topics | 80 Topics
Background (B) 70.3 70.3
PLSA 517.8 514.8
LDLM 251.6 153.6
ILDLM 86.9 65.25
B*PLSA 66.6 66.5
B+LDLM 65.1 62.5
B+ILDLM 53.6 52.7
(B+LDLM)*CACHE 59.9 57.5
(B+ILDLM)*CACHE 49.3 48.5

f¥Background (B) ~ EB*PLSA W B+LDLM
% (B+LDLM)*CACHE # B+ILDLM # (B+ILDLM)*CACHE
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Fig. 12.6 Résultats tels que mesurés par le WER (%) des modeles de langue
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de EPLSA. Dans ce cas, le mot prédit d’un événement de n-grammes est tiré d’un sujet qui

est choisi de la distribution des sujets des (n-1) mots d’historique. Le modele de I’EPLSA

ne peut pas capturer les informations de sujets a longue distance a partir de I’extérieur de

I’événement n-grammes. Les n-grammes €loignés sont incorporés dans la forme interpolée

(IEPLSA) pour couvrir I’information a long terme. Un modele LM a base de caches qui

modélise les mots reproduits est également intégré via une unigramme aux modeles EPLSA

et IEPLSA, qui modélise les mots dépendant du sujet [45].

Donées et parametres

Le corpus *87-89 WSIJ est utilisé pour entrainer des modeles de langage. Les modeles sont

entrainés a I’aide le WSJ 5K de vocabulaire fermé de ponctuation non verbalisé. Un modele
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de base de tri-gramme est entrainé en utilisant le lissage de Kneser-Ney modifié intégrant
respectivement les seuils des comptes : 1 et 3 des bi-grammes et tri-grammes. Pour réduire
les exigences en termes de mémoire et du calcul en utilisant MATLAB, nous avons entrainé
seulement les modeles bi-grammes EPLSA et IEPLSA. Pour les modeles IEPLSA, nous
avons considéré les bigrammes pour D=1,2. Une taille de cache fixe de F=400 est utilisée
pour le LM a base de caches. Les poids d’interpolation Ap, ¥ et & sont calculés selon
le programme calcul-meilleur-mix de la boite a outils de SRILM. Ils sont optimisés sur
I’ensemble du développement. Les expériences sont évaluées sur I’ensemble d’évaluation,
qui est un total de 215 énoncés d’essai des données de référence de Novembre 1993 (ARPA
CSR) pour les vocabulaires de 5K mots [71, 101].

Résultats expérimentaux

Nous avons testé 1’approche proposée pour différentes tailles de sujets. Les résultats en
termes de la perplexité et du WER sont respectivement présentées par le tableau 12.18 et

par la graphique figure 12.7.

Table 12.18 Résultats tels que mesurés par la perplexité des modeles de langage

Language Model 40 Topics | 80 Topics
Background (B) 70.3 70.3
PLSA 517.8 514.8
EPLSA 192.9 123.3
IEPLSA 101.2 93.0
B*PLSA 66.6 66.5
B+EPLSA 62.9 59.7
B+IEPLSA 55.1 55.1
(B+EPLSA)*CACHE 58.0 55.1
(B+IEPLSA)*CACHE 50.7 50.7

12.4 Deux nouvelles approches de DCLM

Dans la derniere partie de la these, nous proposons deux nouveaux modeles de langage a
base des classes de Dirichlet qui sont entrainés a 1’aide d’algorithme EM bayésienne varia-
tionnelle (VB-EM). Dans ce cas, nous entrainons les parametres du modele en utilisant les

données d’apprentissage observés. Ensuite, les probabilités n-grammes pour 1’ensemble du



12.4 Deux nouvelles approches de DCLM 147

% Background (B) WB*PLSA W B+EPLSA
# (B+EPLSA)*CACHE B B+IEPLSA §i (B+IEPLSA)*CACHE

7.6 74 76 74

64613 605 6.03

o = N W »h O O N

Topic 40 Topic 80

Fig. 12.7 Résultats tels que mesurés par le WER (%) des modeles de langue

test non vus sont calculées a I’aide des parametres du modele. Les contributions de cette

partie sont les suivants :

12.4.1 La DCLM interpolée

Dans cette section, nous proposons une approche de la modélisation de la langue (LM)
en utilisant les n-grammes éloignés interpolées dans un modele de langue de la classe
de Dirichlet (DCLM) [21], pour la reconnaissance vocale. Le DCLM relaxe 1’hypothese
de I’ensemble-de-mots et I’extraction du document sujet d’ Allocation latente de Dirichlet
(LDA). La variable latente de DCLM refléte les informations de classe d’un événement
n-gramme plutdt que le sujet en LDA. Le modele DCLM utilise les n-grammes d’arriere
plan par défaut ou I’information de la classe est extraite des (n-1) mots d’historique via
une distribution de Dirichlet durant le calcul des probabilités de n-grammes. Le modele
ne tient pas compte des informations a long-terme provenant de 1’extérieur de la fenétre de
n-gramme qui peut améliorer les performances de la modélisation du langage. Nous présen-
tons une DCLM interpolée (IDCLM) en utilisant différents n-grams éloignés. Dans ce cas,
I’information de la classe est exploitée a partir de (n-1) mots d’historique a travers la distri-
bution de Dirichlet a I’aide des n-grammes éloignés interpolées. Une procédure bayésienne

variationnelle est introduite pour estimer les parametres de IDCLM [47].

Données et parametres

Les approches de LM sont évaluées en utilisant le corpus de Wall Street Journal (WSJ) [71].

Le corpus 87-89 WSIJ est utilisé pour entrainer les modeles de langage. Les trigrammes
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de base sont entrainées a 1’aide la version de back-of f du lissage de Witten-Bell de 5K
de vocabulaire fermé de ponctuation non verbalisé. Nous entrainons le modele trigramme
de IDCLM en utilisant R=2 et R=3. Dix itérations EM dans la procédure VB-EM ont été
utilisées. Les valeurs initiales des entrées dans la matrice 3, Bp ont été fixées a 1/V et
celles de U, Uy ont été sélectionnées au hasard dans I’intervalle [0,1]. Pour mettre a jour
les parametres variationnels dans I’étape VB-E, une seule itération a été utilisée. L’étape
VB-M était exécutée pour mettre a jour les parametres U, Uy par trois itérations [21]. Pour
capturer la régularité lexicale locale, des trigrammes de différentes méthodes sont interpolés
avec les trigrammes d’arriére plan. Les poids d’interpolation Ap et i sont calculés en opti-
misant les données détenus selon la métrique de la perplexité. Les expériences sont évaluées
sur I’ensemble d’évaluation, qui contient un total de 330 énoncés d’essai des données de
Novembre 1992 ARPA CSR test de référence pour des vocabulaires de SK mots [71, 101].

Résultats expérimentaux

Enraison des exigences plus élevées de la mémoire et du temps d’exécution pour I’entrainement
du modele IDCLM, nous avons entrainé les modeles DCLM et IDCLM pour des classes de
10 et 20. Les résultats en termes de la perplexité et du WER sont respectivement présentés

par le tableau 12.19 et par la graphique figure 12.8.

Table 12.19 Résultats tels que mesurés par la perplexité des modeles

Language Model | 10 Classes | 20 Classes
Background (B) 109.4 1094
B+Class 106.65 107.0
B+DCLM 100.2 100.45
B+IDCLM (L=2) 98.0 97.9
B+IDCLM (L=3) 95.6 95.4

L’amélioration importante en termes du WER est obtenue en utilisant un test de paires
assortis ou les mots mal reconnus, dans chaque énoncé du test, sont comptés. Les valeurs p
sont présentées dans le tableau 12.20.

D’apres le tableau 12.20, on peut noter que le IDCLM (R=2) est statistiquement signifi-
catif respectivement par rapport au LM a base de classes [16] et au DCLM [21] a un niveau
de signification de 0,01 et 0,05. Cependant, le modele a IDCLM (R = 3) est statistiquement

significatif aux modeles ci-dessus a un niveau de signification de 0,01.
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Fig. 12.8 Résultats tels que mesurés par le WER (%) pour différentes tailles des classes

Table 12.20 Valeurs p obtenues a partir des essais des paires-identifiées sur des résultats tels
que mesurés par le WER

Language Model 10 Classes | 20 Classes
B+Class & B+IDCLM (L=2) 3.8E-10 4.3E-10
B+Class & B+IDCLM (L=3) 47E-12 4.7E-12
B+DCLM & B+IDCLM (L=2) 0.04 0.01
B+DCLM & B+IDCLM (L=3) 0.004 0.006

12.4.2 DCLM a base du document

Dans cette section, nous proposons un modele de la langue a base de documents et des
classes de Dirichlet (DDCLM) pour la reconnaissance de la parole en utilisant des événe-
ments n-grammes a base de documents. Dans ce modele, la classe est conditionnée sur
le I’historique immédiat du context et le document dans le modele DCLM original [21].
Dans le modele DCLM, I’information de la classe a été obtenue a partir des (n-1) mots
d’historique des événements des n-grammes d’un corpus d’apprentissage. Dans ce cas, le
modele utilise le nombre de n-grammes, qui sont le nombre d’apparitions des n-grammes
dans le corpus. Ces chiffres correspondent a la somme de chiffres des n-grammes dans
les différents documents ou ils pourraient apparaitre pour décrire les différents sujets. Par

conséquent, les chiffres de n-grammes du corpus peuvent ne pas donner 1’information de
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la classe appropriée pour les historiques. Nous rencontrons ce probleme dans le modele
DCLM et proposons un nouveau modele DDCLM qui résout le probleme ci-dessus en trou-
vant I’information du contexte historique des événements de n-grammes a base de docu-
ments [46].

Données et parametres

Nous avons choisi au hasard 1000 documents des corpus *87-89 WSJ [71] pour I’entrainement
des modeles DCLM et DDCLM. Le nombre total de mots dans les documents est 439,212.
Nous avons utilisé le 5K de vocabulaire fermé de ponctuation non verbalisé a partir de laque-
lle nous avons supprimé la liste de MIT de mots a ne pas utiliser [3] et les mots peu fréquents
qui se produisent qu’une seule fois dans les documents d’entrainement. Apres ces arrange-
ments, le nombre total de mots dans le vocabulaire est de 3169 mots. Nous ne pouvions pas
envisager d’utiliser plus de documents d’entrainement en raison du cofit de calcul plus élevé
et I’énorme taille de la mémoire requise pour le modele de DDCLM. Cependant, les mod-
eles de trigrammes donnent de meilleurs résultats par rapport aux modeles de bi-grammes
lorsque plus de données d’entrainement sont pris en compte. Comme seulement une petite
quantité de données d’entrainement peut €tre pris en compte dans le modele de DDCLM,
la fiabilité des trigrammes diminue plus séverement que celui des bi-grammes et les bi-
grammes sont plus robustes que les trigrammes [103]. Pour cette raison, nous entrainons
les modeles DCLM et DDCLM en utilisant uniquement les bi-grammes. Les modeles sont
entrainés en utilisant uniquement les bi-grammes qui contiennent des mots du vocabulaire.
Pour capturer la régularité lexicale locale, les modeles sont interpolés avec un trigramme
back-of f du modele d’arriere plan, qui est entrainé sur le corpus *87-89 WSJ en utilisant la
version back-of f du lissage de Witten-Bell ; SK de vocabulaire fermé de ponctuation non
verbalisé et les seuils des comptes 1 et 3 sont respectivement incorporés sur les bi-grammes
et les tri-grammes. Cependant, dix itérations EM dans la procédure VB-EM ont été util-
isées. Les valeurs initiales des entrées de la matrice 8, fB;, ont été réglés pour étre 1/V et
ceux de U, Uy, ont €t€ sélectionnées au hasard dans I'intervalle [0,1]. Pour mettre a jour les
parametres variationnels dans 1’étape VB-E, une seule itération a été utilisée. Trois itéra-
tions de I’étape VB-M ont €té exécut€es pour mettre a jour les parametres U, Uy, [21]. Le
poids d’interpolation A est calculé en optimisant les données détenues. Les expériences sont
évaluées sur I’ensemble d’évaluation, qui est un total de 330 énoncés d’essai des données
de référence de Novembre 1992 (ARPA CSR) pour les vocabulaires de SK mots [71, 101].
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Résultats expérimentaux

Les modeles sont entrainés pour différents tailles des classes. Nous avons entrainé cinq fois
les modeles DCLM et DDCLM, et les résultats sont moyennés. Les résultats en terme de

la perplexité et du WER sont présentés dans le tableau 12.21 et la figure 12.9. D’apres le

Table 12.21 Résultats de la perplexité des modeles

Language Model | 20 Classes | 40 Classes
Background (B) 69.0 69.0
B+DCLM 61.6 61.4
B+DDCLM 59.8 59.9

tableau 12.21, nous pouvons noter que le modele de DDCLM proposé surpasse les autres
modeles pour toutes les tailles des classes.

Nous avons réalisé€ le test ¢ apparié sur les résultats de la perplexité du DCLM et les
modeles de DDCLM avec un niveau de signification de 0,01. Les valeurs de p pour la taille

des différentes classes sont présentées dans le tableau 12.22.

Table 12.22 p-valeurs obtenues a partir de la 7 test apparié sur les résultats de la perplexité

20 Classes
8.58E-07

40 Classes
9.24E-05

Language Model
B+DCLM & B+DDCLM

D’apres le tableau 12.22, on peut noter que tous les p-valeurs sont inférieures a la lim-
ite de signification de 0,01. Par conséquent, les améliorations de la perplexité du modele
proposé sur DDCLM et le modele DCLM [21] sont statistiquement significatives.

Nous avons également effectué un test ¢ apparié sur les résultats WER pour les modeles
B+DCLM et B+DDCLM avec un niveau de signification de 0,01. Les valeurs p du test sont

présentées dans le tableau 12.23.

Table 12.23 p-valeurs obtenues a partir de la ¢ test apparié sur les résultats WER

20 Classes
0.00024

40 Classes
0.00092

Language Model
B+DCLM & B+DDCLM
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Fig. 12.9 Résultats WER (%) pour la taille des classes différentes

D’apres le tableau 12.23, nous pouvons voir que les valeurs de p sont inférieures a
la limite de signification de 0,01. Par conséquent, les améliorations de WER du modele

proposé DDCLM sont statistiquement significatives.

12.5 Conclusion

Le LM est une partie tres importante de I’ASR, sans laquelle, I’amélioration des perfor-
mances du systeme ASR est impossible. Dans cette recherche, nous avons développé des
méthodes d’adaptation LM pour améliorer les performances des systemes ASR. Nous avons
intégré le modele de sujet LDA et introduit de nouveaux algorithmes de modélisation du su-

jet pour proposer les techniques d’adaptation LM.

12.5.1 Principales contributions de la these

Nous décrivons les principales contributions de cette recherche comme suit :

* Nous avons créé des modeles de composants de mélange en employant une méthode
du regroupement stricte dans le modele de LDA. Nous avons proposé une méthode de
pondération pour adapter les modeles de composantes. Nous considérons une tech-
nique d’adaptation appelée unigramme échelle, qui forme un nouveau modele adapté
en utilisant I’approche d’information discriminante minimal (MDI) [34, 68], qui min-
imise la divergence de Kullback-Leibler (KL), entre le nouveau modele adapté et
I’autre modele, avec la contrainte que la distribution marginalisée d’unigramme de
nouveau modele adapté est égale a la LSM. La LSM est la distribution de probabilité
d’unigrammes sur des mots qui sont calculés a ’aide des modeles unigramme LDA
adaptés [96]. Pour plus de détails, voir [49].
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* Nous avons utilisé les caractéristiques du modele LDA pour créer les modeles de
composants de mélange. Comme LDA est un modele d’ensemble-de-mots, chaque
mot a une importance égale dans la détermination de mélanges des sujets. Nous avons
calculé les probabilités de sujet des n-grammes en faisant la moyenne ses probabilités
de sujets pour les mots dans les n-grammes et les assigner en tant que le nombre
de comptes des n-grammes pour les différents sujets. Nous avons créé les modeles
de composants en utilisant ces comptes et les adapter en appliquant une approche de
pondération, ou les poids de mélange sont obtenus par la moyenne des probabilités des

sujets pour les mots de I’ensemble de développement. Pour plus de détails, voir [42].

* Nous avons créé les modeles de composants en utilisant les probabilités des sujets a
base du documents et les comptes des n-grammes a base du document. Les proba-
bilités de sujet des documents d’entrainement sont calculées en faisant la moyenne
des probabilités de sujets des mots vus dans les documents. Les probabilités de sujet
des documents sont multipliées par les comptes des n-grammes a base du document.
Ces produits sont ensuite additionnés pour tous les documents d’apprentissage. Les
résultats sont utilis€s comme les comptes de leurs sujets respectifs pour créer les mod-
¢eles de composants. Les modeles de composants sont ensuite adaptés en utilisant les
probabilités de sujet d’ensemble de développement qui sont calculés comme expliqué

ci-dessus. Pour plus de détails, voir [48].

* Nous avons mis en place un modele PLSA basée sur le contexte (CPLSA) afin de
résoudre les problemes d’un modele récemment proposé, a savoir, la bigramme PLSA
non lissée (UBPLSA) [7]. Les n-grammes observés des documents d’apprentissage
sont utilisés pour entrainer les modeles. Les probabilités des uni-grammes pour les
sujets sont entrainés a 1’aide du modele CPLSA qui permet de calculer les bonnes
probabilités, du sujet du documents non vus du test, que le modele permet de calculer
toutes les probabilités possibles des n-grammes du contexte historique déja vue. Pour
plus de détails, voir [43].

* Nous avons présenté un modele CPLSA basée sur des documents (DCPLSA) [50]
qui surpasse le modele de CPLSA. Le modele DCPLSA peut mieux décrire les mots
qui apparaissent dans différents documents pour représenter les différents sujets. Le
modele entraine les probabilités des uni-grammes a base de documents pour des sujets

au lieu des probabilités des uni-grammes a base du corpus pour les sujets dans le
modele de CPLSA.
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Résumé en francais

* Pour améliorer le modele de LDLM [20], nous avons proposé un modele de langage

a base d’interpolation latente de Dirichlet (ILDLM) en utilisant les comptes de n-
grammes éloignés, ol le sujet est tiré du (n-1) mots de contexte historique en utilisant
la distribution de Dirichlet dans le calcul des probabilités des n-grammes. Nous avons
calculé les probabilités des n-grammes du modele en utilisant les probabilités des
mots éloignés pour les sujets et I’information interpolée du sujet pour les historiques.

Voir [44] pour plus de détails.

Comme pour les approches LDLM et ILDLM, nous avons introduit une modele PLSA
amélioré (EPLSA) et un EPLSA interpolé (IEPLSA) dans le cadre du PLSA. Dans
le modele de EPLSA, le mot prédit des événements des n-grammes observées est
tiré a partir d’un sujet qui est choisi parmi la répartition d’un sujet des (n-1) mots
d’historique. Le modele EPLSA ne peut pas capturer les informations a long-terme
a I’extérieur des événements de n-grammes. Afin de remédier a ce probleme, nous
avons présenté un modele IEPLSA qui utilise les probabilités des mots éloignés pour

les sujets et les informations du sujet interpolées pour 1’historique [45].

Nous avons mis en place un DCLM interpolé (IDCLM) incorporant des n-grammes
interpolés éloignés. Dans ce cas, I'information de classe est exploitée a partir de (n-1)
mots d’historique par la distribution de Dirichlet utilisant les n-grammes interpolés
éloignés. Nous avons calculé les probabilités des n-grammes du modele en utilisant
les probabilités des mots éloignés pour les classes et les informations de classe inter-

polées pour les historiques. Les détails peuvent étre trouvés dans [47].

Nous avons présenté un modele de langue a base du documents et de classe de Dirich-
let (DDCLM) [46] en utilisant des événements n-grammes basés sur des documents.
Dans ce cas, la classe est conditionnée sur 1’historique immédiat des (n-1) mots et des
documents. Le modele aide a trouver les bonnes informations de la classe pour les
n-grammes qui sont utilisées pour décrire les différentes catégories dans les différents

documents.
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