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Résumé

Les mines souterraines sont connues pour ’adversité de leurs milieux de propagation

sans fil; une adversité qui pose de très grands défis au déploiement des systèmes de

communication sans fil. Bien que l’exploitation minière soit florissantes, les mines

d’or souterraines sont toujours critiquées pour leurs mesures de sécurité désuettes.

Notre mission dans les mines souterraines provient de la nécessité d’un système de

localisation fiable qui réussit à localiser avec précision les mineurs et leur équipement

dans les entrailles de la Terre.

Après avoir étudié les raisons de l’échec des techniques de localisation tradition-

nelles dans les mines souterraines, nous recommandons une technique efficace qui

utilise les réseaux de neurones artificiels (RNA) et les empreintes digitales extraites

de la réponse impulsionnelle du canal (RIC). L’essence de ce travail réside dans sa ca-

pacité à repousser les limites de performance des techniques de positionnement basées

sur les RNA en intégrant les concepts de diversité de transmetteur (Tx) et récepteur

(Rx) spatiale et/ou temporelle dans les empreintes digitales avant d’estimer la po-

sition d’un émetteur dans le confinement des tunnels souterrains. En faisant cela,

nous établissons les principes de localisation coopérative dans le domaine des RNA

en utilisant les empreintes digitales concaténées qui sont extraites de plus d’un point

d’accès, à plusieurs instances temporelles, en utilisant des systèmes d’antenne sim-

ples ou doubles. En conséquence, de nouvelles techniques d’empreintes, qui exploitent

les diversités spatiales et/ou temporelles des signatures rassemblées, sont introduites

pour la première fois avec des erreurs de positionnement remarquables de moins de
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50 cm dans 90 % des cas.

Les nouvelles techniques de positionnement basées sur les empreintes digitales sont

par la suite optimisées pour utiliser moins d’échantillons dans le but d’identifier un

compromis de précision qui minimise la complexité et le coût d’acquisition d’empreintes

digitales. Avec moins de la moitié des échantillons, nous démontrons que les RNA,

s’ils sont bien conçus, peuvent interpoler et estimer précisément (spatialement et/ou

temporellement) les empreintes digitales qui n’ont pas été vues par les RNA dans le

processus d’entrainement.

Les réalisations présentées dans cette recherche montrent que la localisation basée

sur la RIC peut atteindre jusqu’à 75 % de gains en précision en exploitant la diver-

sité spatiale et/ou temporelle en présence de systèmes d’antennes doubles, tout en

réduisant le coût de la collecte d’échantillons de moitié.
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Abstract

Underground gold mines are known for their disruptive indoor channels that challenge

the deployment of wireless communication systems by severely distorting their wire-

less transmitted signals. Although mining is among the most booming industries, yet

underground gold mines are still criticized for their outdated safety and security mea-

sures. Our mission in underground mines stems from the profound need of a reliable

localization system that succeeds to accurately localize miners and their equipment

in one of earth’s most dangerous entrails. After studying the reasons behind the

failure of traditional localization techniques in underground mines, we recommend

an effective localization technique that uses Artificial Neural Networks (ANNs) and

fingerprints extracted from the channel’s impulse response (CIR). The essence of this

work lies in its ability to push the performance limits of ANN-based positioning tech-

niques by integrating the concepts of Tx and Rx spatial and/or temporal diversities in

fingerprints prior to estimating a transmitter’s position in the confinement of under-

ground tunnels. By doing so, we lay down the guidelines of cooperative localization

in the realm of ANNs using concatenated fingerprints which are extracted from more

than one access point, at multiple time instances, using single or dual antenna sys-

tems. As a result, new fingerprinting techniques, that exploit spatial and/or temporal

diversities of the collected signatures, are introduced for the first time with outstand-

ing positioning errors of less than 50 cm 90% of the time. The novel fingerprint

positioning techniques are then optimized to use less data measurements in an effort

to tradeoff pinpoint accuracy for lower complexity and fingerprint-acquisition cost.
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By using less than half of the measurement campaign’s data, we prove that ANNs,

if well designed, may interpolate and precisely estimate spatially and/or temporally

diverse fingerprints taken from measurement gaps not seen by ANNs in the training

process. The new realizations of this research show that CIR-based localization may

attain up to 75% accuracy gains when exploiting spatial and/or temporal diversities

in the presence of dual antenna systems while, at the same time, cutting down the

measurement campaign’s cost in less than half.



Smart Localization in Underground Mines

using Fingerprinting and ANNs:

Strategies and Applications

Sommaire Récapitulatif

Cette partie contient les chapitres A, B, C, D et E qui sont la traduction française des chapitres
1, 3, 4, 5 et 6 respectivement.



Chapitre A

Introduction

Cette thèse introduit de nouvelles techniques de positionnement basées sur les

empreintes qui sont conçues pour les zones souterraines et confinées telles que les

mines d’or. Dans le cadre de mon doctorat à l’Institut National de la Recherche

Scientifique-Energie Matériaux et Télécommunications (INRS-EMT) et en collab-

oration avec le Laboratoire de Recherche Télébec en Communications Souterraines

(LRTCS), je présente et analyse les constatations et les résultats des techniques de

positionnement basées sur les empreintes dans les mines souterraines. Dans la suite

de cette thèse, la portée des travaux est définie en soulignant la problématique de

recherche, les objectifs et les méthodologies appliquées.

A.1 Problématique de recherche

La localisation des mineurs et/ou leurs équipements dans les mines souterraines

est un besoin essentiel qui garantit les mesures de sécurité de base dans l’un des

environnements de travail les plus dangereux. Cependant, les techniques de local-

isation modernes qui garantissent la précision dans les canaux extérieurs peuvent

échouer si elles sont implémentées dans des milieux intérieurs instables tels que les
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mines. Jusqu’à présent, de nombreuses recherches au LRTCS ont révélé l’efficacité des

techniques de positionnement intérieures entrâınées par l’intelligence artificielle que

nous considérons, dans notre étude, comme de bonnes candidates pour la localisation

souterraine. Toutefois, il y a encore un défi à relever par l’absence d’adaptation de ces

techniques à des systèmes de communication modernes et sophistiqués qui utilisent

plus d’un point d’accès en coopération et exploitent la présence d’antennes à entrée(s)

unique/multiples et sorties multiples (SIMO / MIMO). La valeur de cette recherche

provient de sa capacité à introduire des méthodes d’empreintes coopératives qui ex-

ploitent les diversités spatiales et/ou temporelles en la présence d’antennes émettrices

simples et/ou doubles comme dans le cas des dispositifs MIMO de communication

modernes. En conséquence, toutes les techniques de localisation qui s’appuient sur

une seule antenne d’empreintes peuvent utiliser notre approche innovante pour faire

usage de la diversité espace-temps, ce qui garantit une plus grande précision, ro-

bustesse et réduction des coûts d’acquisition des empreintes.

A.2 Objectifs

L’objectif principal de cette recherche est d’étudier les techniques de localisation

souterraine basées sur les empreintes sans fil dans le domaine de la diversité tem-

porelle et/ou spatiale d’une part, et en présence de plus d’une antenne émettrice et

réceptrice d’autre part. Ainsi, non seulement nous améliorons les précisions du po-

sitionnement et les résultats de précision, mais nous introduisons aussi de nouvelles

méthodes basées sur les empreintes qui peuvent être adaptées pour les systèmes de

localisation souterrains. Un autre objectif de cette recherche est de réduire le coût

des campagnes d’acquisition des empreintes, qui constitut la source principale de cri-

tique. En concevant des techniques à base d’empreintes qui assurent des précisions

ponctuelles pour moins de données de mesure hors ligne, nous réussissons à réduire le
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coût à moins de la moitié, tout en maintenant des résultats de positionnement précis

en utilisant nos nouvelles méthodologies d’empreintes sophistiquées.

A.3 Méthodologie

La mèthode employée utilise de 480 points de mesure des données recueillies dans

une mine souterraine à 2.4 GHz, en présence d’une seule antenne de réception, à partir

desquelles les réponses impulsionelles du canal (RIC) sont extraites. En utilisant les

empreintes extraites à partir des RIC et des Réseaux de Neurones Artificiels (RNA),

la localisation est ensuite adaptée en tant que paradigme pour localiser la position de

l’émetteur. De nouvelles empreintes sont ensuite formées en exploitant les diversités

espace et/ou temps. Il convient de souligner que les résultats de la localisation sont

basés sur la distance de séparation entre l’émetteur et le récepteur le long de l’axe x

seulement, en négligeant les petites variations le long de l’axe y qui sont de moindre

valeur dans les tunnels étroits des mines d’or souterraines.

Après discussion de la technique de localisation de base en présence d’un seul

récepteur, nous simulons, en utilisant les mêmes mesures, la présence d’une autre an-

tenne de réception pour étudier l’effet de l’utilisation de la diversité spatiale des em-

preintes collectées. En ayant deux récepteurs collectant les signaux transmis, deux em-

preintes sont extraites de chaque récepteur pour former une empreinte digitale spatiale

Rx pour chaque position donnée. Les résultats de l’exploitation de la diversité spatiale

Rx surpassent la présence d’un seul récepteur et contribuent à clarifier l’ambigüıté

de la position de l’émetteur dans la présence des jonctions. La diversité spatiale Rx

seule ne peut pas être améliorée sans l’ajout de points d’accès supplémentaires ce qui

n’est pas possible dans le confinement des mines à filons étroits.

Cependant, une autre dimension de recherche va au-delà de la diversité spatiale

pour inclure les empreintes de type mémoire exploitant la diversité de temps. L’étude
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de l’utilisation des empreintes temporelles est réalisée par la production de toutes les

empreintes des chemins possibles qui conduisent à une position spécifique, pour une

profondeur de mémoire donnée, à l’intérieur des tunnels. Une empreinte digitale de

chemin est une concaténation de toutes les sous-empreintes extraites le long d’un

chemin spécifique qui conduit à la position finale à estimer. Les RNA sont ensuite

formés sur tous les chemins possibles pour un niveau de mémoire donné et utilisés

pour estimer les données qui ne sont pas vues dans les phases d’apprentissage. Il

est observé que les seuils de performances sont améliorés en exploitant la diversité

temporelle avec une augmentation de la complexité de la formation.

Afin d’améliorer davantage les performances des techniques de positionnement

basées sur les empreintes, une étude a été menée afin d’évaluer la performance de

la localisation en présence de capacités de mémoire et la collaboration entre deux

récepteurs. Lorsque les châınes des sous-empreintes temporelles recueillies du pre-

mier récepteur sont combinées avec d’autres sous-empreintes au deuxième récepteur,

des empreintes spatio-temporelles sont obtenues. En conséquence, l’utilisation de la

diversité espace-temps surpasse les performances des approches précédentes en termes

d’exactitude, de précision et de complexité.

Un autre axe de recherche étudie la possibilité d’exploiter la présence d’antennes

doubles à l’émetteur, pour des fins de localisation, comme dans le cas de l’équipement

utilisateur (UE) moderne MIMO. Par la concaténation de deux sous-empreintes du

côté de l’émetteur séparées par un espacement d’antenne donné, nous formons un type

d’empreintes SIMO si une seule antenne de réception est présente et des empreintes

de type MIMO en présence de deux antennes de réception. Les empreintes de type

MIMO/SIMO sont étudiées sur un espacement antenne de 1 m suivant l’axe des x,

de 0,5 m et 1 m suivant l’axe des y.

Après la réalisation de très hautes précisions qui ont dépassé les attentes, une
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recherche pour une performance optimisée commence dans un effort pour réduire la

surcharge de coût des campagnes d’acquisition des empreintes. Chaque technique de

localisation a été mise sous le test de l’utilisation de moins de mesures de données,

pour l’apprentissage des RNA, en réduisant la résolution de la grille à un sixième

de sa taille originale. Les RNA ont été mis au défi pour localiser dans les lacunes

de mesure qui ne sont pas visibles dans les phases d’apprentissage, tout en essayant

de maintenir une précision de positionnement. Après la formation de plus de 14000

RNA, le nombre le plus adéquat de neurones qui correspond à chaque technique de

localisation a été identifié sur la base de la résolution de la grille.

Comme prévu, les précisions de la localisation diminuent légèrement lorsque la résolution

de la grille diminue, cependant, les techniques basées sur les empreintes nouvelles et

sophistiquées, comme le positionnement basé sur le type MIMO d’empreintes, réussit

à obtenir des résultats de positionnement précis même avec une résolution de grille

inférieure.

A.4 Structure de la thèse

La thèse est écrite en utilisant le format article et elle est divisée en deux parties,

chacune divisée en plusieurs chapitres.

Dans la première partie, chapitre 2 (dans la version anglaise) prèsente les principes

de localisation et les recherches les plus récentes effectuées dans les techniques de local-

isation intérieure. Au chapitre B, les nouveaux résultats de ce travail sont brièvement

discutés, y compris les nouvelles techniques de positionnement basées sur les em-

preintes qui exploitent les diversités spatiales et temporelles. En plus, la section B.5

p. xxii du même chapitre illustre les méthodes utilisées pour optimiser le système de

localisation en abaissant son coût d’acquisition des empreintes. Les résultats de per-

formance sont ensuite discutés au chapitre C. Les résultats sont suivis d’une conclusion
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au chapitre D, avant de révéler les futurs thèmes de recherche qui sont recommandés

comme une continuité de ce travail au chapitre E.

Dans la deuxième partie, nous incluons les publications et les manuscrits qui

légitiment ce travail et montrent l’importance de ses résultats. Chaque chapitre, étant

un article de conférence ou de journal, porte une nouvelle technique d’empreintes. Une

description complète de ce travail est résumée dans le journal inclus au chapitre 12.



Chapitre B

Localisation intelligente dans les

mines souterraines à l’aide des

empreintes et les RNA

Dans ce chapitre, nous examinerons les résultats de la recherche en profondeur en

montrant leurs méthodes fonctionnelles et les techniques basées sur les empreintes.

Ce chapitre constitue les principales réalisations de ce travail qui ont été publiées en

parties puis résumées dans un manuscrit de journal qui peut également être consulté

au chapitre 12.

Comme étude préliminaire, il est recommandé de réviser l’efficacité de la local-

isation basée sur les empreintes utilisant les RNA dans [31], qui a également été

examinée avant dans la section 2.3 p. 16. Dans un premier temps, nous examinons

la méthodologie adaptée pour la localisation coopérative, en présence de plus d’un

récepteur dans la section B.1 p. xiii qui contribue à la réalisation de l’article joint au

chapitre 7. La localisation utilisant la diversité temporelle est alors expliquée dans la

section B.2 p. xv et ses résultats peuvent être consultés également dans la publication
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mentionnée au chapitre 8. De même, la section B.3 p. xviii explique les concepts de la

localisation exploitant la diversité spatio-temporelle qui contribuent au travail publié

au chapitre 9.

L’innovation des empreintes de type SIMO/MIMO, qui sont examinées dans la

section B.4 p. xx et au chapitre 11, présente les techniques qui peuvent être utilisées

pour enrichir les techniques basées sur les empreintes avec la présence d’antennes Tx

doubles. Enfin, les techniques d’optimisation et de réduction de coût sont traitées

dans la section B.5 p. xxii et à travers les publications des chapitres 10, 11 et 12.

B.1 La localisation en exploitant la diversité spa-

tiale Rx

La localisation dans les mines souterraines à l’aide de plus d’un point d’accès a

été la première étape vers un système coopératif qui utilise plus d’une sous-empreinte

digitale avant d’estimer la position d’un émetteur. Non seulement la collaboration

entre les points d’accès augmente la précision du positionnement, mais elle élimine

également l’ambigüıté sur la définition de la direction de la transmission dans les cas

où des jonctions sont présentes dans les galeries et tunnels souterrains. La localisation

exploitant la diversité spatiale Rx est le premier chapitre de réalisations et est décrite

en détail dans la publication présenté au chapitre 7 et dans la section 12.3.1 p. 144.

Avant l’innovation des empreintes collaboratives, une seule empreinte digitale a été

utilisée par un seul récepteur pour extraire la distance à un émetteur sans connâıtre

le sens exact de la transmission. L’objectif de ce chapitre est d’incorporer plus d’une

empreinte digitale (c’est-à-dire, qui sera appelée sous-empreinte digitale) à partir des

récepteurs spatialement éloignés avant d’estimer la position finale de la transmission.
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Compte tenu de la topologie étroite spéciale des tunnels souterrains, deux récepteurs

seraient suffisants pour couvrir chaque tunnel, comme indiqué sur la figure 7.2. Les

mêmes mesures qui ont été prises à partir du premier récepteur R1 dans [31] sont

utilisées dans le sens opposé afin de simuler la présence d’un autre récepteur R2

comme indiqué sur la figure 3.1.

Exploitant la diversité spatiale Rx de deux récepteurs R1 et R2, dans la région de

couverture commune, se traduit par deux ensembles d’empreintes SR1 = {f1, f2, f3, ..., fm}

et SR2 = {f ′

1, f
′

2, f
′

3, ..., f
′

m}, respectivement. L’ensemble de sortie des RNA D =

{d1, d2, d3, ..., dm} représente les distances à l’un des récepteurs qui est pris par défaut

pour être la distance de R1 à l’émetteur. Il convient également de noter que de mul-

tiples scénarios sont analysés à des distances de séparation du récepteur de 60 m, 80

m et 100 m, en supposant que les signaux se désintègrent après 64 m tel que rapporté

dans [31] et remarqué dans les mesures collectées. Après avoir recueilli les ensembles

de mesure pour chaque scénario, on peut penser à deux façons pour estimer la posi-

tion d’un émetteur en utilisant les RNA.

La première conception, illustrée dans la figure 7.4, permet à chaque récepteur

de localiser séparément en utilisant son propre RNA avec sept paramètres d’entrée

correspondant à chaque empreinte respective ou signal reçu. En connaissant à priori

la carte du tunnel et la position de chaque récepteur, on peut faire la moyenne des

deux distances et estimer la position finale de chaque récepteur. Le deuxième type

est fournit de meilleurs résultats de l’estimation et est appelé ”technique de localisa-

tion coopérative” et utilise les sous-empreintes recueillies des deux récepteurs et les

concatène pour former des empreintes spatialement diverses, qui sont le double de la

taille de l’empreinte digitale originale. En d’autres termes, la concaténation de deux

ensembles, SR1 et SR2 résulte en un ensemble d’empreintes représenté par:

S = {F1, F2, F3, ...., Fm} = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)} . (B.1)
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Comme le montre la figure 7.5, la diversité spatiale Rx est exploitée en utilisant un

seul RNA formé avec les empreintes de longueurs de châıne plus élevées. Les résultats

de la localisation en utilisant la diversité spatiale Rx sont présentés pour les empreintes

d’apprentissage dans les figures 7.6, 7.7 et 7.8, tandis que les résultats des tests sont

présentés dans les figures 7.9, 7.10 et 7.11, à des distances de séparation du récepteur

de 60 m, 80 m et 100 m, respectivement. L’estimation finale obtenue des précisions

pour les techniques d’empreintes spatialement diverses Rx, après optimisation de leurs

RNA pour un coût faible d’acquisition des empreintes comme discuté plus tard dans

la section B.5 p. xxii, sont résumées dans le tableau C.1 à 77 cm et 90 cm pour 90%

des données d’apprentissage et de test, respectivement.

B.2 Localisation en exploitant la diversité tem-

porelle

La localisation utilisant la diversité spatiale Rx a été efficace dans les régions qui

sont couvertes par plus d’un seul point d’accès. D’une part, il manque à la solution

une technique efficace qui puisse garantir la même précision lors de la perte de cou-

verture du deuxième récepteur R2. D’autre part, l’augmentation de la précision dans

le cadre de la diversité spatiale nécessite seulement l’ajout de plus d’un point d’accès,

ce qui n’est ni faisable ni pratique dans les tunnels étroits et confinés.

La recherche pour une technique complémentaire basée sur les empreintes, qui fait

usage de la mobilité limité des mineurs sous terre, a conduit à la formulation de la

localisation basée sur les empreintes exploitant la diversité temporelle. La localisa-

tion exploitant la diversité temporelle est le second chapitre des réalisations et elle est

expliquée en détail dans la publication présente au chapitre 8 et dans les procédures

de la section 12.3.2 p. 147.
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Ce travail présente une technique basée sur les empreintes qui enregistre les sig-

natures (c’est-à-dire, ensembles de 7 paramètres) jusqu’à un certain niveau l de

mémoire. Par exemple, une empreinte digitale spatialement diverse Rx a la même

longueur d’empreinte digitale qu’une empreinte digitale temporelle extraite avec le

niveau mémoire l = 2. Toutefois, celle-ci est obtenue à l’aide d’un seul récepteur

en présence de la capacité d’enregistrement de la mémoire qui a incorporé la sous-

empreinte digitale précédente du mineur, au moment t−1 et l’a concaténée à une autre

sous-empreinte digitale au moment t0. En d’autres termes, une empreinte digitale

temporelle

f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

. (B.2)

est la concaténation des sous-empreintes mesurées dans des intervalles de temps courts

en déplaçant vers une destination à être estimée à X. l étant le nombre de sous-

empreintes concaténées ou ce que nous appelons le niveau de la mémoire, on définit

la longueur d’une empreinte digitale temporelle Lf où:

Lf = 7l. (B.3)

La localisation exploitant uniquement la diversité temporelle, en présence d’un récepteur,

est étudiée pour l = 1, 2, 3, 4 et 5 (c’est-à-dire, RNA (1,0), RNA (2,0), RNA (3,0),

RNA (4,0) et RNA (5,0)), après quoi aucun gain significatif n’est observé.

Pour illustrer davantage l’extraction des empreintes temporelles à travers un ex-

emple à l = 2, considérons la figure 8.5. Pour une position à t0, cinq chemin-

empreintes peuvent être extraits, dans la phase hors ligne, et ils représentent des

châınes d’empreintes qui combinent une signature de la position précédente extraite

du CIR à t−1 comme indiqué dans le tableau 8.1. Un autre exemple pour l = 3

est illustré en détail dans figure 12.7 où un mineur peut avoir jusqu’à 25 chemins-
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empreintes temporellement diverses pour une seule position. Le nombre de chemin-

empreintes jmax qui peut être obtenu pour une position donnée est limité par le

nombre supérieur de chemin-empreintes Nfp :

jmax ≤ Nfp = 5(l−1). (B.4)

Tous les chemin-empreintes possibles sont recueillis pour toutes les positions d’intérêt

tout en respectant les limites des tunnels confinés. L’ensemble total des empreintes

temporelles est désigné par S = {S1, . . . , Si, . . . , Sm} et il correspond à toutes les

distances D = {d1, . . . , di, . . . , dm}. La puissance de cette technique réside dans sa

capacité à augmenter de façon exponentielle le nombre de chemin-empreintes dans

l’ensemble d’apprentissage, en utilisant uniquement un seul récepteur, sans avoir be-

soin de mesures supplémentaires. Toutefois, cela se fait au prix d’une augmentation

du nombre d’entrées et le nombre de neurones pour les RNA d’apprentissage.

Les résultats de la localisation en utilisant la diversité temporelle sont présentés

pour les empreintes d’apprentissage dans les figures 8.9 et 8.10 pour les empreintes

d’apprentissage et de test, respectivement. Les précisions définitives d’estimation rap-

portées pour toutes les techniques basées dur les empreintes temporellement diverses

ont montré des gains de haute précision avec seulement 50 cm d’erreurs d’estimation

pour 90% des empreintes à l = 4 et l = 5. Un aperçu complet des résultats peut être

consulté à la section 8.4.2 p. 75 et dans les tableaux C.1 ou 9.1.
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B.3 Localisation exploitant la diversité spatio - tem-

porelle

En comparant des empreintes Rx spatialement et temporellement diverses, on

peut conclure que les deux sont uniques dans leur mise en œuvre. Les premières

exploitent la diversité spatiale des empreintes recueillies à partir de deux récepteurs

distincts alors que les dernières utilisent des mesures d’empreintes dans des intervalles

de temps courts. Cela a conduit à la réalisation que la combinaison des deux concepts

ensemble dans une technique basée sur les empreintes spatio-temporelles stimulerait

les précisions de la localisation et ajouterait plus de robustesse au système de lo-

calisation. En effet, augmenter la précision à une valeur extrême peut ne pas être

nécessaire pour le positionnement des mineurs en souterrain, mais on aura en échangé

une moindre complexité et un moindre coût, comme discuté ci-après dans la section

B.5 p. xxii. La localisation exploitant la diversité spatio-temporelle est le troisième

chapitre de réalisations des résultats très précis et satisfaisants ont été présentés dans

la publication du chapitre 9 et dans les procédures de la section 12.3.3 p. 151.

La localisation à mémoire assistée exploitant la diversité spatio-temporelle est le

résultat de la collaboration de deux récepteurs quand au moins l’un d’eux introduit

de la mémoire (par exemple, produisant des chemin-empreintes) [5]. Les niveaux de

mémoire des récepteurs R1 et R2 sont désignés par l1 et l2, respectivement. Les em-

preintes sont extraites pour différents niveaux de mémoire et analysées complètement

dans la section 9.3 p. 91. Un ensemble Si d’empreintes spatio-temporelles, pour une

distance di donnée, est une concaténation de deux sous-ensembles d’empreintes SR1
i et

SR2
i recueillies par les récepteursR1 etR2, respectivement, où: SR1

i =
{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

and SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

. Le résultat est un ensemble d’empreintes
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spatio-temporelles, qui est concaténé, et définit pour l1 et l2 comme suit:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}

.

Un exemple peut être tiré lors de la localisation d’un émetteur à une distance di et à

un instant t0 avec des niveaux de mémoire (l1 = 2, l2 = 1), qui conclut une empreinte

digitale spatio-temporelle Fi = (FR1
i , FR2

i ) où

FR1
i = (fR1

it0
, fR1

it
−

1
), (B.5)

FR2
i = (fR2

it0
). (B.6)

Pour (l1 = 2, l2 = 1), R2 extrait une empreinte digitale FR2
i de longueur 7 (c’est-

à-dire, une empreinte sans mémoire) tandis que FR1
i , collectée à partir de R1, est

la concaténation de deux sous-ensembles d’empreintes enregistrées à partir de deux

instants t0 et t−1 (c’est-à-dire, empreinte digitale à mémoire assistée de longueur 14).

En conséquence, une empreinte spatio-temporelle Fi = (FR1
i , FR2

i ) peut être utilisée

dans une technique basée sur les empreintes qui combine trois CIRs (à savoir, 21

paramètres) pour chaque position à l’intérieur de la topologie quasi-curviligne des

mines étroites. Le nombre d’entrées Ninputs, définit la conception du RNA et est

identifié par la longueur de l’empreinte spatio-temporelle qui dépend à la fois de l1 et

l2 où:

Ninputs = 7(l1 + l2). (B.7)

Le test des empreintes spatio-temporelles se fait en deux étapes. Dans un premier

temps, R2 est maintenu à un niveau de mémoire l2 = 1 (c’est-à-dire sans mémoire),
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tandis que le niveau de la mémoire de R1 varie (par exemple, l2 = 2, 3). Puis, dans

la deuxième étape, les deux niveaux de mémoire sont augmentés simultanément. Les

résultats de la localisation utilisant la diversité spatio-temporelle sont présentés pour

l’apprentissage et le test des empreintes aux figures 9.6 et 9.7, respectivement. Il a

été prouvé, dans la section 9.4 p. 93, que les approches basées sur la mémoire assistée

coopérative qui combinent les diversités spatiales et temporelles pour les empreintes

sont plus performantes que les techniques solitaires même lorsque la longueur des

empreintes est la même comme les cas du RNA (3,0) (c’est-à-dire, en exploitant la

diversité temporelle seulement) et le RNA (2,1) (c’est-à-dire, en exploitant la diversité

spatio-temporelle). Les résultats de toutes les techniques spatio-temporelles étudiées

peuvent être consultés dans le tableau 9.1, tandis que ceux résultant des RNA op-

timisés pour un coût faible d’acquisition des empreints digitales, discutés plus tard

dans la section B.5 p. xxii, sont résumées dans le tableau C.1.

B.4 Localisation exploitant la diversité spatiale Rx

et Tx

La localisation exploitant des empreintes basées sur des systèmes d’antennes dou-

bles, présents dans les systèmes de communication entrée unique/multiple sortie mul-

tiple (SIMO/MIMO), est le quatrième chapitre de réalisations et pousse les limites

de performance de la localisation basée sur la RIC. En utilisant les concepts de deux

antennes présentes dans les systèmes de communications SIMO/MIMO, une nouvelle

technique de localisation basée sur les empreintes est introduite pour combiner des

sous-empreintes extraites des antennes émettrices doubles (Tx) et recueillies sur une

ou plusieurs antennes de réception (Rx). Le résultat est un ensemble d’empreintes

spatialement diverses sur les antennes Tx et Rx, qui estime avec précision la distance
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à l’émetteur. Le fondement de ce travail est présenté dans la publication du chapitre

11 et dans les procédures de section 12.3.4 p. 153.

Dans ce qui suit, nous établissons les bases d’une nouvelle technique établie par

des empreintes de type SIMO et MIMO extraites de deux antennes émettrices (c’est-

à-dire, Tx1 et Tx2) en présence d’une antenne de réception (c’est-à-dire, Rx1) et deux

antennes de réception (c’est à dire, Rx1 et Rx2) respectivement. La diversité spatiale

est exploitée deux fois au niveau du récepteur et de l’émetteur, où l’espacement des

antennes est δTx = 1 m le long de l’axe des x ou δTx = 0.5 m le long de l’axe des y du

tunnel. D’un point de vue de mise en œuvre, les antennes peuvent être placées sur la

machinerie lourde ou construites dans les costumes des mineurs sur les épaules.

Les empreintes de type SIMO (c’est-à-dire, les empreintes recueillies à R1 à partir

des deux antennes Tx) exploitent la diversité spatiale Tx du côté de l’émetteur en

présence d’un seul récepteur sans la nécessité de la mémoire (cf. section 12 p. 133).

Une empreinte digitale de type SIMO est représentée comme suit:

F SIMO
i = (fTx1

i , fTx2
i ), (B.8)

où fTx1
i et fTx2

i sont les empreintes recueillies par Rx1, à une position i, pour Tx1 et

Tx2, respectivement. D’autre part, les empreintes de type MIMO, qui exploitent à

la fois les diversités spatiales Tx et Rx, sont simulées en considérant deux antennes

de réception Rx1 et Rx2, étant celles de R1 et R2, respectivement. Une empreinte

digitale de type MIMO peut être exprimée comme suit:

FMIMO
i =

{

(fTx1
i , fTx2

i ), (fTx1

i′ , fTx2

i′ )
}

. (B.9)

fTx1
i et fTx2

i représentent les empreintes recueillies par Rx1, tandis que fTx1

i′ and fTx2

i′ ,

sont les empreintes recueillies par Rx2, à une position i′ = D − i, pour Tx1 et Tx2,
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respectivement. L’estimation finale est la distance, le long de l’axe x, séparant R1 et

le point médian de Tx1 et Tx2. au chapitre 11, la localisation utilisant à la fois les

diversités spatiales Rx et Tx est étudiée à δTx
x = 1 m le long de l’axe des x et à δTx

y = 1

ou 0.5 m le long de l’axe des y du tunnel.

Les résultats de performance de l’exploitation des diversités spatiales Tx et Rx,

représentées sur la figure 11.8 et résumées dans le tableau C.1, dépassent ceux de

toutes les techniques développées basées sur les empreintes, discutées ci-dessus, en

termes de précision et d’exactitude. Leurs précisions tombent en dessous de 40 cm

pour 90% des données de test. En plus de cela, en exploitant la présence de systèmes

d’antennes doubles dans l’apprentissage des empreintes, la robustesse du système

de localisation augmente et les RNA, s’ils sont bien conçus, interpoleront avec des

précisions plus élevées même en présence d’écarts de mesure comme abordé plus tard

dans la section B.5 p. xxii.

B.5 Techniques d’optimisation et de réduction des

coûts

Dans la littérature, la plupart des techniques basées sur les empreintes sont cri-

tiquées en raison de leur besoin de campagnes de mesures coûteuses pour la construc-

tion de la base de données d’apprentissage des RNA. Réduire la quantité de mesures

de données, d’autre part, peut risquer le processus de généralisation que les RNA

nécessitent pour interpoler et estimer dans les écarts de mesure invisibles tout au

long du processus d’apprentissage. Une conclusion tirée après une tentative réussie, à

la fin du chapitre 10, pour récolter les avantages de la diversité, en échange d’un plus

faible coût d’acquisition des empreintes. Cependant, une étude plus poussée a été

réalisée pour défier toutes nos techniques de localisation développées qui utilisent les
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diversités spatiales, temporelles et spatio-temporelles en présence d’antennes de trans-

mission simples ou doubles, et mettre leurs RNA respectifs à l’épreuve de l’utilisation

de moins de mesures de données en cachant progressivement jusqu’à un sixième des

points de mesure de la grille. Les neurones obtenus, nécessaires pour chaque tech-

nique et qui ont été produits après des simulations étendues des RNA, constituent

l’argument décisif de ce travail et ils sont entièrement décrits dans la publication du

chapitre 11 et dans les procédures de la section 12.5 p. 159.

Les techniques de localisation ont été discutées à une taille de pas d’échantillonnage

Sx = 1 m qui représente la taille du pas entre n’importe quels deux points de mesure

consécutifs hors ligne le long de l’axe x du tunnel. Cela signifie que les RNA ont été

formés en utilisant un taux d’échantillonnage hors ligne Sr de 1 ensemble-empreinte

digitale par mètre sans lacunes cohérentes dans la résolution de la grille. Dans ce qui

suit, on augmente Sx, à 2 m, 3 m et jusqu’à 6 m (c’est-à-dire, réduire Sr pour un

ensemble-empreinte digitale par Sx), résultant en une fraction de la grille d’origine

en deux, trois et jusqu’à 6 sous-grilles, respectivement, en comptant pour la position

initiale de l’émetteur sur la grille.

Le défi de la diminution extrême du nombre d’empreintes vient de la capacité

d’alterner les conceptions des RNA en cherchant le nombre optimal de neurones

nécessaires pour chaque ensemble d’empreintes. Un très grand nombre de neurones se

traduirait par une convergence profonde et des précisions overfitting qui riposteraient

et entrâıneraient des erreurs d’estimation très élevées lors de la localisation dans des

écarts de mesure ou dans des sous-grilles omises dans le processus d’apprentissage

des RNA. De même, peu de neurones peut amener le système à perdre beaucoup de

sa performance en essayant de généraliser le domaine de solution. Pour cette raison

précise, une simulation approfondie a été effectuée et plus de 14000 RNA ont été
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formés, chacun avec un nombre de neurones nn, variant entre 1 et Nn, tels que:

1 < nn < Nn = 2Ni + 1, (B.10)

où Ni est le nombre d’entrées du RNA qui dépend de la technique de localisation

utilisée et des niveaux de mémoire. Un RNA successeur pour chaque technique est

celui qui obtient la meilleure performance, en termes de précision, lorsqu’il est testé

sur sa sous-grille formée et sur 25% de toutes les sous-grilles restantes à un certain

Sx. Le nombre de neurones sélectionnés par chaque technique de localisation est

représenté sur la figure 12.10 et il peut être utilisé comme une référence pour de fu-

tures études.

Étonnamment, les résultats de performance montrent des enregistrements très

précis, même lorsque les RNA sont formés en utilisant un sixième des empreintes de

la grille permettant aux empreintes de type MIMO de surpasser le reste des techniques

de localisation en termes de robustesse envers la résolution de la grille. A Sx = 6 m,

la localisation utilisant les diversités spatiales Tx et Rx atteint des résultats similaires

à la référence d’origine dans [31] à Sx = 1 m. Les autres résultats d’optimisation des

coûts pour toutes les techniques spatiales, temporelles et spatio-temporelles basées

sur les empreintes sont présentées dans la publication du chapitre 11 et dans les

procédures de la section 12.5.1 p. 160 en particulier dans les figures 12.13 et 12.14.



Chapitre C

Analyse des données et résultats

La fonction de densité cumulative (FDC) est utilisée tout au long de la dissertation

pour montrer et comparer les erreurs d’estimation de toutes les techniques de localisa-

tion développées en mettant l’accent sur leurs précisions de positionnements en mètres

par rapport à la précision (c’est-à-dire, le pourcentage des empreintes traitées). La

granularité des erreurs d’estimation est complètement montrée sur les figures 12.8,

12.9, 12.13, 12.14 et dans le tableau C.1, puis les résultats de performance sont

analysés ensemble dans les sections 12.4 p. 154 et 12.5.2 p. 162. Dans ce qui suit, les

techniques de positionnement basées sur les empreintes développées, qui constituent

les résultats de ce travail, sont comparées et analysées sur la base des facteurs im-

portants tels que l’exactitude, la précision, la complexité, la robustesse et le coût.

C.1 Exactitude et précision

La précision est l’une des plus importantes métriques de performance de n’importe

quel système de positionnement. Dans certaines applications telles que les systèmes

de positionnement militaire, la précision est le facteur le plus important et il ne peut
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Table C.1 – Précisions à résolution multiple

Technique ANN
Précision de positionnement

1 m 2 m 3 m 4 m 5 m 6 m

ANN(1,0) 1.42 m 1.44 m 1.81 m 2.04 m 2.12 m 2.83 m

ANN, 2Tx1Rx δTx
y = 0.5 m 1.10 m 1.43 m 1.73 m 1.81 m 2.26 m 2.58 m

ANN, 2Tx1Rx δTx
y = 1 m 0.85 m 1.36 m 1.53 m 1.66 m 1.94 m 1.97 m

ANN(2,0) 1.15 m 1.35 m 1.58 m 1.92 m 1.97 m 2.07 m

ANN(3,0) 0.53 m 1.36 m 1.58 m 1.78 m 1.94 m 2.02 m

ANN(4,0) 0.48 m 1.30 m 1.46 m 1.72 m 1.91 m 1.93 m

ANN, 2Tx1Rx δTx
x = 1 m 1.05 m 1.23 m 1.33 m 1.51 m 1.61 m 2.07 m

ANN(1,1) 0.91 m 1.07 m 1.15 m 1.28 m 1.39 m 1.45 m

ANN, 2Tx2Rx δTx
y = 1 m 0.64 m 0.84 m 1.07 m 1.14 m 1.35 m 1.51 m

ANN(2,2) 0.49 m 0.95 m 1.07 m 1.22 m 1.26 m 1.41 m

ANN, 2Tx2Rx δTx
x = 1 m 0.43 m 0.93 m 1.10 m 1.14 m 1.19 m 1.32 m

ANN, 2Tx2Rx δTx
y = 0.5 m 0.38 m 0.83 m 0.98 m 1.12 m 1.20 m 1.28 m

pas être échangé contre la complexité et le coût, alors que dans les systèmes de po-

sitionnement commercial, un compromis entre la précision et le coût peut avoir lieu

pour maintenir le prix dans la rationalité économique. D’autre part, le facteur de

précision détermine si une précision donnée est rapportée fréquemment dans de mul-

tiples mesures. Pour ces raisons, nous avons choisi de comparer toutes les techniques

de localisation en utilisant un percentile de 90% obtenus à partir des FDC de chaque

technique de localisation.

Dans notre problème de localisation, toutes les techniques de localisation abordées

peuvent être considérées précises car leurs erreurs de positionnement tombent en

dessous de 1.5 mètre. Toutefois, pour les besoins du raisonnement, la techniques la

plus précise de toutes est celle qui introduit les empreintes de type MIMO poussant

les limites de la précision à 38 cm pour 90% des données de test à Sx = 1 m. Une

précision similaire a été rapportée pour le positionnement basé sur des empreintes

spatio-temporelles avec RNA (2,2) avec des erreurs d’estimation aussi basses que 49

cm pour le même niveau de précision qui sont aussi proches des résultats de perfor-

mance des empreintes temporellement diverses avec RNA (3,0) et RNA (4,0).
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C.2 Complexité

La complexité du système de positionnement implique des facteurs tels que le

temps de calcul, la mémoire, la conception matérielle et logicielle, la consommation

d’énergie et l’implémentation. En tenant compte du temps de traitement du système,

les techniques de localisation basées sur les empreintes peuvent être comparées sur

la base du nombre de neurones utilisés par les RNA à la fois à l’entrée et dans les

couches cachées. L’apprentissage des RNA avec des empreintes de grandes longueurs

de châıne est beaucoup plus lent que l’apprentissage des RNA avec quelques neurones

d’entrée. Cela rendrait une technique de mémoire assistée avec un RNA (3,0) et

une précision de 53 cm plus attractive qu’un RNA (4,0) qui rapporte une meilleure

précision de 48 cm, car celui-ci utilise 7 neurones d’entrée en plus. On peut aussi

comparer le nombre de neurones cachés des deux techniques comme montré sur la

figure 12.10 pour trouver qu’elles commencent toutes les deux avec 40 neurones à Sx

= 1 m.

D’autre part, d’un point de vue implémentation, l’ajout de mémoire aux points

d’accès peut augmenter la complexité de la conception du système. Si la complexité

est la principale préoccupation, le positionnement basé sur des empreintes utilisant

les diversités spatiales Tx et Rx peut revenir à une complexité moindre que celle de

la localisation basée sur la mémoire, en termes d’acquisition des empreintes et les

techniques de reconnaissance de chemin.

C.3 Robustesse

La robustesse est la capacité de maintenir le système en stabilité une fois que les

informations reçues sont corrompues ou inconnues. Pour cette raison, ce travail a

étudié l’effet d’avoir moins de mesures de données dans le processus d’apprentissage



CHAPITRE C. ANALYSE DES DONNÉES ET RÉSULTATS xxviii

des RNA de toutes les techniques. Il est montré à Sx = 6 m que les techniques de

positionnement basées sur les empreintes temporellement diverses n’ont pas réussi

à maintenir leurs résultats de haute précision à Sx = 1 m, ce qui est dû au fait

qu’à un Sx supérieur, les sous-empreintes extraites des positions antérieures portent

moins d’informations sur la position actuelle de l’émetteur. On peut observer que

les empreintes spatio-temporelles et celles de type MIMO ont maintenu leurs ten-

dances de précision, même si un sixième des mesures étaient absentes du processus

d’apprentissage.

C.4 Coût

Le coût d’un système de localisation dépend de la complexité de ses conceptions

matérielles et logicielles; il dépend également du facteur d’intégration et de temps.

Toutes les techniques de localisation basées sur les empreintes doivent subir des cam-

pagnes de mesure qui ajoutent des coûts supplémentaires à la facture d’implémentation.

Plus les économies qu’une technique de localisation peut apporter sont meilleures, plus

elle devient attractive aux investisseurs et aux propriétaires d’entreprises. Le coût de

déploiement est minimum lors de l’utilisation des empreintes qui n’introduisent pas

de mémoire et n’utilisent pas des appareils MIMO compatibles avec des antennes

doubles, mais à ce faible coût des erreurs plus élevées et une faible robustesse pour la

résolution d’échantillonnage apparaissent. Cependant, il est prouvé ici que les cam-

pagnes de mesure peuvent être réduites à moins de la moitié quand des techniques

basées sur les empreintes spatio-temporelles ou de type MIMO réussissent à maintenir

des résultats de haute performance.



Chapitre D

Conclusion

Pour conclure, si les diversités spatiales, temporelles ou spatio-temporelles sont

bien appliquées dans les algorithmes de localisation basés sur les empreintes, le

système de localisation gagnerait une haute précision et des précisions de position-

nement ponctuelles. L’utilisation des empreintes de l’antenne double, d’autre part, est

recommandée pour les appareils à capacité MIMO et est prouvée pour augmenter la

performance du système. D’autre part, la réduction de la résolution d’échantillonnage

des mesures hors ligne nécessite une conception minutieuse des RNA qui réussissent

à localiser les lacunes de mesure invisibles dans le processus d’apprentissage. Enfin,

l’échange de la précision ponctuelle pour une complexité et un coût plus faible est

étudié pour des fins d’implantation dans un effort pour réduire le temps nécessaire

pour les campagnes d’acquisition des empreintes.



Chapitre E

Recherche future

Les études futures analyseront la performance de toutes les techniques de local-

isation basées sur les empreintes dans différentes bandes de fréquences, telle que la

bande des ondes millimétriques (c’est-à-dire, la bande de 60 GHz). Les applications

de localisation à 60 GHz peuvent être utiles dans les domaines de la robotique, les

réseaux de capteurs et les communications machine-vers-machine.

Puisque le système de localisation basé sur les RNA est centralisé (c’est-à-dire,

la connaissance de l’emplacement est du côté du récepteur), un autre domaine de

recherche serait d’analyser la capacité de diffusion des poids et des biais du RNA

et permettre aux utilisateurs de s’auto-localiser dans les environs d’une couverture

réseau sans fil.

Enfin, dans un meilleur effort pour optimiser le système de localisation, une étude

peut être réalisée pour recommander le nombre optimal de paramètres dans chaque

empreinte digitale basée sur la RIC selon que la localisation exploite la diversité

spatiale, temporelle ou spatio-temporelle.
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Chapter 1

Introduction to the Thesis

This dissertation contains novel fingerprint-positioning techniques that are de-

signed for underground and confined areas such as gold mines. Being a Ph. D. can-

didate in the Institut National de la Recherche Scientifique – Énergie Matériaux et

Télécommunications (INRS-EMT) and in collaboration with Telebec’s Underground

Communications Research Laboratory (LRTCS), we bring forward and analyze the

most recent findings and results of fingerprint-based positioning techniques in under-

ground gold mines. In the following, the scope of work is defined highlighting the

research problems, objectives and applied methodologies.

1.1 Research Problems

Localization of miners and/or their equipment in underground mines is an essential

need that guarantees basic safety measures in one of Earth’s most dangerous work

environments. However, modern localization techniques that perform accurately in

outdoor channels may not succeed if implemented in unstable indoor mediums such

as mines. So far, many research studies at LRTCS have revealed the effectiveness

of indoor positioning techniques driven by artificial intelligence that we consider, in
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our study, as good candidates for underground localization. One of the problems is

the absence of adaptation of such techniques to modern sophisticated communication

systems that use more than one access point cooperatively and exploit the presence of

single/multiple-input and multiple-output (SIMO/MIMO) antenna capabilities. The

value of this research comes from its ability to introduce cooperative fingerprinting

methods that exploit spatial and/or temporal diversities in the presence of single

and/or dual transmitter antennas such as in the case of modern, MIMO-capable

communication devices. As a result, all localization techniques that rely on single-

antenna fingerprinting may use our innovative approach to make use of space-time

diversity, which guarantees more accuracy, robustness and fingerprint-acquisitioning

cost reduction.

1.2 Objectives

The main objective of this research is to study underground wireless fingerprint

localization techniques in the realm of temporal and/or spatial diversities on one

hand, and in the presence of more than one transmitter and receiver antennas on

the other. By doing so, not only do we enhance positioning accuracies and precision

results, but we also introduce new fingerprinting methodologies that can be adapted

for underground localization systems. Another objective of this research is to re-

duce the cost of fingerprint-acquisition campaigns, which is the main criticism. By

designing fingerprinting-based techniques that tradeoff pinpoint accuracies for less

offline measurement data, we succeed in cutting down the cost to less than half while

maintaining accurate positioning results using our new, sophisticated fingerprinting

methodologies.
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1.3 Methodology

This work makes use of 480 data measurement points collected in an underground

mine at 2.4 GHz, in the presence of one receiver antenna, from which the channel im-

pulse responses (CIRs) are extracted. Localization using fingerprints extracted from

CIRs and artificial neural networks (ANNs) is then adapted as a paradigm to localize

the transmitter’s position. New fingerprints are then formed when exploiting space

and/or time diversities. For simplicity, underground tunnels are assumed to have a

two-dimensional structure with the x-axis taken along the tunnel’s length while the

y-axis is along its width. It should be noted that localization results are based on the

separation distance of the transmitter and receiver along the x-axis only, neglecting

the small variations along the y-axis which is less valuable in the narrow tunnels of

underground gold mines.

After discussing the basic localization technique in the presence of one receiver, we

simulate, using the same measurements, the presence of another receiver antenna to

study the effect of using the spatial diversity of the collected fingerprints. By having

two receivers collecting the transmitted signals, two fingerprints are extracted from

each receiver to form an Rx spatial fingerprint for each given position. The results

of exploiting Rx spatial diversity outperform the presence of one receiver only and

contribute in clarifying the ambiguity of the transmitter’s position in the presence of

junctions. Rx spatial diversity alone may not be enhanced without the addition of

extra access points which is not feasible in the confinement of narrow-vein mines.

However, another dimension of research goes beyond spatial diversity to include

memory-type fingerprints exploiting time diversity. The study of using temporal

fingerprints is achieved by producing all possible path-fingerprints which lead to a

specific position, for a given memory depth, inside the tunnels. A path fingerprint

is a concatenation of all sub-fingerprints extracted along a specific way that leads
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to the final position to be estimated. ANNs are then trained on all possible paths

for a given memory level and used to estimate data not seen in the training phases.

It is observed that performance thresholds are improved when exploiting temporal

diversity with an increase in training complexity.

In order to further enhance the performance of fingerprint-positioning techniques,

a study was conducted to evaluate the performance of localization in the presence of

memory capabilities and collaboration between two receivers. When chains of tem-

poral sub-fingerprints collected from the first receiver are combined path wise with

another sub-fingerprints at the second receiver, spatio-temporal fingerprints are ob-

tained. As a result, the use of space-time diversity outperforms the performance of

previous approaches in terms of accuracy, precision and complexity.

Another axis of research investigates the capability of exploiting the presence of

dual antennas at the transmitter, for localization purposes, as in the case of modern

MIMO-capable user equipment (UE). By concatenating two sub-fingerprints at the

transmitter’s end separated by a given antenna spacing, we form SIMO-type finger-

prints if one receiver antenna is present and MIMO-type fingerprints in the presence

of two receiver antennas. SIMO/MIMO-type fingerprints are studied at antenna spac-

ing of 1 m along the x-axis, 0.5 m and 1 m along the y-axis.

After achieving very high accuracies that exceeded expectations, a search for op-

timized performance starts in an effort to reduce the cost overhead of fingerprint

acquisition campaigns. Each localization technique was put under the test of using

less data measurements, for ANNs’ training, by reducing the grid’s resolution down to

one sixth of its original size. ANNs were challenged to localize in measurement gaps

that are not seen in the training phases while trying to maintain positioning accura-

cies. After training more than 14,000 ANNs, the most adequate number of neurons

that fits each localization technique was identified based on the grid’s resolution.
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As expected, localization accuracies slightly drop as the grid’s resolution decreases,

however, the new and sophisticated fingerprinting techniques, such as MIMO-type

fingerprint positioning, succeed to achieve accurate positioning results even at lower

grid’s resolution.

1.4 Structure of the Thesis

The thesis is written using the article format and it’s divided into two parts, each

divided into multiple chapters.

In the first part, chapter 2 sheds light on the principles of localization and the

latest research done in indoor localization techniques. In chapter 3, the novel findings

of this work are briefly discussed including the novel fingerprint-positioning techniques

that exploit spatial and temporal diversities. In addition to that, section 3.5 p. 32

of the same chapter illustrates the methods used to further optimize the localization

system by cutting down its fingerprint-acquisition cost. The performance results are

then discussed in chapter 4. Results are followed by a conclusion in chapter 5, before

revealing the future research topics that are recommended as a continuity of this work

in chapter 6.

In part two, we include the publications and manuscripts that legitimize this work

and show the importance of its findings. Each chapter, being a conference article or

a journal paper, carries a new fingerprinting technique and is introduced to in the

beginning of chapter 3. A complete summarized description of this work is wrapped

up in the journal paper included in chapter 12.



Chapter 2

Literature review

Localization of people, vehicles and equipment is an essential need for the func-

tionality of various applications in outdoor and indoor environments. In some out-

door scenarios, localization may be used for the positioning of emergency call origins,

fraud users and for traffic management. Similarly, localization may be used for indoor

applications such as the cases of home automation, tracking of fire-fighters/miners,

intruder detection and patient monitoring.

In theory, several localization techniques may be used in order to estimate a trans-

mitter’s position. However, the importance of each technique may be measured in

terms of its ability to extract, at the receiver’s end, the main components of the re-

ceived signals and estimate the distance separating the transmitter and receiver in a

given channel. While wireless signals carry certain characteristics such as the power,

frequency, time of arrival and multipath components, they are not often exploited to-

gether in localization techniques. In the following, we summarize various localization

algorithms showing their effectiveness and performance after which we investigate

indoor positioning in underground gold mines.
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2.1 Localization using Triangulation Techniques

Triangulation algorithms, which are used in major localization applications, ex-

ploit at least three reference points or receivers in order to estimate the source of

wireless transmission. Receivers collect the transmitted signals where one or more

signals’ parameters are extracted prior to estimating the distance that separates the

transmitter from each of the reference points. Lateration techniques (i.e., localization

using triangulation) are methods that extract the received signal’s strength (RSS)

or time of arrival (ToA) whereas the angulation techniques use the received signals’

angle of arrival (AoA) for position estimation.

Localization using triangulation is based on collecting the wireless signals from

three or more reference points before estimating the transmitter’s position. While

three reference points are used in order to estimate a two-dimensional location, four

receivers are needed in order to estimate a three-dimensional point. In the follow-

ing we discuss the lateration techniques that use the RSS or AoA alone in order to

estimate a mobile’s position.

2.1.1 Localization using RSS

The laws of physics state that electromagnetic signals traversing through open

space or channels lose energy until they fade after a certain distance. In wireless

communication systems, we make use of these laws to estimate the distance traveled

by a wireless signal after analyzing its power at the receiver’s end while a priori

knowing the signals’ frequency and antenna gains. In a Free Space Path Loss (FSPL)

model, the received power of a transmitted signal is given by:

Pr =
PtGt

4πd2
A =

λ2

(4πd)2
PtGtGr. (2.1)
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where Pr is the received signal’s strength measured in dB, Pt is the transmitted signal’s

strength, Gt and Gr are the receiver and transmitter antennas’ gains, respectively.

λ is the wavelength derived from the transmitted signal’s central frequency and d is

the distance separating the transmitter and the receiver. However, indoor channels

are more complex because wireless transmitted signals undergo many reflections, re-

fractions and attenuations on their way to the receiver. In the case of underground

mines, humid rough surfaces and non line of sight (NLOS) scenarios challenge the

capability of deriving an accurate path loss model. Estimating the distance traveled

by a wireless signal follows a generic path loss model that can be written as follows:

Pr−d(dB) = Pt(dB)− Pe−d(dB) +Gt(dB) +Gr(dB). (2.2)

where Pr−d is the received signal’s strength at a distance d away from the transmitter,

and Pt is the transmitted signal’s strength. Gt and Gr are the gains of the antennas

at the transmitter and at the receiver, respectively. Pe−d is the distance function and

it is of the following form:

Pe−d(dB) = Pe−d0(dB) + 10n log(d/d0) +X. (2.3)

where Pe−d0 is the loss measured for a distance d0 which is taken as 1 meter, n is the

attenuation coefficient and X is a random variable depending on the nature of the

channel. By combining both equations we conclude the following:

Pr−d(dB) = Pt(dB)− Pe−d0(dB)− 10n log(d/d0)−X +Gt(dB) +Gr(dB). (2.4)

In a 2D scenario, three receivers may estimate a transmitter’s position by calculat-

ing three distances d1, d2 and d3, using the RSS of each received signal, respectively.
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In the example of figure 2.1, the nodes A, B and C estimate a transmitter’s position

in the intersection region of three circles, each of radius dA, dB and dC , respectively.

The performance of RSS-based localization techniques depends on the accuracy

Figure 2.1 – Localization using triangulation.

of its path loss model. In many scenarios, such as indoor channels and underground

mines, multipath components and small/large scale fading introduces distance esti-

mation errors due to the fact that RSS measurements may vary for the same position

especially in the presence of NLOS regions and interconnected tunnels. It is also

noted in [16] that positioning using RSS-based techniques may result in wider inter-

secting circles that lead to lower accuracy and certainty about the transmitter’s exact

position.

2.1.2 Localization using ToA

Localization using Time of Arrival (ToA) is a technique that exploits the propa-

gation time needed by wireless signals to reach a position to be estimated. Similar
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to localization using RSS, ToA-based localization techniques use three measurement

points, in a 2D scenario, to estimate the transmitter’s position. However, unlike

RSS-based techniques, localization using ToA requires time synchronization of the

reference points or the exchange of timing information using protocols such as two-

way ranging protocols [36], [19], [44]. A straightforward approach uses the geometric

Figure 2.2 – Localization based on ToA.

method to calculate the distance from each receiver to the transmitter using the inter-

section region of three circles as presented earlier in RSS-based localization. Another

approach may introduce a non-linear cost function that helps tune the accuracy re-

sults by adding a reliability factor to each of the nodes. Assuming that a transmitter,

located at (x0, y0), transmits at time t0, the n base stations located at (x0, y0), (x1,

y1), . . . (xn, yn) receive that signal at times t1, t2, . . . tn and the cost function would

be:

F (x) =
n

∑

i=1

α2
i f

2
i (x), (2.5)

where αi is the reliability of each node and can be chosen depending on each topol-

ogy or measuring unit i, and fi(x) represents the delta between the straight-forward

distance calculated at the speed of light c and the estimated position at (xi, yi) such
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that:

fi(x) = c(ti − t)−
√

(xi − x)2 + (yi − y)2. (2.6)

The location is then determined by minimizing the cost function F (x). Two chal-

lenges face the deployment of TOA-based localization techniques in underground

mines. The first relies on the ability to synchronize all nodes using a time-based

protocol that can guarantee the estimation of high-resolution time delays. On the

other hand, the presence of NLOS and quasi-curvilinear tunnels adds more delays to

transmitted signals as a result of the numerous reflections that the signals encounter

along their way to the receiver. In other words, the time that the signals need to reach

a receiver does not necessarily represent the separation distance but it represents the

trajectory taken after bouncing through the walls inside the tunnels. All the above

adds ambiguity to the real position of the transmitter in indoor environments such

as underground mines.

2.1.3 Localization using TDoA

Another time-based triangulation technique uses the time difference of arrival

(TDoA) between the receivers in order to calculate the distance to a given transmitter.

Assume a signal is received at a receiver i such that:

xi(t) = s(t− di) + ni(t), (2.7)

where si(t) is the transmitted signal, di and ni are the delay and noise at receiver i,

respectively. Similarly, the received signal can be written at another receiver j as:

xj(t) = s(t− dj) + nj(t). (2.8)
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The cross-correlation function of the two signals is the integration of their lag product

over a time period T :

R̂xi,xj
(τ) =

1

T

∫ T

0

xi(t)xj(t− τ)dt. (2.9)

By maximizing R̂xi,xj
, the TDoA t is obtained. Similarly, a third receiver is needed

in order to come up with another TDOA t
′

forming two hyperbolas that intersect

in the position to be estimated. The solution of the hyperbolic equation can be

conducted through nonlinear regression and it can also be solved using the Taylor-

series expansion as shown in [43].

Figure 2.3 – Localization based on TDoA.

2.1.4 Localization using AoA

Localization based on the angle of arrival (AoA) requires antennas that can sense

the received signals’ direction in the presence of two or more receivers. This can be

the case of directional antennas or arrays of antennas that are able to measure the

angles of arrival of wireless signals. As shown in figure 2.4, two receivers located at

positions A and B are able to spot a transmitter P in the intersection of two straight

lines with angles θ1 and θ2, respectively. The advantages of this technique rely in its
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Figure 2.4 – Localization based on AoA.

ability to localize a transmitter without the need of time synchronization. However,

AoA-based localization techniques are not suitable for indoor positioning because

wireless signals undergo multiple reflections before reaching the receiver. Similarly,

in underground mines, the confinement of narrow tunnels and the presence of NLOS

scenarios challenge the functionality of this technique.

2.2 Fingerprint-Based Localization

Fingerprint positioning techniques are backed up by measurement campaigns con-

ducted in the channel where localization may take place. First, the data is collected

throughout the area of interest then it is stored in a database for offline analysis. Sev-

eral matching algorithms may be used afterwards to compare the available data to the

desired output, which is the distance to the transmitter in the localization problems.

After the system forms a reliable estimation model, new fingerprints may be used to

test its ability to generalize and estimate new positions in the measurement’s grid.

In indoor localization, fingerprinting is often used due to the increased complexity

in channel estimation. For instance, the random number of reflections that a signal

encounters on its way to the receiver, at different measurement points in an indoor

channel, severely affects the main wireless waves’ characteristics such as the RSS,
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ToA, etc . . . For that reason, taking multiple measurements and introducing sta-

tistical, probabilistic or artificially intelligent matching algorithms becomes a better

alternative to traditional fitting or model estimation techniques. Several matching

algorithms are found in the literature and may be used in the field of scene analysis

such as probabilistic methods, k-nearest-neighbor (kNN), artificial neural networks,

support vector machine (SVM), and smallest M -vertex polygon (SMP). While some

are used in different estimation problems, we shall discuss artificial neural networks

and explain why we recommend them for localization problems in underground mines.

2.3 Background of Localization in Underground

Mines

Localization in the presence of one receiver only was introduced in [31] as a novel

approach to localization and it is explained in Part II especially in sections 7.3 p. 50

and 12.2 p. 138. In the following, we will review the localization technique in [31]

that constitutes the groundwork of all developed spatial, temporal or spatio-temporal

fingerprint-positioning techniques discussed later in chapter 3.

In underground mines, positioning personnel and their equipment is an essential

need that guarantees basic security and safety protocols. However, localization in un-

derground mines is challenged by the special narrow-vein nature of its interconnecting

tunnels. For that reason, estimating a miner’s position using traditional localization

techniques discussed earlier in section 2.1 p. 9 may introduce major estimation errors

and can mislead the localization system about the real position of a user inside its

interconnected tunnels.

The challenges of underground positioning were discussed in multiple research
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projects at Telebec’s Underground Communications Research Laboratory (LRTCS),

a pioneering lab with research focus on underground communications (cf. surveys

[16] and [46]). After many pioneering works on wireless channel characterization and

modeling in underground mines at 2.4 GHz and 5.8 GHz bands [32], [2], then over

Ultra-wideband (UWB) [34], and most recently using the mmWave [26], LRTCS

succeeded in bringing forward an accurate positioning technique that combined the

essential signals’ characteristics in underground mines and the power of ANNs to

precisely localize in one of Earth’s most disruptive indoor channels.

2.3.1 Original Fingerprinting Technique

Fingerprint positioning is based on collecting information about wireless signals’

characteristics from measurement points, in the offline phase, then trying to match

the presence or absence of certain parameters upon the reception of new signals in

the online phase. In this work we illustrate the fundamentals of fingerprints extracted

from CIRs in underground mines.

When a signal is wirelessly transmitted in the confinement of underground tunnels,

it undergoes many reflections and refractions creating multipath components (i.e.,

multiple versions of the same signal with different variations/distortions of its original

characteristics). In theory, the transfer function of the channel can be mathematically

represented in the time and frequency domains as follows:

H(s, t, f) =

L(s,t)
∑

i=1

ρi(s, t).e
jθi(s,t).e−j2πfτi(s,t). (2.10)

h(s, t, τ) =

L(s,t)
∑

i=1

ρi(s, t).e
jθi(s,t).δ(τ − τi(s, t)). (2.11)
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where ρi(s, t), τi(s, t) and θi(s, t) are random variables that represent the sequence

amplitude, time of arrival and the phase of arrival, respectively. L(s, t) is the total

number of multipath components defined at time t and spatial position s. δ(τ −

τi(s, t)) represents the Dirac distribution and i stands for the index of the multipath

component.

In the following we shall consider the channel to be time invariant, i.e. there is no

spatial variations between the transmitter and receiver due to dynamic activity such

as human or natural variations. Therefore, the simplified versions of both transfer

functions may be represented as follows:

H(s, f) =

L(s)
∑

i=1

ρi(s).e
jθi(s).e−j2πfτi(s). (2.12)

h(s, τ) =

L(s)
∑

i=1

ρi(s).e
jθi(s).δ(τ − τi(s)). (2.13)

where ρi(s), τi(s) and θi(s) become a function of space only. Once a signal is received,

the channel impulse response is extracted from which we obtain the time impulse

response using Inverse Fast Fourier Transform (IFFT).

In 2006, real time measurements were taken from a gold mine named CANMET

in Val d’Or. The measurements were recorded at a central frequency of 2.4 GHz

and they were taken from the confinement of one tunnel shown in figure 7.1. The

measurements led to the collection of 480 CIRs from which a novel fingerprinting

technique was introduced for the first time in [31]. The fingerprinting technique

makes use of seven parameters (discussed below) extracted from the CIR of a given

position located at a distance d away from the transmitter. The parameters, stated

in section 7.2 p. 46, which guarantee uniqueness to the transmitter’s position as per

[31] are:
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• The mean excess delay (τ̄) that is the first moment of the power delay profile

measured at the first detectable signal that arrives at the receiver and is related

to the power of that profile. In other words it is related to the amplitudes of

the multipath components, and is given by:

τ̄ =

∑

k a
2
k τk

∑

k a
2
k

. (2.14)

• The root mean square (τrms), that represents the square root of the second

central moment of the power delay profile and it is given by:

σ =

√

τ̄ 2 − (τ̄)2, (2.15)

where:

τ̄ 2 =

∑

k a
2
k τ 2k

∑

k a
2
k

. (2.16)

• The maximum excess delay (τmax) which is the time at which the signal drops

below X dB of the maximum power measured in the power delay profile. It can

be seen as the time that a signal stays above a given threshold based on the

highest received power in a profile. In the following, the value of 20 dB is taken

as a threshold.

• The total power of the received signal (P ) measured in dBm.

• The number of multipath components (N) which form the entire received signal

measured at a 20 dB floor level.

• The power of the first arrival (P1) which is the power of the first multipath

component.

• The delay of the first path component (τ1) and it is used along with P1 in order
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to distinguish between the LOS and NLOS scenarios.

2.3.2 Basic Artificial Neural Network Architecture

ANNs are computational models that are capable of defining complex mathemat-

ical relationships between a set of inputs and a set of outputs. Each ANN is made up

of three important layers shown in figure 2.5. The input layer takes an input vector

(set of signature from the received signals) whose length defines the number of input

neurons to be used. Similarly, the output layer is made up of neurons that consti-

tute the observed output (i.e., distance to the transmitter) of the introduced input

vectors. In the middle lies the hidden layer that is made of a pre-defined number of

neurons, which connect the input and output neurons together through weights and

biases. The most important factor in ANNs’ design is the ability to define the number

of neurons needed in the hidden layer and the capability of training ANNs to make

sense of the input and output layers by carefully adjusting the weights and biases.

ANNs that are capable of estimating non-linear regression functions are of two

types. The first model is the Multi-Layer Perceptron (MLP), which represents the

most prominent and well-researched class of ANNs in classification and implementa-

tion. The second type is the Radial Basis Function (RBF), which is also a multi-layer

network but it performs in a significantly different way. To be more specific, the ac-

tivation of a hidden layer is based on the dot product between the input and weight

vectors in MLP-type ANNs. However, in RBF-type models, hidden units are acti-

vated based on the distance between the input and prototype vectors [17]. The use of

feed-forward ANNs with back-propagation learning algorithms is proven to provide

high positioning accuracy in [31] and is adapted for all developed localization tech-

niques.

In CIR-based localization techniques, the input layer is made of one or more finger-
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Figure 2.5 – ANN’s structure.

prints extracted from the CIRs while the output layer is the distance d that separates

the transmitter and the localizing unit. In the offline phase, ANNs are trained to

adjust their weights and biases in order to match the signals’ characteristics to the

desired output. However, in order to make sure that ANNs are capable of generalizing

the mathematical model and in an effort to avoid overfitting, ANNs are trained using

part of the measurement campaign while leaving fingerprints for testing purposes. In

the online phase that follows the training phase, ANNs would be ready to instanta-

neously estimate distances using new fingerprints extracted in real-time and fed to

ANNs’ input layer.

Localization in the presence of one receiver only [31] uses fingerprints extracted

for each position in the tunnel, as shown in figures 7.1 and 7.2, along the x and

y axes with 1 m and 0.5 m separation distances, respectively. The fingerprint set
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S = {f1, f2, f3, ..., fn} is formed and successfully matched to the corresponding set

of distances D = {d1, d2, d3, ..., dn} using an ANN. For simplicity throughout this

work, the distance to the transmitter is considered along the x-axis only, neglecting

the small variations along the y-axis which are less significant in the confinement of

narrow tunnels. Also, since measurements vary for the same position in underground

mines, the collection of more than one fingerprint for a given distance adds more ro-

bustness to the system’s design (i.e., around four to six fingerprints along the y-axis

correspond to the same output distance represented by the x position).



Chapter 3

Smart Localization in

Underground Mines using

Fingerprinting and ANNs

In this chapter we discuss the research’s findings in depth showing their func-

tional methods and fingerprinting techniques. This chapter constitutes the major

accomplishments of this work which were published in parts and then summed in one

journal manuscript which can also be reviewed in chapter 12.

As a background study, it is recommended to revise the effectiveness of fingerprint-

based localization using ANNs in [31], which was also reviewed before in section 2.3

p. 16. At first, we examine the methodology adapted for cooperative localization

in the presence of more than one receiver in section 3.1 p. 24 which contributes to

the fulfillment of the article given in chapter 7. Localization using temporal diversity

is then explained in section 3.2 p. 3.2 and its findings may be reviewed also in the

publication listed under chapter 8. Similarly, section 3.3 p. 28 explains the concepts

of localization exploiting spatio-temporal diversity which contribute to the published
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work in chapter 9.

The innovation of SIMO/MIMO-type fingerprints, which are examined in section

3.4 p. 31 and chapter 11, shows the techniques that can be used to enrich the fin-

gerprinting techniques in the presence of dual Tx antennas. Finally, optimization

and cost reduction techniques are discussed in section 3.5 p. 32 and through the

publications of chapters 10, 11 and 12.

3.1 Localization Exploiting Rx Spatial Diversity

Localization in underground mines using more than one access point was the first

step towards a cooperative system that uses more than one sub-fingerprint prior to

estimating a transmitter’s position. Not only did collaboration between access points

increase positioning accuracies, but also it removed the ambiguity about defining the

direction of transmission in cases where junctions are present in underground gal-

leries and tunnels. Localization exploiting Rx spatial diversity is the first chapter of

accomplishments and is fully described throughout the publication present in chapter

7 and in the narration of section 12.3.1 p. 144.

Prior to the innovation of collaborative fingerprinting, only one fingerprint was

used by only one receiver to extract the distance to a transmitter without knowing

the exact direction of transmission. The objective of this chapter is to incorporate

more than one fingerprint (i.e., which will be called sub-fingerprint) from spatially

distant receivers prior to estimating the final position of transmission. Given the

special narrow topology of underground tunnels, two receivers would be enough to

cover each tunnel as shown in figure 7.2. The same measurements that were taken

from the first receiver R1 in [31] are used in the opposite direction to simulate the

presence of another receiver R2 as shown in figure 3.1.
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Exploiting Rx spatial diversity of two receivers R1 and R2, in the region of

Figure 3.1 – Fingerprinting in the presence of two receivers.

shared coverage, results in two fingerprint sets SR1 = {f1, f2, f3, ..., fm} and SR2 =

{f ′

1, f
′

2, f
′

3, ..., f
′

m}, respectively. ANNs’ output set D = {d1, d2, d3, ..., dm} represents

the distances to one of the receivers which is taken by default to be R1’s distance

to the transmitter. It should also be noted that multiple scenarios are analyzed at

receiver separation distances of 60 m, 80 m and 100 m, assuming that signals decay

after 64 m as reported in [31] and noticed in the collected measurements. After col-

lecting the measurement sets for each scenario, one can think of two ways to estimate

the position of a transmitter using ANNs.

The first design, shown in figure 7.4, allows each receiver to separately localize

using its own ANN with seven input parameters corresponding to each respective fin-

gerprint or received signal. By apriori knowing the map of the tunnel and the position

of each receiver, one can average both distances and estimate the final position of each

receiver. The second type is proven to provide better estimation results and is referred

to as the cooperative localization technique that uses the sub-fingerprints collected
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from both receivers and concatenates them to form spatially diverse fingerprints,

which are double the size of the original fingerprint. In other words, concatenating

both sets, SR1 and SR2 results in a set of fingerprints represented by:

S = {F1, F2, F3, ...., Fm} = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)} . (3.1)

As shown in figure 7.5, Rx spatial diversity is exploited using one ANN trained

with fingerprints of higher chain lengths. The results of localization using Rx spatial

diversity are shown for the training fingerprints in figures 7.6, 7.7 and 7.8 while the

testing results are shown in figures 7.9, 7.10 and 7.11, at receiver separation distances

of 60 m, 80 m and 100 m, respectively. The final reported estimation accuracies for Rx

spatially diverse fingerprinting techniques, after having their ANNs optimized for low

fingerprint-acquisition cost as discussed later in section 3.5 p. 32, are summarized in

table 4.1 to be 77 cm and 90 cm for 90% of the training and testing data, respectively.

3.2 Localization Exploiting Temporal Diversity

Localization using Rx spatial diversity was effective in regions that are covered by

more than one access point. On one hand, the solution lacked an effective technique

that could guarantee the same accuracy when losing coverage from the second receiver

R2. On the other hand, increasing accuracy within the scope of spatial diversity only

requires the addition of more than one access point, which is neither feasible nor

practical in the confined narrow-shaped tunnels.

A search for a complementary fingerprinting technique, which made use of the limited

motion of miners underground, led to the foundation of fingerprint-based localization

exploiting temporal diversity. Localization exploiting temporal diversity is the second

chapter of accomplishments and it is explained in details throughout the publication
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given in chapter 8 and in the proceedings of section 12.3.2 p. 147.

This work introduces a fingerprinting technique that records the signatures (i.e.,

sets of 7 parameters) up to a certain memory level l. For example, an Rx spatially

diverse fingerprint has the same fingerprint length as a temporal fingerprint extracted

with memory level l = 2. However, the latter is obtained using only one receiver in

the presence of memory-recording capability that incorporated the miner’s previous

sub-fingerprint, at time t−1 and concatenated it to another sub-fingerprint at time t0.

In other words, a temporal fingerprint

f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

(3.2)

is the concatenation of sub-fingerprints measured over short time instances while mov-

ing towards a destination to be estimated at dt0i . l being the number of concatenated

sub-fingerprints or what we refer to as memory level, defines the length of a temporal

fingerprint Lf where:

Lf = 7l. (3.3)

Localization exploiting temporal diversity only, in the presence of one receiver, is

studied for l = 1, 2, 3, 4 and 5 (i.e., ANN(1,0), ANN(2,0), ANN(3,0), ANN(4,0) and

ANN(5,0)) after which no significant gain is observed.

To further illustrate temporal fingerprint extraction through an example at l = 2,

consider figure 8.5. For one position at t0, five path-fingerprints may be extracted,

in the offline phase, and they represent fingerprint chains that combine one previous

position’s signature extracted from the CIR at t−1 as stated in table 8.1. Another

example for l = 3 is illustrated in details in figure 12.7 where a miner may have up to

25 temporally diverse path-fingerprints for one position only. The number of path-

fingerprints jmax that may be obtained for a given position is limited by the upper
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number of path-fingerprints Nfp :

jmax ≤ Nfp = 5(l−1). (3.4)

All possible path-fingerprints are collected for all positions of interest while respecting

the boundaries of confined tunnels. The total set of temporal fingerprints is denoted

by S = {S1, . . . , Si, . . . , Sm} and it corresponds to all distancesD = {d1, . . . , di, . . . , dm}.

The power of this technique is in its ability to exponentially increase the number of

path-fingerprints in the training set, using only one receiver, without the need of extra

measurements. However, this comes at the cost of increasing the number of inputs

and number of neurons for training ANNs.

The results of localization using temporal diversity are shown for the training fin-

gerprints in figures 8.9 and 8.10 for the training and testing fingerprints, respectively.

The final reported estimation accuracies for all temporally diverse fingerprinting tech-

niques showed high accuracy gains with only 50 cm estimation errors for 90% of the

fingerprints at l = 4 and l = 5. Full result overview may be revised in section 8.4.2

p. 75 and in tables 9.1 and 4.1.

3.3 Localization Exploiting Spatio-Temporal Di-

versity

By comparing Rx spatially and temporally diverse fingerprints, one can conclude

that both are unique in their implementation. The former exploits spatial diversity

of the collected fingerprints from two distinct receivers while the latter makes use of

fingerprint measurements in short time instances. This led to the realization that

combining both concepts together in one spatio-temporal fingerprinting technique
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would boost location accuracies and add more robustness to the localization system.

Indeed, increasing accuracy to near pinpoint precision may not be needed for posi-

tioning miners underground but it will be traded off for lower complexity and cost, as

later discussed in section 3.5 p. 32. Localization exploiting spatio-temporal diversity

is the third chapter of accomplishments and it brought in very accurate and satisfying

results which were presented in the publication of chapter 9 and in the proceedings

of section 12.3.3 p. 151.

Cooperative memory-assisted localization exploiting spatio-temporal diversity is

a result of the collaboration of two receivers when at least one of them is introduc-

ing memory (i.e., producing path-fingerprints) [5]. The memory levels of receivers

R1 and R2 are denoted by l1 and l2, respectively. Fingerprints are extracted for

different memory levels and analyzed fully in section 9.3 p. 91. A spatio-temporal

fingerprint set Si, for a given distance di, is a concatenation of two subset finger-

prints SR1
i and SR2

i collected from receivers R1 and R2, respectively, where: SR1
i =

{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}

and SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

. The

result is a spatio-temporal fingerprint set, which is concatenated path-wise, and de-

fined for l1 and l2 as follows:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}

.

An example can be drawn when localizing a transmitter at a distance di and time

instant t0 with memory levels (l1 = 2, l2 = 1) which concludes a spatio-temporal

fingerprint Fi = (FR1
i , FR2

i ) where

FR1
i = (fR1

it0
, fR1

it
−

1
), (3.5)
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FR2
i = (fR2

it0
). (3.6)

For (l1 = 2, l2 = 1), R2 extracts a fingerprint FR2
i of length 7 (i.e., memoryless

fingerprint) while FR1
i , collected from R1, is the concatenation of two sub-fingerprints

recorded from two time instances t0 and t−1 (i.e., memory-assisted fingerprint of

length 14). As a result, a spatio-temporal fingerprint Fi = (FR1
i , FR2

i ) may be used

in a fingerprinting technique that combines 3 CIRs (i.e., 21 parameters) for each

position inside the quasi-curvilinear topology of narrow-vein mines. The number of

inputs Ninputs defines the ANN’s design and is identified by the length of the spatio-

temporal fingerprint which is dependent on both l1 and l2 where:

Ninputs = 7(l1 + l2). (3.7)

Testing spatio-temproal fingerprints is done in two steps. At first, R2 is kept at a

memory level l2 = 1 (i.e., without memory) while R1’s memory level varies (i.e., l2 =

2, 3). Then, in the second step, both memory levels are increased simultaneously. The

results of localization using spatio-temporal diversity are shown for the training and

testing fingerprints in figures 9.6 and 9.7, respectively. It was proven, in section 9.4 p.

93, that memory-assisted cooperative approaches that combine spatial and temporal

diversities to the fingerprints perform better than the solitary techniques even when

the length of the fingerprints is the same such as the cases of ANN(3,0) (i.e., exploiting

temporal diversity only) and ANN(2,1) (i.e., exploiting spatio-temporal diversity). A

glance at the results of all studied spatio-temporal techniques may be reviewed in table

9.1, whereas those resulting from ANNs optimized for low fingerprint-acquisition cost,

discussed later in section 3.5 p. 32, are summarized in table 4.1.
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3.4 Localization Exploiting Rx and Tx Spatial Di-

versity

Localization exploiting fingerprints based on dual antenna systems, present in

single/multiple input multiple output (SIMO/MIMO) communication systems, is the

fourth chapter of accomplishments and it pushes the performance limits of CIR-based

localization to a new record. By utilizing the concepts of dual antennas present in

SIMO/MIMO-capable communication systems, a new fingerprint-based localization

technique is introduced to combine sub-fingerprints extracted from dual transmitter

antennas (Tx) and collected at one or more receiver antenna (Rx). The result is a

set of spatially diverse fingerprints at both Tx and Rx antennas, which accurately

estimate the distance to the transmitter. The foundation of this work is presented in

the publication of chapter 11 and in the proceedings of section 12.3.4 p. 153.

In the following, we lay down the groundwork for a new fingerprinting technique

that uses SIMO and MIMO-type fingerprints extracted from two transmitter antennas

(i.e., Tx1 and Tx2) in the presence of one receiver antenna (i.e., Rx1) and two receiver

antennas (i.e.,Rx1 and Rx2) respectively. Spatial diversity is exploited twice at both

the receiver and transmitter where the antenna spacing is δTx = 1 m along the x-axis

or δTx = 0.5 m along the y-axis of the tunnel. From an implementation point of

view, antennas may be placed on heavy machinery or built in the miners’ suits on

the shoulders.

SIMO-type fingerprints (i.e., fingerprints collected at R1 from two Tx antennas)

exploit Tx spatial diversity at the transmitter’s end in the presence of one receiver

only without the need for memory (cf. chapter 12). A SIMO-type fingerprint is

represented as follows:

F SIMO
i = (fTx1

i , fTx2
i ), (3.8)
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where fTx1
i and fTx2

i are the fingerprints collected by Rx1, at a position i, for Tx1 and

Tx2, respectively. On the other hand, MIMO-type fingerprints, which exploit both

Tx and Rx spatial diversities, are simulated by considering two receiver antennas Rx1

and Rx2, being those of R1 and R2, respectively. A MIMO-type fingerprint may be

expressed as follows:

FMIMO
i =

{

(fTx1
i , fTx2

i ), (fTx1

i′ , fTx2

i′ )
}

. (3.9)

fTx1
i and fTx2

i represent the fingerprints collected by Rx1, whereas f
Tx1

i′ and fTx2

i′ are

the fingerprints collected by Rx2, at a position i′ = D−i, for Tx1 and Tx2, respectively.

The final estimation is the distance, along the x-axis, separating R1 and the midpoint

of Tx1 and Tx2. In chapter 11, localization using both Rx and Tx spatial diversities is

studied at δTx
x = 1 m along the x-axis and at δTx

y = 1 or 0.5 m along the y-axis of the

tunnel.

Performance results of exploiting Tx and Rx spatial diversities, shown in figure 11.8

and summarized in table 4.1, surpass those of all developed fingerprinting techniques,

discussed above, in terms of precision and accuracy. Their accuracies drop below 40

cm for 90% of the testing data. In addition to that, by exploiting the presence of

dual antenna systems in fingerprint formation, the localization system’s robustness

increases and ANNs would, if well designed, interpolate with higher accuracies even

in the presence of measurement gaps as later discussed in section 3.5 p. 32.

3.5 Optimization and Cost Reduction Techniques

In the literature, most fingerprint-based techniques are criticized because of their

need of expensive measurement campaigns that buildup the training database of

ANNs. Reducing the amount of data measurements, on the other hand, may risk
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the generalization process that ANNs need in order to interpolate and estimate in

measurement gaps not seen throughout the training process. A conclusion drawn

after a successful attempt, at the end of chapter 10, is to reap off diversity benefits

in exchange for lower fingerprint acquisition cost. However, a more advanced study

was performed to challenge all our developed localization techniques that use spatial,

temporal, spatio-temporal diversities in the presence of single or dual transmission

antennas, and put their respective ANNs to the test of using less data measurements

by gradually reducing the training set down to less than one sixth of the grid’s mea-

surement points. The obtained number of neurons needed for each technique, which

were produced after extensive ANNs simulations, are the clincher of this work and

they are fully described in the publication of chapter 11 and in the proceedings of

section 12.5 p. 159.

The localization techniques were discussed at sampling step-size Sx = 1 m which

represents the step size between any two consecutive offline measurement points along

the x-axis of the tunnel. This means that ANNs were trained using offline sampling

rate Sr of 1 fingerprint-set per meter without consistent gaps in the grid’s resolution.

In the following, we increase Sx to 2 m, 3 m and up to 6 m (i.e., decrease Sr to a

fingerprint set per Sx) resulting in a split of the original grid into 2, 3 and up to 6

sub-grids, respectively, by counting for the transmitter’s initial position on the grid.

The challenge of extremely decreasing the number of fingerprints comes in the

ability to alternate ANNs’ designs by searching for the optimum number of neurons

needed for each fingerprint set. Too many neurons would result in deep convergence

and overfitting accuracies that would fire back and result in very high estimation

errors when localizing in measurement gaps or sub-grids omitted from the training

process of ANNs. Similarly, few neurons may cause the system to loose a lot of its

performance trying to generalize the solution domain. For that specific reason, an



CHAPTER 3. SMART LOCALIZATION IN UNDERGROUND MINES USING
FINGERPRINTING AND ANNS 34

extensive simulation was performed and over 14,000 ANNs were trained, each with a

number of neuron nn varying between 1 and Nn such that:

1 < nn < Nn = 2Ni + 1, (3.10)

where Ni is the number of inputs of the ANN that depends on the used localization

technique and memory levels. A successor ANN for each technique is the one that

scores the best performance, in terms of accuracy, when tested on its trained sub-grid

and on 25% of all the remaining sub-grids at a certain Sx. The number of selected

neurons per each localization technique is shown in figure 12.10 and it may be used

as a benchmark for future studies.

Surprisingly, the performance results show very accurate records even when ANNs

are trained using one sixth of the grid’s fingerprints allowing MIMO-type fingerprints

to overpass the rest of the localization techniques in terms of robustness to grid’s res-

olution. At Sx = 6 m, localization using Tx and Rx spatial diversities attains similar

results to the original benchmark in [31] at Sx = 1 m. The remaining results of cost

optimization for all spatial, temporal and spatio-temporal fingerprinting techniques

are presented in the publication of chapter 11 and in the proceedings of section 12.5.1

p. 160 especially in figures 12.13 and 12.14.



Chapter 4

Data Analysis and Findings

The Cumulative Density Function (CDF) is used throughout the dissertation to

show and compare the estimation errors of all developed localization techniques fo-

cusing on their positioning accuracies in meters versus precision (i.e., percentage of

treated fingerprints). The granularity of estimation errors is fully shown in figures

12.8, 12.9, 12.13, 12.14 and in table 4.1, then performance results are analyzed to-

gether in sections 12.4 p. 154 and 12.5.2 p. 162. In the following, the developed

fingerprint-positioning techniques, which constitute the findings of this work, are

compared and analyzed based on important factors such as their accuracy, precision,

complexity, robustness and cost.

4.1 Accuracy and Precision

Accuracy is one of the most important performance metrics of any positioning

system. In some applications such as in military positioning systems, accuracy is

the most important factor and it cannot be traded for complexity and cost, whereas

in commercial positioning systems, a tradeoff between accuracy and cost may take

place to keep the price within the economical reasonability. On the other hand, the
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Table 4.1 – Performance Results with Multiple Resolution

ANN Technique
Grid Resolution Accuracy Results

1 m 2 m 3 m 4 m 5 m 6 m

ANN(1,0) 1.42 m 1.44 m 1.81 m 2.04 m 2.12 m 2.83 m

ANN, 2Tx1Rx δTx
y = 0.5 m 1.10 m 1.43 m 1.73 m 1.81 m 2.26 m 2.58 m

ANN, 2Tx1Rx δTx
y = 1 m 0.85 m 1.36 m 1.53 m 1.66 m 1.94 m 1.97 m

ANN(2,0) 1.15 m 1.35 m 1.58 m 1.92 m 1.97 m 2.07 m

ANN(3,0) 0.53 m 1.36 m 1.58 m 1.78 m 1.94 m 2.02 m

ANN(4,0) 0.48 m 1.30 m 1.46 m 1.72 m 1.91 m 1.93 m

ANN, 2Tx1Rx δTx
x = 1 m 1.05 m 1.23 m 1.33 m 1.51 m 1.61 m 2.07 m

ANN(1,1) 0.91 m 1.07 m 1.15 m 1.28 m 1.39 m 1.45 m

ANN, 2Tx2Rx δTx
y = 1 m 0.64 m 0.84 m 1.07 m 1.14 m 1.35 m 1.51 m

ANN(2,2) 0.49 m 0.95 m 1.07 m 1.22 m 1.26 m 1.41 m

ANN, 2Tx2Rx δTx
x = 1 m 0.43 m 0.93 m 1.10 m 1.14 m 1.19 m 1.32 m

ANN, 2Tx2Rx δTx
y = 0.5 m 0.38 m 0.83 m 0.98 m 1.12 m 1.20 m 1.28 m

precision factor defines if a given accuracy is reported frequently throughout multiple

measurements. For those reasons, we chose to compare all localization techniques

using 90% percentile obtained from the CDFs of each localization technique.

In our localization problem, all the discussed localization techniques may be con-

sidered accurate because their positioning errors drop below 1.5 meter. However,

for the sake of argument, the most accurate techniques among all is the one that

introduces MIMO-type fingerprints pushing the accuracy limits to 38 cm for 90% of

the testing data at Sx = 1 m. Similar accuracy was reported for spatio-temporal

fingerprint positioning with ANN(2,2) with estimation errors dropping as low as 49

cm for the same precision level which are also close to the performance results of

temporally-diverse fingerprints with ANN(3,0) and ANN(4,0).

4.2 Complexity

The complexity of the positioning system involves factors such as computation

time, memory, hardware and software design, energy consumption and implemen-
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tation. When taking into account the system’s processing time, fingerprint-based

localization techniques may be compared based on the number of neurons used by

ANNs in both the input and hidden layers. Training ANNs with fingerprints of high

chain lengths is much slower than training ANNs with few input neurons. This would

make a memory-assistted technique with ANN(3,0) and accuracy of 53 cm more at-

tractive than ANN(4,0) which reports better accuracy of 48 cm because the latter

uses 7 more input neurons. One can also compare both techniques’ number of hidden

neurons as shown in figure 12.10 to find that they both start off with 40 neurons at

Sx = 1 m.

On the other hand, from an implementation point of view, adding memory to

access points may increase system design’s complexity. If complexity is the main con-

cern, fingerprint positioning using Tx and Rx spatial diversities may come at lower

complexity than memory-based localization, in terms of fingerprint acquisition and

path recognition techniques.

4.3 Robustness

Robustness is the ability to keep the system stable once the received information

is corrupted or unknown. For that reason, this work studied the effect of having less

data measurements in the training process of ANNs of all techniques. It is shown at

Sx = 6 m that temporally-diverse fingerprint-positioning techniques failed to maintain

their high accuracy results at Sx = 1 m, which is tracked to the fact that at higher

Sx, sub-fingerprints extracted from previous positions carry less information about

the current position of the transmitter. One can observe that spatio-temporal and

MIMO-type fingerprints maintained their accuracy trends even when one sixth of the

measurements were missing from the training process.
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4.4 Cost

The cost of a localization system depends on the complexity of its hardware and

software designs; it also depends on the integration factor and time compensation.

All fingerprint-based localization techniques have to undergo measurement campaigns

that add extra costs to the implementation bill. The more savings a localization

technique can bring in, the more attractive it appeals to investors and business owners.

Deployment cost is least when using fingerprints that do not introduce memory nor

use MIMO-capable devices with dual antennas, but at that low cost comes higher

errors and less robustness to sampling resolution. However, it is proven herein that

measurement campaigns may be cut in less than half while MIMO-type or spatio-

temporal fingerprinting techniques succeed to maintain high performance results.



Chapter 5

Conclusion

To conclude, if spatial, temporal or spatio-temporal diversities are well applied

in fingerprint-based localization algorithms, the localization system would gain high

precision and pinpoint positioning accuracies. The use of dual antenna fingerprints, on

the other hand, is recommended for MIMO-capable devices and is proven to increase

the system’s performance. In addition to that, reducing the sampling resolution

of offline measurements requires careful design of ANNs that succeed to localize in

measurement gaps not seen in the training process. Finally, trading off pinpoint

accuracy for lower complexity and cost is studied for implantation purposes in an

effort to reduce the time needed for fingerprint-acquisition campaigns.



Chapter 6

Future Research

Future studies will analyze the performance of all fingerprint-based localization

techniques in different frequency bands such as the milli-meter wave band (i.e., 60

GHz band). The applications of localization at 60 GHz may be useful in the fields of

robotics, sensor networks and machine-to-machine communications.

Since the ANN-based localization system is centralized (i.e., location awareness is

at the receiver’s end), another area of research would be to analyze the capability of

broadcasting ANN’s weights and biases and allowing users to self-localize themselves

in the vicinity of wireless coverage.

Finally, in a best effort to further optimize the localization system, a study may

be performed to recommend the optimum number of parameters in each CIR-based

fingerprint based on whether localization is exploiting spatial, temporal or spatio-

temporal diversities.
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Abstract

Localizing people in confined and underground areas is one of the topics under re-

search in mining labs and industries. The position of personnel and equipments in

areas such as mines is of high importance because it improves industrial safety and

security. Due to the special nature of underground environments, signals transmitted

in a mine gallery/tunnel suffer from severe multipath effects caused by reflection,

refraction, diffraction and collision with humid rough surfaces. In such cases and

in cases where the signals are blocked due to the non-line of sight (NLOS) regions,

traditional localization techniques based on the RSS, AOA and TOA/TDOA lead to

high position estimation errors. One of the proposed solutions to such challenging

situations is based on extracting channel impulse response (CIR) fingerprints with

reference to one wireless receiver and using an artificial neural network as a match-

ing algorithm to localize. In this article we study this approach in a multiple access

network where multiple access points are present. The diversity of the collected fin-

gerprints will allow us to create artificial neural networks that will work separately or

cooperatively using the same localization technique. The results will show that using

cooperative artificial intelligence in the presence of multiple signatures from differ-

ent reference points improves significantly the accuracy, precision, scalability and the

overall performance of the localization system.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, multiple access technique.
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7.1 Introduction

In the mining industry, knowing the position of miners and/or equipments is an

important safety measure that reduces risks and improves the security of that facility.

Like any indoor environment, wireless signals transmitted in mines are affected by

extreme multipath and non-line of sight (NLOS) conditions. Since mines have their

own environment that is made up of connected tunnels, localization using traditional

techniques is challenging and fails to provide accurate positioning. Most traditional

geo-location systems use the triangulation techniques and are mainly based on the

received signal strength (RSS), angle of arrival (AOA), time of arrival (TOA) or the

time-difference of arrival (TDOA). Other systems use scene-analysis or fingerprinting

techniques, and these include the probabilistic methods , k-nearest neighbours (kNN),

support vertex polygon (SMP), support vector machine (SVP), and neural networks.

Surveys on wireless indoor positioning techniques [27], [39] provide detailed discus-

sion of each approach. Underground localization using traditional systems would

result in an unstable behavior due to the fact that the received signals in an under-

ground environment undergo several reflections, refractions and diffractions that can

dramatically change the amplitude, time of arrival and phase at the receiver.

A novel approach to localization has been presented in [31] and it is based on

studying the CIR at a specific distance from the transmitter and registering its spec-

ifications as a fingerprint to be matched using the neural network technique. The

same concept was also used in [42] with less input parameters. The uniqueness of

the CIR at each position enhanced the accuracy and precision of localization in in-

door facilities. Unlike other approaches [10], [29], [23], [11] which mainly base their

fingerprints on the RSS with reference to one or more access points, this approach

uses several parameters extracted from one CIR as a fingerprint with reference to one

receiver.
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One of the drawbacks of using the RSS as a fingerprint is the fact that the signal’s

strength vary with time at the same position [39], [10], and that the accuracy of

localization is mainly enhanced when the number of access points (APs) increases in

the same area [9].

In this article we will enrich the localization technique in [31] and open it to a

wide range of possibilities where the mobile user is capable of transmitting multiple

signals to different access points present in the network. Unlike the approach in [31]

which estimates the position based on one receiver, this work will consider the inputs

of more than one receiver before giving a position estimate. The received signatures

at several references form fingerprints and the position will be estimated using multi-

ple neural network techniques in a cooperative localization concept. In the following

section, the fingerprinting technique is discussed, and the neural network is presented

as the matching algorithm for localization. In section 7.3, we introduce the localiza-

tion system and its functionality in the areas containing only one receiver shedding

the light on major problems encountered. In section 7.4, several techniques to local-

ization are discussed in the presence of two receivers. The results are compared and

analyzed in section 7.5. Finally, the paper is closed by a conclusion in section 7.6.

7.2 Localization Using Fingerprinting and Neural

Networks

7.2.1 Fingerprinting technique

The fingerprinting technique is based on collecting information about specific

events and then matching the presence or absence of those events based on the

pre-acquired data. Fingerprinting techniques can be used in indoor localization

approaches in order to identify the channel at different parts of the covered area
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[11], [1], [20]. It is similar by analogy to the human fingerprints and it is used here

to ensure uniqueness and precision to the indoor channel behavior present in mines.

In this paper, the fingerprinting technique is used to identify a position based on

the CIR. This technique consists of two phases: the offline phase which is the pro-

cess of collecting several impulse responses at several distances from the receiver and

then storing the information in a database. The second phase of the fingerprinting

technique is the real-time phase where in online scenarios the CIR is extracted and

then compared to the saved database in order to match a specific position. In the

following, the same approach in [31] is discussed along with the different parameters

that form the fingerprint of any position. A signature or a fingerprint is a set of seven

parameters at a specific distance to the transmitter (discussed below).

Real-time measurement campaigns were carried out 70 meters underground in the

CANMET gold mine in Val d’Or city [31], [42]. The measurements in [31] were used

in this work and they were recorded at a central frequency of 2.4 GHz in order to

have a compatibility with WLAN systems. These measurements consist of 450 mea-

surements along a tunnel as shown in Fig. 7.1. The complex CIR of the wideband

measurements was obtained using the frequency channel sounding technique [31].

Once a signal is received, the channel impulse response is extracted and by applying

the inverse fast Fourier transform (IFFT), the time impulse response is obtained.

Using this impulse response, one can extract several parameters to form a specific

signature. Seven parameters for each CIR guarantee uniqueness to the position of

the transmitter. The parameters are as follows:

• The mean excess delay (τ̄) that is the first moment of the power delay profile

measured at the first detectable signal that arrives at the receiver and is related

to the power of that profile. In other words it is related to the amplitudes of
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Figure 7.1 – Map of the tunnel.

the multipath components, and it is given by:

τ̄ =

∑

k a
2
k τk

∑

k a
2
k

.

• The root mean square (τrms), and it represents the square root of the second

central moment of the power delay profile and it is given by:

σ =

√

τ̄ 2 − (τ̄)2,

where:

τ̄ 2 =

∑

k a
2
k τ 2k

∑

k a
2
k

.

• The maximum excess delay (τmax) which is the time at which the signal drops

below X dB of the maximum power measured in the power delay profile. It can

be seen as the time that a signal stays above a given threshold based on the

highest received power in a profile. In the following, the value of 20 dB is taken

as a threshold.
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• The total power of the received signal (P ) measured in dBm.

• The number of multipath components (N) which form the entire received signal

measured at a 20 dB floor level.

• The power of the first arrival (P1) which is the power of the first multipath

component.

• The delay of the first path component (τ1) and it is used along with P1 in order

to distinguish between the LOS and NLOS scenarios.

7.2.2 Artificial neural network

Once the database is ready, the system would need a matching algorithm that can

study the spatial variation of the channel with respect to the distance, here comes the

importance of neural networks. Artificial neural networks (ANN) are computational

models able to perform complex computational operations such as classification, con-

trol optimization, and function approximation. The advantage of using a neural net-

work is its ability to find the mathematical relation between the set of signatures and

the estimated positions. A trained artificial neural network is suitable for real-time

applications because it is capable of matching the set of inputs (sets of signatures)

to a set of outputs (distances) forming a mathematical model that can estimate new

positions based on new signatures [17].

Several types of neural networks are found and can perform different techniques of

computations but the main interest among all is to minimize the error and precisely

map the set of inputs to the desired output. In the case of localization problems,

function approximation is based on non-linear regression modelling. Thus two types

of neural networks can be used which are the Multi-Layer Perceptron (MLP) net-

works and Radial Basis Function (RBF) networks. Both networks are feed forward
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and perform specific learning algorithms. These algorithms have an important role

in adjusting the weights and biases and in minimizing the estimation errors. The use

of an MLP-type feed forward neural network with a back-propagation learning algo-

rithm has been proven to give better estimation results in underground localization

systems [31], [42].

First, the ANN has to be trained on the set of data collected through measure-

ment campaigns. A neural network is mainly made up of input, output, and hidden

layers. Each layer contains several neurons that hold weights and biases. In the offline

phase, part of the collected data is used to modify the weights and biases leading to a

minimum mean square error. However, initializing the network with random weights

and biases would lead to different performances [17], and that is why some training

iterations are needed before reaching a desirable performance of the neural network.

Once a desired performance is reached, the network can be saved and used to estimate

trained and untrained data in real-time scenarios.

7.3 Localization Using One Receiver

Traditional techniques of localization mainly require two or more reference points

in order to precisely estimate the position of the mobile. Geo-location can also be

done in the presence of one receiver only using the fingerprinting and the neural

networks techniques, and it can give an accurate distance location of 2 meters for

90% and 80% of the trained and untrained patterns, respectively [31]. The neural

network used in this work is a feed forward network with a back propagation learning

algorithm. It consists of 7 inputs, one hidden layer, and one output. The inputs

correspond to the extracted parameters of the CIR while the output is the distance

(d) to the transmitter as shown in Fig. 7.2.

The use of one dimensional position estimation is convenient in mine galleries and
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Figure 7.2 – Localization using one fixed receiver. The CIR is extracted at different
distances to the transmitter with 1 meter step size.

is later discussed in the following section. The hidden layer consists of 10 neurons

and uses a differential tan-sigmoid transfer function unlike the output layer which

has a linear type transfer function. The network is trained at several distances away

from the transmitter and then the system may estimate the position of the mobile

unit (transmitter) based on the received signal. Localization using the CIR in the

presence of one receiver is the same technique used in [31] and it is used here as an

example of a non-cooperative technique1. It was shown that position estimation is

precise and that the error is less than 1.5 meters for 90% and 80% of trained and

untrained data, respectively.

Despite the fact that the results are promising, there are obstacles that prevent using

the same technique in underground environments such as mines due to the following

reasons:

• The need of a global localization system that can cover all the areas of interest.

• The existence of junctions and connected tunnels, these tunnels may result in

misleading information about the exact position of the mobile user or miner.

On the other hand, using cooperative artificial intelligence in a localization technique

is encouraging because it would lead to better estimation results. The estimated

1Unlike the system in [31] which uses both x and y coordinates to estimate the position, the
proposed system uses a one-dimension estimation concept (x position) neglecting the small variation
of y in mine galleries.
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distance to the transmitter in LOS might be precise using one reference point, but

the position of the miner can be in different directions depending on how much the

tunnels are interconnected. For these reasons, using a cooperative technique where

at least two receivers are available will introduce localization as a system applicable

in mines and would better estimate the position of the mobile user.

7.4 Cooperative Localization Using Two Receivers

or More

The main interest of deploying a wireless transmission system is to insure constant

communications between mobile units and base stations, and this can only be possible

if the system is able to provide coverage to the whole area of interest. Localization

in the area where signals from two aceess points intersect is the main interest of this

work. Unlike the first approach in Sec. 7.3 which used one signature to estimate the

distance, the following techniques will use several signatures of more than one receiver

(AP) in order to estimate the same distance taking one receiver as a reference point.

This concept will enrich the training set of data that will be fed to the neural network.

It is more like collecting multiple fingerprints of the same person which is in our case

the distance to the transmitter. If one fingerprint caused a wide error, the others

will be there to calibrate the location of the transmitter. Cooperative localization

in a 2D/3D topology might involve the participation of more than two access points

present in the area of interest. However due to the special one-dimensional topology

of mines’ galleries, two access points should be enough to provide wireless coverage

of the whole area in between.

As shown in Fig. 7.3, at each position of the transmitter, the two receivers

collect the transmitted signal extracting two different sets of parameters (CIRs). This
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Figure 7.3 – Localization using two signatures of two receivers in the area where two
signals intersect.

diversity technique opens a wide range of possibilities and helps the neural network

exploit a better position estimation model. A full database is saved containing 14

parameters (2 signatures) for each location which is the distance with respect to one

receiver. These sets of fingerprints can be treated by different localization techniques.

7.4.1 Localization based on separate neural networks

This technique uses two of the same neural network exploited in the case of one

receiver as in Sec. 7.3. The system receives the signature of receiver 1 and estimates

the distance to the transmitter, and uses the signature of receiver 2 to estimate

another distance to the transmitter. Two neural networks are needed as shown in

Fig. 7.4. In this case, the system has to know the exact location of both receivers

on a saved digital map of the connected straight lines (tunnels). The new estimated

position would be the midpoint of the two estimated locations; localization here is

based on averaging both estimation errors.

7.4.2 Localization based on one neural network

In this approach the system collects the signals from both receivers and forms a

set of two CIRs with a total of 14 parameters. The transmitter’s position is estimated

based on the distance to one of the receivers. As shown in Fig. 7.5, a super neural net-
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Figure 7.4 – Localization based on two separate estimations.

Figure 7.5 – Neural network based on multiple signatures.

work is created and trained to localize a mobile with reference to one of the receivers

(fixed points or anchors) based on two different signatures. This network trains 75%

of the collected data. Several trainings lead to several performances based on the

random initialization of the weights and biases. The best performance was achieved
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with 18 neurons in the hidden layer. In order to test the network’s performance,

the transmitter is simulated to move across the same path then the system uses the

-previously trained- neural network to localize the transmitter based on the two re-

ceived signals. Usually in most network implementations, access points are placed to

cover a wide region and the coverage fields intersect in a handoff region. The length

of this region varies from one configuration to another which results in a change in the

training set of data (inputs and outputs). In each scenario (i.e., separation distance

D in Fig. 7.3), a new neural network needs to be trained.

7.5 Results of Different Techniques

The performance of the presented localization techniques will be evaluated using

the CDF graph. The first parameter of the CDF is the estimation error which repre-

sents the difference between the estimated and the real position measured in meters.

The second parameter is the percentage of occurrences for such an estimation error

in the collected data. In the following, the coverage of a transmitter is assumed to be

68 meters2, the results are shown for several distances separating two receivers. Each

CDF graph shows four CDF plots of the position estimation errors using different

estimation techniques. The first two plots show the results of the localization tech-

nique based on receiver 1 and receiver 2. The third plot represents the position errors

when using the super neural network, and the last plot shows the results of using the

localization technique based on averaging the two separate estimation errors of both

receivers. CDF plots of the trained data for separation distances 60m, 80m and 100m

are shown in Figs. 7.6, 7.7 and 7.8, respectively.

In the trained set of data, the position error for one receiver estimation technique

2In real-time measurement scenarios, the transmitted signals fade after this distance resulting in
weak signatures.
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Figure 7.6 – CDF plots of the position estimation errors at a receivers’ separation distance
D=60m using several localization techniques.
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Figure 7.7 – CDF plots of the position estimation errors at a receivers’ separation distance
D=80m using several localization techniques.
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Figure 7.8 – CDF plots of the position estimation errors at a receivers’ separation distance
D=100m using several localization techniques.

ranged between 1.2 and 1.5m for 90% of data. The accuracy of position estimation

using receiver 1 is slightly different from that of receiver 2 because for each receiver

there is a different neural network that trains the collected corresponding set of data.

However, it is obvious from the first two CDF plots that the results of using separate

neural networks are almost the same no matter if the estimation is based on receiver

1 or 2. On the other hand, the estimation based on averaging the two position errors

showed a better performance and it was recorded to be less than 1m for 90% of data.

For the super neural network, the performance was recorded to be less than 60 cm

for 90% of trained data at close separation distances. When the separation distance

increases, the handoff region becomes narrow resulting in a reduced amount of signa-

tures to be trained. This, in fact, has an effect on the training process of the neural

networks because training insufficient data results in finding an inaccurate model for

localization. The estimation based on averaging shows better accuracy than that of

the super neural network at a separation distance of 100m. The reason is that the

separate neural networks are trained using the data acquired throughout the whole
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tunnel while the super neural network is trained using the few signatures in the narrow

handoff region. However, due to the fact that the input of the super neural network

is a combination of two signatures at the same time, it may be noticed that the super

neural network manages to be more precise than the two separate neural networks

in most scenarios and it can almost provide the same position accuracy even at far

separation distances.

CDF plots of the untrained data for separation distances 60m, 80m and 100m are

shown in Figs. 7.9, 7.10 and 7.11, respectively. For the untrained set of signatures,
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Figure 7.9 – CDF plots of the position estimation errors at a receivers’ separation distance
D=60m using several localization techniques.

it should be noted that data was taken at specific distances between the receivers and

that none of the neural networks was trained on the signatures at those distances, i.e.

the average was based on two untrained separate estimations. As shown in Figs. 7.9,

7.10 and 7.11, the positioning error of the localization technique based on one receiver

varies between 1m and 2m for 90% of the untrained data. For the cooperative local-

ization based on averaging, the performance was again dependent on the accuracy of

the two neural networks. As shown in Figs. 7.6 and 7.9, the results of averaging were
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Figure 7.10 – CDF plots of the position estimation errors at a receivers’ separation
distance D=80m using several localization techniques.
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Figure 7.11 – CDF plots of the position estimation errors at a receivers’ separation
distance D=100m using several localization techniques.

precise for the trained data. However, this precision affected the estimation of the

untrained data. Using the super neural network, the positioning error was the same

for all distances and it gave an error of approximately 1m for 90% of untrained data.
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The use of multiple connected neural networks or one super neural network is suit-

able for indoor localization since both new cooperative localization schemes provide

high accuracy, precision and scalability at different separation distances.

7.6 Conclusion

This paper studied the results of using the channel impulse responses as finger-

prints for position estimation in the presence of different receivers. While other local-

ization techniques fail to be accurate in environments such as mines, this approach

is able to estimate the location of personnel and/or equipment with an error of less

than 1m for 90% of trained and untrained data. The use of cooperative neural intel-

ligence not only enriches the set of data to be trained but also improves the overall

performance of the system and introduces the cooperative localization concept. The

diversity of the captured signatures provides rich training sets for the neural networks

leading to a more accurate, precise, scalable and robust positioning system.

This system may be designed for remote or self positioning purposes and may

use any of the two techniques introduced in the paper. In the first technique, the

user collects several signatures from different receivers and uses separate neural net-

works to estimate the distances to the transmitter. Then, using a saved map that

shows the position of each receiver, the system will be able to average the position

of the transmitter. In the second technique, the different signatures are fed into a

super neural network to provide one position estimation with significantly increased

accuracy. This system may be implemented for other indoor environments such as

corridors or arcade type indoors. On the other hand, the system can use different

wireless technologies such as UWB, WLAN, or mobile radio.



Chapter 8

Radio-Localization in Underground

Narrow-Vein Mines Using Neural

Networks with In-built Tracking

and Time Diversity

Authors: Shehadi Dayekh, Sofiène Affes, Nahi Kandil and Chahé Nerguizian.
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Abstract

In the mining industry, knowing the position of miners and/or equipments is an im-

portant safety measure that reduces risks and improves the security of that facility.

Being an indoor environment, wireless transmitted signals in underground narrow-

vein mines suffer multiple kinds of distortions due to extreme multipath and non-line

of sight (NLOS) conditions. One of the proposed solutions to accurate localization in

such challenging environments is based on extracting the channel impulse response

(CIR) of the received signal and using the fingerprinting technique combined with

cooperative artificial neural networks (ANNs). Such localization systems use the spa-

tial domain where the reference localizing units are implemented at different positions

away from the transmitter. In this article, we introduce a localization technique that

uses fingerprints successively recorded in time with in-built tracking as an alternative

method to localize. Unlike the spatial-domain technique where cooperative localiz-

ing units collect memoryless fingerprints from different locations, this technique uses

one localizing unit and is capable of estimating the position of a transmitter precisely

using its current and previous registered fingerprints in time. Localization using time-

domain fingerprinting (i.e., tracking) and ANNs is introduced as a new method that

exploits time diversity and improves the accuracy, precision and scalability of the

positioning system.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, cooperative localization, tracking, time diversity.
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8.1 Introduction

One of the vast numbers of applications of wireless communication systems is

position estimation or localization. Outdoor localization systems such as the Global

Positioning System (GPS) are already in the market and are available to anyone pro-

viding an important service that can locate the user’s position precisely. Different

localization techniques base their estimations on one or more extracted parameters

out of the received signal such as the received signal strength (RSS), angle of arrival

(AOA), time of arrival (TOA) or the time-difference of arrival (TDOA). Other systems

use scene-analysis or fingerprinting techniques which include using ANNs as match-

ing algorithms. Once a transmitted signal is received at different locations in space,

the variation in the signals’ fingerprint, RSS, AOA, TOA, or TDOA is calculated

and the position of the transmitter is estimated accordingly. Nevertheless, indoor

localization is still a challenging topic due to the fact that the transmitted signals

indoor undergo several distortions caused by reflections, refractions, NLOS regions

and multipath effects. Unlike outdoor mediums where signals relatively travel almost

freely in open spaces, indoor environments such as underground mines stem from

more complicated scenarios that need to be modeled in order to estimate how the

signal would be received after reacting with the channel. Surveys on wireless indoor

positioning techniques [27], [39] provide multiple detailed discussions of different lo-

calization approaches.

A new approach to localization in tunnel-shaped underground narrow-vein mines

is presented in [31] and is based on extracting the CIRs of the received signal as

fingerprints of the transmitter’s positions, then using these fingerprints to localize

the source of transmission with one receiver or Access Point (AP). Several parame-

ters extracted from the CIR give this approach uniqueness unlike other approaches

[10], [29], [23], [11], [9] that mainly base their fingerprints on the RSS only. However,
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this technique was not able to cover the whole curve-shaped topology of underground

mines until the cooperative localization concept was introduced in [4]. Cooperative

localization using the CIR technique benefits from the presence of multiple receivers

which collect multiple fingerprints in tunnels before estimating the position of the

transmitter. Leading to increased accuracy and precision, the developed technique

in [4] uses different cooperative neural network techniques and exploits the spatial

diversity of the collected fingerprints. However, in the case where spatial diversity is

limited by one localizing unit, the system in [4] fails.

In this article, we will study localization in tunnel-shaped underground narrow-

vein mines using the time-domain fingerprint diversity (i.e., tracking) technique com-

bined with ANNs. This technique innovates the idea of integrating tracking within

the ANN-based fingerprint matching algorithm for localization. The time-domain fin-

gerprint is made up from a chain of CIRs which are collected for the same transmitter

along its path to the position which has to be estimated. ANNs are properly then

designed based on different chain length or memory levels then trained on all possible

path scenarios. Because of the tunnel-shaped topology of underground narrow-vein

mines which is quasi-curvilinear, information about the path that the transmitter

is following within the confines of its well-mapped galleries adds valuable input to

the ANNs and creates an accurate in-built tracking system. The following section

summarizes the concept of cooperative localization using fingerprinting and neural

networks in the spatial domain. In section 8.3, localization using tracking is intro-

duced along with the theoretical fingerprinting approach. The results of both the

spatial (i.e., cooperation) and time (i.e., tracking) diversity-based localization tech-

niques are compared in section 8.4. In section 8.5, the major complexities/challenges

that face the design are highlighted along with their proposed solutions. Finally,

conclusions are drawn out in section 8.6.
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8.2 Localization using Fingerprinting and Neural

Networks

We will briefly describe below as a background reference a localization technique

that uses the spatial domain in order to localize a transmitter in a mine tunnel. The

system is capable of localizing a transmitter using two receivers that work separately

or cooperatively using different neural network techniques. A more detailed discussion

of these techniques can be found in [4]. But before doing so, we will study below

the underlying fingerprinting technique from which extension using multiple APs was

developed in [4].

8.2.1 Localization in the presence of one receiver

Figure 8.1 – Map of the tunnel.

Due to the special nature of underground narrow-vein mines which are made of

quasi-curvilinear connected tunnels as shown in Fig. 8.1, traditional wireless local-

ization systems fail to provide accurate positioning services. This is mainly caused

by the distortions of the basic parameters used in localization systems due to the

multipath components and NLOS scenarios present in such environments. In such

cases, the fingerprinting technique becomes a very promising alternative in that it
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confers to each position a specific fingerprint that is then identified by the localizing

units using different matching algorithms. In this work, the fingerprinting technique

is used to identify a position based on the extracted CIRs at that position.

After conducting a real-time measurement campaign in the CANMET gold mine

in Val d’Or city [31], CIRs were collected. For each position across the tunnel in

Fig. 8.1, seven parameters were then extracted from the corresponding CIR forming

overall a set of fingerprints at different distances (d) away from the receiver as shown

in Fig. 8.2. These parameters are the mean excess delay (τ̄), the root mean square

Figure 8.2 – Localization using one fixed receiver.

(τrms), the maximum excess delay (τmax), the total power of the received signal (P ),

the number of multipath components (N), the power of the first arrival (P1) and the

delay of the first path component (τ1). Estimating the position based on the finger-

prints is performed using ANNs.

Being able to perform complex computational operations such as classification,

control optimization, and function approximation, ANNs proved to be reliable com-

putational models that are widely used for different localization approaches [31], [4],

[12], [1], [20]. Every ANN needs to be trained using a set of training data which, in

our case, is made up of 75% of the collected fingerprints, leaving 25% of the data for

testing. The use of an MLP-type feed forward neural network with a back propagation

learning algorithm has been proven to give accurate estimation results in underground

localization studies [31], [4]. The simple form of the ANN used in localization in the
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presence of one receiver consists of 7 inputs, one hidden layer and one output that

is the distance to the transmitter. The hidden layer for this system consists of 10

neurons and it uses a differential tan-sigmoid transfer function, whereas the output

layer uses a linear-type transfer function. It was shown that position estimation using

one receiver only is precise and that the error is less than 1.5 meters for 90% and 80%

of training and non-training data, respectively [4]. Despite the promising accuracy of

estimating the distance to the transmitter, this technique cannot by itself guarantee

full coverage of the whole tunnel network of an underground mine.

8.2.2 Cooperative localization using two references in space

Precisely, a search for an upgraded technique that can serve as a complete lo-

calizing system in underground mines led to the idea of cooperative artificial neural

intelligence [4]. The concept of ANN-based cooperative localization using multiple

receivers is based on collecting multiple signatures from different receivers forming

one fingerprint that corresponds to a transmitter located between the reference end-

points as shown in Fig. 8.3. Because of the quasi-curvilinear topology of tunnels

in underground narrow-vein mines, two APs should be enough to provide wireless

coverage of the whole area in between in the corresponding tunnel section.

Figure 8.3 – Localization using two signatures of two receivers.

One of the two cooperative localization approaches, discussed in [4], is based on

estimating the position of the transmitter by using a single neural network as shown
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in Fig. 8.4. Two extracted signatures of the transmitter from two different receivers

are fed to this neural network. The latter, which has 14 inputs, is trained to local-

ize a transmitter by estimating the distance to one of the receivers. The separation

distance D affects the number of fingerprints that are collected given that each AP

(receiver) has a limited wireless coverage. For each separation distance D, a new neu-

ral network is created and trained. Unlike the first new cooperative approach in [4]

that uses separate neural networks, this approach is based on one position estimation

made by one neural network.

Figure 8.4 – Neural network based on multiple signatures.

8.3 Localization using Tracking in the Time Do-

main

The major localization systems use the space domain in order to estimate the

position of the transmitter. In other words, the reference points or APs that collect

the RSS, TOA, AOA, or fingerprints from the transmitted signal at different positions
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are fixed in space. In the previous sections, we defined localization using one reference

point and a cooperative localization technique using two references in space. Using

these systems, the position of the transmitter is estimated regardless of the CIR at its

previous positions. Tracking, as studied in the literature, is the algorithm of filtering

the trajectory that the mobile unit (i.e., transmitter) follows in order to improve

the localization accuracy. Most of these algorithms decrease the positioning error a

posteriori by post-processing the estimated results [47], [22], [41]. To the authors’

best knowledge, none of the proposed systems integrates a priori tracking within an

ANN-based fingerprint matching algorithm for localization. In this section, we will

introduce a localization system that properly exploits the time domain where the

CIRs of the previous positions play an important role in estimating the new position

within the ANN through in-built tracking.

8.3.1 Concept of time domain diversity with tracking

Consider a walking miner who is transmitting wireless signals across the tunnel.

One receiver is fixed and set on a time axis in a way that it starts localizing the miner

after saving the CIRs from its transmitter up to a certain memory level l. Using one

reference in time (l=1) is the same as using one reference in space; i.e., one CIR is

recorded and the position is estimated for each location separately using the local-

ization technique in sec. 8.2.1 [31] with one receiver only. However, the estimation

of the same position would be more accurate if the neural network considers two

signatures representing a motion pattern within the limits of the tunnel topology.

In order to estimate the miner’s position based on two references in time, a finger-

print should be formed from two CIRs. The first CIR is extracted for the position to

be estimated at t0 while the other CIR is that for the previous position registered in

memory at t−1. The speed of motion plays an important role in defining all possible
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fingerprints a priori, but it does not vary too much between the two typical stationary

and pedestrian speeds in the considered underground mining application. Due to the

fact that a miner may come from different directions before reaching a current posi-

tion, the neural network is trained on chains of all possible fingerprint combinations

for each position in a tunnel. Localization using tracking with two memory levels

(l = 2) exploits temporal diversity in the same way as cooperative localization in [4]

does with spatial diversity using two references in space. The accuracy of the neural

network (as shown in the following section) increases when increasing the memory

level of the system. In this work, we study localization based on tracking using up to

five references in time.

Since a miner’s movements inside the tunnels of an underground narrow-vein

mine are predictable within the confines of its well-mapped galleries due its quasi-

curvilinear topology, we are able to add valuable information to our model by creating

chains of predictable fingerprint combinations to be fed to the neural network. We

assume that a miner may walk to a position from different directions in the tunnel-

shaped mine gallery taking into consideration the boundary conditions of the narrow

tunnel. Using a time domain motion model, the number of input levels (l) that needs

to be considered defines the combinatorial number of possible CIRs from which each

fingerprint may be extracted. In the simplest case where l = 2, each fingerprint is

made up of 14 parameters extracted from two CIRs. The first CIR is that of the

position to be estimated at t0 while the other CIR may be one of the five possible

previous positions, as illustrated in Fig. 8.5 and listed in Tab. 8.1. Measurements at

either side of a position are included in the generated fingerprint; however, the output

of the ANN is selected along the longitude of the tunnel (i.e., the x dimension in Fig.

8.1), the other dimension (i.e., the y dimension in Fig. 8.1) along the narrow tunnel’s

width being much less significant as a coordinate for localization (but still extremely
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useful for its accuracy along the x-axis). The star represents the transmitter at

Figure 8.5 – Possibilities of previous positions for l = 2.

t0 while the filled circles are four possible previous locations at t−1 other than the

current position (which is also among possible previous positions). For simplicity,

motion across diagonals is excluded although our technique can easily take it into

account.

Table 8.1 – Fingerprints of each location for l=2

Fingerprint Source of Parameters

1 CIRt0 & CIRcenter

2 CIRt0 & CIRup

3 CIRt0 & CIRdown

4 CIRt0 & CIRleft

5 CIRt0 & CIRright

Once l increases, more positions get involved in forming the paths (fingerprints)

to the current position of the transmitter. Fig. 8.6 shows the positions that may be

considered for creating a path to the current position for l = 3. Once again, if the path

taken exceeds the boundary conditions of the mine gallery, this path is automatically

excluded from being listed as a possible fingerprint. The positions involved in forming

the path are highlighted in Fig. 8.6, while the maximum number of fingerprints (Nf )

extracted for the miner’s position at level l may be calculated using the following

formula:

Nf = 5(l−1).
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Figure 8.6 – Possibilities of previous positions for l = 3.

All possible fingerprints are gathered for all positions in the tunnel after specifying a

certain level l; then the signatures and paths are saved in a database.

8.3.2 ANN structure with time-domain diversity using track-

ing

The ANN used here is the same feed forward neural network with back propagation

learning used in sec. 8.2. The purpose of this choice is to properly compare the

results of tracking with the original localization system in [31] and its first extension

to spatial diversity (i.e., cooperation) in [4]. Here, the ANN is scalable up to the

number of input levels to be used. Since we extract 7 parameters from each CIR

signature, adding more signatures in time increases the number of inputs (Ninputs) of

the neural network such that:

Ninputs = 7l.

The memory level l under study specifies the structure of the neural network used in

the positioning system. For l = 2, the structure of the ANN is the same as in Fig.

8.4. On the other hand, the number of neurons (Nn) used in the hidden layer is based
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on the number of inputs of the neural network:

Nn = 2Ninputs + 1 = 14l + 1.

The output layer contains one neuron which represents the distance in meters to

the receiver at time t0. The combinatorial number of possible paths increases the

combinatorial number of possible chains of CIRs from which the possible fingerprints

or input parameters are extracted without necessarily requiring any increase in the

number of CIR measurements. As a matter of fact, while keeping the size of mea-

surement data unchanged, the combinatorial exponential increase in the size of the

training data (from where stems temporal diversity) overwhelmingly surpasses the

linear increase in the number of neurons required to match the corresponding in-

crease in the so-called memory level l. Throughout the training process, 75% of the

collected data are classified to train the neural network while 25% are left in order to

test the performance of the neural network with data not seen in the training process.

Localization using tracking is analyzed up to level 5 (i.e., using as a fingerprint 35

input parameters extracted from 5 CIRs).

8.4 Evaluation Results

The performance of the presented localization techniques is evaluated using the

Cumulative Distribution Function (CDF) graph. In CDF graphs, the accuracy of the

system is compared to its precision. The x-axis of the CDF is the estimation error

which represents the difference between the estimated and the real position measured

in meters. The second parameter is the precision or the percentage of occurrences for

such an estimation error in the collected data.
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8.4.1 Results of cooperative localization in the spatial do-

main

For the spatial localization approaches, each graph in Fig. 8.7 or 8.8 shows

four CDF plots that correspond to the position estimation errors of the different

techniques used in sec. 8.2. The first two CDF plots represent the position errors

caused by the separate estimations (i.e., cf. sec. 8.2.1) of the first and second receivers,

respectively. The third plot represents the result of cooperative localization based on

separate estimations (i.e., averaging both estimation errors, cf. sec. 8.2.2). The

fourth CDF plot represents the position estimation error of the cooperative neural

network technique using one neural network (cf. sec. 8.2.2). At a separation distance

(D) of 80 m, the CDF plots of the training and non-training data are shown in Figs.

8.7 and 8.8, respectively. Other plots for different separation distances (D) are

Figure 8.7 – CDF plots of the position estimation errors for the training data at a
receivers’ separation distance D = 80 m using several localization techniques.

presented in [4]. The accuracy of position estimation using one of the receivers is

found to be around 1.2 and 1.5 m for 90% of the training data at different separation
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Figure 8.8 – CDF plots of the position estimation errors for the testing data at a receivers’
separation distance D = 80 m using several localization techniques.

distances (D). In the non-training set of data, the error varied between 1m and 2 m

for 90% of the cases. The accuracy of the cooperative localization method based on

averaging the two position errors was recorded to be around 1m and 1.5 m for 90% of

the training and testing data, respectively. For the cooperative localization method

using one neural network, the position estimation error was recorded to be less than

60 cm and 1m for the training and testing data, respectively.

8.4.2 Results of localization using tracking in the time do-

main

The CDF plot is used again in order to show the results of localization using track-

ing at different memory levels. The input level l is the number of signatures a neural

network accepts including the fingerprint extracted from the CIR at time t0. They are

shown for the training and testing data in Figs. 8.9 and 8.10, respectively. For level

two, localization using tracking with only one previous CIR shows an estimation error
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Figure 8.9 – CDF plots for the training data using tracking.

of 1 and 1.25 meters for 90% of training and testing data, respectively. As the input

level increases, more paths get involved in the estimation of the current positions. As

l increases, the accuracy and precision of the neural network are enhanced forming

a better estimation model of the motion principle and the variation of the CIR with

respect to distance. At level three, estimation errors of 0.75 and 0.8 meters were

recorded for 90% of training and testing samples, respectively. The performance was

again improved when adding another previous position to the modeling process, and

at level four, the estimation error decreased to 50 cm for 90% of training and testing

data. An error of little less than 50 cm was reported at level five clearly suggesting

saturation in performance at level 4 beyond which no significant gain is observed. At

this level, the input of the neural network is five times larger in size than that of a

neural network using one CIR and the number of neurons in the hidden layer is 71.

Both cooperative and tracking localization techniques provide high accuracy of

position estimation with high precision. The limitation in space, however, prevents

us from decreasing the position estimation errors with more than two APs in a narrow-
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Figure 8.10 – CDF plots for the testing data using tracking.

vein mine tunnel given its quasi-curvilinear topology. On the other hand, due to the

flexible scalability of localization using tracking, more inputs are introduced to the

neural network resulting in better localization accuracy. At D = 80 m, it appears

that using cooperative localization has almost the same estimation errors as that of

localization using tracking when l = 3 and l = 2 for the training and testing data,

respectively.

8.5 System Design: Complexity vs. Accuracy

The accuracy of the proposed techniques is high compared to simple localization

techniques because it uses the CIR as a fingerprint. The major challenge that faces

this approach is to extract the CIR at the receivers’ end. Being part of a wireless

network, each receiver would be capable of transmitting the extracted CIRs to a main

server that should handle the process of training the neural network using the separate

or cooperative techniques discussed in sections 8.2 and 8.3. The transmitting unit is
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supposed to be, in our case, a mini transmitter on the miner’s cap. Since such system

works using the fingerprinting technique, collecting multiple fingerprints in different

parts of the tunnels is another essential step that builds up the database. Instead

of taking measurements manually, collecting the fingerprints in real-time scenarios is

easier once the infrastructure is ready i.e. the miners are automatically transmitting

signals and the CIRs are collected at a computer server from the receivers.

Since the channel is dynamic, classifying the neural networks based on receivers’

locations and the time of day would be an interesting feature that may lead to better

estimation results. The variation of the channel due to human activity may also be

adjusted by implementing some fixed transmitters along the galleries for calibration

purposes.

Considering a system that uses tracking alone does not create a global localiza-

tion system in underground mines because it uses one localizing unit as in [31]. The

question arises as to whether we are capable of integrating the tracking system in a

cooperative neural network technique where two references in space localize using the

tracking algorithm and then a final estimation is drawn using one of the two cooper-

ative neural network topologies discussed in sec. 8.2. An ongoing study investigates

whether integrating the tracking technique at a given memory level l in a cooperative

spatial localizing system (i.e., diversity both in space and time) would lead to higher

performances that could match those of tracking alone with higher memory levels l

(i.e., only time diversity).

8.6 Conclusion

This article presented a new localization approach that exploits time diversity

for radio-localization in tunnel-shaped underground narrow-vein mines. With an in-

built tracking algorithm, this technique uses ANNs to localize a transmitter based on
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fingerprints extracted from chains of CIRs recorded in time. The proposed system is

able to estimate the position of a wireless transmitter in narrow tunnels with high

accuracy and precision of 50 cm for 90% of both training and testing data. Compared

to cooperative localization in the spatial domain, geo-location using tracking is more

accurate and precise with much more flexible scalability. The question of whether

this system may be integrated in a cooperative localization technique that exploits

spatial diversity is currently under investigation. Although this work was conducted

for an underground environment such as mines, localization using tracking may be

used in different indoor/outdoor environments. The proposed system may also use

different wireless technologies such as UWB, WLAN, or mobile radio.
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Abstract

Underground narrow-vein mines result in complex indoor scenarios which require so-

phisticated localization techniques to maintain basic security measures. While some

traditional localization systems use the triangulation techniques for outdoor channels,

fingerprint positioning techniques are mostly used in more complex indoor environ-

ments like mines. One of the techniques exploited in the quasi-curvilinear topology

of underground mines is the Channel Impulse Response (CIR) based fingerprint po-

sitioning combined with Artificial Neural Networks (ANNs). This article innovates a

CIR-based positioning technique within a cooperative memory-assisted approach that

exploits both the temporal (from different time instances) and spatial (from different

space positions) diversities of the collected fingerprints. Introducing memory-type

signatures in a cooperative localization technique within the spatial confinements of

the tunnel-shaped narrow-vein mines significantly increases the accuracy, precision

and robustness of the localization system. The cooperative memory-assisted tech-

nique is capable of localizing a transmitter with an accuracy of less than 25 cm 90%

of the time.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, cooperative localization, tracking, spatial diversity, temporal

diversity.
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9.1 Introduction

Chile August 2010, the mine collapsed and many miners were trapped. It took the

rescue team 69 days to find the first miner, and 10 weeks to rescue the rest [33]. Lo-

calizing miners/equipments in underground and confined areas is not a feature added

for luxury, but an essential basis for the well-known principle of the mining industry,

”Safety First”. However, the special nature of narrow-vein mines’ topology which is

made of interconnected tunnels challenges any localization system expected to pre-

cisely estimate the location of miners underground. Like most wireless localization

systems, the distance to the transmitter is estimated based on the received signals’

characteristics after being affected by the channel. In underground narrow-vein

mines, wireless signals propagate within humid rough surfaces and non-line of sight

(NLOS) branching tunnels forming complex multipath components. The received

signals’ components such as the Received Signal‘s Strength (RSS), Angle of Arrival

(AOA), Time of Arrival (TOA) and Time Difference of Arrival (TDOA) are altered

once multipath reception takes place. And since most traditional localization sys-

tems use one or more of the mentioned parameters (i.e., RSS, AOA, etc ...) to

localize [10] [29] [23] [12] [9], they fail once deployed in underground narrow-vein

mines. Another challenge present in narrow-vein mines is the spatial confinement of

the interconnected quasi-curvilinear tunnels which prevents a 2D-meshed deployment

of localizing units or access points (APs) to further increase the accuracy and preci-

sion of underground geo-location.

A search for an alternative led to the innovation of a localization technique that

uses artificial neural networks (ANNs) and fingerprints collected from the channel’s

impulse responses (CIRs) [31]. The system accurately estimates the distance to a

transmitter using one receiver only (i.e., solitary localization) with an estimation error

of less than 2 meters for 90% of the collected measurements. Since wireless coverage
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requires more than one AP in the confinement of narrow-vein mines, the use of an-

other localizing unit introduces geolocation as a cooperative technique that exploits

the spatial diversity of the collected fingerprints. The cooperative memoryless local-

ization technique using two receivers later proposed in [4] reduces the location error

to less than 1m for 90% of the data making use of two spatially distinct fingerprints

to better estimate the user’s location. It also introduces two ANN structures that

exploit these two fingerprints separately or jointly to better estimate cooperatively

the position of the miner in underground narrow-vein mines.

The spatial confinement of the tunnel-shaped topology of narrow-vein mines fa-

cilitates the prediction of the patterns of motion. In other words, training ANNs on

different motion patterns collected at short time instances enriches the set of finger-

prints corresponding to the transmitter’s positions. In some localization techniques

[47] [22] [41], tracking is a process that follows estimating the position of the users

(i.e., post-processing the results). Few are the techniques that implement a prioiri

tracking within an ANN-based localization system. Enhancing the accuracy within

this spatial confinement is possible once the system exploits the temporal diversity of

the collected fingerprints over short periods of time, a concept proven more recently

to be right and promising in [6]. Using one localizing unit, the technique in [6] takes

advantage of the limited motion patterns (i.e., spatial confinement) to create a rich

database used for fingerprint positioning. The memory-assisted system in [6] targets

position accuracies of less than 40 cm for 90% of the collected fingerprints. Yet, the

localization system in [6] which exploits the temporal diversity of the collected fin-

gerprints uses one localization unit only, which means that it can be further enhanced

once introduced in a cooperative memory-assisted technique that exploits both the

spatial and temporal diversities of the signatures.

This article introduces a cooperative memory-assisted localization technique that
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exploits both the spatial and temporal diversities of the assembled signatures. The

power of a spatio-temporal fingerprint is in its ability to project the signal on two

spatially separated receivers with an additional projection in time (i.e., by introduc-

ing memory). ANNs are trained to localize all different scenarios of motion in a

cooperative localization technique that takes into account the signatures of two APs.

The next section highlights different CIR-based fingerprint positioning techniques

that use ANNs to localize. The cooperative memoryless (i.e., exploiting the spatial

diversity only) [4] and the memory-assisted (i.e., using the temporal diversity only)

[6] localization techniques are briefly summarized. In section 9.3, the cooperative

memory-assisted localization technique that exploits both the spatial and temporal

diversities is introduced. Simulation results are reported and discussed in section 9.4.

Conclusions are drawn out in section 9.5.

9.2 Localization in Mines Using CIR-based Fin-

gerprinting and ANNs

The fingerprinting or scene analysis technique is used in scenarios where the chan-

nels cannot be easily modeled due to the severe distortion that signals encounter on

their way to the receiver. Fingerprint positioning is based on extracting some of the

parameters of the received signals (i.e., RSSs, AOAs, etc ...) at different distances

and saving them in a database. Different matching algorithms such as probabilistic

methods, k-nearest neighbour (kNN), support vector machine (SVM) or ANNs are

then used in real-time scenarios to localize [27] [39]. These algorithms try to match

the collected fingerprint to the saved measurements in order to estimate the distance

to the transmitter. In underground narrow-vein mines, localization based on RSS,

AOA, or TDOA is neither accurate nor precise [31] [42] [4]. Increasing the accuracy
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of position estimation in confined areas requires deploying more APs to overcome

the multipath components and the signals’ fluctuation effects. Another approach to

accurate positioning innovated in [31] uses seven parameters extracted from the CIR

of the received signal to form a fingerprint. The parameters are the mean excess delay

(τ̄), the root mean square (τrms), the maximum excess delay (τmax), the total power

of the received signal (P ), the number of multipath components (N), the power of

the first arrival (P1) and the delay of the first path component (τ1). A fingerprint is

denoted by f = (τ̄ , τrms, τmax, P,N, P1, τ1) and it corresponds to a distance d. Due

to the narrow quasi-curvilinear topology of underground tunnels and for simplicity,

the distance to the transmitter d is taken along the x-axis only neglecting the small

variation along the tunnels’ confined width (i.e., y-axis). It is also a way to ensure

that the localization system takes into account the fluctuations of wireless signals for

the same position (i.e. more than one fingerprint f may represent the same separation

distance d). A measurement campaign at a carrier frequency of 2.4 GHz was carried

out in CANMET mine in Val d’Or Canada where the fingerprints were extracted

along with their corresponding distances for 480 positions as illustrated in Fig. 9.1.

It should be noted that the distance between the consecutive measurement points

along the x-axis is one meter. Mapping the set of fingerprints S = {f1, f2, f3, ..., fn}

Figure 9.1 – Map of the underground tunnels.
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to the corresponding set of distances D = {d1, d2, d3, ..., dn} is successfully achieved

using ANNs. The measurements conducted in [31] for the stationary positions along

the tunnel as shown in Fig. 9.1 are used to simulate memory-type fingerprints. For

more technical information about the experimental setup, please refer to [31].

ANNs are defined as computational models capable of approximating a function.

They are capable of performing non linear regressions which make them suitable for

localization in harsh environments [31] [1] [20]. The power of ANNs is that they are

relatively simpler than traditional estimation techniques such as Kalman filters espe-

cially when modeling a non-linear function which is, in our case, of order 7 (i.e., seven

parameters as inputs). An MLP feed-forward ANN with a back-propagation learning

algorithm is proven effective for underground geo-positioning [31] [42] [4] [6]. During

the learning phase, the neural network is given the training data that corresponds

to 75% of the collected measurements. Then, in the testing phase, ANNs are tested

using 25% of the fingerprints which are not seen in the training phase.

The solitary memoryless localization system used in [31] estimates the distance

to the transmitter instantaneously based on fingerprints extracted from the CIR of

the received wireless signals. As shown in Fig. 9.2, this technique accurately localizes

Figure 9.2 – Solitary localization using one receiver.

based on the input of one localizing unit (i.e., one receiver or AP). A simple neural

network with 7 input neurons, one hidden layer provides the transmitter’s distance

with an approximate accuracy of less than 2 m for 90% and 80% of the training and
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testing data, respectively.

9.2.1 Cooperative memoryless localization using spatial di-

versity

A global localization system requires the participation of multiple APs in estimat-

ing the transmitter’s location within the quasi-curvilinear topology of underground

narrow-vein mines. However, only the two nearest APs found at either end of any

given section of a mine tunnel are needed to guarantee its wireless coverage. The

cooperative memoryless localization system in [4] exploits spatial diversity taking

advantage of the implemented APs to collect different fingerprints. As shown in

Figure 9.3 – Cooperative localization using two receivers.

Fig. 9.3, the use of two APs within the spatial confinement of the tunnels not only

enhances the accuracy of the estimated distance, but also provides correct position-

ing inside the quasi-curvilinear interconnected tunnels. In the cooperative approach,

the sets of fingerprints SR1 = {f1, f2, f3, ..., fm} and SR2 = {f ′

1, f
′

2, f
′

3, ..., f
′

m} are

collected from receivers R1 and R2, respectively. Two different ANN architectures

are presented in [4] and both accurately estimate the position of the transmit-

ter. One of the ANN designs is shown in Fig. 9.4 where the set of fingerprints

S = {F1, F2, F3, ...., Fm} = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)} is the concatena-
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tion of both observations, SR1 and SR2 . The output of the ANN is the estimated

distance to one of the transmitters D = {d1, d2, d3, ..., dm}. The exploitation of the

Figure 9.4 – Neural network based on multiple signatures.

spatial diversity of the collected fingerprints introduced a cooperative version of the

CIR-based fingerprint positioning technique in [31] for underground geolocation and

hence significantly increased its accuracy, precision and reliability.

9.2.2 Solitary memory-assisted localization using temporal

diversity

The accuracy of the cooperative memoryless technique discussed in Sec. 9.2.1

may only be enhanced by increasing the number of APs which is not practical given

the spatial confinement of narrow-shaped tunnels. However, the narrow curvilinear

topology is an advantage because it facilitates the prediction of the user’s motion pat-

terns. The memory-assisted localization technique in [6] utilizes the narrow-shaped

topology to introduce an in-built tracking model that exploits the temporal diversity

of the recorded fingerprints. The path fingerprint f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)
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represents a concatenation of the fingerprints recorded in time while moving towards

a destination to be estimated (i.e., at a distance di). More than one path can lead to

the same position to be estimated, i.e., more than one path fingerprint f j
i correspond

to the same distance di. While l represents the number of concatenated fingerprints

or the so called memory level in [6], j is simply an index number that counts the

number of possible tracks to a desired destination at a given memory level l. The

terms memory level l and time depth are used interchangeably in the article and they

represent the number of concatenated memory-type sub-fingerprints that constitute

the temporal fingerprint for a given position at distance di away from R1. The max-

imum number of path fingerprints jmax for a given position is limited by the upper

bound Nfp :

jmax ≤ Nfp = 5(l−1).

Since each fingerprint contains 7 parameters, the length of the temporal fingerprint

defines the number of inputs of the ANN and it is given by:

Ninputs = 7l.

The design of the ANN depends on l because the number of neurons in the input

layer is equal to the length of the path fingerprint Ninputs. The number of neurons

in the hidden layer is Nn = 2Ninputs + 1 for all architectures and the output is the

distance to the transmitter. Figure 9.5 illustrates a simple fingerprint allocation for

Figure 9.5 – Possibilities of previous positions for l = 2.
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one position when l = 2. The star represents the current position of a transmitter

located at a distance di to be localized showing the previous possible positions 1.

While respecting the spatial boundary limits of the tunnels, any previous position is

selected to create the potential path fingerprints. The length of the combinatorial

set of fingerprints for the same position is dependent on l and the geometry of the

narrow tunnels. In this example, the combinatorial subset of possible fingerprints

collected from a transmitter located at di (i.e., star position) within the total set

S = {S1, . . . , Si, . . . , Sm} over all distances D is:

Si =
{

F 1
i , F

2
i , F

3
i , F

4
i , F

5
i

}

.

where,

F 1
i = (fi, fi),

F 2
i = (fi, finorth

),

F 3
i = (fi, fisouth),

F 4
i = (fi, fiwest

),

F 5
i = (fi, fieast).

are all the possible path fingerprints reaching the star position when l = 2. The

exponential increase in the number of fingerprints Nfp due to the linear increase

of temporal memorization level l overwhelmingly enriches the information given to

ANNs about each position inside the tunnels from the same original set of data mea-

surements.

Speed plays a significant role in defining the sampling time interval that precedes

1Motion across the diagonals is excluded because it exponentially increases the combinatorial set
of path fingerprints without a significant gain.
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the collection of the memory-type fingerprints. In order to allow the same trained

ANN to accurately localize a transmitter regardless of its limited speed in the con-

finement of narrow-vein mines, the sampling time at which the sub-fingerprints are

collected should be adjusted accordingly. In other words, sampling time is set to allow

the extraction of sub-fingerprints measured at any two positions (separated by the

distance covered by the transmitter in motion at a velocity below or equal to a given

maximum speed) that is shorter than the grid resolution times the memory level or

time depth.

Introducing temporal diversity and in-built tracking to the CIR-based fingerprint-

ing technique in [6] outperforms the localization system in [4] in terms of accuracy,

precision and scalability within the narrow quasi-curvilinear topology of mine tunnels.

However, solitary localization using temporal diversity alone does not benefit from

the possible cooperation between multiple localizing units (having each an overlap-

ping radio footprint with their two nearest adjacent neighbors) required anyway for

proper coverage of the whole mine galleries and, additionally, it cannot resolve the

location ambiguity arising from the presence of tunnel junctions. On the other hand,

as shown in the following, the collaboration of memory-assisted localizing units (i.e.,

spatio-temporal diversity) with lower memory levels allows significant reduction of the

complexity encountered when using solitary memory-assisted localization performing

at higher time depths while offering better accuracy.

9.3 Cooperative Memory-Assisted Localization Ex-

ploiting Spatio-Temporal Diversities

Based on a combination of the two previous solutions, an even more intelligent

localizing system integrates the in-built tracking technique at a given memory level l
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in a cooperative spatial localizing system (i.e., spatio-temporal diversity). This leads

to higher performances that could match those of memory-assisted localization alone

at higher memory levels l (i.e., only time diversity). Mixing both spatial and temporal

diversities is a technique that further enriches the information given to ANNs result-

ing in a better mapping of the limited motion patterns in narrow quasi-curvilinear

tunnels.

This work innovates a localization system that uses the memory capability (i.e.,

in-built tracking) cooperatively between two spatially-separated localizing units be-

fore estimating the position of the transmitter. Within the spatial confinement of the

tunnels and over short periods of time, the signatures recorded at consecutive time in-

stances and collected from two spatially-separated receivers guarantee less-fluctuating

spatio-temporal fingerprints. Unlike the system introduced in [6] which exploits the

temporal diversity of a solitary receiver, this approach creates chains of path finger-

prints from two nodes before training the ANNs. The scalability of the system allows

the ANNs to be trained to localize at different separation distances D and memory

levels l. The subset of path fingerprints SR1
i =

{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}

col-

lected from R1 at a distance di is properly combined path-wise with the other subset

SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

gathered from R2 at a distance d2 = D − d1

to form the spatio-temporal group of path fingerprints:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}

.

As discussed earlier in Sec. 9.2.2, the length of the temporal fingerprint is dependent

on the memory level l of the solitary receiver where localization is taking place. If

we consider two spatially separated APs each collecting fingerprints at different time

depths, we may create different scenarios denoted by (l1, l2) corresponding to receivers
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(R1, R2) respectively. For example, localizing a transmitter at a distance di and time

instant t0 with memory levels (l1 = 2, l2 = 1) is achieved by matching the measured

spatio-temporal fingerprint Fi = (FR1
i , FR2

i ) where

FR1
i = (fR1

it0
, fR1

it
−

1
),

FR2
i = (fR2

it0
).

For (l1 = 2, l2 = 1), R2 provides a fingerprint FR2
i of length 7 (i.e., memoryless fin-

gerprint) while the fingerprint FR1
i collected from receiver R1 is the concatenation

of two fingerprints recorded at the time instances t0 and t−1 (i.e., memory-assisted

fingerprint of length 14). Concatenating two fingerprints from two spatially separated

receivers where at least one is introducing memory creates a spatio-temporal finger-

print for a given position. The length of the spatio-temporal fingerprint defines again

the number of inputs Ninputs of the ANN and it is dependent on both l1 and l2 where:

Ninputs = 7(l1 + l2).

9.4 Performance Results

The results of the localization techniques are presented using the Cumulative Den-

sity Function (CDF). CDF plots show the accuracy of the positioning technique (i.e.,

position error in meters) for a given percentage of the treated data. As mentioned

earlier and shown in the following graphs, 75% of the collected fingerprints are trained

by the ANN whereas 25% are left for testing the generalization of the ANN of any

technique. These results are plotted in Figs. 9.6 and 9.7 and summarized in Tab.

9.1.

The performance results of the spatio-temporal fingerprint positioning technique
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are compared to the localization technique that uses either spatial or temporal di-

versity alone. The memory levels of receivers R1 and R2 are denoted by l1 and l2,

respectively. If one of the receivers is not participating in the localization process

(i.e., solitary localization), its memory level is presented as l = 0. On the other hand,

memoryless localizing units use one fingerprint to localize (i.e, l = 1) without the need

of fingerprint concatenation. When the memory level is set to l > 1, the localizing

unit would be concatenating fingerprints in short time instances before feeding them

to the ANN. The notation (l1, l2) shows the different memory levels at which both

receivers are performing their fingerprint allocation. Both observations from R1 and

R2 are concatenated again and fed to a cooperative ANN that estimates the position

of the transmitter.

Merging the temporal path fingerprints of two spatially different receivers and

feeding them as one concatenated spatio-temporal fingerprint to one ANN is a break-

through in the fingerprint positioning techniques (i.e., cooperative memory-assisted

technique). The results of spatio-temporal localization are compared to the tech-

niques discussed in 9.2 and presented in Figs. 9.6 and 9.7 for the training and testing

data, respectively. These results clearly show the increased accuracy of spatial and

temporal combination in the CIR-based localization approach.

Cooperative memory-assisted localization is a result of the collaboration of the

receivers when at least one of them is introducing memory (i.e., producing path fin-

gerprints). In the first cooperative memory-assisted approach, R2 is kept at a memory

level l2 = 1 (i.e., without memory) while R1’s memory level varies (i.e., l2 = 2, 3).

In memory-assisted techniques, it is noticed that the cooperative approach that adds

spatial diversity to the fingerprints performs better than the solitary technique even

when the length of the fingerprints is the same. For example, solo memory-assisted
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Figure 9.6 – CDF of the training data for different localization techniques at memory
levels (l1,l2).
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Figure 9.7 – CDF of the testing data for different localization techniques at memory levels
(l1,l2).
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localization at (l1 = 3, l2 = 0) is less accurate than cooperative memory-assisted

localization at (l1 = 2, l2 = 1) even though both path fingerprints are of length 21.

In addition to that, when (l1 = 3, l2 = 1), merging spatial and temporal information

further increases the location accuracy to values less than 40 cm surpassing the upper

limit of solitary memory-assisted localization when (l1 = 5, l2 = 0).

In the second cooperative memory-assisted approach, both receivers use in-built

tracking or memory to form their fingerprints. Surprisingly, a one step increase in

the memory level of R2 creates uniform spatio-temporal fingerprints where two ref-

erences in time are taken from two receivers in space. As shown in Figs. 9.6 and

9.7, location accuracy of the last curve drops to 20 cm and 25 cm for 90% of the

training and testing data, respectively. It may be seen that the accuracy of a 2-by-2

spatio-temporal localization system [i.e., (l1 = 2, l2 = 2)] is double the accuracy of a

1-by-1 cooperative spatial system [i.e., (l1 = 1, l2 = 1)].

Table 9.1 – Estimation errors of different localization techniques

Localization Technique with 90% Precision Training Errors (m) Testing Errors (m)

Spatial localization using one receiver [31] 1.5 2

Cooperative spatial localization based on separate ANNs [4] 1 1

Cooperative spatial localization based on one super ANN [4] 0.6 1

Solo memory-assisted localization [6]

(l1 = 2, l2 = 0) 1 1.25

(l1 = 3, l2 = 0) 0.75 0.8

(l1 = 4, l2 = 0) 0.5 0.5

(l1 = 5, l2 = 0) <0.5 <0.5

Cooperative memory-assisted localization

(l1 = 2, l2 = 1) 0.48 0.62

(l1 = 3, l2 = 1) 0.38 0.43

(l1 = 2, l2 = 2) 0.20 0.25

As shown by the results above, cooperative memory-assisted localization out-

performs other memoryless/memory-assisted localization techniques even at lower

memory levels or time depths. An optimum solution would uniformly exploit spatial-
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temporal (i.e., l1 = l2 > 1) to overcome the spatial confinement of the environment

and significantly utilize the limited motion patterns inside the quasi-curvilinear tun-

nels. The spatio-temporal localization technique localizes with high accuracy, preci-

sion and scalability.

9.5 Conclusion

This article investigated the CIR-based localization techniques and innovated the

spatio-temporal fingerprint positioning technique that uses ANNs. The concept of

localization using the spatio-temporal diversity in underground narrow-vein mines is

satisfied when fingerprints are recorded at short time periods and collected from two

spatially separated receivers. This cooperative memory-assisted localization system

(i.e., 2-by-2) is able to attain higher accuracies at lower memory levels using ANNs.

The estimation error is reduced to 20 cm and 25 cm for 90% of the training and testing

fingerprints, respectively. The proposed system is feasible given that its complexity

is still affordable, and that it could be integrated into different wireless technologies.
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Abstract

One of the main concerns in the mining industry is ensuring the safety and security

of miners and their equipment. Being aware of the real-time position of personnel

in such harsh environments within a special quasi-curvilinear topology is challenging

and requires a sophisticated localization system. While traditional triangulation tech-

niques fail to accurately localize in such indoor scenarios, new approaches that rely on

fingerprints extracted from the Channel Impulse Response (CIR) succeed to localize

with high accuracy using Artificial Neural Networks (ANNs) for fingerprint-location

matching. Signatures collected from different locations in space, at different instances

in time, are concatenated to form spatio-temporal fingerprints for improved localiza-

tion accuracy. In this paper, we overview these novel and very promising localization

techniques then investigate the impact of the spatial sampling grid’s resolution in

fingerprint collection on their accuracy in underground narrow-vein mines. We show

by simulations that the significant accuracy gains reaped from the new exploitation

of spatio-temporal diversity, if not needed in some applications, can be alternatively

traded for remarkable and extremely useful cost reductions in the fingerprint collec-

tion step.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting, cooperative localization, tracking, spatial diversity, temporal diversity.
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10.1 Introduction

Wireless localization systems are widespread in the modern world. While some

location-based services are used for entertainment, other services such as the Global

Positioning System (GPS) are becoming essential necessities for daily life applications.

On the other hand, positioning services are demanded by industries for enhanced se-

curity measures such as localizing miners underground. The importance of an under-

ground localization system reveals itself in incidents such as the one that happened

in Chile in 2010 where miners were trapped more than 69 days underground [33].

A localization system built in the tunnel-shaped topology of the narrow-vein mine

definitely simplifies the process of locating the miners and their equipment prior/after

any accident. So what makes it hard to deploy?

First, narrow-vein mines are made up of humid rough surfaces that create adverse

channel responses to wireless transmitted signals. Indeed, the geological nature of this

tough environment causes severe reflections, refractions and non line of sight (NLOS)

propagation, thereby making channel modeling and characterization more complex.

Therefore, traditional localization techniques fail to accurately estimate the position

of transmitters because many of these techniques would rely on conventional channel

parameters such as the Received Signal Strength (RSS), Angle of Arrival (AOA),

Time of Arrival (TOA) and/or Time Difference of Arrival (TDOA) [10] [29] [9].

Indeed, the tunnels in underground narrow-vein mines constitute a quasi-curvilinear

topology which is nearly 1D. Even the y-dimension across the tunnels’ width is less

significant since it ranges mostly between 1 to 3 meters. In this quasi-curvilinear

topology, using the AOA does not reveal the exact direction of arrival because of

the numerous reflections that take place in the confinement of the tunnels and their

curvatures. For similar reasons, the TOA does not reflect the shortest path to the

transmitter [31] [42]. Besides, in cases where junctions exist, estimating the dis-
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tance to the transmitter is not enough due to the NLOS propagation which makes

cooperative localization techniques more desirable.

The challenges summarized above elevate the complexity level of a localization

system expected to perform effectively in the confinement of mine galleries. Intro-

ducing ANN-based fingerprint-position matching for wireless localization that is fed

by a set of useful parameters extracted from the CIR as an input signature is proven

to perform accurately in narrow-vein mines [31] [42]. This novel concept was re-

cently extended to exploit spatial diversity [4], temporal diversity [6], or both [5]

for increased accuracy.

In this paper, we overview these novel and very promising localization techniques

then investigate the impact of the spatial sampling grid’s resolution for fingerprint col-

lection on their accuracy in underground narrow-vein mines. Simulations suggest that

the significant accuracy gains reaped from the new exploitation of spatio-temporal di-

versity, if not needed in some applications, can be alternatively traded for remarkable

and extremely useful cost reductions in the fingerprint collection step. As one exam-

ple, the cooperative version [4] that exploits a two-branch spatial diversity attains

the same accuracy (of 1.5 m at 90% precision) of the original version [31] using for

training only 50% of the collected fingerprints stemming from a sampling grid with

half the resolution of the original one.

In Sec. 10.2, we briefly describe the original measurement campaign conducted

for fingerprint collection [31]. In Sec. 10.3, we overview the novel ANN-based

localization techniques and the ways spatial and temporal diversities are exploited in

the spatio-temporal fingerprints. In Sec. 10.4, both the solitary [31] and cooperative

memoryless [4] localization techniques are, as two representative examples, challenged

by lower spatial sampling grid resolutions in the fingerprint collection step to illustrate

how accuracy gains can be traded for lower fingerprinting costs. Conclusions are
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finally drawn out in Sec. 10.5.

10.2 Measurement Campaign for CIR-BASED Fin-

gerprinting

Measurement campaigns are unavoidable with any fingerprint-based localization

technique. Fingerprint-based positioning systems mainly rely on the collected mea-

surements to create the ground rules of the localization algorithms. In other words,

localization using the fingerprinting technique is a way of mapping the received wire-

less signals (i.e., fingerprints) taken at specific locations to the transmitter’s position

(i.e., distance from the receiver). The grid resolution of the measurement campaign

plays an important role in the accuracy of the localization technique. Increasing

the grid resolution to improve localization accuracy is time consuming and is not

recommended. Therefore, the spatial sampling grid resolution should be optimized

to guarantee accuracy without increasing the cost incurred from collecting numer-

ous measurements. We will show here how smart spatio-temporal fingerprinting that

exploits both spatial and temporal diversities allows, among numerous benefits, con-

ducting lower-cost measurement campaigns over lower-resolution grids while main-

taining accuracy.

A measurement campaign was conducted in CANMET gold mine in Val d’Or Que-

bec from which a new approach to CIR-based localization was introduced in [31].

A total of 480 measurements were taken in a tunnel as shown in Fig. 10.1. The

original grid resolution is set to 1 meter increment per x-position while respecting

the boundary conditions of the tunnels. For each position, seven parameters are ex-

tracted to form a fingerprint. These parameters are the mean excess delay (τ̄), the

root mean square (τrms), the maximum excess delay (τmax), the total power of the
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Figure 10.1 – Map of the underground tunnels.

received signal (P ), the number of multipath components (N), the power of the first

arrival (P1) and the delay of the first path component (τ1). Throughout this article,

a fingerprint is denoted by f = (τ̄ , τrms, τmax, P,N, P1, τ1) and it corresponds to a

transmitter at a distance d away from the localizing unit or receiver R. Given the

quasi-curvilinear topology of narrow-vein mines, the variation along the y-position is

considered insignificant (i.e., the x-position is taken as the total distance d). However,

the fingerprints are taken for all y-positions to simulate the fact that signals fluctuate

for the same x-position.

10.3 Overview of ANN-Based Localization Tech-

niques using Fingerprinting

10.3.1 Original technique

Matching the set of fingerprints S = {f1, f2, f3, ..., fn} to the corresponding set

of distances D = {d1, d2, d3, ..., dn} is performed using Artificial Neural Networks

(ANNs). With their ability to perform complex calculations of nonlinear functions,



CHAPTER 10. SMART SPATIO-TEMPORAL FINGERPRINTING FOR COOPERATIVE
ANN-BASED WIRELESS LOCALIZATION IN UNDERGROUND NARROW-VEIN MINES 104

ANNs are easy to train and operate and they estimate the transmitter’s position in-

stantaneously and accurately. In case where only one receiver is present as shown in

Fig. 10.2, the input layer of the ANN is composed of 7 neurons that correspond to

the length of each fingerprint in S. The output layer is made of one neuron repre-

senting the output distances in D matching the input fingerprints in S.

Figure 10.2 – Solitary localization using one receiver.

The ANN is trained to estimate 75% of the collected fingerprints then the remain-

ing 25% of the fingerprints are tested to validate the generalization performance of

the trained ANN. The use of MultiLayer Perceptron (MLP) ANN with back prop-

agation learning algorithm gives more accurate and precise results for underground

localization [31] [42].

10.3.2 Exploiting spatial diversity

Even though the original technique in [31] was a breakthrough in localization

systems for underground and confined areas, recently it was further enhanced in [4]

to exploit the spatial diversity of the collected fingerprints. By using the principle

of cooperation between multiple Access Points (APs), the cooperative localization

technique proved that concatenating more than one fingerprint collected from different

locations enriches the information about the exact position of the transmitter. As

shown in Fig. 10.3, the transmitter’s position is estimated even in the presence

of junctions, interconnected tunnels and NLOS scenarios. Cooperative memoryless
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localization in [4] only relies on the spatial diversity of the collected set of fingerprints

SR1 = {f1, f2, f3, ..., fm} and SR2 = {f ′

1, f
′

2, f
′

3, ..., f
′

m} measured at receivers R1 and

R2, respectively. These receivers may choose to exchange the fingerprints or position

estimates collected at an instant t depending on the pre-defined ANN architectures.

In case where both receivers feed together their fingerprint measurements, one super

ANN shown in Fig. 10.4 concatenates the subset of observations SR1 and SR2 to form

the total set S = {F1, F2, F3, ...., Fm} such that:

S = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)} .

The input layer of the ANN is made of 14 neurons while the output layer is the

transmitter’s distance in the set D = {d1, d2, d3, ..., dm} referenced to R1.

Figure 10.3 – Cooperative localization using two receivers.

10.3.3 Exploiting temporal diversity

In a tunnel-shaped topology, two APs are sufficient to provide wireless coverage for

the whole section of the gallery in between. In other words, localization using spatial

diversity could be limited to two fingerprints per position. This diminishes, however,

its capability of attaining higher accuracies and precisions. A search for better per-

formance led to the development of the memory-assisted localization technique in [6]

where temporal diversity is exploited. Using one receiver, solitary memory-assisted
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Figure 10.4 – ANN based on multiple signatures.

fingerprinting is illustrated in Fig. 10.5 where the star represents the transmitter’s

position to be estimated at time instant t0.

Figure 10.5 – Possibilities of previous positions for l = 2.

A temporal fingerprint is the concatenation of multiple signatures recorded along

the path a transmitter takes reaching a desired position at t0, separated by a distance

d from the localizing unit. Concatenating only one previous fingerprint at a time

instant t−1 creates a temporal fingerprint of length l = 2 (i.e., 2 fingerprints with

a total of 14 parameters). The length of the temporal fingerprint depends on l and

corresponds to the number of inputs Ninputs fed to the ANN where:

Ninputs = 7l.
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In order to generalize the performance of the ANN, all the paths that lead to

the star position should be considered as possible temporal fingerprints. This re-

quires collecting all the combinatorial fingerprints surrounding each position while

respecting the boundary limits and considering a consistent hop size. 1 It should

be noted that a combinatorial set of generated temporal fingerprints exponentially

increases from the original set containing 480 measurements. Training ANNs on

all possible temporal fingerprints enriches the information given about one location

based on fingerprints taken from possible motion patterns, a method that should not

be confused with conventional tracking algorithms where the position estimates are

enhanced after their estimation takes place [47] [22] [41]. A programmed MATLAB

function is responsible for collecting all possible paths and then concatenating their

corresponding fingerprints to form chains of temporal fingerprints for all positions in

the tunnel based on the pre-defined memory level l. The performance of each ANN

is tested for different memory levels up to l = 5 (i.e., chains of five concatenated

fingerprints per position) after which no significant accuracy gain is reported. The

temporal fingerprint is denoted by

f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

,

and it corresponds to one path that leads to a position at a distance di away from

R1 using memory capacity l. Since multiple paths may lead to the same position,

the index j is introduced to count the number of temporal fingerprints that point

to the same output distance di. The maximum number of temporal fingerprints per

position jmax is affected by the boundary conditions that surround each position and

1Motion across diagonals is excluded because it exponentially increases the length of temporal
fingerprints without significant accuracy gain.
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it is proportional to l where:

jmax ≤ 5(l−1).

10.3.4 Exploiting spatio-temporal diversity

Cooperative localization (cf. Sec. 10.3.2) improves positioning accuracy by ex-

ploiting the spatial diversity resulting from the chained-topology of the deployed

APs but this diversity is practically limited to two branches due to the curvilinear

topology of underground narrow-vein mines. An advanced fingerprinting technique

is developed in [5] to exploit both spatial and temporal diversities of the collected

fingerprints. Cooperative memory-assisted localization is introduced as a technique

that creates spatio-temporal fingerprints by concatenating the temporal fingerprints

gathered from different localizing units before estimating the transmitter’s position.

The use of more than one fingerprint saved in time exploits the temporal diversity

whereas gathering the fingerprints from multiple localizing units exploits the spatial

diversity of wireless signals. The spatio-temporal fingerprint subset denoted by

SR1
i =

{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}

is collected from R1 which is at a distance di and it is concatenated path-wise with

the other subset

SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

measured at receiver R2 which is at a distance d2 = D − di to form the group of

spatio-temporal fingerprints:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}

.
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The memory levels of receivers R1 and R2 are denoted by (l1, l2). The number of

parameters that constitute each fingerprint is specified according to the total length of

the spatio-temporal fingerprints (i.e., l = l1+l2). A 2-by-2 spatio-temporal fingerprint

design (i.e., l1 = 2, l2 = 2) may be achieved by matching the collected spatio-temporal

fingerprints Fi = (FR1
i , FR2

i ) where

FR1
i = (fR1

it0
, fR1

it
−

1
),

FR2
i = (fR2

it0
, fR2

it
−

1
).

In case where (l1 = 2, l2 = 2), the temporal fingerprint collected at a distance di from

R1 is equal in length to that collected from R2 for the same position, but the total

concatenated spatio-temporal fingerprint Fi fed to the ANN at the time instance t0

is of length 28 (i.e., 7l = 7(l1 + l2)).

10.3.5 Overview of performance results

As a background overview, the results of all ANN-based localization techniques

that use the fingerprinting approaches discussed above are summarized in Tab. 10.1.

Based on the reported performance results, cooperative memoryless localization out-

performs the solitary localization technique by exploiting the spatial diversity of the

fingerprints providing and accuracy of less than 1 m for 90% of the collected fin-

gerprints. Since cooperative memoryless localization is limited in diversity to two

branches due to spatial confinement, memory-type fingerprints are then used to ex-

ploit the temporal diversity and achieve better performance results. By concatenating

up to 5 temporal fingerprints, the solitary memory-assisted localization technique at-

tains a high accuracy of 50 cm at the same precision. However, smart spatio-temporal

fingerprinting achieves even higher accuracy gains by exploiting both the spatial and
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temporal diversities. Cooperative memory-assisted localization reduces positioning

error to less than 25 cm 90% of the time.

Table 10.1 – Estimation errors of different localization techniques with 90% precision.

Localization Technique Training vs Testing Errors (m)

Localization using one receiver [31] 1.5 1.65

Cooperative memoryless based on separate ANNs [4] 1 1

Cooperative memoryless based on one super ANN [4] 0.6 1

Solo memory-assisted [6]

(l1 = 2, l2 = 0) 1 1.25

(l1 = 3, l2 = 0) 0.75 0.8

(l1 = 4, l2 = 0) 0.5 0.5

(l1 = 5, l2 = 0) <0.5 <0.5

Cooperative memory-assisted [5]

(l1 = 2, l2 = 1) 0.48 0.62

(l1 = 3, l2 = 1) 0.38 0.43

(l1 = 2, l2 = 2) 0.20 0.25

10.4 Impact of Spatial Sampling Grid Resolution

The performance of any localization system is governed by many factors which

are not limited to the accuracy and precision of the positioning technique involved.

Other factors such as complexity, cost and robustness are also of high importance.

An optimized localization system should maintain accuracy, precision, robustness

and simplicity at high standards. Because fingerprint positioning techniques require

campaign measurements, they are considered of higher complexity or cost compared

to conventional localization systems. However, fingerprint-based localization is proven

to give much more accurate and precise estimation results in underground narrow-

vein mines. A smart fingerprint positioning system would reduce the amount of

fingerprints while maintaining the accuracy and robustness of performance results.

In this paper we investigate the effect that grid resolution imposes on the accuracy

and precision of the fingerprint positioning system in [31] and [4]. As a rule of

thumb, the denser the measurement grid provided to ANNs, the more robust position
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estimation is to new testing fingerprints. The ANN-based localization techniques

discussed in Sec. 10.3 base their fingerprint positioning on a grid of 1 m/x-hop. In

other words, the ANNs in [31] [4] [6] [5] are trained on sets of spatial and/or temporal

fingerprints for positions 1 m apart along the longitude of the tunnel. Here, we

investigate the performance of both the solitary [31] and cooperative [4] memoryless

localization techniques once the spatial sampling grid’s resolution is reduced to 2 m/x-

hop or 3 m/x-hop in the fingerprint collection step (cf. Sec. 10.2). This investigation

amounts to splitting the original grid into 2 or 3 interleaved sub-grids, respectively.

For each tested technique, [31] or [4], its ANN is then trained on 75% of a given

sub-grid candidate then tested on the remaining 25% of the same sub-grid (i.e., x-

positions seen during training) and on the 25% of each of the other sub-grids (i.e.,

x-positions never seen during training), thereby resulting into 2 or 3 ANN candidates,

respectively. The cumulative distribution function of localization errors collected

from the testing of all ANN candidates is plotted at each grid resolution for both

the solitary and cooperative versions in Figs. 10.6 and 10.7, respectively. Both
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Figure 10.6 – Solitary localization performance.

figures suggest, as expected, the localization accuracy of each technique degrading
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Figure 10.7 – Cooperative localization performance.

with the grid resolution decreasing. Yet at any given grid resolution, the cooperative

version [4] always maintains an accuracy gain over the solitary one [31], thereby

confirming again the net benefits of exploiting (spatial, but also temporal or spatio-

temporal) diversity in fingerprinting for localization even at lower grid resolutions and

even when testing positions are never seen during ANN training. Tab. 10.2 reports

accuracies obtained at 90% precision in Figs. 10.6 and 10.7. They obviously suggest

that the cooperative version [4] offers about the same accuracy (i.e., 1.5 to 1.6 m) of

the original solitary version [31] using though for training only 50% of the collected

fingerprints. The latter stem from a sampling grid with a resolution (i.e., 2 m) that

is half of the original one (i.e., 1 m), thereby speeding up the fingerprinting campaign

and reducing its cost by factor 2! Higher speed-up factors could be hence easily

expected with the spatio-temporal fingerprinting version [5]. This is the subject of

ongoing investigations.
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Table 10.2 – Accuracy results at 90% precision for multiple spatial sampling grid
resolutions

Localization Technique
Grid Resolution

1 m 2 m 3 m

Solo memoryless technique [31] 1.6 m 2.8 m 3.6 m

Cooperative memoryless technique [4] 1 m 1.7 m 2.3 m

10.5 Conclusion

Using spatio-temporal fingerprinting in underground narrow-vein mine increases

the performance of ANN-based localization systems in terms of accuracy and preci-

sion. Here, we show by simulations that the significant accuracy gains reaped from the

new exploitation of spatio-temporal diversity, if not needed in some location applica-

tions, can be alternatively traded for remarkable and extremely useful cost reductions

in the fingerprint collection step, thereby making the novel ANN-based wireless local-

ization systems even more attractive due to their combined accuracy advantage and

relatively reduced cost. These smart fingerprinting techniques could be implemented

in different wireless localization services and integrated into any wireless technology.
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Abstract

Safety measures have always been a main concern in the mining industry that, despite

the modern practices, utilizes old-fashioned surveillance and monitoring systems. Our

mission in underground mines stems from the profound need of geo-positioning sys-

tems that can accurately localize endangered miners and their heavy machinery in one

of Earth’s most harsh and rough environments. In underground mines, complex chan-

nels’ responses to wireless transmitted signals challenge traditional localization tech-

niques, yet they fail to defeat our innovative, cost-effective and accurate fingerprint-

based positioning techniques that use artificial neural networks (ANNs) and exploit

space-time diversity. Being among the pioneers in underground communications re-

search, we bring forward a more sophisticated and accurate fingerprint-based position-

ing technique that exploits spatial transmission diversity in the presence of more than

one transmitter Tx and/or receiver Rx antenna, such as in the case of single/multiple

input multiple output (SIMO/MIMO) communication systems. More importantly,

an advanced study is conducted to reduce the cost of fingerprint-acquisition trading

off pinpoint accuracy for lower complexity and better ANNs’ design. By challenging

the localization system using less data measurements, we prove that ANNs, when

properly designed, succeed to attain high positioning accuracies even when localizing

in measurement gaps that were not seen in the training phase.

Keywords. Indoor localization, underground mines, artificial neural networks, chan-

nel impulse response, fingerprinting, time diversity, spatial diversity, SIMO, MIMO,

cooperative/collaborative localization.
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11.1 Introduction

Indoor localization in complex channels is as yet a topic of research that aims to

replicate the success achieved by commercially viable outdoor localization systems.

In the mining industry, for example, localizing miners and their heavy machinery is

not a luxurious task, but a critical requirement that guarantees basic safety measures

and helps avoid potential risks in cases of fire, collapses and other hazardous work

activities. In fact, localization techniques that succeed to attain high positioning

accuracies in outdoor scenarios fail to maintain similar precision and accuracy in un-

derground mines. In position estimation theories, major parameters extracted from

wireless signals, such as the received signal’s strength (RSS), time of arrival (ToA),

angle of arrival (AoA) and/or time difference of arrival (TDoA), are used to estimate

the distance travelled by wireless signals from transmitters to receivers. However,

complexity arises when the channel, where wireless transmission takes place, intro-

duces robust distortion, attenuation and/or fading to received signals’ characteristics.

In complex indoor channels such as the case in the mining environment, a priori esti-

mation of complex channel’s response to wireless transmission is not yet feasible due

to the severe reflections/refractions that signals suffer from due to rough surfaces, wa-

ter, inter-connected tunnels and heavy machinery in the confinement of underground

galleries.

Major research projects at Telebec’s Underground Communications Research Lab-

oratory (LRTCS), one of the leading research laboratories in the world for under-

ground communications (cf. surveys [16] and [46]), have revealed new, more accu-

rate indoor localization techniques that use fingerprinting and ANNs in the 2.4 GHz,

5.4 GHz [32], [2], over UltraWide Band (UWB) [34], [42] and recently being inves-

tigated in the mmWave/60 GHz bands [26]. Localization using fingerprinting and

ANNs is based on extracting parameters from the channel impulse responses (CIRs)
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and mapping them to given positions located at different distances away from a given

transmitter [31]. In order to overcome some of the challenges, such as the presence of

inter-connected tunnels, and to further enhance localization accuracy, more sophisti-

cated fingerprint-based positioning techniques were developed in [4], [6] and [5] by

exploiting spatial, temporal and spatio-temporal diversities, respectively.

In this work, we put forward a new fingerprint-based positioning technique that

exploits the presence of dual Tx and Rx antennas in nowadays SIMO/MIMO-capable

communication equipment. It is shown herein that CIR-based localization exploit-

ing spatial diversity and SIMO/MIMO-type fingerprints significantly increases po-

sitioning accuracies and is, so far, the most accurate among all CIR-based finger-

print positioning techniques in underground mines. More importantly, all studied

fingerprint-positioning techniques are challenged by lower fingerprint-acquisition rate

in the ANNs’ training phase. In an effort to reduce measurement campaigns’ cost,

ANNs are well-designed and trained to attain high positioning accuracies even when

they are forced to localize in measurement gaps that, due to the lowered fingerprint-

acquisition rate, were never introduced to ANNs’ training phases.

In the following section, we review the most recent CIR-based positioning tech-

niques that exploit spatially and/or temporally diverse fingerprints in underground

mines. Section 11.3 introduces the novel fingerprint-based localization technique that

exploits SIMO/MIMO-type fingerprints. An advanced study is then performed to

lower the cost overhead of fingerprint-acquisition in section 11.4 after which perfor-

mance results are presented in section 11.5. Finally, the paper is closed by a conclusion

in section 11.6.
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11.2 Localization in UndergroundMines Using CIR-

based Fingerprinting

The special nature of underground mines shown in Fig. 11.1, which is made

of quasi-curvilinear intersecting tunnels, enforces the quest to develop more sophisti-

cated localization techniques seeking better security and safety practices in the mining

industry. For more than fourteen years of continuous research, LRTCS and similar

research labs have been looking for alternatives to traditional triangulation techniques

before the first ANN-based geo-location method was innovated and published in [31].

In the following, we study, as a background exercise, the method in [31] laying the

groundwork for discussing more advanced techniques that exploit space-time diversi-

ties in [4], [6] and [5].

Figure 11.1 – Map of the tunnel.

11.2.1 ANNs and CIR-based fingerprint positioning

Fingerprint positioning techniques rely on mapping wireless signals’ parameters to

the distance separating the receiver from the transmitter. Due to the special nature

of underground propagation channels, some parameters such as the RSS fluctuate for

the same position inside the mine and may not be used solely for position estimation
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[39]. The same can be said about AoA and ToA, because the former (i.e., AoA)

represents the last angle of reflection inside the tunnel while the latter (i.e., ToA)

represents the total time travelled after bouncing inside the confined tunnel. In [31],

a fingerprint is a combination of seven parameters which are the mean excess delay

(τ̄), the root mean square (τrms), the maximum excess delay (τmax), the total power

of the received signal (P ), the number of multipath components (N), the power of

the first arrival (P1) and the delay of the first path component (τ1).

By using Multilayer Perceptron (MLP) ANNs, which are extremely powerful com-

putational models for non-linear problems, a fingerprint fi = (τ̄ , τrms, τmax, P,N, P1, τ1)

is then matched to its corresponding set of distances D = {d1, d2, d3, ..., dn}. For sim-

plicity, the distance is calculated using the x− axis only neglecting minor variations

which are of less importance on the y − axis inside the confinement of narrow un-

derground tunnels as shown in Fig. 11.2. The original memoryless technique (i.e.,

ANN(1,0)), developed in [31] and used as a comparison benchmark, scores an ac-

curacy of 1.3 m and 1.4 m for 90% of the training and testing data, respectively.

Figure 11.2 – The CIRs are extracted at different distances to the transmitter with
1-meter step-size along the x-axis.
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11.2.2 Exploiting Rx spatial, temporal and space-time diver-

sities

At first, the localization technique in [31] was challenged by misleading infor-

mation about the direction of transmission in case one localizing receiver is placed

at junctions of interconnecting tunnels. To overcome such scenarios and to further

enhance positioning accuracy, a new fingerprint-based positioning technique was de-

veloped in [4] and it exploited Rx spatial diversity at two receivers as shown in Fig.

11.3. A centralized ANN, shown in Fig. 11.4, is then used to collect both signa-

Figure 11.3 – Localization using two signatures of two receivers in the area where two
signals intersect.

tures (or sub-fingerprints) from both receivers, R1 and R2 separated by a distance

D = 80 m, forming one fingerprint that contains 14 parameters. The training set S

Figure 11.4 – Neural network based on multiple signatures.
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that defines the fingerprints’ space is a concatenation of two sub-sets, SR1 and SR2 ,

and is denoted by: S = {F1, F2, F3, ...., Fm} = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)},

where fi and f ′

i represent the sub-fingerprints collected, for a position i, at R1 and

R2, respectively. By using one ANN with two sub-fingerprints from R1 and R2, lo-

calization accuracy significantly increases to prove the effectiveness of exploiting Rx

spatial diversity and errors slip to 77 cm and 90 cm for the training and testing data,

respectively.

Increasing the accuracy and robustness using Rx spatial diversity only may re-

quire increasing the number of access points which is not an option in the limited

space of underground mine tunnels. However, the use of temporal diversity increases

the system’s accuracy when more than one fingerprint is concatenated in time slots

prior to estimating the transmitter’s final position at dt0i [6]. A temporal fingerprint

is represented by:

f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

,

where l is the memory level or the number of concatenated fingerprints. The length

of a temporal fingerprint Lf depends on the memory depth where:

Lf = 7l.

An example of a temporal fingerprint is demonstrated for l = 3 in Fig. 11.5. The

maximum number of path fingerprints jmax that may be obtained for a given distance

is upper bounded by Nfp where:

jmax ≤ Nfp = 5(l−1).

All possible sub-fingerprint, for l = 3, at t−1 and t−2 are concatenated to the sub-

fingerprint at t0 forming 25 temporal fingerprints (or path fingerprints) each of length
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Figure 11.5 – Possibilities of previous positions for l = 3.

Lf = 21. For each memory length l, there exists one ANN that is trained to count

for all possible path-fingerprints leading to a given distance d along the x-axis of the

tunnel. With a step-size of dp = 1 m along the x-axis of the tunnel, the miner’s pos-

sible path fingerprints may be extracted from the CIRs at the filled-circled positions

in Fig. 11.5. For simplicity, motion across diagonals is excluded. Multiple scenarios

were tested for different memory levels (i.e., l = 1, 2, 3, 4) and their position estima-

tion errors start at 89 cm and 1.14 m, at l = 2, and drop down to 48 cm, at l = 4,

for 90% the training and testing data, respectively.

After maximizing accuracy gains of temporally diverse fingerprints, a new finger-

printing technique was developed in [5] and it uses both Rx spatial and temporal

diversities of the collected fingerprints. By exploiting Rx spatial diversity from both

collaborative receivers and combining memory-type fingerprints, the developed local-

ization system topped the accuracy benchmark, surpassing those achieved by previous

fingerprint-based techniques in [31], [4] and [6]. The fingerprint subset SR1
i , collected

at at a distance di away from R1, is concatenated path-wise with the second fin-

gerprint subset SR2
i collected at R2, where: S

R1
i =

{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}

,

SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

. The spatio-temporal fingerprint subset Si
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extracted for one specific distance di is designed as follows:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ...,

(FR1,jmax

i , FR2,jmax

i )
}

.

The dynamic design of spatio-temporal fingerprints allows variable memory depths

ranging between l = 1 (no memory) and l = 5 (beyond which no increased perfor-

mance is noticed) reproducing multiple spatio-temporal fingerprint scenarios that we

donate by (l1, l2). Each receiver, R1 or R2, can be set to introduce any memory

depth, l1 or l2, respectively. At lower complexity, a spatio-tempral ANN performing

at (l1 = 2, l2 = 2) is capable of achieving performance accuracies of less than 50 cm,

at Sx = 1 m, which matches the results obtained by a complex memory-assisted ANN

performing at l = 4 in the presence of one receiver only. It will be shown later in Sec.

11.5.2 that at higher Sx, long chains of memory-type fingerprints become less signifi-

cant while spatio-temporal techniques maintain a better posture at lower fingerprint

sampling rate. Results of other scenarios involving different memory allocations (i.e.,

ANN(2,1), ANN(3,1), etc ...) at each receiver may be reviewed in [5].

11.3 Exploiting Tx and Rx Spatial Diversities:

SIMO/MIMO-type Fingerprint Positioning

So far, we discussed Rx spatial diversity (i.e., at two receivers R1 and R2) and

temporal diversity (i.e., using memory) showing how they are both used to design

new fingerprint-based positioning techniques. Although their performance results,

as shown later in Sec. 11.5, are outstanding in terms of positioning accuracy and

precision, we push their performance limits forward and introduce a more advanced
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fingerprint positioning technique that exploits the presence of dual Tx antennas 1. In

addition to that, the novel technique simultaneously uses Rx spatial diversity which

significantly increases localization performance. SIMO-type fingerprints are formed

from sub-fingerprints of two adjacent Tx antennas in the presence of one receiver or

Rx. A SIMO-type fingerprint is denoted by:

F SIMO
i = (fTx1

i , fTx2
i ),

Where fTx1
i and fTx2

i are fingerprints collected, at a position i, by Rx1 for Tx1 and

Tx2, respectively. On the other hand, MIMO-type fingerprints are concatenated by

extracting two Tx sub-fingerprints at both receivers Rx1 and Rx2. A MIMO-type

fingerprint is represented as:

FMIMO
i =

{

(fTx1
i , fTx2

i ), (fTx1

i′ , fTx2

i′ )
}

,

where fTx1
i and fTx2

i represent sub-fingerprints collected at Rx1, whereas fTx1

i′ and

fTx2

i′ are sub-fingerprints extracted by Rx2, at a position i′ = D− i, for Tx1 and Tx2,

respectively.

The use of SIMO/MIMO-type fingerprints is so far the most robust CIR-based lo-

calization technique with accuracies that drop below 50 cm as shown later in Sec. 11.5.

By comparing both SIMO/MIMO-like fingerprints and spatio-temporal fingerprints,

many conclusions may be drawn. First, Tx spatial diversity comes as an alternative

to memory-type sub-fingerprints that result from exploiting temporal diversity, lead-

ing to lower system complexity and better design efficiency in the scenarios where

transmitters are equipped with two Tx antennas. Second, as we discuss further in the

following section, temporal diversity fingerprints prove to produce lower performance

1Real measurements taken every 0.5 m and 1 m along the y-axis and x-axis simulate dual antenna
spacing of δTx

y = 0.5 m and δTx
x = 1 m , respectively.
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when measurement gaps are introduced in an effort to reduce the cost of measurement

campaigns. However, localization using Tx and Rx diversities maintains low position

estimation errors even when the resolution of fingerprint-acquisition is reduced.

11.4 Complexity and Cost Reduction

Fingerprinting techniques are mainly criticized because they require extensive

measurement campaigns that are costly and time consuming. What if the mea-

surement campaigns’ cost can be cut down to less than one quarters of its original

value? Would localization techniques, which based their fingerprints on CIRs ex-

ploiting space and/or time diversities, hold as accurate and cost-effective positioning

techniques for underground mines? A study was conducted to answer the reasonable

questions in an effort to tune pinpoint accuracies and trade it for lower fingerprint-

acquisition cost. By introducing measurement gaps or sub-grids that are not fed to

the ANNs in the training phases, we challenge all CIR-based localization techniques

and test their positioning accuracies and precision at higher sampling step-size Sx
2.

ANNs are carefully designed to interpolate measurement gaps by running trial and

error simulations that aim to optimize the number of neurons needed for each Sx.

For each localization technique and Sx, a trial is run three times while varying the

number of neurons n as follows:

1 < nn < Nn = 2Ni + 1,

where Ni is the number of inputs fed to the ANNs which varies depending on the

spatial, temporal or spatio-temporal fingerprints’ chain length. As shown in Fig.

11.6, the number of neurons drops with the decrease in the number of fingerprints for

2Sx, ranging from 1 m to 6 m, represents the step-size between consecutive offline measurement
positions along the x-axis of the tunnel.
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Figure 11.6 – Optimum number of neurons for different ANNs.

each training set which comes as a result of cutting down the cost (i.e., reducing the

measurement campaign’s acquisition rate).

11.5 Performance Results

The performance results of CIR-based localization techniques are presented using

the cumulative density function (CDF) that shows, on one axis, the accuracy of

position estimations in meters, and on another, the precision accomplished by a given

localization technique. It should be noted that all ANNs are trained on 75% of the

collected fingerprints while leaving 25% for the testing phase at Sx= 1 m. In the

case where Sx ≥ 2 m, training results represent 75% of the sampled sub-grid then

ANNs are tested using 25% of every sub-grid not seen in the training phase. All

spatial, temporal and spatio-temporal positioning techniques are analyzed at Sx =

1 m first, after which they are compared, at 90% precision, using different sampling

grid’s resolution in Figs. 11.7, 11.8 and Tab. 11.1.
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Figure 11.7 – Positioning errors from CDFs of testing data at 90% precision.

Figure 11.8 – Positioning errors from CDFs of SIMO/MIMO-type testing data at 90%
precision.
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11.5.1 Results of SIMO/MIMO-type fingerprinting using Tx

and Rx spatial diversities

SIMO/MIMO-type fingerprints, discussed in Sec. 11.3, constitute the groundwork

for a new, more sophisticated and less complicated type of a CIR-based fingerprint

positioning technique. They bring in the advantages of exploiting spatial diversity at

both the receiver and transmitter, without introducing memory, raising positioning-

accuracy levels to a new record in underground mines. Since we have one Tx-antenna

separation distances at the x-axis and two at the y-axis, we shall report them sep-

arately using the notations δTx
x = 1 m, δTx

y = 1 m and δTx
y = 0.5 m, respectively.

SIMO-type fingerprints are denoted by 2Tx-1Rx whereas MIMO-type fingerprints

use the 2Tx-2Rx notation and their performance results are reported in Fig. 11.8

and Tab. 11.1.

If we compare, at Sx = 1 m, SIMO-type techniques to ANN(2,0) that uses the

same fingerprint length of Lf = 14, we notice that SIMO-type fingerprints localize

more accurately with a an estimation error of 85 cm as compared to 1.15 m using

memory-assisted techniques with ANN(2,0). Another example can be drawn from

comparing spatio-temporal diversity, such as ANN(2,2), to the accuracy of MIMO-

type fingerprints using 2Tx-2Rx ANN. While the first uses temporal diversity to boost

accuracy results to 49 cm, the latter (i.e, using MIMO-like fingerprints) succeeds to

score accuracies of 43 cm and 38 cm at δTx
x = 1 m, δTx

y = 0.5 m, respectively. The

use of SIMO/MIMO-like fingerprints surpasses the performance limits achieved by

temporally diverse fingerprints and provides a less complex fingerprinting technique

that does not include memory when localizing transmitters in underground mines. It

is also beneficial to state the importance of having Rx and Tx diversities at the same

time when localizing at lower sampling resolution or higher Sx as discussed in the

following section.
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11.5.2 Results of low fingerprint-acquisition rate on accuracy

The pinpoint accuracies obtained from fingerprint localization exploitingRx and/or

Tx spatial, temporal and spatio-temporal diversities, reported above, may be con-

trolled and traded off for lower fingerprint-acquisition cost. Location accuracies at

Sx ≥ 2 m provide less fingerprints in the training phases of ANNs and reduces the

time needed for offline fingerprint-acquisition. More than 14k ANNs were tested in

this simulation in the best effort to optimize the number of neurons used for each CIR-

based localization technique and the significant results are shown in Fig. 11.6. In the

following, we shall judge each localization technique based on its ability to sustain the

benchmark obtained by the original technique ANN(1,0) developed in [31] which, at

Sx = 1 m , which has an estimation error of 1.42 m 90% of the time (circled in Tab.

11.1). After selecting the most effective number of neurons based on Sx from Fig.

Table 11.1 – Performance Results with Multiple Resolution

ANN Technique
Grid Resolution Accuracy Results

1 m 2 m 3 m 4 m 5 m 6 m

ANN(1,0) 1.42 m 1.44 m 1.81 m 2.04 m 2.12 m 2.83 m

ANN, 2Tx1Rx δTx
y = 0.5 m 1.10 m 1.43 m 1.73 m 1.81 m 2.26 m 2.58 m

ANN, 2Tx1Rx δTx
y = 1 m 0.85 m 1.36 m 1.53 m 1.66 m 1.94 m 1.97 m

ANN(2,0) 1.15 m 1.35 m 1.58 m 1.92 m 1.97 m 2.07 m

ANN(3,0) 0.53 m 1.36 m 1.58 m 1.78 m 1.94 m 2.02 m

ANN(4,0) 0.48 m 1.30 m 1.46 m 1.72 m 1.91 m 1.93 m

ANN, 2Tx1Rx δTx
x = 1 m 1.05 m 1.23 m 1.33 m 1.51 m 1.61 m 2.07 m

ANN(1,1) 0.91 m 1.07 m 1.15 m 1.28 m 1.39 m 1.45 m

ANN, 2Tx2Rx δTx
y = 1 m 0.64 m 0.84 m 1.07 m 1.14 m 1.35 m 1.51 m

ANN(2,2) 0.49 m 0.95 m 1.07 m 1.22 m 1.26 m 1.41 m

ANN, 2Tx2Rx δTx
x = 1 m 0.43 m 0.93 m 1.10 m 1.14 m 1.19 m 1.32 m

ANN, 2Tx2Rx δTx
y = 0.5 m 0.38 m 0.83 m 0.98 m 1.12 m 1.20 m 1.28 m

11.6, we show the performance accuracies of all localization techniques using higher

step-sizes of Sx = 3 m and Sx = 6 m in Figs. 11.9 and 11.10. The rest of step-size

scenarios are shown for 90% precision in Figs. 11.7 and 11.8 then summarized in Tab.
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11.1 to show the granularity of positioning accuracies for different Tx antenna spacing

or δTx. The performance of temporal fingerprints was expected to degrade at lower

Figure 11.9 – Localization performance at Sx = 3 m.

sampling resolution (i.e., higher Sx) because temporal sub-fingerprints, collected at

positions separated by higher step-sizes, carry less information about the position to

be estimated. An example can be drawn from the performance of ANN(4,0) which

fails to sustain the 1.42 m accuracy beyond Sx = 2 m.

However, taking a closer look at the results of memory-assisted localization tech-

niques that only exploit Rx spatial diversity reveals an outstanding performance for

ANN(2,2) which achieves, at Sx = 6 m, an accuracy matching the benchmark of 1.42

m obtained by ANN(1,0) at Sx = 1 m! The same can be said about ANN(1,1) which

can maintain the benchmark using only one fifth of the measurement campaign’s data

(i.e., at Sx = 5 m).

The new positioning techniques that use SIMO/MIMO-like fingerprints reveal the

power of combining Rx and Tx diversities in the realm of fingerprint positioning using

ANNs in underground mines. The use of SIMO-type fingerprints exploiting spatial
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Figure 11.10 – Localization performance at Sx = 6 m.

diversity at Tx only is not the best candidate for localization because it reports lower

accuracy performance compared to ANN(1,1) which uses Rx spatial diversity only.

However, the performance limits of MIMO-like fingerprints exploiting both Tx and

Rx diversities surpass those of the original techniques, especially at δTx
y = 0.5 m

highlighted in Tab. 11.1, to achieve location accuracies of 38 cm and 1.28 m for the

testing data at Sx = 1 m and Sx = 6 m, respectively. One can cut down the cost of

data measurements to half by using Sx = 2 m and still obtain positioning accuracies

of 83 cm 90% of the time! Localization using MIMO-like fingerprints in the presence

of well-designed ANNs proves to be an accurate, robust and cost-effective technique

in underground mines.

11.6 Conclusion

The focus of this study stems from years of research for an accurate, cost-effective

positioning techniques that can improve safety practices in underground mines. The
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new fingerprint positioning technique, presented here, uses MIMO-like signatures that

combine Rx and Tx spatial diversities and brings forward new positioning accuracies

of less than 50 cm, at sampling step-size Sx = 1 m, while achieving high accuracy

records of 1.28 m when ANNs are challenged, in the training phases, using only

one sixth of the measurement campaign’s fingerprints (i.e., at Sx = 6 m). When

correctly applying the discussed ANNs’ design strategies, localizing using MIMO-type

fingerprints turns out to be, as yet, the most accurate and cost-effective CIR-based

positioning technique and it may be implemented using different wireless technologies

in underground mines.
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Abstract

Miners’ positioning inside Earth’s intricate entrails made of harsh and hazard-prone

tunnels in underground mines is one of the most challenging indoor localization. Yet

it is of outmost importance to the mining industry that is criticized for its lagging-

behind safety practices. Reviewing the most recent localization techniques in narrow

quasi-curvilinear tunnels reveals the effective accuracy and precision results of the

original concept of indoor localization using Artificial Neural Networks (ANNs) fed by

judiciously-defined fingerprints extracted from the channel impulse responses (CIRs).

To our best knowledge of being the first to introduce the concepts of collaboration and

diversity in the realm of ANN-based localization, we put forward a new, more accu-

rate fingerprint-positioning technique based on single/multiple input multiple output

(MISO/MIMO) signatures that combine spatially and/or temporally diverse finger-

prints. More importantly, the localization system is optimized to use small finger-

print sets trading off pinpoint accuracy for lower design complexity and fingerprint-

acquisition cost. The novel exploitation of collaboration and space-time diversity

boosts positioning accuracies even when ANNs are challenged to interpolate and esti-

mate positions in measurement gaps that, due to the lowered fingerprint-acquisition

rate, are never seen by ANNs in the training phases. Keywords. Indoor localiza-

tion, underground mines, artificial neural networks, channel impulse response, finger-

printing, time diversity, spatial diversity, MISO, MIMO, cooperative/collaborative

localization.
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12.1 Introduction

Localization of mobile users in different parts of the globe is one of the modern

technology applications most used. The concept is simple; once the localizing unit

receives a signal, the transmitter’s location is estimated by analyzing the received

signals’ parameters that are altered by the channel where transmission takes place.

Different approaches to localization have been presented in the literature [27], [39].

While some stay in the theoretical realm, others are implemented and used in multiple

commercial applications such as the global positioning system (GPS). Geo-location

very often attempts to relate the transmitter’s position to the effect of the channel on

some of the transmitted signals’ characteristics such as the received signal’s strength

(RSS), the time of arrival (TOA), time difference of arrival (TDOA) and angle of

arrival (AOA).

Localization techniques which operate accurately in outdoor scenarios face ma-

jor challenges in indoor environments, more so in harsh underground environments

such as mines [16], [46]. In underground mines, estimating a transmitter’s position

using mathematical models requires complex estimation of the channel’s response to

transmitted signals. Neither RSS, AOA, nor TOA alone would consistently succeed

to estimate a given position in underground mines, a conclusion drawn from about

fifteen years of research at Telebec’s Underground Communications Research Labo-

ratory (LRTCS), a pioneering lab among very few in the world with research focus

on underground mine communications (cf. surveys [16] and [46]). Looking for al-

ternatives, based on LRTCS’ pioneering works on wireless channel characterization

and modeling in underground mines at 2.4 GHz and 5.8 GHz [32], [2], then over

Ultra-wideband (UWB) [34], and more recently with mmWave/60 GHz transmis-

sion technologies [26], led to the foundation of a totally novel localization paradigm

that combined for the first time CIR-based fingerprinting and ANNs-based position
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matching [31], that has been since a reference benchmark. Introduced originally in

the 2.4 and 5.8 GHz bands, this new localization paradigm was later applied suc-

cessfully using UWB-based transmission technologies [42]. Beyond broadening the

range of its applicability to different radio access technologies (current efforts investi-

gate the mmWave band) over the past years, this work discloses the new findings of

simultaneous intense research efforts devoted to revamping its core concept. Owing

to novel exploitations for the very first time of the principles of collaboration [4] (or

cooperation) and diversity (in space and/or time) [6], [5] - that we borrow from the

field of wireless communications - in the context of localization, we push the per-

formance limits of the new indoor positioning paradigm [31] far beyond its original

accuracy marks while significantly reducing its implementation cost.

As mentioned earlier, one of the new principles worth exploiting to boost perfor-

mance is collaboration and diversity in space and/or time. In wireless sensor networks

(WSNs), for example, cooperation between nodes helps them determine their loca-

tions with respect to their anchors [37], [35]. After each node uses a self-localization

technique, location is shared among other nodes in an effort to refine positioning

accuracies. Another application of cooperative localization is in cognitive radio net-

works (CRN) [21], [28]. In the latter, location awareness is an important factor that

supports various spectrum allocation techniques. As a result of implementing co-

operative localization, CRNs localize Primary Users (PUs) more accurately allowing

dynamic spectrum allocation for Secondary Users (SUs). Cooperative localization

techniques discussed in the literature that rely on Bayesian’s estimation to track

transmitters using motion models given the posteriori distribution of the noise pro-

cess [45]. While most cooperative localization techniques rely on nodes that can

self-localize themselves, few are the localization techniques that gather signal param-

eters from different positions prior to estimating the final location of the transmitter
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in a centralized manner. One of this paper’s goals is to show how cooperation between

Access Points (APs) is innovated using ANNs prior to estimating a transmitter’s final

location. What is more important lies within the diverse fingerprinting techniques

that exploit spatial, temporal and spatio-temporal diversities of the collected signa-

tures paving the way for a new positioning technique that uses MISO/MIMO-type

fingerprints collected from equidistant Tx antennas and studied for one or two Rx

antennas, respectively. Furthermore, another focus of this work is to investigate the

effect of the sampling grid’s resolution at which CIRs and fingerprints are measured

and collected, respectively, in the training phase on the new proposed localization

schemes. Reducing the cost and time of measurement campaigns by lowering the

sampling grid’s resolution (i.e., increasing the sampling step-size) generates less fin-

gerprints for the training of ANNs. A dynamic ANN design is needed in order to

maintain high positioning accuracies while using less training fingerprints and, at the

same time, challenging the system to localize in the whole grid. The variable number

of spatial, temporal or spatio-temporal fingerprints collected for each sampling rate

requires a dynamic allocation of the number of neurons utilized in each of the devel-

oped ANNs’ architectures.

This paper is organized as follows. In section 12.2, we draw attention to the special

nature of mines and the challenges localization techniques face in underground envi-

ronments highlighting some of the most recent published work for underground local-

ization. Cooperative localization in the presence of multiple ANNs exploiting spatial

diversity [4] and exploiting the temporal/spatio-temporal diversity of fingerprints

[6] [5] are discussed in section 12.3. The composition of spatio-temporal fingerprints

lays the groundwork for a new, sophisticated approach that uses MISO/MIMO-like

fingerprints from different locations and feeds them to a collaborative localization

system. The results outlined in section 12.4 show the performance results of the new
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MISO/MIMO localization technique and compares them to the previously-developed

spatial, temporal and spatio-temporal localization techniques. In section 12.5, an

advanced study is conducted to reduce the set’s size of training fingerprints and chal-

lenge the developed positioning systems with lower grid resolution while carefully

designing ANNs for each sampling step-size and localization technique. Finally, the

paper is closed by a conclusion in section 12.6.

12.2 Related Work

Localization in underground and confined areas has been a research topic for sev-

eral years. One of the pioneers in this domain is the LRTCS which, in the framework

of major collaborative research projects, continues to investigate underground local-

ization using different transmission technologies at 2.4 GHz and 5.8 GHz [32], [2],

then over UWB [34], [42], and currently with mmWave/60 GHz [26]. This work

stems from the proven results of [31] that use fingerprinting combined with ANNs

providing very accurate estimation results in underground mines.

12.2.1 Localization challenges in underground mines

Underground mines are known for their special nature which is made up of in-

terconnected tunnels such as that shown in Fig. 12.1. The curve-shaped topology

of tunnels prevents using triangulation techniques to estimate the position of the

user. On the other hand, the presence of rough humid surfaces along with NLOS re-

gions generates multipath components of the transmitted signals that severely affect

the signals’ extracted parameters at the receiver’s end. For example, estimating the

transmitter’s position using the AOA technique is almost impossible due to multiple

reflections/refractions that signals encounter on their way to the receiver. Similarly, a
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Figure 12.1 – Map of the tunnel.

received signal with the lowest TOA represents the shortest path of reflections inside

the tunnel and does not represent the shortest direct distance [42]. Likewise, using

the RSS alone is not sufficient to provide accurate positioning because it fluctuates for

the same position in underground mines [39], [10]. For the mentioned reasons, many

work groups are in continuous research for alternative techniques leading to the de-

velopment of a reliable and accurate underground localization system that properly

monitors miners’ positions in an effort to enhance their work environment’s safety

measures. CIR-based fingerprint positioning, which is summarized here for back-

ground overview, provides accurate position estimation by exploiting spatio-temporal

diversities and uses CIR-based fingerprinting technique combined with cooperative

ANNs. Then, the cooperative localization system that exploits both Tx and Rx spa-

tial diversities is introduced in Sec. 12.3.4 as a better localization system at lower

sampling grid’s resolution.

12.2.2 Localization using wireless sensor networks

Solving the localization problem in underground mines has got considerable atten-

tion in the field of WSNs. RSS-based localization using WSNs is studied in [30] and

the results show that RSS alone may not contribute in high positioning accuracies
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unless the number of implemented sensors is increased. On another hand, a feasibility

study was conducted in [3] to use of UWB technology for positioning purposes with

the help WSNs focusing on UWB channel characterization, fingerprint-based posi-

tioning and a two step TOA estimation algorithm. Other approaches such as [13]

used RSS measurements from Wireless Fidelity (WiFi) radios and combined them

with TOA from UWB radios to localize. An interesting Zibgee-based localization

method in [38] localizes using Radio Frequency Time-of-Fly (RF-TOF) producing

relatively high accuracies. In [40], simultaneous sensor localization using TOA mea-

surements is studied with a focus on sensors’ positions refinement and target tracking.

Likewise, vehicle tracking in long wall mines, in the absence of NLOS scenarios, is

investigated in [18]. In [24], software and hardware designs are proposed for WSN

implementation in underground tunnels. Similarly, an RSSI-based system is designed

in [25] to use mobile, reference and gateway nodes for localization in underground

tunnels.

Despite the latest advancements in WSN-based positioning techniques, localization

using WSNs requires the implementation of several nodes in the tunnels that is costly

and hard to maintain in harsh environments such as mines. The deployment of

WSNs in multi-level mines made of inter-connected tunnels and the ability to provide

continuous power supply to all sensors may not appeal as an optimum solution for

investors.

12.2.3 Localization using fingerprinting and ANNs

Fingerprinting is a method used to allocate a signature for each position in the

area of interest. In [10], [29], a fingerprint is formed of the RSS measured at dif-

ferent distances from the receiver. Another example is [42], where the signature

is a combination of the RSS, TOA and the direction of the transmitter. Similarly,
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multiple techniques use different fingerprints and ANNs to define the position of the

user [12], [1], [20]. A novel approach to localization was presented in [31], and it

uses the CIR from which the fingerprints are extracted. For the benefit of this study,

we shall draw attention to the fingerprinting technique in [31] that constitutes the

starting point for the new solutions we develop in Sec 12.3. For a detailed discussion

of this technique, refer to [31].

CIR-based fingerprinting is based on parameters extracted from the CIR for the

positions to be estimated. From the CIR, seven parameters are extracted to ensure

the uniqueness of the position inside the narrow-shaped tunnels. These parameters

are the mean excess delay (τ̄), the root mean square (τrms), the maximum excess

delay (τmax), the total power of the received signal (P ), the number of multipath

components (N), the power of the first arrival (P1) and the delay of the first path

component (τ1). A fingerprint extracted from the CIR at a distance di away from the

receiver is denoted by fi = (τ̄ , τrms, τmax, P,N, P1, τ1). A measurement campaign was

conducted in the CANMET mine in Val d’Or, Quebec, and the CIRs were extracted

for 480 positions inside a tunnel as shown in Fig. 12.1 from which the fingerprints

were obtained. The collected set of fingerprints S = {f1, f2, f3, ..., fn} is then suc-

cessfully matched to the corresponding set of distances D = {d1, d2, d3, ..., dn} using

an ANN. It should be noted that for simplicity, the distance to the transmitter di

is taken along the x-axis only neglecting the small variation on the y-axis which is

less significant inside the confinement of the narrow tunnels. On the other hand,

this approach ensures that the fluctuation of wireless signals for the same position

is taken into account (i.e., more than one measurement is recorded along the y-axis

for the same x-position or di). ANNs are computational models able to perform

complex calculations, function optimizations and model estimations. Being referred

to as intelligent matching algorithms, ANNs derive meanings from complex relation-
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ships between sets of inputs and outputs by performing different error optimization

techniques, which makes them suitable for indoor CIR-based localization problems.

ANNs are made of multiple layers, which are the input, output and hidden layers. In

our tunnel-shaped quasi-curvilinear localization problem, a fingerprint (i.e., 7 inputs)

is matched to a distance to the transmitter (i.e., 1 output) using one hidden layer.

The hidden layer contains the weights and biases which are adjusted in the train-

ing process using different learning algorithms. In our case, the mathematical re-

lationship between the set of inputs and the distance to the transmitter requires a

non-linear matching technique. ANNs performing non-linear computations are of

two types, Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neu-

ral networks. The use of feed forward MLP ANNs with back-propagation learning

algorithm is proven to give accurate estimation results in underground narrow-vein

mines [31], [42], [4]. After training an ANN, the values of the weights and biases

Figure 12.2 – The CIRs are extracted at different distances to the transmitter with
1-meter step size along the x-axis.

are saved and the model would be ready to estimate any new position based on the

extracted fingerprints. In order to ensure that the model is not exclusive to the col-

lected fingerprints, ANNs are trained to estimate the position of transmission using

75% of the collected fingerprints while keeping 25% of the data for testing purposes.

CIR-based fingerprint positioning in the presence of one receiver only is shown in

Fig. 12.2. After extracting the CIR from the received signal, a fingerprint is obtained
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and the position of the miner is estimated instantaneously using a trained ANN. The

novel CIR-based fingerprinting approach introduced in [31] localizes accurately with

2 meters estimation error for 90% and 80% of the trained and untrained patterns,

respectively.

As we demonstrate later in Sec. 12.3, a fingerprint’s length (Lf ) depends on the

localization technique put in practice which also defines the number of inputs fed to

a given ANN where:

Ninputs = Lf .

The output of the ANNs is the distance to the transmitter with respect to R1. In

[4], [6] and [5], Ninputs is used to calculate the number of neurons nn that define the

hidden layer of ANNs as follows:

nn = 2Ninputs + 1 = 14l + 1.

In this paper, we further enhance the design of ANNs by searching for the optimum

number of neurons needed for each localization technique and fingerprinting set. Dy-

namic allocation of nn is proven to be very useful in the case of different sampling

resolution and will be discussed in more details in Sec. 12.5.

12.3 Cooperative Localization Using Spatial and

Temporal Diversities

The high accuracy of the CIR-based fingerprint-positioning system in the presence

of one receiver and the need for a global localization system that covers the whole

underground tunnel-shaped topology of mines led to the innovation of a new coopera-

tive CIR-based fingerprint-positioning system in [4]. The introduction of cooperation
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between different APs or localizing units prior to estimating a mobile’s position is the

first step to globalize the underground localization system. The cooperative approach

in [4] not only enhances the positioning accuracy by exploiting Rx spatial diversity

of different fingerprints in underground mines, but also removes the ambiguity that

surrounds the mobile’s exact position in the presence of junctions by using data mea-

surements collected from more than one receiver. Yet, the system in [4] is challenged

by the spatial confinement of narrow-shaped quasi-curvilinear tunnels on one hand

and the fluctuation of fingerprints for the same position on the other. Memory-type

fingerprints are introduced in [6] to empower the basic cooperative solution and en-

rich the fingerprints by using the temporal diversity of the limited motion patterns

within the confinement of narrow-shaped tunnels. By exploiting Rx spatial diversity

on one side and the temporal diversity on another, a cooperative memory-assisted

technique is finalized in [5] as an accurate wireless localization system for under-

ground narrow-vein mines. In the following discussion, we explain the fundamentals

of each technique separately then we introduce a new MISO/MIMO-type fingerprint-

ing technique that exploits both Tx and Rx spatial diversities. In addition to that,

we further enhance the systems in [4], [6] and [5] by finding the optimum number of

neurons needed for each localization technique and sampling grid’s resolution using a

trial and error mechanism. For simplicity, all developed techniques are explained at

sampling step-size Sx = 1 m 1 then they are fully analyzed at different Sx in Sec.12.5.

12.3.1 Exploiting Rx-spatial diversity

In underground narrow-vein mines, two receivers separated by a spatial distance

D are able to cover the narrow-shaped topology of a tunnel as shown in Fig. 12.3.

Exploiting the spatial diversity of both receivers to localize a transmitter in between

1Sx, measured in meters, is the step size between consecutive offline fingerprint measurement
points along the x-axis of the tunnel.
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efficiently increases the accuracy and precision of the CIR-based localization tech-

nique. In addition to that, estimating the distance from more than one receiver

distributed in the tunnel-shaped topology removes the ambiguity surrounding the

exact mobile’s location in the presence of junctions. Cooperation is the key behind

deploying a complete wireless localization system in underground narrow-vein mines.

When the signal arriving from a transmitter fades, it may lead to faulty position

estimation. However, when exploiting the spatial diversity of two receivers, a signal

fading at receiver R1 may still hold significant information about the transmitter’s

position once the signature is added to the fingerprint collected from R2 being present

at better Radio Frequency (RF) conditions.

Cooperation may be addressed in different techniques. The first technique gives each

receiver the privilege of estimating the distance based on the collected fingerprint,

then an average of both estimation errors is taken as a final result by a central system

containing the map of the mine and the exact positions of the deployed localizing

units or APs. Another technique which succeeds to provide better results in [4]

concatenates the two signatures (i.e., sub-fingerprints) forming one fingerprint which

is double the size of the conventional CIR-based fingerprint in [31] (i.e., 14 param-

eters, 7 from each AP). The length of the fingerprint defines the number of inputs

of the ANN, hence, each of the designs requires a different ANN architecture. As

Figure 12.3 – Localization using two signatures of two receivers in the area where two
signals intersect.
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the transmitter moves inside the tunnel, the transmitted signals are collected from

receivers R1 and R2 forming two sets of fingerprints SR1 = {f1, f2, f3, ..., fm} and

SR2 = {f ′

1, f
′

2, f
′

3, ..., f
′

m}. Using SR1 and SR2 we may create two different ANN de-

signs depending on whether we want to process the fingerprints separately or jointly.

The output of this ANN is D = {d1, d2, d3, ..., dm} which represents the estimated

distances to R1. It should be noted that the distance to the transmitter is taken

along the longitude of the tunnel (i.e., x positions) while neglecting the y-dimension

across its width because it is less significant.

Localization using separate neural networks

Using this technique, the sets of fingerprints SR1 and SR2 are fed to ANN1 and

ANN2, respectively. The structure of the neural network is shown in Fig. 12.4.

The estimated mobile’s position d∗i is obtained with respect to R1 by averaging both

approximations produced by ANN1 and ANN2. The positioning error reported in

[4] for this technique is 1 m for 90% of the training and testing data.

Figure 12.4 – Localization based on two separate estimations.
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Localization using one neural network

In this technique, one neural network collects the extracted parameters from both

receivers forming one fingerprint that contains 14 parameters (7 from each receiver).

By concatenating both sets, SR1 and SR2 , the final set of fingerprints is represented

by:

S = {F1, F2, F3, ...., Fm} = {(f1, f
′

1), (f2, f
′

2), (f3, f
′

3), ..., (fm, f
′

m)} .

As shown in Fig. 12.5, Rx spatial diversity is exploited using one neural network that

is trained based on fingerprints of higher chain lengths. The localization accuracies

shown in Sec. 12.4.1 for this technique are 77 cm and 90 cm for 90% of the training

and testing data, respectively.

Figure 12.5 – Neural network based on multiple signatures.

12.3.2 Exploiting temporal diversity

Up to this point, the fingerprints extracted from the CIRs represent the signa-

tures of instantaneous measurements without introducing memory. Any further en-

hancement of the spatial technique requires implementing more APs, which is neither

reasonable nor cost effective in the confinement of the narrow-shaped tunnels. When
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exploiting spatial diversity only, the previous positions of the transmitter do not affect

the estimation of its current location. This work introduces a fingerprinting technique

that records the signatures (i.e., sets of 7 parameters) up to a certain memory level

l. The chain length of the fingerprint increases as l increases. A fingerprint that is

extracted from two distinct receivers as in Sec. 12.3.1 has the same chain length as a

fingerprint extracted with memory level l = 2. However, the latter is obtained using

one receiver only exploiting temporal diversity whereas the memoryless fingerprint

generated from two receivers in Sec. 12.3.1 exploits spatial diversity.

Making use of the quasi-curvilinear topology of narrow-vein mines, a scalable

ANN is trained on the possible combinatorial paths (i.e., possible temporal finger-

prints) that may lead to potential mobile positions inside the tunnels at time t0. The

path fingerprint

f j
i =

(

fit0 , fit−1
, fit

−2
..., fit

−(l−1)

)

.

is the concatenation of the fingerprints measured over short time instances while

moving towards a destination to be estimated at dt0i . l is the memory level or the

number of concatenated fingerprints and it defines the length of a temporal fingerprint

Lf where:

Lf = 7l.

Since the fingerprints of all positions in the mine are known, temporal fingerprints

with given chain lengths are obtained while taking into account all the possibilities

to reach a given position. Because of the tunnel-shaped topology of the narrow-

vein mines, motion inside the tunnels is predictable and the temporal fingerprints

are organized in chains representing all possible motion patterns inside a tunnel. A

simple example is illustrated for l = 2 in Fig. 12.6 where the star represents the

miner’s position at time t0. Assume that the previous possible positions at t−1 are

the highlighted circles in addition to the current position (i.e. stationary). The CIR-
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Figure 12.6 – Possibilities of previous positions for l = 2.

based temporal fingerprints for the case where l = 2 are listed in Tab. 12.1 where the

possible temporal concatenations reaching the star position are:

Table 12.1 – Fingerprints of each location for l = 2

Fingerprint Source of Parameters

1 CIRt0 & CIRcenter

2 CIRt0 & CIRnorth

3 CIRt0 & CIRsouth

4 CIRt0 & CIRwest

5 CIRt0 & CIReast

F 1
i = (fi, fi), F

2
i = (fi, finorth

), F 3
i = (fi, fisouth), F

4
i = (fi, fiwest

), F 5
i = (fi, fieast).

Five path fingerprints are obtained for the same position located at di (i.e., star

position) forming a combinatorial subset Si = {F 1
i , F

2
i , F

3
i , F

4
i , F

5
i } . Moving the star

character like a pointer for all positions inside the tunnel, we collect all possibilities for

all positions of interest while respecting the boundary conditions of confined tunnels.

The total set of temporal fingerprints is denoted by S = {S1, . . . , Si, . . . , Sm} and

it corresponds to all distances D = {d1, . . . , di, . . . , dm}. As l increases, more paths

may be drawn from previous possible positions as shown in Fig. 12.7 where l =

3. Temporal sub-fingerprints are recorded and concatenated as the miner heads to

a position to be estimated (i.e., at the star position). For each position, all path

fingerprints (i.e., concatenated sub-fingerprints) are combined in the offline phase

forming the training set of the ANNs. The maximum number of path fingerprints



CHAPTER 12. NEURAL-NETWORKS AND FINGERPRINT-BASED LOCALIZATION IN
UNDERGROUND MINES WITH NOVEL USE OF COLLABORATION AND SPACE-TIME
DIVERSITY 150

jmax that may be obtained for a given position is limited by the upper bound Nfp :

jmax ≤ Nfp = 5(l−1).

When increasing the memory level l, the combinatorial number of possible finger-

Figure 12.7 – Possibilities of previous positions for l = 3.

prints increases the size of training data exponentially (without the need of additional

data measurements), while it linearly increases the number of neurons nn. This sat-

isfies the rule of thumb for generalization where Ninputs must be four times greater

than nn [17].

A localization technique that exploits temporal diversity only (i.e., in the presence

of one receiver) is investigated and the results are shown in Sec 12.4. The ANN is

scalable according to Lf but it follows the design presented in Sec. 12.3.1 and shown

in Fig. 12.5. For each time depth l, a new ANN is trained using 75% of the generated

fingerprints. Memory-assisted localization using temporal diversity in the presence

of one receiver only is analyzed up to l = 4 after which no significant performance is

achieved.
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12.3.3 Exploiting both Rx-spatial and temporal diversities

By comparing temporal diversity fingerprinting techniques in Sec. 12.3.2 to the

cooperative techniques used in Sec. 12.3.1, some conclusions may be drawn. First,

the path fingerprinting technique exploits time diversity whereas the cooperative tech-

nique uses Rx spatial diversity to enhance the accuracy and precision of the estimated

results. Second, the accuracy of geo-location using the temporal technique may be

increased by increasing the memory level (l) without the need of implementing more

access points in mine tunnels. Although the temporal diversity at high memory levels

outperforms the use of cooperative memoryless localization in Sec. 12.3.1 in terms of

accuracy and precision, using one receiver alone may result in misleading information

about the exact position (i.e., direction) of the mobile user or miner in the presence of

junctions and interconnected tunnels. A more intelligent localizing system integrates

the in-built path fingerprinting technique at a given memory level l in a cooperative

spatial localizing system (i.e., diversity in both space and time). This would lead to

higher performances that could match those of memory-assisted localization alone at

higher time depth l (i.e., only time diversity).

Consider the two receivers as shown in Fig. 12.3 with memory capabilities. In a

cooperative memory-assisted localization technique that exploits the spatio-temporal

diversity, the subset of path fingerprints SR1
i =

{

FR1,1
i , FR1,2

i , FR1,3
i , ..., FR1,jmax

i

}

mea-

sured at a distance di away from R1 is properly combined path-wise with another

subset SR2
i =

{

FR2,1
i , FR2,2

i , FR2,3
i , ..., FR2,jmax

i

}

collected at a distance d2 = D − d1

away from R2 forming the spatio-temporal fingerprint set:

Si =
{

(FR1,1
i , FR2,1

i ), (FR1,2
i , FR2,2

i ), (FR1,3
i , FR2,3

i ), ..., (FR1,jmax

i , FR2,jmax

i )
}

.
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By letting R1 and R2 extract fingerprints with time depth l1 and l2 respectively,

different cooperative memory-assisted localization scenarios may be obtained and they

are denoted by (l1, l2). For example, a transmitter located a distance di and time t0

may be localized using the cooperative memory-assisted technique (l1 = 2, l2 = 1)

based on the concatenated spatio-temporal fingerprint Fi = (FR1
i , FR2

i ) where

FR1
i = (fR1

it0
, fR1

it
−

1
),

FR2
i = (fR2

it0
)

are fingerprints collected from R1 and R2, respectively. The spatio-temporal finger-

print Fi used in memory-assisted localization for (l1 = 2, l2 = 1) is formed from 3

CIRs (i.e., 21 parameters) for each position inside the quasi-curvilinear topology of

narrow-vein mines. In other words, for this specific example, R1’s fingerprint is the

concatenation of two fingerprints recorded at time instances t−1 and t0 (memory-

assisted fingerprinting with LR1
f = 14), whereas R2’s fingerprint is recorded at t0 only

(memoryless fingerprinting with LR2
f = 7). Thus, the number of inputs Ninputs of the

ANN is defined by the length of the spatio-temporal fingerprint which is dependent

on both l1 and l2 where:

Ninputs = 7(l1 + l2).

Several test cases were conducted while increasing the memory levels l1 and l2 of R1

and R2, respectively, and may be fully reviewed in [5].

The temporal sampling rate Sr increases at higher Vt providing the ANN with the

same spatio-temporal fingerprint that may be collected at a lower Vt and lower Sr .

The relationship may be demonstrated as follows:

Vt ≤ dp/τs ≤ dpSr,
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where Vt is transmitter’s speed, dp is the distance separating consecutive fingerprint

measurement positions, τs is the sampling time and Sr is the sampling rate. In our

case dp = 1 m which concludes that the sampling rate Sr at which the fingerprints

are extracted is lower bounded by the transmitter’s speed Vt:

Sr ≥ Vt.

12.3.4 Exploiting both Tx and Rx spatial diversities

In Sec.12.3.1, Rx spatial diversity is exploited by collecting two fingerprints from

two distinct receiver antennas at Rx1 and Rx2 using one transmitter antenna Tx1. In

the following, we introduce a new SIMIO/MIMO-type fingerprinting technique that

exploits the spatial diversities of more than one Tx being at a close antenna spacing

of δTx = 1 m or less. From an implementation’s point of view, antennas with δTx = 1

m or δTx = 0.5 m may be placed on heavy machinery or built in the miners’ suits

on the shoulders. For MISO-like fingerprints (i.e., fingerprints collected at R1 from

two Tx antennas), Tx spatial diversity is exploited at the transmitter’s end in the

presence of one receiver only without the need of memory. A MISO-type fingerprint

is denoted by:

FMISO
i = (fTx1

i , fTx2
i ),

Where fTx1
i and fTx2

i are the fingerprints collected by Rx1, at a position i, for Tx1 and

Tx2, respectively. MIMO-type fingerprints exploit both Tx and Rx spatial diversities.

They are simulated by considering two receiver antennas Rx1 and Rx2 of R1 and R2,

respectively. A MIMO-type fingerprint is denoted by:

FMIMO
i =

{

(fTx1
i , fTx2

i ), (fTx1

i′ , fTx2

i′ )
}

.
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While fTx1
i and fTx2

i represent the fingerprints collected by Rx1, f
Tx1

i′ and fTx2

i′ are the

fingerprints collected by Rx2, at a position i′ = D− i, for Tx1 and Tx2, respectively.

The estimated distance of the transmitter is always taken along the x-axis and it rep-

resents the distance separating R1 and the midpoint of Tx1 and Tx2. MISO/MIMO-

type fingerprints are studied at δTx
x = 1 m along the x-axis and at δTx

y = 1 or 0.5 m

along the y-axis.

12.4 Experimental Results

The Cumulative Density Function (CDF) is used to show the precision (i.e., per-

centage of treated measurements) of each localization technique compared to its po-

sitioning accuracy (i.e., localization error in meters). First, localization results are

analyzed for both the training and testing data when cooperative Rx spatial diversity

is introduced. Then the results of exploiting temporal and spatio-temporal diversities

are presented. In Sec. 12.4.4, positioning accuracies using Tx spatial diversity and

MISO/MIMO-type testing fingerprints are discussed then compared to all developed

localization techniques. It is important to add that every localization approach un-

dergoes an extensive search for the optimum number of neurons to be used in the

hidden layer of its respective ANN design. The search for the optimum number of

neurons is favored to increase the positioning accuracy of the testing fingerprints

while maintaining accurate positioning for the training data. As a result, localization

robustness is increased producing unbiased positioning results that can be compared

for the same techniques at lower sampling resolution later in Sec. 12.5. Moreover,

all fingerprints used below are collected at Sx = 1 m and divided into training data

(i.e., 75% of the total number of fingerprints) and testing data (i.e., 25% of the total

number of fingerprints).
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12.4.1 Results of memoryless localization techniques using

Rx spatial diversity

The localization techniques that exploit Rx spatial diversity are discussed in Sec.

12.3.1 and their results are plotted in Figs. 12.8 and 12.9 for the training and testing

data, respectively. CDF plots shown in each figure correspond to the estimation error

of different spatial, temporal and spatio-temporal localization techniques. Compared

to the original memoryless (1,0) technique developed in [31], the positioning errors

that result from exploiting Rx spatial diversity are marked as the cooperative mem-

oryless (1,1) localization technique. It should be noted that the results shown here

Figure 12.8 – CDF of the training data for different localization techniques at memory
levels (l1, l2).

are analyzed for a separation distance D = 80 m where other scenarios may be re-

viewed in [4]. The estimation errors of localization based on one receiver only were

reported to be 1.3 m and 1.4 m for 90% of the training and testing data, respectively.

Performance results show close similarity from both ends (i.e., R1 and R2) although

two different ANNs were trained at both ends. For consistency, only results of R1
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Figure 12.9 – CDF of the testing data for different localization techniques at memory
levels (l1, l2).

are reported. This accuracy is enhanced for the training data after the cooperative

localization technique was introduced in [4]. Using the cooperative technique based

on separate ANNs discussed in Sec. 12.3.1, the estimation error drops to 1 m for 90%

of both the training and testing data [4]. Again, the spatial cooperative technique

that uses one neural network with 14 inputs resulted in estimation errors of 77 cm

and 90 cm for the training and testing data, respectively.

12.4.2 Results of solo memory-assisted localization techniques

The results of solo localization (i.e., in the presence of one receiver) using in-

built path fingerprinting discussed in Sec. 12.3.2 are optimized for different memory

levels up to l = 4. The results of the training and testing fingerprints using solitary

memory-assisted localization (l1 = 2, 3, 4, l2 = 0) are shown and compared to the

developed techniques in Figs. 12.8 and 12.9, respectively. For each l, a new ANN

is created and trained on 75% of the generated fingerprints. For l = 2, estimation
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errors are reported to be 89 cm and 1.14 m for 90% of the training and testing data,

respectively. For the same precision of 90% at l = 3, localization errors are found to

be 50 cm and 53 cm for the training and testing data, respectively. The estimation

error keeps on decreasing with the increase of the fingerprints’ chain length (i.e., time

depth) and it reaches 48 cm for l = 4 for both the training and testing data. At l = 5,

the error maintains a similar accuracy to the one attained at l = 4 but no significant

gain is obtained [5].

12.4.3 Results of cooperative memory-assisted localization

using spatio-temporal diversity

As discussed earlier in Sec. 12.4.2, cooperative memory-assisted localization tech-

niques exploit both temporal and Rx spatial diversities of CIR-based fingerprints.

The results of the training and testing fingerprints are shown and compared to the

previous techniques in Figs. 12.8 and 12.9, respectively. Performance results are plot-

ted according to the memory levels (l1, l2) of receivers (R1, R2), respectively. The best

performance among spatio-temporal localization techniques is achieved once both re-

ceivers cooperate and introduce memory. In the case where (l1 = 2, l2 = 2), the error

drops below 50 cm for 90% of the training and testing data, respectively.

It is worth stating at this point that cooperative spatio-temporal localization

technique performs better than the previously discussed techniques in Secs. 12.3.1

and 12.3.2. To illustrate this point we compare the performance of all developed

techniques based on the length of the fingerprint Lf that defines the design of their

respective ANNs. For example, at Lf = 14, cooperative memoryless localization (i.e.,

exploiting spatial diversity only) outperforms solo memory-assisted localization (i.e.,

exploiting temporal diversity only) when l = 2 and surprisingly provides a close per-

formance to solo memory-assisted localization technique with Lf = 21 (i.e., l = 3).
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This result shows the importance of cooperation between two spatially separated re-

ceivers prior to position estimation and clearly highlights the gain achieved by Rx

spatial diversity. When comparing at Lf = 28, the best performance is achieved by

the new 2-by-2 memory assisted localization technique (l1 = 2, l2 = 2) introduced

in [5]. The one-step increase in the memory levels at both receivers significantly

increases the accuracy and precision surpassing the previously discussed scenarios

with much lower complexity as compared to the temporal approach that performs at

l = 4. Location errors for 90% of the testing fingerprints of the different localization

techniques are listed for Sx = 1 m in Tab. 12.2.

12.4.4 Results of MISO/MIMO-type fingerprinting using Tx

and Rx spatial diversities

As discussed in Sec. 12.3.4, Tx spatial diversity is added to increase the robustness

and performance of CIR-based fingerprint-positioning techniques. By concatenating

a new Tx sub-fingerprint, we increase the length of the fingerprint fed to the ANN

taking advantage of the information it brings about the position of the transmitter.

MISO-type fingerprints are denoted by 2Tx-1Rx and they use an ANN design of 14

inputs taken from two Tx antennas separated by a given distance δTx along either

the x or y axis. Similarly, MIMO-type fingerprinting techniques are denoted by 2Tx-

2Rx techniques. At this point, we draw attention to localization results at Sx = 1 m

shown in Fig. 12.14 and Tab. 12.2 for both MISO-type and MIMO-type fingerprint

positioning at δTx
x = 1 m, δTx

y = 1 m and δTx
y = 0.5 m. When compared at the

same Lf with Sx = 1 m and δTx
y = 1 m, localization errors of using 2Tx-1Rx fin-

gerprints drop to 85 cm compared to 1.15 m when using memory-type fingerprinting

with ANN(2,0). When comparing Tx and Rx spatial diversity fingerprint-positioning

techniques, we notice that Rx spatial diversity of ANN(1,1) that use 1Tx-2Rx finger-
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prints outperform that of Tx spatial diversity using 2Tx-1Rx MISO-like fingerprints,

however, increased performance is noticed by the addition of a second Tx fingerprint

when compared to the original technique of ANN(1,0) which uses 1Tx-1Rx finger-

prints. It is important at this point to mention that exploiting Rx spatial diversity is

more beneficial than temporal diversity. One can compare the localization accuracy

of ANN(1,1) (i.e., 1Tx-2Rx ANN) to ANN(2,0) and draw the conclusion that, for the

same Lf , exploiting Rx spatial diversity only (i.e., using ANN(1,1)) results in posi-

tioning errors of 91 cm, 90% of the times, for the testing fingerprints as compared to

errors of 1.15 m using ANN(2,0). The same conclusion holds when comparing training

spatio-temporal fingerprints of ANN(2,2) to memory-type fingerprints of ANN(4,0)

with localization errors of 40 cm and 47 cm, respectively.

Exploiting both Tx and Rx spatial diversities within the same localization tech-

niques increases localization robustness and reduces the complexity of introducing

memory-type fingerprints. For δTx
y = 1 m, Tx and Rx spatial diversities may show

a slight degradation in accuracy once compared to ANN(2,2), however, the use of

MISO/MIMO-type fingerprints proves to sustain positioning precision for all the re-

maining antenna spacing scenarios (i.e., δTx
x = 1 m and δTx

y = 0.5 m) and paves the

road for a solid localization technique that performs accurately even at lower grid

resolution as discussed in the following section.

12.5 Reaping Diversity Benefits to Simplify Mea-

surement Campaigns

Cutting down the cost of measurement campaigns while, at the same time, main-

taining high performance is one of the challenges that confront any fingerprinting

approach. By reducing the amount of collected measurements, fingerprinting tech-
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niques risk losing information that ANNs need in order to interpolate the relationship

between the CIR-based fingerprints and transmitter’s distances. A smart localization

system would maintain high positioning accuracy while using less fingerprint mea-

surements [7]. Earlier in Sec.12.4.2, the performance results were conducted using

the original grid’s resolution where offline fingerprints were collected at Sx = 1 m. In

the following, we study the effect of sampling resolution on the proposed localization

techniques in [31], [4], [6], [5] and the new developed localization technique that

exploits Tx spatial diversity of MISO/MIMO-type fingerprints. The spatial sampling

resolution is reduced by increasing Sx to 2 m, 3 m and up to 6 m resulting in a split

of the original grid into 2, 3 and up to 6 sub-grids, respectively, by counting for the

transmitter’s initial position on the grid.

12.5.1 Designing ANNs at higher Sx : Interpolation versus

accuracy

The objective of this experiment is to analyze the effect of grid resolution (i.e.

reducing training data measurements by increasing Sx) on the positioning accuracy

of each spatial and/or temporal ANN technique. The challenge that ANNs face with

less data measurements and different grid resolution lies in their ability to map the

fingerprints of one sub-grid resolution to its respective output distances on one hand.

On the other hand, the ANN trained on one sub-grid should effectively generalize the

solution space, interpolate and localize fingerprints collected from the remaining sub-

grids within the same resolution while maintaining reasonable accuracy and precision.

A simple example would be two ANNs trained on fingerprints measured at odd and

even distances, respectively. With Sx increased to 2 m, both ANNs are tested on their

own sub-grid (i.e., odd or even) and then challenged by the supplementary sub-grid

fingerprints within the same spatial sampling resolution [7]. By doing so, not only
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do we reduce the cost of data measurement collection but we also identify the most

accurate ANN-based positioning techniques discussed in the literature for different

sampling resolution.

In order to come up with an adequate ANN design, a search for the optimum

number of neurons for each ANN technique becomes very essential. While ANNs

of each sub-grid are trained on 75% of the same sub-grid measurements, they are

then tested on 25% of the remaining x-position patterns that may be seen during

training plus 25% of the other sub-grid candidates within the same spatial sampling

resolution set (i.e., 25% of x-positions of sub-grids never seen in the training phase).

The variable size of training data sets that result from splitting the grid’s resolution

requires a dynamic allocation of the number of neurons to be used. Too many neurons

would produce a very accurate ANN design for the specific sub-grid while causing

high error rates for the remaining sub-grids. Similarly, few neurons would not bring

accurate positioning results. Optimizing the number of neurons based on the number

of fingerprints of each ANN is done by trial and error. A massive simulation was

performed in order to find the successor ANN designs for each technique and for each

resolution sub-grid.

A successor ANN is the one that can most accurately localize its own sub-grid

and 25% of the remaining sub-grids in each sampling resolution setup. The reported

accuracy of each sampling grid’s resolution, for a given ANN technique, is based on the

joint accuracy results of the successor sub-grid ANNs. The simulation was conducted

using MATLAB to train multiple sub-grid ANNs while varying the number of neurons

nn between 1 and Nn such that:

1 < nn < Nn = 2Ni + 1,
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where Ni is the number of inputs of the ANN that depends on the used localization

technique and memory levels as discussed in Sec. 12.3.2. The same experiment is

done for all the remaining sub-grids within the same Sx. After running three con-

secutive trials for each nn, a successor ANN design is selected for the given sampling

resolution. Performance results combine all sub-grid ANNs’ positioning errors per-

forming on a given number of neurons and a certain Sx. It should be noted that this

experiment is also repeated for each localization approach as the number of inputs

varies between spatial and spatio-temporal fingerprint-positioning techniques and so

does the maximum number of neurons in the experimental range.

12.5.2 Experimental results

Running a simulation of more than 14,000 ANNs including all possible design sce-

narios, the optimum number of neurons required for each sampling step-size Sx and

localization technique were identified and were used as a benchmark for further ANN

designs as shown in Fig.12.10. The localization accuracy of 1.41 m (circled in Tab.

12.2) obtained at Sx = 1 m using the elemental localization technique ANN(1,0)

in [31] will be used as a benchmark to be compared with the performance of the

evolved spatio-temporal techniques at different Sx. The efficiency of each technique

lies in its ability to sustain the 1.41 m target at higher sampling step-size Sx (i.e.,

lower sampling grid’s resolution) bearing in mind the number of neurons needed to do

so. It can be noticed that localization techniques exploiting temporal diversity (i.e.,

ANN(2,0), ANN(3,0) and ANN(4,0)) require higher number of neurons compared to

spatial localization techniques (i.e., ANN(1,0) and ANN(1,1)).

On the other hand, and for the same number of inputs or memory level, a spatio-

temporal technique such as ANN(2,2) starts off with a higher number of neurons at

Sx = 1 m when compared to ANN(4,0). The increased complexity that comes with
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Figure 12.10 – Optimum number of neurons for different ANNs.

increasing the number of neurons is traded off for a better accuracy and precision.

An interesting theory shows that the number of neurons also decreases with the de-

crease in sampling resolution until they all settle below 7 neurons. After selecting the

optimum number of neurons, we compare the accuracy and precision of each tech-

nique for different sampling resolutions. Sample CDF plots in Figs. 12.11 and 12.12

were selected to show the cumulative testing localization errors of all localization

techniques at Sx = 3 m and Sx = 6 m, respectively. The remaining grid resolution

results, at 90% precision, are divided between Figs.12.13 and 12.14 to better visualize

the performance of each of the developed localization techniques for different δTx and

Sx.

As expected, the localization accuracy decreases at lower grid resolutions. Fur-

thermore, when excluding Tx spatial diversity from the equation, the spatio-temporal

localization technique ANN(2,2) holds as the most accurate technique even with lower

sampling resolution. In fact, ANN(2,2) surprisingly achieves the same accuracy of

1.4 m at Sx = 6 m when compared to the benchmark technique using ANN(1,0) at
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Figure 12.11 – Localization performance at Sx = 3 m.

Figure 12.12 – Localization performance at Sx = 6 m.
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Sx = 1 m. It can also be noticed that ANN(1,1) performs better than the remaining

temporal techniques at lower grid resolution and may achieve the 1.4 m benchmark

at Sx = 5 m. Temporal fingerprints, which are chains of consecutive sub-fingerprints,

carry lower information about the current position at lower sampling resolution (i.e.,

higher Sx) because the correlation between sub-fingerprints decreases when they are

spatially apart. With accuracies of around 2 m for 90% of the testing data at Sx

= 6 m, memory-assisted fingerprinting techniques cannot be considered as the best

candidates for localization at lower grid resolution. If cost is the main concern in

the absence of Tx spatial diversity, ANN(1,1) proves to maintain close accuracies

compared to ANN(2,2) at 90% precision level and it may be selected as a localization

technique for lower grid resolution being less complex than ANN(2,2) in terms of

fingerprint concatenation and ANN design.

By introducing Tx spatial diversity and analyzing the 90% performance results

Figure 12.13 – Positioning errors from CDFs of testing data at 90% precision.

of MISO/MIMO-type fingerprints shown in Fig. 12.14 and Tab. 12.2, many conclu-

sions may be drawn. First, by increasing Sx to 2 m, the measurement campaign’s cost
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Figure 12.14 – Positioning errors from CDFs of MISO/MIMO-type testing data at 90%
precision.

is cut down to half while maintaining accurate localization using MISO/MIMO-type

fingerprints with positioning errors as low as 83 cm 90% of the time! Secondly, al-

though MISO-type fingerprints using 2Tx1Rx succeed to show high accuracy results,

MIMO-type fingerprints, being the best candidates for low grid resolution localiza-

tion, prove to maintain very accurate positioning results of 38 cm and 1.28 m for the

testing data at Sx = 1 m and Sx = 6 m, respectively. The outstanding performance

of MIMO-type fingerprints at δTx
y = 0.5 m (highlighted in dotted lines in Tab. 12.2)

surpasses the benchmark of the original localization technique using ANN(1,0) even

when performing at Sx = 6 m. Localization using MIMO-type fingerprints and ANNs

is, as yet, the most accurate and cost-efficient solution that attains 1.28 m positioning

error, 90% of the time, using only one sixth of the data measurements.
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Table 12.2 – Performance results with multiple resolution

ANN Technique
Grid Resolution Accuracy Results

1 m 2 m 3 m 4 m 5 m 6 m

ANN(1,0) 1.42 m 1.44 m 1.81 m 2.04 m 2.12 m 2.83 m

ANN, 2Tx1Rx δTx
y = 0.5 m 1.10 m 1.43 m 1.73 m 1.81 m 2.26 m 2.58 m

ANN, 2Tx1Rx δTx
y = 1 m 0.85 m 1.36 m 1.53 m 1.66 m 1.94 m 1.97 m

ANN(2,0) 1.15 m 1.35 m 1.58 m 1.92 m 1.97 m 2.07 m

ANN(3,0) 0.53 m 1.36 m 1.58 m 1.78 m 1.94 m 2.02 m

ANN(4,0) 0.48 m 1.30 m 1.46 m 1.72 m 1.91 m 1.93 m

ANN, 2Tx1Rx δTx
x = 1 m 1.05 m 1.23 m 1.33 m 1.51 m 1.61 m 2.07 m

ANN(1,1) 0.91 m 1.07 m 1.15 m 1.28 m 1.39 m 1.45 m

ANN, 2Tx2Rx δTx
y = 1 m 0.64 m 0.84 m 1.07 m 1.14 m 1.35 m 1.51 m

ANN(2,2) 0.49 m 0.95 m 1.07 m 1.22 m 1.26 m 1.41 m

ANN, 2Tx2Rx δTx
x = 1 m 0.43 m 0.93 m 1.10 m 1.14 m 1.19 m 1.32 m

ANN, 2Tx2Rx δTx
y = 0.5 m 0.38 m 0.83 m 0.98 m 1.12 m 1.20 m 1.28 m

12.6 Conclusion

This work pushes the performance limits of indoor positioning in the harshly-

conditioned galleries and tunnels in underground mines by reducing fingerprint ac-

quisition complexity and, at the same time, boosting accuracy gains of CIR-based

localization. In addition to that, the fundamentals of collaboration and ANNs’ de-

sign, which stem from years of research in underground positioning techniques, are

laid down prior to revealing the new, more accurate MISO/MIMO-type fingerprint-

positioning model. When both Tx and Rx spatial diversities are exploited, position

estimation errors drop to 50 cm and 1.28 m for 90% of the testing fingerprints at Sx

= 1 m and Sx = 6 m, respectively. The presented CIR-based localization techniques,

currently being tested in the mmWave/60GHz band, may be implemented in different

wireless technologies and are highly cost-effective when the discussed sampling and

ANNs’ design strategies are applied.
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