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Abstract 20 

Extreme value theory (EVT) is commonly applied in several fields such as finance, hydrology 21 

and environmental modeling. It is extensively developed in the univariate setting. A number of 22 

studies have focused on the extension of EVT to the multivariate context. However, most of these 23 

studies are based on a direct extension of univariate extremes. In the present paper, we present a 24 

procedure to identify the extremes in a multivariate sample. The present procedure is based on 25 

the statistical notion of depth function combined with the orientation of the observations. The 26 

extreme identification itself is important and it can also serve as basis for the modeling and the 27 

asymptotic studies. The proposed procedure is also employed to detect peaks-over-thresholds in 28 

the multivariate setting. This method is general and includes several special cases. Furthermore, it 29 

is flexible and can be applied to several situations depending on the degree of extreme event risk. 30 

The procedure is mainly motivated by application considerations. A simulation study is carried 31 

out to evaluate the performance of the procedure. An application, based on air quality data, is 32 

presented to show the various elements of the procedure. The procedure is also shown to be 33 

useful in other statistical areas. 34 

 35 

36 
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1. Introduction 37 

Extreme value theory (EVT) plays an important role in several fields such as finance, hydrology, 38 

insurance and Internet traffic, see e.g., de Haan and Ferreira [2006], Reiss and Thomas [2007]. 39 

EVT is extensively studied in the univariate setting when the extreme event is only described by 40 

one characteristic (e.g., Leadbetter et al. [1983] and Coles [2001]). In reality, extreme events are 41 

often described through a number of dependent variables. For instance, floods are described by 42 

their peak, volume and duration (e.g., Yue et al. [1999]) and air quality is monitored 43 

simultaneously through several variables such as the levels of ozone and nitrogen dioxide (e.g., 44 

Heffernan and Tawn [2004]). In the multivariate context, EVT is also developing increasingly to 45 

treat these events (e.g., Coles and Tawn [1991; 1994]; Mikosch [2005]; Heffernan and Tawn 46 

[2004]; Boldi and Davison [2007]; Li [2009] and the references therein).  47 

In the univariate case, extremes are directly identified and the focus is then on modeling efforts. 48 

This scheme is commonly extended to the multivariate setting despite the fact that the extreme 49 

identification step is not similar and much more complex. In the multivariate literature, the focus 50 

is most often on the modeling of extremes, especially on describing the dependence of extreme 51 

observations, and also providing asymptotic results (e.g. Li [2009]). However, before developing 52 

these important issues (modeling and asymptotic behavior), it is important to correctly identify 53 

the notion of extreme in the multivariate context. That is, it is important to specify with respect to 54 

which characteristic an observation is extreme, and to identify and quantify the impacts (social, 55 

economic) of such extremes. In some fields, such as hydrology and car manufacturing, it is not 56 

appropriate to employ asymptotic results since sample sizes are generally small.  57 

In the univariate case, the limiting distribution of the block-maxima is shown to belong to the 58 

class of the generalized extreme value (GEV) distributions. For practical considerations, even in 59 
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the univariate setting, where the extremes are simply and clearly identified, the GEV distributions 60 

do not represent a systematic choice to fit extremes as shown in El Adlouni et al. [2010]. Several 61 

other distributions are appropriate for extreme modeling and should be considered as well, such 62 

as the Halphen family, Pearson, log-Pearson and Gamma (see e.g., Hosking and Wallis [1997]).  63 

The usual extension of EVT to the multivariate setting is based merely on the component-wise 64 

maxima or minima of the vector sample. This extension is not appropriate since the obtained 65 

point does not necessarily belong to the sample and this extension is based on mathematical and 66 

theoretical justifications. In the recent literature, the component-wise approach was criticized 67 

from both the theoretical and the practical points of view (see e.g., Smith [2004] and Salvadori et 68 

al. [2007]). The multivariate EVT approaches neglected the identification step and focused on the 69 

modeling and asymptotic aspects.  70 

One of the drawbacks of the multivariate EVT approaches, especially the component-wise 71 

extension, is the absence of a convenient notion of ordering in the multivariate context. The 72 

notion of order can be statistically extended to the multivariate context using depth functions, see 73 

e.g. Zuo and Serfling [2000]. Multivariate EVT does not take advantage of the potential of depth 74 

functions. In addition, in the multivariate setting the notion of the median is not employed to 75 

define extremes. Usually, in the univariate framework, an extreme observation is the one for 76 

which the deviation from the median is the highest. A drawback of the block-maxima approach 77 

identification is that it could select extremes in blocks even if all values in a particular block are 78 

low and could identify only one extreme in blocks where several high values should be identified 79 

in a particular block. 80 

The aim of the present paper is to propose a procedure to identify extreme values in a 81 

multivariate sample. Then, modeling and studying the asymptotic properties will be based on the 82 

appropriate extremes. The present study has an exploratory objective, rather than modeling or 83 
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inferential. As pointed out in Liu et al. [1999], depth values do not provide enough information 84 

from the multivariate sample to define extremes in the present context. The proposed procedure is 85 

based on a combination of depth functions with orientations of the observations with respect to 86 

the median. This combination (depth and orientation) is also employed by Serfling [2002] to 87 

introduce multivariate median-oriented quantiles. The proposed extreme identification procedure 88 

is motivated and defined by practical considerations. 89 

In the univariate setting, extremes in a sample are selected as the minimum, the maximum or 90 

both. The choice is based on the underlying variable, the associated risk as well as the case study 91 

in hand. By extension, in the multivariate context, it is also of interest to focus on a part of the 92 

extreme observations by reducing the orientation space to a convenient part. 93 

When dealing with extremes, an alternative of interest is also known as the peaks-over-threshold 94 

(POT) approach. In this situation we are interested in identifying all values “over” a given 95 

threshold. A more detailed description of the POT approach can be found for instance in Lang et 96 

al. [1999] and the references therein. Again as in the extremes, the multivariate POT theory 97 

focused on modeling and asymptotic results, see e.g. Reiss and Thomas [2007]. The present 98 

depth-based approach is generalized to identify POT observations. By analogy with extremes, the 99 

multivariate POT can also be focused on a part of the orientation space. 100 

For reference and clarity of presentation, depth functions are presented briefly in section 2. In the 101 

following sections, we present a description and a general algorithm of the proposed method 102 

(section 3), we evaluate the consistency of the procedure in a simulation study (section 4), we 103 

illustrate it on a real-world air quality dataset (section 5), and we present a discussion (section 6). 104 

Conclusions and perspectives are presented in the last section.  105 

 106 
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2. Background: Depth functions 107 

In the univariate setting, one of the most important notions related to extremes is the ordering of 108 

observations. In the multivariate setting several extensions of the order are developed and 109 

employed. Depth functions are introduced by Tukey [1975] to provide an outward ordering in a 110 

multivariate sample. A detailed description of the theoretical background of depth functions can 111 

be found in Zuo and Serfling [2000]. Depth functions are developed for several multivariate 112 

statistical applications, e.g. in Mizera and Müller, [2004] and Ghosh and Chaudhuri [2005] and 113 

are applied in several areas such as economic and social sciences by Caplin and Nalebuff  114 

[1991a; b], industrial quality control by Liu and Singh [1993] and in water sciences by Chebana 115 

and Ouarda [2008]. 116 

A statistical depth function (.; )D F , or simply D(.), for a given cumulative distribution function 117 

F on  ( 1)dR d ≥  is bounded and nonnegative which provides a F-based center-outward ordering 118 

of points x in Rd that satisfies the following properties: 119 

i. Affine invariance 120 

ii. Maximality at center 121 

iii. Monotonicity relative to the deepest point 122 

iv. Vanishing at infinity 123 

For a formal definition of depth functions, the reader is referred to Zuo and Serfling [2000]. In 124 

the literature several kinds of depth functions are introduced and studied. Here we present a non 125 

exhaustive list of some of the key ones:  126 

1. The Mahalanobis depth is given by: 127 

( )2

1
( ; )

1 ,A

MD x F
d x µ

=
+

      (1)  128 
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where ( ) ( ) ( )2 1,Ad x y x y A x y−′= − −  is the Mahalanobis distance between two points 129 

, dx y R∈ with respect to a positive definite matrix A, F is a given distribution and  and Aµ  are 130 

any corresponding location and covariance measures, respectively.  131 

2. The Simplicial depth whose expression is given by: 132 

( ) { }1 1; [ ,..., ]dSD x P P x S X X += ∈       (2)  133 

where 1 1[ ,..., ]dS X X +  is the random d-dimensional simplex with vertices 1 1,..., dX X + which is a 134 

random sample from the distribution P. 135 

3. The Simplicial volume depth is given through the expression : 136 

[ ]( )
( )

1

1, ,...,
( ; ) 1   for     

det

d d
S x X X

SVD x F E x R

α

α

−
   ∆   = + ∈   Σ    

 (3)  137 

where [ ]( )1, ,..., dS x X X∆  denotes the volume of the d-dimensional simplex [ ]1, ,..., dS x X X , Σ  138 

is the covariance matrix of F and 0.α >   139 

4. The Halfspace depth is defined  for dx R∈ with respect to a probability P on dR as: 140 

( ) { }; inf ( ) :  a closed halfspace that contains HD x P P H H x=   (4)  141 

A corresponding sample version of a statistical depth function D(x; F) may be defined by 142 

replacing F with a suitable empirical function n̂F  and denoted by ˆ( ) ( ; )n nD x D x F= . The 143 

asymptotic properties of ( )nD x  are studied in several papers including Liu  [1990], Massé [2002; 144 

2004] and Lin and Chen [2006]. The evaluation of some depth functions is complex and requires 145 

approximations and specific algorithms. For instance, Miller et al. [2003] developed an algorithm 146 

for the computation of the halfspace depth. Recently, Massé and Plante [2009] provided a 147 

package in the R software to evaluate several depth functions.  148 
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3. Methodology 149 

In this section we present a description of the proposed procedure followed by a general 150 

algorithm for practical implementation. Probabilistic formulations of the approach as well as a 151 

diagnostic of its use are presented. The main notations used throughout the paper are summarized 152 

in the notation list and are illustrated in the case study section. 153 

3.1. Description of the methodology 154 

Let 1,...,  nX X  be a Rd vector sample of size n, denoted ,n dΛ , where ( )1,...,i i idX X X=  and d is 155 

a positive integer ( 1d ≥ ). Let Mn represent the multivariate median of the sample. It corresponds, 156 

in the present study, to the maximum depth value in the sample. It is natural to assume that the 157 

median is the “center” of the sample and an extreme is so with respect to the median. Hence, the 158 

median is considered as the origin of the multivariate space and then data are median-centered by 159 

translation. The orientation set of the observations is the unit hyper-sphere centered at the median 160 

Mn and denoted 1( )d

nM−Ω . The space 1( )d

nM−Ω will be denoted 1d −Ω  after translation of the 161 

data to be centered at Mn. In the bivariate case (d = 2), the unit sphere 1d −Ω reduces to the interval 162 

[-1,  1] , and it becomes { }1, 1− +  in the univariate case.  163 

For each observation i from the sample, we assign a depth value Di = D(Xi) and an orientation ui 164 

= u(Xi) from 1d −Ω . Note that in the bivariate case, the presentation is analogous to the polar 165 

coordinates but with depths instead of Euclidian distances. In higher dimensions, the expressions 166 

of an orientation u with respect to the Cartesian coordinates x are more complex and can be 167 

found, for instance, in Stanley [1990]. For a fixed orientation 1
0

du −∈Ω , we identify an extreme 168 

as the observation corresponding to the smallest depth value in that orientation.  169 
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Since the orientation space 1d −Ω  is continuous, it is convenient to proceed to its discretization. To 170 

this end, let (0,1]λ∈  be a coefficient that defines a “partition” of 1d −Ω . The obtained partition of 171 

1d −Ω  is composed by the subsets ,k λΠ , 1,..., ek n=  where en  is related to λ  as shown bellow. 172 

The coefficient λ  represents the volume of each portion ,k λΠ . For each portion ,k λΠ , we select 173 

the observation corresponding to the smallest depth value in this portion as the extreme one. On 174 

the other hand, the coefficient λ  indicates the size of the sub-sample composed by extreme 175 

observations, say, 11 d

en λ − =    where .    represents the integer part of a real number. The 176 

condition 1 en n≤ ≤  leads to the constraint on λ : 11 1dn λ −≤ ≤ . We define the set of the 177 

identified extreme observations ( , )n DλΣ as: 178 

{ }, ,( , ) : ( ) is the samllest in , 1,...,n k n d k k eD x D x k nλλΣ = ∈Λ Π =   (5)  179 

As special cases forλ , we identify one observation ( 1en = ) as extreme over the whole sample 180 

for 1λ = . When λ  is close to zero (which requires n to be large), the number of extreme 181 

observations is high. In the case where 1 1d nλ − = , all the observations are identified as extremes, 182 

unless located on the same orientation. 183 

The selection of the coefficient λ  is important to define the extremes. In general, its selection 184 

depends on the context of the case study. At this stage, an acceptable general option could be 185 

related to the number of blocks ( bn ) in the traditional block-maxima approach. Indeed, λ  can be 186 

selected such that en is the same (or approximately) as bn , that is 1 1d

bnλ − = . For instance, 187 

blocks are generally related to the length of the temporal series, such as daily, weekly, monthly, 188 

seasonally or annually. This characteristic depends on the application field such as air quality 189 

modeling, hydrology or climatology. The coefficient λ  should be small enough to lead to a 190 
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reasonable number of extremes with which one can perform a statistical analysis and at the same 191 

time λ  should be large enough to avoid obtaining a large number of extremes which would 192 

contradict the rarity principle of extremes. However, an optimal and automatic selection 193 

procedure of λ  would be useful and should be developed in a future work.  194 

By relating the extreme observations in ( , )n DλΣ  we obtain the hyper-surface ( , )n Dλℂ  which 195 

may be convex or not. The coefficient λ  controls, in an inversely proportional way, the 196 

regularity (or smoothness) of ( , )n Dλℂ . In terms of risk, a small value of λ  indicates that the 197 

decision is hard and it should be taken with care whereas a large value of λ  is associated to safer 198 

situations. Indeed, a small value of λ  leads to several extreme combinations that should be 199 

considered to prevent the associated risk whereas large values of λ  are representative for 200 

situations that require less attention. The coefficient λ  can be interpreted as a confidence degree 201 

against the corresponding risk. Risk is often defined as the probability of occurrence of an 202 

extreme event (see Niwa [1989] and Ouarda and Labadie [2001]). Hence, a small value of λ  203 

indicates that a large number of extreme events have occurred and therefore the probability of 204 

occurrence of similar events is high. It is important to mention that, in contrast to the univariate 205 

case where we have one extreme observation (minimum or maximum), the existence of several 206 

extreme observations in the multivariate context is natural. It can be justified by the fact that 207 

several combinations of variable values lead to the same risk.  208 

In the univariate case, extreme value refers to the maximum or the minimum of a sample. 209 

According to the problem to be treated, the focus is made on the minimum or the maximum or 210 

both. The above extreme identification procedure allows to generalize this aspect to the 211 

multivariate setting. Indeed, we consider the identification of extremes on a part T of 1d −Ω  of 212 
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orientations. Hence, the subdivision in portion of volume λ  can be limited only to the part T 213 

instead of the whole set 1d −Ω . The corresponding set of extreme observations is given by: 214 

( , , ) ( , )n nT D D Tλ λΣ = Σ ∩       (6)  215 

For instance, for d = 2 where 1 [ 1,1]Ω = − , if the focus is on simultaneous non-exceedence events 216 

( ),X x Y y≤ ≤ , it is convenient to choose  [0,0.5]T =  which corresponds to the first quadrant. 217 

In the univariate case where { }0 1,1Ω = − , the maximum is associated to { }1T =  whereas the 218 

minimum is associated to { }1T = − . Note that the volume of the range T should be larger thanλ . 219 

In the equality case λ  = volume (T), we have ( ( ), , )n ne volume T T D= Σ . By analogy with 220 

( , , )n T DλΣ , the hyper-surface ( , )n Dλℂ  can be restricted to a given part T as: 221 

( , , ) ( , )n nT D D Tλ λ= ∩ℂ ℂ     (7)  222 

The present approach can be generalized for the identification of POTs for a given multivariate 223 

sample. In the univariate POT, one of the criteria used to define the threshold is based on a given 224 

percentile of the sample. Hence, in the multivariate framework we select in each λ -portion ,k λΠ  225 

the observations for which the depth deviations from that of the median do not exceed a given 226 

proportion s ( 0 1s≤ ≤ ) of the deviation of the minimum depth in ,k λΠ . That is the depth value is 227 

smaller than ( ), max max min,s k kD D D D s= − −  and, therefore, the set of POTs is given by: 228 

{ }1, , , ,( , , ) : ( ) ,   d

n j n d k j s k ks D x D x Dλ λλ −Σ = ∈Λ ∩Π < Π ⊂Ω   (8) 229 

where maxD  is the depth value of the median and min,kD  is the smallest depth value over ,k λΠ . 230 

Note that for a fixed value of the threshold s, the value ,s kD  is not necessarily the same for all 231 

,k λΠ  since min,kD depends on k. Clearly, the special case s = 0 leads to the selection of all data as 232 
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POTs whereas s = 1 identifies the extreme observations. As it is the case for extremes, the POT 233 

may also be of interest in a part 1dT −⊂ Ω . The corresponding set is: 234 

( , , , ) ( , , )n ns T D s D Tλ λΣ = Σ ∩      (9) 235 

The hyper-surfaces ( , , )n s Dλℂ  and ( , , , )n s T Dλℂ  can be defined, for instance, by connecting 236 

the observations with the largest depth value and smaller than ,s kD  in each portion ,k λΠ . Other 237 

options are presented in Sections 5 and 6.  238 

In the depth-based approach, the case with λ = 1 corresponds to the usual POT approach in the 239 

whole data set. However, smaller values of λ are useful to adapt the approach in the presence of 240 

trend or seasonality in the data.  241 

Now that the descriptive presentation of the depth-based identification approach is complete, we 242 

provide a brief probabilistic formulation of the approach. Assume that the original random 243 

vectors 1 2, ,...X X  have a multivariate distribution F on Rd, then the random vector of the depth-244 

based extreme values is given by:  245 

, ,

,
 with ( )

arg min ( )
i n d i k

k i
X u X

B D X
λ

λ
∈Λ ∈Π

=    (10) 246 

The exact or asymptotic distribution of the random vector ,kB λ is related to F as well as to the 247 

distribution of ( )D X . Basically, the problem can be seen as a minimization of a special 248 

transformation D(.) of the original random vectors X. In addition, in the present context, the study 249 

of ,kB λ  can be conducted by considering previous work such as Massé [2004; 2009], Arcones et 250 

al. [2006] and Zu and He [2006] where asymptotic results are obtained for ( )D X . Further 251 

developments in this direction are outside the scope of the present study and are the subject of 252 

future work. 253 

In a similar way the extremes on a range T can be defined as:  254 
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, ,

, ,
 with ( )

arg min ( )
i n d i k

k T i
X u X T

B D X
λ

λ
∈Λ ∈Π ∩

=     (11) 255 

The corresponding POTs on 1d−Ω and on a range T are defined respectively as follows: 256 

{ }, , , ,* ( ) , ( )
k s i i s k i k

K X I D X D u Xλ λ= ≤ ∈Π   (12) 257 

{ }, , , , ,* ( ) , ( )
k s T i i s k i k

K X I D X D u X Tλ λ= ≤ ∈Π ∩   (13) 258 

where  { }I A  stands for the indicator function of a set A, that is { } 1I A =  if A holds and 0 if not.  259 

As indicated in the introduction, the block-maxima approach imposes a uniform repartition of the 260 

extremes over time (one extreme per time block). The proposed depth-based approach avoids this 261 

constraint since it is based on the magnitudes of the values and not on their time of occurrence. In 262 

situations where it is necessary to define time blocks, an intermediate option could be to combine 263 

both approaches by employing the depth-based approach in each large time block. A large time 264 

block is composed of a number of the usual blocks. For instance, large and usual blocks could be 265 

respectively season and month or year and season. An illustration is given in the case study where 266 

each season has four months and hence λ = ¼= 0.25 for each season.  267 

Before presenting the procedure steps, we state a number of simple properties of the above 268 

concepts. For a given sample, using the same depth function D, we have: 269 

If 1 2λ λ<  and 2 1λ λ  is an integer, then  2 1( , ) ( , )n nD Dλ λΣ ⊂ Σ   (14) 270 

The condition 2 1λ λ  is an integer insures that for each k, there exists k’ such that 
2 1, ,k kλ λ′Π ⊂ Π . 271 

A counter example is given in the case study section when 2 1λ λ  is not an integer. 272 

For a given sample, on the same part T, using the same depth function D, we have: 273 

If 1 2s s< ,  then  2 1( , , , ) ( , , , )n ns T D s T Dλ λΣ ⊂ Σ  for a fixed λ  (15) 274 

For s < 1,  we have  ( , , , ) ( , , )n ns T D T Dλ λΣ ⊂ Σ    (16) 275 
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3.2. Procedure steps 276 

In the following we present the proposed procedure to identify extremes and POTs for a given 277 

multivariate sample. Identification of multivariate extremes requires a depth function D, a 278 

coefficient λ  and, if necessary, a range 1dT −⊂ Ω . A threshold s in (0, 1] is also to be specified 279 

for POTs. On the basis of the description and notations introduced in Section 3.1, the POTs and 280 

the extremes are identified through the following steps: 281 

1. Find the median Mn of the multivariate sample. In the present study, it corresponds to the 282 

largest depth value maxD ; 283 

2. Standardize data, especially when variables are not of the same nature;  284 

3. Evaluate, in the range 1dT −⊆ Ω , the depth Di of the observation i using the selected depth 285 

function D, i = 1,…,n; 286 

4. Evaluate, in the range 1dT −⊆ Ω , the orientation iu of the observation i, i = 1,…,n; 287 

5. Select, in the range 1dT −⊆ Ω , the observations for which the depth values are smaller than a 288 

threshold s of min,kD in each λ -portion ,k λΠ , i.e., with depth smaller than 289 

, max min,(1 )s k kD s D sD= − + .  290 

The above procedure is general and covers all possible scenarios depending on the special cases 291 

of T and s. Indeed, the range T is taken to be 1dT −⊆ Ω and the threshold s is inclusively between 292 

0 and 1. The case where T represents the whole space 1d −Ω  is hence a special case. When s = 1, 293 

the identified observations are extremes whereas when s < 1, the identified observations are 294 

POTs. The observations corresponding to the depth values obtained in step 5 constitute, 295 

depending on s and T, one of the sets ( , )n DλΣ , ( , , )n T DλΣ , ( , , )n s DλΣ or ( , , , )n s T DλΣ . 296 
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In step 1, various options are available in the literature to obtain the multivariate median, see e.g., 297 

Small [1990]; Liu et al. [1999] and Zuo and Serfling [2000]. The selection of a depth function, 298 

among the various options presented in the literature, depends on its convenience for the specific 299 

data in hand as well as the simplicity of its evaluation algorithm. Note that a depth function is 300 

more general than a simple transformed distance and it combines both geometry and statistics.  301 

Generally depth functions are affine invariant, i.e., depth values remain the same after 302 

standardization of data. Therefore, step 2 is not required when the depth function is affine 303 

invariant. Note that some depth functions, such as the simplicial volume depth, meet this property 304 

only under some assumptions on the parent distribution. The reader is referred to Zuo and 305 

Serfling [2000] for more details.  306 

The choice of a depth function may affect the identification of the extremes. As a first criterion to 307 

select a depth function, we propose to consider depth functions which are evaluated with respect 308 

to a given centre of the data (such as the median). This is the case for the Mahalanobis and the 309 

projection depth functions. Note that, in general, depth functions cannot be directly and 310 

analytically evaluated. To this end, numerical algorithms are required and a package in the R 311 

software is provided by Massé and Plante [2009] for several depth functions. 312 

Since the distribution of the identified extremes is not developed in the present study, the 313 

following diagnostic strategy is proposed. First, if the data are highly correlated, the component-314 

wise approach can be adopted to identify extremes and the corresponding models can be selected 315 

for further studies by considering the existing literature. This can be checked, for instance, from a 316 

scatter plot per block and an evaluation of different dependence association parameters such as 317 

the correlation coefficient, Spearman’s rho or Kendall’s tau (Joe [1997]). The scatter plot should 318 

have an elliptical shape in the first diagonal line and the values of the dependence parameters 319 

should be high to insure that the identified component-wise extremes are part or closely part of 320 
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the data (a component-wise extreme is not necessarily an observation). Second, if the above 321 

situation does not occur, which can be the case for several multivariate data sets, we propose to 322 

consider the depth-based extreme identification. Even though this is an exploratory study and 323 

inferential concerns are a subject of future efforts, one can consider the identified sub-sample of 324 

extremes to select the appropriate distribution among those existing in the literature. This can be 325 

done on the basis of goodness-of-fit tests in the multivariate context. For instance, the univariate 326 

GEV and GPD distributions can be employed as marginal distributions and combined to a copula 327 

to obtain the whole multivariate distribution according to Sklar’s theorem (Sklar [1959]). Among 328 

the available and convenient copulas, one can consider the extreme value copula or the 329 

Archimedean copula families.  330 

Finally, even though the identified depth-based extremes are extreme observations by definition, 331 

it is advised to check them on the basis of the different types of plots such as scatter plots with 332 

the partitions ,k λΠ , depth-orientation plots and multiple chronological plots.  333 

4. Procedure evaluation 334 

In the present section, we evaluate the performance of the proposed procedure on the basis of 335 

simulations. To generate samples, we consider a bivariate distribution commonly used in EVT. 336 

The margins of this distribution are the Gumbel distribution given by: 337 

( ){ }( ) exp exp ,   real,  0 and realX

X

x

X X XF x x
β

α α β−= − − >   (17)  338 

and the dependence structure is the Gumbel logistic copula expressed as:  339 

{ }1/
( , ) exp ( log ) ( log ) ,  1 and 0 , 1C u v u v u v

γγ γ
γ γ = − − + − ≥ ≤ ≤   (18) 340 

The Gumbel logistic copula C γ  is at the same time an Archimedean copula and an extreme value 341 

copula. The considered parameters of the marginal distributions are 300.22,  1239.80X Xα β= =  342 
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and = 15.85, 51.85Y Yα β = . The parameter of the Gumbel logistic copula is considered to take 343 

each one of the values  =1, 1.414, 3.162γ  which correspond respectively to the correlation 344 

coefficient values 0,  0.5, 0.9ρ = . The parameters of the margins, with  =1.414γ , represent a 345 

real-world flood data set studied in Yue et al. [1999] corresponding to the Ashuapmushuan river 346 

basin in the province of Quebec, Canada. The sample generation is based on the algorithm 347 

developed by Ghoudi et al. [1998]. The number of the generated samples is taken to be M = 2000 348 

samples (higher values lead to similar results). 349 

For the evaluation of the procedure, we select values of λ  = 0.05 and 0.10 and a value of s = 0.90 350 

for the POTs. The procedure is judged consistent if for different samples of the same nature, all 351 

identified extremes are similar. Hence, we evaluate the consistency on the basis of the volume of 352 

the polygon composed by the identified extremes. For the kth generated sample, let Ve(k) be the 353 

volume of the polygon ( )( , )k

n DλΠ  composed by the set of the identified extreme observations 354 

( )( , )k

n DλΣ .  355 

In a similar manner, the consistency of the POTs identification is evaluated by the volume of the 356 

area between the polygons composed by the extremes and the deepest POTs in each portion. Let 357 

( )( , , )k

n s DλΣɶ  be the subset of the identified POTs corresponding to the observations with the 358 

largest depth value among the POTs in each portion. Similarly, define ( )( , , )k

n s DλΠɶ  as the 359 

polygon composed by ( )( , , )k

n s DλΣɶ  and let VPOT(k) be the difference between the volumes of 360 

( )( , )k

n DλΠ  and ( )( , , )k

n s DλΠɶ . Then, the evaluation is based on the mean and the standard-361 

deviation over the M generated samples of Ve(.) for the extremes and of VPOT(.) for the POTs 362 

given respectively by : 363 
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( )2

1 1

1 1
( )         and       = ( )

1

M M

e e e e e

k k

M V k STD V k M
M M= =

= −
−∑ ∑   (19)  364 

( )2

1 1

1 1
= ( )         and       ( )

1

M M

POT POT POT POT POT

k k

M V k STD V k M
M M= =

= −
−∑ ∑  (20) 365 

Table 1 presents the evaluation results obtained from the simulations. Results show the general 366 

consistency of the identified extremes and POTs for each one of the considered cases. Generally 367 

we observe that Me values have a slight variation (e.g. between 0.85 and 0.97 for 368 

 =1.414γ and  =0.05λ ) with respect to n whereas STDe decreases slightly (e.g. from 0.24 to 0.19 369 

for the same case). On the other hand, MPOT increases with respect to n (e.g. from 0.16 to 0.59 for 370 

the same case) and POTSTD  remains almost constant. Both values of MPOT and STDPOT are 371 

smaller than those corresponding to the extremes. This is mainly due to the definition of (.)eV and 372 

(.)POTV where POT eV V≤ . Hence, we always have POT eM M≤  and we can also write 373 

( ) ( )POT eV k aV k≈ for some constant 1a < and independent of the index k since the values of s is 374 

constant (s = 0.9). Therefore, we have  POT e eSTD aSTD STD≈ ≤ . Furthermore, no significant 375 

differences are observed between the independence and moderate dependence cases (  =1γ  and 376 

 =1.414γ respectively) whereas the case of higher dependence (  =3.162γ ) produces clearly 377 

smaller values of both mean and standard-deviation. The reason could be related to the shape of 378 

the scatter plot of the last case which is more elliptical and concentrated as illustrated in Figure 1. 379 

5. Case study 380 

In this section we present a case study to illustrate the different aspects of the proposed 381 

methodology. We consider air quality monitoring data employed by Heffernan and Tawn [2004]. 382 

The data is represented by a series of summer daily maximum measurements (in parts per billion) 383 

of ground level ozone (O3) and nitrogen dioxide (NO2) in Leeds city centre, UK, during the years 384 
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1994-1998 inclusively with a sample size n = 578 measurements (with some missing data). The 385 

summer data set corresponds to observations during the months of April - July. The outliers 386 

mentioned in Heffernan and Tawn  [2004] were excluded from these data sets. 387 

The Mahalanobis depth (MD) function given in (1) is considered for its simplicity and convenient 388 

properties (Zuo and Serfling [2000]). The bivariate median is obtained as the observation that 389 

maximizes the MD function. For each observation, we obtain the corresponding MD value as 390 

well as the orientation u. Note that the MD function is affine invariant, i.e., depth values are the 391 

same for the original and the standardized data. The orientation space in the present case is the 392 

interval [-1, 1] since d = 2. Figure 2 illustrates the main employed notations for a selected value 393 

of λ (λ = 0.05). The corresponding sets of extremes ( , )n DλΣ and the associated curves 394 

( , )n Dλℂ  are presented in Figure 3 for each value of λ = 0.0625 and 0.05. The regularity of the 395 

curve ( , )n Dλℂ  as well as the number of extreme observations depend on λ. As it can be seen, 396 

the number of extreme observations in the present case is ne = 16 and 20 for λ = 0.0625 and 0.05 397 

respectively. From Figures 3.a and 3.b, one can see that even though λ = 0.05 is smaller than λ = 398 

0.0625, the set (0.0625, )n DΣ  is not included in the set (0.05, )n DΣ , since the ratio 0.0625/0.05 399 

= 1.25 does not meet the condition of being an integer as specified in (15).  400 

Since in air quality, high values of both variables O3 and NO2 are considered as extreme cases of 401 

air pollution, it is more realistic to restrict attention to the part T = [0, 0.5] representing the first 402 

quadrant as illustrated in Figure 2. The identified extremes and corresponding depth values are 403 

given in Table 2 for λ=0.05. Table 2 and Figure 4 indicate that depth values of the extremes vary 404 

between 0.0287 and 0.2590 which are associated to the most “outer” and “interior” observations. 405 

For comparison purposes, we present in Table 3 and Figure 4 the component-wise extremes per 406 

month as well as those obtained by considering the depth-based approach on each season 407 
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composed of four months. Therefore, to identify 20 extreme observations (four extremes in each 408 

season) we set λ=0.25 per season. Table 3 and Figure 4 indicate that out of 20 component-wise 409 

extremes only 4 correspond to observations. In addition, the component-wise extreme (68, 105), 410 

associated to the smallest depth value 0.0246, is very far from the observations. The two largest 411 

depth values 0.8198 and 0.3262 correspond respectively to the component-wise extremes (34, 41) 412 

and (45, 45). These two component-wise extremes are very close to the median and are unlikely 413 

to be true extremes. On the other hand, the depth-based approach per season identified 3 unusual 414 

extremes out of 20 which are relatively close to the median with large depth values 0.2836, 415 

0.3550 and 0.4937. 416 

In order to check the identified extremes by the different approaches, Figure 5 presents a multiple 417 

chronological plot of the series. Figure 5 shows that the component-wise extremes occur at 418 

different dates for each variable and in some situations these dates are very distant within the 419 

block such as in May 1994 and May 1997. On the one hand, the component-wise approach 420 

identified only one extreme in months with high O3 and NO2 (e.g. May 1995 and June 1996). On 421 

the other hand, it identified an extreme for ordinary months such as July 1998 where during the 422 

whole month the levels of O3 and NO2 are low. The extremes identified by the depth-based per 423 

season approach are generally clustered such as in June-July 1994 and April-May 1998.  424 

It is important to point out that the usual scatter plot (O3, NO2) may be misleading since it is 425 

based on the Euclidian distance which represents more the geometric aspect of the data whereas 426 

the (u, D) plot is more appropriate since it exhibits the probabilistic aspects. For the entire data 427 

set, the (u, D) plot is presented in Figure 6 where the extremes are clearly shown. We observe 428 

that the range T = [0, 0.5] contains the observations with the lowest depth values. The above 429 

elements indicate that the depth-based approach seems more appropriate especially if we take 430 
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into account the fact that the identified extremes are observations and are generally “far” from the 431 

median. 432 

Figures 7a,b show the identified POTs for the studied data set where the threshold is taken to be s 433 

= 90% with λ = 1 and 0.05 on the whole data set. It is easier to visualize the threshold in the 434 

space (u, D) than in the space (O3, NO2) as it is shown in Figures 7c,d for the present case study. 435 

Again, we observe that almost all the identified POTs are found to be in the first 436 

quadrant [ ]0,0.5T = . 437 

As indicated in Section 3, it is of interest to consider other depth functions. In the following, we 438 

considered four depth functions (Mahalanobis, simplicial volume with 1α = , halfspace and 439 

simplicial). Figure 8 illustrates the histograms for each one of the considered depth functions. It 440 

can be seen that the Mahalanobis depth is convenient for the current study. Indeed, the 441 

Mahalanobis histogram shows that the majority of data are in the centre (depth values between 442 

0.1 and 0.9). However, a smaller portion of the observations is found to be very close to the 443 

median (depth values between 0.9 and 1) or is at the boarder (depth values approximately 444 

between 0 and 0.1). This distribution of depth values is natural and reflects the distribution of the 445 

data, especially the fact that extreme observations are rare. The simplicial volume depth (SVD) 446 

function, given in equation (3), could be a good choice as well. 447 

6. Discussion 448 

The identification of extremes treated in the present paper presents some similarities with a 449 

number of commonly used statistical techniques, either in their aims or in their concepts. The 450 

illustrations in this section are based on the above case study. 451 

The hyper-surface ( , )n Dλℂ  obtained by connecting the extreme observations can be employed 452 

to define the range of the multivariate sample. The theoretical version of ( , )n Dλℂ  can be seen 453 
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as the support of the corresponding multivariate distribution. In addition, the volume of the “inner 454 

set” with boundary ( , )n Dλℂ  can be employed to measure and compare the spread of 455 

multivariate samples. This spread measure can be compared, for instance, to the measures 456 

proposed by Liu et al. [1999] which are also based on depth functions. 457 

On the other hand, the hyper-surface ( , )n Dλℂ  can also be viewed as the contour that includes 458 

the entire sample. In the bivariate case, it is possible to present this curve in the space  (u, D) as 459 

shown in Figure 6. When presented in this manner, the contours can be associated to frontier 460 

estimation. Frontier estimation is a statistical technique useful and commonly employed in 461 

econometrics. The reader can refer, for instance, to Simar and Wilson [2000] for a review. Hence, 462 

the elements of the present procedure can be useful to frontier estimation problems. In addition, 463 

based on the presentation (ui, Di), the estimation of the curve ( , )n Dλℂ can be considered as in a 464 

regression analysis. However, in the current regression estimation we are dealing with minimum 465 

values of D whereas in the usual regression analysis the focus is on the mean values and on the 466 

global trend of the series. Furthermore, the presentation of the curve ( , )n Dλℂ  in the space        467 

(u, D) as an open curve (function) is the opposite of the presentation used in time series analysis 468 

to illustrate seasonality trends (see e.g. Cunderlik et al., [2004] and Ouarda et al., [2006]).  469 

An analogy can be established between the present procedure and the generalized additive model 470 

(GAM) estimation using spline functions [Wood, 2006]. Indeed, the coefficient λ  in the present 471 

procedure has a similar role to the penalizing coefficient that controls the regularity of the 472 

estimated function in GAM inference. The estimated function using GAM is similar to the 473 

contour ( , )n Dλℂ  shown in Figure 6. To be more general, and smoother, the contour 474 

( , )n Dλℂ can be obtained by connecting the extreme observations by functions similar to splines 475 

instead of straight lines. An illustration is given in Figure 9 with λ = 0.10 and 0.05. 476 
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Consequently, the developed tools in GAM inference can be adapted to the present context. One 477 

of these important tools is the generalized cross-validation technique which can be adapted to 478 

select the coefficient λ . 479 

Note that one of the criteria to be imposed to the curve ( , )n Dλℂ  is to include all data as well as 480 

to be the closest to the data. In other words, ( , )n Dλℂ  should be the convex-hull on each portion 481 

,k λΠ . The present procedure leads to a convex-hull that is not only geometrically-based but also 482 

statistically-based though depth functions. 483 

7. Conclusions and future work 484 

In the present paper a new procedure is proposed to identify extremes in a multivariate sample. 485 

The proposed procedure, as a natural extension of the univariate setting, is based on depth 486 

functions and the orientation of the observations toward the median. It can also be used to 487 

identify multivariate extremes in a POT framework. From a simulation study, the procedure is 488 

shown to be generally consistent. The procedure is applied to a case study representing 489 

environmental data. In addition, the component-wise maxima are shown not to represent realistic 490 

scenarios in several situations. 491 

The identification of extremes is directly useful to build warning environmental or health 492 

systems. However, in numerous situations, the identification is not an end in itself. Indeed, the 493 

identification is an important step for the study of the asymptotic properties and the modeling of 494 

the identified extremes. It is also shown that the obtained extreme sets and curves are related to 495 

other statistical topics such as multivariate spread measures, frontier estimation and generalized 496 

additive modeling. The proposed procedure is general and offers a large degree of flexibility 497 

through the coefficient λ , the range T and the threshold s. It is useful to practitioners as well as 498 

to methodologists.  499 
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Even though a major part of the elements related to the procedure are treated in the present paper, 500 

others are worth developing in future work. An important issue to be developed is related to the 501 

inferential aspects of the approach including the modeling of the identified extremes. It is also of 502 

interest to optimize and automate the selection of the coefficient λ  for a given data set. In 503 

addition, the coefficient λ  does not need to be constant. This issue is analogue to the smoothing 504 

window in the kernel density nonparametric estimation. The impact of the choice of the depth 505 

function should also be studied thoroughly by considering different depth functions. More 506 

precisely, the consistency of the identified extremes according to the depth functions can be 507 

considered. Finally, it is of interest to associate the obtained extreme curve with a confidence 508 

band representing the identification errors. 509 
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Main notation list: 517 

d  Dimension of data vector 

D Depth function 

(0,1]λ∈   Coefficient that defines a “grid” of the sphere 1d −Ω  and represents the volume of a portion 

of the unit sphere 1d −Ω  

MD Mahalanobis depth function 

Mn Multivariate median of the sample 

n  Sample size 

1( )d

nM−Ω  Unit sphere centered at the median Mn. It represents the space of orientations 

u  Orientation 

,n dΛ  d-dimension sample with size n 

,k λΠ  λ -portion from 1d −Ω  

( , )n DλΣ  Set of extreme observations of the sample with coefficient λ  using a depth function D 

,kB λ  The corresponding random vector of ( , )n DλΣ  

( , , )n T DλΣ  Restriction of the set ( , )n DλΣ  on the range T  

, ,k TB λ  The corresponding random vector of ( , , )n T DλΣ  

( , , )n s DλΣ  Set of POT observations of the sample over a threshold s with coefficient λ  using a depth 

function D  

, ,k sK λ  The corresponding random vector of ( , , )n s DλΣ  

( , , , )n s T DλΣ  Restriction of the set ( , , )n s DλΣ  on the range T 

, , ,k s TK λ  The corresponding random vector of ( , , , )n s T DλΣ  

ne  Extreme observation when ( )volume Tλ =  

 

( , )n Dλℂ  and 

( , , )n T Dλℂ  

Extreme hyper-surfaces obtained by connecting the observations of respectively the sets 

( , )n DλΣ  and ( , , )n T DλΣ  

 

( , , )n s Dλℂ  

and ( , , , )n s T Dλℂ  

POT hyper-surfaces obtained by connecting the observations of respectively the sets 

( , , )n s DλΣ  and ( , , , )n s T DλΣ  in the space (u, D) 

 518 
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Table 1: Evaluation of the consistency of the extreme and POT identification procedures based 647 

on the polygon volume. 648 

 649 
  0.05λ =  0.1λ =  

  Extremes POT  
with s = 0.9 

Extremes POT  
with s = 0.9 

  Me STDe MPOT STDPOT Me STDe MPOT STDPOT 

1γ =           

 n = 100 0.87  0.23  0.14  0.07  1.09  0.26  0.29  0.11  
 n = 300 0.95  0.21  0.36  0.09  1.08  0.23  0.52  0.12  
 n = 500 0.96  0.20  0.45  0.09  1.06  0.20  0.57  0.11  
 n= 1000 0.96  0.18  0.54  0.10  1.03  0.18  0.63  0.11  
          

1.414γ =           

 n = 100 0.85  0.24  0.16  0.07  1.05  0.28  0.31  0.11  
 n = 300 0.95  0.22  0.39  0.09  1.05  0.23  0.54  0.11  
 n = 500 0.95  0.20  0.48  0.09  1.05  0.20  0.61  0.11  
 n= 1000 0.97  0.19  0.59  0.10  1.04  0.19  0.68  0.12  
          

3.162γ =           

 n = 100 0.44  0.16  0.11  0.05  0.45  0.17  0.13  0.07  
 n = 300 0.46  0.13  0.19  0.05  0.45  0.14  0.21  0.07  
 n = 500 0.46  0.12  0.22  0.05  0.46  0.13  0.24  0.07  
 n= 1000 0.46  0.11  0.27  0.06  0.45  0.11  0.28  0.07  

 650 
651 
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Table 2: Original and standardized values of (O3, NO2) of the identified extreme observations 652 
corresponding to λ=0.05 as well as their MD depth values in the first quadrant. 653 
 654 

O3 NO2 Standardized O3 Standardized NO2 Depth 

74 37  0.7167  0.0286  0.0528 
80 40  0.8167  0.0714  0.0418 
64 44  0.5500  0.1286  0.0894 
84 53  0.8833  0.2571  0.0365 
71 52  0.6667  0.2429  0.0615 
53 46  0.3667  0.1571  0.1759 
71 61  0.6667  0.3714  0.0565 
65 60  0.5667  0.3571  0.0733 
58 59  0.4500  0.3429  0.1018 
64 70  0.5500  0.5000  0.0617 
69 86  0.6333  0.7286  0.0372 
63 79  0.5333  0.6286  0.0505 
58 85  0.4500  0.7143  0.0471 
40 55  0.1500  0.2857  0.2590 

42 61  0.1833  0.3714  0.1712 
38 60  0.1167  0.3571  0.1938 
46 105  0.2500  1.0000  0.0287 

36 62  0.0833  0.3857  0.1722 
37 82  0.1000  0.6714  0.0621 
32 58  0.0167  0.3286  0.2206 

 655 
Bold character indicates the (O3, NO2) corresponding to the largest and smallest depth values.656 
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 657 
Table 3: Values of (O3, NO2) of the identified extremes corresponding to λ = 0.25 within each 658 
season as well as their MD depth values in the first quadrant (left); similar values using the 659 
component-wise approach within monthly blocks (right). 660 
 661 

Depth-based per season  Component-wise  

O3 NO2 Depth O3 NO2 Depth 

55 41 0.1329 45 58 0.1850 

71 61 0.0456 46 62 0.1466 

48 62 0.1339 53 78 0.0644 

34 78 0.0806 71 71 0.0483 

74 37 0.0640 46 60 0.1616 

64 70 0.0945 71 86 0.0357 

69 86 0.0566 63 79 0.0505 

37 82 0.0678 74 60 0.0509 

84 53 0.0453 52 62 0.1194 

46 54 0.2595 41 55 0.2514 

43 55 0.2836 68 105 0.0246 

46 105 0.0292 84 53 0.0365 

46 46 0.2100 39 60 0.1916 

57 81 0.0439 58 66 0.0840 

39 66 0.1138 53 51 0.1608 

28 47 0.4937 57 81 0.0542 

59 42 0.0694 47 63 0.1357 

40 41 0.3550 59 62 0.0903 

42 61 0.0989 45 45 0.3262 

36 62 0.1114 34 41 0.8198 

 662 
Bold character indicates the (O3, NO2) corresponding to the largest and smallest depth values. 663 
Shaded character indicates component-wise extremes that coincide with observations. 664 

  665 
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Figure 1: Scatter plot illustration for samples generated with n = 300 and a) 1γ =  b) 1.414γ =  and c) 3.162γ =  
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Figure 2: Illustration of a λ-portion ,k λΠ , the orientation interval [-1, 1], the set of extreme 

observations ( , )n DλΣ ,  the corresponding curve ( , )n Dλℂ , and a part T as the first quadrant of 

(O3, NO2) for  λ = 0.05 where D is MD  
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Figure 3: Identified extreme observations set ( , )n DλΣ of (O3, NO2) and the corresponding curve 

( , )n Dλℂ  for a) λ = 0.0625 and b) λ = 0.05 where D is MD 



 36

 
 

 
 
Figure 4: Extremes identified as component-wise, depth-based (λ=0.05) and depth-based per 
season (λ=0.25) in the first quadrant. 
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 Figure 5: Chronological (O3, NO2) series and the extremes identified as component-wise, depth-based (λ=0.05) and depth based per 
season (λ=0.25) in the first quadrant. The vertical lines indicate month limits in each season 
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Figure 6: Identified extreme observation set ( , )n DλΣ of (O3, NO2) and the corresponding curve 

( , )n Dλℂ in the space (u, D) for a) λ = 0.10 and b) λ = 0.05 where D is MD 
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d)  
Figure 7: Identified POT observation set ( , , )n s DλΣ of (O3, NO2) and the corresponding curve 

( , , )n s Dλℂ  for a) λ = 1and b) λ = 0.05 where D is MD and s = 0.90; and for c) λ = 1and d) λ = 

0.05 in the space (u, D) 
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a) Mahalanobis depth b) Simplicial volume depth 
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Figure 8: Histograms of depth values of the data set (O3, NO2) for different depth functions 
 



 41

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M
a
h
a
la
n
o
b
is
 D
e
p
th

Orientation  

-1  -0.8 -0.6 -0.4 -0.2 0   0.2 0.5 0.6 0.8 1   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
h
a
la
n
o
b
is
 D
e
p
th

Orientation  
 

a)  
 

b) 

Figure 9: Identified extreme observation set ( , )n DλΣ of (O3, NO2) and the corresponding smooth 

curve ( , )n Dλℂ in the space (u, D) for a) λ = 0.10 and b) λ = 0.05 where D is MD 
 

 


