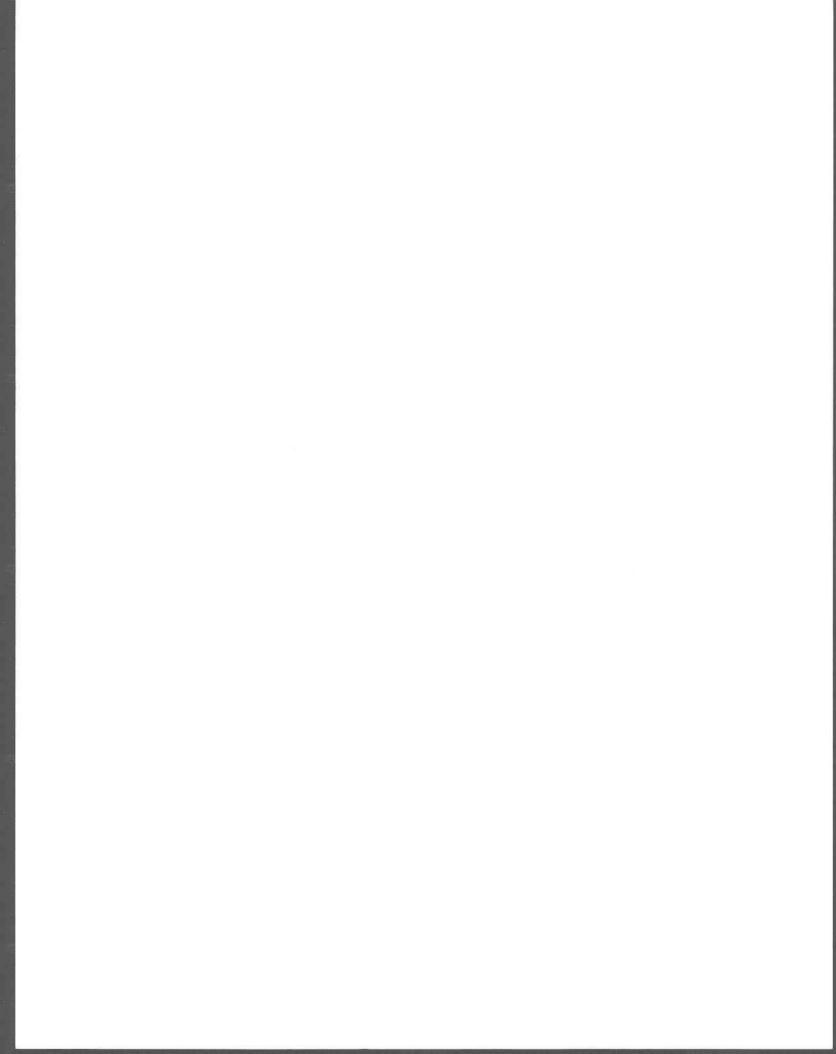
MEMOIRE DE MAITRISE

INRS-EAU

EVALUATION DE L'APPLICABILITÉ D'UN MODELE MATHÉMATIQUE SIMULANT LE DEVENIR DES NITRATES DANS LES EAUX SOUTERRAINES AGRICOLES

par


Luc Trépanier

Directeur: Jean-Pierre Villeneuve

Codirecteur: Olivier Banton

UNIVERSITE DU QUEBEC 2800, rue Einstein Suite 105 Québec (Québec) G1X 4N8

MARS 1992

RÉSUMÉ

L'application irrationnelle d'engrais chimiques azotés en agriculture représente un danger potentiel pour l'environnement. Ils contribuent à l'augmentation des concentrations en nitrates dans les eaux souterraines. Récemment, le développement de modèles mathématiques a permis une meilleure compréhension des mécanismes régissant le transport et les transformations des nitrates dans le sol. Cette étude a pour but de vérifier l'applicabilité d'un tel modèle aux conditions québécoises. Pour ce faire, les résultats de simulation sont confrontés à des mesures de terrain.

Le modèle étudié simule le devenir de l'eau, de la température et de l'azote dans le sol. Il s'agit d'un modèle de recherche unidimensionnel basé sur des processus physiques. La première partie, SOIL, simule les processus physiques alors que la deuxième partie, SOILN, représente les processus chimiques. L'évolution des concentrations en nitrates dans le profil de sol a été simulée entre les mois de mai et octobre 1990.

Au cours de cette même période, des lysimètres avec tension ont été utilisés pour recueillir des échantillons d'eau dans le profil de sol afin d'en mesurer les concentrations en nitrates et en ammonium. Le site expérimental étudié était composé d'un loam sableux à graveleux, cultivé de maïs sucré, ayant reçu 133 kg Ninorganique/ha divisé en deux applications de 40 kg N/ha (de phosphate d'ammonium) et de 93.5 kg N/ha (de nitrate d'ammonium).

Les résultats obtenus ont montré une bonne concordance entre les concentrations observées et simulées pour la période comprise entre les mois de mai et septembre. Une différence plus importante a cependant été enregistrée au mois d'octobre. Pour l'ensemble de la période étudiée, les précipitations ont été de 751 mm, l'évapotranspiration réelle simulée de 529 mm et le flux d'eau cumulé passant 1 mètre de 198 mm. Les résultats des simulations concernant la dynamique de l'azote dans le premier mètre de sol ont révélé que la minéralisation a été de 12.25 g N/m², la nitrification de 9.22 g N/m², la dénitrification de 1.60 g N/m², le prélèvement par les plantes de 11.0 g N/m² et le lessivage de 2.69 g N-NO₃/m². De plus, l'utilisation des concentrations mesurées et des flux d'eaux simulés a permis d'établir que l'eau s'échappant de la zone racinaire avait une concentration moyenne en nitrates inférieure à 10 mg N-NO₃/l.

AVANT-PROPOS

Ce mémoire de maîtrise a été rendu possible grâce à l'assistance de plusieurs personnes. Je tiens particulièrement à remercier M. Jean-Pierre Villeneuve et M. Olivier Banton qui m'ont dirigé tout au long de cette étude. Me s remerciements vont aussi aux professeurs et autorités de l'INRS-EAU, à son personnel technique et à plusieurs autres gens dont M. Pierre Lafrance et M. François Brisseault. Je voudrais également remercier le Ministère de l'Environnement du Québec pour avoir mis à notre disposition le site expérimental nécessaire à la réalisation de cette étude ainsi que le fond FCAR pour son soutien financier.

TABLE DES MATIERES:

RÉSI				i
AVA	NT-P	ROPOS		ii
TAB	LE D	ES MATI	ERES	iii
LIST	ES D	ES TABL	EAUX	vi
LIST	ES D	ES FIGUI	RES	. viii
	100001 - 0 v-0100			
1.	INTE	RODUCT	ION	1
_,	1.1	Probléma	tique	1
	1.2	État de la	recherche	3
	1.3	Objectif e	t méthodologie	5
		•		
2.	LEC	YCLE DE	E L'EAU ET DE L'AZOTE DANS LE SOL	6
2.	2.1	Introduct	ion	6
		Eau		6
	2.2	221 Étai	t de l'eau dans le sol	6
		A)	Eau de rétention	6
		B	Eau capillaire	7
		\sim	Eau de gravité	₇
		222 Noti	on d'eau utile	₇
		2.2.2 IVOII	Potosité	7
		R	Capacité au champ	7
			Point de flétrissement	8
		<u> </u>	Eau utile	Q
		223 Moi	eau diffe	Q
		A)	Milieu saturé	O
		B)	Milieu non saturé	0
			bilan hydrique du sol	J
	2.3	Azota	man nyunque uu soi	11
	2.3	231 For	mes d'azote dans le sol	12
		2.3.1 Pon A)	Azote organique	12
		A)	-Litière	12
			-Humus	13
		B)	Azote inorganique	1/
		D)	-Forme cationique	14
			-Forme anionique	1/
			-Forme gazeuse	15
		232 Fact	teurs régissant les transformations de l'azote	15
		2.3.2 Pac	Température	16
		A) B) C)	Humidité et aération	16
		K	pH	
		50	Ratio carbone/azote	17
		D)	Ratio carbone/ azote	1/
3.	МАТ	ÉRIEI E	T MÉTHODES	12
<i>J</i> .	3.1	Terrain	T WIETHODES	
	J.1		alisation	10
			ologie	
		3 1 3 Drot	iques culturales	20
		314 Ech	antillonnage	22
		J. I.T LUII	antinoinaev	** 44

		3.1.5 Données météorolo	giques2	24
	3.2	Laboratoire		24
		3.2.1 Nitrates		25
		3.2.2 Ammonium		25
	3.3	Modèles mathématiques	SOIL et SOILN2	25
		3 3 1 Présentation de SO	SOIL et SOILN	25
		332 SOIL: théorie et fo	nctionnement2	77
		A) Équations		7
		-Évanotransni	ration	7
		-Hydrodynam	ration	ò
		Flux thermic	na Souterrame	21
		P) Entrées et sor	ties du modèle) <u>1</u> 21
		B) Entrées et sor	nes du modele	77
		2 2 2 COIL No absorb at	nsibilité	22
		5.5.5 SOILN: theorie et	121-	2
		A) Structure du n	nodèle	2
		B) Équations		54
		-Apport en az	ote n, immobilisation et nitrification	34
		-Minéralisatio	n, immobilisation et nitrification	34
		-Influence des	facteurs abiotiques	37
		-Azote puisé r	oar les plantes	38
		-Dénitrification	n	39
		-Transport de	s nitrates4	Ю
		C) Entrées et sor	ties du modèle4	10
		D) Analyse de se	nsibilité4	1
	3.4	Détermination des paran	nsibilité4 nètres nécessaires aux simulations4	1
		3.4.1 SOIL	4	-1
		 A) Fichier climat 	ologique4 opriétés hydrauliques du sol4	12
		B) Fichier des pr	opriétés hydrauliques du sol4	12
		 C) Fichier des pa 	ramètres du site	14
		D) Fichier des pr	ramètres du site	15
		3.4.2 SOILN	4	15
		A) Fichier des va	riables motrices4	15
		B) Fichier des pa	ramètres du site	15
		C) Fichier caracter	ramètres du site4 érisant l'état initial du sol4	16
		C) Fichief caracti	erisant i etat minai du soi	rU
4.	DÉC	ULTATS	4	17
٦.	4.1	Mosures de terreir	4	t / 17
	4.1	4.1.1 Concentration on n	trates4	17
		4.1.1 Concentration on or	nmonium 4	10
		4.1.2 Volumes d'accoment		17
	4.2	Simulations	eillis par les collecteurs5	1
	4.2	Simulations	SOIL	3
		4.2.1 Resultats du model	e 201L	3
		A) Précipitation		3
		B) Évapotranspir	ation réelle5 ation réelle et précipitations cumulées5)4
		C) Évapotranspir	ation réelle et précipitations cumulées 5	4
		D) Teneur en ear		15
		E) Flux d'eau jou	rnalier et cumulé5	6
		4.2.2 Résultats du modèle	e SOILN 5	8
		A) Apports atmos	sphériques5	8
		B) Apports par fe	ertilisation5	59
		C) Minéralisation	de l'humus5	9
		D) Nitrification		60
		E) Prélèvement e	n nitrates par les plantes6	51
		=, = 1010 · 01110111 · 0	F F	_

		F) Pertes par dénitrification	62
		G) Pertes par lessivage	64
		H) Concentration en nitrates	03
5.	DISC	CUSSION	66
	5.1	Campagne d'échantillonnage	66
		5.1.1 Validité des concentrations mesurées	66
		5.1.2 Validité des flux d'eau mesurés	66
		5.1.3 Variabilité spatiale des résultats	67
	5.2	5.1.4 Variabilité temporelle des résultats	0/
	5.2	Simulation	08 60
		A) Évapotranspiration réelle	00 88
		B) Recharge de la nappe	69
		C) Teneur en eau	69
		D) Flux de l'eau dans le sol	70
		5.2.2 SÓILN	70
		A) Bilan de l'azote dans le sol	70
	5.3	Comparaison des concentrations en nitrates simulées et observées Essai de bilan environnemental	72
	5.4	Essai de bilan environnemental	74
		5.4.1 Flux de masse en nitrates	13 76
	5.5	Recommandations pour la poursuite des travaux	70 70
	J.J	Accommandations pour la poursuite des travaux	•••• 17
6.	CON	CLUSION	80
RIRI	JOG.	RAPHIE	82
ANN	EXE	A: Nomenclature et unités des différentes variables du modèle SOIL	9 0
ANN	EXE	B: Nomenclature et unités des différentes variables du modèle SOIL	N 94
ANN	EXE	C: Valeurs et références des paramètres du modèle SOIL	99
ANN	EXE	D: Valeurs et références des paramètres du modèle SOILN	105
ANN	EXE	E: Coefficients de la régression de Gupta	113
ANN	EXE	F: Variables météorologiques utilisées par le modèle SOIL	115
ANN	EXE	G: Variables motrices utilisées par le modèle SOILN	121
ANN	EXE	H: Résultats sommaires de la simulation avec SOIL	147
ANN	EXE	I: Résultats sommaires de la simulation avec SOILN	155
ANN	EXE	J: Résultats des concentrations en nitrates mesurées	167
ANN	EXE	K: Résultats des concentrations en ammonium mesurées	171
ANN	EXE	L: Résultats des volumes d'eau mesurés aux collecteurs	175

LISTE DE TABLEAUX:

3.1	Distributions statistiques des caractéristiques chimiques du site de St- Augustin en g/kg
3.2	Distributions statistiques des paramètres de sol caractérisant le site de St- Augustin
3.3	Divers stades de croissance du maïs sucré pour l'été 199021
3.4	Pratiques culturales à la parcelle de maïs sucré de Saint-Augustin-de- Desmaures
3.5	Relation tension-teneur en eau telle que calculée à partir de la régression de Gupta et Larson
3.6	Valeur des paramètres de l'équation de Brooks et Corey ajustée afin de représenter les valeurs ponctuelles
3.7	Quantité d'azote (g N/m²) présente dans le sol au début de la simulation 46
4.1	Résultats de simulation présentant la quantité totale d'azote minéralisée pour les différentes couches de sol
4.2	Résultats de simulation présentant la quantité totale d'azote nitrifiée pour les différentes couches de sol
4.3	Résultats de simulation présentant la quantité totale d'azote, sous forme nitrates, prélevée par les racines pour chaque couches de sol
4.4	Résultats de simulation présentant la quantité totale d'azote dénitrifiée pour les différentes couches de sol

4.5	Résultats de simulation présentant la quantité totale d'azote perdue par lessivage pour les différentes couches de sol
4.6	Résultats de simulation présentant la quantité totale d'azote minéral résiduel à la fin de la simulation pour les différentes couches de sol
5.1	Bilan de l'azote simulé dans les couches composant le premier mètre de sol
5.2	Concentration moyenne en nitrates ayant percolés à différentes profondeurs

LISTE DE FIGURES:

2.1	Influence de la succion sur la conductivité pour des sols de textures différentes
2.2	Le cycle de l'azote dans le sol
3.1	Localisation de la parcelle expérimentale de Saint-Augustin-de-Desmaures18
3.2	Réseau de lysimètres avec et sans tension
3.3	Structure du modèle de l'azote. Les éléments inclus à l'intérieur des lignes pointillées représentent la couche superficielle du sol. Les couches sous-jacentes ont la même structure mais n'ont pas de contact avec les dépôts atmosphériques et les fertilisants
3.4	Cheminement de l'azote et du carbone dans la litière
3.5	Courbes tension-teneur en eau obtenues à l'aide de Brooks et Corey et valeurs ponctuelles calculées à partir de la régression de Gupta et Larson 44
4.1	Concentrations mesurées en nitrates à 50 cm48
4.2	Concentrations mesurées en nitrates à 100 cm48
4.3	Concentrations mesurées en nitrates à 150 cm
4.4	Concentrations mesurées en ammonium à 50 cm
4.5	Concentrations mesurées en ammonium à 100 cm
4.6	Concentrations mesurées en ammonium à 150 cm 51
4.7	Volumes cumulés de l'infiltration mesurée à l'aide de collecteurs à 50 cm. 52

4.8	Volume cumulé de l'infiltration mesurée à l'aide de collecteurs à 100 cm 52
4.9	Précipitations mesurées majorées de 7 %
4.10	Évapotranspiration réelle simulée
4.11	Évapotranspiration réelle et précipitation cumulées
4.12	Teneur en eau simulée pour les couches comprisent dans les premiers 80 cm
4.13	Flux d'eau simulé à 20 cm, 80 cm, et 140 cm 57
4.14	Flux d'eau cumulé simulé à 20 cm, 60 cm, 100 cm et 140 cm 57
4.15	Dépositions atmosphériques simulées. Inclus les dépôts secs et humides 58
4.16	Minéralisation simulée de l'humus dans le premier mètre de sol
4.17	Nitrification simulée de l'azote dans le premier mètre de sol
4.18	Simulation du prélèvement en nitrates par les plantes dans le premier mètre de sol
4.19	Dénitrification simulée dans le premier mètre de sol
4.20	Lessivage simulé des nitrates en fonction de la profondeur
4.21	Concentrations en nitrates simulées
5.1	Concentrations en nitrates mesurées et simulées à 0.5 mètre
5.2	Concentrations en nitrates mesurées et simulées à 1.0 mètre
5.3	Concentrations en nitrates mesurées et simulées à 1.5 mètre

5.4	Évolution de la médiane des concentrations mesurées en nitrates à 50, 100 et 150 cm
5.5	Flux de masse en nitrates. Calculé en multipliant les concentrations mesurées par les flux d'eau simulés
5.6	Flux de masse cumulé en nitrates77

1 INTRODUCTION

1.1 PROBLÉMATIQUE

En 1981, plus de 6.2 millions de Canadiens, soit 26 % de la population, dépendaient des eaux souterraines pour leur alimentation en eau potable (Hess, 1986). Au Québec, on estime que c'est 20 % de la population, dont 65 % des municipalités, qui utilise cette eau comme source d'approvisionnement (MENVIQ,1988). Celle-ci, abondante et encore sous utilisée, doit être considérée comme une ressource de grande valeur tant sur la base des utilisations actuelles que potentielles et ce particulièrement en milieu rural où elle constitue souvent l'unique source possible d'approvisionnement.

Au cours des dernières décennies, on a assisté à une industrialisation du milieu agricole. Ce secteur de l'économie a dû augmenter sa productivité afin de répondre à la demande sans cesse croissante. Pour ce faire, des quantités de plus en plus importantes de fertilisants inorganiques ont été utilisées pour augmenter le rendement des cultures. Les engrais appliqués sont composés d'une part importante d'azote servant à pallier aux carences nutritives engendrées par un mode de production intensif. Sur les 230 millions d'hectares fertilisés en Amérique du Nord, le dosage moyen d'application est passé de 43.5 kg N ha⁻¹ an⁻¹ en 1976 à 48.6 kg N ha⁻¹ an⁻¹ en 1980. Haynes (1986a) rapporte que la consommation de fertilisant azoté était estimée en 1980 à 11 X 109 kg N an⁻¹ en Amérique du Nord et à 53 X 109 kg N an⁻¹ dans le monde. Au Québec, le recours aux engrais chimiques a augmenté de plus de 400 % en 25 ans pour se stabiliser aux environs de 500 000 tonnes par année (MENVIQ,1988). Cette pratique constitue une source potentielle importante de contamination pour l'eau souterraine. Les engrais azotés ne sont cependant pas les seuls en cause, les pratiques culturales, l'épandage des fumiers et lisier contribuent également à la pollution par les nitrates.

L'azote entre dans le sol sous forme minérale et organique dans un cycle très dynamique où le point final est la forme nitrate, NO₃ (Miller, 1990), forme jugée dangereuse pour la santé humaine. Une concentration trop élevée peut causer un dérèglement sanguin, la méthémoglobinémie, pouvant être mortelle pour les enfants et les foetus des femmes enceintes. Kaufman (1974) rapporte qu'entre 1945 et 1974, plus de 2 000 cas ont été rapportés en Amérique du Nord et en Europe, dont 7 à 8 % ont été mortels. Le règlement québécois sur l'eau destinée à la consommation humaine stipule que la concentration maximale permise en nitrates est de 10 mg N-NO₃/l (Gouvernement du Québec, 1990).

D'après Powers et Schepers (1989), 6.4 % des 124 000 échantillons d'eau souterraine analysés au cours des 25 dernières années par le "United States Geological Service" contenaient au-delà de 10 mg N-NO₃/l. En Iowa, plus de 40 % des municipalités rurales distribuent une eau ne rencontrant pas la norme sur les nitrates (Côté, 1990a). En Ontario, de nombreuses études ont démontré que des teneurs en NO₃ supérieures aux normes acceptables étaient fréquemment mesurées dans la nappe phréatique des zones agricoles (Miller, 1990). Au Québec, la seule étude qu'il a été possible consultée est celle de Asselin (1991). Ce dernier rapporte une concentration moyenne en nitrates supérieure à 10 mg N-NO₃/l dans l'eau de drainage. L'étude a été réalisée sur un sol sableux subissant une culture de maïs en continue depuis trois ans et une fertilisation azotée de 190 kg N/ha. Bien qu'il y a peut de travaux disponibles sur le sujet au Québec, comme les pratiques culturales et les types de sol sont similaires à certaines régions de l'Ontario et des États-Unis, rien ne peut nous laisser supposer qu'aucun problème ne se pose avec les fertilisants inorganiques. Par ailleurs, des analyses d'eau provenant de drains agricoles au dessus desquels on a appliqué une fertilisation organique, ont démontré dans certaines régions des concentrations en nitrates supérieures à la norme (Côté, 1990b, Laperrière, 1991).

Il est important de réaliser que la contamination diffuse d'origine agricole agit sur de grandes surfaces et risque alors de porter préjudice à des aquifères régionaux entiers. Les vitesses de migration des eaux souterraines étant très lentes, des décennies peuvent être nécessaires avant d'assister au retour à la potabilité d'aquifères contaminés. Il est donc urgent d'agir avant qu'il ne soit trop tard si l'on ne veut pas perdre cette ressource d'une valeur inestimable.

1.2 ÉTAT DE LA RECHERCHE

Avant les années 60, les recherches sur les fertilisants inorganiques azotés portaient sur leur efficacité en terme de rendement des cultures. A ce moment, on n'avait aucune information quantitative sur ce que devenait l'azote non utilisé par les plantes. Ce n'est qu'à la fin des années 60 que l'on a commencé à s'intéresser aux problèmes environnementaux occasionnés par l'utilisation des fertilisants (Gilliam et al., 1985). On a alors pris conscience qu'ils pouvaient occasionner l'eutrophisation des eaux de surface, qu'ils augmentaient l'émission d'oxyde nitrique (N₂O) néfaste à la couche d'ozone (O₃) et qu'ils représentaient un risque pour la santé humaine lorsque présent dans l'eau potable (en concentration supérieure à 10 mg N-NO₃/l).

Les dangers reliés à la contamination des eaux souterraines utilisées pour la consommation domestique ont conduit à la réalisation de travaux de recherche de plus en plus nombreux. Ces travaux peuvent être séparés en deux catégories.

Il y a d'abord les recherches qui contribuent à l'analyse du problème selon une approche réductionniste. Les travaux en ce sens tentent de démontrer l'influence qu'ont certains paramètres sur le lessivage des nitrates et permettent de voir quelles sont les modifications permettant de minimiser l'impact sur l'environnement de l'épandage d'engrais. L'analyse des pratiques culturales se divise en deux catégories (Strebel et al., 1989), soit l'utilisation du sol (type de culture, eau et azote assimilés par les plantes, durée du couvert végétal, intensité des cultures) et la fertilisation (type de fertilisant azoté, date et nombre d'applications, dosage).

Il y a ensuite les recherches qui portent sur la synthèse du problème. Elles ont pour objectif de rassembler les connaissances acquises afin de modéliser le devenir de l'azote dans les sols. Ces efforts de modélisation ont deux buts. Certains de ces modèles servent d'outils de gestion et permettent de prédire le destin de l'azote pour un sol donné. D'autres modèles servent à vérifier les hypothèses concernant les processus de transformation et de transport de l'azote.

Les modèles de gestion et de prédiction sont d'une grande utilité. Ils permettent d'optimiser le rendement des cultures tout en minimisant l'utilisation des fertilisants. Leur traitement mathématique est simple et repose sur les statistiques des années précédentes. Ils sont fonction d'un type de culture et spécifiques à un site (Frissel et Van Ven, 1982). Ce type de modèle, peu exigeant en ce qui concerne les donnés d'entrées (Addiscott et Wagenet, 1985), peut être d'une grande utilité aux gestionnaires.

Les modèles de recherche permettent, quant à eux, de faire le point sur l'ensemble des connaissances se rapportant à un sujet. Basés sur les mécanismes régissant le transport et les transformations de l'azote, ils servent à vérifier les hypothèses et à établir les champs de recherche. La complexité des phénomènes pris en compte par ce type de modèle limite cependant leur utilisation aux sites dont les caractéristiques sont connues de manière extensive (Johnsson et al., 1987). En fonction de la formation et des objectifs des modélisateurs, certaines parties des modèles sont décrites avec beaucoup de détails alors que d'autres sont très simplifiées. Frissel et Van Veen (1982) divisent les modèles de recherche en 3 catégories: les modèles de transport (où l'accent est mis sur les processus tels le lessivage des nitrates et la volatilisation de l'ammoniac, NH₃), les modèles axés sur la matière organique (où la disponibilité en azote minéral pour les plantes et la variation en matière organique des sols dominent) et les modèles sol-plante (où la quantité d'azote assimilée, la matière sèche produite et les facteurs limitant la production dominent).

Au cours des dernières années, avec l'arrivée d'outils informatiques de plus en plus puissants, on a assisté au développement d'un nombre sans cesse croissant de nouveaux modèles. Cependant, peu de modèles ont été comparés à des mesures de terrain. La plupart des applications ont été réalisées par les auteurs des modèles et ont été limitées a un type de sol, de culture et de climat (Gustafson, 1988).

1.3 OBJECTIF ET MÉTHODOLOGIE:

Le but de la présente étude consiste à vérifier, pour un site Québécois, l'applicabilité d'un modèle mathématique de recherche simulant les concentrations en nitrates dans la zone vadose. Les pratiques culturales retenues pour l'étude sont celles normalement recommandées au Québec pour un champ de maïs sucré.

Dans un premier temps, le modèle est utilisé afin de simuler sur une période de 6 mois, les concentrations en nitrates ainsi que les volumes d'eau percolant de la zone racinaire. Les nombreux paramètres d'entrée du modèle proviennent soit de mesures effectuées au champ, soit de valeurs typiques de la littérature.

Par la suite, les eaux interstitielles du sol provenant de lysimètres avec tension installés au champ sont analysées pour leur concentration en nitrates. L'échantillonnage débute au moment de la première fertilisation (fin mai) et se poursuit jusqu'aux premières neiges (début novembre). Afin de s'assurer d'avoir toute l'information, les fréquences d'échantillonnage sont plus rapprochées dans les premières semaines suivant les deux fertilisations.

Finalement, les résultats mesurés et simulés sont comparés afin d'évaluer l'applicabilité du modèle dans des conditions québécoises.

2 LE CYCLE DE L'EAU ET DE L'AZOTE DANS LE SOL

2.1 INTRODUCTION

L'étude de la contamination des eaux souterraines par les nitrates passe par la compréhension (1) du cycle de l'azote et (2) du mouvement de l'eau dans le sol. La présence et la migration dans le sol des nitrates sont les conditions nécessaires et essentielles à une contamination de l'aquifère. L'objectif de ce chapitre est de présenter les bases théoriques conduisant à la compréhension de ces mécanismes.

2.2 EAU

Les principes et les équations de base décrivant l'écoulement de l'eau dans le sol sont présentés par de nombreux auteurs (Hillel (1988), Castany (1967), de Marsily (1981) et Freeze et Cherry (1979)).

2.2.1 ÉTAT DE L'EAU DANS LE SOL

La manière la plus rationnelle de définir l'état de l'eau dans le sol est de considérer son énergie en terme de potentiel. Cette classification est très utile dans les écoulements en milieux poreux. En fonction de l'accessibilité de l'eau contenue dans la matrice, on distingue trois types d'eau.

A) EAU DE RÉTENTION:

La molécule d'eau, par son caractère polaire, est attirée par les charges électroniques se trouvant à la surface des minéraux. Elle constitue alors l'eau liée. On distingue deux catégories en fonction des forces qui la retiennent à la matrice:

-eau hygroscopique; fixée à la surface des grains par des forces d'adsorption; elle ne peut être déplacée qu'à l'état de vapeur.

-eau pelliculaire; entoure les particules du sol et leur eau hygroscopique d'une mince pellicule dont l'épaisseur ne dépasse pas 0.1 micromètre; elle peut se déplacer à l'état liquide par le jeu des attractions moléculaires des particules voisines.

B) EAU CAPILLAIRE:

L'eau capillaire remplit les pores entre les grains. Elle est retenue par les forces de capillarité. Elle peut s'élever au dessus de la surface piézométrique et s'y maintenir en équilibre grâce aux tensions superficielles. Cette eau peut être extraite par dépression.

C) EAU GRAVIFIQUE:

L'eau de gravifique peut être définie comme étant l'eau se déplaçant librement dans le sol sous l'effet de la gravité. Elle se situe dans les espaces libres des pores, des interstices et des fissures des roches. Elle constitue la partie active des eaux souterraines et c'est elle qui est principalement responsable du transport des solutés tels les nitrates. Les efforts de modélisation se concentrent donc plus particulièrement sur cette fraction des eaux souterraines.

2.2.2 NOTION D'EAU UTILE

A) POROSITÉ:

La porosité est définie comme étant le volume des vides sur le volume total de sol. Elle est un indice du volume relatif des pores dans le sol mais ne donne aucun renseignement sur leurs distributions. Sa valeur oscille généralement entre 0,3 et 0,6.

B) CAPACITÉ AU CHAMP:

La capacité au champ correspond au maximum d'eau pouvant être retenue par le sol (capillaire et liée). Lorsque la teneur en eau dépasse cette limite, il y a écoulement de l'eau dans le sol. Cette notion bien qu'extrêmement précieuse, n'est cependant pas une propriété physique réelle, caractéristique et constante pour chaque sol.

C) POINT DE FLÉTRISSEMENT:

Le point de flétrissement est la valeur limite de l'eau liée, donc non absorbable par les plantes. Il est relativement uniforme et indépendant de la granulométrie et correspond à une succion de 16 atmosphères, soit un pF de 4.2.

D) EAU UTILE:

L'eau utile correspond à la quantité d'eau emmagasinée dans le sol et pouvant être utilisé par les plantes. Elle est donnée en fait par la différence entre la capacité au champ et le point de flétrissement.

2.2.3 MOUVEMENT DE L'EAU DANS LE SOL

Comme toute substance dans la nature, l'eau souterraine se déplace d'un point où l'énergie potentielle est plus élevée vers un point où elle est plus basse. Elle tend aussi à se mettre en équilibre avec son entourage. La connaissance de l'état énergétique de l'eau du sol permet de connaître les forces relatives en présence et de déterminer quelles seront la direction et la vitesse de l'eau. Bien que la force motrice demeure la différence de pression, on traite différemment l'écoulement en fonction que l'on soit en milieu saturé ou non saturé.

A) MILIEU SATURÉ:

Le premier chercheur à étudier l'écoulement de l'eau dans le sol fût Henry Darcy en 1856. Il réalisa pour le compte des "fontaines publiques de la ville de Dijon" des expérimentations portant sur l'écoulement à travers une colonne de sable. Il constata que le débit, Q, était proportionnel à la charge (pression d'eau), H, à la section de passage, A, et inversement proportionnel à la longueur de l'écoulement, L. Il établit un facteur de proportionnalité, K, appelé conductivité hydraulique.

$$Q = K \frac{A H}{L} = K A i$$

Le rapport H/L représente le gradient hydraulique, i, ou perte de charge par unité de longueur. Ce paramètre constitue le moteur de la circulation des eaux souterraines.

L'équation de Darcy a par la suite été modifiée afin de représenter l'écoulement dans les sols en place. On est arrivé en travaillant en trois dimensions, à une formule générale d'écoulement pour les régimes permanents en milieu homogène et isotrope:

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = 0$$

où h joue le rôle de potentiel des vitesses (Castany, 1967).

B) MILIEU NON SATURÉ:

Le milieu non saturé est caractérisé par la présence de trois phases; solide, liquide et gazeuse. Dans la zone non saturée, l'eau est soumise à une pression inférieure à la pression atmosphérique. Cette pression négative, aussi appelée succion matricielle, est causée par l'affinité physique de l'eau pour la surface des particules du sol. Le gradient de cette succion constitue la force motrice de l'écoulement.

La différence la plus importante entre les écoulements saturés et non saturés réside dans la conductivité hydraulique. En effet, en sol non saturé, cette dernière n'est pas constante mais fonction de la teneur en eau (ou plus souvent exprimée en fonction du potentiel de succion). Dans les sols non saturés certains pores se remplissent d'air, limitant la surface pouvant être utilisée par l'écoulement. La Figure 2.1 montre par ailleurs que la granulométrie du sol est très importante dans la relation succion-conductivité hydraulique.

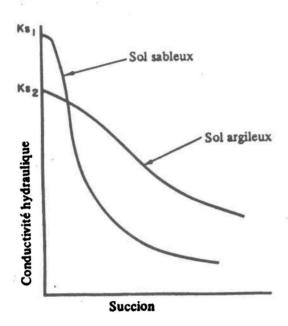


Figure 2.1: Influence de la succion sur la conductivité pour des sols de textures différentes (échelles logarithmiques). Tiré de Hillel, 1988.

La loi de Darcy a été étendue aux conditions non saturées par Richard (1931) en spécifiant que la conductivité était fonction de la charge de succion, ψ . En couplant l'équation de continuité à celle de Richard, une équation générale d'écoulement tenant aussi bien compte des régimes transitoires que permanents a été obtenue. Dans le cas d'un écoulement unidimensionnel, il s'agit de l'équation suivante:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left[K(\psi) \frac{\partial \psi}{\partial z} \right]$$

Cette équation ne tient pas compte du phénomène d'hystérèse, c'est-àdire des variations de la relation conductivité hydraulique-potentiel de succion, en fonction que le sol soit en cycle de mouillage ou de séchage.

2.2.4 LE BILAN HYDRIQUE DU SOL

La percolation de l'eau dans le sol occupe une place importante dans la compréhension et l'évaluation des phénomènes conduisant à la contamination des aquifères. Il n'existe cependant pas encore d'outils permettant de mesurer efficacement in situ les flux d'eau en milieu non saturé (Wagenet, 1986). C'est pourquoi, l'utilisation du bilan hydrique basé sur l'équation de continuité demeure le moyen le plus utilisé.

Si l'on considère un élément de sol, on peut représenter le bilan hydrique par la relation suivante: les gains moins les pertes plus ou moins la variation du stock d'eau égalent zéro. Les apports proviennent des précipitations (Pr) et/ou de l'irrigation (Ir). Ils s'expriment habituellement en unité de volume par unité de surface, c'est-à-dire en terme de hauteur d'eau. Les pertes peuvent se produire par ruissellement (Ru), par évaporation à partir de la surface du sol, par transpiration des végétaux et par drainage profond. Le ruissellement peut être un apport dans le cas où l'élément de sol considéré reçoit de l'eau d'un élément voisin. Les termes évaporation et transpiration sont souvent regroupés en un terme appelé évapotranspiration (ET) représentant le passage de l'eau vers l'atmosphère. La variation du stock d'eau (Δθ) dans un l'élément de sol est négligeable si l'on travaille sur une base annuelle, mais prend une grande importance dans les travaux de plus courte durée. Pour un élément de sol, on peut isoler le terme drainage, ce qui conduit à l'équation suivante:

DRAINAGE = $Pr + Ir - ET \pm Ru \pm \Delta\theta$

Dans cette dernière équation, la précipitation, l'irrigation et la variation du stock d'eau peuvent être mesurées directement, alors que le ruissellement et l'évapotranspiration sont généralement évalués à partir d'équations mathématiques ou de données statistiques.

Au Québec, on assiste à la recharge de la nappe phréatique (drainage profond) au printemps et à l'automne. Dans le premier cas elle correspond à la

fonte des neiges alors qu'à l'automne elle s'explique par la diminution de l'évapotranspiration et par l'augmentation des précipitations. En été, l'évapotranspiration potentielle dépasse les précipitations alors qu'en hiver les précipitations tombent sous forme de neige et il y a très peu d'infiltration.

2.3 AZOTE

Les diverses formes d'azote présentes dans le sol et les paramètres influençant les mécanismes de transformation sont présentés de façon détaillée par de nombreux auteurs (Stevenson (1982a), Haynes (1986d) et Follett (1989)).

2.3.1 FORMES D'AZOTE DANS LE SOL

L'azote est présent dans le sol sous différentes formes, tant organiques qu'inorganiques. Il constitue un système complexe où de nombreux processus chimiques et biochimiques contrôlent les différentes formes. Le cycle de l'azote dans le sol n'est qu'une partie du cycle complet se produisant dans la nature (Figure 2.2). Notons que cette notion de "cycle de l'azote" n'est qu'une schématisation et qu'en fait les atomes se déplacent d'une forme à une autre de façon complètement aléatoire et irrégulière (Stevenson, 1982b).

A) AZOTE ORGANIQUE:

Dans les horizons de surface, plus de 95 % de l'azote se trouve sous forme organique (Tisdale et al., 1985), mais il n'a pas encore été possible de caractériser adéquatement plus de 50 % de l'azote organique du sol (Stevenson, 1982c). On s'entend cependant pour diviser l'azote organique en une fraction rapidement décomposable, la litière, et en une autre lentement décomposable, l'humus.

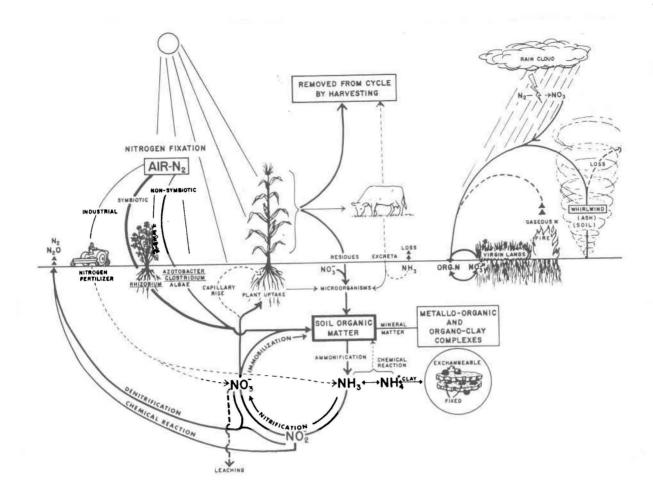


Figure 2.2: Le cycle de l'azote dans le sol (Stevenson, 1982b)

-LITIERE

La litière, ou matière organique fraîche, est composée de débris de végétaux et d'animaux de toutes sortes. Cette fraction est caractérisée par une décomposition rapide où le rapport C/N oriente l'azote vers la minéralisation (C/N bas) ou l'humification (C/N élevé) (Duchaufour, 1988).

-HUMUS

L'humus résulte de la décomposition d'une partie de la litière. Il s'agit d'un composé stable se minéralisant à des vitesses très lentes où la demi-vie varie entre 49.5 ans pour la forme physiquement stabilisée et 1980 ans pour la forme chimiquement stabilisée (Jenkinson et Rayner, 1977). Son ratio carbone-azote est de l'ordre de 10:1 (Haynes, 1986b).

B) AZOTE INORGANIQUE:

En sol agricole l'azote inorganique provient à la fois de la déposition atmosphérique, des fertilisants et de la minéralisation des formes organiques les plus labiles, dites minéralisables. Bien qu'elles ne représentent qu'environ 5 % de l'azote du sol, les formes minérales sont très importantes tant au point de vue agronomique (formes assimilables par les plantes) qu'environnemental (risque de méthémoglobinémie occasionnée par une concentration trop élevée en nitrates dans l'eau potable).

-FORME CATIONIQUE:

On fait ici référence à l'ammonium, NH₄⁺, issu des apports en fertilisants où de la minéralisation de l'azote organique. L'ammonium peut se trouver dans le sol sous forme échangeable (disponible à l'assimilation par les plantes) où fixe (pris à l'intérieur de la structure des minéraux silicatés). Il est considéré peu mobile dans le sol, ce qui s'explique par la charge positive de l'ion qui est électriquement retenu par les charges négatives de la matière organique et de l'argile.

Sa distribution dans le sol est corrélée à la teneur en argile et à la granulométrie. Les sols argileux à loameux contiennent généralement plus d'ammonium fixé que les sols limoneux, qui à leur tour en contiennent plus que les sables (Stevenson, 1982d).

-FORME ANIONIOUE:

La forme anionique fait référence aux nitrites, NO₂ et aux nitrates, NO₃. Ces formes, assimilables par les plantes, sont issues d'un processus où l'ammonium est oxydé via NO₂ en NO₃. La réaction est régie par un premier groupe de bactéries (Nitrosomonas) qui oxydent NH₄ en NO₂ et par un second groupe de bactéries (Nitrobacter) qui complètent rapidement le processus en convertissant le NO₂ en NO₃. Les nitrites sont généralement en très faible quantité dans les sols.

Stevenson (1982d) stipule qu'en climat tempéré humide, "on enregistre dans les couches de surface les quantités en nitrates les plus basses en hiver, puis une augmentation au printemps lorsque la minéralisation de la matière organique commence, suivi d'une diminution en été suite à la consommation des plantes et à une diminution de la minéralisation due à l'assèchement du sol, et finalement à une nouvelle augmentation à l'automne au moment où les plantes cessent de croître et que les résidus commencent à se décomposer".

La charge négative des nitrates fait qu'ils sont facilement lessivables. Les pertes par lessivage se produisent surtout au printemps et à l'automne au moment où les quantités de nitrates et les infiltrations sont à leur plus haut niveau.

En plus des pertes par lessivage et de l'assimilation par les plantes, la quantité de nitrates dans les sols peut être diminuée par dénitrification, c'est à dire par la réduction des nitrates en forme gazeuse. Le cheminement de la réduction est le suivant:

$$NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

-FORME GAZEUSE:

Tout comme dans l'atmosphère, la forme N₂ est de loin l'espèce gazeuse la plus abondante dans les sols bien aérés (Stevenson, 1982d). De toutes les autres formes gazeuses de l'azote dans le sol, il n'y a que N₂O qui ait été clairement détecté sur le terrain. Bien que les formes gazeuses NH₃, NO et NO₂ aient été mesurées dans les émissions s'échappant de la surface, elles n'ont pas été décelées dans un profil naturel.

2.3.2 FACTEURS RÉGISSANT LES TRANSFORMATIONS DE L'AZOTE

L'essentiel des transformations des produits azotés est le résultat de l'activité bactérienne. Les transformations de l'azote sont donc directement liées aux conditions de vie de la biomasse (température, humidité, pH, ratio C/N).

A) TEMPÉRATURE:

La température est un facteur déterminant dans la cinétique de l'azote. Pour des valeurs variant entre 10 °C et 35 °C le taux de dénitrification double suite à une augmentation de 10 °C (Haynes et Sherlock, 1986). Haynes, 1986c, stipule que la nitrification atteint son optimum entre 25 °C et 35 °C alors que la dénitrification est au maximum entre 60 °C et 75 °C. En dessous de 10 °C on considère que les transformations sont presque entièrement inhibées.

B) HUMIDITÉ ET AÉRATION:

"La teneur en eau des sols joue plusieurs rôles dans les transformations du cycle de l'azote. Tout d'abord elle augmente les surfaces de contact entre les agrégats et permet la diffusion des nutriments vers les sites bactériens fixés" (Dalou, 1989). Une augmentation de la teneur en eau dans le sol a aussi pour effet de diminuer ses capacités d'aération et ainsi d'inhiber les processus aérobiques. Power et Broadbent (1989) affirment que les processus aérobies, tel que la nitrification, sont à leur maximum lorsque 60 % du volume des pores sont saturés, et que les processus anaérobies, tel que la dénitrification, dominent lorsqu'il y a plus de 80 % d'eau dans les pores. Pour les sols sableux à loameux, la minéralisation de l'azote est linéairement reliée à la teneur en eau pour des valeurs se situant entre la capacité au champ et le point de flétrissement. L'aération des sols varie également avec la profondeur en milieu non saturé. Il est fréquent d'observer que des débris végétaux incorporés par labour peuvent mettre plus d'une année pour se décomposer, à cause d'une diminution de l'oxygène en profondeur.

C) pH:

Le pH exprime la concentration en ion hydrogène dans le sol. La nitrification, qui est le passage de NH₄⁺ en NO₃⁺, a pour effet de libérer des ions H⁺ et de contribuer à l'acidification des sols. La dénitrification, étant le processus inverse, provoque une augmentation du pH. L'équilibre entre ces deux formes

d'azote peut être représenté par l'équation suivante:

$$NH_4^+ \Rightarrow NO_3^+ + H^+$$

où l'on voit qu'une augmentation du pH, ç'est à dire une diminution de la concentration en ion hydrogène, favorise la volatilisation ammoniacale. Haynes et Sherlock (1986) rapportent que la proportion de $NH_{3(aq)}$ dans l'azote ammoniacale aqueuse $(NH_4^+_{(aq)} + NH_{3(aq)})$ est approximativement de 0.000 4, 0.004, 0.04 et 0.3 à des pH respectifs de 6, 7, 8 et 9.

Power et Broadbent, 1989, mentionnent que la minéralisation et l'immobilisation sont à leur maximum dans les sols neutres à légèrement alcalins. Le pH optimum pour la nitrification semble être entre 6 et 7. Des valeurs de pH supérieures à 8 jumelées à des quantités élevées de NH₃ peuvent diminuer l'activité des nitrobacters et provoquer une accumulation temporaire de NO₂. (Boswel et al.,1985). La dénitrification est quant à elle à son plus fort pour des valeurs de pH oscillant entre 7 et 8 (Haynes et Sherlock, 1986).

D) RATIO CARBONE/AZOTE:

L'azote est utilisé comme élément nutritif par les microorganismes du sol qui décomposent la matière organique. Si cette dernière contient une faible quantité d'azote par rapport au carbone, les microorganismes doivent utiliser l'ammonium ou les nitrates du sol pour poursuivre la décomposition. L'azote permet une croissance rapide de la population microbienne qui accompagne un apport en matériel carboné (fumier, paille...). D'autre part, si le matériel ajouté contient une proportion importante d'azote par rapport au carbone, la biomasse n'a pas à puiser dans les réserves d'azote inorganique du sol. Dans ces conditions, la décomposition favorise la minéralisation.

Tisdale et al. (1985) mentionnent qu'en général on assiste à une immobilisation lorsque que le ratio C/N est supérieur à 30:1 et à une minéralisation pour un ratio inférieur à 20:1. Entre ces valeurs il ne peut y avoir ni immobilisation ni minéralisation.

3 MATÉRIEL ET MÉTHODES

3.1 TERRAIN

3.1.1 LOCALISATION

Le site est situé à Saint-Augustin-de-Desmaures, 25 kilomètres au sudouest de la ville de Québec (46°44'N, 71°31'O). Il est localisé plus précisément sur la station expérimentale du ministère de l'agriculture des pêcheries et de l'alimentation du Québec située à l'extrémité ouest de la station agronomique de l'Université Laval. La parcelle étudiée (52 m x 18 m) forme la limite inférieure d'une terrasse alluviale dont la pente varie entre 2% et 5%.

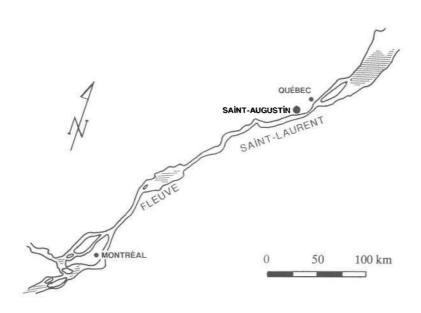


Figure 3.1: Localisation de la parcelle expérimentale de Saint-Augustinde-Desmaures.

3.1.2 PÉDOLOGIE

Le sol est peu fertile et faiblement pierreux. Il subit un drainage rapide et est apparenté à la série Saint-Antoine (matériaux originels perturbés en surface). Ce sol du groupe podzol humo-ferrique orthique et régosol orthique, correspond à un loam sableux fin (Baril, 1974) à graveleux (Raymond et al.,1976). Selon Clark et Globensky (1973) le socle rocheux est composé d'un schiste argileux et gréseux friable (formation de Nicolet) localisé à une profondeur moyenne de 1.6 mètre. Un sondage réalisé à l'été 1990 a cependant révélé une profondeur supérieure à 2.8 mètres à la limite sud de la parcelle.

Un échantillonnage (Lafrance et al, 1991) réparti selon un maillage régulier (25 points, 3 profondeurs; 10 cm, 45 cm, 80 cm) a permis de déterminer, pour différentes profondeurs, les distributions statistiques du contenu en carbone total, en azote total et en matière organique. Les distributions des paramètres physiques tel; la porosité efficace, la granulométrie, la densité apparente sèche et la conductivité hydraulique saturée ont été déterminés par les travaux de Jobidon (1990) au cours de l'été 1988.

VARIABLES	5-15 cm	PROFONDEUR 40-50 cm	85-95 cm
AZOTE (N)	M: 2.0	M: 1.3	M: 1.0
	ET: 0.5	ET: 0.5	ET: 0.4
CARBONE (C)	M: 19.0	M: 9.4	M: 5.5
	ET: 5.7	ET: 4.4	ET: 3.0
MATIERE	M: 40.4	M: 28.2	M: 18.4
ORGAMIQUE (MO)	ET: 7.7	ET:10.2	ET: 6.7
N/MO	M: 0.05	M: 0.05	M: 0.06
	ET:0.01	ET:0.01	ET:0.02
C/MO	M: 0.47	M: 0.34	M: 0.33
	ET:0.12	ET:0.11	ET:0.18
C/N	M: 9.09	M: 6.67	M: 4.17

M: moyenne, ET: écart-type.

Tableau 3.1: Distributions statistiques des caractéristiques chimiques du site de St-Augustin en g/kg (Lafrance et al., 1990).

PARAMETRE	0-35 cm	PROFONDEUR 35-75 cm	75-115 cm
K _{sat} (cm/min)	M:1.98E-3	M:3.72E-3	M:4.56E-3
	ET:4.8E-3	ET:6.0E-3	ET:1.2E-2
% SABLE	M:51.2	M:53.0	M:64.7
	ET:1.6	ET:7.4	ET:4.1
% LIMON	M:23.7	M:25.1	M:19.1
	ET:1.2	ET:3.7	ET:4.1
% ARGILE	M:21.2	M:18.9	M:14.2
	ET:1.6	ET:4.8	ET:3.2
% Mat. org.	M:3.97	M:2.93	M:1.98
	ET:0.7	ET:1.0	ET:0.5
POROSITÉ (%)	M:44.7	M:46.0	M:44.0
	ET:4.0	ET:3.9	ET:4.2
DENSITÉ APP.	M: 1.50	M: 1.41	M: 1.50
SECHE (g/cc)	ET:0.08	ET:0.10	ET:0.09

M: moyenne, ET: écart-type.

Tableau 3.2: Distributions statistiques des paramètres de sol caractérisant le site de St-Augustin (Jobidon, 1990).

3.1.3 PRATIQUES CULTURALES

La parcelle expérimentale, artificiellement drainée, a servi à la culture du maïs sucré (cultivar; Early Vee) au cours des dernières années. Les taux d'application des pesticides et des fertilisants sont présentés au Tableau 3.4. La fertilisation de l'été 1990 a été divisée en deux applications, soit une première 40 N kg/ha de phosphate d'ammonium le 29 mai et une deuxième de 93.5 N kg/ha Nitrate d'ammonium réalisée le 26 juillet. Au niveau de l'équipement, un semoir à maïs deux rangs, modèle 56 international, a été utilisé pour le semis et un épandeur Planet Jr. a permis l'application de l'engrais en bandes de chaque côté des rangs de culture. L'espace entre les rangs était de 1.15 m. A l'automne, le maïs sucré est coupé et les résidus sont laissés au champ. On passe par la suite un rotoculteur allant à une profondeur de 7 à 13 centimètres et au printemps une petite herse à disque. Le Tableau 3.3 présente les dates des différents stades de culture pour l'été 1990.

STADE	DATE
Semis	28-05-90
	11-06-90
Maturité	27-08-90
Coupe	15-10-90

Tableau 3.3: Divers stades de croissance du maïs sucré pour l'été 1990.

TICIDE:	GES PES	AUTRES ÉPANDA	BICIDE	D'HERE	ÉPANDAGE				
DOSE	DATE	INSECTICIDE OU HERBICIDE	DOSE (kg/ha)	DATE	HERBICIDE	TYPE ENGRAIS DOSE (kg/ha)	DATE DE SEMIS & ENGRAIS	CULTURE	ANNÉE
		-	12.0		Atrazine 85%	+ :=:	(2° U	Maïs	1981
			# Q	* 4	Atrazine 85%		2,2	Maïs	1982
7 (7)	* *	(E +	2 4		Atrazine 85%		e (4)	Maïs	1983
0.7	* -	Metolachlore Alachlore			2.2				1984
		Glyphosate	2.5					Jachère	1985
2.5 1.1 1.1	28-05 28-07 04-08	Metolachlore Carbofurane Carbofurane	2	29-05	Atrazine 80%	08-16-16 500	14-05	Maïs	1986
1.1	13-08	Carbofurane	2	25-05	Atrazine 80%	08-12-12 500	22-05	Maïs	1987
10 kg/ha	31-05	Fonofos 10 G	2	31-05	Atrazine 80%	08-16-08 567	27-07	Maïs	1988
10 kg/ha	29-05	Fonofos 10 G	2	30-05	Atrazine	08-16-08	29-05	Maïs	1989
1.1	06-07	Carbofurane			80%	567 34-00-00 100	04-07		
	28-05	Fonofos	2	06-06	Atrazine 90%	08-16-16 500	29-05	Maïs	1990
					7727-275.53	34-00-00 275	26-07		

Tableau 3.4: Pratiques culturales à la parcelle de maïs sucré de Saint-Augustin-de-Desmaures.

3.1.4 ÉCHANTILLONNAGE

Des lysimètres avec (32) et sans (8) tension ont été utilisés afin de suivre respectivement la qualité des eaux interstitielles et les volumes d'eau percolant dans la zone non saturée.

Les lysimètres sans tension ont été installés au printemps 1990. Ils ont été construits à partir d'entonnoirs en plastique de 30 cm de diamètre. Afin de lui donner une certaine résistance et de permettre à l'eau de s'écouler rapidement vers la base, des morceaux de quartz centimétriques ont été placés à l'intérieur des collecteurs. Un géotextile (du type commercial que l'on retrouve sur le marché) a été installé dans la partie supérieure pour empêcher le passage des particules fines pouvant colmater le système. Les échantillons ont été prélevés en aspirant l'eau à l'aide d'un tube reliant la base des collecteurs à la surface. Des essais préalables au laboratoire ont démontré qu'il était possible de recueillir des volumes inférieurs à 5 millilitres, soit une lame d'eau infiltrée de 0.1 mm, à l'aide de ce système. Les lysimètres sans tension ont été disposés en quatre stations espacées de 15 mètres (voir Figure 3.2). Chaque station est composée de deux lysimètres (50 cm et 100 cm de profondeur) recouverts de sol remanié. A chaque prélèvement, les volumes d'eau recueillis ont été mesurés afin d'obtenir la hauteur d'eau percolée entre deux échantillonnages successifs.

Les lysimètres avec tension (Hoskin Soil Moisture Model #1920; avec capsule poreuse en céramique) ont été installés en décembre 1985 par le ministère de l'environnement du Québec. Ils sont répartis en 12 stations (Figure 3.2), chacune étant constituée de deux ou trois lysimètres installés respectivement à 0.5 m, 1.0 m et entre 1.4 et 1.8 m de profondeur. L'espacement entre les stations est de 3 m et 6 m dans une direction et de 15 m dans l'autre. Afin d'échantillonner l'eau interstitielle, une tension de 60 kPa (0.6 bar) est appliquée pendant une quinzaine d'heures sur les lysimètres. Par la suite, les échantillons sont recueillis dans des contenants de marque "nalgen" de 60 ml, rincés 7 fois à l'eau déminéralisée entre chaque utilisation. A partir du 11 septembre 1990, des bouteilles de verre de 250 ml ont été utilisées. En raison de l'utilisation des mêmes échantillons pour l'analyse des pesticides, 3 rinçages à l'eau millipore suivis d'un rinçage à l'acétone et d'un autre à l'hexane ont été effectués sur les bouteilles de verre entre chaque collecte.

Pour mener à bien le projet, un nombre total de 20 campagnes d'échantillonnage ont été nécessaires. La collecte a débuté suite à la première application d'azote, et s'est terminée à la fin de l'automne, moment où l'on assiste généralement à une plus importante perte en nitrates occasionnée par une augmentation de l'infiltration et par la disparition des cultures (Camaron et Haynes, 1986). Au cours de l'été, les échantillonnages ont été effectués sur une base hebdomadaire, sauf dans les premières semaines suivant la fertilisation de mai où, pour s'assurer de ne pas manquer le passage rapide potentiel d'une forte concentration, les campagnes ont été resserrées à deux échantillonnages par semaine. La deuxième fertilisation ayant été suivie d'une période sèche, il n'a pas été nécessaire d'augmenter la fréquence. A partir du 28 août, la collecte d'échantillons est devenue bimensuelle et s'est terminée le 6 novembre avec l'arrivée de la première neige.

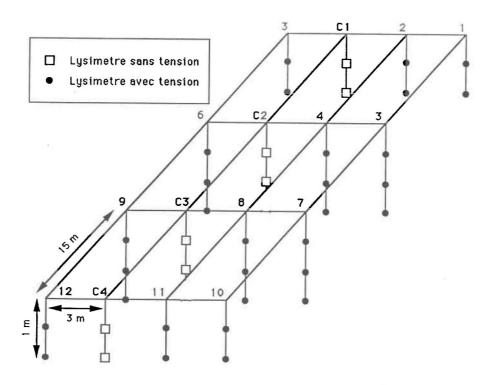


Figure 3.2: Réseau de lysimètres avec et sans tension.

3.1.5 DONNÉES MÉTÉOROLOGIQUES

Les données météorologiques journalières, nécessaires à l'établissement du bilan hydrique du sol, proviennent de l'aéroport de Québec situé à une douzaine de kilomètres au nord-est du site expérimental. La température moyenne, l'ennuagement (complément du pourcentage d'ensoleillement), les précipitations et l'évapotranspiration potentielle sont tirés des sommaires agrométéorologiques mensuels préparés par Environnement Canada. Les valeurs de la vitesse moyenne des vents proviennent des sommaires météorologiques mensuels publiés par le service de l'environnement atmosphérique d'Environnement Canada. Quant aux valeurs de pressions de vapeur dans l'air (P), elles résultent de la moyenne de quatre évaluations journalières, calculées à partir de l'équation de Murray (Sinclair, 1990);

$$P = 6.1078 \times 10^{-4} \times e^{\left[\begin{array}{c} 17.2614 \ T_{\text{ros\'ee}} - 4717.31 \\ \\ T_{\text{ros\'ee}} - 35.86 \end{array}\right]}$$

où les valeurs de la température du point de rosée $(T_{rosée})$ nécessaires aux calculs sont extraites des relevés météorologiques synoptiques de la direction de la météorologie du ministère de l'environnement du Québec. Les différentes données météorologiques utilisées sont présentées à l'annexe F.

3.2 LABORATOIRE

Un délai maximum de deux heures existait avant l'arrivée des échantillons au laboratoire. Dans un premier temps, les volumes d'eaux provenant des lysimètres sans tension étaient mesurés, puis tous les échantillons étaient filtrés pour ne conserver que la partie dissoute. Les filtrations ont été effectuées à l'aide de seringues sur des filtres en polycarbonates (Nucléopore) de 0.4 micron et de 25 mm de diamètre. A ce moment les échantillons étaient divisés en deux, une partie allant à l'analyse de l'ammonium et l'autre aux nitrates.

3.2.1 NITRATES

Les concentrations en nitrates ont été déterminées par chromatographie ionique. Les échantillons ont été analysés dans un délai maximum de 48 heures et conservés entre temps à une température de 4°C. Le chromatographe utilisé (DIONEX; Auto Ion system 12 analyser) était pourvu d'une précolonne HPIC-AG3, d'une colonne HPIC-AS3 et d'un supresseur Anion Micromembrane Suppressor AMMS-1. Des essais ont permis de situer la limite inférieure de détection pour les échantillons analysés avant le 25 septembre à 0.02 mg N-NO₃/l avec une précision relative de 2.0 % à 0.16 mg N-NO₃/l. Par la suite, l'installation d'une nouvelle précolonne a fait passer la limite à 0.009 mg N-NO₃/l et la précision relative à 2.3 % pour une concentration de 0.10 mg N-NO₃/l.

3.2.2 AMMONIUM

Les concentrations en ammonium ont été déterminées par colorimétrie, utilisant la Réaction de Berthelo (Technicon industrial systems, 1973), à l'aide d'un auto-analyseur II de Technicon. Après avoir été acidifiés à l'acide sulfurique (H_2SO_4 , 0.2 % v/v), les échantillons ont été conservés, à 4°C, au maximum 28 jours avant d'être analysés. La limite de détection de l'appareil était de 3 μ g N-NH₄/l et la précision de 0.31 % à 112 μ g N-NH₄/l.

3.3 MODELES MATHÉMATIQUES SOIL ET SOILN

3.3.1 PRÉSENTATION DE SOIL ET SOILN

Le modèle utilisé simule le devenir de l'eau, de la température et de l'azote dans les sols. Il est composé des parties SOIL et SOILN. Il s'agit d'un modèle de recherche unidimensionnel basé sur des processus physiques. La partie hydrodynamique et thermique, SOIL, a été développée à la fin des années 70 au département des sciences du sol de l'Université Suèdoise des Sciences de l'Agriculture, située à Uppsala. A l'origine, SOIL a été construit pour représenter les processus hydrologiques et thermiques relatifs aux sols forestiers. Il a par la suite été adapté au milieu agricole. La partie SOILN a été développée en 1986. Elle

permet de simuler la minéralisation de l'azote et le lessivage des nitrates à partir des températures, humidités et flux de l'eau fournis par SOIL.

La structure verticale, commune aux deux parties du modèle, facilite la division du profil pédologique en un certain nombre de couches. Différentes divisions peuvent être retenues en fonction des objectifs et de la disponibilité des informations caractérisant les aspects physiques et biologiques.

Le modèle a été appliqué à plusieurs reprises et a été le sujet de plus d'une vingtaine de publications (Jansson, 1990c). Ces dernières ont été principalement réalisées par les auteurs et ce pour des sites suédois. Jansson et Gustafson (1987) ont testé l'applicabilité du modèle au ruissellement de surface et à l'écoulement aux drains alors que d'autres études ont porté sur l'évolution de la température, de la tension et de la teneur en eau dans les sols (Jansson, 1980, 1987). La minéralisation de l'azote et le lessivage des nitrates ont été simulés (Borg et al., 1990; Jansson et Andersson, 1988; Johnsson et al., 1987) à des échelles allant de la parcelle au bassin versant, et ce pour différents types de sol et de culture.

Compte tenu des objectifs de notre étude et des caractéristiques du site, toutes les possibilités du modèle n'ont pas été utilisées (neige, gel, macroporosité...). Dans les sections suivantes, nous ne passerons en revue que les processus retenus pour notre simulation. Il ne s'agit pas d'une description exhaustive du modèle (voir; Halldin, 1980, Jansson,1980, 1990a, 1990b, Johnsson et al., 1987), mais plutôt d'une présentation des équations de base et de leurs interrelations. Nous verrons quels sont les paramètres pour lesquels le modèle est le plus sensible. Les fichiers d'entrée et de sortie du modèle seront par la suite examinés.

3.3.2 SOIL: THÉORIE ET FONCTIONNEMENT

A) ÉQUATIONS:

Le volume d'eau percolant à la nappe phréatique repose sur les calculs d'évapotranspiration proposés par Penman et modifiés par Monteith. Le mouvement de l'eau et le transfert de chaleur sont basés sur les équations différentielles partielles tirées respectivement des lois de Darcy et de Fourier. Les conditions aux limites sont réalisées par des sous-modèles calculant l'interception et l'évapotranspiration.

-ÉVAPOTRANSPIRATION:

L'évapotranspiration réelle se produisant au champ est calculée à partir de l'évapotranspiration potentielle (quantité maximum d'eau pouvant être perdue, dans un climat donné, par une végétation continue couvrant complètement la surface du sol, lorsque ce dernier est maintenu saturé), laquelle est réduite en fonction des contraintes physiques et agronomiques rencontrées.

L'évapotranspiration potentielle est calculée dans le modèle à l'aide de l'équation de Penman tel que modifiée par Monteith. Cette équation est basée sur des principes physiques provenant de la combinaison du bilan énergétique et de l'influence du vent.

$$\lambda E_{ps} = \frac{\Delta (R_n - q_h) + e_a c_p \delta_e / r_a}{\Delta + \gamma (1 + r_s / r_a)}$$

où, λ est la chaleur latente de vaporisation, E_{ps} l'évaporation potentielle, R_n le rayonnement net, q_n le transfert de chaleur dans le sol, e_a la densité de l'air, c_p la chaleur spécifique de l'air, δ_e le déficit de pression de vapeur, Δ la pente de la pression de vapeur saturante versus la température, γ la constante psychométrique, r_s la résistance de surface effective (présumée constante) et r_a la résistance aérodynamique tel que,

27

$$r_a = \frac{\left(\ln \frac{z - d}{z_o} \right)^2}{k^2 u}$$

où u est la vitesse du vent mesurée à une hauteur de référence z, k est la constante de von Karman, d la hauteur de déplacement du plan de référence et z_o l'épaisseur de rugosité du couvert végétal. Connaissant les équations de base conduisant à l'évaluation de l'évapotranspiration potentielle, voyons comment cette dernière est réduite afin d'obtenir l'évapotranspiration réelle se produisant au champ.

Lors des précipitations, une partie de l'eau est retenue par la végétation et n'atteint pas le sol. Cette interception peut être vue comme un réservoir possédant un seuil d'emmagasinement maximum (variable dans le temps et fonction du développement de la culture) au-delà duquel l'eau de précipitation passe tout droit et atteint le sol. Cette représentation a pour effet de créer une évaporation provenant d'une part de l'eau retenue sur le feuillage (E_w) et d'autre part de la surface du sol (E'_{ps}) .

Lorsqu'il y a de l'eau dans le réservoir d'interception, l'évaporation à partir de la surface des plantes est donnée par;

$$E_{\mu} = \min (aE_{ps}, S_i)$$

où S_i est la quantité d'eau emmagasinée sur le feuillage et "a" un paramètre.

L'évaporation potentielle à la surface du sol est alors réduite à l'expression suivante;

$$E'_{ps} = \max (E_{ps} - E_{w}/a, 0)$$

signifiant qu'il y a une réduction de la demande au sol lorsqu'il y a évaporation de l'eau interceptée.

28

La demande potentielle en eau par les plantes est distribuée en fonction du développement racinaire dans le sol. Pour chaque couche, la quantité réelle d'eau enlevée est réduite lorsque la tension excède une valeur critique (ψ_c) . L'évaporation réelle du sol est alors;

$$E_{as} = R E'ps$$

où R est un facteur de réduction donné par;

$$\begin{array}{c} 1 & \psi < \psi_{\rm c} \\ \\ R = \left(\begin{array}{c} \psi_{\rm c} \\ \overline{\psi} \end{array} \right) \begin{array}{c} {\rm cE'}_{\rm ps} + {\rm d} \\ \\ \psi_{\rm w} > \psi > \psi_{\rm c} \\ \\ \end{array}$$

$$0 & \psi_{\rm w} < \psi \\ \end{array}$$

 ψ_c est le potentiel critique où commence la réduction, ψ_w correspond au point de flétrissement, c et d sont des paramètres.

L'utilisation de ces dernières équations jumelées à la capacité maximale d'interception de la végétation nous permet de calculer l'évapotranspiration réelle se produisant au champ.

-HYDRODYNAMIQUE SOUTERRAINE:

L'écoulement non saturé est représenté dans le modèle par l'équation de Richard (1931) à laquelle est ajoutée un terme, S (t), représentant l'eau puisée par les plantes. Cette équation néglige les phénomènes d'hystérèse engendrés par les cycles de mouillage-séchage et suppose un écoulement essentiellement unidimensionnel.

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[k(\psi) \left[\frac{\partial \psi}{\partial z} + \rho g \right] \right] + S (t)$$

Cette dernière équation ne peut cependant être résolue que si le potentiel de succion, ψ , et la conductivité non saturée, K_{ω} , peuvent être reliés à la teneur en eau volumétrique, θ . Pour ce faire, Brooks et Corey (1964) ont suggéré que la courbe de désaturation reliant la teneur en eau au potentiel de succion pouvait être décrite par l'équation analytique suivante:

$$S_e = (\psi/\psi_a)^{\lambda}$$

où ψ_a est la pression d'entrée d'air, λ l'indice de distribution des pores et S_e la saturation effective donnée par:

$$S_{e} = \frac{\theta - \theta_{r}}{p - \theta_{r}}$$

avec p la porosité et θ_r la teneur en eau résiduelle.

En ce qui a trait à la conductivité hydraulique non saturée (k_w) , le modèle la relie à la conductivité saturée (k_{sat}) à l'aide de la relation de Mualem (1976).

$$k_w = k_{sat} S_e^{n+2+2/\lambda}$$

où n est un facteur tenant compte de la tortuosité du patron d'écoulement.

Les propriétés hydrauliques de chaque horizon de sol considéré homogène peuvent donc être décrites à partir des six paramètres suivants:

- k_{sat} :conductivité hydraulique saturée

 $-\lambda$: indice de distribution des pores

 $-\psi_a$: pression d'entrée d'air

- p :porosité

- n :facteur de tortuosité

 $-\theta$, :teneur en eau résiduelle

Ces derniers peuvent être obtenus à partir de valeurs typiques tirées de la littérature ou directement mesurés sur le terrain ou en laboratoire. Ces paramètres, jumelés aux équations précédentes, représentent les conditions nécessaires et suffisantes permettant de décrire l'écoulement non saturé dans les sols.

-FLUX THERMIQUE:

La chaleur peut être transportée dans le sol par conduction et par convection. La partie convection est plus particulièrement importante lors de grandes infiltrations d'eau alors que c'est généralement le processus de conduction qui domine le flux thermique.

B) ENTRÉES ET SORTIES DU MODELE:

Pour son fonctionnement, SOIL nécessite un certain nombre de valeurs caractérisant les conditions particulières rencontrées sur le terrain. Les entrées du modèle sont divisées en paramètres (quantités à fixer librement, maintenues constantes, dont dépend une fonction) et en variables (termes auxquels on peut attribuer plusieurs valeurs numériques différentes). Ces informations, nécessaires aux simulations, sont regroupées à l'intérieur de quatre fichiers. Il y a d'abord un fichier contenant l'ensemble des variables climatiques journalières permettant de calculer l'apport et les pertes en eau dans le sol (annexe F). Il y a un deuxième

fichier donnant les divers paramètres caractérisant les processus hydrodynamiques du sol en fonction de la profondeur. Un autre fichier donne les paramètres thermiques du sol. Finalement, un dernier fichier regroupe l'ensemble des informations relatives aux pratiques culturales et au type de simulation désirée. Ces divers fichiers sont présentés dans le sommaire à l'annexe H.

Les résultats d'une simulation nous informent sur les valeurs des différentes variables telles; la température, la teneur en eau, le potentiel de succion, le flux thermique, le flux d'eau et l'eau prise par les plantes. Les sorties sont fournies sur une base journalière et sous forme de résultats cumulés et ce pour chaque couche de sol. Le modèle est de plus couplé à un utilitaire graphique, PGRAPH, permettant de rapidement visualiser les résultats.

C) ANALYSE DE SENSIBILITÉ:

SOIL a été le sujet de diverses études mentionnant les paramètres d'entrées les plus influents sur les sorties du modèle. Ce travail ayant déjà été fait, nous nous sommes limités à quelques vérifications non systématiques. Les paramètres les plus influents sont dans l'ordre selon Halldin (1980): r_s, la résistance de surface effective, les paramètres déterminant la conductivité non saturée, k_w, et la quantité d'eau interceptée emmagasinée sur le feuillage, S_i.

3.3.3 SOILN: THÉORIE ET FONCTIONNEMENT

La description du modèle SOILN est tirée de Johnsson et al. (1987).

A) STRUCTURE DU MODELE:

Le modèle inclut les principaux processus déterminant les entrées, les transformations et les sorties de l'azote dans les sols agricoles. Les variables "motrices", (i.e. infiltration, écoulement entre les couches de sol, teneur en eau et température du sol) proviennent du modèle SOIL.

Le modèle permet de diviser le profil de sol en couches (maximum 22) possédant des caractéristiques physiques et biologiques homogènes. A l'intérieur de chaque couche on retrouve des réservoirs contenant les formes organiques et inorganiques de l'azote. L'azote minéral est constitué des formes ammonium et nitrates alors que l'azote organique est classifié en litière, fumier (faeces) et humus (Figure 3.3). Des réservoirs de carbone sont aussi présents pour la litière et le fumier afin de contrôler la minéralisation et l'immobilisation. La litière représente les matériaux non décomposés (résidus de plantes, racines mortes et masse microbienne) alors que les produits de décomposition stabilisés constituent l'humus. Le compartiment représentant les plantes inclut l'azote présent dans la biomasse aérienne et souterraine.

La fertilisation inorganique, les fumiers et les dépôts atmosphériques constituent les apports possibles pour la couche superficielle. Les pertes par dénitrification et lessivage peuvent se produire au niveau de toutes les couches.

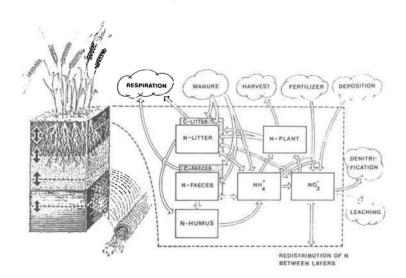


Figure 3.3: Structure du modèle de l'azote. Les éléments inclus à l'intérieur des lignes pointillées représentent la couche superficielle du sol. Les couches sous-jacentes ont la même structure mais n'ont pas de contact avec les dépôts atmosphériques et les fertilisants (Johnsson et al., 1987).

B) ÉQUATIONS:

-APPORT EN AZOTE:

Les apports en azote fournis par les dépôts atmosphériques se divisent en une fraction humide, calculée à partir du volume des précipitations et de la concentration moyenne en azote minéral dans l'eau de pluie, et en une fraction sèche, donnée par un taux journalier constant. Les fertilisants azotés sont ajoutés à la couche superficielle du sol et un taux constant de dissolution contrôle leur entrée dans le réservoir d'azote minéral.

Le matériel est incorporé dans la litière à deux occasions; au moment de la récolte et au labour. La quantité d'azote racinaire allant à la litière au moment de la récolte est donnée par:

$$N_{p \to l}(z) = f_r(z) (1 - f_{ar} - f_{lr} - f_{hp}) N_p$$

où $f_r(z)$ est la fraction racinaire dans la couche z, f_{ar} est la fraction d'azote de la plante demeurant à la surface du sol après la récolte, f_{lr} est la fraction des racines vivantes après la récolte, f_{hp} est la fraction récoltée de la plante et N_p est l'azote contenu dans la plante avant la récolte. Pour les récoltes annuelles, f_{lr} vaut 0. Le transfert du carbone vers la litière est proportionnel à celui de l'azote et repose sur le ratio C/N des racines.

-MINÉRALISATION, IMMOBILISATION ET NITRIFICATION:

Afin de représenter les parties actives et passives de la matière organique dans le sol, le modèle possède deux réservoirs principaux. Un premier, à cycle rapide (litière) représente le complexe matière organique-biomasse microbienne recevant de la matière organique fraîche et un deuxième, à cycle lent (humus) formé des produits de décomposition stables. Un autre réservoir est aussi inclus afin de représenter les dérivés du fumier dont la composition chimique est substantiellement différente de celle des plantes entrant dans la litière. La minéralisation de l'humus $(N_h(z))$ est du premier ordre,

$$N_{h\to NH4}$$
 (z) = $k_h e_t(z) e_m(z) N_h(z)$

où k_h est la constante de minéralisation et $e_t(z)$ et $e_m(z)$ sont les facteurs tenant respectivement compte de la température du sol et de son humidité.

La décomposition se produisant dans les réservoirs de carbone organique (litière et fumier) contrôle la minéralisation de l'azote. La décomposition du carbone dans la litière est fonction de la constante spécifique (k₁), de la température et de l'humidité.

$$C_{i(d)}(z) = k_i e_t(z) e_m(z) C_i(z)$$

Les produits de décomposition sont le CO_2 , l'humus et la biomasse microbienne et métabolite (Figure 3.4). Comme un seul réservoir (litière) représente le complexe litière-décomposeurs, la synthèse de la biomasse microbienne et métabolite constitue un cycle interne. La quantité relative des produits de décomposition formés est contrôlée par une constante d'efficacité de synthèse (f_a) et par une fraction d'humification (f_b) .

$$C_{l \to co2}(z) = (1 - f_e) C_{l(d)}(z)$$

 $C_{l \to h}(z) = f_e f_h C_{l(d)}(z)$
 $C_{l \to l}(z) = f_e (1 - f_h) C_{l(d)}(z)$

La minéralisation et l'immobilisation de l'azote dans la litière reposent sur les deux hypothèses suivantes; (1) le cycle interne du carbone et la formation de l'humus ont une demande en azote contrôlée par un ratio C/N constant de la biomasse des décomposeurs et des produits de l'humification (r_0) ; (2) la décomposition du carbone dans la litière libère une quantité d'azote proportionnelle au ratio C/N réel de ce réservoir.

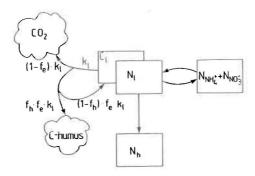


Figure 3.4: Cheminement de l'azote et du carbone dans la litière

A partir des équations précédentes, la minéralisation et l'immobilisation nette de l'azote dans la litière sont fonction du bilan entre l'azote libéré au cours de la décomposition et de l'azote fixé par la synthèse microbienne et l'humification.

$$N_{l=NH4}(z) = \left(\frac{N_l(z)}{C_l(z)} - \frac{f_e}{r_0}\right) C_{l(d)}(z)$$

On assiste au passage entre l'immobilisation et la minéralisation lorsque le ratio C/N de la litière égale r_0/f_e . Pour simplifier, on pose que le ratio C/N de la matière organique humifiée est le même que celui de la biomasse microbienne et métabolite.

L'immobilisation peut être réduite lorsqu'il n'y a pas suffisamment d'azote minéral disponible dans le sol. Cette réduction de l'immobilisation, tout comme celle de l'assimilation par les racines des plantes, est contrôlée en assumant qu'une certaine fraction seulement de l'azote minéral est disponible.

Au cours de la décomposition de la litière, l'humification de l'azote est fonction du rapport C/N des microorganismes et du produit d'humification (r_o) . Au niveau du réservoir représentant les fumiers, la décomposition, la minéralisation, l'immobilisation et la formation de l'humus sont calculés de la même façon que pour la litière.

La nitrification n'est pas modélisée explicitement par des processus microbiologiques. On assume plutôt que les transferts entre les formes minérales sont contrôlés par un ratio ammonium/nitrate caractéristique du sol. Le taux de transfert de l'ammonium en nitrate dépend du taux potentiel, k_n , qui est réduit à l'approche du ratio nitrate/ammonium, n_q . Il n'y a pas de transfert de l'ammonium vers les nitrates lorsque $N_{NO3}(z)/N_{NH4}(z) > n_q$.

$$N_{NH4\to NO3}(z) = k_n e_t(z) e_m(z) \left(N_{NH4}(z) - \frac{N_{NO3}(z)}{n_q} \right)$$

-INFLUENCE DES FACTEURS ABIOTIQUES:

La décomposition, la minéralisation et la nitrification sont influencées par la température et l'humidité du sol. L'effet de la température est exprimé dans le modèle à l'aide du \mathbb{Q}_{10} ,

$$e_{t}(z) = Q_{10} \left(\frac{T_{(z)} - T_{b}}{10} \right)$$

où T_(z) est la température dans la couche z, T_b est la température de base pour laquelle e_t égal 1 et Q₁₀ est le facteur équivalent à une variation de 10 °C.

En ce qui a trait à l'humidité, son influence est nulle (i.e. facteur égal à 1) autour d'un optimum, et elle ralentit les processus lorsque la teneur en eau devient trop élevée ou trop basse dans le sol. Les équations suivantes représentent cette tendance.

$$e_{m}(z) = e_{s} + (1 - e_{s}) \left[\frac{\theta_{s}(z) - \theta(z)}{\theta_{s}(z) - \theta_{ho}(z)} \right]^{m} \qquad \theta_{s}(z) \ge \theta(z) > \theta_{ho}(z)$$

$$e_{m}(z) = 1 \qquad \qquad \theta_{ho}(z) \ge \theta(z) \ge \theta_{lo}(z)$$

$$e_{m}(z) = \left[\frac{\theta(z) - \theta_{w}(z)}{\theta_{lo}(z) - \theta_{w}(z)} \right]^{m} \qquad \qquad \theta_{lo}(z) > \theta(z) \ge \theta_{w}(z)$$

où $\theta_s(z)$ est la teneur en eau à saturation, $\theta_{ho}(z)$ et $\theta_{lo}(z)$ sont respectivement les teneurs en eau maximale et minimale pour lesquelles le facteur d'humidité est maximum. $\theta_w(z)$ est la teneur en eau minimale où les processus peuvent se dérouler. Un coefficient, e_s , présente l'effet relatif de l'humidité à saturation et m est une constante empirique. Les deux seuils limitant le domaine optimal sont calculés de la façon suivante;

$$\theta_{lo}(z) = \theta_{w}(z) + \Delta\theta_{1}$$

 $\theta_{ho}(z) = \theta_{s}(z) + \Delta\theta_{2}$

où $\Delta\theta_1$ est la variation de teneur en eau volumique pour laquelle la réponse augmente et $\Delta\theta_2$ est la variation pour laquelle elle diminue.

-AZOTE PUISÉ PAR LES PLANTES:

Les plantes puisent l'azote dans le sol à la fois sous forme de nitrates et d'ammonium. Une courbe de prélèvement suivant un modèle logistique est utilisée pour définir la demande potentielle en azote au cours de la saison végétative,

$$\int u(t)dt = \frac{u_a}{1 + \left(\frac{u_a - u_b}{u_b}\right)} e^{-u_c t}$$

où u_a est la demande potentielle annuelle, u_b et u_c sont des paramètres de forme et t est le nombre de jours après le début de la croissance des plantes. La diffusion et l'absorption racinaire sont les principaux mécanismes contrôlant le prélèvement de l'azote par les racines. Par conséquent, le prélèvement minéral n'est pas associé au prélèvement en eau de la plante. Afin de limiter le prélèvement si la concentration en azote minéral du sol est trop faible, on pose une fraction maximale disponible, f_{ma} , proportionnelle à la quantité totale d'ammonium et de nitrate dans chaque couche. Le prélèvement journalier en azote est alors calculé à partir de la fraction racinaire dans la couche, $f_r(z)$, de la proportion d'azote se trouvant sous forme nitrate et de la dérivée de la courbe de prélèvement, u. Le prélèvement est réparti entre les différentes couches par une distribution racinaire empirique évoluant au cours du temps. Le prélèvement réel correspond à la valeur minimale des deux fonctions.

$$N_{NO3\to P}(z) = MIN$$

$$f_{r}(z) \frac{N_{NO3}(z)}{N_{NO3}(z) + N_{NH4}(z)} u$$

$$f_{ma} N_{NO3}(z)$$

Les calculs sont les mêmes dans le cas de l'ammonium, mais proportionnels à sa quantité relative dans le profil. Pour une couche donnée, si le prélèvement réel est en dessous de la valeur potentielle, alors la quantité en surplus (potentielle moins réelle) est transférée à la couche sous-jacente.

-DÉNITRIFICATION:

La dénitrification est la réduction des nitrates en azote gazeux (N_2 et N_2 O). Il s'agit d'un processus anaérobie, donc dépendant des conditions d'aération du sol. Le modèle utilise la teneur en eau ($\theta(z)$) comme un indicateur de l'oxygénation du sol. L'influence de l'humidité sur le taux de dénitrification est exprimée par une fonction qui augmente à partir d'un certain seuil ($\theta_d(z)$) pour atteindre un maximum à saturation ($\theta_s(z)$). Dans l'équation, d est une constante empirique.

39

$$e_{md}(z) = \left[\frac{\theta(z) - \theta_{d}(z)}{\theta_{s}(z) - \theta_{d}(z)} \right]^{d}$$

En bas de la teneur en eau limite, il n'y a pas de dénitrification. Pour chaque couche le taux de dénitrification dépend du taux potentiel de dénitrification, $k_d(z)$, de l'aération du sol, $e_{md}(z)$, et de la température $e_t(z)$.

$$N_{NO3 \to gaz}(z) = k_d(z) e_{md}(z) e_t(z) \left[\frac{[N_{NO3}(z)]}{[N_{NO3}(z)] + C_s} \right]$$

L'effet de la concentration en nitrates est contrôlé par une constante de demisaturation, C_s (i.e. la concentration où le taux est à 50 % de la valeur maximale, si toutes les autres conditions sont optimales).

-TRANSPORT DES NITRATES:

Les nitrates sont considérés comme étant entièrement en solution et se déplacent entre les couches de sol en suivant le patron d'écoulement de l'eau. Le flux de nitrates est donc calculé, pour chaque couche de sol, en multipliant le flux d'eau par la concentration en nitrates.

L'ammonium est considéré comme immobile (fortement fixé sur les colloïdes du sol) et n'est pas influencé par l'écoulement de l'eau.

C) ENTRÉES ET SORTIES DU MODELE:

Trois fichiers sont nécessaires au fonctionnement du modèle. Un premier contient les paramètres caractérisant le site au niveau de la végétation, du sol, des apports externes, des transformations et des pertes en azote. Un deuxième fichier est utilisé pour définir les conditions initiales de la simulation. On y retrouve

les formes et les quantités d'azote présentes dans chaque couche de sol au départ. Un troisième fichier fournit finalement au modèle les variables motrices du système. Ce sont les variables d'environnement (telles la température, l'humidité et l'écoulement) qui sont la cause des transformations et du transport de l'azote. Ces variables sont établies à l'aide du modèle SOIL. Elles sont fournies pour chaque couche de sol sur une base journalière.

Les résultats des simulations nous renseignent sur la quantité des différentes formes d'azote présentes au niveau de chaque couche de sol. Les sorties sont fournies sur une base journalière et sous forme de résultats cumulés. On peut de plus, tout comme avec SOIL, utiliser un utilitaire graphique (PGRAPH) permettant de rapidement visualiser les résultats.

D) ANALYSE DE SENSIBILITÉ:

Les paramètres les plus influents, c'est-à-dire ceux pour lesquels une petite variation influence de façon importante les résultats, sont selon Johnsson et al. (1987); la fraction maximale disponible en azote, f_{ma} , les constantes spécifiques de minéralisation, k_h , de l'humus et de décomposition, k_l , de la litière, la valeur du Q_{10} , l'effet relatif de la saturation sur l'activité, e_s .

3.4 DÉTERMINATION DES PARAMETRES NÉCESSAIRES AUX SIMULATIONS

3.4.1 SOIL

Les paramètres utilisés dans la simulation sont regroupés à l'intérieur des quatre fichiers représentant; la météorologie, les propriétés hydrodynamiques, les propriétés thermiques, et les paramètres relatifs au site et à la simulation.

A) FICHIER CLIMATOLOGIQUE:

Le fichier utilisé par le modèle est composé des variables météorologiques journalières suivantes: température moyenne, vitesse moyenne des vents, pression de vapeur dans l'air, précipitations totales et pourcentage d'ennuagement. L'origine de ces variables est présentée à la section "Matériel et méthodes".

B) FICHIER DES PROPRIÉTÉS HYDRAULIQUES DU SOL:

Ce fichier est établi à l'aide du programme PLOTPF et porte le nom SOILP.DAT. Il regroupe, pour chaque couche de sol jugée homogène, la position (borne supérieure et inférieure) et l'ensemble des paramètres nécessaires aux conditions d'écoulement.

Les processus décrivant les mouvements de l'eau en zone vadose nécessitent la connaissance de la relation entre la tension, ψ , et la teneur en eau, θ , du sol. La courbe de rétention n'a pas été mesurée directement sur le sol de St-Augustin mais plutôt évaluée à partir des travaux de Gupta et Larson (1979). Ces derniers ont échantillonné différents types de sol provenant d'une dizaine de régions géographiques de l'est et du centre des États-Unis. Ils en ont fait différents mélanges qu'ils ont compactés à divers degrés puis ont mesuré la teneur en eau en fonction du potentiel de succion. Cette étude leur a permis d'établir la régression suivante:

$$\theta_p = [a \times sable(\%)] + [b \times limon(\%)] + [c \times argile(\%)] + [d \times matière organique(\%)] + [e \times densité sèche(g/cm³)]$$

où θ_p est la teneur en eau prédite (cm³/cm³) pour une succion donnée et a, b, c, d, et e sont les coefficients correspondant à cette succion (voir annexe E). La granulométrie, la densité et le pourcentage en matière organique nécessaire à l'utilisation de cette relation étant connus pour le site de St-Augustin (Jobidon, 1990), il a été possible d'établir les valeurs suivantes:

SUCC	CION	T	TENEUR EN EAU (%)				
m EAU	pF		35-75 cm				
0.00	0.00	45	46	44			
-0.40	1.60	36	39	33			
-0.70	1.85	32	34	28			
-1.00	2.00	30	32	26			
-2.00	2.30	27	29	23			
-3.30	2.52	26	27	21			
-6.00	2.78	25	25	20			
-10.0	3.00	24	23	19			
-20.0	3.30	23	22	18			
-40.0	3.60	21	20	16			
-70.0	3.85	21	19	16			
-100.0	4.00	20	19	15			
-150.0	4.18	20	18	14			

Tableau 3.5: Relation tension-teneur en eau telle que calculée à partir de la régression de Gupta et Larson (1979).

La teneur en eau résiduelle (θ_r) , la pression d'entrée d'air (ψ_a) et l'indice de distribution des pores (λ) ont été déterminés à l'aide du programme PLOTPF. Ce dernier permet d'ajuster les paramètres de l'équation de Brooks et Corey sur les valeurs de succion-teneur en eau caractérisant le sol.

		PROFONDEUR		
PARAMETRE	0-35 cm	35-75 cm	75-115 cm	
θ	18	16	9	
λ^{r}	0.38	0.35	0.26	
ψ	15	21	8	

Tableau 3.6: Valeur des paramètres de l'équation de Brooks et Corey ajustée afin de représenter les valeurs ponctuelles.

Si l'on compare les courbes de tension-teneur en eau obtenues à l'aide de ces paramètres, on constate qu'elles représentent bien les valeurs calculées à l'aide de l'équation de Gupta et Larson (1979). Ces courbes sont par ailleurs comparables à d'autres valeurs typiques (Frenette (1977); banque de données incluse à l'intérieur de PLOTPF) pour ce type de sol.

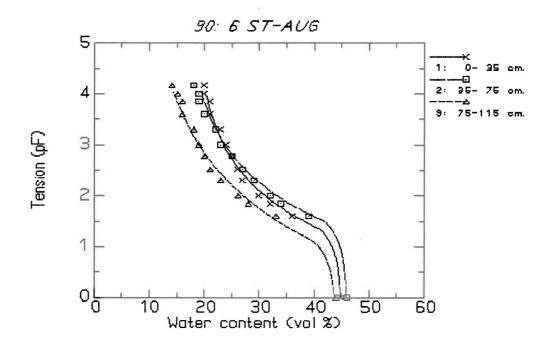


Figure 3.5: Courbes tension-teneur en eau obtenues à l'aide de Brooks et Corey, et valeurs ponctuelles calculées à partir de la régression de Gupta et Larson (1979).

Le point de flétrissement est défini comme étant la valeur limite de l'eau liée, donc non absorbable par les racines. Il correspond à la teneur en eau volumétrique présente à une tension de 15 atmosphères, soit un pF de 4.2 (Richter, 1987; Schulze, 1989). Pour St-Augustin, la régression de Gupta et Larson nous indique des valeurs de 20%, 18% et 14% pour les horizons de 0-35 cm, 35-75 cm et 75-115 cm.

C) FICHIER DES PARAMETRES DU SITE:

Ce fichier fourni au modèle l'ensemble des paramètres relatifs à l'évapotranspiration, à la végétation, aux propriétés thermiques et au mode de simulation désiré. Les valeurs de ces paramètres sont présentées à l'annexe C sous forme de tableau. On peut classer leur origine en trois catégories. Ils peuvent venir (1) de mesures de terrain ou de laboratoire, (2) de valeurs typiques tirées de la littérature et finalement, dans les cas où il n'y avait aucune référence fiable, (3) de données provenant de l'exemple d'utilisation fourni avec le modèle, correspondant au site de Lanna, Suède.

D) FICHIER DES PROPRIÉTÉS THERMIQUES DU SOL:

Ce fichier porte le nom THCOEF.DAT. Il contient les paramètres de conductivité thermique et de capacité calorifique. Pour notre simulation, le fichier représentant les conditions prévalant à Lanna, Suède, a été utilisé.

3.4.2 SOILN

A) FICHIER DES VARIABLES MOTRICES:

Les variables motrices sont responsables des transformations et du déplacement de l'azote dans le sol. Les valeurs journalières des différentes variables sont le résultat d'une simulation effectuée avec SOIL. Ce fichier est composé des variables suivantes; infiltration de surface, écoulement entre les couches, écoulement aux drains, température du sol, teneur en eau, ruissellement, température de l'air et radiations globales. Les valeurs de ces différentes variables sont présentées à l'annexe G.

B) FICHIER DES PARAMETRES DU SITE:

Ce fichier fourni au modèle l'ensemble des paramètres caractérisant les apports externes, la minéralisation, l'immobilisation, la dénitrification, l'influence des plantes, l'influence des facteurs abiotiques, et la gestion du site. Les valeurs de ces paramètres sont présentées à l'annexe D sous forme de tableau. Elles proviennent de mesures de terrain où de valeurs typiques tirées de la littérature.

C) FICHIER CARACTÉRISANT L'ÉTAT INITIAL DU SOL:

Ce fichier présente l'état initial de l'azote dans le sol. On y retrouve les types d'azote et leurs quantités respectives dans les différentes couches. Au départ, 2 formes d'azote inorganique ont été considérées, soit les nitrates et l'ammonium. L'azote organique du sol a été considéré comme lentement décomposable, c'est-à-dire faisant partie du réservoir humus. Cette hypothèse suppose que la litière formée à l'automne précédent a entièrement disparu lorsque débute la simulation.

Les quantités de nitrates comprises dans les couches 40-60 cm, 80-100 cm et 140-200 cm ont été déterminées en multipliant les concentrations mesurées par les volumes d'eau simulés. Les valeurs intermédiaires ont été interpolées linéairement alors que l'extrapolation pour les couches de surface a été basée sur l'augmentation de l'azote total mesuré par Lafrance et al. (1990) à l'été 1989.

La quantité d'ammonium contenue dans le sol au départ est basée sur le ratio nitrate/ammonium. Ce ratio a été fixé à 10 (Jansson, 1990b).

La quantité d'azote organique dans le sol a été évaluée à partir des mesures d'azote total effectuées par Lafrance et al. (1990). Les mesures ont permis de déterminer directement les quantités d'azote présentes dans les couches 0-20 cm et 40-60 cm. La valeur de la couche 20-40 cm résulte de l'interpolation linéaire des couches avoisinantes. Les couches 60-80 cm et 80-100 cm ont quant à elles été posées de façon à ce que les concentrations en nitrates simulées concordent aux valeurs mesurées à 100 cm.

FORME	PROFONDEUR EN cm						
D'AZOTE	0-20	20-40	40-60	60-80	80-100	100-140	140-200
NO ₃ -	0.800	0.650	0.490	0.420	0.360	0.650	0.860
NH ₄ +	0.080	0.065	0.049	0.042	0.036	0	0
humus	600.0	480.0	360.0	100.0	50.0	0	0

Tableau 3.7: Quantité d'azote (g N/m^2) présent dans le sol au début de la simulation.

4 RÉSULTATS

4.1 MESURES DE TERRAIN

Au cours de l'été et de l'automne 1990, des échantillons d'eau provenant de la zone non-saturée du site de St-Augustin ont été prélevés à l'aide de lysimètres avec tension. Les échantillons ont été analysés par chromatographie ionique et par la méthode technicon pour déterminer respectivement les concentrations en nitrates et en ammonium. Des collecteurs ont aussi été utilisés afin de mesurer les volumes d'eau percolant dans le sol. Les résultats des analyses sont présentés sous forme graphique donnant l'ensemble des mesures pour une profondeur donnée. En ordonnée on a les dates d'échantillonnage données selon le calendrier Julien. Les résultats d'analyse se situant sous la limite de détection ont été utilisés tels quels, sans aucune modification.

4.1.1 CONCENTRATIONS EN NITRATES

Les points représentent les concentrations mesurées en mg N-NO₃/l. Les lignes correspondent à la moyenne et les traits pointillés à la médiane. Pour les trois profondeurs, les concentrations sont relativement stables en été alors qu'elles augmentent à l'automne. L'augmentation des concentrations se manifeste dans un premier temps à 50 cm, puis à 100 cm et à 150 cm. Les concentrations mesurées vont de moins de 0.5 mg N-NO₃/l à plus de 70 mg N-NO₃/l. A 50 cm la médiane atteint un maximum de 40 mg N-NO₃/l au jour 268, à 100 cm elle est de 19 mg N-NO₃/l au jour 310 alors qu'elle est de 9 mg N-NO₃/l à 150 cm au jour 310. Les résultats de toutes les analyses sont présentés à l'annexe J sous forme de tableau.

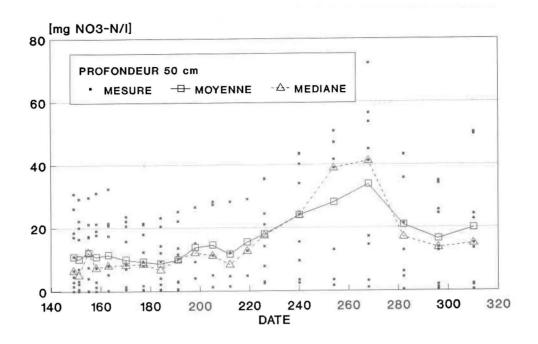


Figure 4.1: Concentrations mesurées en nitrates à 50 cm.

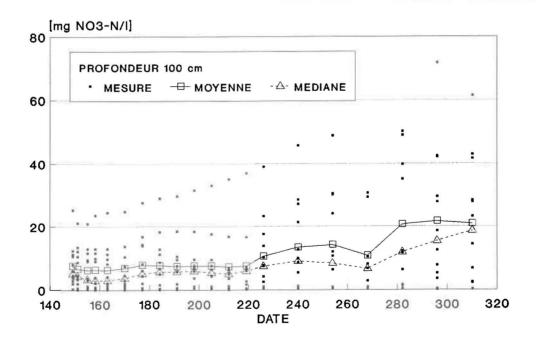


Figure 4.2: Concentrations mesurées en nitrates à 100 cm.

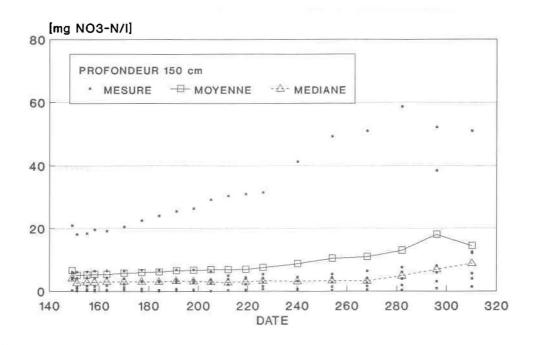


Figure 4.3: Concentrations mesurées en nitrates à 150 cm.

4.1.2 CONCENTRATIONS EN AMMONIUM

Les points représentent les concentrations mesurées en μ g N-NH₄/l. Les concentrations mesurées vont de 1 à 83 μ g N-NH₄/l. La médiane oscille entre 10 et 40 μ g N-NH₄/l à 50 cm et entre 5 et 20 μ g N-NH₄/l à 100 et 150 cm. Contrairement aux nitrates, on n'assiste pas à une augmentation des concentrations en ammonium à l'automne.

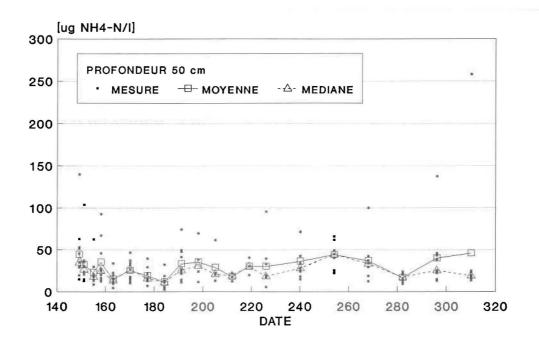


Figure 4.4: Concentrations mesurées en ammonium à 50 cm.

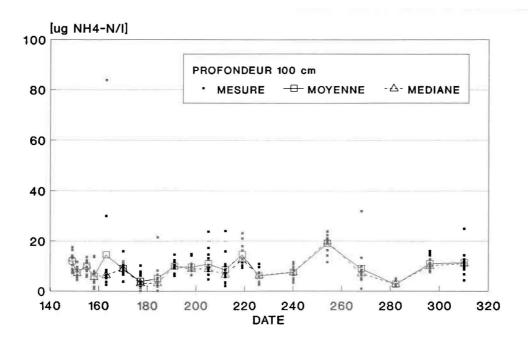


Figure 4.5: Concentrations mesurées en ammonium à 100 cm.

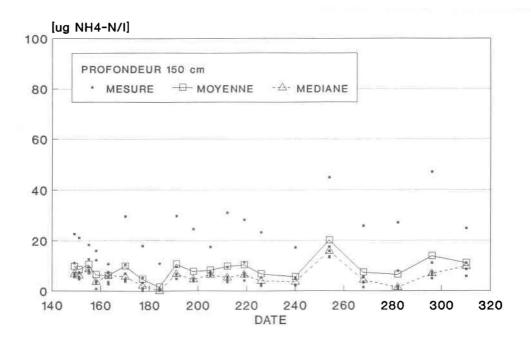


Figure 4.6: Concentrations mesurées en ammonium à 150 cm.

4.1.3 VOLUMES D'EAU RECUEILLIS PAR LES COLLECTEURS

L'infiltration, donnée en millimètre, correspond au volume d'eau mesuré divisé par la surface du collecteur. Pour la période étudiée les volumes cumulés d'eau infiltrés dans les différents collecteurs ont varié entre 31 et 60 mm à 50 cm et entre 12 et 15 mm à 100 cm. Les collecteurs C4-50, C3-100 et C4-100 n'ont pas fonctionnés. Les volumes d'eau les plus importants ont percolé après le jour 268 (25 septembre).

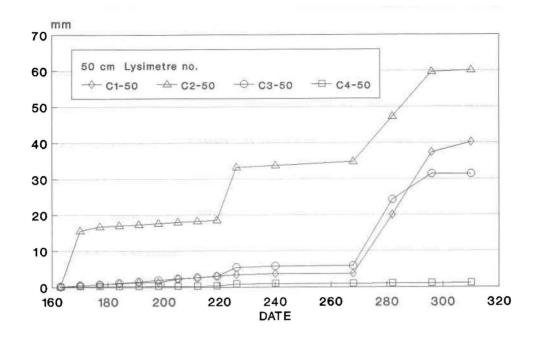


Figure 4.7: Volumes cumulés de l'infiltration mesurée à l'aide de collecteurs à 50 cm.

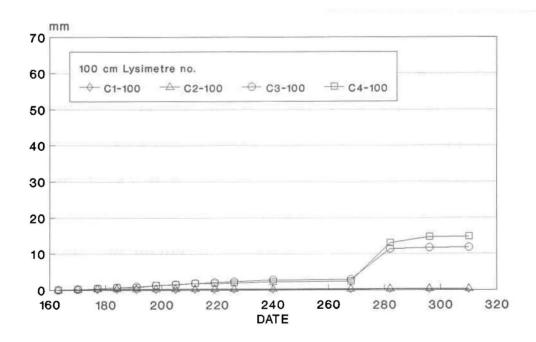


Figure 4.8: Volumes cumulés de l'infiltration mesurée à l'aide de collecteurs à 100 cm.

4.2 SIMULATION

Les modèles mathématiques SOIL et SOILN ont été utilisés pour simuler les conditions hydrodynamiques et chimiques relatives au site expérimental de Saint-Augustin-de-Desmaures. Les résultats obtenus par les simulations sont présentés sous forme graphique. L'échelle de temps utilisée est le calendrier Julien où le premier janvier correspond au jour 1.

4.2.1 RÉSULTATS DU MODELE SOIL

A) PRÉCIPITATION:

La Figure 4.9 présente les entrées en eau du modèle. Il s'agit des précipitations mesurées, majorées de 7 % afin de tenir compte des erreurs de mesures engendrées par les facteurs aérodynamiques (Jansson, 1990a).

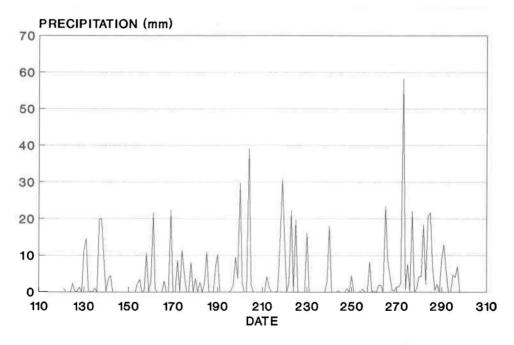


Figure 4.9: Précipitations mesurées majorées de 7 %.

B) ÉVAPOTRANSPIRATION RÉELLE:

La Figure 4.10 présente l'évapotranspiration réelle simulée. Chaque point constitue une valeur moyenne intégrée sur trois jours. On constate que les pertes en eau sont à leur maximum aux mois de juillet et août. Cette période correspond aux températures les plus chaudes de l'été et au stade maximum de croissance du maïs. Les valeurs maximales rencontrées sont de l'ordre de 8 mm par jour.

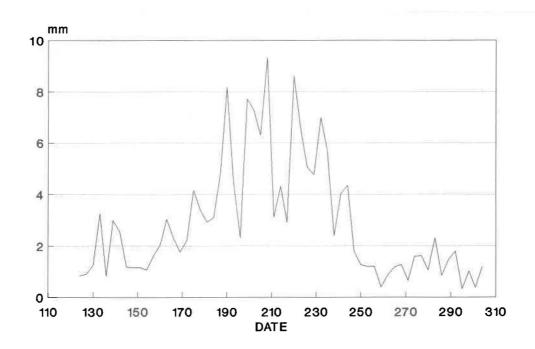


Figure 4.10: Évapotranspiration réelle simulée.

C) ÉVAPOTRANSPIRATION RÉELLE ET PRÉCIPITATIONS CUMULÉES:

Entre les mois de mai et octobre 1990, il est tombé 751 mm de pluie (une fois majoré de 7%) et le maïs a évapotranspiré 529 mm d'eau. L'apport total en eau à la nappe est donc de 222 mm. Au mois de septembre les deux courbes ont la même valeur, ce qui signifie que le sol a perdu autant d'eau qu'il en a reçu. Ce n'est que par la suite que les précipitations viennent excéder l'évapotranspiration réelle pour contribuer à la recharge de la nappe phréatique.

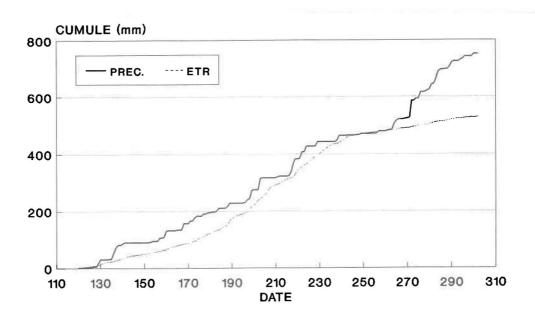


Figure 4.11: Évapotranspiration réelle et précipitation cumulées.

D) TENEUR EN EAU:

En regardant l'évolution des teneurs en eau dans le temps, on constate que les horizons supérieurs sont beaucoup plus soumises aux conditions extérieures (précipitations, évapotranspiration) que les couches plus profondes. A partir de 40 cm de profondeur, les variations de la teneur en eau sont plus lentes et ne vont pas sous les 25 %. A l'automne on assiste a une humidification du sol. Le contenu en eau dépasse alors la capacité au champ, ce qui engendre un écoulement.

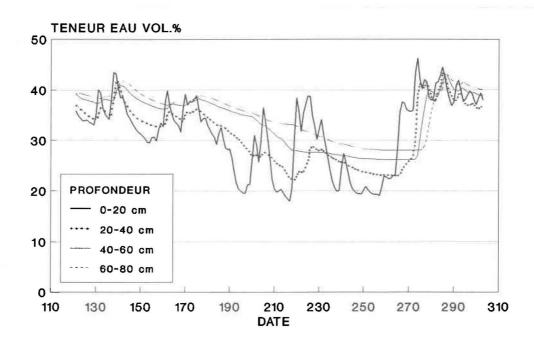


Figure 4.12: Teneur en eau simulée pour les couches comprisent dans les premiers 80 cm.

E) FLUX D'EAU JOURNALIER ET CUMULÉ:

Le modèle nous renseigne sur les flux d'eau journaliers passant une profondeur donnée. Les trois courbes reflètent une percolation plus importante au début de l'été et à l'automne. On remarque de plus un certain décalage des pics dans le temps en fonction de la profondeur. Ils sont aussi plus étroits et atteignent des valeurs plus élevées en surface. Ces différences indiquent que plus on est près de la surface plus les flux sont reliés aux précipitations. La Figure 4.14 des flux d'eau cumulés nous indique que les volumes d'eau percolés entre mai et octobre sont respectivement de 282 mm, 215 mm, 198 mm et 182 mm pour 20 cm, 60 cm, 100 cm et 140 cm.

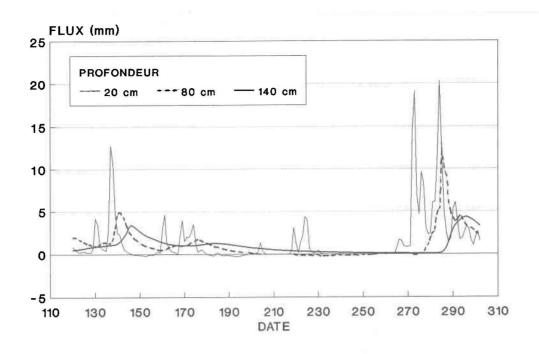


Figure 4.13: Flux d'eau simulé à 20 cm, 80 cm, et 140 cm.

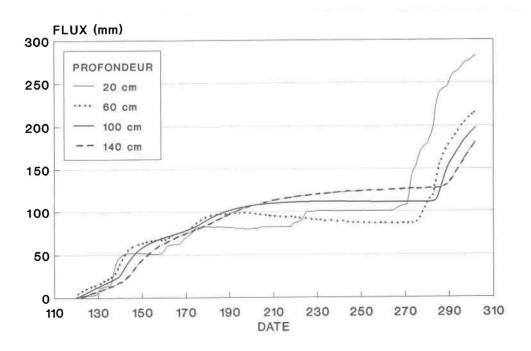


Figure 4.14: Flux d'eau cumulé simulé à 20 cm, 60 cm, 100 cm et 140 cm.

4.2.2 RÉSULTATS DU MODELE SOILN

Les résultats sont présentés à l'annexe I sous forme de sommaire. On y retrouve pour chaque variable de sorties les valeurs initiales, finale, minimale, maximale, moyenne et cumulée. Les résultats présentant un plus grand intérêt pour notre étude sont présentés dans cette section-ci. Ils se divisent en trois catégories. Il y a pour les différentes couches modélisées les apports, les pertes et l'état de l'azote inorganique dans le temps.

A) APPORTS ATMOSPHÉRIQUES:

Les apports atmosphériques regroupent les dépôts secs et humides. Ils sont donnés en g N-NO₃/m²jour tombant à la surface du sol. Au cours de la période étudiée, un total de 0.64 g N-NO₃-/m² est tombé au sol.

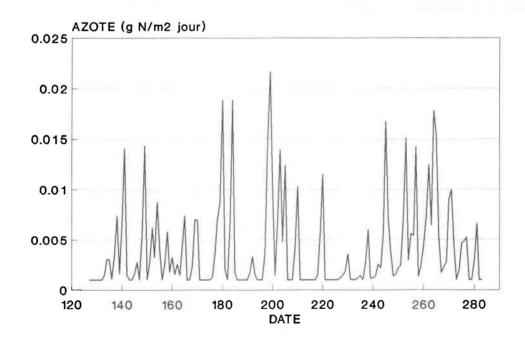


Figure 4.15: Dépositions atmosphériques simulées. Inclus les dépôts secs et humides.

B) APPORTS PAR FERTILISATION:

Deux fertilisations ont été effectuées au cours de l'été. Une première, de 4 g N-NO₃-/m² sous forme de phosphate d'ammonium, a eu lieu le 29 mai et une deuxième de 9.35 g N-NO₃-/m² sous forme de nitrate d'ammonium a été effectuée le 26 juillet. Un total de 13.35 g N-NO₃-/m² a donc été appliqué au champ.

C) MINÉRALISATION DE L'HUMUS:

La minéralisation est le passage de l'azote de la forme organique à la forme inorganique. Celle-ci décroît en fonction de la profondeur. Les taux maximums ont eu lieu aux mois de juillet et août. Le Tableau 4.1 présente pour chaque couche la quantité totale d'azote minéralisé. Les fortes valeurs de minéralisation obtenues entre 20 et 60 cm de profondeur sont associées au taux de matière organique très élevé pour ces profondeurs.

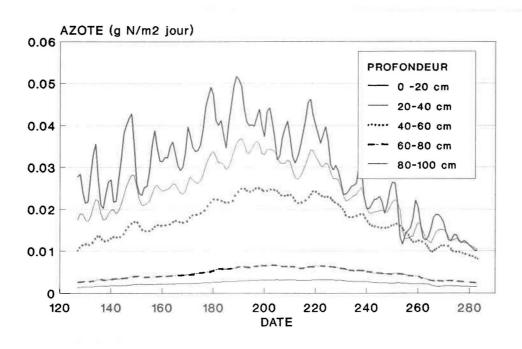


Figure 4.16: Minéralisation simulée de l'humus dans le premier mètre de sol.

PROFONDEUR EN CM	MINÉRALISATION g N/m²
0-20	4.65
20-40	3.75
40-60	2.73
60-80	0.74
80-100	0.38
TOTAL	12.25

Tableau 4.1:Résultats de simulation présentant la quantité totale d'azote minéralisée pour les différentes couches de sol.

D) NITRIFICATION:

La nitrification est le passage de la forme NH₄⁺ en NO₃⁻. La quantité totale de nitrates formé par nitrification décroît avec la profondeur. Le Tableau 4.2 présente pour les différentes profondeurs la quantité totale d'azote nitrifié. Les fortes valeurs de nitrification obtenues entre 20 et 60 cm de profondeur sont associées au taux de matière organique très élevé pour ces profondeurs.

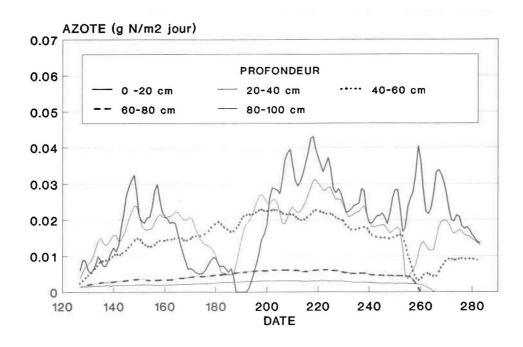


Figure 4.17: Nitrification simulée de l'azote dans le premier mètre de sol.

PROFONDEUR EN CM	NITRIFICATION g N/m²
0-20	3.15
20-40	2.81
40-60	2.32
60-80	0.60
80-100	0.33
TOTAL	9.22

Tableau 4.2: Résultats de simulation présentant la quantité totale d'azote nitrifiée pour les différentes couches de sol.

E) PRÉLEVEMENT EN NITRATES PAR LES PLANTES:

La demande potentielle en azote a été fixée arbitrairement à 120 kg N/ha (A.F.E.Q., 1987). Le prélèvement réel a été réparti suivant un modèle logistique (section 3.3.3-B). Le taux de prélèvement en nitrates a atteint un maximum de 0.20 g N-NO₃/m² jour vers la fin juin. La répartition du prélèvement entre les différentes couches est fonction du pourcentage relatif de racine dans la couche. L'azote est puisé par les plantes dans la couche 0-20 cm (70 % des racines) jusqu'à ce que la quantité disponible chute, la plante réoriente alors sa demande vers la couche inférieure et ainsi de suite. Le Tableau 4.3 présente la quantité totale d'azote, sous forme nitrate, puisée dans les différentes couches de sol. Les plantes ont prélevé au total 11.0 g N/m² (ammonium + nitrate).

PROFONDEUR EN CM	NO ₃ - PUISÉ PAR LES PLANTES (g N/m²)
0-20 20-40 40-60 60-80 80-100	5.45 2.45 0.81 0.25 6.2E-4
TOTAL	8.96

Tableau 4.3: Résultats de simulation présentant la quantité totale d'azote, sous forme nitrates, prélevée par les racines pour chaque couches de sol.

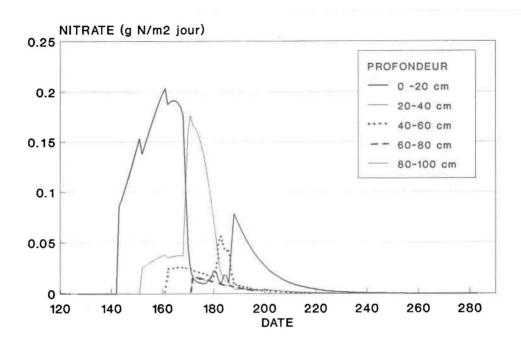


Figure 4.18: Simulation du prélèvement en nitrates par les plantes dans le premier mètre de sol.

F) PERTES PAR DÉNITRIFICATION:

Les pertes par dénitrification reflètent les conditions anaérobies du sol. On retrouve à l'occasion ces conditions dans les couches de surface après de fortes pluies. La simulation nous indique que près de 80 % de la dénitrification se produit dans la couche 0-20 cm.

PROFONDEUR EN CM	DÉNITRIFICATION (g N/m²)
0-20	1.25
20-40	1.34E-1
40-60	1.14E-1
60-80	9.37E-2
80-100	8.58E-3
TOTAL	1.60

Tableau 4.4:Résultats de simulation présentant la quantité totale d'azote dénitrifiée pour les différentes couches de sol.

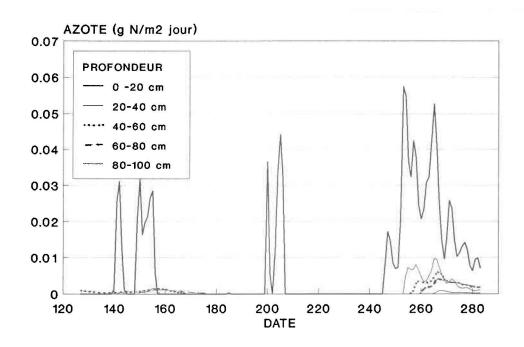


Figure 4.19: Dénitrification simulée dans le premier mètre de sol.

G) PERTES PAR LESSIVAGE:

Les pertes par lessivage sont calculées en multipliant la concentration en nitrates par le flux d'eau. Les pertes sont évaluées pour chaque couche de sol. Le lessivage se produit majoritairement à l'automne, au moment où les flux sont les plus importants. Le Tableau 4.5 présente la quantité de nitrates perdu par lessivage pour chacune des couches modélisées alors que le tableau 4.6 présente l'azote minéral résiduel à l'automne exposé au lessivage du printemps.

PROFONDEUR EN CM	PERTES PAR LESSIVAGE (g N-NO ₃ -/m ²)
0-20	11.20
20-40	9.44
40-60	7.45
60-80	4.44
80-100	2.69
100-140	1.13

Tableau 4.5: Résultats de simulation présentant la quantité totale d'azote perdue par lessivage pour les différentes couches de sol.

PROFONDEUR EN CM	NH ₄ (g N/m²)	NO ₃ (g N/m²)
0-20	0.33	1.06
20-40	0.34	2.62
40-60	0.33	3.88
60-80	0.15	3.68
80-100	0.08	2.44
100-140	0.00	2.20

Tableau 4.6:Résultats de simulation présentant la quantité totale d'azote minéral résiduel à la fin de la simulation pour les différentes couches de sol.

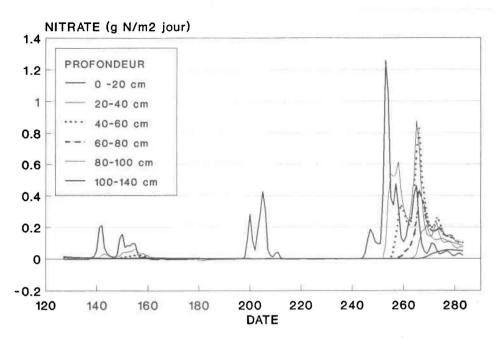


Figure 4.20: Lessivage simulé des nitrates en fonction de la profondeur.

H) CONCENTRATION EN NITRATES:

Les concentrations fournies par le modèle sont exprimées en mg $N-NO_3$ -/l. Le modèle indique que plus les couches sont près de la surface plus les concentrations en nitrates sont élevées. Pour les trois courbes on note une augmentation des concentrations à l'automne. Elles atteignent respectivement 58.0, 34.3 et 4.6 mg $N-NO_3$ /l à 50, 100 et 150 cm.

Figure 4.21: Concentration en nitrates simulée.

5 DISCUSSION

5.1 CAMPAGNE D'ÉCHANTILLONNAGE

5.1.1 VALIDITÉ DES CONCENTRATIONS MESURÉES

L'objectif de la campagne d'échantillonnage était d'obtenir une représentation la plus exacte possible des concentrations en nitrates dans les eaux interstitielles du sol. La représentativité des résultats obtenue à l'aide de lysimètres avec tension est mise en doute par certains auteurs (Barbee et Brown, 1986; England, 1974). Malgré les critiques, cette technique peu coûteuse et facilement utilisable, est très répandue (Gold et al., 1990; Rhoades et Oster, 1986; Silkworth et Grigal, 1981), ce qui offre l'avantage de pouvoir comparer nos résultats avec ceux d'autres auteurs. Dans une revue sur les différentes façons d'échantillonner les eaux interstitielles du sol, Litaor (1988) indique qu'il n'y a pas encore de technique universellement applicable, alors que Alberts et al. (1977) concluent que l'échantillonnage à l'aide de lysimètres avec tension est la seule manière pratique d'obtenir une solution interstitielle in situ sur le terrain.

5.1.2 VALIDITÉ DES FLUX D'EAU MESURÉS

Les volumes d'eau mesurés à l'aide des lysimètres sans tension ne sont présentés qu'à titre indicatif. Ils ne sont pas représentatifs de l'eau s'écoulant par unité de surface au champ, car la présence des lysimètres modifie le patron d'écoulement. L'eau dans le sol se déplace toujours du potentiel le plus élevé vers le plus faible. Or en surface des lysimètres la présence de quartz centimétriques présente de forces capillaires nulles, et le sol naturel en place présente un potentiel de succion. Ainsi, lorsque l'eau arrive à proximité de la surface du lysimètre, où la tension est nulle, elle tend à être déviée vers le sol naturel (Russel et Ewel, 1985; Radulovich et Sollins, 1987). L'écoulement de l'eau à proximité des capteurs n'est donc pas essentiellement verticale.

L'intérêt de ces mesures est qu'elles représentent une valeur de flux minimum. Il n'est pas possible d'affirmer que le volume capté représente un pourcentage donné de l'eau s'écoulant dans le sol, car le patron d'écoulement change en fonction de la teneur en eau présente dans le sol.

5.1.3 VARIABILITÉ SPATIALE DES RÉSULTATS

En examinant les résultats présentés aux Figures 4.1 à 4.6, on constate que pour une même profondeur et pour une même date, les concentrations obtenues sont très étalées. Cette variabilité spatiale des concentrations en nitrates mesurées peut s'expliquer par l'hétérogénéité texturale du sol et par l'hétérogénéité des conductivités hydrauliques de celui-ci. Il y a plus d'un ordre de grandeur entre les faibles et les fortes valeurs. Cette variabilité spatiale rend difficile le choix d'une concentration représentative. Le nombre d'échantillons (12 dans le meilleur des cas) ne permet pas de déterminer une loi statistique caractérisant notre population. Certains auteurs (Biggar et Nielsen, 1976; Gold et al., 1990) mentionnent que les concentrations en zone non-saturée ont une distribution log-normale, ce qui nous a été impossible de vérifier. Dans le but d'enlever du poids aux valeurs extrêmes (Dixon, 1986), la médiane a été retenue à la place de la moyenne arithmétique comme valeur représentative de notre population.

5.1.4 VARIABILITÉ TEMPORELLE DES RÉSULTATS

L'évolution des concentrations en nitrates dans le temps est présentée aux Figures 4.1 à 4.3. Il est admit que les concentrations en azote dans les couches de surface croissent au maximum suite aux fertilisations et qu'elles diminuent en été à cause des prélèvements de la récolte et augmentent à nouveau à l'automne après la récolte. L'échantillonnage d'eau interstitielle le plus près de la surface a été réalisé à 0.5 m de profondeur. Les concentrations en nitrates mesurées (Figure 4.1) oscillent légèrement au cours de l'été et augmente brusquement à l'automne. L'absence d'augmentation des concentrations suite aux fertilisations témoigne de l'été sec de 1990, ainsi l'azote de surface n'a pas migré jusqu'à 0.5 m de profondeur. Plus en profondeur, un examen de l'évolution des concentrations en nitrates dans le temps (Figures 4.2 et 4.3) indique qu'elles sont relativement stables en été et

qu'elles augmentent à l'automne. Cette observation est d'ailleurs mentionnée par divers auteurs (Camaron et Haynes, 1986; Hallberg, 1989). L'augmentation des concentrations se produit dans un premier temps à 0.5 m (jour 219), puis à 1.0 m (jour 226) et finalement à 1.5 m (jour 282). Ce décalage dans le temps reflète bien que les nitrates mesurés proviennent de la surface et s'écoulent en suivant un patron d'écoulement de haut en bas (Legg et Meisinger, 1982). Les concentrations en ammonium (Figures 4.4 à 4.6) sont quant à elles relativement stables tout au long de la campagne d'échantillonnage.

5.2 SIMULATION

5.2.1 SOIL

Les résultats obtenus à l'aide du modèle SOIL sur le régime hydrodynamique donnent des valeurs raisonnables compte tenu de la localisation et du type de culture. Dans cette étude, il n'a cependant pas été possible de confronter les résultats de simulation à des mesures de terrain. En fait, il n'existe pas de moyen simple d'évaluer avec fiabilité sur le terrain les flux de l'eau se produisant à diverses profondeurs. Ces derniers étant le facteur responsable du transport des nitrates hors de la zone racinaire.

A) ÉVAPOTRANSPIRATION RÉELLE:

L'évapotranspiration réelle cumulée (Figure 4.11) entre les mois de mai et octobre est de 529 mm. Pour cette même période, l'évapotranspiration potentielle compilée à partir des sommaires agrométéorologiques mensuels préparés par Environnement Canada est de 497.4 mm. En comparant ces données sur une base journalière on constate qu'au début de l'été, avant l'arrivée de la végétation, l'évapotranspiration potentielle est supérieure à l'évapotranspiration réelle. Au cours de la saison, l'apparition du maïs qui a un pouvoir de transpiration plus élevé que la surface de gazon retenue pour l'évapotranspiration potentielle, inverse cette tendance de sorte que sur la période simulée les deux valeurs sont à peu près équivalentes.

Le taux maximal d'évapotranspiration (Figure 4.10) se produisant lorsque les conditions agronomiques et météorologiques sont favorables est de l'ordre de 8 mm/jour correspondant aux valeurs mentionnées dans la littérature (Rhoads et Bennett, 1990).

B) RECHARGE DE LA NAPPE:

L'examen des courbes cumulées d'évapotranspiration et des précipitations (Figure 4.11) nous révèle qu'au cours de la période estivale les pertes et les gains en eau avec l'atmosphère sont équivalents. Ce n'est qu'à l'automne que les précipitations excèdent l'évapotranspiration. Le modèle évalue pour cette période, mai à septembre, un surplus de 222 mm d'eau. Cette valeur est comparable aux 200 mm obtenus (à partir des sommaires agrométéorologiques mensuels préparés par Environnement Canada) en soustrayant l'évapotranspiration (somme des totaux mensuels égale 500 mm) des précipitations (somme de totaux mensuels égale 700 mm).

C) TENEUR EN EAU:

L'évolution de la teneur en eau dans le profil de sol n'a pas été contrôlée sur le terrain, sauf à une occasion. A ce moment, le 10 octobre 1990, des échantillons prélevés à différentes profondeurs ont donné une teneur en eau volumétrique relativement uniforme de 33 % entre 25 cm et 115 cm (Gauthier, 1990). A cette date les teneurs en eau simulées sont elles aussi assez uniformes et de l'ordre de 37 %.

L'évolution des teneurs en eau simulées (Figure 4.12) dans le temps nous indique que les horizons de surface sont beaucoup plus sensibles aux conditions extérieures (précipitations, évapotranspiration...) que les couches plus profondes. De plus, le graphique des teneurs en eau révèle un assèchement progressif du sol au cours de l'été, suivi d'une humidification à l'automne.

D) FLUX DE L'EAU DANS LE SOL:

Les Figures 4.13 et 4.14 nous indiquent que la majeure partie de l'écoulement de l'eau dans le sol se produit au mois de mai et à l'automne. On constate de plus qu'en réponse à de fortes précipitations, les pics de flux sont décalés dans le temps en fonction de la profondeur et sont aussi plus aigus en surface.

5.2.2 SOILN

A) BILAN DE L'AZOTE DANS LE SOL:

Une façon d'évaluer les résultats du modèle SOILN est d'effectuer le bilan en azote total au niveau des différentes couches simulées. Dans cette étude les pertes en azote se produisent par: 1) prélèvement par les plantes, 2) dénitrification, et 3) lessivage des nitrates vers les couches sous-jacentes. Les gains proviennent, pour la couche de surface, des dépôts secs et humides provenant de l'atmosphère et 2) des fertilisations alors que pour les autres couches ils résultent 3) du lessivage des nitrates de la couche supérieure.

Le Tableau 5.1 résume, pour le premier mètre de sol, l'ensemble des apports et des pertes survenus au cours de la période étudiée. Pour les 5 premières couches (0 à 100 cm) une perte nette de 1.36 g N/m² a été enregistrée. Les réserves d'azote ont diminué dans les couches de surface (0 à 40 cm) alors qu'elles ont augmenté dans les horizons plus profonds.

APPORTS ET PERTES	PROFONDEURS (cm)				
COUCHE EN g N/m ²	0-20	20-40	40-60	60-80	80-100
APPORTS: atmosphériques fertilisations lessivage	0.64 13.35 0.00	0.00 0.00 11.20	0.00 0.00 9.44	0.00 0.00 7.45	0.00 0.00 4.44
PERTES: prélève. NH ₄ † plantes prélève. NO ₃ † plantes dénitrification lessivage	1.25 5.45 1.25 11.20	0.67 2.45 0.13 9.44	0.13 0.81 0.14 7.45	0.03 0.25 0.09 4.44	0.00 0.00 0.01 2.69
TOTAL: apports - pertes	-5.16	-1.49	0.91	2.64	1.74

Tableau 5.1: Bilan de l'azote simulé dans les couches composant le premier mètre de sol.

Les gains et les pertes nets de chaque couche peuvent s'expliquer de la façon suivante: 1) Les pertes dans les horizons de surface résultent de l'important prélèvement des plantes dans ces couches. Il est permis d'anticiper qu'à l'automne, suite à la récolte, les racines vont se décomposer et libérer l'azote nécessaire pour combler le déficit. 2) Les gains dans les horizons plus profonds proviennent du lessivage des nitrates de la surface vers les profondeurs. Au printemps suivant, la fonte des neiges entraînera vers les profondeurs une partie de l'azote et contribuera à rétablir les conditions de départ.

Le bilan de l'azote dans le sol permet de mettre en évidence la capacité qu'a le modèle à reproduire l'équilibre atteint au champ. De plus, les changements anticipés pour une simulation basée sur un cycle annuel complet contribueraient à améliorer d'avantage les résultats obtenus au niveau du bilan.

5.3 COMPARAISON DES CONCENTRATIONS EN NITRATES SIMULÉES ET OBSERVÉES

Rappelons que l'objectif principal de cette étude est d'évaluer les capacités du modèle à prévoir l'évolution des concentrations en nitrates dans un profil de sol pour des conditions québécoises. Pour ce faire, les travaux ont consisté à réaliser une application de type gestion (plusieurs paramètres étant tirés de la littérature) des modèles SOIL et SOILN.

La concordance des concentrations observées et simulées est très bonne entre les mois de mai et septembre alors que les différences deviennent plus importantes au mois d'octobre. Comme il ne s'agit pas d'une validation (où la totalité des paramètres d'entrées doivent être connus avec exactitude) mais d'une application, la faiblesse des résultats obtenus à l'automne ne peut être imputée au modèle. Elle peut provenir de la non validité des paramètres retenus pour les conditions d'automne.

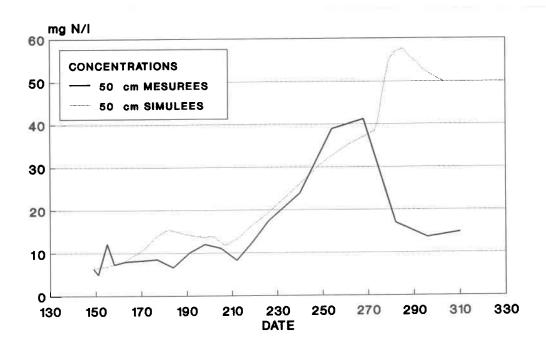


Figure 5.1: Concentrations en nitrates mesurées et simulées à 0.5 mètre.

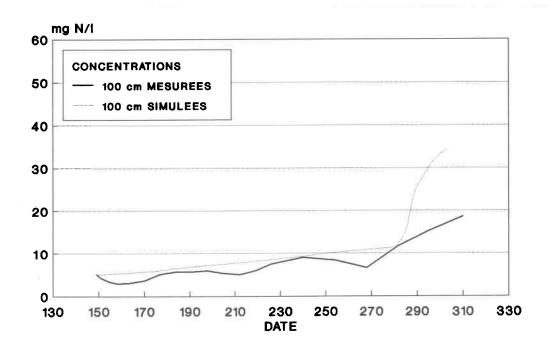


Figure 5.2: Concentrations en nitrates mesurées et simulées à 1.0 mètre.

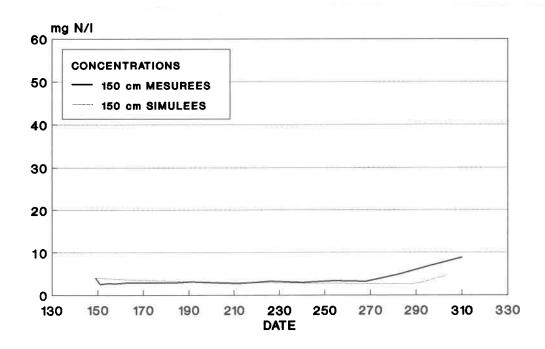


Figure 5.3: Concentrations en nitrates mesurées et simulées à 1.5 mètre.

Malgré les différences observées entre les simulations et les concentrations mesurées au champ il en ressort les points suivants:

- 1) Concentrations relatives en fonction de la profondeur. Dans l'ensemble de la période étudiée le modèle rend bien compte des concentrations relatives en fonction de la profondeur. Ainsi, tout comme il a été observé, le modèle reflète la diminution des concentrations en fonction de la profondeur.
- 2) Concentrations maximales atteintes. La modélisation a eu tendance à surestimer et à retarder les pics de concentration atteints. Les valeurs maximales demeurent néanmoins à l'intérieur de la plage des concentrations mesurées au champ pour les profondeurs de 1 m et 1.5 m. Dans une approche environnementale, la tendance à surestimer les concentrations donne un certain facteur de sécurité dans une utilisation prévisionnelle du modèle, et doit être préférée à la sous estimation.
- 3) Évolution des concentrations en nitrates. Bien que le modèle éprouve certaines faiblesses à l'automne, il est intéressant de remarquer la bonne concordance de l'évolution des concentrations au cours de la période végétative. Entre les mois de mai et septembre le modèle reflète la stabilité des concentrations mesurées à 1.5 m. A 1.0 m il témoigne de la légère augmentation alors qu'à 0.5 m il suit la brusque augmentation observée. Cette dernière s'explique par une diminution du prélèvement par les plantes et par la minéralisation de la matière organique provenant des débris des plantes mortes. La justesse des résultats obtenus dans la période de croissance des plantes fait du modèle un bon outil de gestion agronomique. Il pourrait être utilisé afin d'optimiser les doses et les dates d'application des engrais en vue d'accroître le rendement du maïs tout en diminuant les impacts néfastes reliés à la fertilisation.

5.4 ESSAI DE BILAN ENVIRONNEMENTAL

Les concentrations en nitrates parvenant à la nappe phréatique varient au cours d'une même saison. Il est cependant permis de supposer qu'avec le temps il y a homogénéisation des concentrations au sein de l'aquifère. Dans une approche environnementale, on s'intéresse alors à la concentration moyenne plutôt qu'aux concentrations journalières.

Pour arriver à déterminer s'il y a risque de contamination des eaux souterraines sous le site de St-Augustin, les concentrations mesurées en nitrates ont été couplées aux flux simulés de l'eau dans le sol. Les flux de masse passant une certaine profondeur ont ainsi été obtenus. En intégrant ces flux de masse entre mai et novembre et en les divisant par le volume total d'eau ayant percolé, on arrive à une concentration moyenne représentative de la période étudiée.

Ces calculs reposent sur trois hypothèses. Dans un premier temps, compte tenu de leurs charges négatives, on suppose que les nitrates agissent dans le sol comme un traceur et voyage à la même vitesse que l'eau (Jury et Nielsen, 1989). Deuxièmement, on néglige les phénomènes de diffusion/dispersion. Finalement, on suppose que les nitrates s'échappant de la zone racinaire vont migrer jusqu'à la nappe.

5.4.1 FLUX DE MASSE EN NITRATES

Le flux de masse des nitrates est calculé en jumelant les concentrations mesurées au mouvement de l'eau simulé. Compte tenu de la grande variabilité spatiale, la médiane a été retenue comme valeur représentative des concentrations mesurées. Ces dernières dépassent la norme de potabilité de 10 mg N-NO₃/l pour les profondeurs de 0.5 et 1.0 m (Figure 5.4).

Une interpolation linéaire entre chaque mesure de concentration permet d'obtenir des informations journalières que l'on peut associer au flux d'eau simulé (Figure 4.13) afin d'avoir un flux de masse (mg N-NO $_3$ /m²jour). La Figure 5.5 présente les flux de masse passant 0.5, 1.0 et 1.5 m sur une base journalière. On y remarque que le mouvement des nitrates s'effectue essentiellement à l'automne sur une période d'une trentaine de jours. Les flux de masse augmentent dans un premier temps à 0.5 m puis à 1.0 m et à 1.5 m pour atteindre des valeurs maximales respectives de 252 , 128 et 31 mg N-NO $_3$ /m² jour. La forme, la date et les valeurs maximales des pics caractérisent un écoulement vertical de la surface vers le bas.

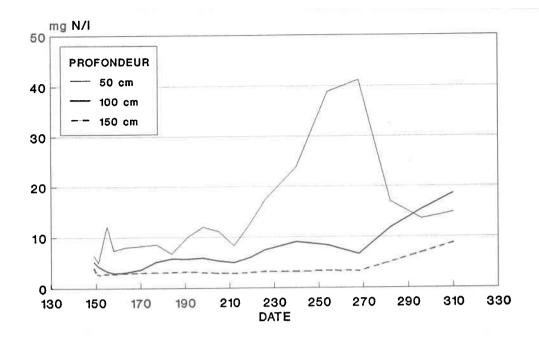


Figure 5.4: Évolution de la médiane des concentrations mesurées en nitrates à 50, 100 et 150 cm.

Le graphique des flux de masse cumulés révèle pour la période étudiée des valeurs totales de 2118, 1568 et 674 mg N-NO₃/m² à 0.5, 1.0 et 1.5 m. On y voit par ailleurs que la courbe représentant la profondeur 50 cm décroît au cours de l'été. Cette diminution affecte beaucoup la masse cumulée. Elle est causée par l'ascension capillaire résultant d'un assèchement des horizons superficiels.

5.4.2 RISQUE DE CONTAMINATION DE L'AQUIFERE

Le risque de contamination de l'aquifère est fonction de la concentration moyenne en nitrates dans l'eau quittant la zone racinaire. Cette dernière est calculée en prenant la masse totale en nitrates passant une certaine profondeur et en la divisant par le volume d'eau ayant percolé pour la même période.

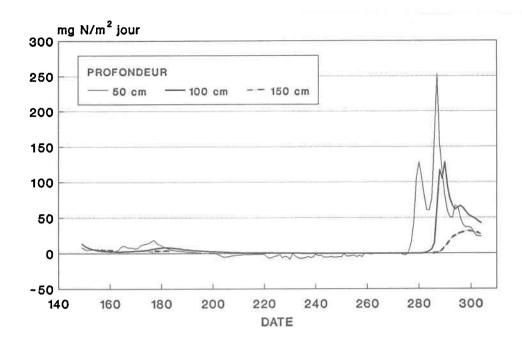


Figure 5.5: Flux de masse en nitrates. Calculé en multipliant les concentrations mesurées par les flux d'eau simulés.

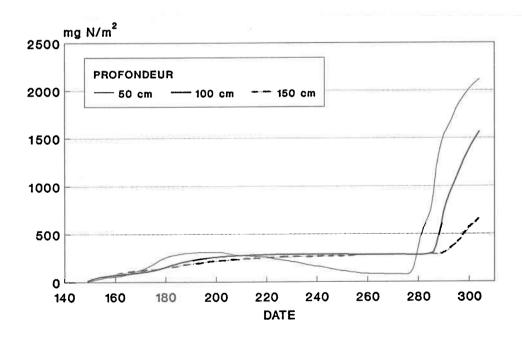


Figure 5.6: Flux de masse cumulé en nitrates.

La concentration moyenne passant 1.5 m (4 mg N-N0₃/l) est inférieure aux 10 mg N-N0₃/l permis par la norme. Les valeurs obtenues nous indiquent donc qu'il n'y a pas eu contamination de l'aquifère par les nitrates au cours de la période étudiée. On ne peut cependant affirmer que les pratiques agricoles (maïs, fertilisation, type de sol...) effectuées ne présentent aucun risque pour l'aquifère. En fait, pour en être certain, il faudrait avoir de l'information sur les flux se produisant au printemps suivant l'échantillonnage. Il serait alors possible de déterminer si la fonte de la neige occasionne une dilution des concentrations moyennes ou si au contraire elle génère des concentrations importantes en nitrates par élution des nitrates résultant de la minéralisation.

PROFONDEUR cm	MASSE CUMULÉE mg N-NO ₃ /m²	FLUX CUMULÉ mm	[NO3] MOYENNE mg N-NO ₃ /1
50	2118	215	10
100	1568	198	8
150	674	182	4

Tableau 5.2: Concentration moyenne en nitrates ayant percolés à différentes profondeurs

Cet exercice met en évidence les différences importantes entre les masses cumulées obtenues par les mesures de terrain (et les flux d'eaux simulés) et celles obtenues par la modélisation. Ainsi, le modèle tend à surévaluer les pertes en nitrates d'un facteur 3.5 à 0.5 m et d'un facteur 1.7 à 1.0 m et 1.5 m. Les pertes simulées en nitrates sont respectivement à 0.5 m, 1.0 m et 1.5 m de 7 450 mg N-NO₃/m², 2 690 mg N-NO₃/m² et de 1 130 mg N-NO₃/m² alors que les pertes obtenues à partir de concentrations mesurées sont de 2 118 mg N-NO₃/m², 1 568 mg N-NO₃/m² et 674 mg N-NO₃/m² aux mêmes profondeurs. Cet écart entre les deux types de valeurs provient de la surévaluation des concentrations en nitrates obtenue par simulation à l'automne (Figures 5.1 à 5.3). Cette période où les différences de concentrations sont les plus importantes coïncide avec le moment de l'année où il y a recharge de la nappe et a donc un poids majeurs dans l'évaluation du flux de masse cumulé en nitrates.

5.5 RECOMMANDATIONS POUR LA POURSUITE DES TRAVAUX

Dans cette étude, plusieurs interrogations demeurent sans réponse. La vérification de certains paramètres ou la réalisation de travaux supplémentaires pourraient aider à les résoudre.

- 1) Mesure du profil d'humidité du sol. La connaissance de ces valeurs permettrait dans un premier temps d'évaluer la validité du modèle pour les teneurs en eau. Dans un deuxième temps, il permettrait d'évaluer par la méthode du bilan hydrique les volumes d'eau percolés dans le sol.
- 2) Caractérisation du type et de la quantité d'azote contenue dans le profil initial de sol. La connaissance de l'état initial s'avère d'une grande utilité dans le cas de simulation de courte durée comme celle de cette étude.
- 3) Acquisition d'information sur le devenir de l'azote dans les 40 premiers cm de sol. Le modèle nous indique que 1) la plus grande influence des facteurs abiotiques (température et teneur en eau), 2) le plus grand pourcentage de racines prélevant l'azote, et 3) la quantité la plus importante de carbone organique ont pour effet de provoquer des variations importantes du stock et de la forme de l'azote dans les horizons supérieurs. Une meilleure connaissance du devenir de l'azote dans cette zone permettrait de mieux vérifier l'applicabilité du modèle SOILN.
- 4) Validité des échantillons recueillis par les lysimètres avec tension. L'applicabilité du modèle est évaluée en comparant les résultats de simulation aux concentrations en nitrates provenant d'échantillons d'eau recueillis à l'aide de lysimètres avec tension. La représentativité des concentrations en nitrates percolant dans le sol obtenues à l'aide de ce type d'échantillonnage devrait être évaluée afin de s'assurer de la bonne évaluation du modèle.
- 5) Durée de l'étude. L'intérêt de cette étude sur l'azote se situe au niveau environnemental. Il serait intéressant d'étendre les travaux sur un cycle annuel complet afin de vérifier l'importance de la période de fonte des neiges, et de déterminer une concentration annuelle moyenne en nitrates s'échappant de la zone racinaire. L'étude permettrait d'évaluer les risques pour l'aquifère qu'engendre ce type de pratique agricole.

6. CONCLUSION

Le danger de contamination des eaux souterraines par les fertilisants inorganiques azotés employés en agriculture est un problème environnemental sérieux. Malheureusement, la complexité des processus relatifs aux transformations de l'azote et à son transport dans la zone non-saturée ne facilite pas la gestion rationnelle de son utilisation. La modélisation apparaît donc comme un outil intéressant permettant de guider l'élaboration des stratégies de protection de l'environnement.

En conséquence, le but de cette étude était d'utiliser un modèle mathématique afin de simuler le devenir de l'azote dans un sol agricole et d'en confronter les résultats à des mesures de terrain. Il existe de nombreux modèles de complexités diverses, mais peu d'applications ont été réalisées par des personnes autres que les auteurs. Le modèle retenu pour cette étude, SOIL et SOILN, est basé sur des processus physiques, ce qui permet son adaptation à différents types d'écosystèmes.

L'étude comportait deux parties distinctes. Premièrement, il y a eu l'acquisition de données de terrain. La campagne de terrain a permis de déterminer certains paramètres entrant dans le modèle et d'établir les concentrations en nitrates et en ammonium percolant dans le sol. Les deux formes d'azote analysées ont évolué de façons différentes. L'ammonium est demeuré relativement stable en oscillant autour de 35 µg N-NH₄/l à 50 cm et à environ 10 µg N-NH₄/l à 100 cm et 150 cm. Les concentrations mesurées en nitrates ont augmenté légèrement au cours de la période végétative. Elles ont par la suite progressé plus rapidement à l'automne pour dépasser la norme de 10 mg N-NO₃/l atteignant des sommets de 41 mg N-NO₃/l, 19 mg N-NO₃/l et 9 mg N-NO₃/l à 50 cm, 100 cm et 150 cm. La fréquence rapprochée des échantillonnages dans les semaines suivant les fertilisations a permis de mettre en évidence l'absence d'augmentation des concentrations en nitrates dans le profil de sol en dépit des ajouts effectués.

La deuxième partie de l'étude a consisté à simuler les conditions de terrain. L'application du modèle s'est faite dans une optique de gestion en utilisant des valeurs typiques pour une partie des paramètres d'entrées. Le bilan de l'azote total dans le premier mètre de sol indique une perte nette de 1.36 g N/m² pour la période simulée. Les couches de surface (0-40 cm) sont caractérisées par un appauvrissement en azote alors que les couches plus profondes (40-100 cm) enregistrent un enrichissement. La concordance entre les concentrations en nitrates simulées et observées est très bonne au cours de la période végétative (mai à septembre). Au mois d'octobre, les résultats du modèle s'éloignent cependant des valeurs mesurées au champ. A cette période, les pics de concentrations simulées sont décalés dans le temps et sont plus importants que ceux mesurés.

L'application du modèle SOILN a permis de démontrer l'importance d'un tel outil dans la compréhension et la gestion du devenir de l'azote dans les sols agricoles. Suite à cette étude plusieurs interrogations demeurent; 1) il serait intéressant de confronter les résultats de la partie hydrodynamique, SOIL, à des mesures de terrain, 2) il serait important d'élucider les causes des écarts entres les concentrations obtenues au mois d'octobre, et 3) la réalisation de simulations portant sur plusieurs cycles annuels consécutifs permettrait de vérifier l'applicabilité du modèle dans le cas d'études à plus long terme.

BIBLIOGRAPHIE:

Addiscott, T.M. et Wagenet, R.J. (1985). Concepts of solute leaching in soils: a review of modelling approaches. J. Soil Sci. 36:411-424.

Alberts, E.E, Burwell, R.E. et Schuman, G.E. (1977). Soil nitrate-nitrogen determined by coring and solution extraction tecniques. Soil Sci. Soc. Am. J..41:90-92.

Asselin, R. (1991). Combien avez-vous perdu de nitrates l'an dernier. La terre de chez nous, vol. 9, No 5.

Association des Fabricants d'Engrais du Québec (1987). Guide des fertilisants. 2^{iem} édition.

Barbee, G.C. et Brown, K.W. (1986). Comparison between suction and free-drainage soil solution samplers. Soil Sci. 141:149-154.

Baril, R.W. (1974). Carte pédologique de la station agronomique de St-Augustin. Faculté des sciences de l'agriculture et de l'alimentation, Université Laval. 1 carte, échelle: 1:3600.

Biggard, J.W. et Nielsen D.R. (1976). Spatial variability of the leaching characteristics of a field soil. Water Resour. Res. 12:78-84.

Borg, G.Ch., Jansson, P-E. et Lindén, B. (1990). Simulated and measured nitrogen conditions in a manured and fertilised soil. Plant Soil, 121:251-267.

Boswel, F.C., Meisigner, J.J. et Case N.L. (1985). Production, marketing and use or nitrogen fertilizers. Dans "Fertilizer Technologie and use". O.P. Engelstad éditeur. troisième édition. pp. 229-292.

Bourdu, R. (1983). Bases physiologiques de l'action des températures. Dans "Physiologie du maïs". A. Gallais coordonnateur. Communication au colloque "physiologie du maïs" organisé par l'INRA, le CNRS et l'AGPM, Royan 15-17 mars 1983.

Brooks, R.H. et Corey, A.T. (1964). Hydraulic properties of porous media. Hydrology Paper No. 3, Colorado State University, Fort Collins, Colorado, 27 pp.

Camaron, K.C. et Haynes, R.J. (1986). Retention and movement of nitrogen in soils. Dans "Mineral nitrogen in the plant-soil system". Academic Press. pp. 166-241.

Castany, G. (1967). Traité pratique des eaux souterraines. Dunod, Paris. 661 pp.

Clark, T.H. et Globemsky, Y. (1973). Portneuf et partie de St-Raymond et de Lyster, comtés de Portneuf et de Lobinière, R.G.-148; Ministère des Ressources Naturelles du Québec, 100 pp.

Côté, D. (1990a). Vers une gestion des engrais favorable à la conservation de l'eau. Compte rendu du "Colloque sur la conservation de l'eau en milieu agricole", Conseil des Productions Végétales du Québec, Québec, 12-13 février, pp. 199-218.

Côté, D. (1990b). Ministère de l'agriculture du Québec. Communication personnelle.

Dalou, F. (1989). Contamination d'un aquifère hétérogène par les nitrates en zone agricole: nappe plioquaternaire de la Costière-Sud (Saint-Gilles - Gard). Thèse de Doctorat. Université des Sciences et Techniques du Languedoc. Montpellier.

Dixon, W.J. (1986). Extraneous values. Dans "Soil analysis, part 1. Physical and mineralogical methods". Agronomy monograph no.9. ASA-SSSA. pp. 83-90.

Duchaufour, P. (1988). Pédologie. Masson, Paris. 224 pp.

England, C.B. (1974). Comments on "A technique using porous cups for water sampling at any depth in the unsaturated zone", by W.W. Wood. Water Resour. Res. 10:1049.

Follett. R.F. (1974). Distribution of corn roots in sandy soil with a declining water table. Agr. J. 66:288-292.

Follett, R.F. (1989). Nitrogen management and ground water protection. Elsevier, developments in agricultural and managed-forest ecology 21. 395 pp.

Freeze, R.A. et Cherry, J.A. (1979). Groundwater. Practice-Hall. 605 pp.

Frenette, Marcel (1977). Écoulement dans les milieux poreux. Presse de l'Université Laval. 236 p.

Frissel, M.J. et Van Ven, J.A. (1982). A review of models for investigating the behaviour of nitrogen in soil. Phil Trans. R. Soc. Lond. B 296, 341-349.

Gauthier, J. (1990). Détermination de la teneur en eau à l'aide de la résistivité apparente du sol: validation d'une méthode. Projet de fin d'étude. Université Laval. Département de géologie. 69 pp.

Gilliam, J.W., Logan, T.J. et Broadbent, F.E. (1985). Fertilizer use in relation to the environment, dans "Fertilizer technology and use", pp. 561-588, Soil Science Society of America inc., troisième édition, Madison, Wisconsin USA.

Gold, A.J., DeRagon, W.R., Sullivan, W.M. et Leminyon, J.L. (1990). Nitrate-nitrogen losses to groundwater from rural and suburban land uses. J. Soil and Water Cons. 45:305-310.

Gouvernement du Québec (1990). Règlement sur l'eau potable. Éditeur officiel du Québec. Q-2,r.4.1.

Gupta, S.C. et Larson, W.E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15:6, 1633-1635.

Gustafson, A. (1988). Simulation of nitrate leaching from arable land in southern Sweden. Acta Agric. Scand. 38, 13-23.

Hallberg, G.R. (1989). Nitrate in groundwater in the United States. Dans "Nitrogen management and ground water protection". R.F. Follett éditeur. pp. 35-74.

Halldin, S. (1980). SOIL water and heat model. I. Syntheses of physical processes. Acta Universitatis Upsaliensis. Abstract of Uppsala Dissertations from the Faculty of Science 567, 26 pp.

Haynes, R.J. (1986a). Origin, distribution, and cycling of nitrogen in terrestrial ecosystems. Dans "Mineral nitrogen in the plant-soil system". Academic Press. pp. 1-51.

Haynes, R.J. (1986b). The decomposition process: Mineralization, immobilization, humus formation and degradation. Dans "Mineral nitrogen in the plant-soil system". Academic Press. pp. 52-126.

Haynes, R.J. (1986c). Nitrification. Dans "Mineral nitrogen in the plant-soil system". Academic Press. pp. 127-165.

Haynes, R.J. (1986d). Mineral nitrogen in the plant-soil system. Academic Press. 483 pp.

Haynes, R.J. et Sherlock, R.R. (1986). Gaseous losses of nitrogen. Dans "Mineral nitrogen in the plant-soil system". Academic Press. pp. 242-302.

Hess, P.J. (1986) Ground-water use in Canada, 1981. National Hydrology Reasearch Institute Paper No, 28, Inland Water Directorate Bulletin No.140, Ottawa. 45 pp.

Hillel, D. (1988). L'eau et le sol: principes et processus physiques. Academia. 294 p.

Jansson, P-E. (1980). SOIL water and heat model. II. Field studies and applications. Acta Universitatis Upsaliensis. Abstract of Uppsala Disertations from the faculty of Science 568, 26 pp.

Jansson, P-E. (1987). Simulated soil temperature and moisture at a clearcutting in central Sweden. Scand. J. For. Res., 2:127-140.

Jansson, P-E. (1990a). SOIL water and heat model, user's manual. Departement of soil sciences. Swedish Univ. of Agric. Sciences, 60 pp.

Jansson, P-E. (1990b). SOILN nitrogen model, user's manual. Departement of soil sciences. Swedish Univ. of Agric. Sciences, 26 pp.

Jansson, P-E. (1990c). Mathematical models for soil moisture dynamics and nitrate leaching - toys for scientist or tools for the decision maker. Dept of Soil Sciences, Swedish Univ. of Agric. Sciences, P.O. Box 7014, 750 07 Uppsala. 9 pp.

Jansson, P-E. et Andersson, R. (1988). Simulation of runoff and nitrate leaching from an agricultural district in Sweden. Jour. of Hydro., 99:33-47.

Jansson, P-E. et Gustafson, A. (1987). Simulation of surface runoff and pipe discharge from an agricultural soil in northern Sweden. Nordic Hydrology, 18:151-166.

Jenkinson, D.S. et Rayner, J.H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123:298-305.

Jobidon, J. (1990). Interdépendance des propriétés physiques des sols dans un modèle de contamination des eaux souterraines par des pesticides. Mémoire de maîtrise, INRS-EAU. Québec, Canada.

Johnsson, H., Bergström, L., Jansson, P-E. et Paustrian, K. (1987). Simulation of nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems & Environment, 18:333-356.

Jury, W.A. et Nielsen, D.R. (1989). Nitrate transport and leaching mechanisms. Dans "Nitrogen management and ground water protection". R.F. Follett éditeur. pp. 139-157.

Kaufman, W.J. (1974). Chemical pollution of groundwaters. Jour. AWWA, 66, 152-159.

Lafrance, P., Banton, O. et Villeneuve, J.P. (1991). Spatial variability of total carbon, nitrogen and organic matter, and their relationships in a sandy soil in Quebec. Soumis en février 1990 à Soil Science Society of America Journal

Laperrière, L. (1991). Impacts des périodes d'épendage du lisier de porc sur la qualité des eaux de drainage. Conservaction, 8.

Legg, J.O. et Meisinger, J.J. (1982). Soil nitrogen budgets. Dans "Soil analysis, part 1. Physical and mineralogical methods". Agronomy monograph no.9. ASA-SSSA. pp. 503-566.

Litaor, M.I. (1988). Review of soil solution samplers. Water Resour. Res. 24:727-733.

Marsily, G. de (1981). Hydrogéologie quantitative. Collection "Sciences de la terre". Masson. 215 p.

Miller, M. H. (1990). Impact of nutrient use in crop production on water quality. Compte rendu du "Colloque sur la conservation de l'eau en milieu agricole", Conseil des Productions Végétales du Québec, Québec, 12-13 février, pp. 137-150.

MENVIQ, Ministère de l'environnement du Québec (1988). L'environnement au Québec: un premier bilan, synthèse. Direction des communications et de l'éducation, ministère de l'environnement. 96 p.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513-522.

Power, J.F. et Broadbent, F.E. (1989). Proper accounting for N in cropping systems. Dans "Nitrogen management and ground water Protection". R.F. Follett éditeur. pp. 160-182.

Powers, J.F. et Schepers, J.S. (1989). Nitrate contamination of groundwater in North America. Agricultural Ecosystems and Environment, 26, 165-189.

Radulovich, R. et Sollins, P. (1987). Improved performance of zero-tension lysimeters. Soil Sci. Soc. Am. J. 51:1386-1388.

Raymond, R., Laflamme, G. et Godbout, G. (1976). Pédologie du comté de Portneuf, Québec. Ministère de l'Agriculture du Québec, Direction générale de la recherche et de l'enseignement.

Rhoades, J.D. et Oster, J.D. (1986). Solute content. Dans "Soil analysis, part 1. Physical and mineralogical methods". Agronomy monograph no.9. ASA-SSSA. pp. 985-1006.

Rhoads, F.M. et Bennett, J.M. (1990). Corn. Dans "Irrigation of agricultural crops", édité par B.A. Stewart et D.R. Nielsen. Agronomy monograph no. 30, pp.569-596.

Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics. 1:318-333.

Richter, Jörg (1987). The soil as a reactor: modelling processes in the soil. Catana Verlag. 192 p.

Ritchie, J.T. (1973). Influence of soil water and meteorological conditions on evaporation from a corn canopy. Agr. J. 65:893-897.

Russel, A.E. et Ewel, J.J. (1985). Leaching from a tropical andept during big storms: a comparison of three methods. Soil Sci. 139:181-189.

Schulze, R.E. (1989). ACRU: background, concepts and theory. Department of Agricultural Engineering University of Natal. WRC Report No 154/1/89. ACRU Report No 35.

Silkworth, D.R. et Grigal, D.F. (1981). Field comparaison of soil solution samplers. Soil Sci. Am. J. 45:440-442.

Sinclair, T.R. (1990). Theorical considerations in the description of evaporation and transpiration. Dans "Irrigation of agricultural crops", édité par B.A. Stewart et D.R. Nielsen. Agronomy No. 30, pp. 343-362.

Stevenson, F.J.(1982a). Nitrogen in agricultural soils. Agronomy monograph no.22. ASA-CSSA-SSSA. 940 pp.

Stevenson, F.J.(1982b). Origin and distribution of nitrogen in soil. Dans "Nitrogen in agricultural soils". Agronomy monograph no.22. ASA-CSSA-SSSA. pp. 1-42.

Stevenson, F.J.(1982c). Organic forms of soil nitrogen. Dans "Nitrogen in agricultural soils". Agronomy monograph no.22. ASA-CSSA-SSSA. pp. 67-122.

Stevenson, F.J.(1982d). Inorganic forms of nitrogen in soil. Dans "Nitrogen in agricultural soils". Agronomy monograph no.22. ASA-CSSA-SSSA. pp. 43-66.

Strebel, O., Duynisveld, V.H.M. et Böttcher, J. (1989). Nitrate pollution of groundwater in western Europe. Agriculture, Ecosystems and Environment, 26, 189-214.

Technicon industrial systems (1973). "Manuel d'utilisation", Technicon Auto Analyzer II, Industrial method No.154-71W.

Tisdale, S.L., Nelson, W.L. et Beaton, J.D. (1985). Soil and Fertilizer nitrogen (chap.5). Dans "Soil fertility and fertilizers". Mcmillan Publishing company. pp. 12-188.

Wagenet, R.J. (1986). Water and solute flux. Dans "Methods of soil analysis, part 1: Physical and mineralogical methods". A. Klute éditeur. ASA-SSSA. pp. 1055-1088.

ANNEXE A

Nomenclature et unités des différentes variables du modèle SOIL

SOIL.TRA

	rables:			500
MNEMONIC	NAME	UNIT	IDENTIFICATION	P0S
WATER	 Water storage	mm	_	
HEAT	Heat storage	Jm ²		
PLANT	Accumulated water	mm	plant uptake	
STREAM	Accumulated water	mm	pipes	
SURPOOL	Water storage	mm	surface	
HSNOW	Snow depth	m		
WSNOW	Water equivalent	mm	snow pack	
MNEMONIC	NAME	UNIT	IDENTIFICATION	POS
MNEMONIC	NAME	UNIT	IDENTIFICATION	POS
		=	IDENTIFICATION	P0S
WFLOW	Water flow	mm/day	IDENTIFICATION _====================================	P0S
WFLOW EFLOW	 Water flow Heat flow	mm/day J/m²day		POS ===
WFLOW EFLOW WUPTAKE	Water flow Heat flow Water flow	mm/day J/m²day mm/day	root upt	P0S
WFLOW EFLOW WUPTAKE DRIVF	Water flow Heat flow Water flow Heat flow	mm/day J/m²day mm/day J/m²day	root upt	POS
WFLOW EFLOW WUPTAKE DRIVF INFIL	Water flow Heat flow Water flow Heat flow Heat flow Water flow	mm/day J/m²day mm/day J/m²day mm/day	root upt surface inflow surface infiltra	POS ===
WFLOW EFLOW WUPTAKE DRIVF INFIL EVAG	Water flow Heat flow Water flow Heat flow Water flow Water flow Water flow	mm/day J/m²day mm/day J/m²day mm/day mm/day	root upt surface inflow surface infiltra Soil evaporation	POS ===
WFLOW EFLOW WUPTAKE DRIVF INFIL EVAG DFLOW	Water flow Heat flow Water flow Heat flow Water flow Water flow Water loss Water flow	mm/day J/m²day mm/day J/m²day mm/day mm/day mm/day	root upt surface inflow surface infiltra Soil evaporation to pipes	POS ===
WFLOW EFLOW WUPTAKE DRIVF INFIL EVAG DFLOW PUMP	Water flow Heat flow Water flow Heat flow Water flow Water flow Water loss Water flow Heat flow	mm/day J/m²day mm/day J/m²day mm/day mm/day mm/day mm/day J/m²day	root upt surface inflow surface infiltra Soil evaporation to pipes extraction	POS ===
WFLOW EFLOW WUPTAKE DRIVF INFIL EVAG DFLOW PUMP HEATSINK	Water flow Heat flow Water flow Heat flow Water flow Water loss Water flow Heat flow Heat flow	mm/day J/m²day mm/day J/m²day mm/day mm/day mm/day J/m²day J/m²day	root upt surface inflow surface infiltra Soil evaporation to pipes extraction sink	POS ===
WFLOW EFLOW WUPTAKE DRIVF INFIL EVAG DFLOW PUMP HEATSINK SPOOLA	Water flow Heat flow Water flow Heat flow Water flow Water flow Water loss Water flow Heat flow	mm/day J/m²day mm/day J/m²day mm/day mm/day mm/day mm/day J/m²day	root upt surface inflow surface infiltra Soil evaporation to pipes extraction sink su-pool inflow	POS ===

Auxiliary MNEMONIC	y variables: NAME	UNIT =	IDENTIFICATION	POS
TEMP	Temperature	°C		
THQUAL	Thermal quality			
THETA	Water content	vol %		
PSI	Tension	cm water	r	
INTCAP	Interception capac.	mm	vegetation	
INTERC	Max interc. storage	mm	vegetation	
EINTPOT	Water loss	mm/day	Int. potential	
EACTI	Water loss	mm/day	Int. actual	
ISTORE	Intercepted storage	mm	vegetation	
RA	Resistance	s/m	air	
ROUGH	Roughness length	m	air	
DISPL	Displacement height	m	air	
RS	Resistance	s/m	vegetation	
WUPPOT	Water loss	mm/day	Transp. potential	
EACT	Water loss	mm/day	Transp. actual	
REDF	Act/pot transp.	-	vegetation	
EVAPO	Water loss	mm/day	Total evapotransp.	
VPD	Vap pressure defici	tPa	air	
RNTG	Net radiation	J/m ² day	surface	
SENS	Sensibel heat flow	J/m ² day	surface outflow	
LATENT	Latent heat flow	J/m ² day	surface outflow	
SURFMOS	Surface water cont		surface	
LAI	Leaf area index	_	vegetation	
SATLEV	Ground water level	m		
DENSS	Density of snow			
PREC	Precipitation	mm/day	corrected	
TOTQ	Water flow	mm/day	runoff total	
PIPEQ	Water flow	mm/day	pipes total	
PERC	Water flow	mm/day	groundwater	
SURRE	Surface runoff	mm/day	(hydraulic cond)	
SWATS	Unfrozen water	mm	snow pack	
SAGE	Age of surface snow	Days	snow pack	
SWELL	Total swelling	m	whole profile	
FROSTBL	Frost boundary	m .	lower	
FROSTBU	Frost boundary	m	upper	

MNEMONIC	NAME	UNIT -	IDENTIFICATION POS
TTSTEP	 Time step	log. day	 yintegration
TQUALP	Thermal quality		precipitation
DINFIL	Water flow	mm/day	pot. infiltration
RAC	Resistance	s/m	air corrected
VPS	Vapour pressure	Pa	soil surface
VPA	Vapour pressure	Pa	air
RSSOIL	Resistance	s/m	soil surface
EPOT	_========================= Evapotranspiration	= mm/day	_======== potential
PRECMM	-		potential
	Dracinitation	mm/dav	uncorrected
	Precipitation	mm/day °C	uncorrected
TA	Temperature	°C	air
TA TD	Temperature Temperature	°C	air surface
TA TD HR	Temperature Temperature Relative humidity	°C °C %	air surface air
TA TD HR WS	Temperature Temperature Relative humidity Wind speed	°C °C % m/s	air surface air above vegetation
TA TD HR WS RNT	Temperature Temperature Relative humidity Wind speed Net radiation	°C °C % m/s	air surface air
TA TD HR WS RNT CLOUDN	Temperature Temperature Relative humidity Wind speed	°C °C % m/s J/m ² day	air surface air above vegetation above vegetation
TA TD HR WS RNT	Temperature Temperature Relative humidity Wind speed Net radiation Cloud/durat.of sun Global radiation	°C °C % m/s J/m²day	air surface air above vegetation
TA TD HR WS RNT CLOUDN RIS IRIG	Temperature Temperature Relative humidity Wind speed Net radiation Cloud/durat.of sun	°C °C % m/s J/m ² day	air surface air above vegetation above vegetation

ANNEXE B

Nomenclature et unités des différentes variables du modèle SOILN

SOILN.TRA

State var	riables: NAME	UNIT	IDENTIFICATION POS
N03	 Nitrogen	g/m ²	NO3-N
PLANT	Nitrogen	g/m ²	Plant-N
DENIT	Nitrogen	g/m²	Denitrified NO3
DLOSST	Nitrogen	g/m²	Leached NO3-N
FERT	Nitrogen	g/m²	Solid fertilizer
NLIT	Nitrogen	g/m²	Litter
NF	Nitrogen	g/m²	Faeces
NH	Nitrogen	g/m²	Humus
CL	Carbon	g/m²	Litter
CF	Carbon	g/m²	Faeces
NH4	Nitrogen	g/m²	NH4 - N
LITABOVE	•	g/m ²	Harvest residues
GRAINC	Carbon	g/m²	Grain
LEAFC	Carbon	g/m²	Leaf
STRAWC	Carbon	g/m²	Straw
ROOTC	Carbon	g/m ²	Roots
GRAINN	Nitrogen	g/m ²	Grain
LEAFN	Nitrogen	g/m ²	Leaf
STRAWN	Nitrogen	g/m ²	Straw
ROOTN	Nitrogen	g/m²	Roots
Flow var	iables:		
MNEMONIC	NAME	UNIT	IDENTIFICATION POS
UPPN03	- Nitrogen flow	g/m²day	Plant uptake
DENI	Nitrogen flow	g/m²day	Denitrification
DLOSS	Nitrogen flow	g/m²day	To tiles
DEP	Nitrogen flow	g/m²day	Deposition (total)
NFLOW	Nitrogen flow	g/m²day	
NFERT	Nitrogen flow		Fertilizer dissolved
FINNB	Nitrogen flow	g/m²day	Man-faeces
NHARV	Nitrogen flow	- ·	Harvest export
NEWNL	Nitrogen flow	g/m²day	
NLMIN	Nitrogen flow	g/m²day	Lit-NH4
NLHUM	Nitrogen flow	g/m²day	Lit-humus

<u></u>	inhīna.		
Flow vari	NAME	UNIT	IDENTIFICATION PO
FINNA	Nitrogen flow	g/m²day	- Man-litter
NHMIN	Nitrogen flow	g/m²day	Hum-NH4
NFHUM	Nitrogen flow	g/m²day	Fae-humus
FINNH	Nitrogen flow	g/m²day	Man-NH4
FNIT	Nitrogen flow	g/m²day	NH4-NO3
CLLOSS	Carbon flow	g/m²day	Lit loss (tot
NEWCL	Carbon flow	g/m²day	Pla-litter
CFLOSS	Carbon flow	g/m²day	Fae loss (tot
FINCB	Carbon flow	g/m²day	Man-faeces
NFMIN	Nitrogen flow	g/m²day	Fae-NH4
UPPNH4	Nitrogen flow	g/m²day	NH4-plant
INCALIT	Nitrogen flow	g/m²day	Plant-residues
DECALIT	Nitrogen flow	g/m²day	Res-litter
PHOS	Carbon flow	g/m²day	Photosynthesis
RESPGC	Carbon flow	g/m²day	Respiration grain
RESPLC	Carbon flow	g/m²day	Respiration leaf
RESPSC	Carbon flow	g/m²day	Respiration straw
RESPRC	Carbon flow	g/m²day	Respiration root
HARVGC	Carbon flow	g/m²day	Harvest of grain
HARVLC	Carbon flow	g/m²day	Harvest of leaf
HARVSC	Carbon flow	g/m²day	Harvest of straw
ALEAFSC	Carbon flow	•	Leaf to straw
ALEAFGC	Carbon flow	g/m²day	Leaf to grain
ASTRAWGC	Carbon flow	g/m²day	Straw to grain
ASTRAWRC	Carbon flow	•	Straw to root
LEAFLC	Carbon flow	g/m²day	Leaf to litter
STRAWLC	Carbon flow	g/m²day	Straw to litter
ROOTSLC	Carbon flow	g/m²day	Roots to litter
ACTUPTN	Nitrogen flow	g/m²day	Actual uptake
AROOTSN	Nitrogen flow	g/m²day	Roots to straw
ASTRAWLN	Nitrogen flow	g/m²day	Straw to leaf
ASTRAWGN	Nitrogen flow	g/m²day	Straw to grain
ALEAFGN	Nitogen flow	g/m²day	Leaf to grain
HARVGN	Nitrogen flow	•	Harvest of grain
HARVLN	Nitrogen flow	g/m²day	Harvest of leaf
HARVSN	Nitrogen flow	g/m²day	Harvest of straw
11/11/19/11	more ogen 170W	5/111 445	

Auxiliary MNEMONIC	y variables: NAME	UNIT	IDENTIFICATION POS
NCONC	 Nitrate-N	mg/l	water
PIPEL	Nitrogen flow	g/m ² day	NO3-N tile drainage
STREAMT	Nitrogen flow	g/m ² day	NO3-N stream Q
TOTFI	Nitrogen flow	g/m ² day	NO3-N Q-after consumption
NLTPROF	Nitrogen	g/m²	Litter tot profile
NFTPROF	Nitrogen	g/m²	Faeces tot profile
NHTPROF	Nitrogen	g/m^2	Humus tot profile
NH4T	Nitrogen	g/m ²	NH4-N tot profile
NO3T	Nitrogen	g/m²	NO3-N tot profile
ROOTLAY	Root depth	layer	No of layers
POTUPT	Nitrogen flow	g/m²day	Pot root uptake (tot)
TOTDEN	Nitrogen flow	g/m²day	Act denitrification (tot)
TOTUPT	Nitrogen flow	g/m²day	Act root uptake (tot)
PIPEQ	Water flow	mm/day	In drainage tiles
STREAMQ	Water flow	mm/day	In stream
TOTMAL	Nitrogen flow	g/m²day	Manure-litter
TOTMAE	Nitrogen flow	g/m²day	Manure-faeces
TOTMAN	Nitrogen flow	g/m²day	Manure-NH4
TOTNLMIN	Nitrogen flow	g/m²day	Litter-NH4
TOTNFMIN	Nitrogen flow	g/m²day	Faeces-NH4
TOTMOC	Nitrogen flow	g/m²day	Humus-NH4
TOTNHMIN	Nitrogen flow	g/m²day	Org-NH4
TOTNIT	Nitrogen flow		NH4-NO3
CLTPROF	Carbon	g/m²	Litter
RATCNL	C-N ratio	-	Litter
RATCNF	C-N ratio	-	Faeces
QNO3C1	Nitrogen	mg/l	NO3-N stream
QNO3C2	Nitrogen	mg/l	NO3-N after consumption in stream
RUSENO3	Nitrogen flow		NO3 consumption in stream
AEFF	Abiotic effect	-	Min-imm processes
ODNO3	Nitrogen flow	g/m²day	Meas∼ leaching
PIPENO3C	Nitrogen	mg/l	NO3-N tile drainage
ATEFF	Abiotic effect	-	Temperature response
VDEV	Growth index	-	Vegetation development
GDEV	Growth index	-	Grain development
LEAFDN	Nitrogen flow	•	Leaf demand
STRAWDN	Nitrogen flow	g/m²day	Straw demand

MNEMONIC	NAME	UNIT	IDENTIFICATION POS
		==	_===================
ROOTDN	Nitrogen flow	g/m²day	Root demand
NMAXG	Nitrogen content	-	Maximum in grain
NMAXL	Nitrogen content	-	Maximum in leaf
NMINL	Nitrogen content	-	Minimum in leaf
NLEAF	Nitrogen content	=	Actual in leaf
NGRAIN	Nitrogen content	÷.	Actual in grain
NSTRAW	Nitrogen content	监	Actual in straw
NROOT	Nitrogen content	-	Actual in roots
RPTEM	Response function	8.	Photo. temp.
RPMOS	Response function	8	Photo. moist.
RPN	Response function	-	Photo. nitrogen
ROOTDEP	Root depth	m	

•	variables:		
MNEMONIC	NAME	UNIT	IDENTIFICATION POS
INF	Water flow	mm/day	Infiltration
WFLOW	Water flow	mm/day	
DFLOW	Water flow	mm/day	To pipes
TEMP	Temperature	°C	
THETA	Water content	Vol %	
SURR	Water flow	mm/day	Surface runoff
SURRE	Water flow	mm/day	Surface runoff (soil)
PERC	Water flow	mm/day	Percolation
MEACONC	Nitrogen conc.	mg/l	NO3-N measured
TA	Temperature	°C	Air
RIS	Radiation	jm ² day	Solar radiation
ETR	Transpiration ratio	-	Actual/potential

ANNEXE C

Valeurs et références des paramètres du modèle SOIL

DRIVING VARIABLES:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
CNUMD		1	manuel de l'usager	type de donnée nécessaire à la simulation.
HEIGHT	E	2		
PRECA0		1.07	manuel de l'usager	facteur de correction pour la pluie mesurée.

ANITIAL CONDITIONS:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
CINIT		23	manuel de l'usager	la quantité d'eau est calculée en fonction de
CTEMPI		ડ	manuel de l'usager	IVOI, IINEIA et Jawlev.
IGWLEV	E	. 5	estimé	
IPOT	cm eau	40	estimé	
ITEMPS	၁၀	9	estimé	

SOIL PROFILE:

-62					
	MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
*	NUMLAY		7	arbitraire	
	THICK(1)	E	0.05	arbitraire	multiplier par VC pour avoir l'épaisseur de
	THICK(2)	E	0.05	arbitraire	id couche.
	THICK(3)	Œ	0.05	arbitraire	
101	THICK(4)	ш	0.05	arbitraire	
	THICK(5)	Œ	0.05	arbitraire	
	THICK(6)	E	0.10	arbitraire	
	THICK(7)	E	0.15	arbitraire	
	۸C		4	arbitraire	
	MANU		9	arbitraire	identifie le fichier SOILP.DAT
	UPROF		06	arbitraire	identifie le fichier SOILP.DAT

EVAPOTRANSPIRATION:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
ALBEDO	%	20	Hillel, (1988)	
INTLAI	mm/LAI	0.20	exemple du demo	
INTRS	m/s	0.50	exemple du démo	
LATID		46.75	localisation du site	
ROUGHV(1)	E	0.01	manuel de l'usager	1/10 de la hauteur de la végétation
ROUGHV(2)	E	0.01	manuel de l'usager	1/10 de la hauteur de la végétation
ROUGHV(3)	E	0.20	manuel de l'usager	1/10 de la hauteur de la végétation
ROUGHV(4)	E	0.20	manuel de l'usager	1/10 de la hauteur de la végétation
ROUGHV(5)	٤	0.01	manuel de l'usager	1/10 de la hauteur de la végétation
RSV(1)	m/s	80	exemple du démo	
RSV(2)	m/s	09	exemple du démo	
RSV(3)	m/s	40	exemple du démo	
RSV(4)	w/s	09	exemple du démo	
RSV(5)	m/s	80	exemple du démo	
LAIV(1)		0	Eik, (1966)	
LAIV(2)		0.05	Nicelle, (1913)	
LAIV(3)		3.5		
LAIV(4)		3.5		

EVAPOTRANSPIRATION:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
LAIV(5)		0		
DISPLV(1)	E	0.01	manuel de l'usager	70 % de la hauteur de végétation.
DISPLV(2)	E	0.07	manuel de l'usager	70 % de la hauteur de végétation.
DISPLV(3)	E	1.40	manuel de l'usager	70 % de la hauteur de végétation.
DISPLV(4)	ш	1.40	manuel de l'usager	70 % de la hauteur de végétation.
DISPLV(5)	E	0.01	manuel de l'usager	70 % de la hauteur de végétation.
DAYNUM(1)		149		
DAYNUM(2)		172		
DAYNUM(3)		202		8
DAYNUM(4)		232		
DAYNUM(5)		262		
CFORM(1)		0.5		ajusté de façon à obtenir une courbe de même allure
CFORM(2)		2.0		due celle de Miccile (1975).
CFORM(3)		1.0		
CFORM(4)		1.0		
PSIRS		200	exemple du démo	

WATER UPTAKE:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
R00TF(1)	%	70	Follett, (1974)	
R00TF(2)	%	13		
R00TF(3)	%	6		
R00TF(4)	%	9		
R00TF(5)	%	2		
R00TL(1)		0		
R00TL(2)		 1		
₹ R00TL(3)		J.		
RU0TT(1)		149	semence	
R00TT(2)		162	émergence	
R00TT(3)		239	maturité	
R00TT(4)		273	mort	
WUPATE		8.0	manuel de l'usager	
WUPBTE		0.4	manuel de l'usager	
WUPCRI	cm eau	3000	exemple du démo	
WUPF		0.3	exemple du démo	
WUPFB		0.0	exemple du démo	

ANNEXE D

Valeurs et références des paramètres du modèle SOILN

EXTERNAL INPUTS:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
DEPDRY	g N/m² an	0.001	manuel de l'usager	dépôts secs
DEPWC	mg N/1	0.8	manuel de l'usager	dépôts humides
FERK	/jour	0.15	manuel de l'usager	taux de dissolution du fertilisant
FERN	g N/m²	4.00	08-16-16 500 kg/ha	dose de la première fertilisation
FERN(1)	g N/m²	9.35	34-00-00 275 kg/ha	dose de la deuxième fertilisation
FERDAY	nombre	149	29-05-90	date de la première fertilisation
FERDAY(1)	nombre	207	25-07-90	date de la deuxième fertilisation
GWCONC	L/bm	0.0	pas utilisé	concentration en nitrates dans la nappe.

CROP AND MANAGEMENT:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
PLODAY	NOMBRE	365	sans labour	date de labour
PLOLAY		1	20 cm	profondeur des labours
CNARES		09	Haynes, (1986b) p.82	ratio C/N dans les résidues de surface
CNROOT		25	manuel de l'usager	ratio C/N dans les racines
HARAR(1)		0	sans récolte	fraction N récoltée de la plante
HARAR(2)		0	sans récolte	fraction N récoltée de la plante
HARAR(3)		0	sans récolte	fraction N récoltée de la plante
HARHP(1)		0	sans récolte	fraction N dans les résidus de surface à la récolte
HARHP(2)		0	sans récolte	fraction N dans les résidus de surface à la récolte
HARHP(3)		0	sans récolte	fraction N dans les résidus de surface à la récolte
HARLR(1)		0	sans récolte	fraction N des racines vivantes à la récolte
HARLR(2)		0	sans récolte	fraction N des racines vivantes à la récolte
HARLR(3)		0	sans récolte	fraction N des racines vivantes à la récolte
UPET(1)	nombre	288	15-10-90	date de la récolte

MINERALISATION AND IMMOBILISATION:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
HUMK	/jour	7.0 E-5	manuel de l'usager	taux de minéralisation de l'humus.
LITK	/jour	0.035	manuel de l'usager	taux spécifique de décomposition de la litière.
LITEFF		0.5	manuel de l'usager	efficacité du cycle interne de la biomasse dans
LITHF		0.15	manuel de l'usager	fraction d'humification du carbone dans la litière.
CNORG		7.1	Lafrance, (1990)	ratio C/N des microorganismes et de l'humus.
UPMA	/jour	6.0	manuel de l'usager	fraction disponible de l'N minéral pour
NITK	/jour	0.2	manuel de l'usager	taux spécifique de nitrification.
NITR		20	manuel de l'usager	ratio ammonium/nitrate.
FECK	/jour	0	sans faeces	taux spécifique de décomposition des faeces.
FECEFF		0	sans faeces	efficacité des faeces.
FECHF		0	sans faeces	fraction d'humification du carbone dans le faeces.

SOIL MOISTURE AND TEMPERATURE RESPONSE:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
MOSM		-	réponse linéaire	coefficient dans la fonction d'humidité.
PORO(1)	*	45.0	modèle SOIL	porosité au milieu de la couche.
PORO(2)	%	45.2	modèle SOIL	porosité au milieu de la couche.
PORO(3)	%	46.0	modèle SOIL	porosité au milieu de la couche.
PORO(4)	%	45.6	modèle SOIL	porosité au milieu de la couche.
PORO(5)	%	44.0	modèle SOIL	porosité au milieu de la couche.
POR0(6)	%	44.0	modèle SOIL	porosité au milieu de la couche.
POR0(7)	%	44.0	modèle SOIL	porosité au milieu de la couche.
WILT(1)	%	9.20	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(2)	%	9.78	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(3)	%	12.10	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(4)	%	11.96	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(5)	%	11.40	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(6)	%	11.40	modèle SOIL	point de flétrissement au mileu de la couche.
WILT(7)	%	11.40	modèle SOIL	point de flétrissement au mileu de la couche.
MOSSA		90.0	Haynes, (1986b) p.86	activité à saturation dans la fonction d'humidité.
MOS(1)	%	11.0	Haynes, (1986b) p.86	intervalle supérieur dans la fonction d'humidité.
MOS(2)	<i>≫</i>	11.0	Haynes, (1986b) p.86	intervalle inférieur dans la fonction d'humidité.
TEMQ10		2.0	Bourdu, (1983) p.395	réponse à un changement de 10 °C de la température.
TEMBAS	၁၀	20.0	manuel de l'usager	température de base où l'effet de la température =1

PLANT UPTAKE:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
UPST(1)	nombre	162	date d'émergence	début de la demande par les plantes.
UPST(2)	nombre	0		
UPST(3)	nombre	0		
UPA(1)	g N/m² an	12	120 kg/ha	demande potentielle en N par les plantes.
UPA(2)	g N/m² an	0	A.F.E.V. (1907)	
UPA(3)	g N/m² an	0		
UPB(1)		12	manuel de 1'usager	coefficient dans la fonction de prélèvement.
UPB(2)		0	•	
UPB(3)		0		
UPC(1)	/jour	0.10	manuel de l'usager	coefficient dans la fonction de prélèvement.
UPC(2)		0		
UPC(3)		0		
UPMOV		-	manuel de l'usager	fraction compensatoire de la demande lors de stress.
R00TT(1)	nombre	149	semences	date de la couche la plus profonde ayant des racines
R00TT(2)	nombre	162	émergence	date de la couche la plus profonde ayant des racines
R00TT(3)	nombre	192	entre 2	date de la couche la plus profonde ayant des racines
R00TT(4)	nombre	222	maturité	date de la couche la plus profonde ayant des racines
R00TT(5)	nombre	288	récolte	date de la couche la plus profonde ayant des racines

PLANT UPTAKE:

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
R00TL(1)	# couche	0	semences	couche la plus profonde ayant des racines
R00TL(2)	# couche	-	émergence	couche la plus profonde ayant des racines
R00TL(3)	# couche	4	entre 2	couche la plus profonde ayant des racines
R00TL(4)	# conche	ស	maturité	couche la plus profonde ayant des racines
R00TL(5)	# conche	0	récolte	couche la plus profonde ayant des racines
R00T(1)		.70	modèle SOIL	au jour rooil. fraction racinaire dans la couche à maturité.
R00T(2)		.13	modèle SOIL	fraction racinaire dans la couche à maturité.
R00T(3)		60.	modèle SOIL	fraction racinaire dans la couche à maturité.
R00T(4)		90.	modèle SOIL	fraction racinaire dans la couche à maturité.
R00T(5)		.02	modèle SOIL	fraction racinaire dans la couche à maturité.
R00T(6)		0		fraction racinaire dans la couche à maturité.
R00T(7)		0		fraction racinaire dans la couche à maturité.
R00T(8)		0		fraction racinaire dans la couche à maturité.
R00T(9)		0		fraction racinaire dans la couche à maturité.
R00T(10)		0		fraction racinaire dans la couche à maturité.

DENITRIFICATION

MNÉMONIQUE	UNITÉ	VALEUR	ORIGINE	COMMENTAIRES
DENPOT	g/m² jour	0.2	manuel de l'usager	taux potentiel de dénitrification
DENHS	mg/l	10	manuel de l'usager	constante de mi-saturation
MOSDEN	%	10	manuel de l'usager	effet eau du sol/aération sur la dénitrification
DEND		1.0	Power et Broadbent	coefficient fonction de l'humidité dans la
DFRAC(1)		.70	(1909) distri. racinaire	fraction de la dénitrification potentielle dans les
DFRAC(2)		.13	distri. racinaire	
DFRAC(3)		60.	distri. racinaire	
DFRAC(4)		90.	distri. racinaire	
DFRAC(5)		.02	distri. racinaire	
DFRAC(6)		0		
DFRAC(7)		0		
DFRAC(8)		0		
DFRAC(9)		0		
DFRAC(10)		0		

ANNEXE E

Coéficients de la régression de Gupta

GUPTA

Coefficients de régression et de corrélation prédisant la teneur en eau pour un potentiel matriciel spécifique (selon Gupta, 1979)

Potentiel		COÉFFI	CIENTS DE	RÉGRESSI	ON	
matriciel bars	ax10 ⁻³	bx10 ⁻³	cx10 ⁻³	dx10 ⁻³	ex10 ⁻²	-pF-
-0.04 -0.07 -0.10 -0.20 -0.33 -0.60 -1.00 -2.00 -4.00 -7.00	7.053 5.678 5.018 3.890 3.075 2.181 1.563 0.932 0.483 0.214 0.076	10.242 9.228 8.548 7.066 5.886 4.557 3.620 2.643 1.943 1.538 1.334	10.070 9.135 8.833 8.408 8.039 7.557 7.154 6.636 6.128 5.908 5.802	6.333 6.103 4.966 2.817 2.208 2.191 2.388 2.717 2.925 2.855 2.653	-32.120 -26.960 -24.230 -18.780 -14.340 -9.276 -5.759 -2.214 -0.204 1.530 2.145	1.60 1.85 2.00 2.30 2.52 2.78 3.00 3.30 3.60 3.85 4.00
-15.00	-0.059	1.142	5.766	2.228	2.671	4.18

[%] sable + % silt + % argile = 100 % sable=2.0-0.05 mm, silt=0.05-0.002 mm, argile=<0.002 mm

ANNEXE F

Variables météorologiques utilisées par le modèle SOIL

MÉTÉO.BIN

DATE	Temperature °C	Vapour pressure Pa	Wind speed m/s	Precipitation mm	Cloudiness %
121	17.00	580.00	2.42	1.00	0.86
122	7.00	934.72	4.64	0.00	0.52
123	7.00	425.08	2.69	0.00	0.23
124	9.50	463.08	2.17	0.00	0.38
125	7.50	572.82	2.94	2.20	1.00
126	8.00	804.96	2.58	0.20	1.00
127	8.00	742.08	1.97	0.20	0.63
128	8.00	678.37	2.25	1.20	0.23
129	15.50	805.45	4.58	0.00	0.40
130	12.50	878.54	8.03	10.80	0.66
131	7.50	1089.14	6.50	13.60	0.93
132	9.00	627.10	5.06	0.00	0.17
133	11.50	806.77	1.03	0.20	0.77
134	14.50	894.33	1.33	0.00	0.13
135	13.00	784.00	1.61	1.00	0.89
136	12.00	1049.13	2.78	0.00	0.19
137	9.00	756.69	8.31	18.60	1.00
138	8.50	907.54	4.39	18.60	1.00
139	6.50	950.60	4.44	8.80	0.95
140	6.50	758.76	6.08	0.00	0.71
141	6.50	716.82	5.92	3.40	0.99
142	5.50	759.47	3.72	4.20	1.00
143	7.50	753.51	5.33	0.00	0.61
144	7.00	689.99	4.06	0.00	0.32
145	12.00	569.35	1.56	0.00	0.08
146	14.00	656.28	1.92	0.00	0.26
147	16.00	867.60	3.33	0.00	0.39
148	17.00	1005.32	4.81	0.00	0.17
149	10.50	852.18	3.89	0.00	0.63
150	10.00	638.47	4.42	0.00	0.26
151	8.50	435.99	3.25	0.00	0.36
152	18.00	845.79	5.58	0.00	0.24
153	17.50	979.95	4.72	0.00	0.46
154	22.50	1613.41	2.64	2.20	0.83
155	11.50	1889.08	4.72	3.20	0.96
156	8.00	1002.97	4.86	0.00	0.54
157	7.50	682.04	0.94	0.40	0.80
158	13.50	1175.89	2.50	10.00	0.69

DATE Temperature						
160 16.00 1218.97 3.19 2.80 0.99 161 12.00 1333.76 5.50 20.20 1.00 162 14.00 1288.33 3.00 0.80 0.41 163 16.50 992.67 2.58 0.00 0.08 164 17.50 1121.89 1.00 0.00 0.88 165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 <td< th=""><th>DATE</th><th></th><th>•</th><th></th><th></th><th>Cloudiness %</th></td<>	DATE		•			Cloudiness %
161 12.00 1333.76 5.50 20.20 1.00 162 14.00 1288.33 3.00 0.80 0.41 163 16.50 992.67 2.58 0.00 0.08 164 17.50 1121.89 1.00 0.00 0.88 165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 <td< td=""><td>159</td><td>14.00</td><td>1261.95</td><td>2.08</td><td>0.00</td><td>0.23</td></td<>	159	14.00	1261.95	2.08	0.00	0.23
162 14.00 1288.33 3.00 0.80 0.41 163 16.50 992.67 2.58 0.00 0.08 164 17.50 1121.89 1.00 0.00 0.88 165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 <td< td=""><td>160</td><td>16.00</td><td>1218.97</td><td>3.19</td><td>2.80</td><td>0.99</td></td<>	160	16.00	1218.97	3.19	2.80	0.99
163 16.50 992.67 2.58 0.00 0.08 164 17.50 1121.89 1.00 0.00 0.88 165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 <td< td=""><td>161</td><td>12.00</td><td>1333.76</td><td>5.50</td><td>20.20</td><td>1.00</td></td<>	161	12.00	1333.76	5.50	20.20	1.00
164 17.50 1121.89 1.00 0.00 0.88 165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 <t< td=""><td>162</td><td>14.00</td><td>1288.33</td><td>3.00</td><td>0.80</td><td>0.41</td></t<>	162	14.00	1288.33	3.00	0.80	0.41
165 21.50 1495.53 0.64 0.00 0.78 166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 <t< td=""><td>163</td><td>16.50</td><td>992.67</td><td>2.58</td><td>0.00</td><td>0.08</td></t<>	163	16.50	992.67	2.58	0.00	0.08
166 20.50 1928.22 0.97 2.80 0.56 167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 <t< td=""><td>164</td><td>17.50</td><td>1121.89</td><td>1.00</td><td>0.00</td><td>0.88</td></t<>	164	17.50	1121.89	1.00	0.00	0.88
167 21.50 1949.96 1.75 0.00 0.60 168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 <t< td=""><td>165</td><td>21.50</td><td>1495.53</td><td>0.64</td><td>0.00</td><td>0.78</td></t<>	165	21.50	1495.53	0.64	0.00	0.78
168 22.00 1665.66 0.81 0.00 0.77 169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 <t< td=""><td>166</td><td>20.50</td><td>1928.22</td><td>0.97</td><td>2.80</td><td>0.56</td></t<>	166	20.50	1928.22	0.97	2.80	0.56
169 20.50 2353.31 2.22 20.90 0.97 170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50<	167	21.50	1949.96	1.75	0.00	0.60
170 13.80 1811.91 8.06 0.00 0.84 171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 </td <td>168</td> <td>22.00</td> <td>1665.66</td> <td>0.81</td> <td>0.00</td> <td>0.77</td>	168	22.00	1665.66	0.81	0.00	0.77
171 12.00 1107.59 5.92 0.00 0.99 172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 </td <td>169</td> <td>20.50</td> <td>2353.31</td> <td>2.22</td> <td>20.90</td> <td>0.97</td>	169	20.50	2353.31	2.22	20.90	0.97
172 13.00 1225.55 3.25 8.20 1.00 173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50<	170	13.80	1811.91	8.06	0.00	0.84
173 16.00 1437.29 2.33 0.00 0.76 174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00<	171	12.00	1107.59	5.92	0.00	0.99
174 14.50 1452.95 5.72 10.60 1.00 175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00<	172	13.00	1225.55	3.25	8.20	1.00
175 19.00 1708.86 2.58 4.80 0.54 176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 </td <td>173</td> <td>16.00</td> <td>1437.29</td> <td>2.33</td> <td>0.00</td> <td>0.76</td>	173	16.00	1437.29	2.33	0.00	0.76
176 19.00 1793.23 3.89 0.00 0.63 177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 192 17.00 </td <td>174</td> <td>14.50</td> <td>1452.95</td> <td>5.72</td> <td>10.60</td> <td>1.00</td>	174	14.50	1452.95	5.72	10.60	1.00
177 21.00 1840.26 4.47 0.00 0.46 178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 </td <td>175</td> <td>19.00</td> <td>1708.86</td> <td>2.58</td> <td>4.80</td> <td>0.54</td>	175	19.00	1708.86	2.58	4.80	0.54
178 17.00 1631.50 3.19 7.60 0.74 179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.21 192 17.00 </td <td>176</td> <td>19.00</td> <td>1793.23</td> <td>3.89</td> <td>0.00</td> <td>0.63</td>	176	19.00	1793.23	3.89	0.00	0.63
179 15.00 1384.22 2.64 0.00 0.20 180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.21 192 17.00 1233.93 4.14 0.00 0.21 194 17.00 </td <td>177</td> <td>21.00</td> <td>1840.26</td> <td>4.47</td> <td>0.00</td> <td>0.46</td>	177	21.00	1840.26	4.47	0.00	0.46
180 15.50 1170.46 2.92 3.60 0.61 181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 </td <td>178</td> <td>17.00</td> <td>1631.50</td> <td>3.19</td> <td>7.60</td> <td>0.74</td>	178	17.00	1631.50	3.19	7.60	0.74
181 17.00 1410.24 1.47 0.00 0.35 182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 </td <td>179</td> <td>15.00</td> <td>1384.22</td> <td>2.64</td> <td>0.00</td> <td>0.20</td>	179	15.00	1384.22	2.64	0.00	0.20
182 15.50 1537.35 1.39 2.60 0.99 183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	180	15.50	1170.46	2.92	3.60	0.61
183 18.50 1447.92 1.53 0.00 0.06 184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	181	17.00	1410.24	1.47	0.00	0.35
184 19.00 1554.59 3.42 2.20 0.85 185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	182	15.50	1537.35	1.39	2.60	0.99
185 16.50 2005.82 2.47 10.20 0.96 186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	183	18.50	1447.92	1.53	0.00	0.06
186 14.50 1503.87 3.36 0.00 0.09 187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	184	19.00	1554.59	3.42	2.20	0.85
187 14.00 1019.57 2.50 0.00 0.58 188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	185	16.50	2005.82	2.47	10.20	0.96
188 15.00 1052.88 2.64 0.00 0.44 189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	186	14.50	1503.87	3.36	0.00	0.09
189 16.50 1067.61 1.94 6.60 0.39 190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	187	14.00	1019.57	2.50	0.00	0.58
190 22.00 1604.85 3.61 9.60 0.48 191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	188	15.00	1052.88	2.64	0.00	0.44
191 17.50 1729.79 5.50 0.00 0.32 192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	189	16.50	1067.61	1.94	6.60	0.39
192 17.00 1233.93 4.14 0.00 0.11 193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	190	22.00	1604.85	3.61	9.60	
193 16.50 1190.41 2.03 0.00 0.21 194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	191	17.50	1729.79	5.50	0.00	
194 17.00 1022.81 2.75 0.00 0.08 195 18.50 1276.44 3.58 0.00 0.09	192	17.00	1233.93	4.14	0.00	0.11
195 18.50 1276.44 3.58 0.00 0.09	193	16.50	1190.41	2.03	0.00	
	194	17.00	1022.81	2.75		
196 21.50 1516.68 1.58 0.40 0.99	195	18.50	1276.44			
	196	21.50	1516.68	1.58	0.40	0.99

DATE	Temperature °C	Vapour pressure Pa	Wind speed m/s	Precipitation mm	Cloudiness %
197	23.50	2171.38	4.64	1.80	0.48
198	22.00	2056.60	3.42	9.00	0.45
199	23.50	2011.88	3.31	3.40	0.60
200	22.50	2144.23	4.25	27.80	0.45
201	18.00	1971.87	2.22	2.20	1.00
202	19.00	1865.04	1.56	0.00	0.14
203	20.50	1582.86	1.39	0.00	0.23
204	17.50	1767.01	4.92	36.60	1.00
205	17.50	1808.70	2.08	1.80	1.00
206	20.00	1760.28	1.33	0.00	0.48
207	21.50	2006.66	1.92	0.00	0.29
208	23.00	1901.56	2.22	0.00	0.17
209	24.00	1879.47	0.44	0.00	0.12
210	23.00	1995.70	1.64	0.00	0.09
211	25.00	2108.38	1.06	0.00	0.11
212	19.50	2007.71	0.64	4.00	0.84
213	19.00	1850.18	2.78	1.40	0.14
214	20.50	1260.18	2.64	0.00	0.03
215	22.50	1556.42	2.69	0.00	0.16
216	22.50	1997.38	2.28	0.00	0.05
217	24.00	1985.57	1.50	0.40	0.79
218	20.00	2139.97	1.33	12.60	1.00
219	18.00	2081.07	3.78	28.80	1.00
220	21.00	2053.76	2.31	14.00	0.52
221	20.50	1792.01	3.28	0.00	0.24
222	20.50	1838.11	1.53	2.60	0.96
223	20.50	2037.49	1.11	20.80	1.00
224	20.50	2175.39	2.64	0.00	0.25
225	17.00	1894.93	1.72	18.40	1.00
226	18.50	1693.95	1.89	0.00	0.49
227	17.50	1681.04	3.92	0.00	0.64
228	19.00	1715.89	1.58	0.00	0.19
229	20.50	1658.31	3.22	0.00	0.65
230	17.50	2228.74	3.39	15.20	0.99
231	14.50	1319.73	2.19	0.00	0.11
232	14.00	1007.39	1.25	0.00	0.16
233	16.00	1148.45	1.50	0.00	0.04
234	17.00	1286.99	1.86	0.00	0.07

235 19.00 1451.38 1.81 0.00 0.10 236 20.00 1649.23 0.44 0.00 0.18 237 22.50 1988.84 1.06 0.00 0.38 238 23.50 2000.43 1.86 0.00 0.32 239 19.50 2204.88 2.31 2.80 0.96 240 19.00 1893.84 1.89 16.80 0.32 241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 2.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 1	DATE	Temperature °C	Vapour pressure Pa	Wind speed m/s	Precipitation mm	Cloudiness %
237 22.50 1988.84 1.06 0.00 0.38 238 23.50 2000.43 1.86 0.00 0.32 239 19.50 2204.88 2.31 2.80 0.96 240 19.00 1893.84 1.89 16.80 0.32 241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250	235	19.00	1451.38	1.81	0.00	0.10
238 23.50 2000.43 1.86 0.00 0.32 239 19.50 2204.88 2.31 2.80 0.96 240 19.00 1893.84 1.89 16.80 0.32 241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251	236	20.00	1649.23	0.44	0.00	0.18
239 19.50 2204.88 2.31 2.80 0.96 240 19.00 1893.84 1.89 16.80 0.32 241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251	237	22.50	1988.84	1.06	0.00	0.38
240 19.00 1893.84 1.89 16.80 0.32 241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.	238	23.50	2000.43	1.86	0.00	0.32
241 18.00 1885.24 2.64 0.00 0.24 242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.0	239	19.50	2204.88	2.31	2.80	0.96
242 16.00 1216.92 2.44 0.00 0.09 243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.0	240	19.00	1893.84	1.89	16.80	0.32
243 18.50 1282.95 2.94 0.00 0.34 244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00	241	18.00	1885.24	2.64		0.24
244 20.00 1636.17 2.47 0.40 0.45 245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00	242	16.00	1216.92		0.00	0.09
245 17.50 1658.44 2.86 0.00 0.19 246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00	243	18.50	1282.95	2.94	0.00	0.34
246 13.50 1103.66 3.08 0.00 0.05 247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50	244	20.00	1636.17	2.47		0.45
247 15.00 888.09 2.61 0.00 0.14 248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.54 260 7.50 <td>245</td> <td>17.50</td> <td>1658.44</td> <td>2.86</td> <td>0.00</td> <td>0.19</td>	245	17.50	1658.44	2.86	0.00	0.19
248 17.00 1506.87 2.72 1.00 0.41 249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 <t< td=""><td>246</td><td>13.50</td><td>1103.66</td><td>3.08</td><td>0.00</td><td>0.05</td></t<>	246	13.50	1103.66	3.08	0.00	0.05
249 15.00 1130.29 1.89 0.00 0.15 250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50	247	15.00	888.09	2.61	0.00	0.14
250 11.50 1727.40 2.61 4.20 0.87 251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00	248	17.00	1506.87	2.72	1.00	0.41
251 9.00 813.08 2.11 0.00 0.12 252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00	249	15.00	1130.29	1.89	0.00	
252 11.00 841.80 1.06 0.00 0.48 253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00	250	11.50	1727.40	2.61	4.20	0.87
253 12.50 1208.04 1.72 0.00 0.99 254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50	251	9.00	813.08	2.11	0.00	0.12
254 14.00 1362.82 1.75 0.20 0.09 255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 <t< td=""><td>252</td><td>11.00</td><td>841.80</td><td>1.06</td><td></td><td></td></t<>	252	11.00	841.80	1.06		
255 14.00 987.98 2.83 0.80 0.27 256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 <t< td=""><td>253</td><td>12.50</td><td>1208.04</td><td>1.72</td><td>0.00</td><td></td></t<>	253	12.50	1208.04	1.72	0.00	
256 13.00 1274.57 4.44 0.00 0.18 257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.57 271 15.00 <	254	14.00	1362.82			
257 19.00 841.86 2.50 0.00 0.57 258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 <	255	14.00	987.98	2.83		
258 15.00 1755.99 4.61 7.80 1.00 259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	256	13.00	1274.57	4.44	0.00	
259 8.00 1225.83 4.72 0.20 0.64 260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	257	19.00	841.86	2.50	0.00	
260 7.50 827.27 3.39 0.20 0.50 261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	258	15.00	1755.99	4.61	7.80	
261 8.00 685.48 4.42 0.00 0.46 262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	259	8.00	1225.83	4.72	0.20	0.64
262 9.50 740.12 2.08 1.80 0.38 263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	260	7.50	827.27	3.39		
263 11.00 937.40 1.67 1.80 0.98 264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	261	8.00	685.48			
264 10.00 993.59 2.47 0.00 0.77 265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	262	9.50	740.12	2.08	1.80	
265 11.00 1036.20 3.08 21.80 1.00 266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	263	11.00	937.40		1.80	0.98
266 12.50 1293.54 4.14 8.20 0.67 267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	264	10.00	993.59	2.47		
267 8.00 1138.74 5.67 4.20 1.00 268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96	265	11.00	1036.20	3.08		
268 12.50 1003.47 2.03 0.40 0.90 269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96		12.50				
269 14.00 1215.18 2.08 0.40 0.66 270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96						
270 15.00 1448.80 1.56 1.40 0.57 271 15.00 1469.23 1.89 1.40 0.96		12.50				
271 15.00 1469.23 1.89 1.40 0.96	269	14.00	1215.18			
		15.00				
272 11.50 1514.84 1.61 2.40 0.86						
	272	11.50	1514.84	1.61	2.40	0.86

DATE	Temperature °C	Vapour pressure Pa	Wind speed m/s	Precipitation mm	Cloudiness %
273	9.00	1014.44	7.00	54.40	1.00
274	8.00	987.56	4.31	0.60	0.89
275	7.50	826.26	3.42	7.20	0.91
276	8.00	780.33	3.61	0.00	0.91
277	11.50	799.12	3.42	20.60	0.74
278	11.00	1236.24	5.22	0.20	0.60
279	16.00	905.52	3.75	0.80	0.45
280	11.50	1373.53	2.72	4.00	1.00
281	7.50	969.17	4.67	4.00	1.00
282	6.00	742.89	6.06	17.20	1.00
283	6.00	791.10	7.14	2.00	1.00
284	9.50	895.36	5.00	19.40	1.00
285	14.00	1356.46	1.22	20.20	1.00
286	14.00	1560.78	2.08	6.60	1.00
287	11.00	1411.71	2.28	0.40	0.68
288	10.00	1028.75	4.06	2.00	0.69
289	8.00	840.21	4.53	0.00	0.33
290	9.00	712.38	2.58	8.40	0.98
291	9.00	957.65	4.25	12.20	1.00
292	5.50	1039.70	8.19	5.40	1.00
293	3.50	506.66	5.08	0.00	0.06
294	6.00	490.42	1.33	0.00	0.11
295	6.50	729.86	1.58	4.40	1.00
296	3.50	769.91	4.94	3.80	0.52
297	4.50	648.29	3.92	6.60	1.00
298	5.50	760.06	1.44	0.00	0.64
299	2.50	596.92	3.36	0.00	0.57
300	1.00	352.33	1.67	0.00	0.23
301	3.00	438.66	1.50	8.80	0.99
302	1.00	650.90	3.86	0.00	0.59
303	0.00	424.59	3.67	0.00	0.75
304	2.00	595.94	3.28	0.00	0.17

ANNEXE G

Variables motrices utilisées par le modèle SOILN

DRIV_N.BIN

DATE	INFIL mm/day	WFLOW(1)	METUM(3)	UELOU(2)			
	mm/dav						
	,	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day
121	1.07	0.89	1.64	3.47	2.00	0.63	0.49
122	0.00	0.47	1.38	2.23	2.00	0.83	0.53
123	0.00	0.32	1.11	1.68	1.90	1.05	0.55
124	0.00	0.20	0.93	1.37	1.69	1.22	0.59
125	2.35	0.25	1.18	1.27	1.51	1.29	0.63
126	0.21	0.32	0.98	1.22	1.40	1.33	0.67
127	0.21	0.23	0.79	1.09	1.31	1.34	0.72
128	1.28	0.21	0.66	0.96	1.22	1.32	0.76
129	0.00	0.17	0.58	0.86	1.13	1.29	0.81
130	11.56	0.71	0.55	0.79	1.06	1.25	0.84
131	14.55	4.18	0.86	0.81	1.01	1.21	0.88
132	0.00	3.47	2.18	1.13	1.01	1.17	0.91
133	0.21	0.98	2.10	1.63	1.16	1.15	0.94
134	0.00	0.67	1.64	1.67	1.33	1.17	0.96
135	1.07	0.54	1.30	1.53	1.41	1.22	0.99
136	0.00	0.41	1.04	1.34	1.41	1.28	1.02
137	19.90	2.84	0.98	1.18	1.35	1.32	1.05
138	19.90	12.74	2.86	1.40	1.30	1.32	1.08
139	9.42	10.64	7.82	3.93	1.73	1.35	1.11
140	0.00	4.77	7.35	6.08	3.20	1.64	1.15
141	3.64	2.47	5.10	5.79	4.78	2.44	1.24
142	4.49	2.27	4.95	4.96	4.95	3.47	1.42
143	0.00	1.31	3.36	4.35	4.67	4.27	1.73
144	0.00	0.53	2.16	3.30	3.98	4.36	2.12
145	0.00	0.37	1.53	2.42	3.31	3.94	2.49
146	0.00	0.18	1.16	1.92	2.74	3.46	3.16
147	0.00	0.05	0.89	1.56	2.32	3.04	3.45
148	0.00	-0.04	0.68	1.29	2.00	2.68	3.29
149	0.00	-0.08	0.52	1.08	1.73	2.37	3.10
150	0.00	-0.09	0.39	0.89	1.50	2.11	2.89
151	0.00	-0.11	0.31	0.74	1.30	1.87	2.69
152	0.00	-0.16	0.25	0.64	1.14	1.66	2.48
153	0.00	-0.21	0.20	0.57	1.02	1.49	2.29
154	2.31	-0.20	0.15	0.50	0.93	1.36	2.14
155	3.37	-0.08	0.12	0.45	0.85	1.25	2.02

DATE	INFIL mm/day	WFLOW(1) mm/day	WFLOW(2) mm/day	WFLOW(3) mm/day	WFLOW(4) mm/day	WFLOW(5) mm/day	WFLOW(6) mm/day
156	0.00	-0.05	0.11	0.39	0.78	1.16	1.91
157	0.37	-0.11	0.10	0.35	0.70	1.06	1.80
158	10.64	0.13	0.10	0.32	0.64	0.97	1.69
159	0.00	0.28	0.15	0.31	0.59	0.90	1.59
160	2.93	0.18	0.18	0.32	0.56	0.84	1.49
161	21.54	2.98	0.34	0.34	0.54	0.79	1.40
162	0.78	4.64	1.43	0.54	0.54	0.75	1.32
163	0.00	1.43	1.95	1.05	0.63	0.72	1.25
164	0.00	0.70	1.61	1.29	0.79	0.73	1.19
165	0.00	0.39	0.85	1.19	0.92	0.76	1.14
166	2.91	0.26	0.86	0.99	0.96	0.81	1.10
167	0.00	0.17	0.95	0.99	0.96	0.85	1.08
168	0.00	-0.05	0.70	0.92	0.96	0.88	1.06
169	22.27	2.07	0.66	0.81	0.93	0.91	1.04
170	0.00	4.00	1.67	0.97	0.91	0.92	1.04
171	0.00	1.48	1.90	1.38	1.00	0.93	1.03
172	8.67	2.04	1.68	1.46	1.12	0.96	1.02
173	0.00	2.01	1.95	1.57	1.21	1.00	1.02
174	11.24	2.61	1.89	1.67	1.32	1.06	1.02
175	5.03	3.51	2.62	1.92	1.44	1.13	1.02
176	0.00	1.28	2.21	2.22	1.66	1.23	1.03
177	0.00	0.21	1.18	1.75	1.75	1.36	1.06
178	8.01	0.47	1.44	1.53	1.66	1.45	1.09
179	0.00	0.51	1.19	1.44	1.58	1.51	1.14
180	3.71	0.16	0.88	1.24	1.48	1.52	1.18
181	0.00	0.02	0.68	1.05	1.36	1.49	1.22
182	2.62	-0.09	0.49	0.88	1.23	1.44	1.25
183	0.00	-0.13	0.33	0.73	1.11	1.37	1.27
184	2.16	-0.22	0.16	0.60	0.99	1.29	1.28
185	10.70	0.05	0.09	0.47	0.88	1.20	1.28
186	0.00	0.18	0.14	0.41	0.79	1.12	1.27
187	0.00	-0.08	0.08	0.37	0.71	1.04	1.25
188	0.00	-0.17	-0.02		0.65	0.96	1.23
189	6.77	-0.16	-0.11	0.24	0.58	0.89	1.20
190	9.96	-0.13	-0.13	0.18	0.53	0.83	1.16
191	0.00	-0.16	-0.16	0.14	0.48	0.77	1.13
192	0.00	-0.18	-0.18	0.10	0.43	0.72	1.09
193	0.00	-0.23	-0.23	0.07	0.39	0.67	1.05

DATE	INFIL					WFLOW(5)	
-	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day
194	0.00	-0.28	-0.28	0.03	0.35	0.62	1.02
195	0.00	-0.26	-0.26	-0.00	0.31	0.58	0.98
196	0.00	-0.23	-0.23	-0.01	0.28	0.54	0.94
197	1.41	-0.16	-0.16	-0.01	0.25	0.51	0.90
198	9.08	-0.07	-0.07	0.01	0.24	0.48	0.87
199	3.05	-0.05	-0.05	0.04	0.23	0.45	0.84
200	29.12	0.00	-0.44	0.02	0.22	0.43	0.81
201	1.69	0.08	-0.81	-0.16	0.20	0.41	0.78
202	0.00	0.02	-0.66	-0.30	0.15	0.39	0.75
203	0.00	-0.01	-0.57	-0.43	0.09	0.36	0.72
204	29.34	0.27	-0.47	-0.45	0.03	0.33	0.70
205	1.23	1.36	-0.42	-0.42	-0.00	0.30	0.67
206	0.00	0.37	-0.36	-0.36	-0.02	0.27	0.64
207	0.00	0.06	-0.33	-0.33	-0.03	0.24	0.62
208	0.00	-0.00	-0.31	-0.31	-0.04	0.22	0.59
209	0.00	-0.02	-0.28	-0.28	-0.04	0.20	0.57
210	0.00	-0.02	-0.26	-0.26	-0.04	0.19	0.54
211	0.00	-0.02	-0.23	-0.23	-0.04	0.17	0.52
212	3.58	-0.01	-0.21	-0.21	-0.04	0.16	0.50
213	0.80	-0.01	-0.19	-0.19	-0.04	0.15	0.48
214	0.00	-0.01	-0.17	-0.17	-0.04	0.14	0.47
215	0.00	-0.00	-0.14	-0.14	-0.03	0.13	0.45
216	0.00	-0.00	-0.12	-0.12	-0.03	0.13	0.43
217	0.00	-0.00	-0.11	-0.11	-0.02	0.12	0.42
218	12.78	-0.00	-0.10	-0.10	-0.02	0.11	0.40
219	29.62	0.33	-0.09	-0.09	-0.01	0.11	0.39
220	14.28	3.11	-0.08	-0.36	-0.04	0.10	0.37
221	0.00	1.36	-0.06	-0.47	-0.09	0.10	0.36
222	2.08	0.13	-0.06	-0.40	-0.14	0.09	0.35
223	21.56	1.36	-0.06	-0.26	-0.15	0.08	0.34
224	0.00	2.15	-0.05	-0.22	-0.16	0.07	0.33
225	18.99	4.37	-0.02	-0.09	-0.07	0.06	0.32
226	0.00	4.00	0.08	-0.36	-0.15	0.05	0.31
227	0.00	0.65	0.13	-0.22	-0.16	0.05	0.30
228	0.00	0.23	0.12	-0.27	-0.16	0.04	0.29
229	0.00	0.05	0.09	-0.44	-0.18	0.03	0.28
230	15.56	0.26	0.07	-0.01	-0.00	0.03	0.27
231	0.00	0.48	0.08	-0.18	-0.18	0.03	0.26

DATE	INFIL					WFLOW(5)	
	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day
232	0.00	0.08	0.07	-0.30	-0.19	0.02	0.25
233	0.00	0.02	0.05	-0.34	-0.19	0.01	0.24
234	0.00	-0.00	0.01	-0.31	-0.20	0.01	0.23
235	0.00	-0.02	0.01	-0.29	-0.20	0.00	0.22
236	0.00	-0.02	0.00	-0.21	-0.20	-0.00	0.22
237	0.00	-0.02	0.00	-0.25	-0.20	-0.01	0.21
238	0.00	-0.02	-0.00	-0.24	-0.20	-0.01	0.20
239	2.46	-0.02	-0.01	-0.06	-0.07	-0.01	0.20
240	17.46	-0.00	-0.01	-0.13	-0.16	-0.01	0.19
241	0.00	0.01	-0.01	-0.10	-0.13	-0.02	0.19
242	0.00	0.00	-0.01	-0.21	-0.17	-0.02	0.18
243	0.00	-0.00	-0.02	-0.20	-0.17	-0.02	0.17
244	0.01	-0.01	-0.02	-0.19	-0.17	-0.03	0.17
245	0.00	-0.01	-0.02	-0.16	-0.16	-0.03	0.16
246	0.00	-0.00	-0.02	-0.17	-0.16	-0.03	0.16
247	0.00	-0.00	-0.02	-0.16	-0.15	-0.04	0.15
248	0.74	-0.00	-0.02	-0.16	-0.15	-0.04	0.15
249	0.00	-0.00	-0.02	-0.15	-0.14	-0.04	0.14
250	4.21	-0.00	-0.00	-0.01	-0.01	-0.00	0.14
251	0.02	-0.00	-0.02	-0.11	-0.13	-0.04	0.14
252	0.00	-0.00	-0.02	-0.11	-0.13	-0.04	0.13
253	0.00	-0.00	-0.02	-0.08	-0.10	-0.04	0.13
254	0.03	-0.00	-0.02	-0.07	-0.08	-0.04	0.12
255	0.69	-0.00	-0.02	-0.13	-0.12	-0.04	0.12
256	0.00	-0.00	-0.02	-0.08	-0.09	-0.04	0.12
257	0.00	-0.00	-0.02	-0.12	-0.11	-0.04	0.11
258	8.25	-0.00	-0.00	-0.01	-0.01	-0.00	0.11
259	0.24	-0.00	-0.00	-0.00	-0.00	-0.00	0.11
260	0.24	-0.00	-0.02	-0.03	-0.03	-0.03	0.11
261	0.00	-0.00	-0.02	-0.03	-0.03	-0.03	0.10
262	1.93	-0.00	-0.00	-0.00	-0.00	-0.00	0.10
263	1.93	-0.00	-0.01	-0.01	-0.01	-0.01	0.10
264	0.00	-0.00	-0.01	-0.01	-0.01	-0.01	0.10
265	23.33	0.05	-0.02	-0.02	-0.02	-0.02	0.09
266	8.77	0.79	-0.02	-0.02	-0.02	-0.02	0.09
267	4.49	1.71	-0.01	-0.01	-0.01	-0.01	0.09
268	0.43	1.55	-0.01	-0.01	-0.01	-0.01	0.09
269	0.43	0.96	0.00	-0.00	-0.00	-0.00	0.09

DATE	INFIL					WFLOW(5)	
	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day	mm/day
270	1.50	0.85	0.01	-0.00	-0.00	-0.00	0.08
271	1.50	0.85	0.02	-0.00	-0.00	-0.00	0.08
272	2.57	0.91	0.03	-0.00	-0.00	-0.00	0.08
273	23.30	14.30	0.08	-0.08	-0.08	-0.02	0.08
274	0.64	19.11	4.52	-0.09	-0.09	-0.03	0.08
275	7.70	6.98	6.98	0.09	-0.08	-0.02	0.08
276	0.00	4.67	6.96	0.59	-0.03	-0.01	0.08
277	22.04	9.64	6.54	1.81	-0.04	-0.02	0.07
278	0.21	8.32	9.34	4.76	0.09	-0.01	0.07
279	0.86	3.11	6.60	6.28	0.79	0.00	0.07
280	4.28	2.29	4.74	5.69	1.07	0.00	0.07
281	4.28	2.45	4.24	4.80	1.93	0.03	0.07
282	18.40	6.09	2.95	3.62	2.50	0.12	0.07
283	2.14	6.15	5.27	3.65	2.67	0.25	0.07
284	20.76	10.77	5.87	4.77	4.90	0.47	0.08
285	21.61	20.31	15.78	10.32	5.33	1.15	0.09
286	7.06	12.17	15.78	16.04	13.13	4.97	0.13
287	0.43	5.27	8.96	9.89	10.00	8.77	0.35
288	2.14	2.65	5.26	7.43	9.21	7.65	0.73
289	0.00	1.36	3.37	5.37	6.23	9.28	1.39
290	8.99	1.80	3.27	4.02	4.64	6.72	2.27
291	13.05	5.30	2.89	3.51	4.14	5.30	2.98
292	5.78	6.08	4.01	3.51	3.75	4.54	3.43
293	0.00	3.74	5.96	4.78	4.02	4.15	3.72
294	0.00	1.71	3.96	4.69	4.55	4.25	3.94
295	4.71	1.87	2.77	3.59	4.20	4.32	4.15
296	4.07	2.54	2.54	3.00	3.61	4.06	4.30
297	7.06	3.34	2.68	2.79	3.20	3.67	4.33
298	0.00	2.87	2.99	2.89	3.02	3.34	4.25
299	0.00	1.59	2.57	2.84	2.96	3.14	4.10
300	0.00	1.03	1.97	2.46	2.80	2.99	3.92
301	9.42	1.98	1.69	2.07	2.52	2.81	3.74
302	0.00	2.67	2.08	2.02	2.29	2.60	3.53
303	0.00	1.50	2.01	2.07	2.19	2.42	- •

121	DATE	DFLOW(1) mm/day	DFLOW(2) mm/day	DFLOW(3) mm/day	DFLOW(4) mm/day	DFLOW(5) mm/day	DFLOW(6) mm/day	DFLOW(7) mm/day
123 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 124 0.00 0.00 0.00 0.00 0.00 0.00 0.52 125 0.00 0.53 127 0.00	121	0.00	0.00	0.00	0.00	0.00	0.00	0.52
124 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 125 0.00 0.00 0.00 0.00 0.00 0.00 0.52 126 0.00 0.54 128 0.00	122	0.00	0.00	0.00	0.00	0.00	0.00	0.52
125 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 126 0.00 0.00 0.00 0.00 0.00 0.00 0.53 127 0.00 0.00 0.00 0.00 0.00 0.00 0.54 128 0.00 0.00 0.00 0.00 0.00 0.00 0.05 129 0.00 0.00 0.00 0.00 0.00 0.00 0.05 130 0.00 0.00 0.00 0.00 0.00 0.00 0.00 131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 132 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	123	0.00	0.00	0.00	0.00	0.00	0.00	0.52
126 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 127 0.00 0.00 0.00 0.00 0.00 0.00 0.54 128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 130 0.00	124	0.00	0.00	0.00	0.00	0.00	0.00	0.52
127 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 128 0.00 0.00 0.00 0.00 0.00 0.00 0.55 129 0.00 0.00 0.00 0.00 0.00 0.00 0.56 130 0.00 0.00 0.00 0.00 0.00 0.00 0.57 131 0.00	125	0.00	0.00	0.00	0.00	0.00	0.00	
128 0.00 0.00 0.00 0.00 0.00 0.00 0.55 129 0.00 0.00 0.00 0.00 0.00 0.00 0.56 130 0.00 0.00 0.00 0.00 0.00 0.00 0.57 131 0.00 0.00 0.00 0.00 0.00 0.00 0.58 132 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133 0.00 <t< td=""><td>126</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.53</td></t<>	126	0.00	0.00	0.00	0.00	0.00	0.00	0.53
129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 130 0.00 0.00 0.00 0.00 0.00 0.00 0.57 131 0.00 0.00 0.00 0.00 0.00 0.00 0.58 132 0.00 0.00 0.00 0.00 0.00 0.00 0.60 133 0.00 0.00 0.00 0.00 0.00 0.00 0.00 134 0.00 <t< td=""><td>127</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.54</td></t<>	127	0.00	0.00	0.00	0.00	0.00	0.00	0.54
130 0.00 0.00 0.00 0.00 0.00 0.00 0.57 131 0.00 0.00 0.00 0.00 0.00 0.00 0.58 132 0.00 <td>128</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.55</td>	128	0.00	0.00	0.00	0.00	0.00	0.00	0.55
131 0.00	129	0.00	0.00	0.00	0.00	0.00	0.00	0.56
132 0.00	130	0.00	0.00	0.00	0.00	0.00	0.00	0.57
133 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 134 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 135 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 136 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 137 0.00	131	0.00	0.00	0.00	0.00	0.00	0.00	0.58
134 0.00	132	0.00	0.00	0.00	0.00	0.00	0.00	0.60
135 0.00 0.00 0.00 0.00 0.00 0.00 0.65 136 0.00 0.00 0.00 0.00 0.00 0.00 0.67 137 0.00 0.00 0.00 0.00 0.00 0.00 0.69 138 0.00 0.00 0.00 0.00 0.00 0.00 0.71 139 0.00 0.00 0.00 0.00 0.00 0.00 0.73 140 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 143 0.00 0.00 0.00 0.00 0.00 0.00 0.82 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144 0.00 0.00	133	0.00	0.00	0.00	0.00	0.00	0.00	0.61
136 0.00 0.00 0.00 0.00 0.00 0.00 0.67 137 0.00 0.00 0.00 0.00 0.00 0.00 0.69 138 0.00 0.00 0.00 0.00 0.00 0.00 0.71 139 0.00 0.00 0.00 0.00 0.00 0.00 0.73 140 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 1.03 1.46 0.00 </td <td>134</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.63</td>	134	0.00	0.00	0.00	0.00	0.00	0.00	0.63
137 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 138 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 140 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00	135	0.00	0.00	0.00	0.00	0.00	0.00	0.65
138 0.00 0.00 0.00 0.00 0.00 0.00 0.71 139 0.00 0.00 0.00 0.00 0.00 0.00 0.73 140 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 1.55 149<	136	0.00	0.00	0.00	0.00	0.00	0.00	0.67
139 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 140 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 1.47 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00	137	0.00	0.00	0.00	0.00	0.00	0.00	0.69
140 0.00 0.00 0.00 0.00 0.00 0.00 0.76 141 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 1.16 1.47 0.00 0.00 0.00 0.00 1.35 1.48 0.00 0.00 0.00 0.00 1.35 1.48 0.00 0.00 0.00 0.00 1.73 1.50 0.00 0.00 0.00 0.00 1.73 1.	138	0.00	0.00	0.00	0.00	0.00	0.00	0.71
141 0.00 0.00 0.00 0.00 0.00 0.00 0.78 142 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00	139	0.00	0.00	0.00	0.00	0.00	0.00	0.73
142 0.00 0.00 0.00 0.00 0.00 0.00 0.82 143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 <	140	0.00	0.00	0.00	0.00	0.00	0.00	0.76
143 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 144 0.00 0.00 0.00 0.00 0.00 0.00 0.93 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 2.15 </td <td>141</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.78</td>	141	0.00	0.00	0.00	0.00	0.00	0.00	0.78
144 0.00 0.00 0.00 0.00 0.00 0.00 0.93 145 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00	142	0.00	0.00	0.00	0.00	0.00	0.00	0.82
145 0.00 0.00 0.00 0.00 0.00 1.03 146 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00	143	0.00	0.00	0.00	0.00	0.00	0.00	0.86
146 0.00 0.00 0.00 0.00 0.00 0.00 1.16 147 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 <	144	0.00	0.00	0.00	0.00	0.00	0.00	0.93
147 0.00 0.00 0.00 0.00 0.00 0.00 1.35 148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 157 0.00 0.00 0.00 0.00 0.00	145	0.00	0.00	0.00	0.00	0.00	0.00	1.03
148 0.00 0.00 0.00 0.00 0.00 0.00 1.55 149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	146	0.00	0.00	0.00	0.00	0.00	0.00	1.16
149 0.00 0.00 0.00 0.00 0.00 0.00 1.73 150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	147	0.00	0.00	0.00	0.00	0.00	0.00	1.35
150 0.00 0.00 0.00 0.00 0.00 0.00 1.89 151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	148	0.00	0.00	0.00	0.00	0.00	0.00	1.55
151 0.00 0.00 0.00 0.00 0.00 0.00 2.01 152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	149	0.00	0.00	0.00	0.00	0.00	0.00	1.73
152 0.00 0.00 0.00 0.00 0.00 0.00 2.09 153 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	150	0.00	0.00	0.00	0.00	0.00	0.00	1.89
153 0.00 0.00 0.00 0.00 0.00 0.00 2.14 154 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 2.10	151	0.00	0.00	0.00	0.00	0.00	0.00	
154 0.00 0.00 0.00 0.00 0.00 0.00 2.15 155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	152	0.00	0.00	0.00	0.00			
155 0.00 0.00 0.00 0.00 0.00 0.00 2.15 156 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10	153	0.00	0.00	0.00	0.00	0.00		
156 0.00 0.00 0.00 0.00 0.00 0.00 2.13 157 0.00 0.00 0.00 0.00 0.00 0.00 2.10	154	0.00	0.00	0.00	0.00			
157 0.00 0.00 0.00 0.00 0.00 0.00 2.10	155	0.00	0.00	0.00	0.00			
	156	0.00	0.00	0.00	0.00	0.00		
158 0.00 0.00 0.00 0.00 0.00 0.00 2.06	157	0.00	0.00	0.00				
	158	0.00	0.00	0.00	0.00	0.00	0.00	2.06

DATE	DFLOW(1) mm/day	DFLOW(2) mm/day	DFLOW(3) mm/day	DFLOW(4) mm/day	DFLOW(5) mm/day	DFLOW(6) mm/day	DFLOW(7) mm/day
159	0.00	0.00	0.00	0.00	0.00	0.00	2.02
160	0.00	0.00	0.00	0.00	0.00	0.00	1.96
161	0.00	0.00	0.00	0.00	0.00	0.00	1.90
162	0.00	0.00	0.00	0.00	0.00	0.00	1.84
163	0.00	0.00	0.00	0.00	0.00	0.00	1.78
164	0.00	0.00	0.00	0.00	0.00	0.00	1.73
165	0.00	0.00	0.00	0.00	0.00	0.00	1.67
166	0.00	0.00	0.00	0.00	0.00	0.00	1.61
167	0.00	0.00	0.00	0.00	0.00	0.00	1.56
168	0.00	0.00	0.00	0.00	0.00	0.00	1.52
169	0.00	0.00	0.00	0.00	0.00	0.00	1.48
170	0.00	0.00	0.00	0.00	0.00	0.00	1.44
171	0.00	0.00	0.00	0.00	0.00	0.00	1.41
172	0.00	0.00	0.00	0.00	0.00	0.00	1.38
173	0.00	0.00	0.00	0.00	0.00	0.00	1.36
174	0.00	0.00	0.00	0.00	0.00	0.00	1.33
175	0.00	0.00	0.00	0.00	0.00	0.00	1.31
176	0.00	0.00	0.00	0.00	0.00	0.00	1.29
177	0.00	0.00	0.00	0.00	0.00	0.00	1.27
178	0.00	0.00	0.00	0.00	0.00	0.00	1.26
179	0.00	0.00	0.00	0.00	0.00	0.00	1.25
180	0.00	0.00	0.00	0.00	0.00	0.00	1.25
181	0.00	0.00	0.00	0.00	0.00	0.00	1.25
182	0.00	0.00	0.00	0.00	0.00	0.00	1.26
183	0.00	0.00	0.00	0.00	0.00	0.00	1.26
184	0.00	0.00	0.00	0.00	0.00	0.00	1.27
185	0.00	0.00	0.00	0.00	0.00	0.00	1.27
186	0.00	0.00	0.00	0.00	0.00	0.00	1.28
187	0.00	0.00	0.00	0.00	0.00	0.00	1.28
188	0.00	0.00	0.00	0.00	0.00	0.00	1.28
189	0.00	0.00	0.00	0.00	0.00	0.00	1.28
190	0.00	0.00	0.00	0.00	0.00	0.00	1.28
191	0.00	0.00	0.00	0.00	0.00	0.00	1.27
192	0.00	0.00	0.00	0.00	0.00	0.00	1.26
193	0.00	0.00	0.00	0.00	0.00	0.00	1.24
194	0.00	0.00	0.00	0.00	0.00	0.00	1.23
195	0.00	0.00	0.00	0.00	0.00	0.00	1.21
196	0.00	0.00	0.00	0.00	0.00	0.00	1.20

197	DATE	DFLOW(1) mm/day	DFLOW(2) mm/day	DFLOW(3) mm/day	DFLOW(4) mm/day	DFLOW(5) mm/day	DFLOW(6) mm/day	DFLOW(7) mm/day
199	197	0.00	0.00	0.00	0.00	0.00	0.00	1.18
200 0.00 0.00 0.00 0.00 0.00 1.11 201 0.00 0.00 0.00 0.00 0.00 1.09 202 0.00 0.00 0.00 0.00 0.00 0.00 1.07 203 0.00 0.00 0.00 0.00 0.00 0.00 1.05 204 0.00 0.00 0.00 0.00 0.00 0.00 1.03 205 0.00 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.	198	0.00	0.00	0.00	0.00	0.00	0.00	1.16
201 0.00 0.00 0.00 0.00 0.00 1.09 202 0.00 0.00 0.00 0.00 0.00 0.00 1.07 203 0.00 0.00 0.00 0.00 0.00 0.00 1.05 204 0.00 0.00 0.00 0.00 0.00 0.00 1.03 205 0.00 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 1.01 207 0.00 0.	199	0.00	0.00	0.00	0.00	0.00	0.00	1.14
202 0.00 0.00 0.00 0.00 0.00 1.07 203 0.00 0.00 0.00 0.00 0.00 0.00 1.05 204 0.00 0.00 0.00 0.00 0.00 0.00 1.03 205 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 207 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 208 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.99 210 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00	200	0.00	0.00	0.00	0.00	0.00	0.00	1.11
203 0.00 0.00 0.00 0.00 0.00 1.05 204 0.00 0.00 0.00 0.00 0.00 0.00 1.03 205 0.00 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 207 0.00 0.00 0.00 0.00 0.00 0.00 0.99 208 0.00 0.00 0.00 0.00 0.00 0.00 0.99 210 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	201	0.00	0.00	0.00	0.00	0.00	0.00	1.09
204 0.00 0.00 0.00 0.00 0.00 1.03 205 0.00 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 0.99 207 0.00 0.00 0.00 0.00 0.00 0.00 0.97 208 0.00 0.00 0.00 0.00 0.00 0.00 0.97 209 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.994 210 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.992 210 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.992 211 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>202</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>1.07</td>	202	0.00	0.00	0.00	0.00	0.00	0.00	1.07
205 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 0.99 207 0.00 0.00 0.00 0.00 0.00 0.00 0.97 208 0.00 0.00 0.00 0.00 0.00 0.00 0.99 209 0.00 0.00 0.00 0.00 0.00 0.00 0.99 210 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.	203	0.00	0.00	0.00	0.00	0.00	0.00	1.05
205 0.00 0.00 0.00 0.00 0.00 1.01 206 0.00 0.00 0.00 0.00 0.00 0.00 0.99 207 0.00 0.00 0.00 0.00 0.00 0.00 0.97 208 0.00 0.00 0.00 0.00 0.00 0.00 0.94 209 0.00 0.00 0.00 0.00 0.00 0.00 0.99 210 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.	204	0.00	0.00	0.00	0.00	0.00	0.00	1.03
207 0.00 0.00 0.00 0.00 0.00 0.00 0.99 208 0.00 0.00 0.00 0.00 0.00 0.00 0.94 209 0.00 0.00 0.00 0.00 0.00 0.00 0.99 210 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.99 211 0.00 <t< td=""><td>205</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1.01</td></t<>	205	0.00	0.00	0.00	0.00	0.00	0.00	1.01
208 0.00 0.00 0.00 0.00 0.00 0.90 0.90 0.99 209 0.00 0.00 0.00 0.00 0.00 0.00 0.99 210 0.00 0.00 0.00 0.00 0.00 0.90 0.99 211 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.99 212 0.00	206	0.00	0.00	0.00	0.00	0.00	0.00	0.99
209 0.00	207	0.00	0.00	0.00	0.00	0.00	0.00	0.97
210 0.00	208	0.00	0.00	0.00	0.00	0.00	0.00	0.94
211 0.00	209	0.00	0.00	0.00	0.00	0.00	0.00	0.92
212 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 213 0.00 0.00 0.00 0.00 0.00 0.00 0.84 214 0.00 <td>210</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.90</td>	210	0.00	0.00	0.00	0.00	0.00	0.00	0.90
213 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 214 0.00	211	0.00	0.00	0.00	0.00	0.00	0.00	0.88
214 0.00	212	0.00	0.00	0.00	0.00	0.00	0.00	0.86
215 0.00	213	0.00	0.00	0.00	0.00	0.00	0.00	0.84
216 0.00 0.00 0.00 0.00 0.00 0.00 0.78 217 0.00 0.00 0.00 0.00 0.00 0.00 0.77 218 0.00 0.00 0.00 0.00 0.00 0.00 0.75 219 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 220 0.00 0.00 0.00 0.00 0.00 0.00 0.71 221 0.00 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 </td <td>214</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.82</td>	214	0.00	0.00	0.00	0.00	0.00	0.00	0.82
217 0.00 0.00 0.00 0.00 0.00 0.00 0.77 218 0.00 0.00 0.00 0.00 0.00 0.00 0.75 219 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 220 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 221 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 <t< td=""><td>215</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.80</td></t<>	215	0.00	0.00	0.00	0.00	0.00	0.00	0.80
218 0.00 0.00 0.00 0.00 0.00 0.75 219 0.00 0.00 0.00 0.00 0.00 0.00 0.73 220 0.00 0.00 0.00 0.00 0.00 0.00 0.71 221 0.00 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00	216	0.00	0.00	0.00	0.00	0.00	0.00	0.78
219 0.00 0.00 0.00 0.00 0.00 0.00 0.73 220 0.00 0.00 0.00 0.00 0.00 0.00 0.71 221 0.00 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 223 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 224 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00	217	0.00	0.00	0.00	0.00	0.00	0.00	0.77
220 0.00 0.00 0.00 0.00 0.00 0.71 221 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 0.00 0.00 0.00 0.00 0.00 0.00 223 0.00 0.00 0.00 0.00 0.00 0.00 0.67 224 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00	218	0.00	0.00	0.00	0.00	0.00	0.00	0.75
221 0.00 0.00 0.00 0.00 0.00 0.70 222 0.00 0.00 0.00 0.00 0.00 0.00 0.68 223 0.00 0.00 0.00 0.00 0.00 0.00 0.67 224 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.55 232 0.00 0.00 0.00	219	0.00	0.00	0.00	0.00	0.00	0.00	0.73
222 0.00 0.00 0.00 0.00 0.00 0.00 0.68 223 0.00 0.00 0.00 0.00 0.00 0.00 0.67 224 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.55 232 0.00 0.00 0.00 0.00 0.00 0.00 0.53	220	0.00	0.00	0.00	0.00	0.00	0.00	0.71
223 0.00 0.00 0.00 0.00 0.00 0.00 0.67 224 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.55 232 0.00 0.00 0.00 0.00 0.00 0.00 0.53 233 0.00 0.00 0.00 0.00 0.00	221	0.00	0.00	0.00	0.00	0.00	0.00	0.70
224 0.00 0.00 0.00 0.00 0.00 0.00 0.65 225 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 231 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	222	0.00	0.00	0.00	0.00	0.00	0.00	0.68
225 0.00 0.00 0.00 0.00 0.00 0.00 0.64 226 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 232 0.00 0.00 0.00 0.00 0.00 0.00 0.53 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	223	0.00	0.00	0.00	0.00	0.00	0.00	
226 0.00 0.00 0.00 0.00 0.00 0.00 0.62 227 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.55 232 0.00 0.00 0.00 0.00 0.00 0.00 0.53 233 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53	224	0.00	0.00	0.00	0.00	0.00	0.00	0.65
227 0.00 0.00 0.00 0.00 0.00 0.00 0.61 228 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	225	0.00	0.00	0.00	0.00	0.00	0.00	0.64
228 0.00 0.00 0.00 0.00 0.00 0.60 229 0.00 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	226	0.00	0.00	0.00	0.00	0.00	0.00	0.62
229 0.00 0.00 0.00 0.00 0.00 0.58 230 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	227	0.00	0.00	0.00	0.00	0.00	0.00	0.61
230 0.00 0.00 0.00 0.00 0.00 0.57 231 0.00 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	228	0.00	0.00	0.00	0.00	0.00	0.00	0.60
231 0.00 0.00 0.00 0.00 0.00 0.56 232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	229	0.00	0.00	0.00	0.00	0.00	0.00	0.58
232 0.00 0.00 0.00 0.00 0.00 0.00 0.55 233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	230	0.00	0.00	0.00	0.00	0.00	0.00	0.57
233 0.00 0.00 0.00 0.00 0.00 0.00 0.53	231	0.00	0.00	0.00	0.00	0.00	0.00	0.56
	232	0.00	0.00	0.00	0.00	0.00	0.00	0.55
234 0.00 0.00 0.00 0.00 0.00 0.00 0.52	233	0.00	0.00	0.00	0.00	0.00	0.00	0.53
	234	0.00	0.00	0.00	0.00	0.00	0.00	0.52

DATE	DFLOW(1) mm/day	DFLOW(2) mm/day	DFLOW(3) mm/day	DFLOW(4) mm/day	DFLOW(5) mm/day	DFLOW(6) mm/day	DFLOW(7) mm/day
235	0.00	0.00	0.00	0.00	0.00	0.00	0.51
236	0.00	0.00	0.00	0.00	0.00	0.00	0.50
237	0.00	0.00	0.00	0.00	0.00	0.00	0.49
238	0.00	0.00	0.00	0.00	0.00	0.00	0.48
239	0.00	0.00	0.00	0.00	0.00	0.00	0.47
240	0.00	0.00	0.00	0.00	0.00	0.00	0.46
241	0.00	0.00	0.00	0.00	0.00	0.00	0.45
242	0.00	0.00	0.00	0.00	0.00	0.00	0.44
243	0.00	0.00	0.00	0.00	0.00	0.00	0.43
244	0.00	0.00	0.00	0.00	0.00	0.00	0.42
245	0.00	0.00	0.00	0.00	0.00	0.00	0.41
246	0.00	0.00	0.00	0.00	0.00	0.00	0.41
247	0.00	0.00	0.00	0.00	0.00	0.00	0.40
248	0.00	0.00	0.00	0.00	0.00	0.00	0.39
249	0.00	0.00	0.00	0.00	0.00	0.00	0.38
250	0.00	0.00	0.00	0.00	0.00	0.00	0.38
251	0.00	0.00	0.00	0.00	0.00	0.00	0.37
252	0.00	0.00	0.00	0.00	0.00	0.00	0.36
253	0.00	0.00	0.00	0.00	0.00	0.00	0.35
254	0.00	0.00	0.00	0.00	0.00	0.00	0.35
255	0.00	0.00	0.00	0.00	0.00	0.00	0.34
256	0.00	0.00	0.00	0.00	0.00	0.00	0.33
257	0.00	0.00	0.00	0.00	0.00	0.00	0.33
258	0.00	0.00	0.00	0.00	0.00	0.00	0.32
259	0.00	0.00	0.00	0.00	0.00	0.00	0.31
260	0.00	0.00	0.00	0.00	0.00	0.00	0.31
261	0.00	0.00	0.00	0.00	0.00	0.00	0.30
262	0.00	0.00	0.00	0.00	0.00	0.00	0.30
263	0.00	0.00	0.00	0.00	0.00	0.00	0.29
264	0.00	0.00	0.00	0.00	0.00	0.00	0.29
265	0.00	0.00	0.00	0.00	0.00	0.00	0.28
266	0.00	0.00	0.00	0.00	0.00	0.00	0.27
267	0.00	0.00	0.00	0.00	0.00	0.00	0.27
268	0.00	0.00	0.00	0.00	0.00	0.00	0.26
269	0.00	0.00	0.00	0.00	0.00	0.00	0.26
270	0.00	0.00	0.00	0.00	0.00	0.00	0.26
271	0.00	0.00	0.00	0.00	0.00	0.00	0.25
272	0.00	0.00	0.00	0.00	0.00	0.00	0.25

DATE	DFLOW(1) mm/day	DFLOW(2) mm/day	DFLOW(3) mm/day	DFLOW(4) mm/day	DFLOW(5) mm/day	DFLOW(6) mm/day	DFLOW(7) mm/day
273	0.00	0.00	0.00	0.00	0.00	0.00	0.24
274	0.00	0.00	0.00	0.00	0.00	0.00	0.24
275	0.00	0.00	0.00	0.00	0.00	0.00	0.23
276	0.00	0.00	0.00	0.00	0.00	0.00	0.23
277	0.00	0.00	0.00	0.00	0.00	0.00	0.23
278	0.00	0.00	0.00	0.00	0.00	0.00	0.22
279	0.00	0.00	0.00	0.00	0.00	0.00	0.22
280	0.00	0.00	0.00	0.00	0.00	0.00	0.22
281	0.00	0.00	0.00	0.00	0.00	0.00	0.21
282	0.00	0.00	0.00	0.00	0.00	0.00	0.21
283	0.00	0.00	0.00	0.00	0.00	0.00	0.21
284	0.00	0.00	0.00	0.00	0.00	0.00	0.20
285	0.00	0.00	0.00	0.00	0.00	0.00	0.20
286	0.00	0.00	0.00	0.00	0.00	0.00	0.20
287	0.00	0.00	0.00	0.00	0.00	0.00	0.20
288	0.00	0.00	0.00	0.00	0.00	0.00	0.20
289	0.00	0.00	0.00	0.00	0.00	0.00	0.21
290	0.00	0.00	0.00	0.00	0.00	0.00	0.24
291	0.00	0.00	0.00	0.00	0.00	0.00	0.30
292	0.00	0.00	0.00	0.00	0.00	0.00	0.38
293	0.00	0.00	0.00	0.00	0.00	0.00	0.48
294	0.00	0.00	0.00	0.00	0.00	0.00	0.62
295	0.00	0.00	0.00	0.00	0.00	0.00	0.80
296	0.00	0.00	0.00	0.00	0.00	0.00	1.03
297	0.00	0.00	0.00	0.00	0.00	0.00	1.29
298	0.00	0.00	0.00	0.00	0.00	0.00	1.58
299	0.00	0.00	0.00	0.00	0.00	0.00	1.87
300	0.00	0.00	0.00	0.00	0.00	0.00	2.14
301	0.00	0.00	0.00	0.00	0.00	0.00	2.38
302	0.00	0.00	0.00	0.00	0.00	0.00	2.57
303	0.00	0.00	0.00	0.00	0.00	0.00	2.70

DATE	TEMP(1)	TEMP(2) °C	TEMP(3)	TEMP(4) °C	TEMP(5) °C	TEMP(6)	TEMP(7)
121	11.29	7.28	6.24	6.04	6.00	6.00	6.00
122	9.62	8.87	7.32	6.45	6.13	6.01	6.00
123	7.44	7.79	7.43	6.84	6.41	6.09	6.01
124	8.36	7.61	7.26	6.90	6.57	6.19	6.02
125	8.01	7.80	7.35	6.96	6.65	6.29	6.05
126	7.80	7.59	7.32	7.01	6.72	6.36	6.09
127	7.88	7.59	7.30	7.03	6.77	6.43	6.13
128	7.88	7.59	7.31	7.05	6.80	6.49	6.17
129	11.48	8.48	7.49	7.09	6.84	6.53	6.22
130	12.16	10.01	8.33	7.42	6.97	6.59	6.27
131	9.35	9.62	8.73	7.82	7.22	6.68	6.32
132	8.82	8.77	8.49	7.95	7.42	6.81	6.37
133	10.15	8.98	8.40	7.95	7.51	6.93	6.44
134	12.25	9.89	8.71	8.05	7.58	7.02	6.51
135	12.52	10.75	9.29	8.34	7.74	7.12	6.59
136	11.85	10.81	9.64	8.66	7.97	7.24	6.67
137	10.11	10.32	9.68	8.87	8.19	7.40	6.76
138	9.07	9.51	9.38	8.88	8.31	7.54	6.86
139	7.82	8.82	9.01	8.76	8.33	7.65	6.95
140	7.17	8.08	8.53	8.54	8.28	7.73	7.05
141	6.97	7.70	8.14	8.27	8.15	7.77	7.15
142	6.39	7.34	7.84	8.04	8.01	7.76	7.23
143	7.04	7.17	7.56	7.81	7.87	7.73	7.31
144	7.24	7.38	7.53	7.67	7.74	7.69	7.36
145	9.53	7.92	7.60	7.62	7.66	7.64	7.41
146	11.89	9.35	8.18	7.77	7.66	7.61	7.44
147	13.69	10.68	8.98	8.15	7.81	7.62	7.46
148	14.99	11.88	9.84	8.68	8.09	7.69	7.49
149	12.40	11.99	10.49	9.23	8.46	7.82	7.52
150	10.56	10.85	10.35	9.51	8.78	8.00	7.57
151	9.46	10.10	9.99	9.51	8.93	8.18	7.64
152	13.49	10.58	9.81	9.40	8.96	8.31	7.73
153	15.75	12.53	10.58	9.59	9.02	8.41	7.81
154	18.52	13.99	11.50	10.09	9.27	8.52	7.90
155	14.77	14.44	12.42	10.73	9.66	8.69	7.99
156	10.50	12.29	12.07	11.05	10.05	8.91	8.10
157	8.87	10.62	11.18	10.85	10.17	9.12	8.22
158	11.30	10.44	10.54	10.46	10.07	9.26	8.36

159 13.03 11.47 10.71 10.32 9.95 9.33 8.48 160 14.34 12.29 11.12 10.44 9.96 9.37 8.60 161 13.00 12.55 11.53 10.69 10.09 9.43 8.71 162 13.14 12.25 11.53 10.84 10.24 9.52 8.81 163 14.77 12.83 11.72 10.95 10.36 9.63 8.91 164 16.00 13.72 12.19 11.19 10.51 9.74 9.01 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94	DATE	TEMP(1) °C	TEMP(2) °C	TEMP(3)	TEMP(4) °C	TEMP(5) °C	TEMP(6) °C	TEMP(7)
160 14.34 12.29 11.12 10.44 9.96 9.37 8.60 161 13.00 12.55 11.53 10.69 10.09 9.43 8.71 162 13.14 12.25 11.53 10.84 10.24 9.52 8.81 163 14.77 12.83 11.72 10.95 10.36 9.63 8.91 164 16.00 13.72 12.19 11.19 10.51 9.63 8.91 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.66 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.92 11.37 9.99 170 16.53 <td>159</td> <td>13.03</td> <td>11.47</td> <td>10.71</td> <td>10.32</td> <td>9.95</td> <td>9.33</td> <td>8.48</td>	159	13.03	11.47	10.71	10.32	9.95	9.33	8.48
161 13.00 12.55 11.53 10.69 10.09 9.43 8.71 162 13.14 12.25 11.53 10.84 10.24 9.52 8.81 163 14.77 12.83 11.72 10.95 10.36 9.63 8.91 164 16.00 13.72 12.19 11.19 10.51 9.74 9.01 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78<	160	14.34	12.29					
162 13.14 12.25 11.53 10.84 10.24 9.52 8.81 163 14.77 12.83 11.72 10.95 10.36 9.63 8.91 164 16.00 13.72 12.19 11.19 10.51 9.74 9.01 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.50 9.48 169 19.74 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78	161	13.00	12.55					
163 14.77 12.83 11.72 10.95 10.36 9.63 8.91 164 16.00 13.72 12.19 11.19 10.51 9.74 9.01 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 14.01 14.22 13.76 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.7	162	13.14	12.25	11.53				
164 16.00 13.72 12.19 11.19 10.51 9.74 9.01 165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.81 14.00 13.78 13.43 12.83 11.74 10.39 174 14	163	14.77	12.83	11.72				
165 18.39 14.83 12.80 11.55 10.73 9.87 9.12 166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175	164	16.00	13.72	12.19	11.19			
166 19.21 16.09 13.67 12.07 11.05 10.03 9.23 167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 <t< td=""><td>165</td><td>18.39</td><td>14.83</td><td>12.80</td><td></td><td></td><td></td><td></td></t<>	165	18.39	14.83	12.80				
167 19.76 16.72 14.37 12.64 11.45 10.25 9.35 168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 <	166	19.21	16.09	13.67	12.07			
168 20.40 17.38 14.97 13.16 11.87 10.50 9.48 169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178	167	19.76	16.72	14.37	12.64			
169 19.94 17.72 15.49 13.66 12.29 10.79 9.64 170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179	168	20.40	17.38	14.97	13.16	11.87		
170 16.53 16.97 15.64 14.03 12.67 11.08 9.81 171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.60 12.53 11.48 180		19.94	17.72	15.49	13.66	12.29	10.79	
171 13.72 15.13 15.02 14.06 12.92 11.37 9.99 172 13.27 14.01 14.22 13.76 12.94 11.60 10.19 173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.67 12.79 11.78	170	16.53	16.97	15.64	14.03	12.67	11.08	
173 14.78 14.00 13.78 13.43 12.83 11.74 10.39 174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93		13.72	15.13	15.02	14.06	12.92	11.37	
174 14.80 14.36 13.81 13.30 12.74 11.82 10.58 175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06		13.27	14.01	14.22	13.76	12.94	11.60	10.19
175 16.75 14.76 13.88 13.28 12.72 11.88 10.75 176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20		14.78	14.00	13.78	13.43	12.83	11.74	10.39
176 18.10 15.88 14.38 13.44 12.78 11.95 10.90 177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32			14.36	13.81	13.30	12.74	11.82	10.58
177 19.22 16.64 14.92 13.77 12.96 12.04 11.05 178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45				13.88	13.28	12.72	11.88	10.75
178 17.87 16.91 15.41 14.14 13.21 12.18 11.19 179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.46 12.68					13.44	12.78	11.95	10.90
179 16.11 16.14 15.38 14.37 13.46 12.36 11.34 180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68				14.92	13.77	12.96	12.04	11.05
180 15.62 15.52 15.08 14.37 13.60 12.53 11.48 181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79					14.14	13.21	12.18	11.19
181 16.35 15.48 14.90 14.30 13.64 12.68 11.64 182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89					14.37	13.46	12.36	11.34
182 15.92 15.56 14.93 14.29 13.67 12.79 11.78 183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99					14.37	13.60	12.53	11.48
183 17.06 15.65 14.91 14.30 13.72 12.89 11.93 184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08					14.30	13.64	12.68	11.64
184 18.11 16.37 15.19 14.39 13.78 12.98 12.06 185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19					14.29	13.67	12.79	11.78
185 17.06 16.48 15.48 14.60 13.91 13.08 12.20 186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29						13.72	12.89	11.93
186 15.64 15.88 15.40 14.71 14.04 13.19 12.32 187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29					14.39	13.78	12.98	12.06
187 14.76 15.23 15.10 14.66 14.11 13.31 12.45 188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29					14.60	13.91	13.08	12.20
188 14.95 14.92 14.82 14.52 14.10 13.40 12.57 189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29					14.71	14.04	13.19	12.32
189 15.89 15.13 14.74 14.42 14.05 13.46 12.68 190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29						14.11	13.31	12.45
190 19.38 16.26 15.02 14.45 14.05 13.50 12.79 191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29						14.10	13.40	12.57
191 18.71 17.38 15.79 14.77 14.17 13.56 12.89 192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29						14.05	13.46	12.68
192 17.43 16.93 16.00 15.09 14.40 13.66 12.99 193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29						14.05	13.50	12.79
193 16.91 16.61 15.95 15.22 14.57 13.79 13.08 194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29							13.56	12.89
194 16.82 16.41 15.86 15.26 14.68 13.91 13.19 195 17.56 16.57 15.86 15.28 14.74 14.02 13.29							13.66	12.99
195 17.56 16.57 15.86 15.28 14.74 14.02 13.29							13.79	13.08
100 10 00 17 00								13.19
190 19.38 17.24 16.09 15.37 14.81 14.12 13.39								
	196	19.38	17.24	16.09	15.37	14.81	14.12	13.39

229 20.02 19.23 18.92 18.73 18.52 18.17	TEMP(7)
198 21.41 19.15 17.28 16.01 15.18 14.34 199 22.29 19.70 17.77 16.42 15.48 14.50 200 22.34 20.23 18.28 16.83 15.80 14.70 201 19.92 19.81 18.52 17.18 16.11 14.91 202 19.12 18.87 18.23 17.29 16.34 15.13 203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.70 17.18 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 <t< td=""><td></td></t<>	
199 22.29 19.70 17.77 16.42 15.48 14.50 200 22.34 20.23 18.28 16.83 15.80 14.70 201 19.92 19.81 18.52 17.18 16.11 14.91 202 19.12 18.87 18.23 17.29 16.34 15.13 203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.70 17.18 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 <t< td=""><td>13.50</td></t<>	13.50
200 22.34 20.23 18.28 16.83 15.80 14.70 201 19.92 19.81 18.52 17.18 16.11 14.91 202 19.12 18.87 18.23 17.29 16.34 15.13 203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.70 17.18 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 <t< td=""><td>13.60</td></t<>	13.60
201 19.92 19.81 18.52 17.18 16.11 14.91 202 19.12 18.87 18.23 17.29 16.34 15.13 203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.89 17.29 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 <t< td=""><td>13.71</td></t<>	13.71
202 19.12 18.87 18.23 17.29 16.34 15.13 203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.89 17.29 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 <t< td=""><td>13.83 13.95</td></t<>	13.83 13.95
203 20.09 18.97 18.12 17.27 16.44 15.32 204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.89 17.29 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.99 16.91 215 21.36 20.25 <t< td=""><td>14.09</td></t<>	14.09
204 18.74 18.88 18.18 17.32 16.53 15.48 205 17.91 18.12 17.89 17.29 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 </td <td>14.09</td>	14.09
205 17.91 18.12 17.89 17.29 16.60 15.61 206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 </td <td>14.40</td>	14.40
206 19.15 18.21 17.70 17.18 16.60 15.72 207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 <t< td=""><td>14.55</td></t<>	14.55
207 20.62 18.98 17.94 17.20 16.61 15.80 208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 220 20.26 19.66 </td <td>14.55</td>	14.55
208 22.10 19.89 18.42 17.41 16.71 15.89 209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 </td <td>14.70</td>	14.70
209 23.15 20.78 19.02 17.76 16.91 16.00 210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 </td <td>14.97</td>	14.97
210 22.72 21.17 19.52 18.16 17.19 16.15 211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 </td <td>15.10</td>	15.10
211 23.43 21.40 19.82 18.49 17.47 16.33 212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 </td <td>15.10</td>	15.10
212 21.29 21.24 20.05 18.77 17.73 16.53 213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 </td <td>15.23</td>	15.23
213 19.73 20.14 19.71 18.84 17.93 16.73 214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 </td <td>15.50</td>	15.50
214 20.11 19.83 19.42 18.74 17.99 16.91 215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 </td <td>15.65</td>	15.65
215 21.36 20.25 19.47 18.71 18.01 17.04 216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 </td <td>15.81</td>	15.81
216 21.91 20.75 19.71 18.81 18.08 17.15 217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 </td <td>15.96</td>	15.96
217 22.73 21.14 19.95 18.97 18.21 17.26 218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 </td <td>16.11</td>	16.11
218 21.21 21.08 20.14 19.16 18.36 17.39 219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.26
219 19.18 20.01 19.83 19.19 18.48 17.52 220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.40
220 20.26 19.66 19.43 19.04 18.49 17.64 221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.54
221 21.04 20.25 19.56 19.01 18.48 17.72 222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.68
222 20.86 20.40 19.73 19.10 18.53 17.79 223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.81
223 20.66 20.31 19.76 19.17 18.61 17.87 224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	16.93
224 20.74 20.28 19.74 19.20 18.67 17.95 225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	17.06
225 18.80 19.74 19.64 19.20 18.71 18.04 226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	17.17
226 18.67 18.97 19.20 19.06 18.71 18.10 227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	17.28
227 18.41 18.90 19.01 18.90 18.64 18.15 228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	17.38
228 18.81 18.76 18.84 18.77 18.57 18.17 229 20.02 19.23 18.92 18.73 18.52 18.17	17.48
229 20.02 19.23 18.92 18.73 18.52 18.17	17.57
	17.65
19.00 19.19	17.72
001 10 84 10 05	17.78
000 15 50 15 55	17.84
000 10 10 10 10 10 10	17.89
004 17 08 88 00 00 00	17.93

DATE	TEMP(1)	TEMP(2) °C	TEMP(3)	TEMP(4) °C	TEMP(5)	TEMP(6)	TEMP(7)
235	18.38	17.76	17.74	17.90	18.01	18.10	17.96
236	19.42	18.48	18.08	17.98	17.99	18.05	17.97
237	20.94	19.26	18.49	18.17	18.06	18.03	17.98
238	22.15	20.24	19.10	18.49	18.20	18.05	17.99
239	20.66	20.43	19.57	18.85	18.42	18.11	18.00
240	19.51	19.75	19.49	19.03	18.62	18.21	18.02
241	18.86	19.30	19.29	19.03	18.71	18.31	18.05
242	17.58	18.70	19.02	18.95	18.73	18.38	18.09
243	18.22	18.37	18.70	18.80	18.70	18.43	18.13
244	19.48	18.87	18.73	18.71	18.63	18.45	18.17
245	18.61	19.00	18.89	18.74	18.62	18.45	18.21
246	16.04	18.08	18.67	18.72	18.63	18.46	18.24
247	15.56	17.08	18.07	18.49	18.56	18.47	18.27
248	16.64	17.07	17.73	18.20	18.40	18.44	18.30
249	16.16	17.13	17.66	18.03	18.24	18.38	18.31
250	13.94	16.30	17.36	17.86	18.12	18.32	18.32
251	11.70	14.90	16.64	17.52	17.95	18.24	18.31
252	11.75	13.97	15.83	17.02	17.66	18.13	18.30
253	12.73	14.00	15.41	16.56	17.31	17.98	18.27
254	13.80	14.36	15.32	16.28	17.03	17.80	18.22
255	14.24	14.75	15.43	16.17	16.84	17.63	18.15
256	13.83	14.79	15.49	16.14	16.73	17.48	18.08
257	16.50	15.32	15.56	16.11	16.65	17.36	17.99
258	16.12	16.20	16.07	16.26	16.64	17.26	17.90
259	11.93	15.00	15.99	16.38	16.69	17.20	17.81
260	9.68	13.04	15.08	16.10	16.63	17.15	17.73
261	9.37	12.07	14.19	15.55	16.35	17.06	17.64
262	10.00	11.81	13.63	15.04	15.99	16.91	17.56
263	11.04	12.05	13.41	14.68	15.66	16.71	17.46
264	10.96	12.24	13.41	14.49	15.42	16.51	17.35
265	11.21	12.20	13.33	14.36	15.24	16.31	17.22
266	12.18	12.50	13.34	14.26	15.09	16.14	17.09
267	10.44	12.33	13.40	14.23	14.99	15.99	16.96
268	11.38	11.86	13.05	14.08	14.88	15.85	16.82
269	13.19	12.79	13.21	13.97	14.73	15.72	16.68
270	14.27	13.63	13.64	14.08	14.69	15.59	16.55
271	14.72	14.23	14.08	14.30	14.74	15.50	16.41
272	13.15	14.09	14.32	14.51	14.84	15.45	16.29

DATE	TEMP(1) °C	TEMP(2) °C	TEMP(3)	TEMP(4)	TEMP(5) °C	TEMP(6) °C	TEMP(7)
273	10.60	12.81	13.97	14.52	14.89	15.42	16.17
274	9.23	11.39	13.12	14.19	14.79	15.39	16.07
275	8.75	10.72	12.36	13.68	14.51	15.29	15.98
276	8.74	10.33	11.86	13.20	14.17	15.14	15.88
277	10.48	10.63	11.64	12.83	13.84	14.94	15.76
278	11.15	11.30	11.84	12.70	13.61	14.73	15.64
279	13.57	12.10	12.13	12.72	13.48	14.55	15.51
280	12.87	12.94	12.74	12.95	13.48	14.40	15.37
281	10.03	12.06	12.77	13.14	13.56	14.31	15.24
282	8.01	10.64	12.17	12.99	13.54	14.25	15.11
283	7.34	9.65	11.43	12.60	13.35	14.16	14.99
284	8.81	9.55	10.92	12.14	13.03	14.01	14.87
285	11.84	10.67	11.02	11.89	12.75	13.81	14.74
286	13.22	12.03	11.67	11.99	12.61	13.61	14.61
287	12.11	12.34	12.19	12.28	12.66	13.45	14.46
288	10.93	11.83	12.21	12.45	12.76	13.37	14.32
289	9.63	11.19	11.98	12.43	12.79	13.33	14.18
290	9.41	10.62	11.60	12.27	12.73	13.29	14.06
291	9.52	10.47	11.35	12.07	12.60	13.22	13.93
292	7.81	9.94	11.11	11.89	12.46	13.13	13.83
293	5.86	8.73	10.50	11.59	12.28	13.02	13.71
294	6.22	8.02	9.81	11.13	12.00	12.87	13.60
295	6.91	8.13	9.50	10.74	11.67	12.69	13.48
296	5.63	7.85	9.32	10.48	11.41	12.48	13.35
297	5.26	7.18	8.89	10.19	11.16	12.27	13.21
298	5.82	7.11	8.58	9.87	10.89	12.06	13.06
299	4.64	6.88	8.40	9.63	10.64	11.85	12.90
300	3.10	5.97	7.95	9.35	10.40	11.64	12.74
301	3.42	5.41	7.39	8.96	10.11	11.42	12.57
302	2.84	5.19	7.06	8.59	9.79	11.18	12.39
303	1.81	4.52	6.63	8.25	9.49	10.93	12.21

DATE	THETA(1)	THETA(1)	THETA(1)			THETA(1)	
	VUL %	VUL %	VOL. //	VUL //	VUL //	VOL 76	VOL /6
121	35.91	37.11	39.44	38.96	32.40	32.05	32.03
122	34.98	36.69	38.81	39.37	33.00	32.10	32.03
123	34.51	36.27	38.46	39.36	33.52	32.20	32.03
124	33.92	35.89	38.21	39.22	33.85	32.34	32.04
125	33.95	35.47	38.07	39.07	34.02	32.50	32.05
126	34.09	35.07	38.00	38.97	34.10	32.67	32.08
127	33.61	34.76	37.86	38.87	34.11	32.83	32.10
128	33.41	34.50	37.71	38.75	34.08	32.97	32.14
129	33.05	34.30	37.56	38.62	34.01	33.11	32.17
130	35.14	34.16	37.43	38.48	33.92	33.22	32.22
131	40.05	34.89	37.37	38.36	33.82	33.31	32.27
132	39.40	36.52	37.62	38.32	33.73	33.39	32.32
133	36.38	36.30	38.06	38.49	33.69	33.44	32.37
134	35.38	35.77	38.16	38.70	33.73	33.50	32.42
135	34.67	35.34	38.09	38.82	33.82	33.55	32.48
136	34.22	34.99	37.95	38.83	33.91	33.62	32.53
137	38.25	35.00	37.81	38.76	33.95	33.68	32.60
138	43.54	38.04	37.95	38.71	33.95	33.75	32.66
139	43.26	41.66	39.55	39.18	34.00	33.80	32.72
140	40.44	41.75	40.78	40.56	34.45	33.88	32.78
141	38.47	40.07	40.96	41.67	35.47	34.08	32.85
142	38.60	38.86	40.78	41.80	36.48	34.48	32.94
143	37.07	37.67	40.53	41.76	36.98	35.05	33.06
144	35.22	36.71	39.97	41.52	36.96	35.68	33.22
145	34.49	36.03	39.46	41.10	36.70	36.15	33.44
146	33.62	35.49	39.05	40.67	36.35	36.40	33.71
147	32.84	35.04	38.70	40.28	35.99	36.36	34.07
148	32.15	34.64	38.38	39.91	35.64	36.23	34.40
149	31.66	34.31	38.08	39.57	35.31	36.06	34.66
150	31.30	34.04	37.82	39.25	35.00	35.87	34.86
151	30.88	33.81	37.59	38.96	34.70	35.67	35.00
152	30.32	33.61	37.38	38.69	34.43	35.47	35.10
153	29.67	33.40	37.19	38.45	34.18	35.26	35.14
154	29.60	33.21	37.01	38.23	33.96	35.06	35.16
155	30.61	33.06	36.84	38.02	33.75	34.87	35.15
156	30.76	32.98	36.68	37.82	33.56	34.68	35.12
157	29.90	32.89	36.55	37.64	33.37	34.50	35.07
158	32.20	32.82	36.43	37.47	33.19	34.31	35.01

DATE		THETA(1)		THETA(1)			
	VOL 76	VOL 78	VOL 76	VOL 76	VOL 78	VOL 78	VOL 76
159	33.51	32.89	36.33	37.32	33.04		
160	32.71	32.91	36.26	37.19	32.89	33.97	34.87
161	37.93	33.24	36.21	37.08	32.75	33.81	34.79
162	39.86	35.33	36.38	37.01		33.67	
163	36.89	35.75	36.91	37.12	32.55	33.53	
164	35.27	35.37	37.22	37.36	32.54	33.40	
165	33.97	35.01	37.21	37.57	32.60	33.30	
166	33.42	34.77	37.06	37.63		33.21	
167	32.94	34.41	37.05	37.65	32.75	33.15	
168	31.70	34.02	36.99	37.65	32.80	33.09	34.19
169	36.17	33.91	36.87	37.60	32.83	33.05	34.11
170	39.17	35.35	36.97	37.57	32.83	33.02	34.05
171	37.05	35.62	37.34	37.69	32.84	33.00	
172	37.75	35.48	37.50	37.87	32.90	32.98	33.92
173	37.62	35.78	37.66	38.04	32.99	32.97	33.86
174	38.16	35.73	37.80	38.22	33.12	32.97	33.80
175	38.95	36.39	38.03	38.41	33.26	32.98	33.76
176	36.24	36.28	38.29	38.69	33.44	33.02	33.71
177	33.70	35.81	38.07	38.85	33.66	33.08	33.67
178	34.41	35.28	37.91	38.79	33.81	33.16	33.64
179	34.45	34.93	37.83	38.73	33.88	33.26	33.61
180	33.03	34.54	37.67	38.64	33.90	33.35	33.60
181	32.13	34.22	37.49	38.50	33.85	33.42	33.59
182	31.25	33.87	37.29	38.33	33.77	33.48	33.58
183	30.65	33.55	37.10	38.15	33.65	33.52	33.58
184	29.24	33.15	36.89	37.96	33.51	33.54	33.58
185	31.50	32.90	36.67	37.75	33.35	33.53	33.59
186	32.64	32.91	36.52	37.56	33.19	33.50	33.59
187	30.28	32.73	36.38	37.38	33.03	33.45	33.58
188	28.53	32.40	36.23	37.21	32.87	33.39	33.58
189	28.19	32.08	36.05	37.04	32.72	33.32	33.57
190	28.36	31.69	35.89	36.86	32.56	33.24	33.55
191	26.50	31.34	35.73	36.69	32.42	33.15	33.53
192	23.85	31.04	35.59	36.53	32.27	33.06	33.50
193	21.50	30.65	35.44	36.36	32.13	32.97	33.47
194	20.40	30.23	35.29	36.20	31.99	32.87	33.44
195	19.94	29.69	35.14	36.05	31.85	32.77	33.40
196	19.55	29.16	35.03	35.90	31.72	32.67	33.36

DATE					THETA(1)		
	VOL %	VOL %	VOL %	VOL %	VUL %	VUL //	VUL /6
197	19.56	28.64	34.92	35.76	31.59	32.57	33.32
198	21.22	28.11	34.87	35.63	31.46	32.48	33.27
199	21.26	27.53	34.83	35.53	31.35	32.38	33.22
200	26.10	26.91	34.75	35.44	31.24	32.28	33.17
201	31.01	26.97	34.38	35.30	31.14	32.19	33.12
202	29.17	27.17	34.00	35.10	31.02	32.10	33.07
203	25.69	27.02	33.55	34.86	30.90	32.01	33.02
204	30.19	26.82	33.19	34.61	30.75	31.91	32.96
205	36.54	27.34	33.04	34.38	30.61	31.82	
206	33.62	27.64	32.83	34.19		31.73	
207	30.32	27.44	32.51	34.03	30.32	31.64	
208	26.35	27.01	32.10	33.89	30.18	31.54	
209	22.16	26.50	31.66	33.77		31.45	
210	20.38	26.06	31.27	33.65	29.93	31.36	
211	19.74	25.53	30.82	33.55	29.82	31.28	
212	20.03	25.20	30.53	33.46	29.71	31.19	
213	20.35	25.08	30.38	33.38		31.11	32.43
214	19.60	24.59	29.97	33.31	29.52	31.02	32.38
215	18.86	23.75	29.34	33.25		30.94	
216	18.35	23.07	28.83	33.20		30.86	
217	17.91	22.51	28.40	33.15	29.28	30.79	32.20
218	20.63	22.13	28.10	33.11	29.22	30.71	32.14
219	30.60	22.12	28.05	33.06	29.15	30.64	
220	38.44	22.84	28.00	32.89		30.57	
221	35.80	23.83	27.91	32.55		30.51	
222	31.82	23.71	27.82	32.20	28.90	30.44	
223	35.40	23.63	27.75	31.97	28.79	30.37	
224	37.22	24.64	27.71	31.84	28.68	30.31	
225	38.81	25.61	27.68	31.76	28.59	30.24	31.75
226	38.71	28.28	27.71	31.62	28.50	30.18	31.70
227	34.93	28.84	27.72	31.45	28.40	30.12	31.64
228	32.90	28.72	27.72	31.29	28.30	30.06	31.59
229	30.20	28.35	27.68	31.02	28.19	30.00	31.54
230	32.22	28.08	27.66	30.82	28.13	29.94	31.49
231	34.20	28.20	27.67	30.78	28.08	29.88	31.44
232	31.17	28.01	27.64	30.63	27.97	29.82	31.39
233	28.83	27.66	27.59	30.40	27.87	29.76	31.34
234	26.41	27.29	27.52	30.17	27.77	29.71	31.29

DATE	THETA(1)	THETA(1)	THETA(1)				THETA(1)
235	23.95	26.91	27.42	29.95		29.65	
236	21.87	26.60	27.34	29.79		29.60	
237	20.62	26.35	27.29	29.66	27.46	29.54	
238	19.92	26.00	27.18	29.48		29.49	
239	20.09	25.77	27.10	29.37		29.44	
240	24.39	25.68	27.08	29.34	27.24	29.39	
241	27.45	25.58		29.31	27.16	29.34	
242	25.64	25.41		29.23		29.29	
243	23.53	25.11	26.89	29.07		29.24	
244	21.46	24.80	26.76	28.90	26.82	29.19	
245	20.46	24.59	26.69	28.80	26.72	29.14	30.80
246	19.95	24.43	26.65	28.72	26.63	29.09	
247	19.53	24.20	26.55	28.60	26.53	29.04	
248	19.43	23.98	26.46	28.49		29.00	
249	19.37	23.82	26.41	28.41	26.36	28.95	30.63
250	20.19	23.73	26.39	28.36	26.32	28.91	30.59
251	20.91	23.69	26.37	28.35	26.29	28.87	
252	20.19	23.60	26.35	28.31	26.23	28.83	
253	19.69	23.53	26.33	28.28		28.78	
254	19.41	23.48	26.32	28.26	26.14	28.74	
255	19.35	23.40	26.29	28.22	26.09	28.70	
256	19.34	23.31	26.27	28.18	26.04	28.66	30.37
257	19.04	23.21	26.22	28.13		28.62	
258	20.71	23.12	26.19	28.08		28.59	
259	22.90	23.12	26.19	28.08	25.96	28.56	30.26
260	22.77	23.12	26.19	28.08	25.96	28.53	
261	22.39	23.12	26.19	28.08		28.50	
262	22.44	23.12	26.19			28.47	
263	23.01	23.12	26.19	28.08	25.95	28.44	30.13
264	23.07	23.12	26.19	28.08	25.95	28.42	30.10
265	28.45	23.13	26.19	28.08	25.95	28.39	30.06
266	35.62	23.30	26.19	28.08	25.95	28.36	30.03
267	37.64	23.94	26.19	28.08	25.95	28.33	30.00
268	37.32	24.83	26.19	28.08	25.95	28.31	29.97
269	36.14	25.44	26.19	28.08	25.95	28.29	29.95
270	35.80	25.88	26.19	28.08	25.95	28.27	29.92
271	35.78	26.30	26.19	28.08	25.95	28.24	29.89
272	36.03	26.72	26.21	28.08	25.95	28.22	29.86

DATE						THETA(1)	
	VOL %	VOL %					
273	43.35	29.19	26.24	28.08	25.94	28.20	29.83
274	46.29	38.65	26.94	28.07	25.91	28.18	29.81
275	42.13	41.37	30.23	28.10	25.88	28.15	29.78
276	40.25	40.97	33.58	28.28	25.86	28.13	29.75
277	42.07	40.38	36.34	28.87	25.85	28.11	29.73
278	41.58	42.01	38.86	30.34	25.85	28.08	29.70
279	38.48	40.38	40.02	33.16	26.04	28.06	29.68
280	37.96	38.99	39.71	35.65	26.50	28.05	29.65
281	38.57	37.80	39.46	37.54	27.24	28.03	29.63
282	41.36	37.81	39.10	38.56	28.35	28.03	29.60
283	41.60	39.54	39.25	38.97	29.53	28.06	29.58
284	42.84	40.12	39.92	39.49	30.99	28.13	29.56
285	44.53	43.43	41.58	40.17	33.26	28.29	29.54
286	42.63	43.31	43.16	42.70	36.64	28.86	29.52
287	40.08	41.49	42.81	43.16	38.74	30.71	29.52
288	38.30	39.79	41.97	42.64	39.89	32.47	29.58
289	36.91	38.68	40.87	42.00	39.23	34.49	29.71
290	37.64	37.77	40.12	41.62	37.89	36.05	29.97
291	40.85	37.84	39.83	41.33	37.08	36.90	30.38
292	41.91	39.24	39.77	41.07	36.60	37.31	30.83
293	40.09	39.27	40.30	41.18	36.34	37.50	31.36
294	37.99	37.97	40.38	41.51	36.42	37.58	31.90
295	38.12	37.15	39.95	41.36	36.49	37.65	32.46
296	39.04	36.95	39.63	41.03	36.34	37.65	33.01
297	39.78	37.10	39.48	40.77	36.10	37.54	33.54
298	39.30	37.35	39.49	40.63	35.89	37.34	34.02
299	37.94	37.02	39.46	40.59	35.77	37.10	34.44
300	37.07	36.53	39.26	40.47	35.69	36.87	34.78
301	38.43	36.25	39.02	40.27	35.56	36.64	35.04
302	39.41	36.65	38.94	40.08	35.41	36.40	35.24
303	38.06	36.64	38.96	39.99	35.27	36.17	35.37

DATE	SURR mm/day	SURRE mm/day	PERC mm/day	TA °C
	miny day	miny day	miny day	
121	0.00	0.00	0.52	17.00
122	0.00	0.00	0.52	7.00
123	0.00	0.00	0.52	7.00
124	0.00	0.00	0.52	9.50
125	0.00	0.00	0.52	7.50
126	0.00	0.00	0.53	8.00
127	0.00	0.00	0.54	8.00
128	0.00	0.00	0.55	8.00
129	0.00	0.00	0.56	15.50
130	0.00	0.00	0.57	12.50
131	0.00	0.00	0.58	7.50
132	0.00	0.00	0.60	9.00
133	0.00	0.00	0.61	11.50
134	0.00	0.00	0.63	14.50
135	0.00	0.00	0.65	13.00
136	0.00	0.00	0.67	12.00
137	0.00	0.00	0.69	9.00
138	0.00	0.00	0.71	8.50
139	0.00	0.00	0.73	6.50
140	0.00	0.00	0.76	6.50
141	0.00	0.00	0.78	6.50
142	0.00	0.00	0.82	5.50
143	0.00	0.00	0.86	7.50
144	0.00	0.00	0.93	7.00
145	0.00	0.00	1.03	12.00
146	0.00	0.00	1.16	14.00
147	0.00	0.00	1.35	16.00
148	0.00	0.00	1.55	17.00
149	0.00	0.00	1.73	10.50
150	0.00	0.00	1.89	10.00
151	0.00	0.00	2.01	8.50
152	0.00	0.00	2.09	18.00
153	0.00	0.00	2.14	17.50
154	0.00	0.00	2.15	22.50
155	0.00	0.00	2.15	11.50
156	0.00	0.00	2.13	8.00
157	0.00	0.00	2.10	7.50
158	0.00	0.00	2.06	13.50
		- · • •		

DATE	SURR	SURRE	PERC	TA
	mm/day	mm/day	mm/day	°C
159	0.00	0.00	2.02	14.00
160	0.00	0.00	1.96	16.00
161	0.00	0.00	1.90	12.00
162	0.00	0.00	1.84	14.00
163	0.00	0.00	1.78	16.50
164	0.00	0.00	1.73	17.50
165	0.00	0.00	1.67	21.50
166	0.00	0.00	1.61	20.50
167	0.00	0.00	1.56	21.50
168	0.00	0.00	1.52	22.00
169	0.00	0.00	1.48	20.50
170	0.00	0.00	1.44	13.80
171	0.00	0.00	1.41	12.00
172	0.00	0.00	1.38	13.00
173	0.00	0.00	1.36	16.00
174	0.00	0.00	1.33	14.50
175	0.00	0.00	1.31	19.00
176	0.00	0.00	1.29	19.00
177	0.00	0.00	1.27	21.00
178	0.00	0.00	1.26	17.00
179	0.00	0.00	1.25	15.00
180	0.00	0.00	1.25	15.50
181	0.00	0.00	1.25	17.00
182	0.00	0.00	1.26	15.50
183	0.00	0.00	1.26	18.50
184	0.00	0.00	1.27	19.00
185	0.00	0.00	1.27	16.50
186	0.00	0.00	1.28	14.50
187	0.00	0.00	1.28	14.00
188	0.00	0.00	1.28	15.00
189	0.00	0.00	1.28	16.50
190	0.00	0.00	1.28	22.00
191	0.00	0.00	1.27	17.50
192	0.00	0.00	1.26	17.00
193	0.00	0.00	1.24	16.50
194	0.00	0.00	1.23	17.00
195	0.00	0.00	1.21	18.50
196	0.00	0.00	1.20	21.50

DATE	SURR	SURRE	PERC	TA
	mm/day	mm/day	mm/day	°C
197	0.00	0.00	1.18	23.50
198	0.00	0.00	1.16	22.00
199	0.00	0.00	1.14	23.50
200	0.00	0.00	1.11	22.50
201	0.00	0.00	1.09	18.00
202	0.00	0.00	1.07	19.00
203	0.00	0.00	1.05	20.50
204	1.66	0.00	1.03	17.50
205	1.90	0.00	1.01	17.50
206	1.14	0.00	0.99	20.00
207	0.69	0.00	0.97	21.50
208	0.41	0.00	0.94	23.00
209	0.25	0.00	0.92	24.00
210	0.15	0.00	0.90	23.00
211	0.09	0.00	0.88	25.00
212	0.05	0.00	0.86	19.50
213	0.03	0.00	0.84	19.00
214	0.02	0.00	0.82	20.50
215	0.01	0.00	0.80	22.50
216	0.01	0.00	0.78	22.50
217	0.00	0.00	0.77	24.00
218	0.00	0.00	0.75	20.00
219	0.03	0.00	0.73	18.00
220	0.12	0.00	0.71	21.00
221	0.08	0.00	0.70	20.50
222	0.05	0.00	0.68	20.50
223	0.03	0.00	0.67	20.50
224	0.02	0.00	0.65	20.50
225	0.01	0.00	0.64	17.00
226	0.01	0.00	0.62	18.50
227	0.00	0.00	0.61	17.50
228	0.00	0.00	0.60	19.00
229	0.00	0.00	0.58	20.50
230	0.00	0.00	0.57	17.50
231	0.00	0.00	0.56	14.50
232	0.00	0.00	0.55	14.00
233	0.00	0.00	0.53	16.00
234	0.00	0.00	0.52	17.00

DATE	SURR	SURRE	PERC	TA
	mm/day	mm/day	mm/day	°C
235	0.00	0.00	0.51	19.00
236	0.00	0.00	0.50	20.00
237	0.00	0.00	0.49	22.50
238	0.00	0.00	0.48	23.50
239	0.00	0.00	0.47	19.50
240	0.00	0.00	0.46	19.00
241	0.00	0.00	0.45	18.00
242	0.00	0.00	0.44	16.00
243	0.00	0.00	0.43	18.50
244	0.00	0.00	0.42	20.00
245	0.00	0.00	0.41	17.50
246	0.00	0.00	0.41	13.50
247	0.00	0.00	0.40	15.00
248	0.00	0.00	0.39	17.00
249	0.00	0.00	0.38	15.00
250	0.00	0.00	0.38	11.50
251	0.00	0.00	0.37	9.00
252	0.00	0.00	0.36	11.00
253	0.00	0.00	0.35	12.50
254	0.00	0.00	0.35	14.00
255	0.00	0.00	0.34	14.00
256	0.00	0.00	0.33	13.00
257	0.00	0.00	0.33	19.00
258	0.00	0.00	0.32	15.00
259	0.00	0.00	0.31	8.00
260	0.00	0.00	0.31	7.50
261	0.00	0.00	0.30	8.00
262	0.00	0.00	0.30	9.50
263	0.00	0.00	0.29	11.00
264	0.00	0.00	0.29	10.00
265	0.00	0.00	0.28	11.00
266	0.00	0.00	0.27	12.50
267	0.00	0.00	0.27	8.00
268	0.00	0.00	0.26	12.50
269	0.00	0.00	0.26	14.00
270	0.00	0.00	0.26	15.00
271	0.00	0.00	0.25	15.00
272	0.00	0.00	0.25	11.50

DATE	SURR	SURRE	PERC	TA
	mm/day	mm/day	mm/day	°C
273	3.72	1.71	0.24	9.00
274	2.70	4.29	0.24	8.00
275	1.34	0.00	0.23	7.50
276	0.81	0.00	0.23	8.00
277	0.48	0.00	0.23	11.50
278	0.29	0.00	0.22	11.00
279	0.18	0.00	0.22	16.00
280	0.11	0.00	0.22	11.50
281	0.06	0.00	0.21	7.50
282	0.04	0.00	0.21	6.00
283	0.02	0.00	0.21	6.00
284	0.01	0.00	0.20	9.50
285	0.01	0.00	0.20	14.00
286	0.00	0.00	0.20	14.00
287	0.00	0.00	0.20	11.00
288	0.00	0.00	0.20	10.00
289	0.00	0.00	0.21	8.00
290	0.00	0.00	0.24	9.00
291	0.00	0.00	0.30	9.00
292	0.00	0.00	0.38	5.50
293	0.00	0.00	0.48	3.50
294	0.00	0.00	0.62	6.00
295	0.00	0.00	0.80	6.50
296	0.00	0.00	1.03	3.50
297	0.00	0.00	1.29	4.50
298	0.00	0.00	1.58	5.50
299	0.00	0.00	1.87	2.50
300	0.00	0.00	2.14	1.00
301	0.00	0.00	2.38	3.00
302	0.00	0.00	2.57	1.00
303	0.00	0.00	2.70	0.00

ANNEXE H

Résultats sommaires de la simulation avec SOIL

XAVERAGE TAVERAGE GAVERAGE DAVERAGE DRIVPGRA WATEREQ HEATEQ WUPTAKE HEATWF DDAILY

Switches OFF:
OUTFORN INSTATE OUTSTATE SELOUTPV LISALLV GWFLOW FRLOADP FRLIMINF
FRLIMUF FRINTERA FRSWELL SUREBAL CHAPAR CRACK ADDSIM ATIRRIG

FILE NAME FOR PARAMETER VALUES :st-aug.PAR

Driving variable file: METEO 5 variables in 731 records

From 19900501-1200 to 19851231-1200

°C Temperature sommaire agrometeo aero Vapour pressure Skara 533 Pa Wind speed som. meteo mensuel ms# aero Precipitation sommaire agrometeo mm Cloudiness (daytime)sommaire agrometeo aero

START STOP INTERVAL ITERATIONS

(DAYS) /DAY /PERIOD

1990-0501-0000 1990-1031-0000 1 16 2928

*	DRIVING	VARIABLES				
CHOEN		.00000	CIECO	.00000	CNUMD	1.0000
HEIGHT		2.0000	PRECAO	1.0700	PRECA1	.00000
YAINF		.00000	YCH	.00000	YFAINF	.00000
AWS		.00000	YPHAS	.00000	YTAM	.00000
YTAMP		.00000	NSOURCE	.00000	AHR	.00000
ACLOUD		.00000	SOILCOVER	.00000	SIFRAC	.00000
ISTORE	NIN	.00000	ISTOREL	.00000	IRRIRATE	.00000
IRRIAM		.00000				.00000
*	INITIAL	CONDITIONS				
CINIT		5.0000	CTEMPI	5.0000	IGWLEV	-5.0000
IPOT		40.000	ITEMPS	6.0000	ITHETA	.00000
*	NUMERICA	AL				
XADIV		4.0000	XINFLI	10.000	XL00P	2.0000
XNLEV		6.0000				
*	SOIL PRO	OFILE				
NUMLAY		7.0000	THICK(1)	.50000E-01	THICK(2)	.50000E-01
THICK(3	3)	.50000E-01	THICK(4)	.50000E-01	THICK(5)	.50000E-01
THICK(6	5)	.10000	THICK(7)	.15000	THICK(8)	.00000
THICK(9))	.00000	THICK(10)	.00000	THICK(11)	.00000
THICK(1	.2)	.00000	THICK(13)	.00000	THICK(14)	.00000
THICK(1	5)	.00000	THICK(16)	.00000	THICK(17)	.00000
THICK(1	•	.00000	THICK(19)	.00000	THICK(20)	.00000
THICK(2	1)	.00000	THICK(22)	.00000	UNUM	6.0000
UPROF		90.000	UTHICK(1)	.00000	UTHICK(2)	.00000
UTHICK(3)	.00000	UTHICK(4)	.00000	UTHICK(5)	.00000
VC		4.0000	ASCALE	.00000		
*	EVAPOTR	NSPIRATION				
ALBEDO		20.000	EPRAT	2.0000	INTLAI	.20000
INTRS		.50000	LATID	46.750	ROUGHV(1)	.10000E-01
ROUGHV (2)	.10000E-01	ROUGHV(3)	.20000	ROUGHV(4)	.20000
ROUGHV (5)	.10000E-01	RSV(1)	80.000	RSV(2)	60.000
RSV(3)		40.000	RSV(4)	60.000	RSV(5)	80.000
LAIV(1)		.00000	LAIV(2)	.50000	LAIV(3)	3.5000
LAIV(4)		3.5000	LAIV(5)	.00000	DISPLV(1)	.10000E-01
DISPLV(•	.70000E-01	DISPLV(3)	1.4000	DISPLV(4)	1.4000
DISPLV(•	.10000E-01	DAYNUM(1)	149.00	DAYNUM(2)	172.00
DAYNUM(•	202.00	DAYNUM(4)	232.00	DAYNUM(5)	262.00
CFORM(1		.50000	CFORM(2)	2.0000	CFORM(3)	1.0000
CFORM(4)	1.0000	PSIRS	200.00		

*	WATER UPTAKE				
CHOWUP	10.000	ROOTF(1)	.70000	ROOTF(2)	.13000
ROOTF(3	.90000E-01	R00TF(4)	.60000E-01	ROOTF(5)	.20000E-01
ROOTF (.00000	ROOTF(7)	.00000	ROOTF(8)	.00000
ROOTF (9	.00000	ROOTF(10)	.00000	ROOTL(1)	.00000
ROOTL (2	2) 1.0000	ROOTL(3)	5.0000	ROOTT(1)	149.00
ROOTT (2	2) 162.00	ROOTT(3)	239.00	ROOTT(4)	273.00
WUPATE	.80000	WUPBTE	.40000	WUPCRI	3000.0
WUPF	.30000	WUPFB	.00000		
*	GROUND WATER				
DDIST	10.000	DDRAIN	.00000	GFLEV(1)	2.0000
GFLEV(2	2.0000	GFLOW(1)	1.0000	GFLOW(2)	.00000
GWSOF	.00000	GWSOL	3.0000	SURDEL	.50000
*	THERMAL PROPERTIES	5			
GEOTER	-1.0000	HUMUS	.00000		
*	SNOW				
PRLIM	2.0000	PSLIM	-2.0000	SAGEM1	2.5000
SAGEM2	.10000	SAGEZP	5.0000	SAGEZQ	.90000
SD10L	100.00	SD20M	.90000	SDENS	100.00
SLWLO	3.0000	SMAFR	.10000	SMRIS	.10000E-06
SMTEM	3.0000	SRET	.70000E-01	STCON	.28600E-05
*	FROST				
FCOND	8.0000	FDF	30.000	FWFRAC	1.0000
*	HEAT PUMP				
HPAMP	.00000	HPBAS	.00000	HPCUT	.00000
HPLAY	3.0000	HPMAX	.00000	HPZERO	.00000
*	SURFACE E-BALANCE				
EGPSI	5.0000	RALAI	10.000	RNTLAI	.00000
c.	NI IDENTICIONE	CT ALIC	enc c an	7130000/464	5000 22

SOIL IDENTIFICATION: ST-AUG 6QC C 90 7130000/4645000 22

SOIL	PARAN	METERS AT	BOUNDA	RIES BET	WEEN LAY	ERS				
DEPTH	N	SATC	SATCT	LAMBDA	RESIDAL	PORO	PSIE	TCON	TCONF	
20.0	1.0	30.0	30.0	.38	17.80	45.10	15.60	1.24	1.82	
40.0	1.0	42.5	42.5	.36	16.80	45.60	18.60	1.23	1.81	
60.0	1.0	54.6	54.6	.34	15.30	45.80	19.70	1.25	1.92	
80.0	1.0	60.7	60.7	.30	11.80	44.80	13.20	1.28	1.93	
100.0	1.0	65.8	65.8	.26	9.00	44.00	8.00	1.22	1.68	
140.0	1.0	65.8	65.8	.26	9.00	44.00	8.00	1.22	1.68	
200.0	1.0	65.8	65.8	.26	9.00	44.00	8.00	1.22	1.68	

	SOIL P	ARAMETE	RS IN THE	MIDDLE	OF LA	YERS			
D	EPTH	ROOTF	LAMBDA	RESIDAL	PORO	PSIE	WILTP	HCAP I	ICAPI
	10.0	.70	.38	18.00	45.00			2.64	1.80
	30.0	.13	.37	17.60	45.20	16.20	9.78	2.66	1.80
	50.0	.09	.35	16.00	46.00			2.76	1.84
	70.0	.06	.33	14.60	45.60		11.96	2.71	1.82
	90.0	.02		9.00	44.00	8.00	11.40	2.47	1.73
	20.0	.00		9.00	44.00		11.40	2.47	1.73
1	70.0	.00	.26	9.00	44.00	8.00	11.40	2.47	1.73
			C+ .	ate Varia	ahlac				
Numb	er Vari	ah]a	Initia			Min	Max	Mean	Cumulated
Numb			7.30E+0			.54E+01	9.86E+01	6.30E+0	
2	WATER(WATER(•	7.45E+0]			.42E+01	8.83E+01	6.29E+0	
3	WATER	•	7.45E+01			.42E+01	8.67E+01	6.78E+0	
4	WATER	•	7.71E+01			.61E+01	8.64E+01	7.04E+0	
5	WATER(•	6.44E+0]			.17E+01	8.07E+01	6.23E+0	
6	WATER(1.28E+02			.17E+01	1.51E+02	1.28E+02	
7	WATER(•	1.92E+02			.77E+02	2.13E+02	1.94E+0	
8	HEAT(1		3.90E+06			.93E+05	1.15E+07	6.74E+06	
9	HEAT (2	•	3.19E+06			.19E+06	9.38E+06	6.68E+06	
10	HEAT(3	•	3.30E+06			.30E+06	9.50E+06	6.86E+06	
11	HEAT (4	•	3.25E+06			.25E+06	9.52E+06	6.96E+06	
12	HEAT(5	•	2.97E+06			.97E+06	8.69E+06	6.53E+06	
13	HEAT (6	-	5.92E+06			.92E+06	1.73E+07	1.31E+07	
14	HEAT (7	•	8.87E+06			.87E+06	2.64E+07	1.94E+07	
15	PLANT	,	0.00E+00			.00E+00	2.40E+02	1.18E+02	
16	STREAM	İ	3.23E-02			.23E-02	1.61E+02	9.30E+0	
17	SURPOO		0.00E+00			.00E+00	1.17E+01	1.77E-0	1 3.23E+01
18	HSNOW	-	0.00E+00			.00E+00	0.00E+00	0.00E+00	0.00E+00
19	WSNOW					.00E+00	0.00E+00	0.00E+00	0.00E+00
			Initia						Cumulated
20			1.09E+00						0 2.82E+02
21			2.75E+00			.69E-01			
22			5.68E+00				1.86E+01		
23							1.86E+01		
24	WFLOW(5)	5.17E-01	2.36E-	+00 -3	.96E-02	1.00E+01		
25	-	•	0.00E+00				4.34E+00		
26	EFLOW(1)	2.74E+04	1 -1.44E	+06 -1	.62L+06	2.72E+06	1.41E+0	5 2.57E+07

```
6.92E+04 -1.13E+06 -1.13E+06
                                                     1.57E+06
                                                                1.46E+05
                                                                           2.67E+07
     EFLOW(2)
27
                    1.43E+05 -8.49E+05 -8.49E+05
                                                     1.03E+06
                                                                1.45E+05
                                                                           2.66E+07
28
     EFLOW(3)
                                                                1.39E+05
                                                                           2.54E+07
                    1.36E+05 -6.22E+05 -6.22E+05
                                                     7.92E+05
29
     EFLOW(4)
                    1.30E+04 -4.46E+05 -4.46E+05
                                                     6.18E+05
                                                                1.28E+05
                                                                           2.35E+07
30
     EFLOW(5)
                    0.00E+00 -1.39E+05 -1.96E+05
                                                                9.86E+04
                                                                           1.80E+07
                                                     3.50E+05
31
     EFLOW(6)
                                          0.00E+00
                                                     8.21E+00
                                                                8.84E-01
                                                                           1.62E+02
                    0.00E+00
                               0.00E + 00
32
     WUPTAKE(1)
     WUPTAKE(2)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     1.83E+00
                                                                2.56E-01
                                                                           4.69E+01
33
                                                                1.27E-01
                                                                           2.33E+01
                                          0.00E+00
                                                     1.26E+00
34
     WUPTAKE(3)
                    0.00E+00
                               0.00E+00
                                                                4.15E-02
                                                                           7.59E+00
                                          0.00E+00
                                                     4.58E-01
                    0.00E+00
                               0.00E+00
 35
     WUPTAKE(4)
                                                                           8.73E-01
                                                     1.12E-01
                                                                4.77E-03
                    0.00E+00
                               0.00E+00
                                          0.00E + 00
36
     WUPTAKE(5)
                                                                0.00E + 00
                                                                           0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E + 00
37
                    0.00E+00
     WUPTAKE(6)
                                                                           0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
38
                    0.00E+00
     WUPTAKE(7)
                    1.19E+07 -1.63E+06 -8.05E+06
                                                                           2.34E+07
39
     DRIVE
                                                     1.19E+07
                                                                1.28E+05
                                                                3.77E+00
                                                                           6.90E+02
                                          0.00E+00
                                                     3.06E+01
 40
     INFIL
                    1.07E+00
                               0.00E + 00
                                                     7.16E+00
                                                                1.49E+00
                                                                           2.73E+02
                               1.18E+00
                                          5.89E-02
 41
     EVAG
                    3.04E+00
                                                                           0.00E+00
                                          0.00E+00
                                                     0.00E + 00
                                                                0.00E + 00
                    0.00E+00
                               0.00E+00
 42
     DFLOW(1)
                                                                           0.00E+00
     DFLOW(2)
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                    0.00E+00
                               0.00E+00
 43
                                                                           0.00E+00
 44
     DFLOW(3)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
                                          0.00E+00
 45
     DFLOW(4)
                    0.00E + 00
                               0.00E+00
                                                                           0.00E+00
                                                                0.00E+00
                                          0.00E+00
                                                     0.00E+00
                    0.00E+00
                               0.00E+00
 46
     DFLOW(5)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
 47
     DFLOW(6)
                                          1.97E-01
                                                     2.74E+00
                                                                8.82E-01
                                                                           1.61E+02
                    5.17E-01
                               2.74E+00
 48
     DFLOW(7)
                                                                0.00E+00
                                                                           0.00E+00
 49
     PUMP
                    0.00E+00
                               0.00E + 00
                                          0.00E+00
                                                     0.00E + 00
                                          0.00E+00
                                                     3.56E+01
                                                                2.43E-01
                                                                           4.45E+01
 50
     SPOOLA
                    0.00E+00
                               0.00E+00
                                                                           2.78E+01
                                          0.00E+00
                                                     2.90E+01
                                                                1.52E-01
                    0.00E+00
                               0.00E+00
 51
     SPOOLINF
                                                                9.03E-02
                                                                           1.65E+01
                                          0.00E+00
                                                     5.85E+00
                    0.00E+00
                               0.00E + 00
 52
     SURR
                                                                0.00E + 00
                                                                           0.00E + 00
                                          0.00E+00
                                                     0.00E+00
 53
     HEATSINK(1)
                    0.00E + 00
                               0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E + 00
     HEATSINK(2)
                    0.00E+00
 54
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
 55
     HEATSINK(3)
                    0.00E+00
                               0.00E + 00
                                                                           0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
 56
     HEATSINK(4)
                    0.00E+00
                               0.00E + 00
                                                                           0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
     HEATSINK(5)
                    0.00E+00
                               0.00E + 00
 57
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
 58
     HEATSINK(6)
                    0.00E+00
                                          1.20E+04
                                                     1.39E+05
                                                                4.36E+04
                                                                           7.98E+06
                    1.30E+04
                               1.39E+05
 59
     HEATSINK(7)
                    -Auxiliary Variables
                                                                          Cumulated
                                            Min
                                                       Max
                                                                 Mean
Number Variable
                     Initial
                                Final
                                                     2.39E+01
                                                                1.43E+01
                                                                           2.61E+03
                    6.00E+00
                               1.50E+00
                                          1.50E+00
 60
     TEMP(1)
                                                                1.41E+01
                                                                           2.58E+03
                    6.00E+00
                               4.20E+00
                                          4.20E+00
                                                     2.18E+01
 61
     TEMP(2)
                               6.39E+00
                                          6.00E+00
                                                     2.02E+01
                                                                1.39E+01
                                                                           2.55E+03
 62
                    6.00E+00
     TEMP(3)
                                                                           2.52E+03
                                          6.00E+00
                                                     1.92E+01
                                                                1.38E+01
 63
                    6.00E+00
                               8.07E+00
     TEMP(4)
                                                                1.36E+01
                                                                           2.49E+03
                                          6.00E+00
                                                     1.87E+01
 64
     TEMP(5)
                    6.00E+00
                               9.34E+00
                                          6.00E+00
                                                     1.85E+01
                                                                1.34E+01
                                                                           2.45E+03
     TEMP(6)
                               1.08E+01
 65
                    6.00E+00
```

```
1.83E+01
                                                                1.32E+01
                                                                           2.41E+03
                    6.00E+00
                               1.21E+01
                                          6.00E+00
66
     TEMP(7)
                                                                0.00E+00
                                                                           0.00E+00
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
67
     THQUAL(1)
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
                               0.00E+00
                                          0.00E+00
68
     THQUAL(2)
                    0.00E+00
                                                                           0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                               0.00E+00
                                          0.00E+00
69
     THQUAL(3)
                    0.00E + 00
                                                                0.00E+00
                                                                           0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                    0.00E+00
                               0.00E+00
70
     THQUAL(4)
                                          0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
                    0.00E+00
                               0.00E+00
                                                     0.00E + 00
71
     THQUAL(5)
                                                                           0.00E+00
     THQUAL(6)
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
72
                    0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
73
     THQUAL(7)
                    0.00E+00
                               0.00E+00
                                                                3.16E+01
                                                                           5.77E+03
     THETA(1)
                               3.75E+01
                                          1.77E+01
                                                     4.93E+01
74
                    3.66E+01
                                                                           5.75E+03
                                          2.21E+01
                                                     4.41E+01
                                                                3.14E+01
                               3.65E+01
75
     THETA(2)
                    3.73E+01
                                                                3.39E+01
                                                                           6.20E+03
                    3.99E+01
                               3.89E+01
                                          2.62E+01
                                                     4.33E+01
76
     THETA(3)
                               4.00E+01
                                          2.81E+01
                                                     4.32E+01
                                                                3.52E+01
                                                                           6.44E+03
                    3.86E+01
77
     THETA(4)
                                                     4.03E+01
                                                                3.12E+01
                                                                           5.70E+03
78
     THETA(5)
                    3.20E+01
                               3.52E+01
                                          2.58E+01
                                                                3.19E+01
                                                                           5.85E+03
                                          2.80E+01
                                                     3.77E+01
79
     THETA(6)
                    3.20E+01
                               3.61E+01
                                                                           5.90E+03
                                                     3.54E+01
                                                                3.23E+01
                               3.54E+01
                                          2.95E+01
80
                    3.20E+01
     THETA(7)
                                                                3.20E+03
                                                                           5.86E+05
                               3.55E+01 -1.00E+01
                                                     3.00E+04
81
     PSI(1)
                    4.00E+01
                                          6.61E+00
                                                     2.09E+03
                                                                3.10E+02
                                                                           5.68E+04
82
                    4.00E+01
                               4.46E+01
     PSI(2)
                                                     4.60E+02
                                                                1.67E+02
                                                                           3.05E+04
83
     PSI(3)
                    4.00E+01
                               4.52E+01
                                          2.11E+01
                                                                           1.65E+04
                                          1.67E+01
                                                     2.26E+02
                                                                9.04E+01
84
     PSI(4)
                    4.00E+01
                               3.37E+01
                                                                6.02E+01
                                                                           1.10E+04
                                          1.17E+01
                                                     1.33E+02
85
                    4.00E+01
                               2.43E+01
     PSI(5)
                                                                           8.43E+03
                               2.15E+01
                                                     8.34E+01
                                                                4.60E+01
                    4.00E+01
                                          1.72E+01
86
     PSI(6)
                                          0.00E + 00
                                                     6.24E+01
                                                                4.04E+01
                                                                           7.39E+03
                    0.00E+00
                               2.36E+01
87
     PSI(7)
                                                                           4.20E+01
88
     INTCAP
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     7.00E-01
                                                                2.30E-01
                                                                           1.77E+01
                                          0.00E+00
                                                     7.00E-01
                                                                9.68E-02
89
     INTERC
                    0.00E + 00
                               0.00E+00
                                                                           1.45E+03
                                          1.00E-03
                                                     8.23E+01
                                                                7.92E+00
90
                    1.00E-03
                               1.00E-03
     EINTPOT
                                                                           1.63E+01
                                                     7.00E-01
                                                                8.92E-02
91
     EACTI
                    0.00E+00
                               0.00E + 00
                                          0.00E+00
                                          0.00E+00
                                                     6.99E-01
                                                                7.66E-03
                                                                           1.40E+00
     ISTORE
                    0.00E+00
                               0.00E+00
92
                                                                           7.65E+03
93
     RA
                    6.89E+01
                               4.54E+01
                                          1.46E+00
                                                     2.58E+02
                                                                4.18E+01
                                                     2.00E-01
                                                                6.71E-02
                                                                           1.23E+01
94
     ROUGH
                    1.00E-02
                               1.00E-02
                                          1.00E-02
                                                                           8.04E+01
                                                     1.40E+00
                                                                4.39E-01
                                          1.00E-02
95
     DISPL
                    1.00E-02
                               1.00E-02
                                                                           1.23E+04
                                          4.00E+01
                                                     8.00E+01
                                                                6.74E+01
96
     RS
                    8.00E+01
                               8.00E+01
                                                                2.05E+00
                                                                           3.76E+02
                                          1.00E-04
                                                     1.39E+01
                    1.00E-03
                               1.00E-03
97
     WUPPOT
                                          0.00E+00
                                                     1.08E+01
                                                                1.31E+00
                                                                           2.40E+02
98
     EACT
                    0.00E+00
                               0.00E+00
                                                                           8.51E+01
     REDF
                    0.00E+00
                                          0.00E+00
                                                     9.38E-01
                                                                4.65E-01
99
                               0.00E+00
                                                                2.89E+00
                                                                           5.29E+02
                                          6.00E-02
                                                     1.38E+01
100
     EVAPO
                    3.04E+00
                               1.18E+00
                                                     1.40E+03
                                                                4.83E+02
                                                                           8.84E+04
101
     VPD
                    1.40E+03
                               1.94E+02
                                          0.00E + 00
                                                                           1.35E+09
                               5.02E+05 -1.67E+06
                                                     1.50E+07
                                                                7.38E+06
102
     RNTG
                    5.67E + 06
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
                    0.00E+00
                               0.00E+00
103
     SENS
                                                                           6.68E+08
                               2.89E+06
                                          1.44E+05
                                                     1.75E+07
                                                                3.65E+06
104
     LATENT
                    7.45E+06
                                                     1.00E+00 -6.45E-01 -1.18E+02
                   -1.23E-01 -3.62E-01 -2.00E+00
105
     SURFMOS
                                                                1.15E+00
                                                                           2.10E+02
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     3.50E+00
106
     LAI
                                                                           0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                          0.00E + 00
107
     SATLEV
                    0.00E+00
                               0.00E+00
```

```
109
     TOTO
                     5.17E-01
                                2.74E+00
                                          1.97E-01
                                                     1.44E+01
                                                                1.00E+00
                                                                           1.84E+02
110
     PIPEQ
                                                                           0.00E+00
                     0.00E+00
                                0.00E + 00
                                          0.00E + 00
                                                     0.00E + 00
                                                                0.00E+00
111
     PERC
                     5.17E-01
                                2.74E+00
                                          1.97E-01
                                                     2.74E+00
                                                                8.82E-01
                                                                           1.61E+02
112
     SURRE
                     0.00E + 00
                                0.00E + 00
                                          0.00E+00
                                                     8.59E+00
                                                                3.28E-02
                                                                           6.01E+00
113
     TQUALP
                     0.00E+00
                                5.00E-01
                                          0.00E+00
                                                     5.00E-01
                                                                5.46E-03
                                                                           1.00E+00
114
     DENSS
                     0.00E+00
                               0.00E + 00
                                          0.00E + 00
                                                     0.00E + 00
                                                                0.00E + 00
                                                                           0.00E+00
115
     SWATS
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
116
     SAGE
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
117
     SWELL
                     0.00E + 00
                               0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
118
     FROSTBU(1)
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
119
     FROSTBU(2)
                     0.00E+00
                               0.00E + 00
                                          0.00E + 00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
120
                               0.00E+00
     FROSTBL(1)
                     0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E + 00
121
     FROSTBL(2)
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
122
     TTSTEP
                    -1.20E+00 -1.20E+00 -1.81E+00 -1.20E+00 -1.29E+00 -2.35E+02
123
     DINFIL
                     1.07E+00
                               0.00E + 00
                                          0.00E+00
                                                     5.82E+01
                                                                4.01E+00
                                                                           7.35E+02
124
     RAC
                     6.89E+01
                               4.54E+01
                                          2.01E+01
                                                     2.62E+02
                                                                5.33E+01
                                                                           9.75E + 03
125
     VPS
                     0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E + 00
                                                                0.00E + 00
                                                                           0.00E + 00
126
     VPA
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E + 00
                                                                0.00E + 00
                                                                           0.00E+00
127
     RSSOIL
                     2.00E+02
                               3.65E+01
                                          0.00E+00
                                                     1.10E+03
                                                                4.44E+02
                                                                           8.13E+04
                        Driving Variables
Number Variable
                      Initial
                                Final
                                            Min
                                                       Max
                                                                 Mean
                                                                          Cumulated
128
     EPOT
                     1.00E-03
                               1.00E-03
                                          1.00E-03
                                                     1.39E+01
                                                                2.08E+00
                                                                           3.81E+02
129
     PRECMM
                     1.00E+00
                               0.00E+00
                                          0.00E+00
                                                     5.44E+01
                                                                3.84E+00
                                                                           7.02E+02
130
     TA
                     1.70E+01
                               0.00E+00
                                          0.00E+00
                                                     2.50E+01
                                                                1.42E+01
                                                                           2.60E+03
131
     TD
                     1.70E+01
                               0.00E+00
                                          0.00E+00
                                                     2.50E+01
                                                                1.42E+01
                                                                           2.60E+03
132
     HR
                     2.94E+01
                               6.87E+01
                                          2.94E+01
                                                                7.38E+01
                                                     1.37E+02
                                                                           1.35E+04
133
     WS
                     2.42E+00
                               3.67E + 00
                                          5.00E-01
                                                     8.31E+00
                                                                3.06E+00
                                                                           5.59E+02
134
     RNT
                     5.67E+06
                               5.02E+05 -1.67E+06
                                                     1.50E+07
                                                                7.38E+06
                                                                           1.35E+09
135
     CLOUDN
                    8.60E-01
                               7.50E-01
                                          3.00E-02
                                                     1.00E+00
                                                                5.74E-01
                                                                           1.05E+02
136
     RIS
                    1.07E+07
                               5.05E+06
                                          3.39E+06
                                                                           2.75E+09
                                                     2.95E+07
                                                                1.51E+07
137
     IRIG
                    0.00E + 00
                               0.00E+00
                                          0.00E + 00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E + 00
138
     SPSOURCE
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
139
     WSOURCE(1)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E + 00
                                                                0.00E+00
                                                                           0.00E+00
140
     WSOURCE(2)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
141
     WSOURCE(3)
                    0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E + 00
142
     WSOURCE(4)
                    0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E + 00
```

The simulation occupied the computer during:

0.00E+00

0.00E+00

0.00E + 00

TIME USED 0 h 7 m 23 sec

WSOURCE(5)

WSOURCE(6)

WSOURCE(7)

143

144

145

108

PREC

1.07E+00

0.00E + 00

0.00E+00

5.82E+01

4.10E+00

7.51E+02

0.00E+00

0.00E+00

0.00E + 00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E + 00

0.00E+00

0.00E+00

0.00E + 00

0.00E+00

0.00E+00

ANNEXE I

Résultats sommaires de la simulation avec SOILN

* SOILN V2.1, Januari 1989 No: 80 run no: 88

* User: Olivier Banton 21-05-91 12:36 *

Switches ON:

XAVERAGE TAVERAGE GAVERAGE DAVERAGE INSTATE DRIVPGRA CHAPAR

Switches OFF:

OUTFORN OUTSTATE SELOUTPY LISALLY GWFLOW GROWTH ADDSIM

FILE NAME FOR INITIAL STATE VARIABLES :a.INI

FILE NAME FOR PARAMETER VALUES :a.PAR

The following parameters changed 199007250000

FERDAY(1) 149.00 MODIFIED TO: 207.00 FERN(1) 4.0000 MODIFIED TO: 9.3500

Driving variable file : DRIV_N 33 variables in 183 records From 19900501-1200 to 19901030-1200

mmdayá surface infiltra Water flow 9 9 10 Water flow mmdayá 20 cm 9 30 Water flow mmdayá 40 cm 50 Water flow mmdayá 60 cm Water flow 9 70 mmdayá 80 cm Water flow 90 mmdayá 100 cm Water flow 9 120 mmdayá 140 cm 9 10 Water flow mmdayá 0- 20 to pipes 20- 40 to pipes 9 30 Water flow mmdayá 9 50 40- 60 to pipes Water flow mmdayá 9 70 Water flow 60-80 to pipes mmdayá Water flow 80-100 to pipes 9 90 mmdayá Water flow 9 120 mmdayá 100-140 to pipes 9 170 mmdayá 140-200 to pipes Water flow °C 0- 20 9 10 Temperature 9 30 °C 20- 40 Temperature °C 9 50 Temperature 40- 60 Temperature °C 60-80 9 70 9 90 °C 80-100 Temperature

°C

Temperature

9 120

100-140

Temperature Water content Water content Water content Water content Water content Water content Surface runoff Surface runoff Water flow Temperature Global radiation	vol % vol % mmdaya mmdayá mmdayá °C	140-200 0- 20 20- 40 40- 60 60- 80 80-100 100-140 140-200 (infil ca (hydrauli groundwata air above veg	ap) ic cond) cer	9 170 9 10 9 30 9 50 9 70 9 90 9 120 9 170 9 9			
START	STOP		INTERVAL		ITERA	TIONS	
	/		(DAYS)		/DAY	/PERIOD	
1990-0527-0000	1990-103	1-0000	1		2	314	
* EXTERNAL						1.	-000
DEPDRY FERN	.10000E-02 4.0000	DEPWC GWCONC	.800 .000		FERK	.13	5000
	PPLICATION PPLICATION	ancono		•			
` '	.00000	CNBED(2)	.000		CNBED(3)		0000
• •	.00000	CNFEC(2)	.000		CNFEC(3) MANET(3)		0000
MANET(1) MANF(1)	.00000	MANET(2) MANF(2)	.000 .000		MANF(3)		0000
MANFN(1)	.00000	MANFN(2)	.000		MANFN(3)		0000
MANLN(1)	.00000	MANLN(2)	.000		MANLN(3)		0000
MANNH(1)	.00000	MANNH(2)	.000	00	MANNH(3)		0000
MANST(1)	.00000	MANST(2)	.000	00	MANST(3)	.00	0000

*	MANAGEMENT					
CNARES	60.0	000 CNR	OOT 70C	25.000	FERDAY	149.00
HARAR(.00000	HARAR(3)	.00000
HARHP(•			.00000	HARHP(3)	.00000
HARLR(•				HARLR(3)	.00000
PLODAY	365.			1.0000		
*	MINERALIZAT		BILIZATION			
CNORG	7.10			.00000	FECHF	.00000
FECK	.000			.70000E-04	LITEFF	.50000
LITHF	.150			.35000E-01	NITK	.20000
NITR	20.0					
*	SOIL MOISTU					
MOS(1)	11.0		(2)	11.000	MOSM	1.0000
MOSSA	.600	000 POR	0(1)	45.000	PORO(2)	45.200
PORO(3) 46.0	000 POR	0(4)	45.600	PORO(5)	44.000
PORO (6	•	000 POR	0(7)	44.000	PORO(8)	.00000
PORO(9	•	000 POR	0(10)	.00000	WILT(1)	9.2000
WILT(2	•	800 WIL	T(3)	12.100	WILT(4)	11.960
WILT(5	•	400 WIL	T(6)	11.400	WILT(7)	11.400
WILT(8	•	000 WIL	T(9)	.00000	WILT(10)	.00000
WILT(1	•	000 WIL	T(12)	.00000	WILT(13)	.00000
WILT(1	· ·	000 WIL	T(15)	.00000	WILT(16)	.00000
WILT(1	•	000 WIL	T(18)	.00000	WILT(19)	.00000
WILT(2	•	000 WIL	T(21)	.00000	WILT(22)	.00000
*		ATURE RESPON	SE			
TEMBAS	20.	000 TEM	Q10	2.0000		
*	PLANT UPTAK	E				
ROOT(1) .70	000 R00	T(2)	.13000	ROOT(3)	.90000E-01
ROOT (4	.60	000E-01 R00	T(5)	.20000E-01	ROOT(6)	.00000
ROOT (7	.00	000 R00	T(8)	.00000	ROOT(9)	.00000
ROOT(1	0) .00	000 R00	TL(1)	.00000	ROOTL(2)	1.0000
ROOTL (3) 4.0	000 R00	TL(4)	5.0000	ROOTL(5)	.00000
ROOTT (1) 149	.00 R00	TT(2)	162.00	ROOTT(3)	192.00
ROOTT (4) 222	.00 R00	TT(5)	288.00	ROOTT(6)	.00000
UPA(1)	12.	000 UPA	(2)	.00000	UPA(3)	.00000
UPB(1)	12.	000 UPB	3(2)	.00000	UPB(3)	.00000
UPC(1)		000 UPC	(2)	.00000	UPC(3)	.00000
UPET(1	.) 288	.00 UPE	T(2)	.00000	UPET(3)	.00000
UPMA	•	000 UPM	VOI	1.0000	UPST(1)	162.00
UPST(2	.00	000 UPS	T(3)	.00000		
•						

*	DENITRI	FICATION					
DEND	DE212.	1.0000	DENHS	10.000	DENPO	TC	.20000
MOSDI	FN	10.000	DFRAC(1)	.70000	DFRAG		.13000
DFRA		.90000E-01	DFRAC(4)	.60000E			.20000E-01
DFRA	• •	.00000	DFRAC(7)	.00000	DFRAG	• •	.00000
DFRA		.00000	DFRAC(10)	.00000			
*	STRUCTU		DI NAC(10)	.00000			
		.20000	THICK(2)	.20000	THIC	((3)	.20000
THIC		.20000	THICK(2)	.20000	THIC		.40000
THIC	• •		• •	.00000	THIC		.00000
THIC	• •	.60000	THICK(8)	.00000		K(12)	.00000
	K(10)	.00000	THICK(11)			•	.00000
	K(13)	.00000	THICK(14)	.00000		K(15)	
	K(16)	.00000	THICK(17)	.00000		K(18)	.00000
	K(19)	.00000	THICK(20)	.00000	1110	K(21)	.00000
	K(22)	.00000	NUMLAY	7.0000			
*	TECHNIC						
ZNUM		.00000	ZVER	.00000			
*	STREAM						
CONC		.00000	CONPOT	.00000	CONT	EM	.00000
*	CROP GR						
ALFA		.10000	DEVTA(1)	.10000	DEVT		.10000
DEVD	AYL(1)	.10000	DEVDAYL(2)	.10000	DEVG	P(1)	.10000
DEVG	P(2)	.10000	DEVGP(3)	.10000	WLAI		.10000
AR00	TS	.10000	AROOTE	.10000	ALEA	FS	.10000
ALEA	FE	.10000	ASTRAW	.10000	NMAX	S	.10000
NMAX	E	.10000	PHTMAX	.10000	PHTM	IN	.10000
EXTC	0EF	.10000	RESPK	.10000	PHOE	FF	.10000
NMIN		.10000	NMINE	.10000	LAT		.10000
NSTR		.10000	NSTRAWE	.10000	NROO	TS	.10000
NROO		.10000	NMAXG	.10000			
	-						
		St	ate Variable	s			
Numb	er Variabl	e Initia] Final	Min	Max	Mean	Cumulated
1	NO3(1)	8.03E-0	1 1.06E+00	9.65E-03	8.58E+00	4.33E+00	6.80E+02
2	NO3(2)	6.48E-0		1.04E-02	6.40E+00	2.13E+00	3.35E+02
3	NO3(3)	4.90E-0		4.90E-01	4.96E+00	1.71E+00	2.69E+02
4	NO3(4)	4.19E-0		4.14E-01	3.70E+00	9.95E-01	1.56E+02
5	NO3(5)	3.59E-0		3.51E-01	2.44E+00	6.69E-01	1.05E+02
6	NO3(6)	6.50E-0		5.70E-01	2.20E+00	7.31E-01	1.15E+02
7	NO3(7)	8.62E-0		4.80E-01	9.95E-01	6.19E-01	9.72E+01
8	PLANT	0.00E+0		0.00E+00	1.10E+01	8.00E+00	1.26E+03
9	DENIT	9.19E-0		9.19E-04	1.60E+00	4.94E-01	7.75E+01
10	DLOSST	5.69E-0		5.69E-03	1.00E+00	6.28E-01	9.86E+01
11	FERT	0.00E+0		0.00E+00	8.65E+00	5.64E-01	8.85E+01
		0.00E+0		0.00E+00	0.00E+00	0.00E+00	0.00E+00
12	NLIT(1)	U.UUE+U	0.00£+00	0.00LT00	J. JUL TUU	0.00LT00	J. JOE 100

```
0.00E+00
                                                                 0.00E+00
                                                     0.00E + 00
                                          0.00E+00
                    0.00E+00
                               0.00E+00
    NLIT(2)
13
                                                                 0.00E + 00
                                                                            0.00E+00
                                                     0.00E+00
                                          0.00E+00
                               0.00E+00
                    0.00E + 00
14
    NLIT(3)
                                                                            0.00E+00
                                                                 0.00E+00
                                                     0.00E + 00
                                          0.00E+00
                               0.00E+00
    NLIT(4)
                    0.00E+00
15
                                                                            0.00E+00
                                                     0.00E+00
                                                                 0.00E + 00
                                          0.00E+00
                               0.00E+00
    NLIT(5)
                    0.00E+00
16
                                                                            0.00E+00
                                                                 0.00E+00
                                          0.00E+00
                                                     0.00E+00
                               0.00E+00
                    0.00E+00
17
    NLIT(6)
                                                                            0.00E+00
                                                                 0.00E + 00
                                                     0.00E+00
                                          0.00E+00
                    0.00E+00
                               0.00E+00
18
    NLIT(7)
                                                                            0.00E+00
                                                                 0.00E + 00
                                                     0.00E+00
                                          0.00E+00
                               0.00E+00
                    0.00E + 00
19
    NF(1)
                                                                 0.00E+00
                                                                            0.00E + 00
                                                     0.00E + 00
                               0.00E+00
                                          0.00E+00
                    0.00E+00
20
    NF(2)
                                                                            9.38E+04
                                                      6.00E+02
                                                                 5.97E+02
                                           5.95E+02
                               5.95E+02
                    6.00E+02
21
    NH(1)
                                                                            7.50E+04
                                                                 4.78E+02
                                           4.76E+02
                                                      4.80E+02
                               4.76E+02
                    4.80E+02
    NH(2)
22
                                                                             5.63E+04
                                                                 3.59E+02
                                           3.57E+02
                                                      3.60E+02
                    3.60E+02
                               3.57E+02
23
    NH(3)
                                                                 9.96E+01
                                                                             1.56E+04
                                                      1.00E+02
                                           9.93E+01
                    1.00E+02
                               9.93E+01
24
    NH(4)
                                                                 4.98E+01
                                                                            7.82E+03
                                                      5.00E+01
                                           4.96E+01
                    5.00E+01
                               4.96E+01
25
    NH(5)
                                                                            0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                                           0.00E+00
                               0.00E+00
                    0.00E + 00
26
    NH(6)
                                                                            0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                               0.00E+00
                    0.00E+00
27
    NH(7)
                                                                             0.00E + 00
                                                                 0.00E+00
                                                      0.00E+00
                                           0.00E+00
                    0.00E+00
                               0.00E + 00
28
    CL(1)
                                                                 0.00E+00
                                                                             0.00E+00
                                                      0.00E+00
                               0.00E+00
                                           0.00E+00
                    0.00E + 00
29
    CL(2)
                                                                 0.00E+00
                                                                             0.00E+00
                                                      0.00E+00
                                           0.00E+00
                    0.00E+00
                               0.00E+00
    CL(3)
30
                                                                             0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                                           0.00E+00
                                0.00E+00
                    0.00E+00
    CL(4)
31
                                                                             0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
    CL(5)
                    0.00E + 00
32
                                                                             0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                                           0.00E + 00
                    0.00E+00
                                0.00E+00
33
    CL(6)
                                                                             0.00E + 00
                                                      0.00E+00
                                                                 0.00E+00
                                0.00E+00
                                           0.00E+00
                    0.00E+00
34
    CL(7)
                                                                             0.00E+00
                                                                 0.00E + 00
                                                      0.00E+00
                    0.00E+00
                                0.00E+00
                                           0.00E+00
35
    CF(1)
                                                                             0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                                           0.00E+00
                    0.00E+00
                                0.00E+00
36
    CF(2)
                                                                             6.05E+01
                                                      6.28E-01
                                                                  3.85E-01
                                           3.20E-02
                                3.33E-01
                    9.10E-02
37
     NH4(1)
                                                                             3.75E+01
                                                                  2.39E-01
                                                      4.07E-01
                                           2.76E-02
                                3.41E-01
                     7.19E-02
38
     NH4(2)
                                                                             2.98E+01
                                                                  1.90E-01
                                                      3.27E-01
                                           5.31E-02
                                3.26E-01
                     5.31E-02
39
     NH4(3)
                                                                             1.08E+01
                                                      1.49E-01
                                                                  6.90E-02
                                1.49E-01
                                           4.25E-02
                     4.25E-02
40
     NH4(4)
                                                                  4.37E-02
                                                                             6.86E+00
                                                      8.21E-02
                                           3.53E-02
                                8.21E-02
                     3.60E-02
41
     NH4(5)
                                                                             0.00E+00
                                                                  0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
                     0.00E+00
42
     NH4(6)
                                                                  0.00E + 00
                                                                             0.00E+00
                                                      0.00E+00
                                           0.00E+00
                                0.00E + 00
                     0.00E+00
43
     NH4(7)
                                                                  0.00E+00
                                                                             0.00E + 00
                                                      0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E + 00
44
     LITABOVE
                                                                             0.00E + 00
                                                                  0.00E + 00
                                                      0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E+00
45
     GRAINC
                                                                  0.00E+00
                                                                             0.00E+00
                                                      0.00E+00
                                           0.00E + 00
                                0.00E+00
                     0.00E+00
     LEAFC
46
                                                                  0.00E+00
                                                                             0.00E+00
                                                      0.00E + 00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
47
     STRAWC
                                                                  0.00E+00
                                                                             0.00E + 00
                                                       0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
     ROOTC
48
                                                                             0.00E+00
                                                                  0.00E + 00
                                           0.00E+00
                                                       0.00E+00
                                0.00E+00
                     0.00E + 00
49
     GRAINN
                                                                             0.00E+00
                                                                  0.00E+00
                                                       0.00E+00
                     0.00E+00
                                0.00E+00
                                           0.00E+00
     LEAFN
 50
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                     0.00E+00
                                0.00E+00
                                           0.00E + 00
     STRAWN
 51
                                                       0.00E+00
                                                                  0.00E+00
                                                                             0.00E+00
                                           0.00E + 00
                                0.00E+00
                     0.00E+00
     ROOTN
 52
                            Flow Variables
                                                                            Cumulated
                                                                   Mean
                                 Final
                                              Min
                                                         Max
                      Initial
Number Variable
```

```
5.45E+00
                                                               3.47E-02
                                                    2.04E-01
                                         0.00E+00
                   0.00E+00
                              0.00E+00
53
    UPPN03(1)
                                                               1.56E-02
                                                                          2.45E+00
                                         0.00E+00
                                                    1.80E-01
                              0.00E+00
54
    UPPN03(2)
                   0.00E+00
                                                                          8.11E-01
                                                    5.88E-02
                                                               5.17E-03
                                         0.00E+00
                   0.00E+00
                              0.00E+00
55
    UPPN03(3)
                                                                          2.51E-01
                                                               1.60E-03
                                         0.00E+00
                                                    1.56E-02
                              0.00E+00
                   0.00E+00
56
    UPPN03(4)
                                                                          6.20E-04
                                                               3.95E-06
                                                    6.20E-04
                              0.00E+00
                                         0.00E+00
                   0.00E+00
57
    UPPN03(5)
                                                                          0.00E+00
                                                               0.00E+00
                                         0.00E+00
                                                    0.00E + 00
                   0.00E+00
                              0.00E+00
58
    UPPNO3(6)
                                                               0.00E+00
                                                                          0.00E+00
                                                    0.00E+00
                                         0.00E+00
59
    UPPN03(7)
                   0.00E+00
                              0.00E+00
                                                    6.04E-02
                                                               7.96E-03
                                                                          1.25E+00
                                         0.00E+00
                              7.07E-03
                   0.00E+00
60
    DENI(1)
                                                                          1.34E-01
                                         0.00E+00
                                                    1.02E-02
                                                               8.56E-04
                              1.00E-03
                   0.00E+00
61
    DENI(2)
                                                                          1.14E-01
                                                               7.25E-04
                                         0.00E+00
                                                    6.16E-03
                   8.77E-04
                              1.76E-03
62
    DENI(3)
                                                               5.97E-04
                                                                          9.37E-02
                                                    4.22E-03
                                         0.00E+00
                   8.46E-04
                              1.92E-03
63
    DENI(4)
                                                                          8.58E-03
                                                    9.77E-04
                                                               5.47E-05
                                         0.00E+00
                    1.14E-04
                              1.90E-04
64
    DENI(5)
                                                               0.00E+00
                                                                          0.00E+00
                                         0.00E+00
                                                    0.00E+00
                   0.00E+00
                              0.00E+00
65
    DENI(6)
                                         0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
                    0.00E+00
                              0.00E + 00
66
    DENI(7)
                                                                          0.00E+00
                                                               0.00E+00
                                         0.00E+00
                                                    0.00E+00
                    0.00E+00
                              0.00E+00
67
    DLOSS(1)
                                                                          0.00E+00
                                                               0.00E+00
                                         0.00E+00
                                                    0.00E+00
                              0.00E+00
                    0.00E+00
68
    DLOSS(2)
                                                                          0.00E+00
                                         0.00E+00
                                                    0.00E+00
                                                               0.00E + 00
                    0.00E+00
                              0.00E+00
69
    DLOSS(3)
                                                                          0.00E + 00
                                                    0.00E+00
                                                               0.00E + 00
                                         0.00E+00
70
    DLOSS(4)
                    0.00E+00
                               0.00E+00
                                                                          0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                                         0.00E+00
                               0.00E+00
    DLOSS(5)
                    0.00E+00
71
                                                                          0.00E+00
                                         0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                    0.00E+00
                               0.00E+00
72
    DLOSS(6)
                                                               6.37E-03
                                                                          1.00E+00
                                                    2.49E-02
                                         1.07E-03
73
    DLOSS(7)
                    1.14E-02
                               2.49E-02
                                                                          6.37E-01
                                                    2.47E-02
                                                               4.06E-03
                               1.00E-03
                                         1.00E-03
                    1.00E-03
74
    DEP
                                                                          1.12E+01
                               2.09E-02 -5.39E-03
                                                               7.12E-02
                                                    1.28E+00
75
    NFLOW(1)
                    5.98E-04
                                                    8.93E-01
                                                               6.01E-02
                                                                          9.44E+00
                               7.23E-02 -1.12E-02
                    8.26E-03
76
    NFLOW(2)
                               1.04E-01 -3.85E-03
                                                    9.21E-01
                                                               4.74E-02
                                                                          7.45E+00
                    9.90E-03
77
    NFLOW(3)
                                                                          4.44E+00
                               1.01E-01 -1.81E-03
                                                               2.83E-02
                                                    4.51E-01
                    1.21E-02
78
    NFLOW(4)
                                                                          2.69E+00
                                                               1.71E-02
                                                    2.24E-01
                               8.34E-02 -1.99E-04
                    1.52E-02
79
    NFLOW(5)
                                                     5.56E-02
                                                               7.22E-03
                                                                          1.13E+00
                                         3.53E-04
                    1.54E-02
                               5.01E-02
80
    NFLOW(6)
                                                               9.14E-02
                                                                          1.44E+01
                                                    1.40E+00
                                         0.00E+00
                    0.00E+00
                               4.43E-07
81
    NFERT
                                                    0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
                                         0.00E+00
                               0.00E+00
                    0.00E+00
82
    FINNB(1)
                                                                          0.00E+00
                                         0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                               0.00E+00
                    0.00E+00
83
    FINNB(2)
                                                                          0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                                          0.00E+00
                    0.00E+00
                               0.00E+00
84
    NHARV
                                                                          0.00E+00
                                                               0.00E+00
                                                     0.00E+00
                                          0.00E+00
                    0.00E+00
                               0.00E+00
85
    NEWNL(1)
                                                                          0.00E + 00
                                                               0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                               0.00E+00
86
    NEWNL(2)
                    0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
                                                     0.00E+00
                                          0.00E+00
                               0.00E+00
87
    NEWNL(3)
                    0.00E + 00
                                                                          0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                               0.00E+00
                    0.00E+00
88
    NEWNL(4)
                                                                0.00E+00
                                                                          0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                    0.00E+00
                               0.00E+00
89
    NEWNL(5)
                                                                0.00E+00
                                                                          0.00E+00
                                                     0.00E+00
                               0.00E+00
                                          0.00E+00
    NEWNL(6)
                    0.00E+00
90
                                                                0.00E+00
                                                                           0.00E+00
                                                     0.00E+00
                                          0.00E+00
                    0.00E+00
                               0.00E+00
91
    NEWNL(7)
                                                                          0.00E+00
                                                                0.00E+00
                                          0.00E+00
                                                     0.00E+00
                               0.00E+00
92
     NLMIN(1)
                    0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
                                          0.00E+00
                               0.00E+00
                    0.00E+00
93
     NLMIN(2)
                                                                0.00E+00
                                                                           0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                               0.00E+00
                    0.00E+00
94
     NLMIN(3)
                                                                           0.00E+00
                                                                0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E + 00
                    0.00E+00
95
     NLMIN(4)
```

```
0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E+00
     NLMIN(5)
96
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E + 00
     NLMIN(6)
97
                                                                            0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E+00
98
     NLMIN(7)
                                                                            0.00E+00
                                                                 0.00E + 00
                                           0.00E+00
                                                      0.00E+00
                                0.00E + 00
99
     NLHUM(1)
                     0.00E+00
                                                                            0.00E + 00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
                     0.00E+00
100
     NLHUM(2)
                                                                            0.00E+00
                                                                 0.00E+00
                                0.00E+00
                                                      0.00E+00
                                           0.00E+00
                     0.00E+00
101
     NLHUM(3)
                                                                            0.00E + 00
                                                      0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
102
     NLHUM(4)
                                                                             0.00E+00
                                                                 0.00E+00
                                                      0.00E + 00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
103
     NLHUM(5)
                                                                             0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                                           0.00E+00
                                0.00E + 00
     NLHUM(6)
                     0.00E+00
104
                                                                             0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
                     0.00E+00
105
     NLHUM(7)
                                                                             0.00E + 00
                                                                 0.00E + 00
                                                      0.00E+00
                                           0.00E+00
                     0.00E + 00
                                0.00E + 00
     FINNA(1)
106
                                                                             0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
107
     FINNA(2)
                                                                 2.96E-02
                                                                             4.65E+00
                                                      5.21E-02
                                           1.01E-02
                                1.01E-02
                     2.71E-02
108
     NHMIN(1)
                                                                             3.75E+00
                                                      3.69E-02
                                                                 2.39E-02
                                           1.04E-02
                                1.04E-02
109
     NHMIN(2)
                     1.71E-02
                                                                             2.73E+00
                                                                 1.74E-02
                                           8.47E-03
                                                      2.54E-02
                                8.47E-03
                     1.02E-02
110
     NHMIN(3)
                                                                             7.36E-01
                                                                  4.69E-03
                                                      6.60E-03
                                           2.44E-03
                                2.47E-03
                     2.44E-03
     NHMIN(4)
111
                                                                             3.80E-01
                                                      3.19E-03
                                                                 2.42E-03
                                           1.34E-03
                                1.54E-03
                     1.34E-03
112
     NHMIN(5)
                                                                  0.00E+00
                                                                             0.00E + 00
                                                      0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
     NHMIN(6)
113
                                                                             0.00E+00
                                                      0.00E+00
                                                                  0.00E + 00
                                           0.00E+00
                                0.00E+00
     NHMIN(7)
                     0.00E+00
114
                                                                             0.00E+00
                                                                  0.00E + 00
                                           0.00E+00
                                                       0.00E+00
                                0.00E+00
                     0.00E+00
115
     NFHUM(1)
                                                                             0.00E+00
                                                                  0.00E+00
                                                       0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E + 00
     NFHUM(2)
116
                                                                             0.00E+00
                                                       0.00E+00
                                                                  0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E+00
117
     FINNH(1)
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                                           0.00E + 00
                     0.00E+00
                                0.00E+00
      FINNH(2)
118
                                                                             3.15E+00
                                                       4.41E-02
                                                                  2.01E-02
                                            0.00E+00
                                1.36E-02
      FNIT(1)
                     5.17E-03
119
                                                                  1.79E-02
                                                                             2.81E+00
                                            3.17E-03
                                                       3.14E-02
                                1.31E-02
                     3.30E-03
120
      FNIT(2)
                                                                             2.32E+00
                                                                  1.48E-02
                                                       2.31E-02
                                            1.98E-03
                                8.91E-03
                     1.98E-03
121
      FNIT(3)
                                                                             6.02E-01
                                                       6.21E-03
                                                                  3.84E-03
                                0.00E+00
                                            0.00E+00
                     1.47E-03
      FNIT(4)
122
                                                                  2.12E-03
                                                                             3.33E-01
                                                       3.11E-03
                                            0.00E+00
                     1.38E-03
                                0.00E+00
123
      FNIT(5)
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E + 00
                                            0.00E+00
                                 0.00E+00
                     0.00E+00
      FNIT(6)
124
                                                                             0.00E+00
                                                                  0.00E+00
                                            0.00E+00
                                                       0.00E + 00
                                 0.00E+00
                     0.00E + 00
125
      FNIT(7)
                                                                             0.00E+00
                                                                  0.00E+00
                                                       0.00E+00
                                            0.00E+00
                     0.00E+00
                                 0.00E+00
126
      CLLOSS(1)
                                                                             0.00E+00
                                                                  0.00E+00
                                                       0.00E+00
                                            0.00E+00
                                 0.00E+00
                     0.00E + 00
127
      CLLOSS(2)
                                                                             0.00E+00
                                                       0.00E+00
                                                                  0.00E+00
                                 0.00E+00
                                            0.00E+00
                     0.00E+00
128
      CLLOSS(3)
                                                                  0.00E+00
                                                                             0.00E + 00
                                                       0.00E+00
                                            0.00E+00
                      0.00E+00
                                 0.00E+00
129
      CLLOSS(4)
                                                                             0.00E+00
                                                                  0.00E+00
                                            0.00E+00
                                                       0.00E+00
                                 0.00E+00
      CLLOSS(5)
                      0.00E+00
130
                                                                             0.00E+00
                                                                  0.00E+00
                                                       0.00E+00
                                            0.00E+00
                                 0.00E+00
                      0.00E+00
131
      CLLOSS(6)
                                                                             0.00E + 00
                                                       0.00E+00
                                                                  0.00E + 00
                                            0.00E+00
                                 0.00E+00
                      0.00E+00
132
      CLLOSS(7)
                                                                             0.00E+00
                                                                  0.00E + 00
                                                       0.00E+00
                                 0.00E+00
                                            0.00E+00
                      0.00E+00
133
      NEWCL(1)
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                                            0.00E+00
                                 0.00E+00
                      0.00E+00
134
      NEWCL(2)
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                                            0.00E+00
                                 0.00E+00
                      0.00E+00
135
      NEWCL(3)
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                                            0.00E+00
                      0.00E+00
                                 0.00E + 00
136
      NEWCL(4)
                                                                              0.00E + 00
                                                                  0.00E+00
                                            0.00E + 00
                                                       0.00E+00
                                 0.00E+00
                      0.00E+00
137
      NEWCL(5)
                                                                              0.00E + 00
                                                                  0.00E+00
                                                       0.00E+00
                                 0.00E+00
                                            0.00E + 00
                      0.00E+00
138
      NEWCL(6)
```

```
0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                                0.00E+00
                                           0.00E+00
                    0.00E+00
     NEWCL(7)
139
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                    0.00E+00
                                0.00E+00
     CFLOSS(1)
140
                                                      0.00E+00
                                                                 0.00E+00
                                                                            0.00E+00
                                0.00E+00
                                           0.00E + 00
141
     CFLOSS(2)
                     0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
142
     FINCB(1)
                                                                 0.00E+00
                                                                            0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
                     0.00E+00
143
     FINCB(2)
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E + 00
144
     NFMIN(1)
                                                                 0.00E+00
                                                                            0.00E + 00
                                                      0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
145
     NFMIN(2)
                                                                            1.25E+00
                                                                 7.93E-03
                                                      5.30E-02
                                0.00E+00
                                           0.00E+00
     UPPNH4(1)
                     0.00E+00
146
                                                                 4.28E-03
                                                                            6.72E-01
                                                      3.75E-02
                                           0.00E+00
                                0.00E+00
147
     UPPNH4(2)
                     0.00E+00
                                                                 8.37E-04
                                           0.00E+00
                                                      9.84E-03
                                                                            1.31E-01
                                0.00E+00
                     0.00E+00
148
     UPPNH4(3)
                                                                            2.68E-02
                                                                 1.71E-04
                                           0.00E+00
                                                      1.57E-03
                     0.00E+00
                                0.00E+00
149
     UPPNH4(4)
                                                                 3.38E-07
                                                                            5.31E-05
                                           0.00E+00
                                                      5.31E-05
                                0.00E+00
                     0.00E + 00
150
     UPPNH4(5)
                                                                            0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                                           0.00E + 00
                     0.00E+00
                                0.00E+00
151
     UPPNH4(6)
                                                      0.00E+00
                                                                 0.00E+00
                                                                            0.00E+00
                                           0.00E+00
                                0.00E+00
152
     UPPNH4(7)
                     0.00E+00
                                                                            0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                0.00E+00
                     0.00E + 00
153
     INCALIT
                                                                            0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
     DECALIT(1)
                     0.00E+00
154
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
155
     DECALIT(2)
                                                                            0.00E+00
                                                                 0.00E+00
                                                      0.00E + 00
                                           0.00E+00
                     0.00E+00
                                0.00E + 00
156
     DECALIT(3)
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                                0.00E+00
157
     DECALIT(4)
                     0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                                                                            0.00E+00
                                0.00E+00
                     0.00E+00
158
     DECALIT(5)
                                                                            0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                     0.00E+00
                                0.00E+00
159
     PHOS
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E+00
     RESPLC
160
                                                                            0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                     0.00E+00
                                0.00E+00
     RESPSC
161
                                                                 0.00E+00
                                                                            0.00E+00
                                                      0.00E+00
                                           0.00E+00
                                0.00E+00
                     0.00E+00
162
     RESPRC
                                           0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                                                            0.00E+00
                                0.00E+00
                     0.00E+00
163
      RESPGC
                                                                            0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                     0.00E+00
                                0.00E+00
164
     HARVGC
                                                                 0.00E+00
                                                                             0.00E+00
                                                      0.00E+00
                                0.00E+00
                                           0.00E+00
                     0.00E + 00
165
     HARVLC
                                                                             0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                     0.00E+00
                                0.00E+00
                                           0.00E+00
      HARVSC
166
                                                                             0.00E+00
                                                                 0.00E+00
                                                      0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
167
      ALEAFSC
                                                                             0.00E + 00
                                           0.00E+00
                                                      0.00E + 00
                                                                 0.00E + 00
                     0.00E+00
                                0.00E+00
168
      ALEAFGC
                                                                             0.00E+00
                                                      0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                0.00E+00
      ASTRAWGC
                     0.00E+00
169
                                                                             0.00E+00
                                                                 0.00E+00
                                           0.00E+00
                                                      0.00E+00
                                0.00E+00
                     0.00E+00
      ASTRAWRC
170
                                                                             0.00E+00
                                                                 0.00E + 00
                                0.00E+00
                                           0.00E+00
                                                      0.00E+00
                     0.00E+00
      LEAFLC
171
                                                                             0.00E+00
                                                                  0.00E+00
                                           0.00E+00
                                                      0.00E + 00
                                0.00E+00
172
      STRAWLC
                     0.00E+00
                                                                             0.00E+00
                                                      0.00E+00
                                                                 0.00E + 00
                                           0.00E+00
                                0.00E+00
      ROOTSLC
                     0.00E+00
173
                                                                  0.00E+00
                                                                             0.00E+00
                                                       0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
174
      ACTUPTN
                                                                             0.00E+00
                                           0.00E+00
                                                       0.00E+00
                                                                  0.00E+00
                                0.00E+00
                     0.00E+00
175
      AROOTSN
                                                                             0.00E+00
                                                                  0.00E+00
                                0.00E+00
                                           0.00E+00
                                                       0.00E+00
                     0.00E+00
      ASTRAWLN
176
                                                                             0.00E+00
                                                       0.00E+00
                                                                  0.00E+00
                                           0.00E+00
                     0.00E+00
                                0.00E+00
177
      ASTRAWGN
                                                       0.00E+00
                                                                  0.00E+00
                                                                             0.00E+00
                                           0.00E+00
                                0.00E+00
178
      ALEAFGN
                     0.00E+00
                                                                  0.00E + 00
                                                                             0.00E + 00
                                                       0.00E + 00
                                           0.00E + 00
                     0.00E+00
                                0.00E+00
179
      HARVGN
                                                                             0.00E+00
                                           0.00E+00
                                                       0.00E+00
                                                                  0.00E+00
                                0.00E + 00
                     0.00E+00
180
      HARVLN
                                                                  0.00E+00
                                                                             0.00E+00
                                0.00E+00
                                           0.00E + 00
                                                       0.00E+00
                     0.00E+00
181
      HARVSN
```

		Auxiliar	y Variable	s			
Numb	er Variable	Initial	Final	Min	Max	Mean	Cumulated
182	NCONC(1)	1.22E+01	1.40E+01	1.59E-01	2.20E+02	8.02E+01	1.26E+04
183	NCONC(2)	9.28E+00	3.60E+01	1.91E-01	7.81E+01	3.47E+01	5.45E+03
184	NCONC(3)	6.33E+00	4.99E+01	6.33E+00	5.80E+01	2.54E+01	3.99E+03
185	NCONC(4)	5.21E+00	4.61E+01	5.21E+00	4.61E+01	1.36E+01	2.14E+03
186	NCONC(5)	5.00E+00	3.44E+01	5.00E+00	3.44E+01	1.05E+01	1.65E+03
187	NCONC(6)	4.47E+00	1.51E+01	4.47E+00	1.51E+01	5.63E+00	8.84E+02
188	NCONC(7)	4.21E+00	4.63E+00	2.71E+00	4.63E+00	3.18E+00	4.99E+02
189	PIPEL	5.69E-03	1.25E-02	5.35E-04	1.25E-02	3.18E-03	5.00E-01
190	STREAMT	1.14E-02	2.49E-02	1.07E-03	2.49E-02	6.45E-03	1.01E+00
191	TOTFI	1.14E-02	2.49E-02	1.07E-03	2.49E-02	6.45E-03	1.01E+00
192	NLTPROF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
193	NFTPROF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
194	NHTPROF	1.59E+03	1.58E+03	1.58E+03	1.59E+03	1.58E+03	2.49E+05
195	NH4T	2.72E-01	1.23E+00	2.72E-01	1.33E+00	9.24E-01	1.45E+02
196	NO3T	4.23E+00	1.69E+01	3.00E+00	1.69E+01	1.12E+01	1.75E+03
197	ROOTLAY	0.00E+00	0.00E+00	0.00E+00	5.00E+00	2.01E+00	3.15E+02
198	POTUPT	0.00E+00	0.00E+00	0.00E+00	3.00E-01	7.03E-02	1.10E+01
199	TOTDEN	1.84E-03	1.19E-02	0.00E+00	7.15E-02	1.02E-02	1.60E+00
200	TOTUPT	0.00E+00	0.00E+00	0.00E+00	3.00E-01	7.03E-02	1.10E+01
201	PIPEQ	0.00E+00	2.38E-07	0.00E+00	4.77E-07	3.06E-08	4.80E-06
202	STREAMQ	1.35E+00	2.70E+00	1.97E-01	7.23E+00	1.06E+00	1.67E+02
203	TOTMAL	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
204	TOTMAE	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
205	TOTMAN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
206	TOTNLMIN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
207	TOTNFMIN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
208	TOTNHMIN	5.82E-02	3.29E-02	3.29E-02	1.22E-01	7.80E-02	1.22E+01
209	TOTNIT	1.33E-02	3.56E-02	1.33E-02	1.06E-01	5.87E-02	9.21E+00
210	CLTPROF	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
211	RATCNL(1)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
212	RATCNL(2)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
213	RATCNL(3)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
214	RATCNL(4)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
215	RATCNL(5)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
216	RATCNL(6)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
217	RATCNL(7)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
218	RATCNF(1)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
219	RATCNF(2)	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.57E+03
220	QNO3C1	8.41E+00	9.25E+00	4.79E-01	9.25E+00	6.03E+00	9.47E+02
221	QNO3C2	8.41E+00	9.25E+00	4.79E-01	9.25E+00	6.03E+00	9.47E+02

```
222
     RUSEN03
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
223
     AEFF
                     4.03E-01
                                5.32E-01
                                          3.94E-01
                                                     8.90E-01
                                                                6.80E-01
                                                                           1.07E+02
224
     ODN03
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     1.07E-08
                                                                4.00E-10
                                                                           6.28E-08
225
     PIPENO3C
                     5.69E+04
                               1.24E+05
                                          5.35E+03
                                                     1.24E+05
                                                                3.18E+04
                                                                           5.00E+06
226
     ATEFF
                     4.19E-01
                               5.83E-01
                                          4.19E-01
                                                     8.90E-01
                                                                6.88E-01
                                                                           1.08E+02
227
     VDEV
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
228
     GDEV
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
229
     NGRAIN
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
230
     NMAXL
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
231
     NMINL
                     0.00E + 00
                               0.00E+00
                                          0.00E + 00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
232
     NLEAF
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
233
     RPTEM
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
234
     RPMOS
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
235
     RPN
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E + 00
                                                                           0.00E+00
236
     ROOTDEP
                     0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E + 00
237
     NSTRAW
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
238
     NROOT
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
239
     LEAFDN
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
240
     STRAWDN
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                           0.00E+00
241
     ROOTDN
                     0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                                0.00E+00
                                                                          0.00E + 00
                        Driving Variables
                     Initial
                                Final
Number Variable
                                            Min
                                                       Max
                                                                 Mean
                                                                         Cumulated
242
     INF
                    0.00E+00
                               0.00E+00
                                         0.00E+00
                                                     2.96E+01
                                                                3.82E+00
                                                                          6.00E+02
     WFLOW(1)
243
                    4.91E-02
                               1.50E+00 -2.78E-01
                                                     2.03E+01
                                                                1.47E+00
                                                                          2.30E+02
244
     WFLOW(2)
                    8.91E-01
                               2.01E+00 -8.11E-01
                                                     1.58E+01
                                                                1.15E+00
                                                                          1.81E+02
245
     WFLOW(3)
                    1.56E+00
                               2.07E+00 -4.75E-01
                                                     1.60E+01
                                                                1.00E+00
                                                                          1.57E+02
246
     WFLOW(4)
                    2.32E+00
                               2.19E+00 -2.00E-01
                                                     1.31E+01
                                                               9.58E-01
                                                                          1.50E+02
247
     WFLOW(5)
                    3.04E+00
                               2.42E+00 -3.92E-02
                                                     9.28E+00
                                                               9.64E-01
                                                                          1.51E+02
248
     WFLOW(6)
                    3.45E+00
                               3.32E+00
                                         6.93E-02
                                                     4.33E+00
                                                               9.74E-01
                                                                          1.53E+02
     DFLOW(1)
249
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                               0.00E+00
                                                                          0.00E + 00
250
     DFLOW(2)
                    0.00E+00
                               0.00E + 00
                                          0.00E+00
                                                     0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
251
     DFLOW(3)
                    0.00E+00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
252
     DFLOW(4)
                    0.00E + 00
                               0.00E+00
                                          0.00E+00
                                                     0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
253
     DFLOW(5)
                               0.00E+00
                                          0.00E+00
                    0.00E + 00
                                                     0.00E+00
                                                               0.00E+00
                                                                          0.00E+00
254
     DFLOW(6)
                    0.00E + 00
                               0.00E + 00
                                          0.00E + 00
                                                     0.00E+00
                                                               0.00E + 00
                                                                          0.00E+00
255
     DFLOW(7)
                    1.35E+00
                               2.70E+00
                                          1.97E-01
                                                     2.70E+00
                                                               9.18E-01
                                                                          1.44E+02
256
     TEMP(1)
                    1.37E+01
                               1.81E+00
                                          1.81E+00
                                                    2.34E+01
                                                               1.51E+01
                                                                          2.37E+03
257
     TEMP(2)
                    1.07E+01
                               4.52E+00
                                          4.52E+00
                                                    2.14E+01
                                                               1.50E+01
                                                                          2.36E+03
258
                                          6.63E+00
     TEMP(3)
                    8.98E+00
                               6.63E+00
                                                               1.49E+01
                                                    2.01E+01
                                                                          2.34E+03
259
     TEMP(4)
                    8.15E+00
                               8.25E+00
                                          8.15E+00
                                                     1.92E+01
                                                               1.48E+01
                                                                          2.32E+03
260
                                          7.81E+00
     TEMP(5)
                    7.81E+00
                               9.49E+00
                                                    1.87E+01
                                                               1.46E+01
                                                                          2.30E+03
```

7.62E+00

1.85E+01

1.45E+01

2.27E+03

1.09E+01

7.62E+00

TEMP(6)

261

```
1.83E+01
                                                               1.43E+01
                                                                          2.24E+03
262
    TEMP(7)
                    7.46E+00
                               1.22E+01
                                         7.46E+00
                                                               3.08E+01
                                                                          4.83E+03
263
     THETA(1)
                    3.28E+01
                               3.81E+01
                                         1.79E+01
                                                    4.63E+01
                                                                          4.80E+03
                               3.66E+01
                                         2.21E+01
                                                    4.34E+01
                                                               3.06E+01
264
     THETA(2)
                    3.50E+01
                                                                          5.20E+03
                                         2.62E+01
                                                    4.32E+01
                                                               3.31E+01
                    3.87E+01
                               3.90E+01
265
     THETA(3)
                                         2.81E+01
                                                    4.32E+01
                                                               3.45E+01
                                                                          5.41E+03
                               4.00E+01
                    4.03E+01
266
     THETA(4)
                                         2.58E+01
                                                    3.99E+01
                                                               3.06E+01
                                                                          4.81E+03
                               3.53E+01
267
     THETA(5)
                    3.60E+01
                                                               3.17E+01
                                                                          4.97E+03
268
                    3.64E+01
                               3.62E+01
                                         2.80E+01
                                                    3.77E+01
     THETA(6)
                                                               3.22E+01
                                                                          5.06E+03
                                         2.95E+01
                                                    3.54E+01
269
     THETA(7)
                    3.41E+01
                               3.54E+01
                                                               1.05E-01
                                                                          1.65E+01
                                         0.00E+00
                                                    3.72E+00
270
                    0.00E+00
                              0.00E+00
     SURR
                              0.00E+00
                                         0.00E+00
                                                    4.29E+00
                                                               3.83E-02
                                                                          6.01E+00
271
     SURRE
                    0.00E+00
                                                    2.70E+00
                                                               9.18E-01
                                                                          1.44E+02
                                         1.97E-01
272
     PERC
                    1.35E+00
                               2.70E+00
                                                                          0.00E+00
273
                    0.00E+00
                               0.00E + 00
                                         0.00E+00
                                                    0.00E+00
                                                               0.00E + 00
     TA
                                                               0.00E+00
                                                                          0.00E+00
274
     RIS
                    0.00E + 00
                               0.00E+00
                                         0.00E+00
                                                    0.00E + 00
                                                                          0.00E+00
                                                    0.00E+00
                                                               0.00E+00
                    0.00E+00
                              0.00E+00
                                         0.00E+00
275
     ETR
                                                               1.49E+01
                                                                          2.34E+03
     MEACONC
                    1.60E+01
                               0.00E+00
                                         0.00E + 00
                                                    2.50E+01
276
```

The simulation occupied the computer during:

TIME USED 0 h 2 m 10 sec

ANNEXE J

Résultats des concentrations en nitrates mesurées

EAUX DE LYSIMETRES

NITRATES

mg/l N

(Chromatographie ionique)

LYSIMETRE				JOURS			
No.	149	151	155	158	163	170	177
1-50-	6.39	6.87	7.37	7.18	7.91	8.24	9.15
2-50-	16.98	16.40	17.27	17.68	17.44	15.66	12.25
3-50-	10.89			7.46	8.12	6.88	
4-50-	0.01	0.01	0.02	0.01	0.03	0.46	0.24
5-50-	26.06	22.10	21.12	21.20	20.71	20.56	21.41
6-50-	4.47	0.62				0.59	0.37
8-50-	30.75	29.07	29.57	31.06	32.33	22.05	21.02
9-50-	1.48	2.18	4.00	1.26	0.16	0.49	0.44
10-50-	0.01	0.01	0.01	0.01	0.16	1.34	1.69
11-50-	2.75	3.06		2.88	5.24	8.30	7.93
12-50-	18.36	19.99	16.96	19.04	21.46	23.53	17.90
1-100-	2.82	3.22	3.58	3.80	3.99	4.35	4.27
2-100-	11.11	12.02	11.58	11.58	11.14	13.65	13.88
3-100-	1.84	1.88	1.04	0.81	0.66	0.90	0.57
4-100-	0.18	0.01	0.14	0.01	0.18	2.12	0.07
5-100-	25.13	21.08	20.82	23.41	24.35	24.67	27.48
6-100-	4.34	0.45	0.37	0.32	0.36	0.20	0.01
7-100-	3.74	0.01	0.05	0.01	0.01	0.00	0.01
8-100-	5.83	3.96	2.98	2.14	2.10	2.96	6.01
9-100-	4.47	4.54	3.06	2.12	1.40	1.42	2.01
10-100-	7.90	8.66	8.93	8.93	8.08	7.32	8.15
11-100-	10.54	10.42	9.40	9.82	9.63	10.33	14.33
12-100-	12.31	13.33	12.82	12.90	12.90	13.67	16.66
		9					
4-150-	0.16	1.15	1.51	1.35	1.67	2.08	2.89
5-150-	20.85	18.01	18.31	19.50	19.16	20.39	22.50
6-150-	4.24	0.75	0.44	0.36	0.33	1.08	0.63
7-150-	3.81	0.01	0.09	0.01	0.05	0.27	0.01
8-150-	3.97	4.06	4.16	4.14	4.22	3.86	3.06
9-150-	6.06	6.06	6.09	6.33	6.38	6.30	6.66
		'					
C1-50-					0.28	0.26	0.30
C2-50-					0.26	26.83	27.74
C3-50-					0.42	0.16	0.11
C4-50-					0.55	0.25	
			I		1		
C1-100-						0.84	
C2-100-					1.01	21.73	5.47
C3-100-		2				0.79	0.44
C4-100-						0.59	0.19

Le jour 1 correspond au premier janvier.

EAUX DE LYSIMETRES

NITRATES

mg/I N

(Chromatographie ionique)

LYSIMETRE				JOURS			
No.	184	191	198	205	212	219	226
1-50-	9.35	10.01	9.09	11.12	11.97	12.56	13.97
2-50-	11.97	11.52					
3-50-							
4-50-	0.14	0.18		0.01			2.25
5-50-	23.19	25.10	26.45	27.26			35.37
6-50-	0.42						2.74
8-50-	20.40	22.03	14.96	28.17	28.16	29.00	35.59
9-50-	0.39	0.54		1.17	1.41		
10-50-	2.07	2.72	4.03	4.92	4.62	4.67	7.69
11-50-	4.03	2.97					20.95
12-50-	14.17	13.46					24.40
					,		
1-100-	4.92	5.60	6.02	6.30	6.85	6.95	7.58
2-100-	11.13	10.45	9.51	9.42	6.91	7.27	10.10
3-100-	0.31	0.58	0.97	0.94	1.09	1.58	4.15
4-100-	0.12	0.14	0.20	0.23	0.28	0.02	0.34
5-100-	28.86	29.61	31.40	32.96	34.97	36.90	38.87
6-100-	0.14	0.18	0.21	0.20	0.01	0.02	0.58
7-100-	0.01	0.08	0.14	0.27	0.21	0.40	0.94
8-100-	6.58	5.76	5.79	4.42	4.79	6.11	17.49
9-100-	1.44	1.81	3.56	4.16	3.54	2.59	2.34
10-100-	8.60	7.54	6.94	6.34	5.25	5.93	7.35
11-100-	12.81	9.44	7.63	7.49	6.07	5.98	13.79
12-100-	18.20	18.42	18.27	17.51	16.70	16.61	23.18
1							
4-150-	2.75	2.79	2.63	2.30	2.00	2.06	2.68
5-150-	23.94	25.38	26.28	29.12	30.27	30.87	31.37
6-150-	0.28	0.53	0.38	0.01	0.19	0.02	1.49
7-150-	0.01	0.08	0.10	0.01	0.19	0.32	0.53
8-150-	3.22	3.55	3.51	3.54	3.65	4.02	3.97
9-150-	6.65	6.72	6.75	6.12	4.84	4.27	5.35
					,		
C1-50-	0.24	0.40		0.31	0.25	0.17	14.82
C2-50-	4.71	2.13	1.04	0.50	0.30	0.13	45.38
C3-50-	0.07	0.01	0.06	0.09	0.13	0.34	23.94
C4-50-							0.58
C1-100-	0.54	T				00-00-000	
C2-100-							
C3-100-	0.34	0.30	0.23	0.34	0.27	0.41	0.52
C4-100-	0.11		0.09	0.11	0.07		

Le jour 1 correspond au premier janvier.

EAUX DE LYSIMETRES

NITRATES

mg/l N

(Chromatographie ionique)

LYSIMETRE				JOURS			
No.	240	254	268	282	296	310	
1-50-	15.43		17.08	21.27	33.89	49.69	111111
2-50-							
3-50-							
4-50-	2.35	3.41	3.04	12.68	13.58	14.87	
5-50-	43.50		72.22		34.70	50.25	
6-50-	3.36	1.60	0.96	0.30	0.23	0.26	
8-50-	40.07	47.05	53.59	35.63	24.34	22.54	
9-50-	23.93	38.84	41.18	5.98	1.86	1.71	
10-50-	9.47	12.87	14.53	4.33	0.92	2.05	
11-50-	43.32	50.71	56.46	43.25	12.61	13.30	
12-50-	33.93	41.58	44.92	43.09	25.50	24.19	
						113/30/11	
1-100-	9.70	10.55	10.37	11.53	12.32	14.27	
2-100-	8.43	6.20		39.73	42.32	41.51	
3-100-	5.28	6.20	6.58	12.10	18.49	23.03	
4-100-	0.21	0.18	0.21	1.45	7.61	2.28	
5-100-	45.59	48.77	0.31	50.02	41.99	42.76	
6-100-	0.15	0.15	0.84	0.23	0.23	0.16	
7-100-	0.46	0.74	30.56	1.18	5.13	6.57	
8-100-	26.96	30.29	0.19		29.41	28.16	=
9-100-	1.08	0.69	8.01		0.00	0.10	
10-100-	12.55	11.86	29.17	6.26	3.41	2.07	
11-100-	21.28	23.93	29.24	34.98	27.66	27.66	
12-100-	28.42	30.01	2.65	48.89	71.70	61.39	
4-150-	3.10	2.69	2.61	5.97	0.77	1.31	
5-150-	41.17	49.19	50.84	58.62	52.12	50.88	
6-150-	0.28	0.21	0.33	0.29	38.42	3.90	
7-150-	0.60	1.23	1.52	1.74	3.00	12.38	
8-150-	4.36	5.27	6.32	7.55	8.02	12.10	
9-150-	3.04	4.14	3.95	3.89	5.79	5.51	
C1-50-	2.08	2.27		0.84	1.74	26.66	
C2-50-	25.68	0.58	32.95	35.22	30.94	1.48	
C3-50-	2.90	0.37		32.21	27.76	27.34	
C4-50-	0.43			- 1		13.41	
C1-100-							
C2-100-							
C3-100-	0.86	1.56	1.99	17.05	17.83		
C4-100-		1.03	1.84	11.30	9.70		

170

ANNEXE K

Résultats des concentrations en ammonium mesurées

EAUX DE LYSIMETRES

AMMONIUM

ug/l N

(Technicon)

LYSIMETRE				JOURS			
No.	149	151	155	158	163	170	177
1-50-	18.97	20.17	8.21	13.38	9.01	9.61	6.78
2-50-	28.59	13.78	12.59	45.57	14.98	15.29	13.67
3-50-	62.72			92.56		34.57	
4-50-	14.18	12.19	13.38		3.85	11.64	12.45
5-50-	14.18	14.18	20.17	26.58	10.60	17.33	14.07
6-50-	52.89	37.06				37.05	39.12
8-50-	45.16	30.20	16.97	11.79	9.41	14.07	16.11
9-50-	139.28	103.47	62.31	66.83	33.42	32.09	15.29
10-50-	29.39	23.37	18.17	19.37	13.38	26.33	21.41
11-50-	51.26	35.04		24.17	22.17	31.68	21.82
12-50-	34.63	29.39	29.40	15.78	19.37	46.19	28.79
1-100-	13.78	5.04	9.41	13.38	7.42	9.21	1.54
2-100-	13.38	9.41	5.44	13.78	6.23	6.38	2.75
3-100-	12.99	7.82	11.39	7.42	83.80	7.18	3.55
4-100-	8.61	5.44	6.23	0.69	29.80	7.18	-0.87
5-100-	8.61	7.82	12.19	6.63	8.00	7.99	5.97
6-100-	12.99	11.39	11.39	4.25	6.23		6.78
7-100-	10.20	5.44	8.21	3.46	2.29	3.55	3.55
8-100-	12.99	9.41	13.38	7.82	8.21	15.70	10.02
9-100-	16.17	8.61	11.79	7.02	6.23	8.80	7.59
10-100-	7.02	4.25	7.82	0.69	3.46	11.64	-0.47
11-100-	17.37	5.83	9.41	1.48	5.04	10.83	2.75
12-100-	7.82	6.23	11.00	3.06	5.44	9.61	1.14
					I		
4-150-	11.00	4.64	8.21	12.19	7.02	6.78	5.16
5-150-	22.57	20.97	18.17	15.78	10.60	29.62	17.74
6-150-	6.63	5.44	9.41	3.06	5.44	10.42	3.15
7-150-	5.44	5.44	12.59	0.69	7.42	3.95	0.73
8-150-	6.23	7.02	7.02	3.85	3.46	4.76	-0.07
9-150-	7.02	7.42	7.82	3.46	2.66	3.55	1.14
C1-50-						929.99	1052.18
C2-50-						68.51	40.78
C3-50-						916.97	895.31
C4-50-						1057.76	000.01
	I						
C1-100-			*		I	398.92	
C2-100-						177.33	96.48
C3-100-						3404.66	2881.26
C4-100-						804.78	685.14

Le jour 1 correspond au premier janvier.

EAUX DE LYSIMETRES

AMMONIUM

ug/l N

(Technicon)

LYSIMETRE				JOURS			
No.	184	191	198	205	212	219	226
1-50-	2.75	10.851	11.136	12.733	17.095	19.53	5.22
2-50-	5.16	74.062					
3-50-							
4-50-	4.36	13.723					19.40
5-50-	12.04	20.886	69.427				16.48
6-50-	32.09	22.231					39.00
8-50-	10.42	26.314	37.971	61.308	21.334	40.18	17.73
9-50-	12.45	41.259		20.415	21.375		
10-50-	12.45	24.493	23.594	21.643	12.033	30.30	16.07
11-50-	1.94	49.323					32.75
12-50-	18.55	47.430					95.31
1-100-	21.41	6.701	7.857	7.932	8.355	12.61	2.30
2-100-	2.75	9.040	10.204	8.552	5.962	16.07	10.64
3-100-	4.76	11.383	14.103	17.060	15.676	12.61	3.55
4-100-	-1.68	6.331	9.149	6.373	2.984	11.31	3.14
5-100-	1.54	11.394	8.307	8.950	3.353	20.82	7.31
6-100-	5.16	12.006	8.251	23.688	7.045	ERR	7.31
7-100-	1.94	9.272	6.269	4.514	9.829	12.61	5.64
8-100-	7.99	14.468	14.652	14.445	10.641	17.80	9.39
9-100-	6.38	12.126	10.748	12.961	23.891	22.98	10.64
10-100-	1.54	5.912	6.142	8.909	1.836	9.14	3.14
11-100-	3.55	9.005	7.834	7.837	5.429	12.61	2.72
12-100-	2.34	10.176	9.864	7.874	5.818	10.01	6.89
,							
4-150-	-1.28	4.759	4.354	6.795	9.448	6.54	1.89
5-150-	10.83	29.672	24.493	17.297	3.348	28.15	23.16
6-150-	-0.87	6.727	4.875	6.107	5.185	11.31	2.72
7-150-	-1.68	6.741	4.780	6.136	4.117	6.97	2.30
8-150-	1.14	6.362	4.357	5.784	5.609	3.94	5.22
9-150-	0.33	9.512	3.724	7.364	31.019	5.67	5.22
	·					<u> </u>	
C1-50-	.986.56	471.52	471.52			78.06	50.68
C2-50-	210.44	64.76	61.584			101.62	29.00
C3-50-	865.06	981.57	701.620			188.98	42.34
C4-50-							335.76
				1			
C1-100-	1527.03	10000100111111111111111111111111111111				men. parampana 1000 ps856333	
C2-100-							
C3-100-	2032.90	1795.06	1212.776			284.79	117.83
C4-100-	438.45	W	385.586				

EAUX DE LYSIMETRES

AMMONIUM

ug/l N

(Technicon)

LYSIMETRE				JOURS			
No.	240	254	268	282	296	310	
1-50-	14.26		37.04	8.76	14.23	24.41	
2-50-							
3-50-					~		
4-50-	42.11	24.91	28.82	21.43	45.72	18.30	
5-50-	24.91		42.22		136.93	258.07	
6-50-	33.92	61.51	41.79	23.60	42.84	23.18	
8-50-	27.77	40.06	18.38	21.86	23.18	15.86	
9-50-	17.54	49.10	99.53	11.39	25.22	22.37	
10-50-	23.68	21.86	11.82	9.20	12.61	13.02	
11-50-	71.18	44.37	18.38	14.45	21.96	19.11	
12-50-	70.77	65.77	33.58	20.12	37.91	18.70	
1-100-	3.20	14.01	4.81	1.73	9.37	14.23	
2-100-	8.12	23.60		4.81	15.86	9.37	
3-100-	10.58	19.69	9.64	3.93	7.34	8.55	
4-100-	4.84	16.20	0.85	1.73	7.74	10.18	
5-100-	9.35	20.99	31.85	1.73	12.61	12.20	
6-100-	6.89	20.56	4.37	2.61	10.99	11.39	
7-100-	10.58	19.69	8.32	1.73	9.77	24.82	
8-100-	6.07	20.12	13.14		14.23	10.99	
9-100-	11.39	22.30	7.01		15.05	10.99	
10-100-	4.02	11.39	6.13	1.73	10.18	12.61	
11-100-	4.84	20.56	7.88	4.81	8.55	6.53	
12-100-	8.12	18.81	4.37	1.73	7.74	4.10	
,				1	1		
4-150-	1.98	15.76	3.05	1.73	4.91	5.72	<u> </u>
5-150-	17.13	44.80	25.78	7.88	46.96	24.83	
6-150-	4.84	17.51	5.69	0.85	6.13	8.55	
7-150-	2.38	13.14	1.29	0.85	6.53	10.99	
8-150-	2.38	13.57	3.49	27.08	7.34	10.99	
9-150-	5.25	15.76	5.25	0.85	10.99	5.72	
<u> </u>	0.20		0.20	0.00			
C1-50-	81.76	117.89		14.01	26.86	13.02	
C2-50-	90.43	183.96	26.21	4.37	20.74	117.27	
C3-50-	290.61	75.81		14.01	12.61		
C4-50-	200.01	, 5.51					
3 , 30							
C1-100-				I	T		
C2-100-	-						-
C3-100-	313.54	123.86		14.89	29.72		
C4-100-	484.91	734.12	531.70	10.07	42.02		

ANNEXE L

Résultats des volumes d'eau mesurés aux collecteurs

LYSIMETRES SANS TENSION INFILTRATION EN mI

YSIMETRE				DATE				
NO.	163	170	177	184	191	198	205	212
C1-50	3	34	15	21	19		69	25
C2-50	7	1093	81	18	18	27	25	20
C3-50	7	31	18	25	24	28	31	24
C4-50	7	7				2	01	3
	and the second second							<u> </u>
C1-100		9		4				
C2-100	5	9	6		1			
C3-100		13	18	14	21	19	24	19
C4-100		11	19	15		44	18	21

YSIMETRE				DATE				
NO.	219	226	240	254	268	282	296	310
C1-50	27	29	18	15		1156	1229	200
C2-50	21	1039	40	10	75	877	878	34
C3-50	25	175	25	20	2	1299	506	- 54
C4-50	5	37	5	5		6	300	7
		(80)						
C1-100						2	<u> </u>	4
C2-100						2		
C3-100	20	19	29	22	4	598	30	2
C4-100		5	24	22	7	759	115	4

LYSIMETRE NO.	TOTAL		
C1-50	2860		
C2-50	4263		
C3-50	2238		
C4-50	82		
C1-100	16		
C2-100	24		
C3-100	853		
C4-100	1064		

Le jour 1 correspond au premier janvier. Une infiltration de 1 mm équivaut à 70.7 ml.