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Résumeé

Les mines souterraines sont connues pour 'adversité de leurs milieux de propagation
sans fil; une adversité qui pose de tres grands défis au déploiement des systemes de
communication sans fil. Bien que l'exploitation miniere soit florissantes, les mines
d’or souterraines sont toujours critiquées pour leurs mesures de sécurité désuettes.
Notre mission dans les mines souterraines provient de la nécessité d’un systeme de
localisation fiable qui réussit a localiser avec précision les mineurs et leur équipement
dans les entrailles de la Terre.

Apres avoir étudié les raisons de 1’échec des techniques de localisation tradition-
nelles dans les mines souterraines, nous recommandons une technique efficace qui
utilise les réseaux de neurones artificiels (RNA) et les empreintes digitales extraites
de la réponse impulsionnelle du canal (RIC). L’essence de ce travail réside dans sa ca-
pacité a repousser les limites de performance des techniques de positionnement basées
sur les RNA en intégrant les concepts de diversité de transmetteur (7)) et récepteur
(R,) spatiale et/ou temporelle dans les empreintes digitales avant d’estimer la po-
sition d’un émetteur dans le confinement des tunnels souterrains. En faisant cela,
nous établissons les principes de localisation coopérative dans le domaine des RNA
en utilisant les empreintes digitales concaténées qui sont extraites de plus d’un point
d’acces, a plusieurs instances temporelles, en utilisant des systemes d’antenne sim-
ples ou doubles. En conséquence, de nouvelles techniques d’empreintes, qui exploitent
les diversités spatiales et/ou temporelles des signatures rassemblées, sont introduites

pour la premiere fois avec des erreurs de positionnement remarquables de moins de
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50 cm dans 90 % des cas.

Les nouvelles techniques de positionnement basées sur les empreintes digitales sont
par la suite optimisées pour utiliser moins d’échantillons dans le but d’identifier un
compromis de précision qui minimise la complexité et le cout d’acquisition d’empreintes
digitales. Avec moins de la moitié des échantillons, nous démontrons que les RNA,
s’ils sont bien congus, peuvent interpoler et estimer précisément (spatialement et/ou
temporellement) les empreintes digitales qui n’ont pas été vues par les RNA dans le
processus d’entrainement.

Les réalisations présentées dans cette recherche montrent que la localisation basée
sur la RIC peut atteindre jusqu’a 75 % de gains en précision en exploitant la diver-
sité spatiale et/ou temporelle en présence de systemes d’antennes doubles, tout en

réduisant le cout de la collecte d’échantillons de moitié.
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Abstract

Underground gold mines are known for their disruptive indoor channels that challenge
the deployment of wireless communication systems by severely distorting their wire-
less transmitted signals. Although mining is among the most booming industries, yet
underground gold mines are still criticized for their outdated safety and security mea-
sures. Our mission in underground mines stems from the profound need of a reliable
localization system that succeeds to accurately localize miners and their equipment
in one of earth’s most dangerous entrails. After studying the reasons behind the
failure of traditional localization techniques in underground mines, we recommend
an effective localization technique that uses Artificial Neural Networks (ANNs) and
fingerprints extracted from the channel’s impulse response (CIR). The essence of this
work lies in its ability to push the performance limits of ANN-based positioning tech-
niques by integrating the concepts of T, and R, spatial and/or temporal diversities in
fingerprints prior to estimating a transmitter’s position in the confinement of under-
ground tunnels. By doing so, we lay down the guidelines of cooperative localization
in the realm of ANNs using concatenated fingerprints which are extracted from more
than one access point, at multiple time instances, using single or dual antenna sys-
tems. As a result, new fingerprinting techniques, that exploit spatial and/or temporal
diversities of the collected signatures, are introduced for the first time with outstand-
ing positioning errors of less than 50 cm 90% of the time. The novel fingerprint
positioning techniques are then optimized to use less data measurements in an effort

to tradeoff pinpoint accuracy for lower complexity and fingerprint-acquisition cost.
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By using less than half of the measurement campaign’s data, we prove that ANNs,
if well designed, may interpolate and precisely estimate spatially and/or temporally
diverse fingerprints taken from measurement gaps not seen by ANNs in the training
process. The new realizations of this research show that CIR-based localization may
attain up to 75% accuracy gains when exploiting spatial and/or temporal diversities
in the presence of dual antenna systems while, at the same time, cutting down the

measurement campaign’s cost in less than half.



Smart Localization in Underground Mines
using Fingerprinting and ANNs:

Strategies and Applications

Sommaire Récapitulatif

Cette partie contient les chapitres A, B, C, D et E qui sont la traduction francaise des chapitres
1, 3, 4, 5 et 6 respectivement.



Chapitre A

Introduction

Cette these introduit de nouvelles techniques de positionnement basées sur les
empreintes qui sont congues pour les zones souterraines et confinées telles que les
mines d’or. Dans le cadre de mon doctorat a 1’Institut National de la Recherche
Scientifique-Energie Matériaux et Télécommunications (INRS-EMT) et en collab-
oration avec le Laboratoire de Recherche Télébec en Communications Souterraines
(LRTCS), je présente et analyse les constatations et les résultats des techniques de
positionnement basées sur les empreintes dans les mines souterraines. Dans la suite
de cette these, la portée des travaux est définie en soulignant la problématique de

recherche, les objectifs et les méthodologies appliquées.

A.1 Problématique de recherche

La localisation des mineurs et/ou leurs équipements dans les mines souterraines
est un besoin essentiel qui garantit les mesures de sécurité de base dans 1'un des
environnements de travail les plus dangereux. Cependant, les techniques de local-
isation modernes qui garantissent la précision dans les canaux extérieurs peuvent

échouer si elles sont implémentées dans des milieux intérieurs instables tels que les
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mines. Jusqu’a présent, de nombreuses recherches au LRTCS ont révélé 'efficacité des
techniques de positionnement intérieures entrainées par l'intelligence artificielle que
nous considérons, dans notre étude, comme de bonnes candidates pour la localisation
souterraine. Toutefois, il y a encore un défi a relever par I’absence d’adaptation de ces
techniques a des systemes de communication modernes et sophistiqués qui utilisent
plus d’un point d’acces en coopération et exploitent la présence d’antennes a entrée(s)
unique/multiples et sorties multiples (SIMO / MIMO). La valeur de cette recherche
provient de sa capacité a introduire des méthodes d’empreintes coopératives qui ex-
ploitent les diversités spatiales et/ou temporelles en la présence d’antennes émettrices
simples et/ou doubles comme dans le cas des dispositifs MIMO de communication
modernes. En conséquence, toutes les techniques de localisation qui s’appuient sur
une seule antenne d’empreintes peuvent utiliser notre approche innovante pour faire
usage de la diversité espace-temps, ce qui garantit une plus grande précision, ro-

bustesse et réduction des cotts d’acquisition des empreintes.

A.2 Objectifs

L’objectif principal de cette recherche est d’étudier les techniques de localisation
souterraine basées sur les empreintes sans fil dans le domaine de la diversité tem-
porelle et/ou spatiale d’'une part, et en présence de plus d'une antenne émettrice et
réceptrice d’autre part. Ainsi, non seulement nous améliorons les précisions du po-
sitionnement et les résultats de précision, mais nous introduisons aussi de nouvelles
méthodes basées sur les empreintes qui peuvent étre adaptées pour les systemes de
localisation souterrains. Un autre objectif de cette recherche est de réduire le cout
des campagnes d’acquisition des empreintes, qui constitut la source principale de cri-
tique. En concevant des techniques a base d’empreintes qui assurent des précisions

ponctuelles pour moins de données de mesure hors ligne, nous réussissons a réduire le



CHAPITRE A. INTRODUCTION viii

cotit a moins de la moitié, tout en maintenant des résultats de positionnement précis

en utilisant nos nouvelles méthodologies d’empreintes sophistiquées.

A.3 Méthodologie

La methode employée utilise de 480 points de mesure des données recueillies dans
une mine souterraine a 2.4 GHz, en présence d’'une seule antenne de réception, a partir
desquelles les réponses impulsionelles du canal (RIC) sont extraites. En utilisant les
empreintes extraites a partir des RIC et des Réseaux de Neurones Artificiels (RNA),
la localisation est ensuite adaptée en tant que paradigme pour localiser la position de
I’émetteur. De nouvelles empreintes sont ensuite formées en exploitant les diversités
espace et/ou temps. Il convient de souligner que les résultats de la localisation sont
basés sur la distance de séparation entre I’émetteur et le récepteur le long de I'axe x
seulement, en négligeant les petites variations le long de ’axe y qui sont de moindre
valeur dans les tunnels étroits des mines d’or souterraines.

Apres discussion de la technique de localisation de base en présence d’un seul
récepteur, nous simulons, en utilisant les mémes mesures, la présence d’une autre an-
tenne de réception pour étudier 'effet de 'utilisation de la diversité spatiale des em-
preintes collectées. En ayant deux récepteurs collectant les signaux transmis, deux em-
preintes sont extraites de chaque récepteur pour former une empreinte digitale spatiale
R, pour chaque position donnée. Les résultats de I’exploitation de la diversité spatiale
R, surpassent la présence d’un seul récepteur et contribuent a clarifier I’'ambiguité
de la position de I’émetteur dans la présence des jonctions. La diversité spatiale R,
seule ne peut pas étre améliorée sans I’ajout de points d’acces supplémentaires ce qui
n’est pas possible dans le confinement des mines a filons étroits.

Cependant, une autre dimension de recherche va au-dela de la diversité spatiale

pour inclure les empreintes de type mémoire exploitant la diversité de temps. L’étude



CHAPITRE A. INTRODUCTION ix

de 'utilisation des empreintes temporelles est réalisée par la production de toutes les
empreintes des chemins possibles qui conduisent a une position spécifique, pour une
profondeur de mémoire donnée, a l'intérieur des tunnels. Une empreinte digitale de
chemin est une concaténation de toutes les sous-empreintes extraites le long d’un
chemin spécifique qui conduit a la position finale a estimer. Les RNA sont ensuite
formés sur tous les chemins possibles pour un niveau de mémoire donné et utilisés
pour estimer les données qui ne sont pas vues dans les phases d’apprentissage. Il
est observé que les seuils de performances sont améliorés en exploitant la diversité
temporelle avec une augmentation de la complexité de la formation.

Afin d’améliorer davantage les performances des techniques de positionnement
basées sur les empreintes, une étude a été menée afin d’évaluer la performance de
la localisation en présence de capacités de mémoire et la collaboration entre deux
récepteurs. Lorsque les chaines des sous-empreintes temporelles recueillies du pre-
mier récepteur sont combinées avec d’autres sous-empreintes au deuxieme récepteur,
des empreintes spatio-temporelles sont obtenues. En conséquence, 'utilisation de la
diversité espace-temps surpasse les performances des approches précédentes en termes
d’exactitude, de précision et de complexité.

Un autre axe de recherche étudie la possibilité d’exploiter la présence d’antennes
doubles a I’émetteur, pour des fins de localisation, comme dans le cas de I’équipement
utilisateur (UE) moderne MIMO. Par la concaténation de deux sous-empreintes du
coté de I'émetteur séparées par un espacement d’antenne donné, nous formons un type
d’empreintes SIMO si une seule antenne de réception est présente et des empreintes
de type MIMO en présence de deux antennes de réception. Les empreintes de type
MIMO/SIMO sont étudiées sur un espacement antenne de 1 m suivant 'axe des z,
de 0,5 m et 1 m suivant l'axe des y.

Apres la réalisation de tres hautes précisions qui ont dépassé les attentes, une
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recherche pour une performance optimisée commence dans un effort pour réduire la
surcharge de cotut des campagnes d’acquisition des empreintes. Chaque technique de
localisation a été mise sous le test de l'utilisation de moins de mesures de données,
pour l'apprentissage des RNA, en réduisant la résolution de la grille a un sixieme
de sa taille originale. Les RNA ont été mis au défi pour localiser dans les lacunes
de mesure qui ne sont pas visibles dans les phases d’apprentissage, tout en essayant
de maintenir une précision de positionnement. Apres la formation de plus de 14000
RNA, le nombre le plus adéquat de neurones qui correspond a chaque technique de
localisation a été identifié sur la base de la résolution de la grille.

Comme prévu, les précisions de la localisation diminuent légerement lorsque la résolution
de la grille diminue, cependant, les techniques basées sur les empreintes nouvelles et
sophistiquées, comme le positionnement basé sur le type MIMO d’empreintes, réussit
a obtenir des résultats de positionnement précis méme avec une résolution de grille

inférieure.

A.4 Structure de la theése

La these est écrite en utilisant le format article et elle est divisée en deux parties,
chacune divisée en plusieurs chapitres.

Dans la premiere partie, chapitre 2 (dans la version anglaise) presente les principes
de localisation et les recherches les plus récentes effectuées dans les techniques de local-
isation intérieure. Au chapitre B, les nouveaux résultats de ce travail sont brievement
discutés, y compris les nouvelles techniques de positionnement basées sur les em-
preintes qui exploitent les diversités spatiales et temporelles. En plus, la section B.5
p- xxii du méme chapitre illustre les méthodes utilisées pour optimiser le systeme de
localisation en abaissant son cout d’acquisition des empreintes. Les résultats de per-

formance sont ensuite discutés au chapitre C. Les résultats sont suivis d’une conclusion
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au chapitre D, avant de révéler les futurs themes de recherche qui sont recommandés
comme une continuité de ce travail au chapitre E.

Dans la deuxieme partie, nous incluons les publications et les manuscrits qui
légitiment ce travail et montrent I'importance de ses résultats. Chaque chapitre, étant
un article de conférence ou de journal, porte une nouvelle technique d’empreintes. Une

description complete de ce travail est résumée dans le journal inclus au chapitre 12.



Chapitre B

Localisation intelligente dans les
mines souterraines a ’aide des

empreintes et les RNA

Dans ce chapitre, nous examinerons les résultats de la recherche en profondeur en
montrant leurs méthodes fonctionnelles et les techniques basées sur les empreintes.
Ce chapitre constitue les principales réalisations de ce travail qui ont été publiées en
parties puis résumées dans un manuscrit de journal qui peut également étre consulté
au chapitre 12.

Comme étude préliminaire, il est recommandé de réviser 'efficacité de la local-
isation basée sur les empreintes utilisant les RNA dans [31], qui a également été
examinée avant dans la section 2.3 p. 16. Dans un premier temps, nous examinons
la méthodologie adaptée pour la localisation coopérative, en présence de plus d’un
récepteur dans la section B.1 p. xiii qui contribue a la réalisation de I’article joint au
chapitre 7. La localisation utilisant la diversité temporelle est alors expliquée dans la

section B.2 p. xv et ses résultats peuvent étre consultés également dans la publication
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mentionnée au chapitre 8. De méme, la section B.3 p. xviii explique les concepts de la
localisation exploitant la diversité spatio-temporelle qui contribuent au travail publié
au chapitre 9.

L’innovation des empreintes de type SIMO/MIMO, qui sont examinées dans la
section B.4 p. xx et au chapitre 11, présente les techniques qui peuvent étre utilisées
pour enrichir les techniques basées sur les empreintes avec la présence d’antennes Tx
doubles. Enfin, les techniques d’optimisation et de réduction de cout sont traitées

dans la section B.5 p. xxii et a travers les publications des chapitres 10, 11 et 12.

B.1 La localisation en exploitant la diversité spa-

tiale R,

La localisation dans les mines souterraines a 1’aide de plus d’un point d’acces a
été la premiere étape vers un systeme coopératif qui utilise plus d'une sous-empreinte
digitale avant d’estimer la position d’un émetteur. Non seulement la collaboration
entre les points d’acces augmente la précision du positionnement, mais elle élimine
également 'ambiguité sur la définition de la direction de la transmission dans les cas
ou des jonctions sont présentes dans les galeries et tunnels souterrains. La localisation
exploitant la diversité spatiale R, est le premier chapitre de réalisations et est décrite

en détail dans la publication présenté au chapitre 7 et dans la section 12.3.1 p. 144.

Avant I'innovation des empreintes collaboratives, une seule empreinte digitale a été
utilisée par un seul récepteur pour extraire la distance a un émetteur sans connaitre
le sens exact de la transmission. L’objectif de ce chapitre est d’incorporer plus d’une
empreinte digitale (c’est-a-dire, qui sera appelée sous-empreinte digitale) & partir des

récepteurs spatialement éloignés avant d’estimer la position finale de la transmission.



CHAPITRE B. LOCALISATION INTELLIGENTE DANS LES MINES SOUTERRAINES A
I’AIDE DES EMPREINTES ET LES RNA Xiv

Compte tenu de la topologie étroite spéciale des tunnels souterrains, deux récepteurs
seraient suffisants pour couvrir chaque tunnel, comme indiqué sur la figure 7.2. Les
mémes mesures qui ont été prises a partir du premier récepteur R; dans [31] sont
utilisées dans le sens opposé afin de simuler la présence d’un autre récepteur Rs
comme indiqué sur la figure 3.1.

Exploitant la diversité spatiale R, de deux récepteurs R; et Ry, dans la région de
couverture commune, se traduit par deux ensembles d’empreintes S = {f1, fa, f3, ..., fin }
et ST = [fl fi fi ..., f.}, respectivement. L’ensemble de sortie des RNA D =
{di,ds,ds, ...,d,,} représente les distances a l'un des récepteurs qui est pris par défaut
pour étre la distance de R; a I’émetteur. Il convient également de noter que de mul-
tiples scénarios sont analysés a des distances de séparation du récepteur de 60 m, 80
m et 100 m, en supposant que les signaux se désintegrent apres 64 m tel que rapporté
dans [31] et remarqué dans les mesures collectées. Apres avoir recueilli les ensembles
de mesure pour chaque scénario, on peut penser a deux fagons pour estimer la posi-
tion d'un émetteur en utilisant les RNA.

La premiere conception, illustrée dans la figure 7.4, permet a chaque récepteur
de localiser séparément en utilisant son propre RNA avec sept parametres d’entrée
correspondant a chaque empreinte respective ou signal recu. En connaissant a prior:
la carte du tunnel et la position de chaque récepteur, on peut faire la moyenne des
deux distances et estimer la position finale de chaque récepteur. Le deuxieme type
est fournit de meilleurs résultats de I'estimation et est appelé "technique de localisa-
tion coopérative” et utilise les sous-empreintes recueillies des deux récepteurs et les
concatene pour former des empreintes spatialement diverses, qui sont le double de la
taille de 'empreinte digitale originale. En d’autres termes, la concaténation de deux

ensembles, S et S¥2 résulte en un ensemble d’empreintes représenté par:

S=A{F, P, By, . Fn} = {(f1, 1), (fo, £2), (F5s f3)s oo (fims f) - (B.1)
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Comme le montre la figure 7.5, la diversité spatiale R, est exploitée en utilisant un
seul RNA formé avec les empreintes de longueurs de chaine plus élevées. Les résultats
de la localisation en utilisant la diversité spatiale R, sont présentés pour les empreintes
d’apprentissage dans les figures 7.6, 7.7 et 7.8, tandis que les résultats des tests sont
présentés dans les figures 7.9, 7.10 et 7.11, a des distances de séparation du récepteur
de 60 m, 80 m et 100 m, respectivement. L’estimation finale obtenue des précisions
pour les techniques d’empreintes spatialement diverses R, apres optimisation de leurs
RNA pour un cott faible d’acquisition des empreintes comme discuté plus tard dans
la section B.5 p. xxii, sont résumées dans le tableau C.1 & 77 cm et 90 cm pour 90%

des données d’apprentissage et de test, respectivement.

B.2 Localisation en exploitant la diversité tem-

porelle

La localisation utilisant la diversité spatiale R, a été efficace dans les régions qui
sont couvertes par plus d’un seul point d’acces. D’une part, il manque a la solution
une technique efficace qui puisse garantir la méme précision lors de la perte de cou-
verture du deuxieme récepteur Ry. D’autre part, 'augmentation de la précision dans
le cadre de la diversité spatiale nécessite seulement 1’ajout de plus d'un point d’acces,
ce qui n’est ni faisable ni pratique dans les tunnels étroits et confinés.

La recherche pour une technique complémentaire basée sur les empreintes, qui fait
usage de la mobilité limité des mineurs sous terre, a conduit a la formulation de la
localisation basée sur les empreintes exploitant la diversité temporelle. La localisa-
tion exploitant la diversité temporelle est le second chapitre des réalisations et elle est
expliquée en détail dans la publication présente au chapitre 8 et dans les procédures

de la section 12.3.2 p. 147.
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Ce travail présente une technique basée sur les empreintes qui enregistre les sig-
natures (c’est-a-dire, ensembles de 7 parametres) jusqu’a un certain niveau [ de
mémoire. Par exemple, une empreinte digitale spatialement diverse R, a la méme
longueur d’empreinte digitale qu'une empreinte digitale temporelle extraite avec le
niveau mémoire [ = 2. Toutefois, celle-ci est obtenue a 'aide d’un seul récepteur
en présence de la capacité d’enregistrement de la mémoire qui a incorporé la sous-
empreinte digitale précédente du mineur, au moment ¢_; et I’a concaténée a une autre
sous-empreinte digitale au moment ty. En d’autres termes, une empreinte digitale

temporelle

I = (fiugs fi s Fi g fi ) (B.2)

est la concaténation des sous-empreintes mesurées dans des intervalles de temps courts
en déplagant vers une destination a étre estimée a X. [ étant le nombre de sous-
empreintes concaténées ou ce que nous appelons le niveau de la mémoire, on définit

la longueur d'une empreinte digitale temporelle Ly ou:
Ly="171. (B.3)

La localisation exploitant uniquement la diversité temporelle, en présence dun récepteur,
est étudiée pour [ = 1, 2, 3, 4 et 5 (c’est-a-dire, RNA (1,0), RNA (2,0), RNA (3,0),
RNA (4,0) et RNA (5,0)), apres quoi aucun gain significatif n’est observé.

Pour illustrer davantage 'extraction des empreintes temporelles a travers un ex-
emple a [ = 2, considérons la figure 8.5. Pour une position a ty, cinq chemin-
empreintes peuvent étre extraits, dans la phase hors ligne, et ils représentent des
chaines d’empreintes qui combinent une signature de la position précédente extraite
du CIR a t_; comme indiqué dans le tableau 8.1. Un autre exemple pour [ = 3

est illustré en détail dans figure 12.7 ot un mineur peut avoir jusqu’a 25 chemins-
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empreintes temporellement diverses pour une seule position. Le nombre de chemin-
empreintes jnqe qui peut étre obtenu pour une position donnée est limité par le

nombre supérieur de chemin-empreintes Ny, :
Jmaz < pr = 5(l71)' (B4>

Tous les chemin-empreintes possibles sont recueillis pour toutes les positions d’intérét
tout en respectant les limites des tunnels confinés. L’ensemble total des empreintes
temporelles est désigné par S = {S1,...,S;,...,Sn} et il correspond a toutes les
distances D = {dy,...,d;,...,dn}. La puissance de cette technique réside dans sa
capacité a augmenter de facon exponentielle le nombre de chemin-empreintes dans
I’ensemble d’apprentissage, en utilisant uniquement un seul récepteur, sans avoir be-
soin de mesures supplémentaires. Toutefois, cela se fait au prix d’'une augmentation
du nombre d’entrées et le nombre de neurones pour les RNA d’apprentissage.

Les résultats de la localisation en utilisant la diversité temporelle sont présentés
pour les empreintes d’apprentissage dans les figures 8.9 et 8.10 pour les empreintes
d’apprentissage et de test, respectivement. Les précisions définitives d’estimation rap-
portées pour toutes les techniques basées dur les empreintes temporellement diverses
ont montré des gains de haute précision avec seulement 50 cm d’erreurs d’estimation
pour 90% des empreintes a | = 4 et [ = 5. Un apercu complet des résultats peut étre

consulté a la section 8.4.2 p. 75 et dans les tableaux C.1 ou 9.1.
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B.3 Localisation exploitant la diversité spatio - tem-

porelle

En comparant des empreintes R, spatialement et temporellement diverses, on
peut conclure que les deux sont uniques dans leur mise en ceuvre. Les premieres
exploitent la diversité spatiale des empreintes recueillies a partir de deux récepteurs
distincts alors que les dernieres utilisent des mesures d’empreintes dans des intervalles
de temps courts. Cela a conduit a la réalisation que la combinaison des deux concepts
ensemble dans une technique basée sur les empreintes spatio-temporelles stimulerait
les précisions de la localisation et ajouterait plus de robustesse au systeme de lo-
calisation. En effet, augmenter la précision a une valeur extréme peut ne pas étre
nécessaire pour le positionnement des mineurs en souterrain, mais on aura en échangé
une moindre complexité et un moindre cotit, comme discuté ci-apres dans la section
B.5 p. xxii. La localisation exploitant la diversité spatio-temporelle est le troisieme
chapitre de réalisations des résultats tres précis et satisfaisants ont été présentés dans
la publication du chapitre 9 et dans les procédures de la section 12.3.3 p. 151.

La localisation a mémoire assistée exploitant la diversité spatio-temporelle est le
résultat de la collaboration de deux récepteurs quand au moins I'un d’eux introduit
de la mémoire (par exemple, produisant des chemin-empreintes) [5]. Les niveaux de
mémoire des récepteurs Ry et Ry sont désignés par [; et [y, respectivement. Les em-
preintes sont extraites pour différents niveaux de mémoire et analysées completement
dans la section 9.3 p. 91. Un ensemble S; d’empreintes spatio-temporelles, pour une
distance d; donnée, est une concaténation de deux sous-ensembles d’empreintes S;™ et
SZR2 recueillies par les récepteurs Ry et R, respectivement, ou: SiRl = {ERl’l, FiR“Q, FiRl’?’, o Ffl Jme

1 2 jmaz A 3
and SZ.R2 = { Fl.R2’ , FZ-RQ’ , FiRQ’?’, - FZ»R“ } Le résultat est un ensemble d’empreintes
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spatio-temporelles, qui est concaténé, et définit pour [; et Iy comme suit:

S ={(BM B2, (B2, ), (B B),

(F;Rlyjmaz , FzRQ JJmaz ) } .

Un exemple peut étre tiré lors de la localisation d’un émetteur a une distance d; et a
un instant ¢, avec des niveaux de mémoire (I; = 2,1, = 1), qui conclut une empreinte
digitale spatio-temporelle F; = (F/™', F*?) ou

Ffv = (ff, (), (B.5)

ity t_1

Fh2 — (i (B.6)

i it

Pour (I = 2,1 = 1), Ry extrait une empreinte digitale E-R2 de longueur 7 (c’est-
a~dire, une empreinte sans mémoire) tandis que FiRl, collectée a partir de Ry, est
la concaténation de deux sous-ensembles d’empreintes enregistrées a partir de deux
instants to et t_; (c’est-a-dire, empreinte digitale & mémoire assistée de longueur 14).
En conséquence, une empreinte spatio-temporelle F; = (F®' F?) peut étre utilisée
dans une technique basée sur les empreintes qui combine trois CIRs (a savoir, 21
parametres) pour chaque position a l'intérieur de la topologie quasi-curviligne des
mines étroites. Le nombre d’entrées Ny, définit la conception du RNA et est
identifié par la longueur de I'empreinte spatio-temporelle qui dépend a la fois de [; et
{5 ou:

Ninputs == 7(11 + l2) (B7>

Le test des empreintes spatio-temporelles se fait en deux étapes. Dans un premier

temps, Ry est maintenu & un niveau de mémoire Iy = 1 (c’est-a-dire sans mémoire),
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tandis que le niveau de la mémoire de R; varie (par exemple, Iy = 2,3). Puis, dans
la deuxieme étape, les deux niveaux de mémoire sont augmentés simultanément. Les
résultats de la localisation utilisant la diversité spatio-temporelle sont présentés pour
I’apprentissage et le test des empreintes aux figures 9.6 et 9.7, respectivement. Il a
été prouvé, dans la section 9.4 p. 93, que les approches basées sur la mémoire assistée
coopérative qui combinent les diversités spatiales et temporelles pour les empreintes
sont plus performantes que les techniques solitaires méme lorsque la longueur des
empreintes est la méme comme les cas du RNA (3,0) (c’est-a-dire, en exploitant la
diversité temporelle seulement) et le RNA (2,1) (c’est-a-dire, en exploitant la diversité
spatio-temporelle). Les résultats de toutes les techniques spatio-temporelles étudiées
peuvent étre consultés dans le tableau 9.1, tandis que ceux résultant des RNA op-
timisés pour un cotut faible d’acquisition des empreints digitales, discutés plus tard

dans la section B.5 p. xxii, sont résumées dans le tableau C.1.

B.4 Localisation exploitant la diversité spatiale R,

et T,

La localisation exploitant des empreintes basées sur des systemes d’antennes dou-
bles, présents dans les systemes de communication entrée unique/multiple sortie mul-
tiple (SIMO/MIMO), est le quatrieme chapitre de réalisations et pousse les limites
de performance de la localisation basée sur la RIC. En utilisant les concepts de deux
antennes présentes dans les systémes de communications SIMO/MIMO, une nouvelle
technique de localisation basée sur les empreintes est introduite pour combiner des
sous-empreintes extraites des antennes émettrices doubles (7,) et recueillies sur une
ou plusieurs antennes de réception (R,). Le résultat est un ensemble d’empreintes

spatialement diverses sur les antennes 7}, et R,, qui estime avec précision la distance
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a I’émetteur. Le fondement de ce travail est présenté dans la publication du chapitre
11 et dans les procédures de section 12.3.4 p. 153.

Dans ce qui suit, nous établissons les bases d’une nouvelle technique établie par
des empreintes de type SIMO et MIMO extraites de deux antennes émettrices (c¢’est-
a~dire, Ty1 et T,o) en présence d'une antenne de réception (c’est-a-dire, R,1) et deux
antennes de réception (c’est a dire, R,; et R,o) respectivement. La diversité spatiale
est exploitée deux fois au niveau du récepteur et de ’émetteur, ou ’espacement des
antennes est 47> = 1 m le long de 1'axe des z ou §7* = 0.5 m le long de I'axe des y du
tunnel. D’un point de vue de mise en ceuvre, les antennes peuvent étre placées sur la
machinerie lourde ou construites dans les costumes des mineurs sur les épaules.

Les empreintes de type SIMO (c’est-a-dire, les empreintes recueillies a Ry a partir
des deux antennes 7)) exploitent la diversité spatiale T, du coté de 1'émetteur en
présence d'un seul récepteur sans la nécessité de la mémoire (cf. section 12 p. 133).
Une empreinte digitale de type SIMO est représentée comme suit:

Fz'SIMO = (fTZ17 szZ2)7 (Bg)

(2

ou fiT””1 et fZT *2 gsont les empreintes recueillies par R,;, a une position ¢, pour T, et
T2, respectivement. D’autre part, les empreintes de type MIMO, qui exploitent a
la fois les diversités spatiales T}, et R,, sont simulées en considérant deux antennes
de réception R, et R,o, étant celles de Ry et Ry, respectivement. Une empreinte

digitale de type MIMO peut étre exprimée comme suit:

FMIMO = {1, 1), (£ £1)} (B.9)

T. T, ’ . o11e . T T
fi*' et f; 7 représentent les empreintes recueillies par R,;, tandis que f,*" and f;**,

sont les empreintes recueillies par R,o, a une position i = D — i, pour T, et T,o,
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respectivement. L’estimation finale est la distance, le long de I'axe z, séparant R, et
le point médian de T, et T,5. au chapitre 11, la localisation utilisant a la fois les
diversités spatiales R, et T} est étudiée a 559” = 1 m le long de I'axe des x et a 551' =1
ou 0.5 m le long de I'axe des y du tunnel.

Les résultats de performance de I'exploitation des diversités spatiales T, et R,,
représentées sur la figure 11.8 et résumées dans le tableau C.1, dépassent ceux de
toutes les techniques développées basées sur les empreintes, discutées ci-dessus, en
termes de précision et d’exactitude. Leurs précisions tombent en dessous de 40 cm
pour 90% des données de test. En plus de cela, en exploitant la présence de systémes
d’antennes doubles dans l'apprentissage des empreintes, la robustesse du systeme
de localisation augmente et les RNA, s’ils sont bien congus, interpoleront avec des
précisions plus élevées méme en présence d’écarts de mesure comme abordé plus tard

dans la section B.5 p. xxii.

B.5 Techniques d’optimisation et de réduction des

couts

Dans la littérature, la plupart des techniques basées sur les empreintes sont cri-
tiquées en raison de leur besoin de campagnes de mesures cotiteuses pour la construc-
tion de la base de données d’apprentissage des RNA. Réduire la quantité de mesures
de données, d’autre part, peut risquer le processus de généralisation que les RNA
nécessitent pour interpoler et estimer dans les écarts de mesure invisibles tout au
long du processus d’apprentissage. Une conclusion tirée apres une tentative réussie, a
la fin du chapitre 10, pour récolter les avantages de la diversité, en échange d’un plus
faible cout d’acquisition des empreintes. Cependant, une étude plus poussée a été

réalisée pour défier toutes nos techniques de localisation développées qui utilisent les
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diversités spatiales, temporelles et spatio-temporelles en présence d’antennes de trans-
mission simples ou doubles, et mettre leurs RNA respectifs a I’épreuve de 1'utilisation
de moins de mesures de données en cachant progressivement jusqu’a un sixieme des
points de mesure de la grille. Les neurones obtenus, nécessaires pour chaque tech-
nique et qui ont été produits apres des simulations étendues des RNA, constituent
I’argument décisif de ce travail et ils sont entierement décrits dans la publication du
chapitre 11 et dans les procédures de la section 12.5 p. 159.

Les techniques de localisation ont été discutées a une taille de pas d’échantillonnage
S: = 1 m qui représente la taille du pas entre n’importe quels deux points de mesure
consécutifs hors ligne le long de I'axe x du tunnel. Cela signifie que les RNA ont été
formés en utilisant un taux d’échantillonnage hors ligne S, de 1 ensemble-empreinte
digitale par metre sans lacunes cohérentes dans la résolution de la grille. Dans ce qui
suit, on augmente S,, & 2 m, 3 m et jusqu'a 6 m (c’est-a~dire, réduire S, pour un
ensemble-empreinte digitale par S,), résultant en une fraction de la grille d’origine
en deux, trois et jusqu’a 6 sous-grilles, respectivement, en comptant pour la position
initiale de I'émetteur sur la grille.

Le défi de la diminution extréme du nombre d’empreintes vient de la capacité
d’alterner les conceptions des RNA en cherchant le nombre optimal de neurones
nécessaires pour chaque ensemble d’empreintes. Un tres grand nombre de neurones se
traduirait par une convergence profonde et des précisions over fitting qui riposteraient
et entraineraient des erreurs d’estimation tres élevées lors de la localisation dans des
écarts de mesure ou dans des sous-grilles omises dans le processus d’apprentissage
des RNA. De méme, peu de neurones peut amener le systeme a perdre beaucoup de
sa performance en essayant de généraliser le domaine de solution. Pour cette raison

précise, une simulation approfondie a été effectuée et plus de 14000 RNA ont été
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formés, chacun avec un nombre de neurones n,,, variant entre 1 et IV, tels que:

1<n, <N,=2N,;+1, (B.10)

ou NV; est le nombre d’entrées du RNA qui dépend de la technique de localisation
utilisée et des niveaux de mémoire. Un RNA successeur pour chaque technique est
celui qui obtient la meilleure performance, en termes de précision, lorsqu’il est testé
sur sa sous-grille formée et sur 25% de toutes les sous-grilles restantes & un certain
S:. Le nombre de neurones sélectionnés par chaque technique de localisation est
représenté sur la figure 12.10 et il peut étre utilisé comme une référence pour de fu-
tures études.

Etonnamment, les résultats de performance montrent des enregistrements tres
précis, méme lorsque les RNA sont formés en utilisant un sixieme des empreintes de
la grille permettant aux empreintes de type MIMO de surpasser le reste des techniques
de localisation en termes de robustesse envers la résolution de la grille. A S, = 6 m,
la localisation utilisant les diversités spatiales T, et R, atteint des résultats similaires
a la référence d’origine dans [31] & S, = 1 m. Les autres résultats d’optimisation des
couts pour toutes les techniques spatiales, temporelles et spatio-temporelles basées
sur les empreintes sont présentées dans la publication du chapitre 11 et dans les

procédures de la section 12.5.1 p. 160 en particulier dans les figures 12.13 et 12.14.



Chapitre C

Analyse des données et résultats

La fonction de densité cumulative (FDC) est utilisée tout au long de la dissertation
pour montrer et comparer les erreurs d’estimation de toutes les techniques de localisa-
tion développées en mettant ’accent sur leurs précisions de positionnements en metres
par rapport a la précision (c’est-a-dire, le pourcentage des empreintes traitées). La
granularité des erreurs d’estimation est completement montrée sur les figures 12.8,
12.9, 12.13, 12.14 et dans le tableau C.1, puis les résultats de performance sont
analysés ensemble dans les sections 12.4 p. 154 et 12.5.2 p. 162. Dans ce qui suit, les
techniques de positionnement basées sur les empreintes développées, qui constituent
les résultats de ce travail, sont comparées et analysées sur la base des facteurs im-

portants tels que l'exactitude, la précision, la complexité, la robustesse et le coit.

C.1 Exactitude et précision

La précision est I'une des plus importantes métriques de performance de n’importe
quel systeme de positionnement. Dans certaines applications telles que les systemes

de positionnement militaire, la précision est le facteur le plus important et il ne peut
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Table C.1 — Précisions & résolution multiple

Précision de positionnement
Technique ANN

1m 2m 3 m 4 m 5m 6m
ANN(1,0) (l42m> 144m 18 m 20im 212m 283 m

ANN, 2Tx1Rx 67 —05m  110m (143 m > 173 m 18m 226m 258 m
ANN, 2Tx1Rx 672 = 1m  085m (1.36m > 1.53m 1.66m 194m 197m
ANN(2,0) 115m (135m > 158 m  1.92m  1.97m 207 m

ANN(3,0) 0.53 m @ 158m 1.78m 1.94m 2.02m
ANN(4,0) 0.48 m @ 146m 1.72m 1.91m 193 m
ANN, 2TxiRx 67¢ —1m  1.05m  1.23m (133m > 15lm 16lm 207m
ANN(1,1) 0.91m 1.07m 115m 128m C1.39m D 145 m
ANN, 2Tx2Rx 6T —1m  0.64m  0.84m 1.07m 114m (135m) L5l m
ANN(2,2) 049m 095m 107m 1.22m 1.26m (14l m)D
ANN, 2Tx2Rx 672 —1m  043m  093m  110m Lldm 1.19m C132m)D

ANN, 2Tx2Rx §yTw =0.5m \,\0.38 m 08 m 098 m 1.12m 1.20m 1.28 m\:

__________________________________ -

pas étre échangé contre la complexité et le cott, alors que dans les systemes de po-
sitionnement commercial, un compromis entre la précision et le cotuit peut avoir lieu
pour maintenir le prix dans la rationalité économique. D’autre part, le facteur de
précision détermine si une précision donnée est rapportée fréquemment dans de mul-
tiples mesures. Pour ces raisons, nous avons choisi de comparer toutes les techniques
de localisation en utilisant un percentile de 90% obtenus a partir des FDC de chaque
technique de localisation.

Dans notre probleme de localisation, toutes les techniques de localisation abordées
peuvent étre considérées précises car leurs erreurs de positionnement tombent en
dessous de 1.5 metre. Toutefois, pour les besoins du raisonnement, la techniques la
plus précise de toutes est celle qui introduit les empreintes de type MIMO poussant
les limites de la précision a 38 cm pour 90% des données de test a S, = 1 m. Une
précision similaire a été rapportée pour le positionnement basé sur des empreintes
spatio-temporelles avec RNA (2,2) avec des erreurs d’estimation aussi basses que 49
cm pour le méme niveau de précision qui sont aussi proches des résultats de perfor-

mance des empreintes temporellement diverses avec RNA (3,0) et RNA (4,0).
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C.2 Complexité

La complexité du systeme de positionnement implique des facteurs tels que le
temps de calcul, la mémoire, la conception matérielle et logicielle, la consommation
d’énergie et I'implémentation. En tenant compte du temps de traitement du systeme,
les techniques de localisation basées sur les empreintes peuvent étre comparées sur
la base du nombre de neurones utilisés par les RNA a la fois a 'entrée et dans les
couches cachées. L’apprentissage des RNA avec des empreintes de grandes longueurs
de chaine est beaucoup plus lent que 'apprentissage des RNA avec quelques neurones
d’entrée. Cela rendrait une technique de mémoire assistée avec un RNA (3,0) et
une précision de 53 cm plus attractive qu'un RNA (4,0) qui rapporte une meilleure
précision de 48 cm, car celui-ci utilise 7 neurones d’entrée en plus. On peut aussi
comparer le nombre de neurones cachés des deux techniques comme montré sur la
figure 12.10 pour trouver qu’elles commencent toutes les deux avec 40 neurones a S,
=1m.

D’autre part, d'un point de vue implémentation, I’ajout de mémoire aux points
d’acces peut augmenter la complexité de la conception du systeme. Si la complexité
est la principale préoccupation, le positionnement basé sur des empreintes utilisant
les diversités spatiales T, et R, peut revenir a une complexité moindre que celle de
la localisation basée sur la mémoire, en termes d’acquisition des empreintes et les

techniques de reconnaissance de chemin.

C.3 Robustesse

La robustesse est la capacité de maintenir le systeme en stabilité une fois que les
informations recues sont corrompues ou inconnues. Pour cette raison, ce travail a

étudié l'effet d’avoir moins de mesures de données dans le processus d’apprentissage
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des RNA de toutes les techniques. Il est montré a S, = 6 m que les techniques de
positionnement basées sur les empreintes temporellement diverses n’ont pas réussi
a maintenir leurs résultats de haute précision a S, = 1 m, ce qui est du au fait
qu’a un S, supérieur, les sous-empreintes extraites des positions antérieures portent
moins d’informations sur la position actuelle de I’émetteur. On peut observer que
les empreintes spatio-temporelles et celles de type MIMO ont maintenu leurs ten-
dances de précision, meéme si un sixieme des mesures étaient absentes du processus

d’apprentissage.

C.4 Cout

Le cout d'un systeme de localisation dépend de la complexité de ses conceptions
matérielles et logicielles; il dépend également du facteur d’intégration et de temps.
Toutes les techniques de localisation basées sur les empreintes doivent subir des cam-
pagnes de mesure qui ajoutent des cotits supplémentaires a la facture d’'implémentation.
Plus les économies qu’une technique de localisation peut apporter sont meilleures, plus
elle devient attractive aux investisseurs et aux propriétaires d’entreprises. Le colit de
déploiement est minimum lors de I'utilisation des empreintes qui n’introduisent pas
de mémoire et n’utilisent pas des appareils MIMO compatibles avec des antennes
doubles, mais a ce faible cott des erreurs plus élevées et une faible robustesse pour la
résolution d’échantillonnage apparaissent. Cependant, il est prouvé ici que les cam-
pagnes de mesure peuvent étre réduites a moins de la moitié quand des techniques
basées sur les empreintes spatio-temporelles ou de type MIMO réussissent a maintenir

des résultats de haute performance.



Chapitre D

Conclusion

Pour conclure, si les diversités spatiales, temporelles ou spatio-temporelles sont
bien appliquées dans les algorithmes de localisation basés sur les empreintes, le
systeme de localisation gagnerait une haute précision et des précisions de position-
nement ponctuelles. L’utilisation des empreintes de I’antenne double, d’autre part, est
recommandée pour les appareils a capacité MIMO et est prouvée pour augmenter la
performance du systeme. D’autre part, la réduction de la résolution d’échantillonnage
des mesures hors ligne nécessite une conception minutieuse des RNA qui réussissent
a localiser les lacunes de mesure invisibles dans le processus d’apprentissage. Enfin,
I’échange de la précision ponctuelle pour une complexité et un cout plus faible est
étudié pour des fins d’implantation dans un effort pour réduire le temps nécessaire

pour les campagnes d’acquisition des empreintes.



Chapitre E

Recherche future

Les études futures analyseront la performance de toutes les techniques de local-
isation basées sur les empreintes dans différentes bandes de fréquences, telle que la
bande des ondes millimétriques (c’est-a-dire, la bande de 60 GHz). Les applications
de localisation a 60 GHz peuvent étre utiles dans les domaines de la robotique, les
réseaux de capteurs et les communications machine-vers-machine.

Puisque le systeme de localisation basé sur les RNA est centralisé (c’est-a-dire,
la connaissance de ’emplacement est du c6té du récepteur), un autre domaine de
recherche serait d’analyser la capacité de diffusion des poids et des biais du RNA
et permettre aux utilisateurs de s’auto-localiser dans les environs d’une couverture
réseau sans fil.

Enfin, dans un meilleur effort pour optimiser le systeme de localisation, une étude
peut étre réalisée pour recommander le nombre optimal de parametres dans chaque
empreinte digitale basée sur la RIC selon que la localisation exploite la diversité

spatiale, temporelle ou spatio-temporelle.
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Chapter 1

Introduction to the Thesis

This dissertation contains novel fingerprint-positioning techniques that are de-
signed for underground and confined areas such as gold mines. Being a Ph. D. can-
didate in the Institut National de la Recherche Scientifique — Energie Matériaux et
Télécommunications (INRS-EMT) and in collaboration with Telebec’s Underground
Communications Research Laboratory (LRTCS), we bring forward and analyze the
most recent findings and results of fingerprint-based positioning techniques in under-
ground gold mines. In the following, the scope of work is defined highlighting the

research problems, objectives and applied methodologies.

1.1 Research Problems

Localization of miners and/or their equipment in underground mines is an essential
need that guarantees basic safety measures in one of Earth’s most dangerous work
environments. However, modern localization techniques that perform accurately in
outdoor channels may not succeed if implemented in unstable indoor mediums such
as mines. So far, many research studies at LRTCS have revealed the effectiveness

of indoor positioning techniques driven by artificial intelligence that we consider, in
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our study, as good candidates for underground localization. One of the problems is
the absence of adaptation of such techniques to modern sophisticated communication
systems that use more than one access point cooperatively and exploit the presence of
single /multiple-input and multiple-output (SIMO/MIMO) antenna capabilities. The
value of this research comes from its ability to introduce cooperative fingerprinting
methods that exploit spatial and/or temporal diversities in the presence of single
and/or dual transmitter antennas such as in the case of modern, MIMO-capable
communication devices. As a result, all localization techniques that rely on single-
antenna fingerprinting may use our innovative approach to make use of space-time
diversity, which guarantees more accuracy, robustness and fingerprint-acquisitioning

cost reduction.

1.2 Objectives

The main objective of this research is to study underground wireless fingerprint
localization techniques in the realm of temporal and/or spatial diversities on one
hand, and in the presence of more than one transmitter and receiver antennas on
the other. By doing so, not only do we enhance positioning accuracies and precision
results, but we also introduce new fingerprinting methodologies that can be adapted
for underground localization systems. Another objective of this research is to re-
duce the cost of fingerprint-acquisition campaigns, which is the main criticism. By
designing fingerprinting-based techniques that tradeoff pinpoint accuracies for less
offline measurement data, we succeed in cutting down the cost to less than half while
maintaining accurate positioning results using our new, sophisticated fingerprinting

methodologies.
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1.3 Methodology

This work makes use of 480 data measurement points collected in an underground
mine at 2.4 GHz, in the presence of one receiver antenna, from which the channel im-
pulse responses (CIRs) are extracted. Localization using fingerprints extracted from
CIRs and artificial neural networks (ANNs) is then adapted as a paradigm to localize
the transmitter’s position. New fingerprints are then formed when exploiting space
and/or time diversities. For simplicity, underground tunnels are assumed to have a
two-dimensional structure with the z-axis taken along the tunnel’s length while the
y-axis is along its width. It should be noted that localization results are based on the
separation distance of the transmitter and receiver along the x-axis only, neglecting
the small variations along the y-axis which is less valuable in the narrow tunnels of
underground gold mines.

After discussing the basic localization technique in the presence of one receiver, we
simulate, using the same measurements, the presence of another receiver antenna to
study the effect of using the spatial diversity of the collected fingerprints. By having
two receivers collecting the transmitted signals, two fingerprints are extracted from
each receiver to form an R, spatial fingerprint for each given position. The results
of exploiting R, spatial diversity outperform the presence of one receiver only and
contribute in clarifying the ambiguity of the transmitter’s position in the presence of
junctions. R, spatial diversity alone may not be enhanced without the addition of
extra access points which is not feasible in the confinement of narrow-vein mines.

However, another dimension of research goes beyond spatial diversity to include
memory-type fingerprints exploiting time diversity. The study of using temporal
fingerprints is achieved by producing all possible path-fingerprints which lead to a
specific position, for a given memory depth, inside the tunnels. A path fingerprint

is a concatenation of all sub-fingerprints extracted along a specific way that leads
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to the final position to be estimated. ANNs are then trained on all possible paths
for a given memory level and used to estimate data not seen in the training phases.
It is observed that performance thresholds are improved when exploiting temporal
diversity with an increase in training complexity.

In order to further enhance the performance of fingerprint-positioning techniques,
a study was conducted to evaluate the performance of localization in the presence of
memory capabilities and collaboration between two receivers. When chains of tem-
poral sub-fingerprints collected from the first receiver are combined path wise with
another sub-fingerprints at the second receiver, spatio-temporal fingerprints are ob-
tained. As a result, the use of space-time diversity outperforms the performance of
previous approaches in terms of accuracy, precision and complexity.

Another axis of research investigates the capability of exploiting the presence of
dual antennas at the transmitter, for localization purposes, as in the case of modern
MIMO-capable user equipment (UE). By concatenating two sub-fingerprints at the
transmitter’s end separated by a given antenna spacing, we form SIMO-type finger-
prints if one receiver antenna is present and MIMO-type fingerprints in the presence
of two receiver antennas. SIMO/MIMO-type fingerprints are studied at antenna spac-
ing of 1 m along the z-axis, 0.5 m and 1 m along the y-axis.

After achieving very high accuracies that exceeded expectations, a search for op-
timized performance starts in an effort to reduce the cost overhead of fingerprint
acquisition campaigns. Each localization technique was put under the test of using
less data measurements, for ANNs’ training, by reducing the grid’s resolution down to
one sixth of its original size. ANNs were challenged to localize in measurement gaps
that are not seen in the training phases while trying to maintain positioning accura-
cies. After training more than 14,000 ANNs, the most adequate number of neurons

that fits each localization technique was identified based on the grid’s resolution.
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As expected, localization accuracies slightly drop as the grid’s resolution decreases,
however, the new and sophisticated fingerprinting techniques, such as MIMO-type
fingerprint positioning, succeed to achieve accurate positioning results even at lower

grid’s resolution.

1.4 Structure of the Thesis

The thesis is written using the article format and it’s divided into two parts, each
divided into multiple chapters.

In the first part, chapter 2 sheds light on the principles of localization and the
latest research done in indoor localization techniques. In chapter 3, the novel findings
of this work are briefly discussed including the novel fingerprint-positioning techniques
that exploit spatial and temporal diversities. In addition to that, section 3.5 p. 32
of the same chapter illustrates the methods used to further optimize the localization
system by cutting down its fingerprint-acquisition cost. The performance results are
then discussed in chapter 4. Results are followed by a conclusion in chapter 5, before
revealing the future research topics that are recommended as a continuity of this work
in chapter 6.

In part two, we include the publications and manuscripts that legitimize this work
and show the importance of its findings. Each chapter, being a conference article or
a journal paper, carries a new fingerprinting technique and is introduced to in the
beginning of chapter 3. A complete summarized description of this work is wrapped

up in the journal paper included in chapter 12.



Chapter 2

Literature review

Localization of people, vehicles and equipment is an essential need for the func-
tionality of various applications in outdoor and indoor environments. In some out-
door scenarios, localization may be used for the positioning of emergency call origins,
fraud users and for traffic management. Similarly, localization may be used for indoor
applications such as the cases of home automation, tracking of fire-fighters/miners,
intruder detection and patient monitoring.

In theory, several localization techniques may be used in order to estimate a trans-
mitter’s position. However, the importance of each technique may be measured in
terms of its ability to extract, at the receiver’s end, the main components of the re-
ceived signals and estimate the distance separating the transmitter and receiver in a
given channel. While wireless signals carry certain characteristics such as the power,
frequency, time of arrival and multipath components, they are not often exploited to-
gether in localization techniques. In the following, we summarize various localization
algorithms showing their effectiveness and performance after which we investigate

indoor positioning in underground gold mines.
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2.1 Localization using Triangulation Techniques

Triangulation algorithms, which are used in major localization applications, ex-
ploit at least three reference points or receivers in order to estimate the source of
wireless transmission. Receivers collect the transmitted signals where one or more
signals’ parameters are extracted prior to estimating the distance that separates the
transmitter from each of the reference points. Lateration techniques (i.e., localization
using triangulation) are methods that extract the received signal’s strength (RSS)
or time of arrival (ToA) whereas the angulation techniques use the received signals’
angle of arrival (AoA) for position estimation.

Localization using triangulation is based on collecting the wireless signals from
three or more reference points before estimating the transmitter’s position. While
three reference points are used in order to estimate a two-dimensional location, four
receivers are needed in order to estimate a three-dimensional point. In the follow-
ing we discuss the lateration techniques that use the RSS or AoA alone in order to

estimate a mobile’s position.

2.1.1 Localization using RSS

The laws of physics state that electromagnetic signals traversing through open
space or channels lose energy until they fade after a certain distance. In wireless
communication systems, we make use of these laws to estimate the distance traveled
by a wireless signal after analyzing its power at the receiver’s end while a priori
knowing the signals’ frequency and antenna gains. In a Free Space Path Loss (FSPL)

model, the received power of a transmitted signal is given by:

2
_BG A P,G,G,. (2.1)

P, =
4rd? (4md)?
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where P, is the received signal’s strength measured in dB, P, is the transmitted signal’s
strength, G; and G, are the receiver and transmitter antennas’ gains, respectively.
A is the wavelength derived from the transmitted signal’s central frequency and d is
the distance separating the transmitter and the receiver. However, indoor channels
are more complex because wireless transmitted signals undergo many reflections, re-
fractions and attenuations on their way to the receiver. In the case of underground
mines, humid rough surfaces and non line of sight (NLOS) scenarios challenge the
capability of deriving an accurate path loss model. Estimating the distance traveled

by a wireless signal follows a generic path loss model that can be written as follows:

P,_a(dB) = P,(dB) — P._y(dB) + G4(dB) + G,(dB). (2.2)

where P,_, is the received signal’s strength at a distance d away from the transmitter,
and P, is the transmitted signal’s strength. G; and G, are the gains of the antennas
at the transmitter and at the receiver, respectively. P,_; is the distance function and

it is of the following form:

P._4(dB) = P._4,(dB) + 10nlog(d/dy) + X. (2.3)

where P,_g4, is the loss measured for a distance dy which is taken as 1 meter, n is the
attenuation coefficient and X is a random variable depending on the nature of the

channel. By combining both equations we conclude the following;:

Pr_o(dB) = P,(dB) — P._y,(dB) — 10nlog(d/do) — X + G4(dB) + G.(dB). (2.4)

In a 2D scenario, three receivers may estimate a transmitter’s position by calculat-

ing three distances d;, d> and d3, using the RSS of each received signal, respectively.
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In the example of figure 2.1, the nodes A, B and C estimate a transmitter’s position
in the intersection region of three circles, each of radius dy4, dg and dg, respectively.

The performance of RSS-based localization techniques depends on the accuracy

Figure 2.1 — Localization using triangulation.

of its path loss model. In many scenarios, such as indoor channels and underground
mines, multipath components and small/large scale fading introduces distance esti-
mation errors due to the fact that RSS measurements may vary for the same position
especially in the presence of NLOS regions and interconnected tunnels. It is also
noted in [16] that positioning using RSS-based techniques may result in wider inter-
secting circles that lead to lower accuracy and certainty about the transmitter’s exact

position.

2.1.2 Localization using ToA

Localization using Time of Arrival (ToA) is a technique that exploits the propa-

gation time needed by wireless signals to reach a position to be estimated. Similar
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to localization using RSS, ToA-based localization techniques use three measurement
points, in a 2D scenario, to estimate the transmitter’s position. However, unlike
RSS-based techniques, localization using ToA requires time synchronization of the
reference points or the exchange of timing information using protocols such as two-

way ranging protocols [36], [19], [44]. A straightforward approach uses the geometric

TOA
AP2
R K‘
MT iti g
K‘ position d?/
. ’ i
Al 7’
‘ ’ ’

Figure 2.2 — Localization based on ToA.

method to calculate the distance from each receiver to the transmitter using the inter-
section region of three circles as presented earlier in RSS-based localization. Another
approach may introduce a non-linear cost function that helps tune the accuracy re-
sults by adding a reliability factor to each of the nodes. Assuming that a transmitter,
located at (xg, yo), transmits at time ¢y, the n base stations located at (xg, yo), (1,
Y1), ... (Tn, yn) receive that signal at times ¢y, to, ... t, and the cost function would

be:
F(x) =Y alfia) (2:5)

where «; is the reliability of each node and can be chosen depending on each topol-
ogy or measuring unit i, and f;(x) represents the delta between the straight-forward

distance calculated at the speed of light ¢ and the estimated position at (z;, y;) such
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that:

file) = c(ti —t) — /(z; — )% + (i — y)* (2.6)

The location is then determined by minimizing the cost function F(z). Two chal-
lenges face the deployment of TOA-based localization techniques in underground
mines. The first relies on the ability to synchronize all nodes using a time-based
protocol that can guarantee the estimation of high-resolution time delays. On the
other hand, the presence of NLOS and quasi-curvilinear tunnels adds more delays to
transmitted signals as a result of the numerous reflections that the signals encounter
along their way to the receiver. In other words, the time that the signals need to reach
a receiver does not necessarily represent the separation distance but it represents the
trajectory taken after bouncing through the walls inside the tunnels. All the above
adds ambiguity to the real position of the transmitter in indoor environments such

as underground mines.

2.1.3 Localization using TDoA

Another time-based triangulation technique uses the time difference of arrival
(TDoA) between the receivers in order to calculate the distance to a given transmitter.

Assume a signal is received at a receiver i such that:

xi(t) = s(t — d;) + ni(t), (2.7)

where s;(t) is the transmitted signal, d; and n; are the delay and noise at receiver i,

respectively. Similarly, the received signal can be written at another receiver j as:

(1) = s(t = d;) +ny(1). (2.8)
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The cross-correlation function of the two signals is the integration of their lag product

over a time period 71"

Ruva, (7) = % /0 vi(8);(t — 7). (2.9)

By maximizing in,xj, the TDoA t is obtained. Similarly, a third receiver is needed
in order to come up with another TDOA ¢ forming two hyperbolas that intersect
in the position to be estimated. The solution of the hyperbolic equation can be

conducted through nonlinear regression and it can also be solved using the Taylor-

series expansion as shown in [43].

B
-

Figure 2.3 — Localization based on TDoA.

2.1.4 Localization using AoA

Localization based on the angle of arrival (AoA) requires antennas that can sense
the received signals’ direction in the presence of two or more receivers. This can be
the case of directional antennas or arrays of antennas that are able to measure the
angles of arrival of wireless signals. As shown in figure 2.4, two receivers located at
positions A and B are able to spot a transmitter P in the intersection of two straight

lines with angles 8; and 65, respectively. The advantages of this technique rely in its
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Figure 2.4 — Localization based on AoA.

ability to localize a transmitter without the need of time synchronization. However,
AoA-based localization techniques are not suitable for indoor positioning because
wireless signals undergo multiple reflections before reaching the receiver. Similarly,
in underground mines, the confinement of narrow tunnels and the presence of NLOS

scenarios challenge the functionality of this technique.

2.2 Fingerprint-Based Localization

Fingerprint positioning techniques are backed up by measurement campaigns con-
ducted in the channel where localization may take place. First, the data is collected
throughout the area of interest then it is stored in a database for offline analysis. Sev-
eral matching algorithms may be used afterwards to compare the available data to the
desired output, which is the distance to the transmitter in the localization problems.
After the system forms a reliable estimation model, new fingerprints may be used to
test its ability to generalize and estimate new positions in the measurement’s grid.

In indoor localization, fingerprinting is often used due to the increased complexity
in channel estimation. For instance, the random number of reflections that a signal
encounters on its way to the receiver, at different measurement points in an indoor

channel, severely affects the main wireless waves’ characteristics such as the RSS,
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ToA, etc ... For that reason, taking multiple measurements and introducing sta-
tistical, probabilistic or artificially intelligent matching algorithms becomes a better
alternative to traditional fitting or model estimation techniques. Several matching
algorithms are found in the literature and may be used in the field of scene analysis
such as probabilistic methods, k-nearest-neighbor (kNN), artificial neural networks,
support vector machine (SVM), and smallest M-vertex polygon (SMP). While some
are used in different estimation problems, we shall discuss artificial neural networks

and explain why we recommend them for localization problems in underground mines.

2.3 Background of Localization in Underground

Mines

Localization in the presence of one receiver only was introduced in [31] as a novel
approach to localization and it is explained in Part II especially in sections 7.3 p. 50
and 12.2 p. 138. In the following, we will review the localization technique in [31]
that constitutes the groundwork of all developed spatial, temporal or spatio-temporal
fingerprint-positioning techniques discussed later in chapter 3.

In underground mines, positioning personnel and their equipment is an essential
need that guarantees basic security and safety protocols. However, localization in un-
derground mines is challenged by the special narrow-vein nature of its interconnecting
tunnels. For that reason, estimating a miner’s position using traditional localization
techniques discussed earlier in section 2.1 p. 9 may introduce major estimation errors
and can mislead the localization system about the real position of a user inside its
interconnected tunnels.

The challenges of underground positioning were discussed in multiple research
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projects at Telebec’s Underground Communications Research Laboratory (LRTCS),
a pioneering lab with research focus on underground communications (cf. surveys
[16] and [46]). After many pioneering works on wireless channel characterization and
modeling in underground mines at 2.4 GHz and 5.8 GHz bands [32], [2], then over
Ultra-wideband (UWB) [34], and most recently using the mmWave [26], LRTCS
succeeded in bringing forward an accurate positioning technique that combined the
essential signals’ characteristics in underground mines and the power of ANNs to

precisely localize in one of Earth’s most disruptive indoor channels.

2.3.1 Original Fingerprinting Technique

Fingerprint positioning is based on collecting information about wireless signals’
characteristics from measurement points, in the offline phase, then trying to match
the presence or absence of certain parameters upon the reception of new signals in
the online phase. In this work we illustrate the fundamentals of fingerprints extracted
from CIRs in underground mines.

When a signal is wirelessly transmitted in the confinement of underground tunnels,
it undergoes many reflections and refractions creating multipath components (i.e.,
multiple versions of the same signal with different variations/distortions of its original
characteristics). In theory, the transfer function of the channel can be mathematically
represented in the time and frequency domains as follows:

L(s,t)

D)
(s,t, f) = pi(s,1).e20(80) gmi2mfi(st), (2.10)
=1

t)
pi(s,1).e2%0 5(1 — 7,(s,1)). (2.11)
1

L(s,t)
s t, 7'

7
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where p;(s,t), 7;(s,t) and 6;(s,t) are random variables that represent the sequence
amplitude, time of arrival and the phase of arrival, respectively. L(s,t) is the total
number of multipath components defined at time ¢ and spatial position s. §(7 —
Ti(s,t)) represents the Dirac distribution and ¢ stands for the index of the multipath
component.

In the following we shall consider the channel to be time invariant, i.e. there is no
spatial variations between the transmitter and receiver due to dynamic activity such
as human or natural variations. Therefore, the simplified versions of both transfer

functions may be represented as follows:

L(s)
Z pi(s 639 e—I2mfTi(s) (2.12)

Z pi(8).€2%) §(1 — 7;(s)). (2.13)

where p;(s), 7;(s) and 6;(s) become a function of space only. Once a signal is received,
the channel impulse response is extracted from which we obtain the time impulse
response using Inverse Fast Fourier Transform (IFFT).

In 2006, real time measurements were taken from a gold mine named CANMET
in Val d’Or. The measurements were recorded at a central frequency of 2.4 GHz
and they were taken from the confinement of one tunnel shown in figure 7.1. The
measurements led to the collection of 480 CIRs from which a novel fingerprinting
technique was introduced for the first time in [31]. The fingerprinting technique
makes use of seven parameters (discussed below) extracted from the CIR of a given
position located at a distance d away from the transmitter. The parameters, stated
in section 7.2 p. 46, which guarantee uniqueness to the transmitter’s position as per

[31] are:
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The mean excess delay (7) that is the first moment of the power delay profile
measured at the first detectable signal that arrives at the receiver and is related
to the power of that profile. In other words it is related to the amplitudes of

the multipath components, and is given by:

Zk ai Tk

R (2.14)

7=
The root mean square (7,,s), that represents the square root of the second

central moment of the power delay profile and it is given by:
o=1/12— (7)° (2.15)

where:
7o 2T (2.16)
>k Ay,
The maximum excess delay (Ti,q,) Which is the time at which the signal drops
below X dB of the maximum power measured in the power delay profile. It can
be seen as the time that a signal stays above a given threshold based on the
highest received power in a profile. In the following, the value of 20 dB is taken

as a threshold.
The total power of the received signal (P) measured in dBm.

The number of multipath components (N) which form the entire received signal

measured at a 20 dB floor level.

The power of the first arrival (P;) which is the power of the first multipath

component.

The delay of the first path component (77) and it is used along with P, in order
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to distinguish between the LOS and NLOS scenarios.

2.3.2 Basic Artificial Neural Network Architecture

ANNSs are computational models that are capable of defining complex mathemat-
ical relationships between a set of inputs and a set of outputs. Each ANN is made up
of three important layers shown in figure 2.5. The input layer takes an input vector
(set of signature from the received signals) whose length defines the number of input
neurons to be used. Similarly, the output layer is made up of neurons that consti-
tute the observed output (i.e., distance to the transmitter) of the introduced input
vectors. In the middle lies the hidden layer that is made of a pre-defined number of
neurons, which connect the input and output neurons together through weights and
biases. The most important factor in ANNs’ design is the ability to define the number
of neurons needed in the hidden layer and the capability of training ANNs to make
sense of the input and output layers by carefully adjusting the weights and biases.

ANNSs that are capable of estimating non-linear regression functions are of two
types. The first model is the Multi-Layer Perceptron (MLP), which represents the
most prominent and well-researched class of ANNs in classification and implementa-
tion. The second type is the Radial Basis Function (RBF), which is also a multi-layer
network but it performs in a significantly different way. To be more specific, the ac-
tivation of a hidden layer is based on the dot product between the input and weight
vectors in MLP-type ANNs. However, in RBF-type models, hidden units are acti-
vated based on the distance between the input and prototype vectors [17]. The use of
feed-forward ANNs with back-propagation learning algorithms is proven to provide
high positioning accuracy in [31] and is adapted for all developed localization tech-
niques.

In CIR-based localization techniques, the input layer is made of one or more finger-
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Figure 2.5 — ANN'’s structure.

prints extracted from the CIRs while the output layer is the distance d that separates
the transmitter and the localizing unit. In the offline phase, ANNs are trained to
adjust their weights and biases in order to match the signals’ characteristics to the
desired output. However, in order to make sure that ANNs are capable of generalizing
the mathematical model and in an effort to avoid overfitting, ANNs are trained using
part of the measurement campaign while leaving fingerprints for testing purposes. In
the online phase that follows the training phase, ANNs would be ready to instanta-
neously estimate distances using new fingerprints extracted in real-time and fed to
ANNSs’ input layer.

Localization in the presence of one receiver only [31] uses fingerprints extracted
for each position in the tunnel, as shown in figures 7.1 and 7.2, along the x and

y axes with 1 m and 0.5 m separation distances, respectively. The fingerprint set
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S = {f1, f2, f3, -, [n} is formed and successfully matched to the corresponding set
of distances D = {dy,ds,ds,...,d,} using an ANN. For simplicity throughout this
work, the distance to the transmitter is considered along the z-axis only, neglecting
the small variations along the y-axis which are less significant in the confinement of
narrow tunnels. Also, since measurements vary for the same position in underground
mines, the collection of more than one fingerprint for a given distance adds more ro-
bustness to the system’s design (i.e., around four to six fingerprints along the y-axis

correspond to the same output distance represented by the x position).



Chapter 3

Smart Localization in
Underground Mines using

Fingerprinting and ANNSs

In this chapter we discuss the research’s findings in depth showing their func-
tional methods and fingerprinting techniques. This chapter constitutes the major
accomplishments of this work which were published in parts and then summed in one
journal manuscript which can also be reviewed in chapter 12.

As a background study, it is recommended to revise the effectiveness of fingerprint-
based localization using ANNs in [31], which was also reviewed before in section 2.3
p. 16. At first, we examine the methodology adapted for cooperative localization
in the presence of more than one receiver in section 3.1 p. 24 which contributes to
the fulfillment of the article given in chapter 7. Localization using temporal diversity
is then explained in section 3.2 p. 3.2 and its findings may be reviewed also in the
publication listed under chapter 8. Similarly, section 3.3 p. 28 explains the concepts

of localization exploiting spatio-temporal diversity which contribute to the published
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work in chapter 9.

The innovation of SIMO/MIMO-type fingerprints, which are examined in section
3.4 p. 31 and chapter 11, shows the techniques that can be used to enrich the fin-
gerprinting techniques in the presence of dual T, antennas. Finally, optimization
and cost reduction techniques are discussed in section 3.5 p. 32 and through the

publications of chapters 10, 11 and 12.

3.1 Localization Exploiting R, Spatial Diversity

Localization in underground mines using more than one access point was the first
step towards a cooperative system that uses more than one sub-fingerprint prior to
estimating a transmitter’s position. Not only did collaboration between access points
increase positioning accuracies, but also it removed the ambiguity about defining the
direction of transmission in cases where junctions are present in underground gal-
leries and tunnels. Localization exploiting R, spatial diversity is the first chapter of
accomplishments and is fully described throughout the publication present in chapter

7 and in the narration of section 12.3.1 p. 144.

Prior to the innovation of collaborative fingerprinting, only one fingerprint was
used by only one receiver to extract the distance to a transmitter without knowing
the exact direction of transmission. The objective of this chapter is to incorporate
more than one fingerprint (i.e., which will be called sub-fingerprint) from spatially
distant receivers prior to estimating the final position of transmission. Given the
special narrow topology of underground tunnels, two receivers would be enough to
cover each tunnel as shown in figure 7.2. The same measurements that were taken
from the first receiver Ry in [31] are used in the opposite direction to simulate the

presence of another receiver Ry as shown in figure 3.1.
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Exploiting R, spatial diversity of two receivers R; and R, in the region of

Figure 3.1 — Fingerprinting in the presence of two receivers.

shared coverage, results in two fingerprint sets S® = {fi, fo, f3, ..., fm} and ST =
{f1, 15, f4, ., f1.}, respectively. ANNs’ output set D = {d;,ds,ds, ..., d,, } represents
the distances to one of the receivers which is taken by default to be R;’s distance
to the transmitter. It should also be noted that multiple scenarios are analyzed at
receiver separation distances of 60 m, 80 m and 100 m, assuming that signals decay
after 64 m as reported in [31] and noticed in the collected measurements. After col-
lecting the measurement sets for each scenario, one can think of two ways to estimate
the position of a transmitter using ANNSs.

The first design, shown in figure 7.4, allows each receiver to separately localize
using its own ANN with seven input parameters corresponding to each respective fin-
gerprint or received signal. By aprior: knowing the map of the tunnel and the position
of each receiver, one can average both distances and estimate the final position of each
receiver. The second type is proven to provide better estimation results and is referred

to as the cooperative localization technique that uses the sub-fingerprints collected
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from both receivers and concatenates them to form spatially diverse fingerprints,
which are double the size of the original fingerprint. In other words, concatenating

both sets, ST and S results in a set of fingerprints represented by:

S = {F17F2;F37 7Fm} = {<f1;f{)7 (f2>fé)7 (f37fé)7 <oty (fm,frln)} (31)

As shown in figure 7.5, R, spatial diversity is exploited using one ANN trained
with fingerprints of higher chain lengths. The results of localization using R, spatial
diversity are shown for the training fingerprints in figures 7.6, 7.7 and 7.8 while the
testing results are shown in figures 7.9, 7.10 and 7.11, at receiver separation distances
of 60 m, 80 m and 100 m, respectively. The final reported estimation accuracies for R,
spatially diverse fingerprinting techniques, after having their ANNs optimized for low
fingerprint-acquisition cost as discussed later in section 3.5 p. 32, are summarized in

table 4.1 to be 77 cm and 90 cm for 90% of the training and testing data, respectively.

3.2 Localization Exploiting Temporal Diversity

Localization using R, spatial diversity was effective in regions that are covered by
more than one access point. On one hand, the solution lacked an effective technique
that could guarantee the same accuracy when losing coverage from the second receiver
Ry. On the other hand, increasing accuracy within the scope of spatial diversity only
requires the addition of more than one access point, which is neither feasible nor
practical in the confined narrow-shaped tunnels.

A search for a complementary fingerprinting technique, which made use of the limited
motion of miners underground, led to the foundation of fingerprint-based localization
exploiting temporal diversity. Localization exploiting temporal diversity is the second

chapter of accomplishments and it is explained in details throughout the publication
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given in chapter 8 and in the proceedings of section 12.3.2 p. 147.

This work introduces a fingerprinting technique that records the signatures (i.e.,
sets of 7 parameters) up to a certain memory level [. For example, an R, spatially
diverse fingerprint has the same fingerprint length as a temporal fingerprint extracted
with memory level | = 2. However, the latter is obtained using only one receiver in
the presence of memory-recording capability that incorporated the miner’s previous
sub-fingerprint, at time ¢_; and concatenated it to another sub-fingerprint at time t,.

In other words, a temporal fingerprint

1= (fugs Fiy Jiyos Fir ) (32)

is the concatenation of sub-fingerprints measured over short time instances while mov-
ing towards a destination to be estimated at d'°. [ being the number of concatenated
sub-fingerprints or what we refer to as memory level, defines the length of a temporal
fingerprint L; where:

Ly="17I. (3.3)

Localization exploiting temporal diversity only, in the presence of one receiver, is
studied for [ = 1, 2, 3, 4 and 5 (i.e., ANN(1,0), ANN(2,0), ANN(3,0), ANN(4,0) and
ANN(5,0)) after which no significant gain is observed.

To further illustrate temporal fingerprint extraction through an example at [ = 2,
consider figure 8.5. For one position at ty, five path-fingerprints may be extracted,
in the offline phase, and they represent fingerprint chains that combine one previous
position’s signature extracted from the CIR at ¢_; as stated in table 8.1. Another
example for [ = 3 is illustrated in details in figure 12.7 where a miner may have up to
25 temporally diverse path-fingerprints for one position only. The number of path-

fingerprints j... that may be obtained for a given position is limited by the upper
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number of path-fingerprints Ny, :
Jmaz < Ny, = 5071, (3.4)

All possible path-fingerprints are collected for all positions of interest while respecting
the boundaries of confined tunnels. The total set of temporal fingerprints is denoted
by S ={S1,...,5i,...,Sn} and it corresponds to all distances D = {dy,...,d;,...,dy,}.
The power of this technique is in its ability to exponentially increase the number of
path-fingerprints in the training set, using only one receiver, without the need of extra
measurements. However, this comes at the cost of increasing the number of inputs
and number of neurons for training ANNs.

The results of localization using temporal diversity are shown for the training fin-
gerprints in figures 8.9 and 8.10 for the training and testing fingerprints, respectively.
The final reported estimation accuracies for all temporally diverse fingerprinting tech-
niques showed high accuracy gains with only 50 cm estimation errors for 90% of the
fingerprints at [ = 4 and [ = 5. Full result overview may be revised in section 8.4.2

p. 75 and in tables 9.1 and 4.1.

3.3 Localization Exploiting Spatio-Temporal Di-
versity

By comparing R, spatially and temporally diverse fingerprints, one can conclude
that both are unique in their implementation. The former exploits spatial diversity
of the collected fingerprints from two distinct receivers while the latter makes use of
fingerprint measurements in short time instances. This led to the realization that

combining both concepts together in one spatio-temporal fingerprinting technique
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would boost location accuracies and add more robustness to the localization system.
Indeed, increasing accuracy to near pinpoint precision may not be needed for posi-
tioning miners underground but it will be traded off for lower complexity and cost, as
later discussed in section 3.5 p. 32. Localization exploiting spatio-temporal diversity
is the third chapter of accomplishments and it brought in very accurate and satisfying
results which were presented in the publication of chapter 9 and in the proceedings
of section 12.3.3 p. 151.

Cooperative memory-assisted localization exploiting spatio-temporal diversity is
a result of the collaboration of two receivers when at least one of them is introduc-
ing memory (i.e., producing path-fingerprints) [5]. The memory levels of receivers
Ry and R, are denoted by [; and [y, respectively. Fingerprints are extracted for
different memory levels and analyzed fully in section 9.3 p. 91. A spatio-temporal
fingerprint set S;, for a given distance d;, is a concatenation of two subset finger-
prints SZR1 and SZRZ collected from receivers R; and Ry, respectively, where: Sﬁl =
{ERl’l,ER“Q,ERl’?’,...,ERl’j’"”} and S* = {Fﬁ%l,ER%?,Ffﬁ,...,Ff?ﬂ'm}. The
result is a spatio-temporal fingerprint set, which is concatenated path-wise, and de-

fined for I, and Iy as follows:

S = { (B E, (B2 ), (F ),

Ry Jmax Ro Jmaz
(F;  Fi )

An example can be drawn when localizing a transmitter at a distance d; and time

instant t, with memory levels (I; = 2,1, = 1) which concludes a spatio-temporal

fingerprint Iy = (F™, F/*) where

Ffe = (i, (i), (3.5)

g _1
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Flz — (2, (3.6)

i it

For (I, = 2,1, = 1), R, extracts a fingerprint F/® of length 7 (i.e., memoryless
fingerprint) while FiRl, collected from Ry, is the concatenation of two sub-fingerprints
recorded from two time instances ¢y and t_; (i.e., memory-assisted fingerprint of
length 14). As a result, a spatio-temporal fingerprint F; = (F/*, F2) may be used
in a fingerprinting technique that combines 3 CIRs (i.e., 21 parameters) for each
position inside the quasi-curvilinear topology of narrow-vein mines. The number of
inputs Ni,pus defines the ANN’s design and is identified by the length of the spatio-

temporal fingerprint which is dependent on both /; and [y where:

Ninputs = 7(l1 + 12) (37)

Testing spatio-temproal fingerprints is done in two steps. At first, Ry is kept at a
memory level Iy =1 (i.e., without memory) while R;’s memory level varies (i.e., Iy =
2,3). Then, in the second step, both memory levels are increased simultaneously. The
results of localization using spatio-temporal diversity are shown for the training and
testing fingerprints in figures 9.6 and 9.7, respectively. It was proven, in section 9.4 p.
93, that memory-assisted cooperative approaches that combine spatial and temporal
diversities to the fingerprints perform better than the solitary techniques even when
the length of the fingerprints is the same such as the cases of ANN(3,0) (i.e., exploiting
temporal diversity only) and ANN(2,1) (i.e., exploiting spatio-temporal diversity). A
glance at the results of all studied spatio-temporal techniques may be reviewed in table
9.1, whereas those resulting from ANNs optimized for low fingerprint-acquisition cost,

discussed later in section 3.5 p. 32, are summarized in table 4.1.



CHAPTER 3. SMART LOCALIZATION IN UNDERGROUND MINES USING
FINGERPRINTING AND ANNS 31

3.4 Localization Exploiting R, and 7, Spatial Di-

versity

Localization exploiting fingerprints based on dual antenna systems, present in
single /multiple input multiple output (SIMO/MIMO) communication systems, is the
fourth chapter of accomplishments and it pushes the performance limits of CIR-based
localization to a new record. By utilizing the concepts of dual antennas present in
SIMO/MIMO-capable communication systems, a new fingerprint-based localization
technique is introduced to combine sub-fingerprints extracted from dual transmitter
antennas (7;) and collected at one or more receiver antenna (R,). The result is a
set of spatially diverse fingerprints at both 7, and R, antennas, which accurately
estimate the distance to the transmitter. The foundation of this work is presented in
the publication of chapter 11 and in the proceedings of section 12.3.4 p. 153.

In the following, we lay down the groundwork for a new fingerprinting technique
that uses SIMO and MIMO-type fingerprints extracted from two transmitter antennas
(i.e., Tp1 and Ty2) in the presence of one receiver antenna (i.e., R,1) and two receiver
antennas (i.e.,R,; and R,s) respectively. Spatial diversity is exploited twice at both
the receiver and transmitter where the antenna spacing is 67 = 1 m along the z-axis
or 4’ = 0.5 m along the y-axis of the tunnel. From an implementation point of
view, antennas may be placed on heavy machinery or built in the miners’ suits on
the shoulders.

SIMO-type fingerprints (i.e., fingerprints collected at R; from two T, antennas)
exploit T, spatial diversity at the transmitter’s end in the presence of one receiver
only without the need for memory (cf. chapter 12). A SIMO-type fingerprint is
represented as follows:

FPIMO = (F, £, (3.8)

()
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where flT *! and fZT *? are the fingerprints collected by R,1, at a position ¢, for 7,; and
T, respectively. On the other hand, MIMO-type fingerprints, which exploit both
T, and R, spatial diversities, are simulated by considering two receiver antennas R,
and R,o, being those of Ry and R,, respectively. A MIMO-type fingerprint may be

expressed as follows:

FiMIMO _ {(fiTﬂ7 fiTﬂ)v (fgzl, f?xZ)} . (3.9)

fl-TI1 and fiTIQ represent the fingerprints collected by R,;, whereas fg“ and fg“ are
the fingerprints collected by R,s, at a position ¢/ = D —i, for T,; and T, respectively.
The final estimation is the distance, along the x-axis, separating R, and the midpoint
of T,; and T,5. In chapter 11, localization using both R, and T}, spatial diversities is
studied at §Z* = 1 m along the x-axis and at (551 = 1 or 0.5 m along the y-axis of the
tunnel.

Performance results of exploiting T, and R, spatial diversities, shown in figure 11.8
and summarized in table 4.1, surpass those of all developed fingerprinting techniques,
discussed above, in terms of precision and accuracy. Their accuracies drop below 40
cm for 90% of the testing data. In addition to that, by exploiting the presence of
dual antenna systems in fingerprint formation, the localization system’s robustness

increases and ANNs would, if well designed, interpolate with higher accuracies even

in the presence of measurement gaps as later discussed in section 3.5 p. 32.

3.5 Optimization and Cost Reduction Techniques

In the literature, most fingerprint-based techniques are criticized because of their
need of expensive measurement campaigns that buildup the training database of

ANNs. Reducing the amount of data measurements, on the other hand, may risk
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the generalization process that ANNs need in order to interpolate and estimate in
measurement gaps not seen throughout the training process. A conclusion drawn
after a successful attempt, at the end of chapter 10, is to reap off diversity benefits
in exchange for lower fingerprint acquisition cost. However, a more advanced study
was performed to challenge all our developed localization techniques that use spatial,
temporal, spatio-temporal diversities in the presence of single or dual transmission
antennas, and put their respective ANNs to the test of using less data measurements
by gradually reducing the training set down to less than one sixth of the grid’s mea-
surement points. The obtained number of neurons needed for each technique, which
were produced after extensive ANNs simulations, are the clincher of this work and
they are fully described in the publication of chapter 11 and in the proceedings of
section 12.5 p. 159.

The localization techniques were discussed at sampling step-size S, = 1 m which
represents the step size between any two consecutive offline measurement points along
the z-axis of the tunnel. This means that ANNs were trained using offline sampling
rate S, of 1 fingerprint-set per meter without consistent gaps in the grid’s resolution.
In the following, we increase S, to 2 m, 3 m and up to 6 m (i.e., decrease S, to a
fingerprint set per S,) resulting in a split of the original grid into 2, 3 and up to 6
sub-grids, respectively, by counting for the transmitter’s initial position on the grid.

The challenge of extremely decreasing the number of fingerprints comes in the
ability to alternate ANNs’ designs by searching for the optimum number of neurons
needed for each fingerprint set. Too many neurons would result in deep convergence
and overfitting accuracies that would fire back and result in very high estimation
errors when localizing in measurement gaps or sub-grids omitted from the training
process of ANNs. Similarly, few neurons may cause the system to loose a lot of its

performance trying to generalize the solution domain. For that specific reason, an
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extensive simulation was performed and over 14,000 ANNs were trained, each with a

number of neuron n,, varying between 1 and N,, such that:

1 <n, <N, =2N;+1, (3.10)

where N; is the number of inputs of the ANN that depends on the used localization
technique and memory levels. A successor ANN for each technique is the one that
scores the best performance, in terms of accuracy, when tested on its trained sub-grid
and on 25% of all the remaining sub-grids at a certain S,. The number of selected
neurons per each localization technique is shown in figure 12.10 and it may be used
as a benchmark for future studies.

Surprisingly, the performance results show very accurate records even when ANNs
are trained using one sixth of the grid’s fingerprints allowing MIMO-type fingerprints
to overpass the rest of the localization techniques in terms of robustness to grid’s res-
olution. At S, = 6 m, localization using T, and R, spatial diversities attains similar
results to the original benchmark in [31] at S, = 1 m. The remaining results of cost
optimization for all spatial, temporal and spatio-temporal fingerprinting techniques
are presented in the publication of chapter 11 and in the proceedings of section 12.5.1

p- 160 especially in figures 12.13 and 12.14.



Chapter 4

Data Analysis and Findings

The Cumulative Density Function (CDF) is used throughout the dissertation to
show and compare the estimation errors of all developed localization techniques fo-
cusing on their positioning accuracies in meters versus precision (i.e., percentage of
treated fingerprints). The granularity of estimation errors is fully shown in figures
12.8, 12.9, 12.13, 12.14 and in table 4.1, then performance results are analyzed to-
gether in sections 12.4 p. 154 and 12.5.2 p. 162. In the following, the developed
fingerprint-positioning techniques, which constitute the findings of this work, are
compared and analyzed based on important factors such as their accuracy, precision,

complexity, robustness and cost.

4.1 Accuracy and Precision

Accuracy is one of the most important performance metrics of any positioning
system. In some applications such as in military positioning systems, accuracy is
the most important factor and it cannot be traded for complexity and cost, whereas
in commercial positioning systems, a tradeoff between accuracy and cost may take

place to keep the price within the economical reasonability. On the other hand, the
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Table 4.1 — Performance Results with Multiple Resolution

Grid Resolution Accuracy Results
ANN Technique

1m 2m 3 m 4 m 5m 6m
ANN(1,0) (l42m> 144m 18 m 20im 212m 283 m

ANN, 2Tx1Rx 67 —05m  110m (143 m > 173 m 18m 226m 258 m
ANN, 2Tx1Rx 672 = 1m  085m (1.36m > 1.53m 1.66m 194m 197m

ANN(2,0) 115m (135m > 158 m  1.92m  1.97m 207 m
ANN(3,0) 0.53 m @ 158m 1.78m 1.94m 2.02m
ANN(4,0) 0.48 m @ 146m 1.72m 1.91m 193 m
ANN, 2TxiRx 67¢ —1m  1.05m  1.23m (133m > 15lm 16lm 207m
ANN(1,1) 0.91m 1.07m 115m 128m C1.39m D 145 m
ANN, 2Tx2Rx 6T —1m  0.64m  0.84m 1.07m 114m (135m) L5l m
ANN(2,2) 049m 095m 107m 1.22m 1.26m (14l m)D

ANN, 2Tx2Rx 672 —1m  043m  093m  110m Lldm 1.19m C132m)D

AY
1

ANN, 2Tx2Rx §yTw =0.5m \,\0.38 m 08 m 098m 1.12m 1.20m 1.28m

__________________________________ -

precision factor defines if a given accuracy is reported frequently throughout multiple
measurements. For those reasons, we chose to compare all localization techniques
using 90% percentile obtained from the CDFs of each localization technique.

In our localization problem, all the discussed localization techniques may be con-
sidered accurate because their positioning errors drop below 1.5 meter. However,
for the sake of argument, the most accurate techniques among all is the one that
introduces MIMO-type fingerprints pushing the accuracy limits to 38 ecm for 90% of
the testing data at S, = 1 m. Similar accuracy was reported for spatio-temporal
fingerprint positioning with ANN(2,2) with estimation errors dropping as low as 49
cm for the same precision level which are also close to the performance results of

temporally-diverse fingerprints with ANN(3,0) and ANN(4,0).

4.2 Complexity

The complexity of the positioning system involves factors such as computation

time, memory, hardware and software design, energy consumption and implemen-
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tation. When taking into account the system’s processing time, fingerprint-based
localization techniques may be compared based on the number of neurons used by
ANNSs in both the input and hidden layers. Training ANNs with fingerprints of high
chain lengths is much slower than training ANNs with few input neurons. This would
make a memory-assistted technique with ANN(3,0) and accuracy of 53 cm more at-
tractive than ANN(4,0) which reports better accuracy of 48 c¢cm because the latter
uses 7 more input neurons. One can also compare both techniques’ number of hidden
neurons as shown in figure 12.10 to find that they both start off with 40 neurons at
Sy =1 m.

On the other hand, from an implementation point of view, adding memory to
access points may increase system design’s complexity. If complexity is the main con-
cern, fingerprint positioning using 7, and R, spatial diversities may come at lower
complexity than memory-based localization, in terms of fingerprint acquisition and

path recognition techniques.

4.3 Robustness

Robustness is the ability to keep the system stable once the received information
is corrupted or unknown. For that reason, this work studied the effect of having less
data measurements in the training process of ANNs of all techniques. It is shown at
S, = 6 m that temporally-diverse fingerprint-positioning techniques failed to maintain
their high accuracy results at S, = 1 m, which is tracked to the fact that at higher
S:, sub-fingerprints extracted from previous positions carry less information about
the current position of the transmitter. One can observe that spatio-temporal and
MIMO-type fingerprints maintained their accuracy trends even when one sixth of the

measurements were missing from the training process.
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4.4 Cost

The cost of a localization system depends on the complexity of its hardware and
software designs; it also depends on the integration factor and time compensation.
All fingerprint-based localization techniques have to undergo measurement campaigns
that add extra costs to the implementation bill. The more savings a localization
technique can bring in, the more attractive it appeals to investors and business owners.
Deployment cost is least when using fingerprints that do not introduce memory nor
use MIMO-capable devices with dual antennas, but at that low cost comes higher
errors and less robustness to sampling resolution. However, it is proven herein that
measurement, campaigns may be cut in less than half while MIMO-type or spatio-

temporal fingerprinting techniques succeed to maintain high performance results.



Chapter 5

Conclusion

To conclude, if spatial, temporal or spatio-temporal diversities are well applied
in fingerprint-based localization algorithms, the localization system would gain high
precision and pinpoint positioning accuracies. The use of dual antenna fingerprints, on
the other hand, is recommended for MIMO-capable devices and is proven to increase
the system’s performance. In addition to that, reducing the sampling resolution
of offline measurements requires careful design of ANNs that succeed to localize in
measurement, gaps not seen in the training process. Finally, trading off pinpoint
accuracy for lower complexity and cost is studied for implantation purposes in an

effort to reduce the time needed for fingerprint-acquisition campaigns.



Chapter 6

Future Research

Future studies will analyze the performance of all fingerprint-based localization
techniques in different frequency bands such as the milli-meter wave band (i.e., 60
GHz band). The applications of localization at 60 GHz may be useful in the fields of
robotics, sensor networks and machine-to-machine communications.

Since the ANN-based localization system is centralized (i.e., location awareness is
at the receiver’s end), another area of research would be to analyze the capability of
broadcasting ANN’s weights and biases and allowing users to self-localize themselves
in the vicinity of wireless coverage.

Finally, in a best effort to further optimize the localization system, a study may
be performed to recommend the optimum number of parameters in each CIR-based
fingerprint based on whether localization is exploiting spatial, temporal or spatio-

temporal diversities.
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Abstract

Localizing people in confined and underground areas is one of the topics under re-
search in mining labs and industries. The position of personnel and equipments in
areas such as mines is of high importance because it improves industrial safety and
security. Due to the special nature of underground environments, signals transmitted
in a mine gallery/tunnel suffer from severe multipath effects caused by reflection,
refraction, diffraction and collision with humid rough surfaces. In such cases and
in cases where the signals are blocked due to the non-line of sight (NLOS) regions,
traditional localization techniques based on the RSS, AOA and TOA/TDOA lead to
high position estimation errors. One of the proposed solutions to such challenging
situations is based on extracting channel impulse response (CIR) fingerprints with
reference to one wireless receiver and using an artificial neural network as a match-
ing algorithm to localize. In this article we study this approach in a multiple access
network where multiple access points are present. The diversity of the collected fin-
gerprints will allow us to create artificial neural networks that will work separately or
cooperatively using the same localization technique. The results will show that using
cooperative artificial intelligence in the presence of multiple signatures from differ-
ent reference points improves significantly the accuracy, precision, scalability and the
overall performance of the localization system.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, multiple access technique.
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7.1 Introduction

In the mining industry, knowing the position of miners and/or equipments is an
important safety measure that reduces risks and improves the security of that facility.
Like any indoor environment, wireless signals transmitted in mines are affected by
extreme multipath and non-line of sight (NLOS) conditions. Since mines have their
own environment that is made up of connected tunnels, localization using traditional
techniques is challenging and fails to provide accurate positioning. Most traditional
geo-location systems use the triangulation techniques and are mainly based on the
received signal strength (RSS), angle of arrival (AOA), time of arrival (TOA) or the
time-difference of arrival (TDOA). Other systems use scene-analysis or fingerprinting
techniques, and these include the probabilistic methods , k-nearest neighbours (kNN),
support vertex polygon (SMP), support vector machine (SVP), and neural networks.
Surveys on wireless indoor positioning techniques [27], [39] provide detailed discus-
sion of each approach. Underground localization using traditional systems would
result in an unstable behavior due to the fact that the received signals in an under-
ground environment undergo several reflections, refractions and diffractions that can
dramatically change the amplitude, time of arrival and phase at the receiver.

A novel approach to localization has been presented in [31] and it is based on
studying the CIR at a specific distance from the transmitter and registering its spec-
ifications as a fingerprint to be matched using the neural network technique. The
same concept was also used in [42] with less input parameters. The uniqueness of
the CIR at each position enhanced the accuracy and precision of localization in in-
door facilities. Unlike other approaches [10], [29], [23], [11] which mainly base their
fingerprints on the RSS with reference to one or more access points, this approach
uses several parameters extracted from one CIR as a fingerprint with reference to one

receiver.



CHAPTER 7. COOPERATIVE LOCALIZATION IN MINES USING FINGERPRINTING AND
NEURAL NETWORKS 46

One of the drawbacks of using the RSS as a fingerprint is the fact that the signal’s
strength vary with time at the same position [39], [10], and that the accuracy of
localization is mainly enhanced when the number of access points (APs) increases in
the same area [9].

In this article we will enrich the localization technique in [31] and open it to a
wide range of possibilities where the mobile user is capable of transmitting multiple
signals to different access points present in the network. Unlike the approach in [31]
which estimates the position based on one receiver, this work will consider the inputs
of more than one receiver before giving a position estimate. The received signatures
at several references form fingerprints and the position will be estimated using multi-
ple neural network techniques in a cooperative localization concept. In the following
section, the fingerprinting technique is discussed, and the neural network is presented
as the matching algorithm for localization. In section 7.3, we introduce the localiza-
tion system and its functionality in the areas containing only one receiver shedding
the light on major problems encountered. In section 7.4, several techniques to local-
ization are discussed in the presence of two receivers. The results are compared and

analyzed in section 7.5. Finally, the paper is closed by a conclusion in section 7.6.

7.2 Localization Using Fingerprinting and Neural

Networks

7.2.1 Fingerprinting technique

The fingerprinting technique is based on collecting information about specific
events and then matching the presence or absence of those events based on the
pre-acquired data. Fingerprinting techniques can be used in indoor localization

approaches in order to identify the channel at different parts of the covered area
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[11], [1], [20]. It is similar by analogy to the human fingerprints and it is used here
to ensure uniqueness and precision to the indoor channel behavior present in mines.
In this paper, the fingerprinting technique is used to identify a position based on
the CIR. This technique consists of two phases: the offline phase which is the pro-
cess of collecting several impulse responses at several distances from the receiver and
then storing the information in a database. The second phase of the fingerprinting
technique is the real-time phase where in online scenarios the CIR is extracted and
then compared to the saved database in order to match a specific position. In the
following, the same approach in [31] is discussed along with the different parameters
that form the fingerprint of any position. A signature or a fingerprint is a set of seven
parameters at a specific distance to the transmitter (discussed below).

Real-time measurement campaigns were carried out 70 meters underground in the
CANMET gold mine in Val d’Or city [31], [42]. The measurements in [31] were used
in this work and they were recorded at a central frequency of 2.4 GHz in order to
have a compatibility with WLAN systems. These measurements consist of 450 mea-
surements along a tunnel as shown in Fig. 7.1. The complex CIR of the wideband
measurements was obtained using the frequency channel sounding technique [31].
Once a signal is received, the channel impulse response is extracted and by applying
the inverse fast Fourier transform (IFFT), the time impulse response is obtained.
Using this impulse response, one can extract several parameters to form a specific
signature. Seven parameters for each CIR guarantee uniqueness to the position of

the transmitter. The parameters are as follows:

e The mean excess delay (7) that is the first moment of the power delay profile
measured at the first detectable signal that arrives at the receiver and is related

to the power of that profile. In other words it is related to the amplitudes of



CHAPTER 7. COOPERATIVE LOCALIZATION IN MINES USING FINGERPRINTING AND
NEURAL NETWORKS 48

e omdamd

CANMET o vsmse

Level 40m
1:1000

Figure 7.1 — Map of the tunnel.
the multipath components, and it is given by:
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e The root mean square (7,.,s), and it represents the square root of the second

central moment of the power delay profile and it is given by:

where:

2 2
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e The maximum excess delay (7,4,) Which is the time at which the signal drops
below X dB of the maximum power measured in the power delay profile. It can
be seen as the time that a signal stays above a given threshold based on the
highest received power in a profile. In the following, the value of 20 dB is taken

as a threshold.
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e The total power of the received signal (P) measured in dBm.

e The number of multipath components (N) which form the entire received signal

measured at a 20 dB floor level.

e The power of the first arrival (P;) which is the power of the first multipath

component.

e The delay of the first path component (71) and it is used along with P, in order

to distinguish between the LOS and NLOS scenarios.

7.2.2 Artificial neural network

Once the database is ready, the system would need a matching algorithm that can
study the spatial variation of the channel with respect to the distance, here comes the
importance of neural networks. Artificial neural networks (ANN) are computational
models able to perform complex computational operations such as classification, con-
trol optimization, and function approximation. The advantage of using a neural net-
work is its ability to find the mathematical relation between the set of signatures and
the estimated positions. A trained artificial neural network is suitable for real-time
applications because it is capable of matching the set of inputs (sets of signatures)
to a set of outputs (distances) forming a mathematical model that can estimate new
positions based on new signatures [17].

Several types of neural networks are found and can perform different techniques of
computations but the main interest among all is to minimize the error and precisely
map the set of inputs to the desired output. In the case of localization problems,
function approximation is based on non-linear regression modelling. Thus two types
of neural networks can be used which are the Multi-Layer Perceptron (MLP) net-

works and Radial Basis Function (RBF) networks. Both networks are feed forward
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and perform specific learning algorithms. These algorithms have an important role
in adjusting the weights and biases and in minimizing the estimation errors. The use
of an MLP-type feed forward neural network with a back-propagation learning algo-
rithm has been proven to give better estimation results in underground localization
systems [31], [42].

First, the ANN has to be trained on the set of data collected through measure-
ment campaigns. A neural network is mainly made up of input, output, and hidden
layers. Each layer contains several neurons that hold weights and biases. In the offline
phase, part of the collected data is used to modify the weights and biases leading to a
minimum mean square error. However, initializing the network with random weights
and biases would lead to different performances [17], and that is why some training
iterations are needed before reaching a desirable performance of the neural network.
Once a desired performance is reached, the network can be saved and used to estimate

trained and untrained data in real-time scenarios.

7.3 Localization Using One Receiver

Traditional techniques of localization mainly require two or more reference points
in order to precisely estimate the position of the mobile. Geo-location can also be
done in the presence of one receiver only using the fingerprinting and the neural
networks techniques, and it can give an accurate distance location of 2 meters for
90% and 80% of the trained and untrained patterns, respectively [31]. The neural
network used in this work is a feed forward network with a back propagation learning
algorithm. It consists of 7 inputs, one hidden layer, and one output. The inputs
correspond to the extracted parameters of the CIR while the output is the distance
(d) to the transmitter as shown in Fig. 7.2.

The use of one dimensional position estimation is convenient in mine galleries and
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Figure 7.2 — Localization using one fixed receiver. The CIR is extracted at different
distances to the transmitter with 1 meter step size.
is later discussed in the following section. The hidden layer consists of 10 neurons
and uses a differential tan-sigmoid transfer function unlike the output layer which
has a linear type transfer function. The network is trained at several distances away
from the transmitter and then the system may estimate the position of the mobile
unit (transmitter) based on the received signal. Localization using the CIR in the
presence of one receiver is the same technique used in [31] and it is used here as an
example of a non-cooperative technique'. It was shown that position estimation is
precise and that the error is less than 1.5 meters for 90% and 80% of trained and

untrained data, respectively.
Despite the fact that the results are promising, there are obstacles that prevent using
the same technique in underground environments such as mines due to the following

reasons:

e The need of a global localization system that can cover all the areas of interest.

e The existence of junctions and connected tunnels, these tunnels may result in

misleading information about the exact position of the mobile user or miner.

On the other hand, using cooperative artificial intelligence in a localization technique

is encouraging because it would lead to better estimation results. The estimated

1Unlike the system in [31] which uses both x and y coordinates to estimate the position, the
proposed system uses a one-dimension estimation concept (x position) neglecting the small variation
of y in mine galleries.
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distance to the transmitter in LOS might be precise using one reference point, but
the position of the miner can be in different directions depending on how much the
tunnels are interconnected. For these reasons, using a cooperative technique where
at least two receivers are available will introduce localization as a system applicable

in mines and would better estimate the position of the mobile user.

7.4 Cooperative Localization Using Two Receivers

or More

The main interest of deploying a wireless transmission system is to insure constant
communications between mobile units and base stations, and this can only be possible
if the system is able to provide coverage to the whole area of interest. Localization
in the area where signals from two aceess points intersect is the main interest of this
work. Unlike the first approach in Sec. 7.3 which used one signature to estimate the
distance, the following techniques will use several signatures of more than one receiver
(AP) in order to estimate the same distance taking one receiver as a reference point.
This concept will enrich the training set of data that will be fed to the neural network.
It is more like collecting multiple fingerprints of the same person which is in our case
the distance to the transmitter. If one fingerprint caused a wide error, the others
will be there to calibrate the location of the transmitter. Cooperative localization
in a 2D/3D topology might involve the participation of more than two access points
present in the area of interest. However due to the special one-dimensional topology
of mines’ galleries, two access points should be enough to provide wireless coverage
of the whole area in between.

As shown in Fig. 7.3, at each position of the transmitter, the two receivers

collect the transmitted signal extracting two different sets of parameters (CIRs). This
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Figure 7.3 — Localization using two signatures of two receivers in the area where two
signals intersect.

diversity technique opens a wide range of possibilities and helps the neural network
exploit a better position estimation model. A full database is saved containing 14
parameters (2 signatures) for each location which is the distance with respect to one

receiver. These sets of fingerprints can be treated by different localization techniques.

7.4.1 Localization based on separate neural networks

This technique uses two of the same neural network exploited in the case of one
receiver as in Sec. 7.3. The system receives the signature of receiver 1 and estimates
the distance to the transmitter, and uses the signature of receiver 2 to estimate
another distance to the transmitter. Two neural networks are needed as shown in
Fig. 7.4. In this case, the system has to know the exact location of both receivers
on a saved digital map of the connected straight lines (tunnels). The new estimated
position would be the midpoint of the two estimated locations; localization here is

based on averaging both estimation errors.

7.4.2 Localization based on one neural network

In this approach the system collects the signals from both receivers and forms a
set of two CIRs with a total of 14 parameters. The transmitter’s position is estimated

based on the distance to one of the receivers. As shown in Fig. 7.5, a super neural net-
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Figure 7.5 — Neural network based on multiple signatures.

work is created and trained to localize a mobile with reference to one of the receivers
(fixed points or anchors) based on two different signatures. This network trains 75%
of the collected data. Several trainings lead to several performances based on the

random initialization of the weights and biases. The best performance was achieved
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with 18 neurons in the hidden layer. In order to test the network’s performance,
the transmitter is simulated to move across the same path then the system uses the
-previously trained- neural network to localize the transmitter based on the two re-
ceived signals. Usually in most network implementations, access points are placed to
cover a wide region and the coverage fields intersect in a handoff region. The length
of this region varies from one configuration to another which results in a change in the
training set of data (inputs and outputs). In each scenario (i.e., separation distance

D in Fig. 7.3), a new neural network needs to be trained.

7.5 Results of Different Techniques

The performance of the presented localization techniques will be evaluated using
the CDF graph. The first parameter of the CDF is the estimation error which repre-
sents the difference between the estimated and the real position measured in meters.
The second parameter is the percentage of occurrences for such an estimation error
in the collected data. In the following, the coverage of a transmitter is assumed to be
68 meters?, the results are shown for several distances separating two receivers. Each
CDF graph shows four CDF plots of the position estimation errors using different
estimation techniques. The first two plots show the results of the localization tech-
nique based on receiver 1 and receiver 2. The third plot represents the position errors
when using the super neural network, and the last plot shows the results of using the
localization technique based on averaging the two separate estimation errors of both
receivers. CDF plots of the trained data for separation distances 60m, 80m and 100m
are shown in Figs. 7.6, 7.7 and 7.8, respectively.

In the trained set of data, the position error for one receiver estimation technique

2In real-time measurement scenarios, the transmitted signals fade after this distance resulting in
weak signatures.
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CDF of trained data at separation distance D=60m
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Figure 7.6 — CDF plots of the position estimation errors at a receivers’ separation distance
D=60m using several localization techniques.

CDF of trained data at separation distance D=80m
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Figure 7.7 — CDF plots of the position estimation errors at a receivers’ separation distance
D=80m using several localization techniques.
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CDF of trained data at separation distance D=100m
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Figure 7.8 — CDF plots of the position estimation errors at a receivers’ separation distance
D=100m using several localization techniques.

ranged between 1.2 and 1.5m for 90% of data. The accuracy of position estimation
using receiver 1 is slightly different from that of receiver 2 because for each receiver
there is a different neural network that trains the collected corresponding set of data.
However, it is obvious from the first two CDF plots that the results of using separate
neural networks are almost the same no matter if the estimation is based on receiver
1 or 2. On the other hand, the estimation based on averaging the two position errors
showed a better performance and it was recorded to be less than 1m for 90% of data.
For the super neural network, the performance was recorded to be less than 60 cm
for 90% of trained data at close separation distances. When the separation distance
increases, the handoff region becomes narrow resulting in a reduced amount of signa-
tures to be trained. This, in fact, has an effect on the training process of the neural
networks because training insufficient data results in finding an inaccurate model for
localization. The estimation based on averaging shows better accuracy than that of
the super neural network at a separation distance of 100m. The reason is that the

separate neural networks are trained using the data acquired throughout the whole
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tunnel while the super neural network is trained using the few signatures in the narrow
handoff region. However, due to the fact that the input of the super neural network
is a combination of two signatures at the same time, it may be noticed that the super
neural network manages to be more precise than the two separate neural networks
in most scenarios and it can almost provide the same position accuracy even at far
separation distances.

CDF plots of the untrained data for separation distances 60m, 80m and 100m are

shown in Figs. 7.9, 7.10 and 7.11, respectively. For the untrained set of signatures,

CDF of untrained data at separation distance D=60m
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Figure 7.9 — CDF plots of the position estimation errors at a receivers’ separation distance
D=60m using several localization techniques.

it should be noted that data was taken at specific distances between the receivers and
that none of the neural networks was trained on the signatures at those distances, i.e.
the average was based on two untrained separate estimations. As shown in Figs. 7.9,
7.10 and 7.11, the positioning error of the localization technique based on one receiver
varies between 1m and 2m for 90% of the untrained data. For the cooperative local-
ization based on averaging, the performance was again dependent on the accuracy of

the two neural networks. As shown in Figs. 7.6 and 7.9, the results of averaging were



CHAPTER 7. COOPERATIVE LOCALIZATION IN MINES USING FINGERPRINTING AND
NEURAL NETWORKS 59

CDF of untrained data at separation distance D=80m
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Figure 7.10 — CDF plots of the position estimation errors at a receivers’ separation
distance D=80m using several localization techniques.

CDF of untrained data at separation distance D=100m
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Figure 7.11 — CDF plots of the position estimation errors at a receivers’ separation
distance D=100m using several localization techniques.

precise for the trained data. However, this precision affected the estimation of the
untrained data. Using the super neural network, the positioning error was the same

for all distances and it gave an error of approximately 1m for 90% of untrained data.
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The use of multiple connected neural networks or one super neural network is suit-
able for indoor localization since both new cooperative localization schemes provide

high accuracy, precision and scalability at different separation distances.

7.6 Conclusion

This paper studied the results of using the channel impulse responses as finger-
prints for position estimation in the presence of different receivers. While other local-
ization techniques fail to be accurate in environments such as mines, this approach
is able to estimate the location of personnel and/or equipment with an error of less
than 1m for 90% of trained and untrained data. The use of cooperative neural intel-
ligence not only enriches the set of data to be trained but also improves the overall
performance of the system and introduces the cooperative localization concept. The
diversity of the captured signatures provides rich training sets for the neural networks
leading to a more accurate, precise, scalable and robust positioning system.

This system may be designed for remote or self positioning purposes and may
use any of the two techniques introduced in the paper. In the first technique, the
user collects several signatures from different receivers and uses separate neural net-
works to estimate the distances to the transmitter. Then, using a saved map that
shows the position of each receiver, the system will be able to average the position
of the transmitter. In the second technique, the different signatures are fed into a
super neural network to provide one position estimation with significantly increased
accuracy. This system may be implemented for other indoor environments such as
corridors or arcade type indoors. On the other hand, the system can use different

wireless technologies such as UWB, WLAN, or mobile radio.
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Abstract

In the mining industry, knowing the position of miners and/or equipments is an im-
portant safety measure that reduces risks and improves the security of that facility.
Being an indoor environment, wireless transmitted signals in underground narrow-
vein mines suffer multiple kinds of distortions due to extreme multipath and non-line
of sight (NLOS) conditions. One of the proposed solutions to accurate localization in
such challenging environments is based on extracting the channel impulse response
(CIR) of the received signal and using the fingerprinting technique combined with
cooperative artificial neural networks (ANNs). Such localization systems use the spa-
tial domain where the reference localizing units are implemented at different positions
away from the transmitter. In this article, we introduce a localization technique that
uses fingerprints successively recorded in time with in-built tracking as an alternative
method to localize. Unlike the spatial-domain technique where cooperative localiz-
ing units collect memoryless fingerprints from different locations, this technique uses
one localizing unit and is capable of estimating the position of a transmitter precisely
using its current and previous registered fingerprints in time. Localization using time-
domain fingerprinting (i.e., tracking) and ANNSs is introduced as a new method that
exploits time diversity and improves the accuracy, precision and scalability of the
positioning system.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, cooperative localization, tracking, time diversity.
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8.1 Introduction

One of the vast numbers of applications of wireless communication systems is
position estimation or localization. Outdoor localization systems such as the Global
Positioning System (GPS) are already in the market and are available to anyone pro-
viding an important service that can locate the user’s position precisely. Different
localization techniques base their estimations on one or more extracted parameters
out of the received signal such as the received signal strength (RSS), angle of arrival
(AOA), time of arrival (TOA) or the time-difference of arrival (TDOA). Other systems
use scene-analysis or fingerprinting techniques which include using ANNs as match-
ing algorithms. Once a transmitted signal is received at different locations in space,
the variation in the signals’ fingerprint, RSS, AOA, TOA, or TDOA is calculated
and the position of the transmitter is estimated accordingly. Nevertheless, indoor
localization is still a challenging topic due to the fact that the transmitted signals
indoor undergo several distortions caused by reflections, refractions, NLOS regions
and multipath effects. Unlike outdoor mediums where signals relatively travel almost
freely in open spaces, indoor environments such as underground mines stem from
more complicated scenarios that need to be modeled in order to estimate how the
signal would be received after reacting with the channel. Surveys on wireless indoor
positioning techniques [27], [39] provide multiple detailed discussions of different lo-
calization approaches.

A new approach to localization in tunnel-shaped underground narrow-vein mines
is presented in [31] and is based on extracting the CIRs of the received signal as
fingerprints of the transmitter’s positions, then using these fingerprints to localize
the source of transmission with one receiver or Access Point (AP). Several parame-
ters extracted from the CIR give this approach uniqueness unlike other approaches

[10], [29], [23], [11], [9] that mainly base their fingerprints on the RSS only. However,
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this technique was not able to cover the whole curve-shaped topology of underground
mines until the cooperative localization concept was introduced in [4]. Cooperative
localization using the CIR technique benefits from the presence of multiple receivers
which collect multiple fingerprints in tunnels before estimating the position of the
transmitter. Leading to increased accuracy and precision, the developed technique
in [4] uses different cooperative neural network techniques and exploits the spatial
diversity of the collected fingerprints. However, in the case where spatial diversity is
limited by one localizing unit, the system in [4] fails.

In this article, we will study localization in tunnel-shaped underground narrow-
vein mines using the time-domain fingerprint diversity (i.e., tracking) technique com-
bined with ANNs. This technique innovates the idea of integrating tracking within
the ANN-based fingerprint matching algorithm for localization. The time-domain fin-
gerprint is made up from a chain of CIRs which are collected for the same transmitter
along its path to the position which has to be estimated. ANNs are properly then
designed based on different chain length or memory levels then trained on all possible
path scenarios. Because of the tunnel-shaped topology of underground narrow-vein
mines which is quasi-curvilinear, information about the path that the transmitter
is following within the confines of its well-mapped galleries adds valuable input to
the ANNs and creates an accurate in-built tracking system. The following section
summarizes the concept of cooperative localization using fingerprinting and neural
networks in the spatial domain. In section 8.3, localization using tracking is intro-
duced along with the theoretical fingerprinting approach. The results of both the
spatial (i.e., cooperation) and time (i.e., tracking) diversity-based localization tech-
niques are compared in section 8.4. In section 8.5, the major complexities/challenges
that face the design are highlighted along with their proposed solutions. Finally,

conclusions are drawn out in section &.6.
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8.2 Localization using Fingerprinting and Neural

Networks

We will briefly describe below as a background reference a localization technique
that uses the spatial domain in order to localize a transmitter in a mine tunnel. The
system is capable of localizing a transmitter using two receivers that work separately
or cooperatively using different neural network techniques. A more detailed discussion
of these techniques can be found in [4]. But before doing so, we will study below

the underlying fingerprinting technique from which extension using multiple APs was

developed in [4].

8.2.1 Localization in the presence of one receiver

| CANMET 2]

By g Tevel 40m
i

Figure 8.1 — Map of the tunnel.

Due to the special nature of underground narrow-vein mines which are made of
quasi-curvilinear connected tunnels as shown in Fig. 8.1, traditional wireless local-
ization systems fail to provide accurate positioning services. This is mainly caused
by the distortions of the basic parameters used in localization systems due to the
multipath components and NLOS scenarios present in such environments. In such

cases, the fingerprinting technique becomes a very promising alternative in that it
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confers to each position a specific fingerprint that is then identified by the localizing
units using different matching algorithms. In this work, the fingerprinting technique
is used to identify a position based on the extracted CIRs at that position.

After conducting a real-time measurement campaign in the CANMET gold mine
in Val d’Or city [31], CIRs were collected. For each position across the tunnel in
Fig. 8.1, seven parameters were then extracted from the corresponding CIR forming
overall a set of fingerprints at different distances (d) away from the receiver as shown

in Fig. 8.2. These parameters are the mean excess delay (7), the root mean square

-

Estimated distance (d)

Figure 8.2 — Localization using one fixed receiver.

(Trms), the maximum excess delay (7,q.), the total power of the received signal (P),
the number of multipath components (N), the power of the first arrival (P;) and the
delay of the first path component (71). Estimating the position based on the finger-
prints is performed using ANNs.

Being able to perform complex computational operations such as classification,
control optimization, and function approximation, ANNs proved to be reliable com-
putational models that are widely used for different localization approaches [31], [4],
[12], [1], [20]. Every ANN needs to be trained using a set of training data which, in
our case, is made up of 75% of the collected fingerprints, leaving 25% of the data for
testing. The use of an MLP-type feed forward neural network with a back propagation
learning algorithm has been proven to give accurate estimation results in underground

localization studies [31], [4]. The simple form of the ANN used in localization in the
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presence of one receiver consists of 7 inputs, one hidden layer and one output that
is the distance to the transmitter. The hidden layer for this system consists of 10
neurons and it uses a differential tan-sigmoid transfer function, whereas the output
layer uses a linear-type transfer function. It was shown that position estimation using
one receiver only is precise and that the error is less than 1.5 meters for 90% and 80%
of training and non-training data, respectively [4]. Despite the promising accuracy of
estimating the distance to the transmitter, this technique cannot by itself guarantee

full coverage of the whole tunnel network of an underground mine.

8.2.2 Cooperative localization using two references in space

Precisely, a search for an upgraded technique that can serve as a complete lo-
calizing system in underground mines led to the idea of cooperative artificial neural
intelligence [4]. The concept of ANN-based cooperative localization using multiple
receivers is based on collecting multiple signatures from different receivers forming
one fingerprint that corresponds to a transmitter located between the reference end-
points as shown in Fig. 8.3. Because of the quasi-curvilinear topology of tunnels
in underground narrow-vein mines, two APs should be enough to provide wireless

coverage of the whole area in between in the corresponding tunnel section.

Estimated distance (d)

Figure 8.3 — Localization using two signatures of two receivers.

One of the two cooperative localization approaches, discussed in [4], is based on

estimating the position of the transmitter by using a single neural network as shown
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in Fig. 8.4. Two extracted signatures of the transmitter from two different receivers
are fed to this neural network. The latter, which has 14 inputs, is trained to local-
ize a transmitter by estimating the distance to one of the receivers. The separation
distance D affects the number of fingerprints that are collected given that each AP
(receiver) has a limited wireless coverage. For each separation distance D, a new neu-
ral network is created and trained. Unlike the first new cooperative approach in [4]

that uses separate neural networks, this approach is based on one position estimation

made by one neural network.

Estimated
= Distace

Inputs (Signaturc 1 + Signautre 2)

Figure 8.4 — Neural network based on multiple signatures.

8.3 Localization using Tracking in the Time Do-
main

The major localization systems use the space domain in order to estimate the
position of the transmitter. In other words, the reference points or APs that collect

the RSS, TOA, AOA, or fingerprints from the transmitted signal at different positions
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are fixed in space. In the previous sections, we defined localization using one reference
point and a cooperative localization technique using two references in space. Using
these systems, the position of the transmitter is estimated regardless of the CIR at its
previous positions. Tracking, as studied in the literature, is the algorithm of filtering
the trajectory that the mobile unit (i.e., transmitter) follows in order to improve
the localization accuracy. Most of these algorithms decrease the positioning error a
posteriori by post-processing the estimated results [47], [22], [41]. To the authors’
best knowledge, none of the proposed systems integrates a priori tracking within an
ANN-based fingerprint matching algorithm for localization. In this section, we will
introduce a localization system that properly exploits the time domain where the
CIRs of the previous positions play an important role in estimating the new position

within the ANN through in-built tracking.

8.3.1 Concept of time domain diversity with tracking

Consider a walking miner who is transmitting wireless signals across the tunnel.
One receiver is fixed and set on a time axis in a way that it starts localizing the miner
after saving the CIRs from its transmitter up to a certain memory level /. Using one
reference in time (I=1) is the same as using one reference in space; i.e., one CIR is
recorded and the position is estimated for each location separately using the local-
ization technique in sec. 8.2.1 [31] with one receiver only. However, the estimation
of the same position would be more accurate if the neural network considers two
signatures representing a motion pattern within the limits of the tunnel topology.

In order to estimate the miner’s position based on two references in time, a finger-
print should be formed from two CIRs. The first CIR is extracted for the position to
be estimated at ty while the other CIR is that for the previous position registered in

memory at t_;. The speed of motion plays an important role in defining all possible
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fingerprints a priori, but it does not vary too much between the two typical stationary
and pedestrian speeds in the considered underground mining application. Due to the
fact that a miner may come from different directions before reaching a current posi-
tion, the neural network is trained on chains of all possible fingerprint combinations
for each position in a tunnel. Localization using tracking with two memory levels
(I = 2) exploits temporal diversity in the same way as cooperative localization in [4]
does with spatial diversity using two references in space. The accuracy of the neural
network (as shown in the following section) increases when increasing the memory
level of the system. In this work, we study localization based on tracking using up to
five references in time.

Since a miner’s movements inside the tunnels of an underground narrow-vein
mine are predictable within the confines of its well-mapped galleries due its quasi-
curvilinear topology, we are able to add valuable information to our model by creating
chains of predictable fingerprint combinations to be fed to the neural network. We
assume that a miner may walk to a position from different directions in the tunnel-
shaped mine gallery taking into consideration the boundary conditions of the narrow
tunnel. Using a time domain motion model, the number of input levels (1) that needs
to be considered defines the combinatorial number of possible CIRs from which each
fingerprint may be extracted. In the simplest case where [ = 2, each fingerprint is
made up of 14 parameters extracted from two CIRs. The first CIR is that of the
position to be estimated at t;, while the other CIR may be one of the five possible
previous positions, as illustrated in Fig. 8.5 and listed in Tab. 8.1. Measurements at
either side of a position are included in the generated fingerprint; however, the output
of the ANN is selected along the longitude of the tunnel (i.e., the z dimension in Fig.
8.1), the other dimension (i.e., the y dimension in Fig. 8.1) along the narrow tunnel’s

width being much less significant as a coordinate for localization (but still extremely
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useful for its accuracy along the x-axis). The star represents the transmitter at

000

o0
ceo

Figure 8.5 — Possibilities of previous positions for [ = 2.

to while the filled circles are four possible previous locations at ¢_; other than the
current position (which is also among possible previous positions). For simplicity,
motion across diagonals is excluded although our technique can easily take it into

account.

Table 8.1 — Fingerprints of each location for [=2

Fingerprint Source of Parameters

1 CIR;, & CIRenter
CIR,, & CIR,,
CIR,, & CIRgpum
CIR,, & CIR.
CIR,, & CIR,ign

T = W DN

Once [ increases, more positions get involved in forming the paths (fingerprints)
to the current position of the transmitter. Fig. 8.6 shows the positions that may be
considered for creating a path to the current position for [ = 3. Once again, if the path
taken exceeds the boundary conditions of the mine gallery, this path is automatically
excluded from being listed as a possible fingerprint. The positions involved in forming
the path are highlighted in Fig. 8.6, while the maximum number of fingerprints (/Ny)
extracted for the miner’s position at level [ may be calculated using the following
formula:

Ny =507,
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Figure 8.6 — Possibilities of previous positions for [ = 3.

All possible fingerprints are gathered for all positions in the tunnel after specifying a

certain level [; then the signatures and paths are saved in a database.

8.3.2 ANN structure with time-domain diversity using track-

ing

The ANN used here is the same feed forward neural network with back propagation
learning used in sec. 8.2. The purpose of this choice is to properly compare the
results of tracking with the original localization system in [31] and its first extension
to spatial diversity (i.e., cooperation) in [4]. Here, the ANN is scalable up to the
number of input levels to be used. Since we extract 7 parameters from each CIR
signature, adding more signatures in time increases the number of inputs (Njppues) of
the neural network such that:

Ninputs =Tl

The memory level [ under study specifies the structure of the neural network used in
the positioning system. For [ = 2, the structure of the ANN is the same as in Fig.

8.4. On the other hand, the number of neurons (/N,,) used in the hidden layer is based



CHAPTER 8. RADIO-LOCALIZATION IN UNDERGROUND NARROW-VEIN MINES USING
NEURAL NETWORKS WITH IN-BUILT TRACKING AND TIME DIVERSITY 73

on the number of inputs of the neural network:

Ny = 2Ngputs + 1 = 141 + 1.

The output layer contains one neuron which represents the distance in meters to
the receiver at time t3. The combinatorial number of possible paths increases the
combinatorial number of possible chains of CIRs from which the possible fingerprints
or input parameters are extracted without necessarily requiring any increase in the
number of CIR measurements. As a matter of fact, while keeping the size of mea-
surement data unchanged, the combinatorial exponential increase in the size of the
training data (from where stems temporal diversity) overwhelmingly surpasses the
linear increase in the number of neurons required to match the corresponding in-
crease in the so-called memory level . Throughout the training process, 75% of the
collected data are classified to train the neural network while 25% are left in order to
test the performance of the neural network with data not seen in the training process.
Localization using tracking is analyzed up to level 5 (i.e., using as a fingerprint 35

input parameters extracted from 5 CIRs).

8.4 Evaluation Results

The performance of the presented localization techniques is evaluated using the
Cumulative Distribution Function (CDF) graph. In CDF graphs, the accuracy of the
system is compared to its precision. The z-axis of the CDF is the estimation error
which represents the difference between the estimated and the real position measured
in meters. The second parameter is the precision or the percentage of occurrences for

such an estimation error in the collected data.
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8.4.1 Results of cooperative localization in the spatial do-
main

For the spatial localization approaches, each graph in Fig. 8.7 or 8.8 shows
four CDF plots that correspond to the position estimation errors of the different
techniques used in sec. 8.2. The first two CDF plots represent the position errors
caused by the separate estimations (i.e., cf. sec. 8.2.1) of the first and second receivers,
respectively. The third plot represents the result of cooperative localization based on
separate estimations (i.e., averaging both estimation errors, cf. sec. 8.2.2). The
fourth CDF plot represents the position estimation error of the cooperative neural
network technique using one neural network (cf. sec. 8.2.2). At a separation distance
(D) of 80 m, the CDF plots of the training and non-training data are shown in Figs.

8.7 and 8.8, respectively.  Other plots for different separation distances (D) are
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Figure 8.7 — CDF plots of the position estimation errors for the training data at a
receivers’ separation distance D = 80 m using several localization techniques.

presented in [4]. The accuracy of position estimation using one of the receivers is

found to be around 1.2 and 1.5 m for 90% of the training data at different separation
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Figure 8.8 — CDF plots of the position estimation errors for the testing data at a receivers’
separation distance D = 80 m using several localization techniques.

distances (D). In the non-training set of data, the error varied between 1m and 2 m
for 90% of the cases. The accuracy of the cooperative localization method based on
averaging the two position errors was recorded to be around 1m and 1.5 m for 90% of
the training and testing data, respectively. For the cooperative localization method
using one neural network, the position estimation error was recorded to be less than

60 cm and 1m for the training and testing data, respectively.

8.4.2 Results of localization using tracking in the time do-

main

The CDF plot is used again in order to show the results of localization using track-
ing at different memory levels. The input level [ is the number of signatures a neural
network accepts including the fingerprint extracted from the CIR at time to. They are
shown for the training and testing data in Figs. 8.9 and 8.10, respectively. For level

two, localization using tracking with only one previous CIR shows an estimation error
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CDF of the training data using tracking
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Figure 8.9 — CDF plots for the training data using tracking.

of 1 and 1.25 meters for 90% of training and testing data, respectively. As the input
level increases, more paths get involved in the estimation of the current positions. As
[ increases, the accuracy and precision of the neural network are enhanced forming
a better estimation model of the motion principle and the variation of the CIR with
respect to distance. At level three, estimation errors of 0.75 and 0.8 meters were
recorded for 90% of training and testing samples, respectively. The performance was
again improved when adding another previous position to the modeling process, and
at level four, the estimation error decreased to 50 cm for 90% of training and testing
data. An error of little less than 50 cm was reported at level five clearly suggesting
saturation in performance at level 4 beyond which no significant gain is observed. At
this level, the input of the neural network is five times larger in size than that of a
neural network using one CIR and the number of neurons in the hidden layer is 71.
Both cooperative and tracking localization techniques provide high accuracy of
position estimation with high precision. The limitation in space, however, prevents

us from decreasing the position estimation errors with more than two APs in a narrow-
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CDF of the testing data using tracking
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Figure 8.10 — CDF plots for the testing data using tracking.

vein mine tunnel given its quasi-curvilinear topology. On the other hand, due to the
flexible scalability of localization using tracking, more inputs are introduced to the
neural network resulting in better localization accuracy. At D = 80 m, it appears
that using cooperative localization has almost the same estimation errors as that of
localization using tracking when [ = 3 and [ = 2 for the training and testing data,

respectively.

8.5 System Design: Complexity vs. Accuracy

The accuracy of the proposed techniques is high compared to simple localization
techniques because it uses the CIR as a fingerprint. The major challenge that faces
this approach is to extract the CIR at the receivers’ end. Being part of a wireless
network, each receiver would be capable of transmitting the extracted CIRs to a main
server that should handle the process of training the neural network using the separate

or cooperative techniques discussed in sections 8.2 and 8.3. The transmitting unit is
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supposed to be, in our case, a mini transmitter on the miner’s cap. Since such system
works using the fingerprinting technique, collecting multiple fingerprints in different
parts of the tunnels is another essential step that builds up the database. Instead
of taking measurements manually, collecting the fingerprints in real-time scenarios is
easier once the infrastructure is ready i.e. the miners are automatically transmitting
signals and the CIRs are collected at a computer server from the receivers.

Since the channel is dynamic, classifying the neural networks based on receivers’
locations and the time of day would be an interesting feature that may lead to better
estimation results. The variation of the channel due to human activity may also be
adjusted by implementing some fixed transmitters along the galleries for calibration
purposes.

Considering a system that uses tracking alone does not create a global localiza-
tion system in underground mines because it uses one localizing unit as in [31]. The
question arises as to whether we are capable of integrating the tracking system in a
cooperative neural network technique where two references in space localize using the
tracking algorithm and then a final estimation is drawn using one of the two cooper-
ative neural network topologies discussed in sec. 8.2. An ongoing study investigates
whether integrating the tracking technique at a given memory level [ in a cooperative
spatial localizing system (i.e., diversity both in space and time) would lead to higher
performances that could match those of tracking alone with higher memory levels [

(i.e., only time diversity).

8.6 Conclusion

This article presented a new localization approach that exploits time diversity
for radio-localization in tunnel-shaped underground narrow-vein mines. With an in-

built tracking algorithm, this technique uses ANNs to localize a transmitter based on
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fingerprints extracted from chains of CIRs recorded in time. The proposed system is
able to estimate the position of a wireless transmitter in narrow tunnels with high
accuracy and precision of 50 em for 90% of both training and testing data. Compared
to cooperative localization in the spatial domain, geo-location using tracking is more
accurate and precise with much more flexible scalability. The question of whether
this system may be integrated in a cooperative localization technique that exploits
spatial diversity is currently under investigation. Although this work was conducted
for an underground environment such as mines, localization using tracking may be
used in different indoor/outdoor environments. The proposed system may also use

different wireless technologies such as UWB, WLAN, or mobile radio.
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Abstract

Underground narrow-vein mines result in complex indoor scenarios which require so-
phisticated localization techniques to maintain basic security measures. While some
traditional localization systems use the triangulation techniques for outdoor channels,
fingerprint positioning techniques are mostly used in more complex indoor environ-
ments like mines. One of the techniques exploited in the quasi-curvilinear topology
of underground mines is the Channel Impulse Response (CIR) based fingerprint po-
sitioning combined with Artificial Neural Networks (ANNs). This article innovates a
CIR-based positioning technique within a cooperative memory-assisted approach that
exploits both the temporal (from different time instances) and spatial (from different
space positions) diversities of the collected fingerprints. Introducing memory-type
signatures in a cooperative localization technique within the spatial confinements of
the tunnel-shaped narrow-vein mines significantly increases the accuracy, precision
and robustness of the localization system. The cooperative memory-assisted tech-
nique is capable of localizing a transmitter with an accuracy of less than 25 cm 90%
of the time.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting technique, cooperative localization, tracking, spatial diversity, temporal

diversity.
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9.1 Introduction

Chile August 2010, the mine collapsed and many miners were trapped. It took the
rescue team 69 days to find the first miner, and 10 weeks to rescue the rest [33]. Lo-
calizing miners/equipments in underground and confined areas is not a feature added
for luxury, but an essential basis for the well-known principle of the mining industry,
"Safety First”. However, the special nature of narrow-vein mines’ topology which is
made of interconnected tunnels challenges any localization system expected to pre-
cisely estimate the location of miners underground. Like most wireless localization
systems, the distance to the transmitter is estimated based on the received signals’
characteristics after being affected by the channel. In underground narrow-vein
mines, wireless signals propagate within humid rough surfaces and non-line of sight
(NLOS) branching tunnels forming complex multipath components. The received
signals’ components such as the Received Signal‘s Strength (RSS), Angle of Arrival
(AOA), Time of Arrival (TOA) and Time Difference of Arrival (TDOA) are altered
once multipath reception takes place. And since most traditional localization sys-
tems use one or more of the mentioned parameters (i.e., RSS, AOA, etc ...) to
localize [10] [29] [23] [12] [9], they fail once deployed in underground narrow-vein
mines. Another challenge present in narrow-vein mines is the spatial confinement of
the interconnected quasi-curvilinear tunnels which prevents a 2D-meshed deployment
of localizing units or access points (APs) to further increase the accuracy and preci-
sion of underground geo-location.

A search for an alternative led to the innovation of a localization technique that
uses artificial neural networks (ANNs) and fingerprints collected from the channel’s
impulse responses (CIRs) [31]. The system accurately estimates the distance to a
transmitter using one receiver only (i.e., solitary localization) with an estimation error

of less than 2 meters for 90% of the collected measurements. Since wireless coverage
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requires more than one AP in the confinement of narrow-vein mines, the use of an-
other localizing unit introduces geolocation as a cooperative technique that exploits
the spatial diversity of the collected fingerprints. The cooperative memoryless local-
ization technique using two receivers later proposed in [4] reduces the location error
to less than 1m for 90% of the data making use of two spatially distinct fingerprints
to better estimate the user’s location. It also introduces two ANN structures that
exploit these two fingerprints separately or jointly to better estimate cooperatively

the position of the miner in underground narrow-vein mines.

The spatial confinement of the tunnel-shaped topology of narrow-vein mines fa-
cilitates the prediction of the patterns of motion. In other words, training ANNs on
different motion patterns collected at short time instances enriches the set of finger-
prints corresponding to the transmitter’s positions. In some localization techniques
[47] [22] [41], tracking is a process that follows estimating the position of the users
(i.e., post-processing the results). Few are the techniques that implement a prioiri
tracking within an ANN-based localization system. Enhancing the accuracy within
this spatial confinement is possible once the system exploits the temporal diversity of
the collected fingerprints over short periods of time, a concept proven more recently
to be right and promising in [6]. Using one localizing unit, the technique in [6] takes
advantage of the limited motion patterns (i.e., spatial confinement) to create a rich
database used for fingerprint positioning. The memory-assisted system in [6] targets
position accuracies of less than 40 cm for 90% of the collected fingerprints. Yet, the
localization system in [6] which exploits the temporal diversity of the collected fin-
gerprints uses one localization unit only, which means that it can be further enhanced
once introduced in a cooperative memory-assisted technique that exploits both the
spatial and temporal diversities of the signatures.

This article introduces a cooperative memory-assisted localization technique that
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exploits both the spatial and temporal diversities of the assembled signatures. The
power of a spatio-temporal fingerprint is in its ability to project the signal on two
spatially separated receivers with an additional projection in time (i.e., by introduc-
ing memory). ANNs are trained to localize all different scenarios of motion in a
cooperative localization technique that takes into account the signatures of two APs.
The next section highlights different CIR-based fingerprint positioning techniques
that use ANNs to localize. The cooperative memoryless (i.e., exploiting the spatial
diversity only) [4] and the memory-assisted (i.e., using the temporal diversity only)
[6] localization techniques are briefly summarized. In section 9.3, the cooperative
memory-assisted localization technique that exploits both the spatial and temporal
diversities is introduced. Simulation results are reported and discussed in section 9.4.

Conclusions are drawn out in section 9.5.

9.2 Localization in Mines Using CIR-based Fin-

gerprinting and ANNSs

The fingerprinting or scene analysis technique is used in scenarios where the chan-
nels cannot be easily modeled due to the severe distortion that signals encounter on
their way to the receiver. Fingerprint positioning is based on extracting some of the
parameters of the received signals (i.e., RSSs, AOAs, etc ...) at different distances
and saving them in a database. Different matching algorithms such as probabilistic
methods, k-nearest neighbour (kNN), support vector machine (SVM) or ANNs are
then used in real-time scenarios to localize [27] [39]. These algorithms try to match
the collected fingerprint to the saved measurements in order to estimate the distance
to the transmitter. In underground narrow-vein mines, localization based on RSS,

AOA, or TDOA is neither accurate nor precise [31] [42] [4]. Increasing the accuracy
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of position estimation in confined areas requires deploying more APs to overcome
the multipath components and the signals’ fluctuation effects. Another approach to
accurate positioning innovated in [31] uses seven parameters extracted from the CIR
of the received signal to form a fingerprint. The parameters are the mean excess delay
(7), the root mean square (7,,s), the maximum excess delay (7,,q.), the total power
of the received signal (P), the number of multipath components (N), the power of
the first arrival (P;) and the delay of the first path component (77). A fingerprint is
denoted by f = (7, Tvms, Tmaz, Py N, P1,71) and it corresponds to a distance d. Due
to the narrow quasi-curvilinear topology of underground tunnels and for simplicity,
the distance to the transmitter d is taken along the x-axis only neglecting the small
variation along the tunnels’ confined width (i.e., y-axis). It is also a way to ensure
that the localization system takes into account the fluctuations of wireless signals for
the same position (i.e. more than one fingerprint f may represent the same separation
distance d). A measurement campaign at a carrier frequency of 2.4 GHz was carried
out in CANMET mine in Val d’Or Canada where the fingerprints were extracted
along with their corresponding distances for 480 positions as illustrated in Fig. 9.1.
It should be noted that the distance between the consecutive measurement points

along the x-axis is one meter. Mapping the set of fingerprints S = {f1, f2, f3, -, fu}
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Figure 9.1 — Map of the underground tunnels.
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to the corresponding set of distances D = {di,ds,ds, ...,d,} is successfully achieved
using ANNs. The measurements conducted in [31] for the stationary positions along
the tunnel as shown in Fig. 9.1 are used to simulate memory-type fingerprints. For
more technical information about the experimental setup, please refer to [31].

ANNSs are defined as computational models capable of approximating a function.
They are capable of performing non linear regressions which make them suitable for
localization in harsh environments [31] [1] [20]. The power of ANNSs is that they are
relatively simpler than traditional estimation techniques such as Kalman filters espe-
cially when modeling a non-linear function which is, in our case, of order 7 (i.e., seven
parameters as inputs). An MLP feed-forward ANN with a back-propagation learning
algorithm is proven effective for underground geo-positioning [31] [42] [4] [6]. During
the learning phase, the neural network is given the training data that corresponds
to 75% of the collected measurements. Then, in the testing phase, ANNs are tested
using 25% of the fingerprints which are not seen in the training phase.

The solitary memoryless localization system used in [31] estimates the distance
to the transmitter instantaneously based on fingerprints extracted from the CIR of

the received wireless signals. As shown in Fig. 9.2, this technique accurately localizes

r o

Estimated distance (d)

Figure 9.2 — Solitary localization using one receiver.

based on the input of one localizing unit (i.e., one receiver or AP). A simple neural
network with 7 input neurons, one hidden layer provides the transmitter’s distance

with an approximate accuracy of less than 2 m for 90% and 80% of the training and
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testing data, respectively.

9.2.1 Cooperative memoryless localization using spatial di-

versity

A global localization system requires the participation of multiple APs in estimat-
ing the transmitter’s location within the quasi-curvilinear topology of underground
narrow-vein mines. However, only the two nearest APs found at either end of any
given section of a mine tunnel are needed to guarantee its wireless coverage. The
cooperative memoryless localization system in [4] exploits spatial diversity taking

advantage of the implemented APs to collect different fingerprints. As shown in

-

Estimated distance (d)

Figure 9.3 — Cooperative localization using two receivers.

Fig. 9.3, the use of two APs within the spatial confinement of the tunnels not only
enhances the accuracy of the estimated distance, but also provides correct position-
ing inside the quasi-curvilinear interconnected tunnels. In the cooperative approach,
the sets of fingerprints S™ = {f1, f2, f3, ..., fm} and ST2 = {f] fo. f4 ..., f1.} are
collected from receivers R; and R,, respectively. Two different ANN architectures
are presented in [4] and both accurately estimate the position of the transmit-

ter. Omne of the ANN designs is shown in Fig. 9.4 where the set of fingerprints
S = {F,F, Fs, ... F. } = {(f1, [1), (f2s 15), (f3, f5), ooy (fim, f1)} is the concatena-
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tion of both observations, S and S¥2. The output of the ANN is the estimated

distance to one of the transmitters D = {dy, ds,ds, ...,d,,}. The exploitation of the

Estimated
Distance

Tnputs (Signaturc 1 + Signautre 2)

Figure 9.4 — Neural network based on multiple signatures.

spatial diversity of the collected fingerprints introduced a cooperative version of the
CIR-based fingerprint positioning technique in [31] for underground geolocation and

hence significantly increased its accuracy, precision and reliability.

9.2.2 Solitary memory-assisted localization using temporal

diversity

The accuracy of the cooperative memoryless technique discussed in Sec. 9.2.1
may only be enhanced by increasing the number of APs which is not practical given
the spatial confinement of narrow-shaped tunnels. However, the narrow curvilinear
topology is an advantage because it facilitates the prediction of the user’s motion pat-
terns. The memory-assisted localization technique in [6] utilizes the narrow-shaped
topology to introduce an in-built tracking model that exploits the temporal diversity

of the recorded fingerprints. The path fingerprint f/ = ( Jivgs Jie_ s Jir_yeens fit_(l_1)>
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represents a concatenation of the fingerprints recorded in time while moving towards
a destination to be estimated (i.e., at a distance d;). More than one path can lead to
the same position to be estimated, i.e., more than one path fingerprint fij correspond
to the same distance d;. While [ represents the number of concatenated fingerprints
or the so called memory level in [6], j is simply an index number that counts the
number of possible tracks to a desired destination at a given memory level [. The
terms memory level [ and time depth are used interchangeably in the article and they
represent the number of concatenated memory-type sub-fingerprints that constitute
the temporal fingerprint for a given position at distance d; away from R;. The max-
imum number of path fingerprints j,,.. for a given position is limited by the upper
bound Ny, :

jmax < pr = 5(l_1)-
Since each fingerprint contains 7 parameters, the length of the temporal fingerprint
defines the number of inputs of the ANN and it is given by:

Ninputs =Tl

The design of the ANN depends on [ because the number of neurons in the input
layer is equal to the length of the path fingerprint Nj,pus. The number of neurons
in the hidden layer is N,, = 2N,pus + 1 for all architectures and the output is the

distance to the transmitter. Figure 9.5 illustrates a simple fingerprint allocation for

000

R
o) Yo

Figure 9.5 — Possibilities of previous positions for [ = 2.
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one position when [ = 2. The star represents the current position of a transmitter
located at a distance d; to be localized showing the previous possible positions !.
While respecting the spatial boundary limits of the tunnels, any previous position is
selected to create the potential path fingerprints. The length of the combinatorial
set of fingerprints for the same position is dependent on [ and the geometry of the
narrow tunnels. In this example, the combinatorial subset of possible fingerprints

collected from a transmitter located at d; (i.e., star position) within the total set

S ={S1,...,Si...,Sn} over all distances D is:
Si - {E17E27ES)E4,E5} .
where,
F;‘l = (f27f2)7
F’L'2 - (fi7fino'rth>7
F;;S = (fi?fisouth)’
‘F;,'4 = (f“ fiwest)7
FZLS = (f'“fieast)'

are all the possible path fingerprints reaching the star position when [ = 2. The
exponential increase in the number of fingerprints Ny due to the linear increase
of temporal memorization level | overwhelmingly enriches the information given to
ANNs about each position inside the tunnels from the same original set of data mea-
surements.

Speed plays a significant role in defining the sampling time interval that precedes

'Motion across the diagonals is excluded because it exponentially increases the combinatorial set
of path fingerprints without a significant gain.
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the collection of the memory-type fingerprints. In order to allow the same trained
ANN to accurately localize a transmitter regardless of its limited speed in the con-
finement of narrow-vein mines, the sampling time at which the sub-fingerprints are
collected should be adjusted accordingly. In other words, sampling time is set to allow
the extraction of sub-fingerprints measured at any two positions (separated by the
distance covered by the transmitter in motion at a velocity below or equal to a given
maximum speed) that is shorter than the grid resolution times the memory level or
time depth.

Introducing temporal diversity and in-built tracking to the CIR-based fingerprint-
ing technique in [6] outperforms the localization system in [4] in terms of accuracy,
precision and scalability within the narrow quasi-curvilinear topology of mine tunnels.
However, solitary localization using temporal diversity alone does not benefit from
the possible cooperation between multiple localizing units (having each an overlap-
ping radio footprint with their two nearest adjacent neighbors) required anyway for
proper coverage of the whole mine galleries and, additionally, it cannot resolve the
location ambiguity arising from the presence of tunnel junctions. On the other hand,
as shown in the following, the collaboration of memory-assisted localizing units (i.e.,
spatio-temporal diversity) with lower memory levels allows significant reduction of the
complexity encountered when using solitary memory-assisted localization performing

at higher time depths while offering better accuracy.

9.3 Cooperative Memory-Assisted Localization Ex-
ploiting Spatio-Temporal Diversities

Based on a combination of the two previous solutions, an even more intelligent

localizing system integrates the in-built tracking technique at a given memory level [
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in a cooperative spatial localizing system (i.e., spatio-temporal diversity). This leads
to higher performances that could match those of memory-assisted localization alone
at higher memory levels [ (i.e., only time diversity). Mixing both spatial and temporal
diversities is a technique that further enriches the information given to ANNs result-
ing in a better mapping of the limited motion patterns in narrow quasi-curvilinear
tunnels.

This work innovates a localization system that uses the memory capability (i.e.,
in-built tracking) cooperatively between two spatially-separated localizing units be-
fore estimating the position of the transmitter. Within the spatial confinement of the
tunnels and over short periods of time, the signatures recorded at consecutive time in-
stances and collected from two spatially-separated receivers guarantee less-fluctuating
spatio-temporal fingerprints. Unlike the system introduced in [6] which exploits the
temporal diversity of a solitary receiver, this approach creates chains of path finger-
prints from two nodes before training the ANNs. The scalability of the system allows
the ANNs to be trained to localize at different separation distances D and memory
levels I. The subset of path fingerprints S/ = {ERl’l, plz phs FiRl’j’"‘”} col-
lected from R; at a distance d; is properly combined path-wise with the other subset

Sl — {ER2’1, Flfe? phes FiRQ’jm“} gathered from R, at a distance dy = D — d;

1

to form the spatio-temporal group of path fingerprints:

S, = {<ER1,17ER271)’ (ER1,2’F;R272)’ (F/L'R1,3’F;R2,3>7 .

(F;Rl JJmaz , ER27jmaz ) } .

As discussed earlier in Sec. 9.2.2; the length of the temporal fingerprint is dependent
on the memory level [ of the solitary receiver where localization is taking place. If
we consider two spatially separated APs each collecting fingerprints at different time

depths, we may create different scenarios denoted by (ly, l2) corresponding to receivers
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(R1, Ry) respectively. For example, localizing a transmitter at a distance d; and time
instant to, with memory levels (I; = 2,ls = 1) is achieved by matching the measured

spatio-temporal fingerprint F; = (F™, F;®) where
Ri _ (¢R1 ¢R
B = (fF ),

F = (ff2).

7 Zto

For (I; = 2,1 = 1), Ry provides a fingerprint FiRQ of length 7 (i.e., memoryless fin-
gerprint) while the fingerprint F™ collected from receiver R; is the concatenation
of two fingerprints recorded at the time instances to and t_; (i.e., memory-assisted
fingerprint of length 14). Concatenating two fingerprints from two spatially separated
receivers where at least one is introducing memory creates a spatio-temporal finger-
print for a given position. The length of the spatio-temporal fingerprint defines again

the number of inputs N;pp.s of the ANN and it is dependent on both [/, and l; where:

Ninputs - 7(l1 + 12)

9.4 Performance Results

The results of the localization techniques are presented using the Cumulative Den-
sity Function (CDF). CDF plots show the accuracy of the positioning technique (i.e.,
position error in meters) for a given percentage of the treated data. As mentioned
earlier and shown in the following graphs, 75% of the collected fingerprints are trained
by the ANN whereas 25% are left for testing the generalization of the ANN of any
technique. These results are plotted in Figs. 9.6 and 9.7 and summarized in Tab.
9.1.

The performance results of the spatio-temporal fingerprint positioning technique
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are compared to the localization technique that uses either spatial or temporal di-
versity alone. The memory levels of receivers Ry and Ry are denoted by [; and [s,
respectively. If one of the receivers is not participating in the localization process
(i.e., solitary localization), its memory level is presented as [ = 0. On the other hand,
memoryless localizing units use one fingerprint to localize (i.e, [ = 1) without the need
of fingerprint concatenation. When the memory level is set to [ > 1, the localizing
unit would be concatenating fingerprints in short time instances before feeding them
to the ANN. The notation (ly,l) shows the different memory levels at which both
receivers are performing their fingerprint allocation. Both observations from R; and
Ry are concatenated again and fed to a cooperative ANN that estimates the position
of the transmitter.

Merging the temporal path fingerprints of two spatially different receivers and
feeding them as one concatenated spatio-temporal fingerprint to one ANN is a break-
through in the fingerprint positioning techniques (i.e., cooperative memory-assisted
technique). The results of spatio-temporal localization are compared to the tech-
niques discussed in 9.2 and presented in Figs. 9.6 and 9.7 for the training and testing
data, respectively. These results clearly show the increased accuracy of spatial and

temporal combination in the CIR-based localization approach.

Cooperative memory-assisted localization is a result of the collaboration of the
receivers when at least one of them is introducing memory (i.e., producing path fin-
gerprints). In the first cooperative memory-assisted approach, R, is kept at a memory
level I = 1 (i.e., without memory) while R;’s memory level varies (i.e., lo = 2,3).
In memory-assisted techniques, it is noticed that the cooperative approach that adds
spatial diversity to the fingerprints performs better than the solitary technique even

when the length of the fingerprints is the same. For example, solo memory-assisted
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Figure 9.6 — CDF of the training data for different localization techniques at memory
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localization at (I; = 3, [y = 0) is less accurate than cooperative memory-assisted
localization at (I; = 2, [y = 1) even though both path fingerprints are of length 21.
In addition to that, when (I; = 3, l; = 1), merging spatial and temporal information
further increases the location accuracy to values less than 40 cm surpassing the upper
limit of solitary memory-assisted localization when (I, =5, Iy = 0).

In the second cooperative memory-assisted approach, both receivers use in-built
tracking or memory to form their fingerprints. Surprisingly, a one step increase in
the memory level of Ry creates uniform spatio-temporal fingerprints where two ref-
erences in time are taken from two receivers in space. As shown in Figs. 9.6 and
9.7, location accuracy of the last curve drops to 20 cm and 25 em for 90% of the
training and testing data, respectively. It may be seen that the accuracy of a 2-by-2
spatio-temporal localization system [i.e., (I} = 2, ls = 2)] is double the accuracy of a

1-by-1 cooperative spatial system [i.e., (I = 1, lo = 1)].

Table 9.1 — Estimation errors of different localization techniques

LOcalizatiOIl TeChIlique With 90% PI‘eCiSiOIl Training Errors (m) Testing Errors (m)

Spatial localization using one receiver [31] 1.5 2
Cooperative spatial localization based on separate ANNs [4] 1 1
Cooperative spatial localization based on one super ANN [4] 0.6 1

(1 =2,12=0) 1 1.25
(I, =3, 1 =0) 0.75 0.8
Solo memory-assisted localization [6]
(i =4,12=0) 0.5 0.5
(li =5,12=0) <0.5 <0.5
(L1=212=1) 0.48 0.62
Cooperative memory-assisted localization (l1=38,l12=1) 0.38 0.43
(4 =2,1=2) 0.20 0.25

As shown by the results above, cooperative memory-assisted localization out-
performs other memoryless/memory-assisted localization techniques even at lower

memory levels or time depths. An optimum solution would uniformly exploit spatial-
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temporal (i.e., [; = Iy > 1) to overcome the spatial confinement of the environment
and significantly utilize the limited motion patterns inside the quasi-curvilinear tun-
nels. The spatio-temporal localization technique localizes with high accuracy, preci-

sion and scalability.

9.5 Conclusion

This article investigated the CIR-based localization techniques and innovated the
spatio-temporal fingerprint positioning technique that uses ANNs. The concept of
localization using the spatio-temporal diversity in underground narrow-vein mines is
satisfied when fingerprints are recorded at short time periods and collected from two
spatially separated receivers. This cooperative memory-assisted localization system
(i.e., 2-by-2) is able to attain higher accuracies at lower memory levels using ANNs.
The estimation error is reduced to 20 ecm and 25 cm for 90% of the training and testing
fingerprints, respectively. The proposed system is feasible given that its complexity

is still affordable, and that it could be integrated into different wireless technologies.
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Abstract

One of the main concerns in the mining industry is ensuring the safety and security
of miners and their equipment. Being aware of the real-time position of personnel
in such harsh environments within a special quasi-curvilinear topology is challenging
and requires a sophisticated localization system. While traditional triangulation tech-
niques fail to accurately localize in such indoor scenarios, new approaches that rely on
fingerprints extracted from the Channel Impulse Response (CIR) succeed to localize
with high accuracy using Artificial Neural Networks (ANNs) for fingerprint-location
matching. Signatures collected from different locations in space, at different instances
in time, are concatenated to form spatio-temporal fingerprints for improved localiza-
tion accuracy. In this paper, we overview these novel and very promising localization
techniques then investigate the impact of the spatial sampling grid’s resolution in
fingerprint collection on their accuracy in underground narrow-vein mines. We show
by simulations that the significant accuracy gains reaped from the new exploitation
of spatio-temporal diversity, if not needed in some applications, can be alternatively
traded for remarkable and extremely useful cost reductions in the fingerprint collec-
tion step.

Keywords. Indoor localization, channel impulse response, artificial neural network,

fingerprinting, cooperative localization, tracking, spatial diversity, temporal diversity.
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10.1 Introduction

Wireless localization systems are widespread in the modern world. While some
location-based services are used for entertainment, other services such as the Global
Positioning System (GPS) are becoming essential necessities for daily life applications.
On the other hand, positioning services are demanded by industries for enhanced se-
curity measures such as localizing miners underground. The importance of an under-
ground localization system reveals itself in incidents such as the one that happened
in Chile in 2010 where miners were trapped more than 69 days underground [33].
A localization system built in the tunnel-shaped topology of the narrow-vein mine
definitely simplifies the process of locating the miners and their equipment prior/after
any accident. So what makes it hard to deploy?

First, narrow-vein mines are made up of humid rough surfaces that create adverse
channel responses to wireless transmitted signals. Indeed, the geological nature of this
tough environment causes severe reflections, refractions and non line of sight (NLOS)
propagation, thereby making channel modeling and characterization more complex.
Therefore, traditional localization techniques fail to accurately estimate the position
of transmitters because many of these techniques would rely on conventional channel
parameters such as the Received Signal Strength (RSS), Angle of Arrival (AOA),
Time of Arrival (TOA) and/or Time Difference of Arrival (TDOA) [10] [29] [9].
Indeed, the tunnels in underground narrow-vein mines constitute a quasi-curvilinear
topology which is nearly 1D. Even the y-dimension across the tunnels’ width is less
significant since it ranges mostly between 1 to 3 meters. In this quasi-curvilinear
topology, using the AOA does not reveal the exact direction of arrival because of
the numerous reflections that take place in the confinement of the tunnels and their
curvatures. For similar reasons, the TOA does not reflect the shortest path to the

transmitter [31] [42]. Besides, in cases where junctions exist, estimating the dis-
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tance to the transmitter is not enough due to the NLOS propagation which makes
cooperative localization techniques more desirable.

The challenges summarized above elevate the complexity level of a localization
system expected to perform effectively in the confinement of mine galleries. Intro-
ducing ANN-based fingerprint-position matching for wireless localization that is fed
by a set of useful parameters extracted from the CIR as an input signature is proven
to perform accurately in narrow-vein mines [31] [42]. This novel concept was re-
cently extended to exploit spatial diversity [4], temporal diversity [6], or both [5]

for increased accuracy.

In this paper, we overview these novel and very promising localization techniques
then investigate the impact of the spatial sampling grid’s resolution for fingerprint col-
lection on their accuracy in underground narrow-vein mines. Simulations suggest that
the significant accuracy gains reaped from the new exploitation of spatio-temporal di-
versity, if not needed in some applications, can be alternatively traded for remarkable
and extremely useful cost reductions in the fingerprint collection step. As one exam-
ple, the cooperative version [4] that exploits a two-branch spatial diversity attains
the same accuracy (of 1.5 m at 90% precision) of the original version [31] using for
training only 50% of the collected fingerprints stemming from a sampling grid with

half the resolution of the original one.

In Sec. 10.2, we briefly describe the original measurement campaign conducted
for fingerprint collection [31]. In Sec. 10.3, we overview the novel ANN-based
localization techniques and the ways spatial and temporal diversities are exploited in
the spatio-temporal fingerprints. In Sec. 10.4, both the solitary [31] and cooperative
memoryless [4] localization techniques are, as two representative examples, challenged
by lower spatial sampling grid resolutions in the fingerprint collection step to illustrate

how accuracy gains can be traded for lower fingerprinting costs. Conclusions are
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finally drawn out in Sec. 10.5.

10.2 Measurement Campaign for CIR-BASED Fin-
gerprinting

Measurement campaigns are unavoidable with any fingerprint-based localization
technique. Fingerprint-based positioning systems mainly rely on the collected mea-
surements to create the ground rules of the localization algorithms. In other words,
localization using the fingerprinting technique is a way of mapping the received wire-
less signals (i.e., fingerprints) taken at specific locations to the transmitter’s position
(i.e., distance from the receiver). The grid resolution of the measurement campaign
plays an important role in the accuracy of the localization technique. Increasing
the grid resolution to improve localization accuracy is time consuming and is not
recommended. Therefore, the spatial sampling grid resolution should be optimized
to guarantee accuracy without increasing the cost incurred from collecting numer-
ous measurements. We will show here how smart spatio-temporal fingerprinting that
exploits both spatial and temporal diversities allows, among numerous benefits, con-
ducting lower-cost measurement campaigns over lower-resolution grids while main-
taining accuracy.

A measurement campaign was conducted in CANMET gold mine in Val d’Or Que-
bec from which a new approach to CIR-based localization was introduced in [31].
A total of 480 measurements were taken in a tunnel as shown in Fig. 10.1. The
original grid resolution is set to 1 meter increment per x-position while respecting
the boundary conditions of the tunnels. For each position, seven parameters are ex-
tracted to form a fingerprint. These parameters are the mean excess delay (7), the

root mean square (7,.,s), the maximum excess delay (7,,q4.), the total power of the
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Tevel 40m

Figure 10.1 — Map of the underground tunnels.

received signal (P), the number of multipath components (IV), the power of the first
arrival (P;) and the delay of the first path component (71). Throughout this article,
a fingerprint is denoted by f = (7, Tyms, Tmaz, P, IV, P1,71) and it corresponds to a
transmitter at a distance d away from the localizing unit or receiver R. Given the
quasi-curvilinear topology of narrow-vein mines, the variation along the y-position is
considered insignificant (i.e., the z-position is taken as the total distance d). However,
the fingerprints are taken for all y-positions to simulate the fact that signals fluctuate

for the same z-position.

10.3 Overview of ANN-Based Localization Tech-

niques using Fingerprinting

10.3.1 Original technique

Matching the set of fingerprints S = {fi, fo, f3, ..., fu} to the corresponding set
of distances D = {d;,ds,ds,...,d,} is performed using Artificial Neural Networks

(ANNs). With their ability to perform complex calculations of nonlinear functions,
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ANNSs are easy to train and operate and they estimate the transmitter’s position in-
stantaneously and accurately. In case where only one receiver is present as shown in
Fig. 10.2, the input layer of the ANN is composed of 7 neurons that correspond to
the length of each fingerprint in S. The output layer is made of one neuron repre-

senting the output distances in D matching the input fingerprints in S.

Estimated distance (d)

Figure 10.2 — Solitary localization using one receiver.

The ANN is trained to estimate 75% of the collected fingerprints then the remain-
ing 25% of the fingerprints are tested to validate the generalization performance of
the trained ANN. The use of MultiLayer Perceptron (MLP) ANN with back prop-
agation learning algorithm gives more accurate and precise results for underground

localization [31] [42].

10.3.2 Exploiting spatial diversity

Even though the original technique in [31] was a breakthrough in localization
systems for underground and confined areas, recently it was further enhanced in [4]
to exploit the spatial diversity of the collected fingerprints. By using the principle
of cooperation between multiple Access Points (APs), the cooperative localization
technique proved that concatenating more than one fingerprint collected from different
locations enriches the information about the exact position of the transmitter. As
shown in Fig. 10.3, the transmitter’s position is estimated even in the presence

of junctions, interconnected tunnels and NLOS scenarios. Cooperative memoryless
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localization in [4] only relies on the spatial diversity of the collected set of fingerprints
SE = {f1, fo, f35 e frn} and STz = {f1, f3, f4, ..., f1.} measured at receivers R; and
R,, respectively. These receivers may choose to exchange the fingerprints or position
estimates collected at an instant ¢ depending on the pre-defined ANN architectures.
In case where both receivers feed together their fingerprint measurements, one super
ANN shown in Fig. 10.4 concatenates the subset of observations S and S*2 to form

the total set S = {F}, Fy, F}, ..., F,,,} such that:

S = {<f17f{)7 <f27fé)7 (f37f:§>7 X (fm; f7/n>}

The input layer of the ANN is made of 14 neurons while the output layer is the

transmitter’s distance in the set D = {dy, ds,ds, ..., d,,} referenced to R;.

-

Estimated distance (d)

Figure 10.3 — Cooperative localization using two receivers.

10.3.3 Exploiting temporal diversity

In a tunnel-shaped topology, two APs are sufficient to provide wireless coverage for
the whole section of the gallery in between. In other words, localization using spatial
diversity could be limited to two fingerprints per position. This diminishes, however,
its capability of attaining higher accuracies and precisions. A search for better per-
formance led to the development of the memory-assisted localization technique in [6]

where temporal diversity is exploited. Using one receiver, solitary memory-assisted
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Distance

Tnputs (Signaturc 1 + Signautre 2)

Figure 10.4 — ANN based on multiple signatures.

fingerprinting is illustrated in Fig. 10.5 where the star represents the transmitter’s

position to be estimated at time instant ¢,.

Figure 10.5 — Possibilities of previous positions for [ = 2.

A temporal fingerprint is the concatenation of multiple signatures recorded along
the path a transmitter takes reaching a desired position at ¢y, separated by a distance
d from the localizing unit. Concatenating only one previous fingerprint at a time
instant t_; creates a temporal fingerprint of length [ = 2 (i.e., 2 fingerprints with
a total of 14 parameters). The length of the temporal fingerprint depends on [ and

corresponds to the number of inputs Njpus fed to the ANN where:

Ninputs =Tl
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In order to generalize the performance of the ANN, all the paths that lead to
the star position should be considered as possible temporal fingerprints. This re-
quires collecting all the combinatorial fingerprints surrounding each position while
respecting the boundary limits and considering a consistent hop size. ! It should
be noted that a combinatorial set of generated temporal fingerprints exponentially
increases from the original set containing 480 measurements. Training ANNs on
all possible temporal fingerprints enriches the information given about one location
based on fingerprints taken from possible motion patterns, a method that should not
be confused with conventional tracking algorithms where the position estimates are
enhanced after their estimation takes place [47] [22] [41]. A programmed MATLAB
function is responsible for collecting all possible paths and then concatenating their
corresponding fingerprints to form chains of temporal fingerprints for all positions in
the tunnel based on the pre-defined memory level [. The performance of each ANN
is tested for different memory levels up to [ = 5 (i.e., chains of five concatenated
fingerprints per position) after which no significant accuracy gain is reported. The

temporal fingerprint is denoted by

fzj = (fit07fit_lafit_2"'7fit7(l71)> )

and it corresponds to one path that leads to a position at a distance d; away from
Ry using memory capacity [. Since multiple paths may lead to the same position,
the index j is introduced to count the number of temporal fingerprints that point
to the same output distance d;. The maximum number of temporal fingerprints per

position j,... is affected by the boundary conditions that surround each position and

'Motion across diagonals is excluded because it exponentially increases the length of temporal
fingerprints without significant accuracy gain.
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it is proportional to [ where:

< 5(l—1) )

]ma:c —

10.3.4 Exploiting spatio-temporal diversity

Cooperative localization (cf. Sec. 10.3.2) improves positioning accuracy by ex-
ploiting the spatial diversity resulting from the chained-topology of the deployed
APs but this diversity is practically limited to two branches due to the curvilinear
topology of underground narrow-vein mines. An advanced fingerprinting technique
is developed in [5] to exploit both spatial and temporal diversities of the collected
fingerprints. Cooperative memory-assisted localization is introduced as a technique
that creates spatio-temporal fingerprints by concatenating the temporal fingerprints
gathered from different localizing units before estimating the transmitter’s position.
The use of more than one fingerprint saved in time exploits the temporal diversity
whereas gathering the fingerprints from multiple localizing units exploits the spatial
diversity of wireless signals. The spatio-temporal fingerprint subset denoted by

Ry __ R1,1 pR1,2 pRy,3 R1,jmax
S _{Fz JFi >Fz‘ 7'”7Fz‘

(2

is collected from R; which is at a distance d; and it is concatenated path-wise with

the other subset

(2

Ry __ Ra,1 R2,2 1mR2,3 Ra,j

measured at receiver Ry which is at a distance dy = D — d; to form the group of

spatio-temporal fingerprints:

S = { (B ), (B2 F2), (B B9,

(FLRl 7jmaz , F;RQ 7jmaz ) } )
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The memory levels of receivers Ry and Ry are denoted by (ly, l3). The number of
parameters that constitute each fingerprint is specified according to the total length of
the spatio-temporal fingerprints (i.e., | = {1 +13). A 2-by-2 spatio-temporal fingerprint
design (i.e., l; = 2,1y = 2) may be achieved by matching the collected spatio-temporal

fingerprints F; = (F"', F2) where
R Ri (R
R — (i g ),

B = (fi £

Lt _1

In case where (I; = 2,1y = 2), the temporal fingerprint collected at a distance d; from
Ry is equal in length to that collected from Ry for the same position, but the total
concatenated spatio-temporal fingerprint F; fed to the ANN at the time instance t,
is of length 28 (i.e., 7l = 7(l1 + 12)).

10.3.5 Overview of performance results

As a background overview, the results of all ANN-based localization techniques
that use the fingerprinting approaches discussed above are summarized in Tab. 10.1.
Based on the reported performance results, cooperative memoryless localization out-
performs the solitary localization technique by exploiting the spatial diversity of the
fingerprints providing and accuracy of less than 1 m for 90% of the collected fin-
gerprints. Since cooperative memoryless localization is limited in diversity to two
branches due to spatial confinement, memory-type fingerprints are then used to ex-
ploit the temporal diversity and achieve better performance results. By concatenating
up to 5 temporal fingerprints, the solitary memory-assisted localization technique at-
tains a high accuracy of 50 cm at the same precision. However, smart spatio-temporal

fingerprinting achieves even higher accuracy gains by exploiting both the spatial and
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temporal diversities. Cooperative memory-assisted localization reduces positioning

error to less than 25 cm 90% of the time.

Table 10.1 — Estimation errors of different localization techniques with 90% precision.

’ Localization Technique Training vs Testing Errors (m) ‘

Localization using one receiver [31] 1.5 1.65
Cooperative memoryless based on separate ANNs [4] 1 1
Cooperative memoryless based on one super ANN  [4] 0.6 1

(11 = 2,13 =0) 1 1.25

Solo memory-assisted [6] B=30=9 0.75 08

Iy = 4,13 =0) 0.5 0.5

(I3 = 5,13 = 0) <0.5 <0.5

(=215 =1) 0.48 0.62

Cooperative memory-assisted [5] (I3 =3, 1 = 1) 0.38 0.43

(I3 = 2,13 =2) 0.20 0.25

10.4 Impact of Spatial Sampling Grid Resolution

The performance of any localization system is governed by many factors which
are not limited to the accuracy and precision of the positioning 