Université du Québec INRS-Géoressources

LA BRÈCHE INTRUSIVE DE RIVARD-MISE EN PLACE, NATURE ET ORIGINE D'UN LAMPROPHYRE ULTRAPOTASSIQUE GRENVILLIEN ET DE SES XÉNOLITES ULTRAMAFIQUES, RÉGION DE MONT-LAURIER, QUÉBEC

par

DAVID MORIN

Thèse présentée pour l'obtention du grade de Philosophiae doctor (Ph.D.) en géologie

Jury d'évaluation

Examinateur externe et président du jury

Examinateur externe

Examinateur interne et codirecteur de recherche

Directrice de recherche

Michael P. Gorton Department of Geological Sciences, University of Toronto, Toronto, Ontario, M5S 3B1

John D. Clemens School of Geological Sciences, Kingston University Penrhyn Rd, Kingston-upon-Thames, Surrey KT1 2EE, UK

Réjean Hébert Département de géologie et de génie géologique Université Laval, Sainte-Foy, Qc, G1K 7P4

Louise Corriveau Centre géoscientifique de Québec - Commission géologique du Canada, Sainte-Foy, Qc, G1V 4C7

Thèse soutenue le 6 mars 1998

© droits réservés de David Morin, 1998

RÉSUMÉ

La brèche intrusive de Rivard, avec ses milliers de xénolites exotiques, s'est mise en place à 1.07 Ga, dans la Ceinture métasédimentaire de la Province du Grenville au sud-est de Mont-Laurier au Québec. Les xénolites ont des compositions extrêmement variées et incluent des clinopyroxénites, webstérites, orthopyroxénites, wehrlites, dunites, gabbros, norites, granulites mafiques, roches calco-silicatées, gneiss, granitoïdes et quartzites. Plusieurs de ces types lithologiques n'ont pas d'équivalent en affleurement dans la région et représentent ainsi des échantillons uniques des niveaux lithosphériques sous-jacents.

Les xénolites et les épontes du dyke renseignent sur les mécanismes de formation des xénolites et de transport des magmas dans la croûte profonde. L'ascension du magma par propagation de dyke a produit une déformation inélastique de l'encaissant qui se traduit sur l'affleurement par une fracturation parallèle au dyke. L'infiltration du magma dans les fractures et l'élargissement progressif des apophyses ainsi formées, entraînent le détachement graduel des fragments d'encaissant et leur dispersion dans le dyke. Le magma avait une viscosité initialement faible (≈ 40 Pa·s), mais qui s'est accrue considérablement par l'addition continue de xénolites, ce qui a contribué à freiner son ascension. La minette est montée à une vitesse supérieure à ≈ 50 cm·s⁻¹ et s'est mise en place à 17 km de profondeur en plusieurs injections comagmatiques.

La minette est composée de phénocristaux de clinopyroxène et de biotite dans une matrice de feldspaths, clinopyroxène, biotite, titanite et apatite. La roche est mafique et ultrapotassique (50% SiO₂, 8% MgO, 5% K₂O, K₂O/Na₂O = 2.2) et riche en éléments traces compatibles (500 ppm Cr) et incompatibles (3000 ppm Ba, 44 ppm La) avec un rapport (La/Yb)_N de 14. Par son âge et sa composition minéralogique et chimique elle se rapproche des intrusions potassiques de 1.09 - 1.07 Ga présentes dans la Ceinture métasédimentaire, sans toutefois leur être directement associée. Elle proviendrait de la fusion partielle d'une source mantellique qui a été enrichie en éléments traces incompatibles lors d'événements de subduction contemporains ou antérieurs à l'orogénie grenvillienne.

Les mégacristaux sont abondants dans le dyke et comprennent plusieurs types de clinopyroxènes, du feldspath potassique et plus rarement de la biotite et de l'apatite. L'assemblage des mégacristaux est comparable à celui du lamprophyre et la composition des clinopyroxènes (100Mg/(Mg+Fe) = 61 - 83, $Al_2O_3 = 5 - 11\%$, CaO = 16 - 22%) est semblable à celle de mégacristaux observés dans d'autres roches alcalines. Ces similarités suggèrent que les mégacristaux se sont formés à hautes pressions et températures à partir de magmas comparables à la minette, mais à des degrés d'évolution variés. Les mégacristaux

et les xénolites de clinopyroxénite micacée montrent des textures de déséquilibre suggérant que des mélanges de magmas, ou des infiltrations de fluides ou de liquides dans des cumulats, ont eu lieu en profondeur.

D'autres xénolites ultramafiques, majoritairement des clinopyroxénites, présentent des textures protogranulaire, porphyroclastique ou plus rarement granoblastique, foliée ou de cumulat. Ils ont enregistré différents degrés de métasomatisme qui se traduit par la présence de phlogopite ou d'amphibole, formées avant le transport dans le lamprophyre. La composition et les textures particulières de certains xénolites à olivine suggèrent qu'ils pourraient résulter de la cristallisation d'un magma ayant réagit avec une phase alumineuse. Un groupe de clinopyroxénites montrant des caractéristiques texturales et géochimiques communes, sont interprétées comme des cumulats formés en profondeur à partir de magmas alcalins plus ou moins évolués. La modélisation montre que les liquides en équilibre avec les cumulats étaient généralement enrichis en gros ions lithophiles avec des rapports (La/Yb)_N élevés (10 - 27) et des concentrations faibles en P, Nb, Ta et Ti. Les xénolites ultramafiques, de par leur diversité, marquent la présence de plusieurs suites intrusives dans la croûte profonde ou à la limite croûte-manteau. Le fractionnement, le mélange de magmas et l'interaction avec l'encaissant, sont possiblement associés à des épisodes majeurs de sous-plaquage magmatique.

Étudiant

Directrice de recherche

ABSTRACT

The Rivard minette dyke with its cortege of exotic xenoliths was emplaced at 1.07 Ga and 17 km depth, in the Central Metasedimentary Belt of the Grenville Province, southeast of Mont-Laurier, Québec. The thousands of xenoliths are extremely diversified, comprising clinopyroxenites, websterites, orthopyroxenites, wehrlites, dunites, gabbros, norites, mafic granulites, calc-silicate rocks, gneiss, granitoides and quartzites. Many types of xenoliths have no outcrop equivalent in the area and thus represent unique samples from deeper lithospheric levels.

The fragments and dyke-wall structures provide insights on the mechanisms of xenolith formation and magma emplacement at deep crustal levels. Magma ascent via dyke propagation produced inelastic deformation of wall rock, a process expressed in the field by a swarm of dyke-parallel fractures. Magma injection along the fractures forced the walls apart resulting in thin apophyses which, upon widening, led to progressive detachment of wall-rock fragments and their scattering in the dyke. The initially low magma viscosity (\approx 40 Pa·s) increased markedly through the continuous addition of xenoliths, therefore hindering upward progression of the magma. The minette presumably ascended at a velocity greater than \approx 50 cm·s⁻¹ and was emplaced as successive comagmatic injections.

The minette is composed of clinopyroxene and biotite phenocrysts in a fine-grained matrix of feldspars, clinopyroxene, biotite, titanite and apatite. The rock is mafic and ultrapotassic (50% SiO₂, 8% MgO, 5% K₂O, K₂O/Na₂O = 2.2) and rich in both compatible and incompatible trace-elements (500 ppm Cr, 3000 ppm Ba, 44 ppm La), with (La/Yb)_N of 14. The minette is fairly similar in mineralogy and chemistry to the 1.09 - 1.07 Ga K-rich plutons that intruded the Central Metasedimentary Belt, but does not appear to be directly related to them. The minette magma likely resulted from partial melting of a mantle source previously enriched in incompatible elements during subduction events that took place prior to, or in the early stages of the Grenvillian orogeny.

Megacrysts are abundant and varied, with a number of compositionally distinct clinopyroxenes, lesser K-feldspar and rare biotite and apatite. The megacryst assemblage is similar to that of the host minette with the clinopyroxene megacryst composition $(100Mg/(Mg+Fe) = 61 - 83, Al_2O_3 = 5 - 11\%, CaO = 16 - 22\%)$ akin to that of megacrysts in other alkaline rocks. These similarities suggest that the megacrysts crystallized in high temperature and pressure conditions from liquids comparable to the minette, but at different stages of evolution. Clinopyroxene megacrysts and some mica-pyroxenite xenoliths show disequilibrium textures suggesting magma mixing, and/or fluid or melt infiltrations in

pyroxene cumulates at depth.

Other ultramafic xenoliths, mainly clinopyroxenites, have protogranular, porphyroclastic and more rarely granoblastic, foliated or cumulate textures. They record different degree of metasomatism as evidenced by the presence of various amounts of phlogopite or amphibole that formed before xenolith inclusion in the host minette. The peculiar textures and composition of some olivine-bearing xenoliths suggest that they could have crystallized from a magma that reacted with an aluminous phase. A group of clinopyroxenite xenoliths with common textural and chemical characteristics are interpreted as deep cumulates from variously fractionated alkaline magmas. Model calculations indicate that many of the liquids in equilibrium with the cumulates were enriched in large ion lithophile elements, with high $(La/Yb)_N (10 - 27)$, and low concentrations of P, Nb, Ta and Ti. The wide diversity of ultramafic xenoliths is indicative of the variety of intrusive suites emplaced in the deep crust or at the crust-mantle boundary. Crystal fractionation, magma mixing and reactions with country rock, was possibly related to major magma underplating events.

REMERCIEMENTS

Au terme de cette étude, je tiens à remercier Louise Corriveau, directrice de recherche, pour m'avoir proposé ce projet passionnant et pour m'avoir soutenu par son enthousiasme, sa rigueur et sa disponibilité tout au long des travaux. Je tiens aussi à remercier Réjean Hébert, co-directeur, pour ses lumières sur les roches ultramafiques et son intérêt soutenu. Je remercie également les autres membres du jury, John D. Clemens et Michael P. Gorton pour leurs commentaires et suggestions, de même que ceux qui ont aussi contribué à l'amélioration des trois chapitres constituant la deuxième partie de la thèse: Yuri Amelin, Jean Bédard, Tyson Birkett, Tomas Feininger, Michel Jébrak, Marc Laflèche et Frank Spera.

Plusieurs personnes ont apporté leur concours à diverses étapes de ce projet, que ce soit au cours des travaux de terrain ou de laboratoire, de visites sur le terrain, lors de discussions, pour l'interprétation des données, ou autre, et je tiens à les en remercier. Il s'agit de: Don Baker, Jean Bédard, Donald Boucher, D. Bouliane, Tyson Birkett, Jean-Claude Bérubé, Olivier Blein, Kathrin Boggs, Éric Boisvert, Sébastien Castonguay, Claudio Cermignani, Guoxiang Chi, C. R. Clement, Keith Dewing, Heidi Fengler, Kamel Ferkous, Jonathan Fowler, Don Francis, Réal Gosselin, Marc Greendale, Barry Hawthorne, Michel Jébrak, Roger Laurent, Jacques Legendre, Louis Madore, Michelle Mainville, Nalini Mohan, Léopold Nadeau, Nicolas Pinet, Gordon Pringle, Jean-Pierre Ricbourg, Edward Sawyer, Kamal Sharma, John Stirling, Olivier Tavchandjan, Maxime Tellier, Jean-Pierre Tremblay, Otto van Breemen et Véronica Varfalvy. Je dois également souligner le soutient du personnel du Centre geoscientifique de Québec et de l'Institut national de la recherche scientifique: Aïcha Achab, Michel Barbeau, Denise Boudreau, Marco Boutin, Pascale Côté, Carole Couture, Luce Dubé, Sonia Dupuis, Louise Guay, Yvon Houde, Christine Laberge, Brigitte Lafortune, Lise Michard et Anne Robitaille. J'aimerais de plus remercier tous ceux qui m'ont soutenu et encouragé au cours de mes études, ma famille et mes amis (et plus particulièrement Michèle, JoAnn, Stéphane, Andrée, Ian, Christine, Anne, Lucie, Gabriel et Patrice) de même que les étudiants et les chercheurs du Centre géoscientifique de Québec.

Plusieurs organismes voués à la recherche m'ont accordé une aide financière, il s'agit du Conseil de recherche en sciences naturelles et en génie, du Fond pour les chercheurs et l'aide à la recherche, de l'Institut national de la recherche scientifique et de l'Université Laval. Un projet conjoint entre la Commission géologique du Canada et Ressources KWG a permis de financer une partie des travaux de terrain et de laboratoire.

À mes parents préférés, Claire et Roland

<u>Table des matières</u>

Résumé		ii			
Abstract	Abstracti				
Remercie	ments	vi			
Table de	s matières	viii			
Liste de	s tableaux	xiii			
Liste de	s figures	xiv			
Liste de	s abréviations	xvi			

PREMIÈRE PARTIE 1

Chap	itre 1	: Introduction	5
1.1	Introd	luction	5
1.2	Probl	ématique	7
	1.2.1	Formation et transport des xénolites	7
	1.2.2	Roches ultrapotassiques	8
	1.2.3	Lamprophyres et minettes	11
	1.2.4	Minette de Rivard	13
	1.2.5	Xénolites	14
	1.2.6	Xénolites ultramafiques de la brèche intrusive de Rivard	16
1.3	Métho	odologie	18
	1.3.1	Travaux de terrain	18
	1.3.2	Laboratoire et microscopie optique	19
	1.3.3	Analyses de roches	19
	1.3.4	Analyses des minéraux	20
	1.3.5	Calculs et modélisation	21
1.4	Contri	butions et apports à l'avancement des connaissances	26
	1.4.1	Formation et transport des xénolites	27
	1.4.2	La minette, ses macrocristaux et les xénolites de pyroxénite micacée	28
	1.4.3	Xénolites ultramafiques	29
	1.4.4	Autres contributions	31

1.5	Cadre géologique	36
	1.5.1 Province de Grenville	36
	1.5.2 La Ceinture métasédimentaire et la région de Mont-Laurier	36
	1.5.3 La suite de Kensington-Skootamatta	38
	1.5.4 Évolution tectonique de la Ceinture métasédimentaire	39
1.6	Brèche intrusive de Rivard	40
	1.6.1 Généralités	40
	1.6.2 Différentes injections de minette	40
	1.6.3 Épontes	44
	1.6.4 Minette	52
	1.6.5 Xénocristaux et mégacristaux	53
	1.6.6 Xénolites	53
1.7	Intrusions potassiques avoisinantes	57
	1.7.1 Dyke de Girard	57
	1.7.2 Péridotite du lac Rolleau	58

Chapitre 2: Fragmentation processes and xenolith transport in a			
Proterozoic minette dyke, Grenville Province, Québec	69		
Résumé	70		
Abstract	71		
2.1 Introduction	72		
2.2 Tectonic setting	72		
2.3 The Rivard minette dyke	74		
2.3.1 Minette	74		
2.3.2 Dyke walls	81		
2.3.3 Xenoliths	83		
2.4 Discussion	85		
2.4.1 Xenolith transport	85		
2.4.2 Xenolith formation	88		
2.5 Conclusion	95		

Chapi	itre 3:	Mesoproterozoic deep K-rich magmatism recorded in a	
		megacryst- and xenolith-bearing minette dyke, southwestern	
		Grenville Province, Québec	97
Résur	né		98
Abstr	act		100
3.1	Introd	luction	102
3.2	Geolo	gical context	104
3.3	The H	Rivard intrusion breccia	105
	3.3.1	Dyke setting	105
	3.3.2	Xenoliths	105
	3.3.3	Minette petrography	111
		3.3.3.1 Phenocrysts and groundmass clinopyroxene	111
		3.3.3.2 Clinopyroxene and K feldspar megacrysts	112
		3.3.3.3 Biotite	114
		3.3.3.4 Groundmass minerals	114
3.4	Analy	tical methods	115
3.5	Minet	te chemistry	118
3.6	Miner	al chemistry	122
	3.6.1	Phenocrysts and groundmass clinopyroxene	122
	3.6.2	Clinopyroxene and K feldspar megacrysts	122
	3.6.3	Biotite	128
	3.6.4	Amphibole	128
	3.6.5	Feldspars	128
	3.6.6	Xenoliths	132
3.7	Discu	ssion	134
	3.7.1	Origin of clinopyroxene macrocrysts	134
		3.7.1.1 Phenocrysts	134
		3.7.1.2 Megacrysts	136
	3.7.2	Origin and evolution of the Rivard minette	140
		3.7.2.1 Experimental constraints	140
		3.7.2.2 Mafic-felsic relationship	140
		3.7.2.3 Constraints on source composition	143
	3.7.3	Relationship with mica-rich xenoliths	146
	3.7.4	Relationship with nearby K-rich intrusions	151
3.8	Evolu	tion of the K-rich magmas at depth	156

Chapitre 4: Xenolith record of Mid-Proterozoic magmatism and			
	metasomatism in the Grenville lithosphere, western Québec	159	
Résum	ıé	160	
Abstra	nct	162	
4.1	Introduction	164	
4.2	Geological setting	166	
4.3	Xenoliths textures	167	
	4.3.1 Dunite and wehrlite	167	
	4.3.2 Clinopyroxenite	168	
	4.3.3 Orthopyroxenite and websterite	173	
	4.3.4 Metasomatism and alteration	174	
4.4	Analytical methods	176	
4.5	Whole-rock chemistry	180	
	4.5.1 Dunite and wehrlite	180	
	4.5.2 Clinopyroxenite	180	
	4.5.3 Orthopyroxenite and websterite	187	
4.6	Mineral chemistry	190	
	4.6.1 Dunite and wehrlite	190	
	4.6.2 Clinopyroxenite	194	
	4.6.3 Orthopyroxene and websterite	200	
4.7	Origin of ultramafic xenoliths	205	
	4.7.1 Dunite and wehrlite	205	
	4.7.2 Clinopyroxenite	208	
	4.7.3 Orthopyroxenite and websterite	215	
4.8	Metasomatism in ultramafic xenoliths	217	
	4.8.1 Phlogopite metasomatism	217	
	4.8.2 Amphibole metasomatism	222	
	4.8.3 Carbonate metasomatism	224	
4.9	Magmatic and metasomatic history of the ultramafic xenoliths	225	

Conclusionsgénérales229Questions en suspens232Bibliographie237

TROI	SIÈM	E PARTIE	263		
Арре	ndice	es	264		
A	Mesu	es planaires	265		
В	Liste e	t description sommaire des xénolites de la brèche intrusive de Rivard	267		
	B 1	Abréviations	267		
	B2	Liste et description des xénolites	272		
C	Caracte	éristiques pétrographiques et géochimiques de la minette,			
	ses ma	acrocristaux et des différents types de xénolites	343		
D	D1	Composition chimique de la minette et ses xénolites	373		
	D2	Composition estimée de certains xénolites	381		
	D3	Comparaison de la composition du clinopyroxène et de la roche totale.	382		
Ε	Comp	osition des minéraux	383		
	E 1	Olivine	384		
	E2	Spinelle	389		
	E3	Pyroxènes	399		
	E4	Mica	479		
	E5	Amphibole	486		
	E6	Feldspaths	492		
	E7	Grenat	504		
	E8	Autres minéraux (scapolite, titanite, allanite, calcite, muscovite, etc.)	526		
F	Table	de contingence	529		
G	Modél	isation de la cristallisation fractionnée et coefficients de distribution	530		
H	Calcul	s de pression et de température sur les minéraux de la minette	533		
Ι	Diagrammes de terres rares 535				

<u>Liste des tableaux</u>

1.1	Classification des roches ultrapotassiques	9
1.2	Classification des lamprophyres	11
1.3	Calcul de la viscosité de la minette de Rivard	22
1.4	Données géothermobarométriques sur les xénolites mafiques et ultramafiques	32
1.5	Principaux types de xénolites de la brèche intrusive de Rivard	55
• •		
2.1	Composition chimique de la minette de Rivard	76
2.2	Caractéristiques des différents types de xénolites de la brèche de Rivard	82
2.3	Dimensions des principaux types de xénolites	92
3.1	Caractéristiques des mégacristaux de la minette de Rivard	113
3.2	Analyses représentatives de la minette et des xénolites de pyroxénite micacée .	116
3.3	Analyses représentatives des clinopyroxènes de la minette	
	(phénocristaux et matrice)	123
3.4	Analyses représentatives des mégacristaux de clinopyroxène de la minette	124
3.5	Analyses représentatives des biotites et des amphiboles de la minette	127
3.6	Analyses représentatives des feldspaths de la minette	131
3.7	Thermométrie et barométrie sur les minéraux de la minette	136
3.8	Rapports d'éléments traces de la minette et des xénolites de pyroxénite micacée	149
4.1	Composition chimique et modale de xénolites ultramafiques représentatifs	177
4.2	Analyses représentatives des olivines des xénolites ultramafiques	188
4.3	Analyses représentatives des spinelles des xénolites ultramafiques	189
4.4	Analyses représentatives des clinopyroxènes des xénolites ultramafiques	195
4.5	Analyses représentatives des micas des xénolites ultramafiques	197
4.6	Analyses représentatives des amphiboles des xénolites ultramafiques	198
4.7	Analyses représentatives des phases accessoires des xénolites ultramafiques	204

<u>Liste des figures</u>

1.1	Vue générale de la brèche intrusive de Rivard	3
1.2	Composition minéralogique des xénolites de la brèche intrusive de Rivard	17
1.3	Carte géologique de la Ceinture métasédimentaire du Grenville et localisation	35
1.4	Photos de la brèche intrusive de Rivard	4 1
1.5	Photomicrographies de la minette, des macrocristaux et des xénolites	45
1.6	Diagrammes binaires de la minette et ses xénolites	59
1.7	Diagrammes multi-élémentaires de la minette et ses xénolites	62
2.1	Carte de localisation	73
2.2	Carte schématique de la brèche intrusive de Rivard	75
2.3	Photos et photomicrographies de la brèche de Rivard et des épontes du dyke	77
2.4	Distribution de fréquence du rapport largeur/longueur des xénolites	90
2.5	Longueur versus largeur des xénolites foliés et massifs	91
2.6	Modèle de fracturation des épontes menant à la formation des xénolites	93
3.1	Carte géologique et localisation de la brèche intrusive de Rivard	103
3.2	Photomicrographies de la minette, ses macrocristaux et certains xénolites	107
3.3	Diagrammes SiO ₂ - Na ₂ O+K ₂ O et SiO ₂ - K ₂ O de la minette de Rivard	117
3.4	Diagrammes binaires des éléments majeurs et traces de la minette de Rivard	119
3.5	Diagramme de terres rares et diagramme multi-élémentaire	
	de la minette de Rivard	121
3.6	Diagramme 100Mg/(Mg+Fe) - Al des phénocristaux et xénocristaux	
	de la minette de Rivard	125
3.7	Diagrammes binaires des clinopyroxènes de la minette et des xénolites	129
3.8	Diagramme 100Mg/(Mg+Fe) - Al des mégacristaux	130
3.9	Diagramme 100Mg/(Mg+Fe) - BaO des biotites de la minette et des xénolites .	133
3.10	Diagramme 100Mg/(Mg+Fe) - Al ₂ O ₃ et Al ₂ O ₃ - TiO ₂ des clinopyroxènes	
	de la minette	135
3.11	Modélisation de la cristallisation fractionnée	141
3.12	Diagrammes multi-élémentaires des xénolites micacés de la brèche de Rivard	147
3.13	Schéma illustrant les intrusions multiples à la limite croûte-manteau	150
3.14	Diagrammes Zr/Hf-Zr/Y et La/Yb-Nb/Ta de la minette et des unités du pluton	
	de Kensington	153

4.1	Carte géologique et localisation de la brèche intrusive de Rivard	165
4.2	Photomicrographies des xénolites ultramafiques	169
4.3	Diagrammes binaires des xénolites ultramafiques	179
4.4	Diagramme multi-élémentaire de la wehrlite B1-19	183
4.5	Diagrammes multi-élémentaires des clinopyroxénites	184
4.6	Diagrammes binaires des clinopyroxénites	185
4.7	Diagramme multi-élémentaire de l'orthopyroxénite et des webstérites	186
4.8	Diagramme 100Mg/(Mg+Fe ²⁺) - 100Al/(Al+Cr+Fe ³⁺) des spinelles	191
4.9	Diagrammes Al ₂ O ₃ -TiO ₂ et F-BaO des micas	192
4.10	Variations de la composition du clinopyroxène dans deux clinopyroxénites	193
4.11	Diagrammes binaires des clinopyroxènes	201
4.12	Diagrammes Al ^{VI} - Ti et Na - K des amphiboles	202
4.13	Diagramme 100Mg/(Mg+Fe) des minéraux secondaires versus le	
	clinopyroxène	203
4.14	Composition modèle des liquides en équilibre avec les minéraux des xénolites .	209
4.15	Diagrammes multi-élémentaires de trois clinopyroxénites	213
4.16	Diagrammes multi-élémentaires d'une wehrlite et de trois clinopyroxénites	219

Liste des principales abréviations

Minéraux

Roches

Autres

ANO	anorthosite	Cal	calcite	СС	croûte continentale moyenne
AMP	amphibolite	Car	carbonate (s)	BC	brèche
CXN	clinonvroxénite	Сср	chalcopyrite	CAB	basalte calco-alcalin
CSL	roche calcosilicatée	Cen	clinoenstatite	СМВ	Ceinture métasédimentaire
DN	dunite	Cfs	clinoferrosilite	D	coefficient de distribution
DR	diorite	Chl	chlorite	HFSE	élément à fort potentiel ionique
ECL	éclogite	Chr	chromite	HREE	terre rare lourde
GB	gabbro, gabbroïde	Crn	corindon	KEN	pluton de Kensington
GBN	gabbronorite	Cpx	clinonyroxène	Lia	liquide (magma)
GLM	glimérite, biotitite	Di	dionside	LILE	gros ion lithophile
GR	granite, granitoïde	En	enstatite	LREE	terre rare légère
GNL	granulite	Ер	épidote	MORB	basalte de ride océanique
GS	gneiss	Fel	feldspath (s)	MC	mégacristal
LMP	lamprophyre	Fo	forstérite	MX	matrice
LZ	lherzolite	Fs	ferrosilite	OIB	basalte d'île océanique
MBS	métabasite	Grt	grenat	PC	phénocristal
MNT	minette	Hbl	hornblende	РМ	manteau primitif
MPX	pyroxénite micacée	Hem	hématite	REE	terre rare
MYL	mylonite	Hv	hypersthène	Sol	solide (minéral)
MZ	monzonite	Idd	iddingsite	тм	liquide piégé
NR	norite	Ilm	ilménite	XC	xénocristal
OYN	orthonyroxénite	Kfs	feldsnath K		Kenceristar
PD	péridotite	Mag	magnétite	+	plus, et
OFP	roche quartzofeldsnath	Ms	muscovite	+	plus ou moins, peu
DYN	nyrovénite	NAS	nénhéline	- >>	plus grand, ou égal à
E A N	quartzita	01	olivine	~ <	plus petit ou égal à
CHC	shoshonite	Onv	orthonyroxène		égal similaire à
TRA	trachyandásite	Opa	onaque (s)	~	approximativement égal à
TRS	trachybasalte	Ovi	orvde (s)	11	parallèle
TN	tonalite	Phi	nhlogonite	± .	différent
IK	roche ultrapotassique	PI	philogophic	•>	remplacé par, produit
UMF	roche ultramafique	Pth	progroenuse perthite micron		iompiaco pili, protecti
WR	webstérite	Po	pyrrhotine		
WI	websleite	Pv	pyrniotnie		
VNI.	vénolite	Pv	pyroxene (s)		
ANL	xenome	Otz	auartz		
		Rt	rutile		
		Scn	scapolite		
		Sil	sillimanite		
		Snl	sninelle		
		Srn	serpentine		
	Minárouv	Sul	sulfure (s)		
	Wineraux	Tle	talc		
Ah	albite	Tre	trémolite		
Am	amphibole	Tfn	titanite		
An	anorthite	Tur	tourmaline		
Ano	angite	Wo	wollastonite		
An	anatite	Rt	rntile		
Bt	biotite, mica poir	Zrn	zircon		

La liste complète des abréviations est présentée à l'appendice B1. Les abréviations des minéraux sont tirées de la liste de Kretz (1983), sauf pour certains termes génériques qui n'y apparaissent pas.

PREMIÈRE PARTIE

INTRODUCTION

Figure 1.1. La brèche intrusive de Rivard. Le dyke fait 1 m de largeur.

Chapitre 1

INTRODUCTION

1.1- INTRODUCTION

Les xénolites présents dans certaines roches alcalines fournissent des renseignements essentiels sur la nature et l'évolution des couches profondes de la lithosphère (McGetchin et Silver 1972; Frey et Green 1974; Menzies 1983; Griffin et al. 1984; Nixon 1987a, b; Wilshire et al. 1988; Rudnick 1992; Wilkinson et Stolz 1997). Les magmas primitifs, de par leur composition minéralogique et chimique, apportent également des informations pertinentes sur la composition et l'histoire de leur source mantellique (Gast 1968; Treuil et Varet 1973; Cox et al. 1979; Pearce 1983; Edgar 1987; Sun et McDonough 1989; Hirose et Kushiro 1993; Cousens et al. 1994). La brèche intrusive de Rivard, une minette protérozoïque riche en xénolites, présente ainsi un intérêt géologique considérable. Tout d'abord parce que ses milliers de xénolites représentent un échantillonnage varié du soubassement de la Ceinture métasédimentaire du Grenville. Les quelques exemples connus de dykes ou de diatrèmes contenant des fragments de la lithosphère grenvillienne (Gold 1972; Raeside et Helmstaedt 1982; Mahlburg Kay et al. 1983; Trzienski et Marchildon 1989; Rudnick 1992) sont d'âge mésozoïque et ne montrent pas l'abondance et la diversité observées dans la brèche de Rivard. La brèche est également intéressante parce que le magma porteur des xénolites possède des particularités pétrographiques et géochimiques qui le rapprochent d'une suite plutonique de même âge affleurant dans la région. Enfin, la brèche a préservé des structures qui renseignent sur les processus de fragmentation associés aux magmas alcalins.

Cette brèche exceptionnelle recèle donc une quantité énorme d'informations parmi lesquelles on tentera de dégager les plus essentielles. Par les levés de terrain, l'examen pétrographique, l'analyse chimique des roches et des minéraux, et la modélisation, on cherchera à savoir pourquoi la brèche contient une aussi grande abondance et une aussi grande diversité de xénolites et, quelle est l'origine de ces fragments et de la roche qui les cimente. Cette recherche permettra d'apporter des précisions sur: 1) les mécanismes de formation et de transport des xénolites dans les magmas alcalins; 2) sur la viscosité, la vitesse d'ascension et le comportement dynamique de la minette chargée de fragments; 3) la profondeur de mise en place de la brèche et donc du niveau d'érosion actuel; 4) l'origine et l'histoire de la minette porteuse, son environnement tectonique de formation et son lien avec les intrusions potassiques de la région; 5) l'étendue du magmatisme ultrapotassique en profondeur; 6) la composition des niveaux sous-jacents au terrane de Mont-Laurier; 7) l'origine des xénolites ultramafiques de la brèche, leur relation mutuelle et avec la minette; 8) la nature et l'importance du métasomatisme ayant affecté ces xénolites, sa relation possible avec le magmatisme ultrapotassique et les événements tectoniques qui ont marqué la Ceinture métasédimentaire du Grenville.

La thèse est divisée en trois parties. La première partie est une introduction; elle présente la problématique, et aborde de façon générale les sujets traités dans la deuxième partie (formation et transport des xénolites, magmas ultrapotassiques, minettes, xénolites ultramafiques, métasomatisme). On y retrouvera en outre la contribution de l'auteur, les travaux effectués et les méthodes employées. L'introduction présente enfin le cadre géologique régional et une description détaillée de la brèche intrusive de Rivard.

La deuxième partie comprend trois chapitres. Le premier est un article déjà publié et les deux autres sont des projets d'articles à soumettre:

- Fragmentation processes and xenolith transport in a Proterozoic minette dyke, Grenville Province, Québec, par David Morin et Louise Corriveau (publié dans Contributions to Mineralogy and Petrology, vol. 125: 319-331);
- Mesoproterozoic deep K-rich magmatism recorded in a megacryst- and xenolith-bearing minette dyke, western Grenville Province, Québec, par David Morin, Louise Corriveau et Réjean Hébert (à soumettre);
- 3) Xenolith samples of late-Proterozoic magmatism and metasomatism below the western Grenville Province, par David Morin, Louise Corriveau et Réjean Hébert (à soumettre; ce long article sera vraisemblablement subdivisé avant d'être soumis pour publication).

Ces trois chapitres sont suivis d'une conclusion générale et d'une liste bibliographique unique pour toute la thèse. Enfin, les appendices forment la troisième partie de la thèse.

1.2- PROBLÉMATIQUE

1.2.1- Formation et transport des xénolites

Les xénolites transportés par les magmas alcalins constituent l'une des principales fenêtres que nous ayons sur la croûte profonde et le manteau supérieur des continents et des océans. On sait toutefois relativement peu de chose sur les raisons intrinsèques de leur présence dans certaines roches ignées car les mécanismes de formation des xénolites opérant en profondeur ne peuvent généralement pas être observés directement. Il est reconnu que l'ascension des magmas riches en xenolites doit être rapide et se faire par propagation de fracture, pour empêcher la sédimentation des fragments denses et leur résorption dans le liquide chaud (Spera 1984, 1987; Kuo et Kirkpatrick 1985; Maaløe 1987; Dudas et al. 1994; Green 1994; Valentine and Groves 1996). Les vitesses d'ascension sont de l'ordre de 0.01 - 5 m·s⁻¹ pour les basaltes alcalins et les néphélinites et de 10 - 30 m·s⁻¹ pour les kimberlites (Spera 1987). Parce que les fragments d'origine mantellique sont très souvent associés à des brèches de diatrèmes impliquant des magmas riches en volatils (kimberlites, lamproïtes, minettes, etc.), on relie généralement, mais de façon plus ou moins explicite, la formation et le transport des xénolites à l'ascension rapide des magmas, à leur mise en place explosive ou à la fluidisation (McBirney 1959; Clement 1975; Wyllie 1980; Bailey 1985). Toutefois, les diatrèmes n'atteignent que quelques kilomètres de profondeur et sont enracinés par des dykes, montrant que ces processus sont superficiels et souvent d'importance secondaire relativement au phréatomagmatisme (Wolfe 1980; Spera 1984; Lorenz 1985; Mitchell 1986; Morin et al. 1996). Pour expliquer l'abondance et la diversité des xénolites de la brèche intrusive de Rivard, il faut donc chercher un mécanisme de bréchification pouvant opérer en profondeur et de façon plus ou moins continue.

Parce qu'elle s'est mise en place dans la croûte moyenne, qu'elle n'est pas déformée, métamorphisée ni altérée, la brèche a préservé des structures reliques développées lors de sa mise en place. Ces structures, et plus particulièrement les apophyses et les fragments partiellement détachés de l'encaissant, permettent d'étudier les processus de formation et de transport des xénolites en profondeur, sans l'interférence des mécanismes superficiels. Dans la lithosphère, et jusqu'à des niveaux très profonds, les dykes constituent le principal mode de transport des magmas (Maaløe 1987; Emerman et Marrett 1990; Clemens et Mawer 1992). Toutefois, des facteurs externes, comme par exemple la rencontre de niveaux de marbres, peuvent inhiber la progression des dykes et favoriser la formation de plutons (Clemens et Mawer 1992; Corriveau et Leblanc 1995). Des recherches

récentes ont montré que la propagation des dykes peut s'accompagner d'une déformation inélastique de l'encaissant qui se manifeste par des fractures parallèles aux épontes (Delaney et al. 1986; Pollard 1987; Rubin 1993). En établissant un lien entre ces travaux et nos observations de terrain, nous avons été en mesure de proposer un modèle qui rend compte de l'abondance et de la diversité des xénolites dans la brèche de Rivard (chapitre 2).

1.2.2- Roches ultrapotassiques

Les roches ultrapotassiques forment un ensemble hétérogène de roches ignées alcalines caractérisées par des concentrations élevées en K et autres éléments incompatibles. Foley et al. (1987) proposent de les définir en fonction de certains critères géochimiques: (en % poids) $K_2O > 3\%$, MgO > 3% et $K_2O/Na_2O > 2$. On retrouve ces caractéristiques dans des roches exotiques comme les ougandites, mafurites, lamproïtes, leucitites, mais également dans des trachytes, latites, pyroxénites et minettes (Sahama 1974; Foley et al. 1987; Mitchell et Bergman 1991; Foley 1992a). Les kimberlites sont généralement exclues parce que trop pauvres en éléments alcalins. Les limites utilisées pour définir les roches ultrapotassiques sont toutefois arbitraires comme le montre l'association fréquente de ces roches avec des termes moins potassiques (Peccerillo 1985; Varne 1985; Foley et al. 1987; Rock 1991; Müller et al. 1992; Corriveau et Gorton 1993; Edwards et al. 1994).

En dépit de leur rareté et de leurs volumes généralement faibles, les roches ultrapotassiques sont présentes un peu partout dans le monde avec des âges variant de l'Archéen à l'actuel (Lloyd et al. 1985; Foley et al. 1987; Corriveau et al. 1990; Laflèche et al. 1991; Mitchell et Bergman 1991; Peterson et al. 1994; Carmichael et al. 1996). Elles sont subdivisées en trois groupes principaux en fonction de leur composition et de leur environnement de mise en place (Foley et al. 1987; tableau 1.1). Les lamproïtes du groupe I sont les plus enrichies en K et autres éléments incompatibles et apparaissent en domaine continental stable ou dans les zones orogéniques (Australie, États-Unis). Les kamafugites du groupe II sont caractérisées par des teneurs élevées en CaO et faibles en SiO₂ et sont associées à des rifts continentaux (Afrique de l'est). Les plagioleucitites du groupe III (Foley 1992a) sont plus riches en Al₂O₃ et pauvres en Nb et Ti et sont associées aux zones orogéniques actives (Indonésie, Italie). Le groupe IV rassemble les roches aux caractéristiques intermédiaires entre celles de deux des trois groupes principaux, principalement des groupes I et III (Foley et al. 1987). Les roches ultrapotassiques forment donc un vaste groupe, hétérogène de par leur composition minéralogique et chimique, leurs associations lithologiques et leur contexte tectonique de mise en place. Cette diversité reflète la complexité des processus impliqués dans leur genèse et leur évolution.

GROUPE	l (Lamproïte)	II (Kamafugite)	III (Plagioleucitite)
CONTEXTE TECTONIQUE	continent zone orogénique	rift continental	arc insulaire zone de collision
LOCALITÉ	Kimberley, Gaussberg, Leucite Hill	Afrique de l'est Italie	lles de la Sonde Italie
LITHOLOGIE	lamproïte wyomingite Orendite, etc.	kamafugite mafurite ougandite	minette leucitite latite
ROCHES ASSOCIÉES	kimberlites shoshonites	alcalines sodiques carbonatites	tholéiitiques calco-alcalines shoshonitiques
GÉOCHIMIE	pauvres en Al, Ca, Na K/Na et K/Al élevés	riches en Ca, pauvres en Si, Na, Al	riches en Al, pauvres Ti Mg# et K/Al faibles
	très riches en Ba, Rb, K, Ti, LREE Nb, Ta, Zr variables anomalie nég. en Sr	enrichissement en éléments incomp., riche en Nb, Ta, Zr	enrichissement en éléments incomp., anomalie négative en Ti, Nb, Ta, Zr, Ba
XÉNOLITES	péridotites	pyroxénites (mica) péridotites	pyroxénites péridotites
MINÉRAUX PARTICULIERS	pridérite, wadéite, shcherbackovite, diamant	mélilite, pérovskite, kalsilite	plagioclase leucite

Tableau 1.1 Classification des roches ultrapotassiques; d'après Foley et al. (1987) et Foley (1992a)

De nombreux modèles ont été proposés pour expliquer l'enrichissement important en K et autres éléments incompatibles des roches ultrapotassiques et sont discutés par Gupta et Yagi (1980) et Foley et al. (1987). Le fractionnement de clinopyroxène et de grenat pourrait enrichir un liquide picritique en K₂O et accroître son rapport K₂O/Na₂O (O'Hara et Yoder 1967). Toutefois, des taux de fractionnement extrêmes (> 95%) seraient nécessaires pour atteindre les niveaux observés dans les roches ultrapotassiques. De plus, le caractère primitif de nombreux magmas ultrapotassiques, c'est-à-dire leur *mg* (100 x Mg/Mg+Fe) et leur contenu en Cr élevés, est difficile à réconcilier avec l'extraction d'importantes quantités de clinopyroxène. Les contenus élevés en MgO, Cr, Ni, et faibles en SiO₂, dans de nombreuses roches ultrapotassiques, rendent également improbable l'assimilation de xénolites crustaux et le fractionnement de clinopyroxène comme processus de l'enrichissement en K et autres éléments incompatibles. Des mécanismes comme le "zone refining" (Harris et Middlemost 1969) ont été rejetés parce que la fusion partielle et le début de l'enrichissement des liquides doivent s'effectuer à très grande profondeur (> 500 km), et donc de façon indépendante aux environnements tectoniques, alors que les roches ultrapotassiques sont liées à des contextes tectoniques bien particuliers (Foley et al. 1987). Ces processus paraissent donc incapables de produire les magmas ultrapotassiques.

Parce que le manteau lherzolitique primitif est pauvre en K_2O (< 0.1%; McDonough et Sun 1995), des taux de fusion partielle extrêmement faibles seraient nécessaires pour rendre compte de l'enrichissement important observé dans les roches ultrapotassiques (Gast 1968; Roden 1981). Bien que l'extraction de très petites quantités de liquide soit possible par percolation (McKenzie 1985), il semble plus facile d'expliquer les particularités de ces magmas par la fusion d'un manteau enrichi. Ce modèle est aujourd'hui largement accepté bien que l'origine, la nature et les mécanismes de cet enrichissement soient débattus (Lloyd et Bailey 1975; Wass et Rogers 1980; Menzies 1983; Hawkesworth et al. 1984; Spera 1984; Bailey 1982, 1985; Peccerillo 1985; Laughlin et al. 1986; Francis 1987; Wilshire et al. 1988; Kesson et Ringwood 1989; Mitchell et Bergman 1991; Maury et al. 1992; Nelson 1992; Foley 1992a, b; Zinngrebe et Foley 1995; Wulf-Pedersen et al. 1986).

Certains xénolites contiennent de la phlogopite ou de l'amphibole apparaissant dans les interstices ou dans des veines (Francis 1976a, b; Frey et Prinz 1978; Erlank et al. 1987; Harte 1987; Vidal et al. 1989). D'autres sont essentiellement constitués de clinopyroxène et de phlogopite (Lloyd 1981; Lloyd et al. 1985; Peterson et al. 1994). La minéralogie des xénolites de clinopyroxénite micacée peut s'expliquer par des réactions (dans le manteau) où l'olivine et l'orthopyroxène réagissent avec un fluide ou un magma pour former de la phlogopite et du clinopyroxène (Yoder et Kushiro 1969; Modreski et Boettcher 1973; Barton et Hamilton 1979; Wyllie et Sekine 1982; Edgar et Arima 1983, 1984; Lloyd et al. 1985, 1991). Ces particularités minéralogiques s'accompagnent d'un enrichissement en K et en éléments traces incompatibles (Ba, Rb, Sr, La, etc.) relativement aux péridotites du manteau (Lloyd et Bailey 1975; Wilshire et al. 1988). La fusion partielle de roches contenant de la phlogopite peut ainsi générer des magmas ultrapotassiques et ce modèle est appuyé par plusieurs travaux expérimentaux (Modreski et Boetcher 1973; Wendlandt et Eggler 1980; Barton et Hamilton 1982; Lloyd et al. 1985; Edgar 1987; Esperança et Holloway 1987; Foley 1992a; Righter et Carmichael 1996).

Les fluides riches en H₂O ou CO₂ (i.e. inclusions fluides) ou les magmas (i.e. dykes) responsables du métasomatisme peuvent être associés à des intrusions recoupant le manteau (Irving 1980; Eggler 1987; Wilshire et al. 1988; Kelemen et al. 1992; Wulf-

Petersen et al. 1996) ou provenir de régions plus profondes du manteau (Francis 1976b; Bailey 1982, 1985; Dautria et al. 1992; Maury et al. 1992; Foley 1992a, b; Schiano et al. 1995; Xu et al. 1996). Dans les environnements de subduction, des fluides ou des liquides silicatés issus de la plaque subductée pourraient migrer vers le haut et enrichir les manteaux asthénosphérique et lithosphérique sus-jacents (Gill 1981; Tatsumi et al. 1986; Kesson et Ringwood 1989; Nelson 1992; Stevens et Clemens 1993; Cousens et al. 1994; Ionov et Hofmann 1995). Zinngrebe et Foley (1995) proposent que la circulation de liquides riches en silice et alumine, et en éléments alcalins peut être à l'origine de lithologies riches en CaO.

1.2.3- Lamprophyres et minettes

1.2.3.1. Lamprophyres

Les lamprophyres forment une classe de roches ignées alcalines, surtout mafiques, riches en volatils et caractérisés par la présence de phénocristaux d'amphibole ou de biotite (± olivine, clinopyroxène) dans une matrice fine composée des phases apparaissant comme phénocristaux, de plagioclase et (ou) feldspath potassique, avec des quantités variables de feldspathoïde, zéolite, calcite, apatite, titanite, zircon, quartz, et des minéraux exotiques comme la pérovskite, la leucite, etc. (Rock 1977, 1984, 1991; Streckeisen 1979). Rock (1991) propose une classification des lamprophyres qui inclut les lamproïtes et les kimberlites (tableau 1.2) mais ce regroupement est controversé (Mitchell et Bergman 1991; Wooley et al. 1996).

Les lamprophyres apparaissent généralement sous forme de dykes mais peuvent former des diatrèmes (Clark et al. 1967; Gold 1972; Raeside et Helmstaedt 1982; Gold et al. 1986). Ils recoupent toutes les provinces géologiques de l'Est du Canada avec des âges variant de l'Archéen au Mésozoïque (Gold 1972; Bachinski et Scott 1979; Easton 1986;

Lamprophyres calco-alcalins (shoshonitiques)	Lamprophyres alcalins	Lamprophyres ultramafiques	Lamproïtes	Kimberlites
Minette Vogésite Kersantite Spessartite	Camptonite Monchiquite Sannaite	Aillikite Alnoïte Damtjernite Ouachitite Polzénite	Lamproïte à Ol Fitzroyite Jumilite Wyomingite Cocite, etc.	Groupe I Groupe II

Tableau 1.2. Classification simplifiée des lamprophyres d'après Rock (1991)

Foland et al. 1986; Malpas et al. 1986; Pe-Piper et Jansa 1987; Corriveau et al. 1990; Bossé et Bourne 1991; Stern et Hanson 1992; Wyman et Kerrich 1993; Bédard 1994b). Certains d'entre eux peuvent contenir des xénocristaux ou des xénolites d'origine crustale ou mantellique (Hodgson 1968; Marchand 1970; Gold 1972; Bédard et al. 1988; Trzcienski et Marchildon 1989; Owen et al. 1991; Fryer et al. 1997).

1.2.3.2 Minettes

Les minettes sont des lamprophyres riches en K (souvent ultrapotassiques) et en volatils, classées parmi les lamprophyres calco-alcalins (tableau 1.2). Elles forment des dykes et des laves à phénocristaux de biotite (\pm clinopyroxène, olivine) dans une matrice à feldspath potassique (\pm leucite, plagioclase, quartz; Velde 1971; Streckeisen 1979; LeCheminant et Gorton 1984; Rock 1984). Les phénocristaux de biotite, la cristallisation tardive des feldspaths (restreints à la matrice) sont associés aux concentrations élevées en K₂O et en H₂O (Yoder et Tilley 1962; Velde 1971; Rock 1991).

Les minettes sont restreintes au domaine continental et peuvent être associées à des granitoïdes, shoshonites, syénites, latites, etc. (Rock 1984; Thompson et Fowler 1986; Thompson et al. 1989; Wallace et Carmichael 1989; Fowler et Henney 1996) ou former des termes intermédiaires avec des basanites ou d'autres types de lamprophyres ou des lamproïtes (Luhr et Carmichael 1981; Rock 1984; Peterson et al. 1994). Elles peuvent contenir des xénolites cogénétiques, d'origine crustale ou mantellique (Ehrenberg 1979; Rock 1991; Peterson et al. 1994; Morin et Corriveau 1995).

La plupart des modèles proposés pour expliquer la genèse des minettes invoquent la fusion partielle d'un manteau enrichi contenant de la phlogopite (clinopyroxène, apatite) en présence de fluides riches en H₂O (Bachinski et Scott 1979; Ehrenberg 1979; Roden 1981; Edgar 1987; Wallace et Carmichael 1989; MacDonald et al. 1992; Lange et al. 1993). Ces modèles sont appuyés par des travaux expérimentaux portant spécifiquement sur des minettes (Esperança et Holloway 1987; Righter et Carmichael 1996). L'hypothèse voulant que des lamprophyres calco-alcalins puissent résulter de la fusion partielle de la croûte profonde en présence de fluides riches en CO₂ (Peterson et Newton 1990) a été infirmée par d'autres travaux expérimentaux (Clemens 1993). L'évolution des magmas de type minette semble être complexe et impliquer plusieurs composantes mantelliques, la cristallisation fractionnée, la contamination crustale et les mélanges de magmas, comme le montrent 1) leur composition isotopique variable, 2) les intrusions cogénétiques, 3) la présence de xénolites et de plusieurs familles de macrocristaux, et 4) les textures de déséquilibres (Rock 1984; LeCheminant et al. 1987; O'Brien et al. 1988; Wallace et Carmichael 1989; McDonald et al. 1992; Carmichael et al. 1996). Rock (1991) suggère que

les minettes pourraient être des magmas lamproïtiques contaminés par la croûte. Elles pourraient d'autre part avoir participé à la genèse d'autres roches comme des phonolites, trachytes, syénites, shoshonites, granitoïdes, etc., avec lesquelles elles sont fréquemment associées (Thompson et Fowler 1986; O'Brien et al. 1988; Rock 1991; Fowler et Henney 1996). Un lien de parenté comparable a été proposé pour les lamprophyres et les plutons montérégiens (Philpotts 1974; Bédard et al. 1988). Le lien entre la minette de Rivard et les plutons potassiques de la région de Mont-Laurier est discuté au chapitre 3.

Comme d'autres roches mafiques alcalines, les minettes sont très enrichies en éléments traces incompatibles. Toutefois, leur patron d'éléments traces se distingue par une anomalie négative en Nb, Ta et Ti (Rock 1991). Cette signature est typique des magmas des zones de subduction (Pearce 1983) et marque également les roches ultrapotassiques du groupe III (Foley et al. 1987; Müller et al. 1992). Cette particularité suggère un lien avec les zones de subduction, bien que les minettes apparaissent dans des contextes tectoniques variés en domaine continental (Luhr et Carmichael 1981; Rock 1984; Laughlin et al. 1986; Pognante 1992; Carmichael et al. 1996). Certaines minettes sont directement associées à des marges continentales actives (Wallace et Carmichael 1989). D'autres montrent un lien moins évident avec la subduction avec des âges relatifs tardi- à post-tectoniques (Thompson et Fowler 1986; Pognante 1992). La réactivation, dans un environnement de rift, de transpression, de point chaud, etc., d'un manteau métasomatisé lors d'un épisode de subduction antérieur, pourrait expliquer le décalage entre subduction (métasomatisme du manteau) et magmatisme potassique (Venturelli et al. 1984; Thompson et al. 1989; MacDonald et al. 1992; Nelson 1992; Lange et al. 1993; Carmichael et al. 1996; Morris et Hooper 1997). Peterson et al. (1994) proposent que les minettes de la Province de Churchill prennent leur source dans le manteau asthénosphérique alors que les lamproïtes (plus jeunes) proviennent du manteau lithosphérique; les deux sources étant métasomatisées par des fluides associés à la subduction.

1.2.4- La minette de Rivard

Dans la région de Mont-Laurier, les roches de la Ceinture métasédimentaire du Grenville, d'âge mésoprotérozoïque, sont recoupées par le dyke de Rivard, une minette riche en xénolites (fig. 1.1; section 1.6). Cette minette présente de nombreuses caractéristiques pétrographiques et géochimiques communes avec les plutons potassiques de la région (fig. 1.3; section 1.5), en plus d'avoir un âge comparable (Corriveau et al. 1990; Corriveau et Gorton 1993; Morin et al. 1994; chapitre 3). Toutefois, à la différence des unités plutoniques dont la cristallisation a été lente, la minette a préservé des textures fragiles qui révèlent une histoire complexe. Les différentes familles de macrocristaux et les textures de déséquilibre qu'elle contient suggèrent que le mélange de magmas, la cristallisation fractionnée et la contamination ont participé à son évolution. Comme pour d'autres minettes observées un peu partout dans le monde, la minette de Rivard montre des teneurs élevées en éléments traces compatibles et incompatibles (sauf Nb, Ta) qui révèlent une source mantellique inhabituelle (Carmichael et al. 1996). Ces caractéristiques pourraient être l'empreinte des nombreux événements tectoniques et magmatiques qui ont marqué l'orogenèse grenvillienne, et ceci en dépit du fait que la minette se soit mise en place plus de 100 Ma après l'épisode majeur de collision et de métamorphisme (van Breemen et Corriveau 1995; Boggs 1996; Corriveau et al. 1996a). La minette de Rivard apporte donc des informations pertinentes sur la composition et l'évolution du manteau modifié sous la Ceinture métasédimentaire du Grenville (section 1.5; chapitre 3).

1.2.5- Xénolites

Les xénolites parfois présents dans les roches extrusives ou intrusives, mafiques à ultramafiques, peuvent avoir diverses origines. Il peut s'agir de fragments cogénétiques (laves, pyroclastites, roches hypabyssales, cumulats), ou bien de fragments de l'encaissant immédiat ou d'origine plus profonde, arrachés lors de la montée du magma. Le problème majeur dans l'étude des xénolites provient du fait que ces roches sont séparées de leur environnement géologique d'origine. Ce dernier ne pourra qu'être déduit à partir des structures et des textures préservées, de la composition de la roche et de celle des minéraux constituants. Dans certains cas, les indications essentielles permettant de retracer l'origine d'un xénolite peuvent avoir été effacées à divers degrés par des événements tectonique, magmatique, métamorphique et (ou) métasomatique tardifs. Il peut même être difficile de déterminer jusqu'à quel point les textures et la composition initiales ont été altérées. De plus, la géothermobarométrie est souvent confrontée à l'absence d'assemblages minéralogiques appropriés ou aux indications d'un déséquilibre entre les phases. Toutefois, et en dépit de ces contraintes, l'étude des xénolites demeure un moyen incontournable pour connaître et comprendre la nature et l'histoire des niveaux lithosphériques profonds. Dans le cas où les relations géologiques et structurales originales de certaines roches ne peuvent être observées (xénolites, zones de failles, copeaux tectoniques, etc.), les textures et la chimie des roches et des minéraux constituent les moyens essentiels d'étude de ces roches (Irving 1980; Harte 1983; Conrad et Kay 1984; Morin et al. 1993a, b; Franz et al. 1996). Alors que des programmes nationaux ou internationaux s'intéressent à la structure de la croûte terrestre actuelle à l'aide de la géophysique (Lithoprobe, Radarsat), les xénolites permettent de préciser la nature même des matériaux de la lithosphère continentale et leur évolution dans le temps. Signalons que la ligne 53 de la section Lithoprobe passe à 15 km seulement au nord de la brèche de Rivard (Martignole et Calvert 1996).

Les xénolites provenant des niveaux crustaux profonds sont surtout des granulites mafiques, des gabbroïdes, des pyroxénites et des péridotites (Conrad et Kay 1984; Wilshire et al. 1988; Chen et al. 1992; Rudnick 1992; Ruiz 1992). Les xénolites ultramafiques d'origine mantellique incluent des lherzolites, harzburgites, dunites, wehrlites et pyroxénites (Francis 1976a, b; Harte 1983; Nixon 1987b; Sen 1988; Wiechert et al. 1997). Certains xénolites sont composites et formés de péridotite recoupée par des dykes de pyroxénite (Lloyd et Bailey 1975; Frey et Prinz 1978; Irving 1980; Wilshire et al. 1988). Les xénolites mantelliques forment ainsi un continuum entre un pôle péridotitique (lherzolite, harzburgite, dunite), représentant un manteau appauvri ou non en composante basaltique, et un pôle pyroxénitique (clinopyroxénite, websterite, wehrlite, dunite), représentant soit le produit de cristallisation de magmas en profondeur, soit le produit d'interaction entre les péridotites et des magmas ou des fluides ayant circulé dans le manteau (Frey et Green 1974; Frey et Prinz 1978; Harte 1983, 1987; Menzies 1983; Erlank et al. 1987; Wilshire et al. 1988; Kesson et Ringwood 1989; Lloyd et al. 1991; Kelemen et al. 1992; Varfalvy et al. 1996; Xu et al. 1996; Wilkinson et Stolz 1997). Les minéraux de l'encaissant péridotitique sont généralement plus riches en Mg, Cr, Ni et plus pauvres en Al, Fe, Ti et Na que ceux des veines pyroxénitiques. Ces différences correspondent aux distinctions établies par Wilshire et Shervais (1975; diopside-Cr, augite-Al) et par Frey et Prinz (1978; groupes I et II). Les dykes pyroxénitiques et leurs épontes montrent divers types et degrés d'enrichissement en éléments traces incompatibles (Lloyd et Bailey 1975; Irving 1980; McPherson et al. 1996; Varfalvy et al. 1996).

Certains xénolites de clinopyroxénite à spinelle contenant des minéraux particulièrement riches en Al et pauvres en Cr sont interprétés comme les produits de cristallisation de magmas alcalins dans la croûte inférieure ou le manteau (Aoki et Kushiro 1968; Kutolin et Frolova 1970; Chapman 1975; Irving 1980; Moukadiri et Kornprobst 1984; Wilkinson et Stolz 1997). Une origine similaire est proposée pour les mégacristaux (clinopyroxène, orthopyroxène, olivine, amphibole, ilménite, phlogopite, feldspaths, etc.) parfois présents dans les basaltes alcalins (Binns et al. 1970; Irving 1974a, 1980; Ehrenberg 1979; Wass 1979; Harte 1983; Eggler et al. 1987; Schulze 1987; Bédard 1988; Dal Negro et al. 1989). La composition très inhomogène du manteau est ainsi montrée par les xénolites composites ou contenant des minéraux métasomatiques, et les lithologies variées présentes dans les complexes ophiolitiques (Lloyd et Bailey 1975; Irving 1980; Quick 1981; Bédard et Hébert 1996; Varfalvy et al. 1996).

1.2.6- Xénolites ultramafiques de la brèche intrusive de Rivard

À notre connaissance, la brèche intrusive de Rivard constitue le seul exemple d'intrusion riche en xénolites exotiques, recoupant la Province de Grenville. Des intrusions crétacées contenant des xénolites d'origine grenvillienne (gneiss), ou plus rarement mantellique (péridotites, webstérites), sont toutefois présentes dans les Basses-Terres du Saint-Laurent (Marchand 1970; Raeside et Helmstaedt 1982; Gold et al. 1986) ou les Appalaches (Mahlburg Kay et al. 1983; Trzcienski et Marchildon 1989; Owen et al. 1991; Fryer et al. 1997). Il est intéressant de noter que l'alnoïte de l'île Bizard contient de grands xénocristaux de clinopyroxène comme on en observe dans la brèche de Rivard.

Bien qu'il ne soit pas possible d'établir une stratigraphie des niveaux sous-jacents, l'ensemble des fragments de la brèche intrusive de Rivard constitue un échantillonnage varié des couches traversées par la minette (fig. 1.2; section 1.6.6; tableaux 1.4, 2.2; appendices B, C). La grande diversité des types lithologiques présents montre qu'une section importante de la lithosphère est représentée et que la géologie profonde est probablement aussi complexe que celle observée en surface. Plusieurs types de xénolites n'ont pas d'équivalent sur les affleurements de la région et représentent ainsi des échantillons de roches autrement inaccessibles.

L'étude détaillée de l'ensemble des xénolites de la brèche intrusive de Rivard dépasse le cadre de la présente thèse. Nous nous attarderons donc aux fragments de pyroxénite micacée qui sont peut-être apparentés à la minette (chapitre 3), aux abondants xénolites de clinopyroxénites, aux webstérites et aux plus rares fragments de dunite et de wehrlite à spinelle qui pourraient avoir une origine mantellique (chapitre 4). Les fragments de manteau "typique", c'est-à-dire les lherzolites et les harzburgites, n'ont pas été observées dans la brèche. La composition minéralogique et chimique particulière des xénolites ultramafiques de la brèche peut donc signifier qu'ils représentent des fragments d'un manteau modifié ou d'intrusions recoupant le manteau supérieur ou la croûte profonde. Un autre aspect intéressant des xénolites ultramafiques de la brèche de Rivard est la présence de phases secondaires comme la phlogopite, l'amphibole ou la calcite. Ces minéraux sont les marqueurs de la circulation de magmas ou de fluides riches en H₂O, K et (ou) CO₂. Ces liquides ou fluides pourraient être rattachés eux aussi, directement ou indirectement, au magmatisme potassique protérozoïque affectant la Ceinture métasédimentaire du Grenville. Ces questions sont abordées plus en détail aux chapitres 3 et 4.

Figure 1.2. Composition minéralogique des xénolites de la brèche intrusive de Rivard. a) Abondance relative des minéraux mafiques (MF: olivine, spinelle, grenat, pyroxènes, amphibole, mica, oxydes, sulfures), des feldspaths (plagioclase, feldspath potassique) et du quartz de l'ensemble des xénolites pour lesquels la composition modale a été déterminée par estimation visuelle. Il est important de noter que les points représentés sont représentatifs de la variation de composition mais non de proportion des différents types lithologiques, les roches felsiques étant nettement sous-représentées. b) Abondance relative du plagioclase (Pl), du clinopyroxène (Cpx) et de l'orthopyroxène (Cpx) dans les xénolites mafiques et ultramafiques. c) Abondance relative de l'olivine (Ol), du clinopyroxène (Cpx) et de l'orthopyroxène (Cpx) et de l'orthopyroxène (Cpx) et de l'orthopyroxène (Cpx) et de l'orthopyroxène (Cpx), dans les xénolites ultramafiques. d) Abondance relative des minéraux mafiques (olivine, spinelle, pyroxènes), de l'amphibole (Am) et de la phlogopite (ou biotite; Phl) dans les xénolites ultramafiques.

1.3- MÉTHODOLOGIE

1.3.1- Travaux de terrain

La brèche intrusive de Rivard a été découverte à l'été 1992 lors de travaux de cartographie par la Commission géologique du Canada (Corriveau et Jourdain 1992). Les travaux de terrain se sont déroulés au cours des étés 1992 et 1993, et ont été réalisés avec l'aide précieuse de L. Corriveau, R. Hébert, L. Madore, M. Tellier, K. Boggs, N. Mohan, M. Simard et M. Mainville (sauf indication contraire, l'auteur a effectué les travaux mentionnés). La brèche n'affleurait initialement que sur quelques mètres carrés mais des travaux de décapage, d'abord manuels puis mécaniques (Céré excavation de Mont-Laurier, sous la supervision de D. Bouliane), ont permis de la dégager et de la nettoyer sur environ 110 m, grâce à un projet conjoint entre la Commission géologique du Canada et Ressources KWG. Le dyke a été divisé en sections de 1 m sur toute sa longueur, du nord vers le sud. Le numéro des échantillons prélevés est précédé des lettres A, B, C ou D, correspondant aux quatre affleurements initiaux. Le numéro indique ainsi la localisation de l'échantillon (à 1 m près) dans le dyke. Du nord vers le sud: la section A se poursuit sur 23 m, la section B sur 11 m, la section C, séparée de la précédente par la route d'accès, s'étend sur 49 m, alors que la section D fait environ 25 m. Les sections E et F affleurent respectivement à 40 et 90 m plus au sud et montrent un dyke d'environ 10 cm de largeur, contenant lui aussi des xénolites. La brèche a été photographiée sur toute sa longueur. La figure 2.2 a été réalisée en bonne partie à partir des photos du dyke (figs 1.4, 2.3). Louise Corriveau et moi-même avons décrit sur l'affleurement tous les xénolites de la section B, une grande partie de ceux de la section A et de façon moins systématique ceux des sections C et D (appendice B), tout en s'assurant qu'aucun xénolite ultramafique à olivine ou à grenat n'était oublié. Cette description comprend dans la plupart des cas: le nom de la roche, les dimensions du xénolite, son arrondi, sa granulométrie, les principaux minéraux constituants, les textures les plus évidentes et certains commentaires. Plus de 1500 xénolites ont ainsi été examinés. Comme cette étude s'inscrit dans le cadre d'un projet de géologie régionale de la Commission géologique du Canada sous la gouverne de Louise Corriveau, il a été possible d'établir une comparaison entre les xénolites et les roches grenvilliennes affleurant à la surface. Les notes de terrain ont été complétées par mes observations au microscope.

Le lamprophyre et les xénolites ont ensuite été échantillonnés. Monopros a analysé à ses frais un échantillon de lamprophyre pour vérifier la présence de diamant ou de minéraux indicateurs (Tellier et al. 1995). Pour éviter toute contamination, les échantillons devant servir à cette analyse ont été prélevés au ciseau, avant l'échantillonnage à la scie au diamant.

L'échantillonnage à la scie a ensuite permis de récupérer plus d'une centaine d'échantillons de roche dont la plupart contenaient de nombreux xénolites. Les xénolites ultramafiques ont nettement été privilégiés durant l'échantillonnage. Les différentes injections de minette, le gneiss encaissant et la minette de Girard (située à 8 km au sud de la minette de Rivard; fig. 1.3) ont également été échantillonnés. L'attitude du dyke, des apophyses et de la foliation de l'encaissant ont été mesurées (appendice A). M. Tellier a mesuré la direction et la longueur des apophyses de la brèche de Rivard.

1.3.2- Laboratoire et microscopie optique

Les échantillons de la brèche ont été coupés en sections d'environ 2 cm d'épaisseur pour révéler la présence de petits xénolites ultramafiques. La description de nouveaux xénolites s'est ajoutée pendant cette étape. Environ 320 lames minces ont été réalisées (J.-C. Bérubé, INRS-Géoressources) sur des échantillons de xénolites, représentatifs ou particuliers, et des échantillons de la minette de Rivard et de Girard.

Un premier examen des lames au microscope pétrographique a servi à évaluer la validité des descriptions de terrain, de même que la diversité des assemblages minéralogiques et des textures de la minette et des xénolites. Cet examen a permis de constater que les fragments ultramafiques étaient variés et que leur assemblage était largement dominé par le clinopyroxène, avec des quantités variables d'orthopyroxène, de spinelle, de phlogopite et d'amphibole (fig. 1.2, appendices B, C). Les xénolites ultramafiques contenant de l'olivine ou du grenat sont très rares. La variété des textures présentées par les macrocristaux de la minette a également pu être appréciée. L'interprétation des textures a été effectuée avec l'aide de R. Hébert, L. Corriveau et J. Bédard. Un examen plus poussé a permis par la suite d'établir une classification préliminaire basée sur les types lithologiques et les textures (tableau 1.5, appendice C). Cette classification a servi de guide à la sélection des échantillons devant faire l'objet d'analyses à la microsonde, par fluorescence X et par activation neutronique.

1.3.3- Analyses de roches

Les échantillons des six injections de minette ont été coupés en tranches d'environ 0.5 cm pour enlever tout xénolite ou xénocristal. La bordure altérée et les fractures affectant les xénolites ont également été enlevées à la scie. Certains xénolites contiennent toutefois de très fines veinules qui n'ont pu être enlevées. Les échantillons coupés ont été poncés au carbure de silicium, lavés à l'eau et séchés, pour éviter une éventuelle contamination par la lame de la scie. Les roches micacées et les plus felsiques ont été broyées en dernier pour réduire au maximum les risques de contamination. Les échantillons ont été mis en poudre dans un broyeur en agate par M. Greendale (INRS-Géoressources). La plupart des 60 échantillons soumis pour l'analyse géochimique sont des xénolites de composition ultramafique, mais incluent également des fragments mafiques, six échantillons de la minette de Rivard, un de la minette de Girard et un du gneiss granitique encaissant:

Dunite et wehrlite:	2	Gabbros, norites, syénite:	9
Orthopyroxénite:	1	Granulites mafiques:	4
Clinopyroxénites:	27	Métabasites:	2
Webstérites:	5	Minettes:	7
Roches calco-silicatées (CXN):	4	Gneiss encaissant:	1

Les analyses de roche totale par fluorescence X et par activation neutronique ont été faites à l'INRS-Géoressources (Québec) par M. Greendale, J.-P. Ricbourg et R. Gosselin. Une partie des analyses est présentée et discutée aux chapitres 3 et 4 et les analyses complètes sont fournies à l'appendice D. La composition des xénolites est présentée graphiquement sur des diagrammes binaires (fig. 1.6) et sur des diagrammes multi-élémentaires (fig. 1.7).

1.3.4- Analyses de minéraux

Les analyses de minéraux ont été réalisées par spectrométrie de dispersion de longueur d'onde (WDS) à l'aide de la microsonde Camebax SX50 de l'Université de Toronto. Le potentiel d'accélération était de 15 kV, le courant de faisceau de 30 nA (10 nA pour les feldspaths et la biotite), le diamètre de faisceau de 1 μ m et le temps de comptage de 15 à 60 secondes (analyses faites par M. Tellier avec l'aide de C. Cermignani). D'autres analyses ont été réalisées sur la microsonde Camebax SX50 de la Commission géologique du Canada à Ottawa. Le potentiel d'accélération était de 15 kV, le courant de faisceau de 10 à 30 nA, le diamètre de faisceau de 4 μ m et le temps de comptage de 10 à 40 secondes (analyses faites par l'auteur avec l'aide de J. Stirling). Des analyses supplémentaires ont été obtenues sur la microsonde ARL 121000 de l'Université Laval. Le potentiel d'accélération était de 20 kV, le courant de faisceau de 10 nA, le diamètre de faisceau de 10 μ m et le temps de comptage de 10 à 30 secondes (analyses faites naturels ont été utilisés. Les analyses ont été corrigées pour le temps mort, le bruit de fond, l'absorption, la fluorescence et le numéro atomique, et converties en oxydes à l'aide de la méthode PAP de Cameca (Pouchou et Pichoir 1985) ou
celle de Bence et Albee (1968) pour les analyses effectuées sur la microsonde ARL. La formule structurale des minéraux a été calculée à l'aide du programme de G. Pringle (1989).

Une première série d'analyses à la microsonde a servi à évaluer l'étendue des variations de composition, du clinopyroxène en particulier, d'un xénolite à l'autre et à l'intérieur d'un même xénolite (fig. 4.10). Les analyses de minéraux sont présentées à l'appendice E. De nouvelles analyses ont ensuite permis de compléter les résultats préliminaires. Une importante série d'analyses a de plus été réalisée dans le but d'effectuer des déterminations géothermobarométriques sur les fragments de granulites mafiques dont l'assemblage comprend les deux pyroxènes et le grenat (Tellier et al. 1995). Ces xénolites ne sont pas considérés en détail dans la présente thèse, mais sont décrits brièvement aux appendices B et C et les analyses de minéraux sont données à l'appendice E.

1.3.5- Calculs et modélisation

1.3.5.1- Densité, viscosité et vitesse d'ascension de la minette

L'estimation de la vitesse d'ascension de la minette est basée sur la vitesse de dépôt du xénolite le plus dense et le plus volumineux (chapitre 2). Pour estimer cette vitesse, il est nécessaire de connaître la densité du xénolite et du magma, la viscosité, la température et le contenu en volatils du magma. La densité du magma peut être évaluée à partir de la composition chimique de la roche totale (minette sans xénolite) selon la méthode de Bottinga et Weill (1970) basée sur le volume molaire partiel des oxydes (incluant H₂O, estimé à partir de la perte au feu) dans les liquides silicatés. Ainsi, $D = \sum X_i M_i / X_i V_i$, où D est la densité du magma, X_i est la fraction molaire de l'oxyde considéré et V_i est le volume molaire partiel de l'oxyde. La valeur obtenue (2.7 g/cm-3) se compare à celles évaluées pour des basaltes (2.6-2.8 g/cm-3; Murase et McBirney 1973) ou d'autres minettes (2.6-2.7 g/cm-3; Delaney et Pollard 1981). La viscosité newtonienne du magma est évaluée à partir de la composition chimique de la roche totale (minette sans xénolite), selon la méthode de Shaw (1972) qui évalue les variations de la viscosité en fonction de la température pour les liquides à plusieurs composantes (tableau 1.3). Cette méthode a été préférée à celle de Bottinga et Weill (1972) qui ne tient pas compte de la contribution de l'eau à la viscosité du magma. Les incertitudes découlant de celles associées à l'évaluation de la température, de la pression et des teneurs en volatils, sont discutées au chapitre 2. La viscosité calculée (40 Pa·s) est comparable à celles estimées ou mesurées pour des basaltes (Shaw 1972; Murase et McBirney 1973; Wada 1994) et des minettes (Delaney et Pollard 1981). L'influence de la pression sur la viscosité dépend du degré de polymérisation du liquide et celui-ci peut être

Temp. ºC:	1000	1050	1100	1200
Poids % H ₂ O		Viscosité calculée (Pa·s)		
0	354	182	97	31
1	137	72	40	12
1.7	76	41	24	9
2	58	32	19	7
4	14	8	5	2

Tableau 1.3 Viscosité newtonienne de la minette pour différentes températures et différentes teneurs en eau (pression de 1 atm.; Shaw 1972) calculée à l'aide du programme de Don Baker (U. McGill, Montréal)

évalué à partir du rapport NBO/T ("non bridging oxygens/tetrahedrically coordinated cations"; Scarfe et al. 1987). Ce rapport pour la minette a pu être calculé (en estimant FeO/FeO+Fe₂O₃ = 0.9) à l'aide du programme de Tyson Birkett (Commission géologique du Canada, Québec), et le résultat obtenu (0.5) est proche de celui d'un basalte (0.66; Scarfe et al. 1987). La valeur de ce rapport correspond pour la minette à celle du rapport F/M (0.52), c'est-à-dire le rapport des cations formant les réseaux dans le liquide ("network formers": Si, Al, Na, K), sur les cations modifiant les réseaux ("network modifiers": Mg, Fe, Mn, Ti); Ca se partage entre les deux types de cations et Al peut contribuer à modifier les réseaux lorsque Al > K+Na+Ca+Mg, ce qui n'est pas le cas ici (Bottinga et Weill 1972).

1.3.5.2- Table de contingence

Pour vérifier si les xénolites massifs ont une forme statistiquement différente de celle des xénolites foliés ou rubanés, nous avons utilisé une table de contingence (Davis 1986) qui permet de comparer la distribution réelle des xénolites classés en fonction de leur allongement (représenté par le rapport largeur/longueur: l/L), à une distribution théorique (chapitre 2, fig. 2.4, appendice F). Ces calculs ont été réalisés avec l'aide de O. Tavchandjian et É. Boisvert. Ils montrent que la forme des xénolites massifs n'est pas statistiquement différente de celle des xénolites foliés ou rubanés, bien que la valeur moyenne du rapport l/L de ces derniers soit légèrement supérieure à celle des xénolites massifs.

1.3.5.3- Géothermobarométrie

Un nouveau géothermomètre et un nouveau géobaromètre, basés respectivement sur la distribution de BaO et TiO₂ entre la biotite et le liquide (minette; Righter et Carmichael 1996), permettent de déterminer la température et la profondeur de mise en place de la minette de Rivard. Les valeurs obtenues pour la température ($1050^{\circ} \pm 50^{\circ}$ C) concordent avec celles estimées par comparaison avec les assemblages minéralogiques produits lors d'expériences sur d'autres roches ultrapotassiques (Esperança et Holloway 1986, 1987). La pression (5.7 ± 4 kbar) est similaire à celle déterminée avec les baromètres de Schmidt (1992; 5.6 ± 0.6 kbar), de Hollister et al. (1987; 5.5 ± 1 kbar) et de Hammarstrom et Zen (1986; 5.2 ± 3 kbar) qui sont basés sur le contenu en Al de l'amphibole (tableau 3.7). Bien que ces derniers soient calibrés pour des roches calco-alcalines, ils sont probablement applicables à la minette parce que le quartz et l'amphibole coexistent dans la matrice ($aSiO_2 = 1$). Cette pression correspond approximativement à ce qui avait été estimé pour les plutons potassiques mis en place dans la région de Mont-Laurier à 1.08 Ga (20 km; Corriveau et Leblanc 1995).

Le géothermomètre de Lindsley (1983), basé sur la distribution du Ca entre les deux pyroxènes, a été utilisé pour évaluer la température de formation des mégacristaux de clinopyroxène présents dans la minette (appendice H). Ce thermomètre est peu dépendant de la pression et, en l'absence d'orthopyroxène, il indique une température minimum. Les différents types de mégacristaux (chapitre 3) indiquent des températures de: 1100 - 1220°C (MC1), 990 - 1050°C (MC2; 1280°C pour la bordure interne plus riche en MgO), 1200 - 1280°C (MC4), et 1080 - 1220°C pour les CXN1b qui présentent des textures rappelant les mégacristaux. Ces températures se comparent à celles déterminées pour d'autres mégacristaux présents dans des roches alcalines (1050 - 1400°C; Harte et Gurney 1981). Par comparaison, les phénocristaux et les cristaux de la matrice de la minette donnent des températures beaucoup plus faibles et variables: 500 - 800°C, auxquelles se comparent celles des CXN1a: 490 - 620°C. Ces valeurs suggèrent des rééquilibrations subsolidus importantes et peuvent être associées aux textures particulières décrites à la section 1.6.4. Les xénocristaux de clinopyroxène indiquent également des températures variables, mais parfois beaucoup plus élevées: 550° - 1080 °C.

Nous avons tenté d'utiliser le géobaromètre de Nimis (1995), basé sur la modélisation de la structure cristalline du clinopyroxène en réponse aux changements de pression, pour évaluer la pression de formation des mégacristaux de clinopyroxène (appendice H). Les différents types de mégacristaux, décrits au chapitre 3, indiquent des pressions de: $6 - 10 \pm 2$ kbar (MC1), 9 ± 2 kbar (9 kbar également pour la bordure interne plus riche en MgO; MC2), $10 - 12 \pm 2$ kbar (MC4); les CXN1b qui présentent des textures

rappelant les mégacristaux donnent des valeurs de 6 - 12 ± 2 kbar. Ces pressions se comparent à celles évaluées pour des mégacristaux comparables dans d'autres roches alcalines (Irving 1974a). Les pressions déterminées pour le mégacristal de clinopyroxène contenant une inclusion d'apatite englobant une inclusion polycristalline contenant de l'amphibole sont de 5.9, 8.8, 9.5, 9.5 ± 2 kbar, se comparent grossièrement à la pression déterminée par le contenu en Al de l'amphibole de l'inclusion, c'est-à-dire de 8.3 kbar (appendice H). Les pressions négatives obtenues pour les phénocristaux de la minette (-4.2 à -10 kbar) jettent toutefois un doute sur l'applicabilité de ce géobaromètre, sachant surtout que les phénocristaux ont du se former à au moins 17 km de profondeur. Les clinopyroxènes de différentes unités du pluton de Kensington indiquent des pressions variant de 10 à -1 kbar. En raison des incertitudes quant à l'applicabilité du baromètre, nous n'avons pas tenu compte de ces résultats. Cependant, il est à noter que les phénocristaux de la minette ont une composition comparable à celle de clinopyroxènes obtenus expérimentalement à partir de minette (de composition similaire à la minette de Rivard) à des pressions de 10 - 20 kbar (Esperança et Holloway 1987).

1.3.5.4- Cristallisation fractionnée

La composition chimique des roches fournit des renseignements essentiels sur leur origine et leur histoire (Gast 1968; Treuil et Varet 1973; Cox et al. 1979; Pearce 1983; Wilson 1989; Carmichael et al. 1996). Le degré d'évolution (de fractionnement) des roches ignées peut être évalué à l'aide du rapport 100·Mg/(Mg+Fe) et des concentrations en éléments traces compatibles, c'est-à-dire de ceux qui ont un coefficient de distribution élevé ($D \ge 1$: Ni, Co, Cr, Sc) pour l'olivine et les pyroxènes (Green 1994). Des expériences portant sur la fusion partielle de lherzolites ont montré que le contenu en MgO d'un magma variait avec la température, que sa teneur en SiO₂ variait de façon inverse avec la pression, et que les concentrations en Al₂O₃, FeO, CaO et en éléments incompatibles, c'est-à-dire ceux qui ont un D < 1 ou D << 1 pour l'olivine et les pyroxènes (par exemple: Al, Ti, K, P, Ba, Rb, Th, Nb, Ta Sr, Zr, Hf, La, Yb), étaient fonction du degré de fusion partielle et de la composition de la source (Hirose et Kushiro 1993). Il est important de noter que des éléments incompatibles dans l'olivine et les pyroxènes peuvent être compatibles dans d'autres minéraux comme la phlogopite (K, Ti, Ba, Rb), les feldspaths (Ba, Sr, Eu), l'apatite (P, Sr, La, Yb), la titanite (Ti, Nb), le zircon (Zr, Hf, Yb), ou autres (Campbell et Gorton 1980; Villemant et al. 1981; Green 1994; Bea 1996). Le caractère compatible ou non d'un élément dépend ainsi des minéraux impliqués et il faut se rappeler que la phlogopite, l'apatite et la magnétite peuvent cristalliser précocement dans les magmas ultrapotassiques (Corriveau et Gorton 1993).

Le patron d'éléments traces normalisés au manteau primitif est un moyen très utile pour caractériser la composition d'une roche et mettre ses particularités en évidence (fig. 1.7). Parce qu'il inclut, en plus des terres rares, plusieurs éléments traces susceptibles de d'éclairer l'origine et l'histoire d'une roche, les diagrammes multi-élémentaires normalisés au manteau primitif ont été préférés aux diagrammes de terres rares (fig. 1.7). Ces derniers sont toutefois pésentés à l'appendice I.

Pour vérifier si la minette felsique (échantillon C22-4) pouvait être reliée à la minette mafique (éch. A16-1) par le biais du fractionnement des phases observées dans la roche, nous avons utilisé deux programmes informatiques. À partir de la composition en éléments majeurs d'une roche parente A, le premier programme (Geist et al. 1985) cherche à produire une roche dérivée B en extrayant les minéraux choisis tout en produisant la plus petite somme d'oxydes résiduels, c'est-à-dire en générant la plus petite différence possible entre le dérivé B réel et calculé (moindres carrés). Le second programme (NEWPET: Memorial University, Newfoundland, 1994) s'appuie sur le modèle classique de cristallisation fractionnée à l'équilibre ou non (Shaw 1970) à partir de la composition des roches en éléments traces et des coefficients de distribution tirés de la littérature. Le résultat des calculs et les coefficients de distribution utilisés sont présentés à l'appendice G.

1.3.5.5- Calcul de la composition du liquide en équilibre avec un cumulat

Connaissant la composition en éléments traces de la roche totale et la proportion des différents minéraux, on peut, à l'aide des coefficients de distribution disponibles (appendice G), calculer la composition du liquide en équilibre avec les cristaux d'un cumulat (Bédard 1994a). Pour une roche composée à 90% d'olivine et à 10% de spinelle, la composition en Sr du liquide en équilibre avec les minéraux sera de:

 $C^{Sr}_{liquide} = \{C^{Sr}_{roche}/[(X_{Ol}+((X_{Spl},Spl/LiqD_{Sr})/Ol/LiqD_{Sr})+((X_{LP},1)/Ol/LiqD_{Sr})]\}/Ol/LiqD_{Sr}, où C est la concentration de l'élément en ppm, X la fraction du minéral, D est le coefficient de distribution (C^{Minéral}/C^{Liquide}) et LP la proportion de liquide piégé, pour lequel on assume D = 1 pour tous les éléments (Bédard 1994a). La proportion de liquide piégé est estimée à partir de la proportion des minéraux interstitiels dans la roche. Les principales sources d'incertitudes liées à cette méthode sont associées à l'erreur analytique, aux coefficients de distributions utilisés, à l'estimation de la proportion des minéraux et de liquide piégé (Bédard 1994a).$

1.4- CONTRIBUTIONS ET APPORTS À L'AVANCEMENT DES CONNAISSANCES

La brèche intrusive de Rivard présente un intérêt géologique considérable. À notre connaissance, elle est unique dans la Province de Grenville. Les lamprophyres potassiques font maintenant l'objet d'une attention toute particulière depuis la découverte de minettes diamantifères (Kjarsgaard 1994; Corriveau et al. 1994a, 1996b; Currie 1996; Kjarsgaard et Davis 1996; MacRae et al. 1995, 1996). Toutefois, même lorsqu'elles sont dépourvues de diamants, ces roches plutôt rares fournissent des données importantes sur les processus qui marquent l'évolution du manteau d'où elles sont issues (Roden 1981; Rock 1984, 1991; Esperança et Holloway 1987; Wallace et Carmichael 1989; Thompson et al. 1989; O'Brien et al. 1991; Peterson et al. 1994). Parce qu'elle apparaît sous forme de dyke, la minette de Rivard présente une facette différente, un faciès figé, du magmatisme potassique qui recoupe la Ceinture métasédimentaire du Grenville au Protérozoïque. Son étude vient ainsi compléter d'autres travaux sur les plutons riches en K de la région de Mont-Laurier et permet, entre autres, d'établir un lien entre les mécanismes responsables du transport et ceux favorisant l'accumulation des magmas (Corriveau et al. 1990; Corriveau et Gorton 1993; Corriveau et Leblanc 1995; Corriveau et al. 1996; Morin et Corriveau 1995, 1996).

Parmi les xénolites étudiés plus en détail, une attention particulière a été portée aux xénolites micacés, possiblement liés à la minette ou aux plutons potassiques de la région (chapitre 3). On verra que ces xénolites ont enregistré une histoire complexe où des accumulations de pyroxènes ont été infiltrées par, ou mélangés avec des liquides apparentés à la minette. Une attention particulière a également été portée aux fragments de composition ultramafique qui sont les plus susceptibles d'avoir une origine mantellique (chapitre 4). Il s'agit en grande majorité de clinopyroxénites, avec quelques xénolites de dunite, wehrlite, orthopyroxénite et webstérite. Ces assemblages minéralogiques diffèrent des lherzolites et harzburgites "typiques" du manteau supérieur. On verra que les principaux types de xénolites ultramafiques de la brèche de Rivard ont une histoire complexe et qu'ils pourraient représenter des fragments de cumulats de clinopyroxène formés à partir de magmas alcalins dans la croûte inférieure ou le manteau supérieur, que certains xénolites pourraient résulter d'une interaction entre un magma et son encaissant et que différents types de métasomatisme ont affecté ces roches à des degrés variés.

1.4.1- Formation et transport des xénolites (chapitre 2)

Le chapitre 2 (Morin et Corriveau 1996) cherche à expliquer l'abondance et la diversité des xénolites dans la brèche intrusive de Rivard. Pour ce faire, nous avons d'abord évalué la viscosité et la densité du magma, sa vitesse minimum d'ascension, et l'influence des xénolites sur son comportement. On a pu établir que la minette était montée rapidement (>50 cm·s⁻¹), qu'elle était peu visqueuse (\approx 40 Pa·s) mais que l'abondante fraction solide a considérablement augmenté sa viscosité effective.

La question de la formation des xénolites est également considérée en détail. Il s'agit d'un problème très mal connu parce que les mécanismes de formation des xénolites, opérant à grande profondeur, ne peuvent être observés directement. Conséquemment, on associe généralement la formation des xénolites à des processus explosifs ou à la fluidisation des magmas (McBirney 1959; Clark et al. 1967; Wolfe 1980; Wyllie 1980; Platten 1982; Raeside and Helmstaed 1982; Bailey 1985; Gold et al. 1986). Les éruptions explosives sont toutefois des phénomènes plutôt superficiels, qu'elles soient le résultat du dégazage magmatique ou du phréatomagmatisme (Spera 1984; Burnham 1985; Lorenz 1985; Mitchell 1986; Morin et al. 1996). La mise en place profonde de la brèche de Rivard permet donc d'étudier les processus de formation des xénolites sans l'interférence des mécanismes superficiels.

En établissant un lien entre nos observations de terrain et des travaux récents sur la propagation des dykes (Delaney et al. 1986; Pollard 1987; Rubin 1993), nous sommes en mesure de proposer un modèle qui rend compte de l'abondance et de la diversité des xénolites dans la brèche de Rivard. On peut ainsi interpréter les nombreuses apophyses et les fragments partiellement détachés de l'encaissant, comme les reliques de fractures parallèles aux épontes formées lors de la progression du dyke, fractures qui ont été subséquemment envahies par le magma. Les apophyses représentent donc le stade initial de la formation des xénolites. Ce modèle peut expliquer la formation des xénolites crustaux aussi bien que mantelliques et pourrait s'appliquer à d'autres roches contenant des xénolites. Il pourrait de plus avoir des implications sur la propagation, le potentiel d'extrusion et sur la contamination des magmas peu visqueux. Ainsi, les magmas capables de générer une fracturation intense de leur encaissant sont sujets à une plus forte contamination. L'extraction de nombreux xénolites aura également pour effet de faire augmenter la viscosité effective du mélange liquide-solide et d'inhiber sa progression vers les niveaux crustaux supérieurs. Cet article vient compléter les travaux de Corriveau et Leblanc (1995) et fournit d'autre part un outil supplémentaire dans l'évaluation du potentiel diamantifère des roches potassiques comme les minettes.

1.4.2- La minette, ses macrocristaux et pyroxénites micacés (chapitre 3)

Le chapitre 3 est un projet d'article par David Morin, Louise Corriveau et Réjean Hébert (à soumettre) sur la minette de Rivard, les différentes populations de macrocristaux, les xénolites de pyroxénite micacée, et leur lien avec les autres intrusions potassiques du même âge que l'on retrouve dans la région de Mont-Laurier. Contrairement à ces derniers, la minette de Rivard, par son ascension rapide, a conservé des minéraux et des textures qui permettent de mieux comprendre l'histoire de ces magmas. Les textures et la composition des minéraux montrent que les mégacristaux de la minette de Rivard représentent de grands phénocristaux formés à hautes pression et température à partir de magmas comparables à la minette. Les nombreuses textures de déséquilibre sont le résultat du mélange de magmas et du recyclage de phénocristaux. Des observations similaires ont été faites sur d'autres roches alcalines incluant des minettes (Brooks and Printzlau 1978; Hunter et Taylor 1984; LeCheminant et al. 1987; Bédard 1988; O'Brien et al. 1988; McDonald et al. 1992). Certains mégacristaux riches en Fe et Al montrent de plus que le fractionnement magmatique peut être important en profondeur.

Par leurs caractéristiques géochimiques similaires, les six injections de minette échantillonnées représentent des liquides comagmatiques. Nous avons modélisé la relation entre la minette la moins évoluée avec la plus évoluée par le fractionnement de faibles quantités des phases qui forment les phénocristaux de la minette, à savoir le clinopyroxène et la biotite. Ce type de fractionnement est typique des minettes (Roden 1981; Esperança et Holloway 1987; Righter et Carmichael 1996). La contamination semble avoir eu une influence limitée sur la chimie de ces roches, en dépit de l'abondance des xénolites et des xénocristaux. Nous proposons que les teneurs élevées, à la fois en MgO, Cr et Ni, et K₂O, Ba, Sr et La, indiquent que la minette est le produit de la fusion partielle d'une source mantellique enrichie en K et autres éléments incompatibles et contenant probablement du clinopyroxène et de la phlogopite. Les concentrations relativement faibles en Th, Nb et Ta pourraient suggérer que la source a été métasomatisée par des liquides ou des fluides dans un contexte de subduction.

Les caractéristiques brièvement décrites plus haut sont partagées par la minette, les xénolites de pyroxénite micacée et les plutons potassiques de la région de Mont-Laurier (Corriveau et Gorton 1993). Ces différentes intrusions potassiques présentent toutefois certaines particularités géochimiques qui les distinguent les unes des autres. Cette diversité peut résulter d'une source inhomogène, de différents degrés ou conditions de fusion partielle, de la cristallisation fractionnée, du mélange de magmas, du métasomatisme et (ou)

de la contamination crustale. L'étude de la minette de Rivard, de ses mégacristaux et xénolites micacés, montre donc que les plutons potassiques de la région de Mont-Laurier (Corriveau et al. 1990; Corriveau et Gorton 1993) ne représentent que la partie exposée d'un (plusieurs?) important (et complexe) épisode magmatique potassique protérozoïque qui s'étend en profondeur, jusqu'à la limite croûte-manteau et peut-être dans le manteau supérieur. Il a de plus été possible de déterminer la profondeur de mise en place de la minette, et donc du niveau d'érosion actuel (17 km), à l'aide d'un géobaromètre calibré sur des minettes (Righter et Carmichael 1996).

1.4.3- Xénolites ultramafiques (chapitre 4)

Le chapitre 4 (article à soumettre, par David Morin, Louise Corriveau et Réjean Hébert) cherche à comprendre l'origine et l'histoire des xénolites ultramafiques présents dans la brèche intrusive de Rivard. Ces xénolites fournissent des renseignements précieux et inédits sur la nature et l'évolution des couches profondes de la Ceinture métasédimentaire du Grenville. Pour ce projet d'article, nous avons sélectionné les clinopyroxénites formant la population la plus abondante et montrant des textures très variées, les quelques xénolites contenant de l'olivine, une orthopyroxénite et trois webstérites. Ces xénolites représentent plusieurs suites magmatiques différentes dont la plupart n'ont pas d'équivalents connus en affleurements dans la région. Ils révèlent plusieurs épisodes d'intrusion et d'accumulation de magmas dans la croûte inférieure ou le manteau supérieur. Ces suites magmatiques sont possiblement associées aux différents événements tectoniques qui ont marqué l'orogène grenvillien avant la mise en place de la minette à 1.07 Ga. Les caractéristiques géochimiques des xénolites indiquent la contribution d'une composante de subduction dans la genèse de certains des magmas à l'origine des xénolites. Certains fragments montrent des textures de déformation alors que d'autres sont affectés à différents degrés par divers types de métasomatisme. Les xénolites ultramafiques de la brèche de Rivard suggèrent donc que les niveaux profonds de la Ceinture métasédimentaire du Grenville contiennent plusieurs suites ignées qui incluent une composante ultramafique importante et diversifiée. Le métasomatisme important que l'on observe dans certains fragments pourrait être relié au magmatisme.

L'essentiel du contenu scientifique des trois articles et des travaux qu'ils soustendent (mesures sur le terrain, préparation d'échantillons, examen pétrographique, recherche bibliographique, traitement des données, calculs et modélisation, rédaction) est l'oeuvre de l'auteur de la thèse. Louise Corriveau, co-auteur des trois articles, par ses connaissances sur la géologie régionale, les roches ultrapotassiques et la mise en place des magmas, a également contribué au contenu scientifique, à orienter le travail de recherche et, de façon notable, à la clareté et à la cohérence des manuscrits. Elle a de plus participé aux travaux de terrain en plus d'avoir été l'instigatrice d'un projet de recherche sur le potentiel diamantifère de la région (financé conjointement par la Commission géologique du Canada et Ressources KWG), projet qui a permis de dégager la brèche sur 110 m et d'effectuer une bonne part des analyses de roches et de minéraux qui sont utilisés dans cette thèse. Réjean Hébert, co-auteur de deux articles, par ses connaissances sur les roches ultramafiques et les processus magmatiques et métamorphiques, a également contribué au contenu scientifique en permettant une meilleure interprétation des textures, souvent complexes, que l'on observe dans la minette et ses xénolites. Il a également contribué à orienter l'exploitation des données géochimiques et à la cohérence des manuscrits, de même qu'à orienter l'échantillonnage lors d'une visite sur le terrain en 1992.

D'autres personnes ont également contribué, par leurs commentaires et suggestions, à l'amélioration du premier article, il s'agit de Jean Bédard, Tyson Birkett, Tomas Feininger, Michel Jébrak et Frank Spera. Le chapitre 3 a été revu par John Clemens et Michael Gorton alors que le chapitre 4 a été revu par Yuri Amelin, Jean Bédard, John Clemens, Michael Gorton et Marc Laflèche. Don Baker a calculé la viscosité de la minette à l'aide du programme qu'il a créé à partir du modèle de Shaw (1972). Olivier Tavchandjan et Éric Boisvert ont fourni de précieux conseils lors du traitement statistique des données sur les mesures des xénolites. Jean Bédard a contribué à l'interprétation des textures et a émis la suggestion que les textures particulières d'une dunite à spinelle pouvaient résulter d'une réaction impliquant une phase alumineuse. Kamal Sharma a gracieusement montré des lames des roches provenant des copeaux ultramafiques situés à l'ouest de Mont-Laurier. Guoxiang Chi a prêté son concours à un examen préliminaire des inclusions fluides dans des xénolites de clinopyroxénite. Gordon Pringle a patiemment expliqué le fonctionnement de son programme informatique pour le traitement des analyses de minéraux. Louis Madore, Maxime Tellier, Katherin Boggs, Nalini Mohan, Martin Simard et Michelle Mainville ont fourni une aide précieuse lors des travaux de terrain. Les analyses de roches ont été faites par Marc Greendale, Réal Gosselin et Jean-Pierre Ricbourg (INRS-Géoressources), et les analyses de minéraux par Maxime Tellier avec l'aide de Claudio Cermignani (U. de Toronto), par Jean-Pierre Tremblay (U. Laval) et par l'auteur avec l'aide de John Stirling (CGC, Ottawa). Les lames minces ont été réalisées par Jean-Claude Bérubé (INRS-Géoressources).

1.4.4- Autres contributions

Un certain nombre de travaux, notamment les études isotopiques et les déterminations géochronologiques et géothermobarométriques ont été effectués par des collaborateurs.

1.4.4.1- Géochronologie.

Otto van Breemen (Commission géologique du Canada, Ottawa) a déterminé l'âge U-Pb de la minette sur des titanites à 1070 +40/-30 Ma (Morin et al. 1994). Yuri Amelin (Royal Ontario Museum) a déterminé un âge Sm/Nd de 1088 ± 46 Ma sur des pyroxènes et des plagioclases de la minette et un âge U-Pb de 1072 ± 12 Ma sur la titanite d'une clinopyroxénite (B3-6) qui impose un âge maximum à la minette (Amelin 1994; Amelin et al. 1994). Cette titanite est relativement tardive et associée à l'amphibolitisation du xénolite (chapitre 4). L'âge (1072 ± 12 Ma) pourrait être celui de la mise en place de la brèche si la titanite était au-dessus de sa température de blocage (≈ 650°C) avant l'arrachement du xénolite par la minette. On considérera donc que la minette a un âge de 1.07 Ga. Les données isotopiques sur certains xénolites sont présentées en partie dans Amelin et al. (1994) et Corriveau et al. (1996a) et feront l'objet d'une étude plus détaillée dans une publication à venir. L'une des conclusions générales du chapitre 4, à savoir que les xénolites ultramafiques étudiés représentent des cumulats formés à partir de magmas différents qui ne sont pas liés à la minette, est en accord avec les données isotopiques sur les quelques xénolites (A6-3, B3-12, B3-25) pour lesquels des données géochimiques sont également disponibles (Y. Amelin, communication personnelle 1997).

1.4.4.2- Géothermobarométrie.

Maxime Tellier a effectué des déterminations géothermobarométriques sur certains xénolites mafiques et ultramafiques à l'aide du programme de Brey (1990). Les résultats bruts sont tirés de Tellier et al. (1995) et sont résumés ici. En fonction des groupes d'analyses et des couples thermomètre-baromètre utilisés, les granulites mafiques (Cpx+Opx+Grt) indiquent des températures de 700° - 1200 °C et des pressions de 15 - 40 kbar, si on exclut certaines valeurs extrêmes (tableau 1.4). Une clinopyroxénite (Cpx + Opx + Grt) donne des températures de 500° - 1500 °C et des pressions de 3 - 44 kbar. Les clinopyroxénites (Cpx \pm Opx) indiquent des températures variant généralement de 750° - 1000 °C, les webstérites et une orthopyroxénite (Opx + Cpx) de 770° - 1200 °C, et les roches à olivine (Ol + Spl \pm Cpx) de 500° - 900 °C. La géothermobarométrie des xénolites mafiques et ultramafiques n'est pas considérée en détail dans la présente thèse.

Lithologies	Granulites mafiques	Clinopyroxénites	Orthopyroxénite webstérites	Dunites wehrlites
Xénolites	A5-7, B2-7, B3-14, C8-6, C31-11, C45-7, C45-19	A3-14a, A6-5, A6-64, B1-2	A5-14, A5-34, B1-3, B6-39, C45-16, D6-6, D6-10, D12-4	A4-19, A5-38, A6-24, B1-19, C45-13
Minéraux	Cpx-Opx-Grt	Cpx-Opx-Grt, Cpx	Орх-Срх	Ol-Spl±Cpx 10/20 kbar
		Température (°C)		
Variation	510-1660	510-1500	650-1210	500-1000
Moyenne, Écart type (Nombre)	928 ± 183 (293)	914 ± 221 (54)	922 ± 132 (27)	625 ± 144 (37)
		003 ± 139 (37)		
			• •	
Variation	5-64	3-44		
Moyenne, Écart type (Nombre)	25 ± 10 (287)	18 ± 11 (41)		

Tableau 1.4 Géothermobarométrie sur les xénolites mafiques et ultramafiques (tiré de Tellier et al. 1995).

(N): nombre de déterminations. Géothermomètres de Wells 1977; Ellis et Green 1979; Harley 1984; Powell 1985; O'Neill et Wall 1987; Krogh 1988; Brey 1989; Brey et al. 1990, et géobaromètres de McGregor 1974; Nickel et Green 1985.

L'auteur a contribué à plusieurs articles, communications, affiches, rapports, dossiers, etc., concernant la brèche intrusive de Rivard et ses xénolites, et qui correspondent à différentes étapes de l'évolution du projet. Ces communications ne font pas partie intégrante de la présente thèse mais on en fournit la liste ici:

- Corriveau, L., Tremblay, P., Morin, D. 1992. Phénomènes magmatiques intracrustaux dans la Ceinture métasédimentaire du Grenville et leur signification. Affiche au colloque annuel du ministère de l'Énergie et des Ressources du Québec, Québec, 25-26 novembre 1992.
- Corriveau, L., Morin, D., Tremblay, P., Boggs, K., Madore, L., van Breemen, O. 1992. Points saillants des recherches dans les feuillets 31J/2, 31J/3 et 31J/6 de la Ceinture métasédimentaire du Québec et leurs implications pour Lithoprobe. Affiche au 4e atelier annuel de Lithoprobe, projet Abitibi-Grenville, École Polytechnique de Montréal, Montréal, 15-16 décembre 1992.
- Corriveau, L., Morin, D., Tremblay, P., Boggs, K., Madore, L., van Breemen, O. 1993. Salient research points on map sheets 31 J/2 and 6 of the Central Metasedimentary Belt of Quebec. Conférence à la réunion annuelle de l'Association Géologique du Canada et de Association Minéralogique du Canada, Programme et résumés, 18: P28.

- Corriveau, L., Morin, D., Boggs, K. 1993. Cibles d'exploration dans la Ceinture métasédimentaire de Grenville, région de Mont-Laurier, Québec (SNRC 31J/2, 3 et 6). Commission géologique du Canada, Dossier public 2617, 11 p.
- Corriveau, L., Morin, D., Tellier, M., Boggs, K. 1993. Lithofaciès hyperalumineux et magnésiens en milieu volcanosédimentaire et brèche ignée ultrapotassique, deux cibles d'exploration dans la Ceinture métasédimentaire. Affiche au colloque annuel du ministère de l'Énergie et des Ressources du Québec, Québec, 24-25 novembre 1993.
- Morin, D., Corriveau, L., van Breemen, O., Tellier, M. 1994. A 1070 ultrapotassic breccia dyke in the Central Metasedimentary Belt of Québec. Affiche au colloque annuel de l'Association Géologique du Canada et de l'Association Minéralogique du Canada, Waterloo, mai 1994. Programme et résumés 19: A79.
- Corriveau, L., Morin, D., Gorton, M. P., Amelin, Y. 1994. Geochemical constraints on Proterozoic K-rich alkaline and shoshonitic magmas evolution in the SW Grenville Province. Conférence présentée au congrès du GAC-MAC à Waterloo, programme et résumés 19: A23.
- Corriveau, L., Morin, D., Madore, L. 1994. Géologie et cibles d'exploration dans la partie centre-est de la Ceinture métasédimentaire du Québec, Province de Grenville. Commission géologique du Canada, Recherche en cours 1994-C: 355-365.
- Corriveau, L., Morin, D., Tellier, M. 1994. Under the Central Metasedimentary Belt, are marbles forever? The diamond potential of the sub-grenvillian lithosphere. Affiche au colloque annuel de la Commission géologique du Canada, Ottawa, 17-19 janvier 1994.
- Corriveau, L., Morin, D., van Breemen, O., Amelin, Y., Rivard, B. 1994. The central metasedimentary belt of Québec: its evolution and its third dimension. Affiche présentée à la réunion annuelle du programme Lithoprobe Abitibi-Grenville à Montréal, programme et résumés.
- Corriveau, L., Morin, D., van Breemen, O., Amelin, Y., Tellier, M. 1994. La brèche de Rivard, une fenêtre sur la lithosphère grenvillienne. Affiche présentée à la réunion annuelle du programme Lithoprobe Abitibi-Grenville à Montréal, programme et résumés.
- Amelin, Y., Corriveau, L., Morin, D. 1994. Constraints on the evolution of Grenvillian mantle from Nd-Sr-Pb Cpx-Grt and U-Pb zircon study of pyroxenitic and gneissic xenoliths. ICOG VIII International Conference on Geochemistry, Cosmochemistry and Isotope Geology. Berkeley, juin 1994.
- Amelin, Y., Corriveau, L., Morin, D. 1994. Constraints on the evolution of Grenvillian mantle from Nd-Sr-Pb Cpx-Grt and U-Pb zircon study of pyroxenitic and gneissic xenoliths. US Geological Survey Circular 1107: 5.
- Corriveau, L., Amelin, Y., Morin, D. 1994. Vision isotopique de la Ceinture métasédimentaire en 3D: les plutons, le dyke et les xénolites. Affiche au colloque annuel du ministère de l'Énergie et des Ressources du Québec, Québec, novembre 1994.
- Tellier, M.L., Corriveau, L., Morin, D. 1994. Étude de la brèche ultrapotassique de Rivard et géologie des roches encaissantes. Rapport d'étape présenté à la compagnie Ressources KWG Inc. dans le cadre du Programme de Partenaires industriels de la Commission géologique du Canada, 73 p., 1 carte au 1:20000.
- Tellier, M.L., Corriveau, L., Morin, D. 1995. La brèche de Rivard le potentiel diamantifère de la lithosphère et du magmatisme ultrapotassique de la région de Mont-Laurier, Québec. Commission géologique du Canada, rapport final présenté à la compagnie Ressources KWG Inc. dans le cadre du Programme de Partenaires industriels, projet IPP 920002-1-XY, 137 p.
- Morin, D. 1995. Fragments des profondeurs de la Terre. Eurêka vol. 3: 6-8, paru dans Québec Sciences, vol. 34, no1 et Interfaces, vol. 16, no 5.

- Morin, D., Corriveau, L. 1995. Xenolith formation and transport in a 1.08 Ga minette intrusion breccia: sampling of the Grenvillian lithosphere. Affiche présentée au congrès international de Precambrian '95, réunion internationale sur la tectonique et la métallogénie des ceintures orogéniques du Précambrien inférieur et moyen. Université du Québec à Montréal, Montréal, 28 août au 1 septembre 1995. Programme et résumés p. 299.
- Corriveau, L., Morin, D., van Breemen, O., Rivard, B., Tremblay, P., Boggs, K., Deschênes, G. 1995. Magmatisme et hydrothermalisme dans la Ceinture métasédimentaire du Québec; implications tectoniques et métallogéniques. Excursion des Amis du Grenville, guide d'excursion, 28 p.
- Corriveau, L., van Breemen, O., Morin, D., Amelin, Y., Rivard, B., Sharma, K.N.M. 1995. New light on the Central Metasedimentary Belt of Québec and its lithosphere. Conférence présentée à l'atelier Lithoprobe, École polytechnique, Montéal.
- Corriveau, L., Tellier, M., Morin, D. 1996. La brèche de Rivard et le complexe de Bondy, implications pour le potentiel diamantifère et métallogénique de la région de Mont-Laurier, Québec. Commission géologique du Canada, Dossier Public 3078.
- Corriveau, L., Morin, D., Tellier, M., Amelin, Y., van Breemen, O. 1996. Insights on minette emplacement and the lithosphere underlying the southwest Grenville Province of Québec at 1.08 Ga. Dans Searching for Diamonds in Canada, édité par A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio et K.A. Richardson. Geological Survey of Canada, Open File 3228: 139-142.
- Morin, D., Corriveau, L., Hébert, R. 1998. Magmatic suites underplating the southern Grenville Province: Ultramafic xenoliths of the 1.07 Ga Rivard minette dyke. Conférence à la réunion annuelle de l'Association Géologique du Canada et de l'Association Minéralogique du Canada, Résumés p. A127.

Figure 1.3. Géologie régionale et localisation de la brèche intrusive de Rivard. **a**) Géologie de la Ceinture métasédimentaire du Grenville. **b**) Géologie de la région de Mont-Laurier. CGC: Ceinture de gneiss centrale, CMB: Ceinture métasédimentaire du Grenville, CMBBZ: zone de cisaillement de la Ceinture métasédimentaire, MG: dyke de minette de Girard, PR: stock de péridotite de Rolleau, ZBD: zone de déformation de Baskatong-Désert, ZC: zone de déformation de Cayamant, ZH: zone de déformation de Heney, ZL: zone de déformation de Labelle, ZNC: zone de déformation de Nominingue-Chénéville. Plutons alcalins potassiques: B: Baskatong, C: Cameron, G: Gracefield, K: Kensington, L: Loranger, P: Piscatosine, R: lac Rouge, V: Sainte-Véronique. Modifiées de Corriveau et Rivard (1997).

1.5- CADRE GÉOLOGIQUE

1.5.1- La Province de Grenville

La Province de Grenville forme une ceinture orogénique de plus de 400 km de largeur par plus de 5000 km de longueur, suivant la marge est de l'Amérique du Nord (fig. 1.3). Elle se termine abruptement à l'ouest par le front de Grenville et se poursuit sous les Appalaches au sud (Davidson 1995). Les roches et les événements associés à l'orogenèse grenvillienne ont un âge compris entre 1300 et 950 Ma, soit une période de 350 millions d'années (Davidson 1995). L'âge, le type de roches, le style de déformation et le degré de métamorphisme ont permis de subdiviser la Province de Grenville en trois grandes zones orientées grossièrement nord-est - sud-ouest et séparées par des corridors tectoniques importants (Rivers et al. 1989). Du nord-ouest au sud-est on retrouve: 1) la Ceinture parautochtone, qui reprend entre autres les roches de l'Archéen tardif de l'avant-pays, 2) la Ceinture allochtone polycyclique regroupant des roches sans lien avec celles situées plus à l'ouest, et qui ont subi plus d'un cycle orogénique, et 3) la Ceinture allochtone monocyclique, une ceinture discontinue de roches supracrustales marquées uniquement par l'orogénie grenvillienne (Rivers et al. 1989). La Ceinture métasédimentaire du Grenville (≈ Supergroupe de Grenville; Wynne-Edwards et al. 1966, Wynne-Edwards 1972) fait partie de la ceinture allochtone monocyclique. Les trois ceintures sont elles-mêmes subdivisées en plusieurs terranes regroupant des roches de nature, d'âge ou de grade métamorphique différents. Les terranes peuvent inclure différents domaines. Des corridors de déformation intense séparent les trois grandes zones et les terranes qui les composent (Hanmer 1988; Rivers et al. 1989; Davidson 1995; Corriveau et Rivard 1997). Les zones de faille à faible pendage vers le sud-est ont généralement enregistré des mouvements chevauchants vers le nord-ouest (Hanmer et McEachern 1992; Sharma et al. 1993; Martignole et Calvert 1996).

Nous nous limiterons dans la section suivante à une brève description des terranes présents dans la Ceinture métasédimentaire du Québec.

1.5.2- La Ceinture métasédimentaire et la région de Mont-Laurier

La Ceinture métasédimentaire du Grenville est séparée de la ceinture allochtone polycyclique à l'ouest par le linéament de Cayamant et la zone de cisaillement de Baskatong-Désert (fig. 1.3; Sharma et al. 1993); elle est séparée du terrane de Morin à l'est par la zone de déformation de Labelle (Martignole et Corriveau 1991; Corriveau et Rivard 1997). En Ontario, on observe du nord-ouest au sud-est: 1) le terrane de Bancroft, incluant

des marbres et des gneiss syénitiques alcalins, 2) les terranes d'Elzevir et de Sharbot Lake, dominés par des roches volcaniques et intrusives tholéiitiques à calco-alcalines mises en place dans un environnement d'arc ou d'arrière-arc (Holm et al. 1986; Harnois et Moore 1991; Corfu et Easton 1997; Smith et al. 1997) et, 3) le terrane de Frontenac composé de roches supracrustales.

La région de Mont-Laurier constitue l'extension nord des terranes de Frontenac, de l'Elzevir et de Sharbot Lake et comprend trois grands domaines: un domaine riche en marbre (roches calco-silicatées, quartzites et gneiss pélitiques) à l'ouest, un domaine riche en quartzites (et gneiss siliceux) à l'est, et des complexes de gneiss felsiques et de granitoïdes (fig. 1.3; Wynne-Edwards et al. 1966; Corriveau et al. 1996a; Corriveau et Rivard 1997). Parmi ces derniers, on retrouve le complexe de Bondy (fig. 1.3) qui comprend des roches de composition tonalitique (1.24 Ga) à granitique, possiblement d'origine volcano-plutonique (van Breemen et Corriveau 1995; Corriveau et al. 1996a). Les roches supracrustales et le complexe de Bondy ont été métamorphisés jusqu'au faciès des granulites vers 1.19 Ga, puis ont été recoupées par différentes suites intrusives (Boggs 1996; van Breemen et Corriveau 1995; Corriveau et al. 1996a). La suite de Chevreuil mise en place entre 1.17 et 1.16 Ga est formée d'intrusions monzonitiques à gabbroïques et d'un réseau de dykes composites comprenant localement des lamprophyres (fig. 1.3; van Breemen et Corriveau 1995; Corriveau et al. 1994a, 1996a). Des plutons de monzonite contemporains de cette suite, marquent le début du magmatisme relié au complexe anorthositique de Morin, entre 1.165 et 1.135 Ga (fig. 1.3; Emslie et Hunt 1990; Doig 1991; Corriveau et van Breemen 1995). Une suite alcaline plus jeune, la suite de Kensington-Skootamatta, mise en place entre 1.090 et 1.075 Ga, et restreinte à la Ceinture métasédimentaire, comprend des plutons ultrapotassiques à shoshonitiques formés de pyroxénite, diorite, monzonite et syénite très riches en biotite (fig. 1.3; section 1.5.3; Corriveau et al. 1990; Corriveau et Gorton 1993). Des dykes de carbonatite, de pegmatite et de clinopyroxénite, et des granites (Guénette: 1.06 Ga) se sont mis en place dans la Ceinture métasédimentaire entre 1.090 et 0.850 Ga, mais surtout autour de 1.05 Ga (Hogart et Lapointe 1984; Heaman et al. 1988; Mungall 1989; Friedman et Martignole 1995; Lapointe 1995; van Breemen et Corriveau 1995; Hogart 1997). Outre les pyroxénites des plutons potassiques, quelques roches ultramafiques affleurent dans la région de Mont-Laurier. Le stock de Rolleau, une péridotite à phlogopite et amphibole, affleure à 5 km au nord-est de la brèche de Rivard (section 1.7.2; Corriveau et al. 1996a). Des copeaux tectoniques de roches ultramafiques composées de péridotites et de pyroxénites apparaissent dans la Ceinture de gneiss centrale, à l'ouest du réservoir Baskatong (Sharma et al. 1995).

1.5.3 La suite plutonique de Kensington-Skootamatta

Cette suite est composée d'une vingtaine de plutons de 1.090 - 1.075 Ga et s'étend sur plus de 450 km au Québec et en Ontario (fig. 1.3; Corriveau et al. 1990). Neuf de ces plutons affleurent dans la région de Mont-Laurier. Ces intrusions, avec le pluton de Kensington comme exemple type, ont fait l'objet d'études détaillées par Corriveau (1989), Corriveau et al. (1990) et Corriveau et Gorton (1993), et les données qui suivent sont principalement tirées de ces sources. Les plutons sont composites et formés de syénite, monzonite, diorite et pyroxénite. Cet ordre correspond à la séquence de mise en place dans le pluton de Kensington. Des intrusions mineures de minette, de pyroxénite à olivine et orthopyroxène ou de carbonatite apparaissent également par endroits. Le comportement plastique des marbres encaissants a favorisé l'accumulation des magmas dans la croûte moyenne, à environ 20 km de profondeur (Corriveau et Leblanc 1995), et des skarns sont présents en bordure des intrusions. Les plutons étaient encore à des températures supérieures à 480°C à 1.04 Ga (Hanes et al. 1994).

L'assemblage minéralogique des roches plutoniques comprend: clinopyroxène, biotite, amphibole, plagioclase, feldspath potassique, apatite, opaques, titanite ± épidote, scapolite, quartz, néphéline, zircon. Toutes les unités montrent un fort enrichissement en gros ions lithophiles (K₂O = 2-7%; Ba \leq 9000 ppm, Sr \leq 1%) et en terres rares légères (La = 20-190 ppm) relativement aux éléments à fort potentiel ionique donnant des rapports Ba/Nb \geq 722 et La/Yb \approx 45. L'anomalie négative en Nb et Ta sur les diagrammes multiélémentaires normalisés suggère la contribution d'une composante de subduction dans la genèse de ces roches. Corriveau et Gorton (1993) distinguent deux suites légèrement différentes par leur composition minéralogique et chimique: 1) une suite shoshonitique (à hypersthène ± quartz normatifs), largement dominée par les syénites, à quartz ou à amphibole, et 2) une suite alcaline, potassique à ultrapotassique (à néphéline ± leucite normatives), composée de syénites, monzonites, diorites et pyroxénites riches en biotite. Les shoshonites ont des rapports $K_2O/Na_2O = 0.8-1.2$, Nb/Ta_N < 1 et Hf/Ti_N < 1 (N indique un rapport normalisé aux chondrites) alors que la valeur de ces rapports est supérieure à 1 dans les unités sous-saturées. Ces différences reflètent probablement des variations dans les caractéristiques de la source ou les conditions de fusion plutôt que l'intervention de processus comme la cristallisation fractionnée. Le fractionnement est également incapable de lier les différentes unités d'une même suite, à l'exception possible des pyroxénites qui peuvent être associées aux diorites par l'accumulation de clinopyroxène et de biotite (Corriveau et al. 1994b; Morin et al. 1994).

1.5.4 Sommaire de l'évolution tectonique de la Ceinture métasédimentaire

Nous schématisons ici brièvement l'histoire tectonique de la Ceinture métasédimentaire du Grenville. Les unités plutoniques et volcaniques d'affinité calco-alcaline avec des âges variant de 1.3 - 1.2 Ga (mais surtout autour de 1.25 Ga) sont les témoins d'arcs magmatiques (McLelland et al. 1988; Harnois et Moore 1991; van Breemen et Corriveau 1995; Smith et al. 1997) développés lors de la fermeture de l'océan grenvillien (Windley 1986) ou d'un bassin marginal (McEachern et van Breemen 1993). En Ontario, cet épisode de convergence correspond à un épaississement crustal associé au chevauchement vers le nord-ouest du terrane de l'Elzevir sur la Ceinture de gneiss centrale, vers 1.180 Ga, alors qu'entre 1.080 - 1.060 Ga, des réimbrications ont eu lieu le long des zones de failles, notamment le long de la limite ouest de la Ceinture métasédimentaire (McEachern et van Breemen 1993). Le terrane de Cabonga représente une klippe de roches de la Ceinture métasédimentaire chevauchées sur la Ceinture de gneiss centrale (Sharma et al. 1993). Corriveau et Rivard (1997) proposent que la convergence s'est produite environ 20 Ma plus tôt dans la Ceinture métasédimentaire du Québec et que la Ceinture de gneiss centrale, la Ceinture métasédimentaire et le terrane de Morin étaient déjà accolés au craton laurentien à 1.2 Ga. Le métamorphisme régional aux faciès des amphibolites et des granulites a culminé à 1.19 Ga dans la région de Mont-Laurier et les complexes gneissiques ont enregistré des conditions atteignant 10 kbar et 950 °C (Indares et Martignole 1990; Boggs 1996; van Breemen et Corriveau 1995; Corriveau et al. 1996a). À l'effondrement orogénique suivant immédiatement cette convergence précoce, seraient associées une délamination lithosphérique et une remontée asthénosphérique auxquelles pourraient être liées les températures métamorphiques très élevées (Corriveau et Rivard 1997). La suite intrusive de Chevreuil se serait mise en place lors d'un nouvel épisode orogénique à 1.165 Ga. L'anorthosite de Morin et les roches associées (1.155 - 1.135 Ga) se mettraient en place lors du même événement. Les mouvements enregistrés dans les corridors de déformation recoupant ou limitant la Ceinture métasédimentaire correspondent généralement à des chevauchements ou à des aplatissements tardifs mineurs (McEachern et van Breemen 1993; Corriveau et Rivard 1997). Les derniers mouvements chevauchants au front de Grenville ont eu lieu vers 980 Ma (Haggart et al. 1993).

1.6- BRÈCHE INTRUSIVE DE RIVARD

1.6.1- Généralités

La brèche intrusive de Rivard est située à 27 km au sud-est de Mont-Laurier, dans la réserve faunique de Papineau-Labelle (UTM: 478250E, 5131970N; Corriveau et Jourdain 1992). Elle forme un dyke subvertical orienté nord-sud (180°/75°) et comporte plusieurs injections de lamprophyre riches en xénolites (chapitre 2). La section principale du dyke s'étend sur plus de 100 m avec une puissance d'environ 1 m. Près de l'extrémité nord, le dyke atteint 1.7 m de largeur et bifurque vers le nord-ouest (fig. 2.2a). À l'autre extrémité, il devient étroit (10 cm) et réapparait à 40 et 90 m plus au sud. Le dyke n'est pas déformé ni métamorphisé et recoupe la foliation verticale du gneiss granitique encaissant (000°/90°; fig. 1.4a). L'encaissant comprend également des niveaux discontinus de métabasites, de puissance décimétrique à métrique, qui représentent probablement des dykes ou des sills transposés et boudinés lors du métamorphisme régional. Le dyke de Rivard semble se subdiviser et changer de direction ou d'épaisseur à la rencontre de ces niveaux mafiques, comme on peut le voir aux deux extrémités de la section principale (figs 1.4a, 2.2a). Des veines pegmatitiques centimétriques recoupent le gneiss et les niveaux mafiques, mais sont recoupées par le dyke de Rivard. Des joints espacés de 50 à 150 cm et orientés en moyenne au 275°/80° recoupent à la fois l'encaissant et le dyke de Rivard. Ces joints peuvent contenir des sulfures.

1.6.2- Différentes injections de minette

La brèche intrusive de Rivard comporte au moins six injections différentes de minette qui varient par leur volume, leur granulométrie, leur mode et leur contenu en xénolites. Ces différentes injections correspondent à des arrivées distinctes de magma ou à des remobilisations locales. La première injection n'est représentée que par quelques fragments bréchiques anguleux, de dimension décimétrique, formés d'accumulations compactes de xénolites et de mégacristaux de clinopyroxène cimentés par environ 10% de matrice lamprophyrique. La grande proportion de fragments et les signes de déformation qu'ils présentent au contact les uns des autres indiquent une compaction importante et l'expulsion du magma interstitiel (Bédard 1993). Ces clastes composites ressemblent aux accumulations de xénolites que l'on observe par endroits le long de l'éponte inférieure du dyke (fig. 2.2a), et en sont probablement des équivalents fragmentaires. Ces fragments composites et la majorité des xénolites sont inclus dans un lamprophyre gris-vert occupant

Figure 1.4. Photos de la brèche intrusive de Rivard. a) Section D19 à l'extrémité sud du dyke montrant la relation entre le dyke et ses apophyses à fort pendage $(180^{\circ}/73^{\circ})$, et la foliation et le contact gneiss/niveau mafique de l'encaissant qui sont verticaux $(000^{\circ}/90^{\circ})$. La présence de niveaux mafiques dans l'encaissant semble favoriser les embranchements de même que les variations de direction ou d'épaisseur du dyke. b) Section A16 là où le dyke bifurque vers le nord-ouest montrant les relations de recoupements entre diverses injections de minette. Ces relations sont représentées schématiquement à la figure 2.2b. c) Bordure est de la section B9 montrant de très fines apophyses soulignant les fractures parallèles au dyke. d) Section A18 montrant les fragments allongés du gneiss encaissant; le plus gros fragments mesure 3.8 x 0.6 m. e) Bordure est de la section A3 montrant la grande abondance de xénolites ($\approx 80\%$), en grande partie de composition mafique et ultramafique. f) Section C6 riche en xénolites gabbroïques; la photo couvre un champ d'environ 0.9 m; échelle centimétrique sur les autres photos.

la plus grande partie de la brèche de Rivard. Il s'agit de la seconde injection, ou intrusion principale (échantillon B6-76). Les xénolites y forment environ 50% du volume de la roche. Ils ne sont généralement pas jointifs, sauf dans certaines zones plus riches en xénolites (figs 1.4e, 2.2a). Des accumulations formées majoritairement de xénolites mafiques et ultramafiques montrent des contacts graduels et pourraient être le résultat d'une accumulation par gravité le long de la paroi inférieure du dyke. Près de l'extrémité nord, une accumulation dense de xénolites occupe toute la largeur du dyke (figs 2.2a, 2.4b). Elle s'étend sur une section de deux mètres et montre des zones adjacentes pauvres en xénolites. Il pourrait s'agir d'un bouchon ou d'un étranglement. Les xénolites les plus gros tendent à être concentrés au centre du dyke et il est fréquent d'observer des xénolites d'un même type concentrés dans certaines zones. Ces observations suggèrent un écoulement laminaire, du moins lors des derniers stades de la mise en place (chapitre 2). La collision de deux xénolites, toujours accolés, a provoqué la déformation ductile de la foliation d'un gneiss autour d'un xénolite de pyroxénite (fig. 2.2c). La collision de deux fragments pyroxénitiques (fig. 2.2d) a causé la bréchification partielle et la formation de mâcles de déformation dans les clinopyroxènes de la zone de collision. Ces structures pourraient indiquer un écoulement turbulent du magma, ou encore être liées à une compaction importante, comme il a été suggéré pour le xénolite bréchique décrit plus haut.

Trois générations de dykes mineurs se recoupent près de l'extrémité nord de la section principale (figs 1.4b, 2.2b). Il est possible d'établir la relation mutuelle de ces intrusions, mais leur âge relativement à l'intrusion principale demeure incertain. La plus vieille des trois n'apparaît qu'à la bordure est du dyke et au contact d'un fragment d'encaissant (3 sur la fig. 2.2b). Il s'agit d'un lamprophyre gris-vert foncé (éch. A16-1) à grains fins, et pratiquement dépourvu de xénolites. Cette injection est recoupée par les dykes centimétriques de la quatrième injection (4 sur la fig. 2.2b; éch. A13-2a). Cette dernière est légèrement plus pâle, à grains fins, et riche en petits xénolites concentrés au centre de l'intrusion. Les dykes de la quatrième injection se recoupent mutuellement et présentent des indices de foliation d'écoulement. Ils recoupent l'encaissant et des fragments de l'encaissant isolés dans le dyke (fig. 2.3j). Ils incluent localement des autolites subanguleux de lamprophyre légèrement plus foncé, probablement des fragments de la troisième injection. La cinquième injection (5 sur la fig. 2.2b; éch. A13-2b) forme de petits dykes discontinus pauvres en xénolites. Le contour et les limites de ces dykes mineurs sont souvent imprécis. La sixième injection (éch. C22-4) est gris-vert pâle et forme des intrusions centimétriques irrégulières recoupant l'intrusion principale (fig. 1.5a). Le contact avec cette dernière est net. La forme amiboïde de ces injections et les contours souvent diffus des dykes mineurs suggèrent que les injections plus tardives ont recoupé un hôte encore partiellement liquide. Le magma a probablement cristallisé rapidement, comme le suggèrent la granulométrie fine des différentes injections, la présence de bordures figées dans les petits dykes et les apophyses, la forme aciculaire des cristaux d'apatite, et l'extinction radiée des feldspaths de la matrice du lamprophyre. La déviation des globules le long d'un xénolite (enchassé dans une zone de microbrèche de l'encaissant) montre que le dernier mouvement du magma a été vers le haut (fig. 2.3g).

L'intrusion principale se divise en plus petits dykes près de l'extrémité sud. L'un d'eux, d'une épaisseur de 65 cm (éch. D25-1), montre une fine bordure figée alors qu'un autre, de 35 cm, en est dépourvu. Dans les sections plus étroites du dyke (≈ 10 cm), qui affleurent à 40 et 90 m au sud de l'extrémité sud de la section principale, les xénolites sont petits, peu abondants et nettement concentrés au centre de l'intrusion.

1.6.3- Épontes

Les épontes du dyke sont généralement droites et parallèles. Toutefois, l'érosion différentielle de l'encaissant rubané (fig. 2.3b), l'arrachement de fragments et la fusion partielle des épontes (voir plus loin) créent localement des aspérités (figs 2.2c, e). Les apophyses sont nombreuses et recoupent les deux parois du dyke. Elles sont rectilignes, subparallèles au dyke et s'orientent vers le nord ou vers le sud (figs 2.2c, d, e). Leur longueur varie du millimètre à 6 m et leur largeur du millimètre à quelques centimètres. Une seule structure en échelon a été observée (fig. 2.2a). La minette cherche à envahir de petites fractures parallèles au dyke et on peut observer tous les intermédiaires entre les apophyses subparallèles aux épontes et les fragments d'encaissant détachés à divers degrés (figs 1.4c, 2.3i, j, k). De fines bandes (25 x 1 mm) de gneiss ont été isolées des épontes et les fragments allongés de l'encaissant peuvent atteindre 3.6 x 0.6 m (figs 1.4d, 2.2a). Bien que l'arrachement de fragments d'encaissant ait pu contribuer à élargir le dyke, son ouverture s'est surtout faite par dilatation, comme le montre le décalage de 1 m d'un niveau mafique de l'encaissant (fig. 2.2a).

Des bordures figées millimétriques apparaissent à l'éponte des petits dykes et des apophyses, mais sont absentes de la section principale du dyke. Leur absence pourrait être le résultat de la délamination des bordures et (ou) du pré-chauffage par des intrusions antérieures (e.g. Bruce et Huppert 1990). Au contact d'un dyke, la température est approximativement la moyenne de la température du magma et celle de l'encaissant (Delaney et Pollard 1982; Furlong et Myers 1985). La température du magma est évaluée à 1050 °C à l'aide d'un thermomètre basé sur la distribution du TiO₂ entre le liquide et la

Figure 1.5. Photomicrographies de la minette de Rivard, ses macrocristaux et ses xénolites (voir aussi les figs 3.3 et 4.2). a) Contact entre la minette felsique (à gauche) et l'injection principale de minette mafique. Le clinopyroxène est largement remplacé par l'amphibole dans la minette felsique. Le champ couvre 2.5 mm, lumière naturelle, lame B4-17.
b) Phénocristal automorphe de clinopyroxène avec intercroissance d'amphibole. Le champ couvre 1 mm, lumière naturelle, lame A16-1a. c) Cristaux de clinopyroxène formant une gerbe à la bordure interne d'un xénolite composé de clinopyroxènes comparables aux mégacristaux. Le champ couvre 2.5 mm, lumière naturelle, lame C45-11. d) Inclusion de biotite dans un mégacristal de clinopyroxène. Le champ couvre 2.5 mm, lumière naturelle, lame D5-7. e) Golfe de corrosion dans un mégacristal de feldspath potassique (K). Le champ couvre 2.5 mm, lumière naturelle, lame C44-8. f) Texture kélyphytique dans un xénocristal de grenat (G) avec remplacements importants en biotite verte (V; à l'intérieur du crislal) et brune (B; en bordure du grenat). Le champ couvre 2.5 mm, lumière naturelle, lame A6-16.

.

Figure 1.5 (suite). g) Dunite à spinelle (s) dont l'olivine (Ol) montre des lamelles de déformation bien développées. Le champ couvre 2.5 mm, lumière polarisée, lame A5-38. h) Wehrlite à spinelle vert kaki (S); Ol: olivine, C: clinopyroxène, Po: pyrrhotine. Le champ couvre 2.5 mm, lumière naturelle, lame A6-24. i). Clinopyroxénite à olivine (Ol), phlogopite et amphibole; C: clinopyroxène. Le champ couvre 2.5 mm, lumière naturelle, lame B1-19. j) Texture porphyroclastique, localement polygonale, dans une clinopyroxénite. Le champ couvre 2.5 mm, lumière polarisée, lame A5-10. k) Webstérite avec abondante amphibole (A) interstitielle riche en inclusions de magnétite (M); C: clinopyroxène, O: orthopyroxène. Le champ couvre 2.5 mm, lumière naturelle, lame B3-12. I) Clinopyroxénite à phlogopite (P) avec clinopyroxène (C) hypidiomorphes. Le champ couvre 2.5 mm, lumière naturelle, lame C44-1.

Figure 1.5 (suite). **m**) Roche à orthopyroxène (O) et clinopyroxène (webstérite ?) largement remplacée par (dans l'ordre chronologique) une amphibole vert bleuté, relativement grossière (A), de la phlogopite (P), et une amphibole fine et incolore (a). Le champ couvre 2.5 mm, lumière naturelle, lame B6-39. **n**) Amphibole (A) croissant de façon épitaxiale sur deux cristaux de clinopyroxène (C, c). L'amphibole montre des couleurs de biréfringence et un angle d'extinction généralement proches du clinopyroxène hôte. Le champ couvre 1 mm, lumière naturelle, lame A6-25. **o**) Remplacement partiel du clinopyroxène (C) par la phlogopite (P). Le champ couvre 2.5 mm, lumière naturelle, lame A5-26 (voir aussi la fig. 3.2j). **p**) Clinopyroxénite contenant de la phlogopite (P) interstitielle altérée en quartz et en chlorite (?). Le champ couvre 2.5 mm, lumière naturelle, lame A4-4. **q**) Amphibole interstitielle remplaçant partiellement le clinopyroxène (C) et la phlogopite (P). Le champ couvre 2.5 mm, lumière de clinopyroxène (C) et la phlogopite (P). Le champ couvre 2.5 mm, lumière naturelle, lame A4-4. **q**) Amphibole interstitielle remplaçant partiellement le clinopyroxène (c) et de scapolite (s) à la bordure d'une veine de phlogopite recoupant une clinopyroxénite, K: feldspath potassique, P: phlogopite (voir fig. 4.2j). Le champ couvre 1 mm, lumière naturelle, lame B3-89.

biotite (Righter et Carmichael 1996; chapitre 3). L'encaissant était à une température d'au moins 480°C, comme l'indiquent les plateaux de refroidissement des amphiboles des plutons potassiques de la région, à 1.040 Ga (Hanes et al. 1994). La température au contact devait ainsi être d'au moins 760°C.

L'encaissant ou des fragments de l'encaissant présentent localement des zones de réaction vertes d'épaisseur millimétrique, riches en amphibole. Ces plaquages peuvent être détachés et apparaître sous forme de fragments allongés, isolés dans le dyke. Des xénolites partiellement inclus dans l'éponte du dyke (fig. 2.3f) ou aux deux parois d'une apophyse étroite (fig. 2.2c) révèlent la présence de zones plastiques au contact du lamprophyre. Il s'agit de zones de microbrèche d'environ 4 cm d'épaisseur (fig. 2.3g) que l'on retrouve également dans certains xénolites. Ces microbrèches sont formées des fragments d'encaissant, submillimétriques à centimétriques, anguleux à arrondis, dans une matrice fine et peu abondante de feldspath, biotite, amphibole, minéraux opaques et apatite (fig. 2.3h). Cette matrice semble suivre les bordures de grains et les microfractures du gneiss. Les fragments sont en bonne partie le résultat du remplacement partiel in situ des minéraux de l'encaissant; il s'agit ainsi de pseudobrèches (Jébrak 1995). Les feldspaths sont métasomatisés, localement symplectitiques à leur bordure et riches en inclusions fines. Les pyroxènes et les oxydes du gneiss sont remplacés par la biotite et (ou) l'amphibole. L'intensité de la fracturation et des remplacements augmentent vers le contact avec le lamprophyre.

Des globules felsiques millimétriques à centimétriques sont localement présents dans le lamprophyre à proximité de ces zones de brèches. Les globules sont composés de feldspaths, avec des quantités variables de quartz, carbonate, amphibole, biotite, titanite, zircon et (ou) apatite, et sont généralement bordés de biotite (fig. 2.3e). Certains globules sont riches en carbonate, remplaçant partiellement les feldspaths et le quartz. Les minéraux de certains globules montrent des textures similaires à celles de la matrice de la minette, alors que d'autres présentent des indices de déformation comme dans le gneiss encaissant. Étant donné que le dyke n'est pas déformé, ces textures suggèrent que les globules sont des fragments d'encaissant partiellement fondus. Leur forme sphérique ou allongée pourrait être la conséquence d'un contraste de viscosité entre les liquides mafique et felsique, ou du cisaillement durant l'écoulement. Leur concentration à l'éponte supérieure du dyke est peutêtre causée par leur densité plus faible que le magma qui les inclut. L'absence de vésicules (ou d'amygdules) et la présence d'abondants phénocristaux de biotite sont probablement le résultat de la mise en place profonde d'un magma riche en H₂O.

1.6.4- Minette

La matrice de la brèche est un lamprophyre non altéré à phénocristaux (0.3 - 3 mm) de clinopyroxène et de biotite dans une matrice à grains fins, composée de feldspath potassique, plagioclase, biotite, clinopyroxène, amphibole, apatite, titanite, avec des quantités mineures de quartz, sulfures et zircon. Il s'agit donc d'un lamprophyre de type minette bien que la présence de plagioclase dans la matrice en fasse un intermédiaire vers les kersantites (tableau 1.2; Rock 1977; Streckeisen 1979). Les phénocristaux de clinopyroxène sont gris-vert pâle, hypidiomorphes, isométriques ou plus rarement allongés (figs 1.5a, b, 3.2a, b). Leur longueur est généralement inférieure à 2 mm mais on a observé un cristal squelettique de 12 mm. Ils montrent généralement une texture poreuse avec de fines inclusions irrégulières et abondantes de biotite et de feldspath. La texture poreuse affecte des cristaux individuels aussi bien que les grains en marge des xénolites pyroxénitiques. Elle semble progresser de la bordure vers l'intérieur et on peut observer tous les intermédiaires depuis les clinopyroxènes non poreux jusqu'aux cristaux complètement poreux. Les petits agrégats de clinopyroxènes poreux pourraient être des glomérocristaux ou de petits xénolites complètement affectés par cette texture. Les cristaux au coeur poreux peuvent être expliqués par la croissance de clinopyroxène équivalent à celui de la matrice sur un grain poreux (fig. 3.2b). Le clinopyroxène peut également contenir de

très fines exsolutions d'opaques (ilménite ?), concentrées au coeur des grains ou formant une couronne interne. Ces exsolutions semblent mieux développées dans les clinopyroxènes des dykes mineurs.

La biotite forme des phénocristaux brun orangé, hypidiomorphes, allongés, inférieurs à 3 mm, qui ne sont que peu déformés (fig. 3.2a). Dans l'intrusion principale, les cristaux allongés de biotite sont généralement orientés de façon aléatoire, suggérant qu'ils ont cristallisé après la mise en place. Par contre, dans les dykes mineurs et les apophyses, la biotite s'oriente parallèlement aux épontes, montrant qu'elle était déjà présente dans le magma au moment de l'intrusion. La relation granulométrique: clinopyroxène > biotite > minéraux de la matrice, telle qu'on l'observe dans la bordure figée des dykes mineurs, pourrait indiquer la séquence de cristallisation (?). Le remplacement partiel du clinopyroxène par l'amphibole est deutérique, et peut être important dans certaines injections, comme par exemple dans la minette felsique de la sixième injection. La titanite est systématiquement associée à la biotite, formant des inclusions ou apparaissant en bordure de cette dernière. Sauf dans l'intrusion la plus felsique où il forme des grains un peu plus grossier, le zircon (et/ou baddaleyite ?) n'a pu être identifié de façon certaine en raison de sa rareté et de sa granulométrie extrêmement fine. Les feldspaths montrent des textures microperthitiques et une extinction radiée là où la matrice ignée est à grains plus grossiers. Le plagioclase est rarement mâclé et presque impossible à distinguer du feldspath potassique et du quartz. Les feldspaths sont très peu carbonatisés. L'apatite forme de fines aiguilles inférieures à 1.2 mm, incluses dans les feldspaths ou plus rarement dans l'amphibole ou la biotite. Les sulfures (pyrrhotine, pyrite, chalcopyrite) fins et xénomorphes sont présents en traces dans la matrice. La magnétite n'apparaît que dans la minette la plus felsique. Notons que la biotite et l'amphibole prennent des teintes nettement plus foncées dans la minette plus felsique.

1.6.5- Xénocristaux et mégacristaux

En plus des phénocristaux, la minette contient d'abondants xénocristaux et mégacristaux. Les xénocristaux les plus abondants sont des clinopyroxènes montrant une bordure poreuse ou néoformée, similaire aux phénocristaux (fig. 3.2a). On observe plus rarement des xénocristaux de grenat (avec des textures kélyphitiques et un remplacement important en biotite, verte et brune (fig. 1.5f), feldspath et opaques), des xénocristaux d'orthopyroxène altérés en amphibole, des xénocristaux de quartz systématiquement couronnés de clinopyroxène ou plus rarement d'amphibole, et des xénocristaux plus ou moins arrondis de zircon et d'apatite. Les mégacristaux de clinopyroxène (1 - 50 mm) sont vert foncé à noirs sur l'affleurement, vert grisâtre à brunâtres en lame mince, automorphes à xénomorphes et montrent différents types de zonation, d'altération ou de résorption (figs 3.2c, d, e, f; chapitre 3). Les mégacristaux de feldspath potassique (< 40 mm) sont gris violacé sur l'affleurement, très résorbés (fig. 1.5e) et criblés d'inclusions micrométriques. Les cristaux de biotite brun orangé légèrement plus grands que les phénocristaux de la minette sont rares, isolément, mais peuvent former des inclusions hypidiomorphes dans les mégacristaux de clinopyroxène (fig. 1.5d) et de feldspath. Un petit xénolite est composé d'un clinopyroxène similaire aux mégacristaux, de feldspath potassique et de plagioclase avec des inclusions d'apatite automorphe (fig. 3.2g). Ces associations suggèrent une parenté entre les différentes espèces de mégacristaux (chapitre 3).

1.6.6- Xénolites

1.6.6.1- Forme et dimensions

La brèche intrusive de Rivard contient environ 50% de xénolites et on estime entre 5000 et 10000, la quantité de fragments visibles sur l'affleurement. Les xénolites sont anguleux à arrondis et mesurent de quelques millimètres à 70 cm de longueur (figs 1.4e, f, 2.3a, b, c).

Le plus gros fragment allongé du gneiss encaissant mesure 3.6 x 0.6 m (fig. 2.2a). De façon générale, les xénolites ultramafiques sont plus arrondis et plus petits que les fragments de quartzite, de gneiss et de gabbroïdes. La taille généralement plus petite des xénolites ultramafiques pourrait indiquer qu'ils ont subi une érosion ou une résorption importante durant un voyage plus long dans le magma ou que les gros fragments n'ont pas été transportés jusqu'au niveau d'érosion actuel. La longueur des différents types de xénolites est donnée à l'appendice B et aux tableaux 2.2 et 2.3.

1.6.6.2- Bordure de réaction

Les bordures de réaction sont habituellement peu développées (figs 1.4f, 2.3c, 4.2d). Leur composition et leur importance dépendent de la minéralogie des fragments. Les petits xénolites de quartz montrent systématiquement une bordure submillimétrique de clinopyroxène vert clair ou plus rarement d'amphibole, qui isole le quartz du magma. Les xénolites gabbroïques n'ont pas de bordure de réaction (fig. 1.4f) et le clinopyroxène apparaît parfois en relief positif relativement au plagioclase qui est préférentiellement dissous. Les xénocristaux de grenat ou ceux apparaissant en bordure des xénolites gneissiques sont intensément remplacés par la biotite (± feldspath, opaques; fig. 1.5f), et l'orthopyroxène des xénolites pyroxénitiques est remplacé par l'amphibole. Des xénolites riches en amphibole peuvent montrer une bordure de clinopyroxène comme celui de la minette. Les xénolites riches en olivine ont une bordure de réaction de nature et d'épaisseur variables (fig. 4.2h). Cette bordure peut être composée d'orthopyroxène, avec l'orthopyroxène et l'olivine partiellement remplacés par des minéraux fins: serpentine, talc, carbonate ? Elle peut être composite, avec une couche interne d'iddingsite (?) brun orangé et une couche externe de talc ou de biotite. Les grains en bordure des clinopyroxénites ont souvent une texture poreuse. Les cristaux les plus affectés peuvent être détachés, exposant ainsi de nouvelles couches au magma. Cette desquamation prévient la croissance des bordures de réaction. Certains xénolites sont sectionnés, recoupés par de fines veines de minette ou bréchifiés de façon similaire aux épontes de l'encaissant (section 1.6.3).

1.6.6.3- Types de xénolites

Plus de 1500 xénolites ont été décrits sur l'affleurement et en lames minces (tableau 1.5, appendices B, C). La proportion relative des fragments ultramafiques, mafiquesintermédiaires et felsiques est respectivement d'environ 25%, 35% et 40%. Les xénolites ultramafiques sont surtout composés de clinopyroxénite avec des quantités moindres de webstérites et de plus rares orthopyroxénites, wehrlites et dunites. Les xénolites mafiques et intermédiaires sont des gabbros, des norites, des métabasites, des granulites mafiques et

1	2	3	4	5
XNL	Ν	Lithologies	Minéraux	Textures, remarques
1	18	CXN	Срх	Grains fins à grossiers; textures rappelant la minette ou les mégacristaux; textures de déséquilibre.
2	9	WB CXN	Cpx Opx PhI (Fel)	Grains fins à moyens; texture porphyroclastique; Phl interstitielle déformée.
3	4	WB CXN GB	Cpx Opx PI Spl	Grains fins; texture plus ou moins polygonale.
4	15	OXN WB NR GB	Орх Срх РІ	Grains moyens à grossiers; cumulat, folié, rubané; texture porphyroclastique peu développée.
5	18	WB CXN GB	Opx Cpx Pl Mag	Grains fins à moyens; texture porphyroclastique ou polygonale; parfois folié où rubané.
6	11	GNL	Cpx Grt Opx Pl Am (Qtz Ms)	Grains fins à moyens; hétérogène, hétérogranulaire; mafique à ultramafique.
7	6	DN WL CXN	Ol Spl Cpx (Phl)	Grains fins à grossiers; hétérogène, hétérogranulaire; texture protogranulaire à polygonale.
8	124	CXN	Cpx (Spi Phi Am)	Grains fins à grossiers; texture protogranulaire, porphyroclastique ou polygonale.
.9	30	CSL	Cpx Fel Qtz Ttn Scp (Grt Opx Bt Sul)	Grains fins à moyens; hétérogène, rubané, folié; texture granulaire, poeciloblastique, granoblastique.
10	4	WBCXN	Opx Cpx (Am Sul Pl)	Grains fins à grossiers.
11	36	GB MBS	Cpx PI Mag (Am Bt Grt Opx)	Grains fins à moyens; folié, rubané; textures granulaire, granoblastique, porphyroclastique.
12	10	SYGR	Fel Qtz (Opx Cpx)	Grains fins à grossiers; hétérogène, hétérogranulaire; textures porphyroclastique, polygonale.
13	2	BTT	Bt (Fel Ttn)	Grains fins à moyens; Bt parfois déformée.
14	1	Sul	Po (Ccp Py Car)	
15	2	Oxi	Mag (IIm)	Exsolutions d'ilménite.
16	46	GS	Fel Qtz Grt Bt (Sil Cpx Opx)	Grains fins à grossiers; folié, rubané; textures porphyroblastique, porphyroclastique ou granoblastique.
17	5	QZ	Qtz Kfs (Cpx)	Grains fins à grossiers; hétérogranulaire, folié, rubané; texture polygonale.

Tableau 1.5 Principaux types de xénolites de la brèche intrusive de Rivard

1) Numéro du type de xénolite, pouvant contenir plusieurs sous-groupes (appendice C). 2) Nombre de xénolites observés en lames minces. 3) Types lithologiques: BTT: biotitite, CXN: clinopyroxénite, DN: dunite, GB: gabbro, métagabbro, GNL: granulite, GR: granitoïde, GS: gneiss, MBS: métabasite, NR: norite, OXN: orthopyroxénite, QZ: quartzite, SY: syénite, WB: webstérite, WL: wehrlite. 4) Principaux minéraux (entre parenthèses: minéraux présents dans certains xénolites ou en faible abondance) Abréviations d'après Kretz (1983) sauf Am: amphibole, Fel: feldspath (s), Oxi: oxyde (s), Sul: sulfure (s). 5) Seules les principales textures sont décrites (voir appendice C).

des roches calco-silicatées. Les xénolites felsiques incluent différents types de gneiss, de granitoïdes, de quartzites et de roches calco-silicatées. La grande diversité des types lithologiques et des textures (tableaux 1.4, 2.2, figs 1.5, 4.2) suggère que la minette de Rivard a échantillonné une section importante de la lithosphère grenvillienne à 1.07 Ga. La plupart des roches de la Ceinture métasédimentaire sont représentées dans la brèche, à l'exception des marbres et des unités riches en biotite. Ces roches pourraient ne pas avoir été rencontrées par la minette, ne pas avoir été échantillonnées ou avoir été rapidement désagrégées. Les nombreux gros fragments de gabbro et de norite pourraient indiquer que des intrusions mafiques sont abondantes ou situées à faible profondeur sous la brèche. Les granulites mafiques et les roches ultramafiques sont exotiques. Les textures et (ou) l'assemblage minéralogique des xénolites ultramafiques sont différents de ceux des quelques roches ultramafiques affleurant dans la région, à savoir les pyroxénites des plutons potassiques de 1.090 - 1.076 Ga, la péridotite de Rolleau (section 1.7.2), une roche ultramafique riche en clinopyroxène et biotite affleurant à 24 km au sud-ouest de la brèche, ou les roches des écailles ultramafiques affleurant plus au nord-ouest, dans la Ceinture de gneiss centrale (Sharma et al. 1995). L'ensemble des xénolites mafiques et ultramafiques de la brèche de Rivard rappelle l'assemblage lithologique représentant la partie profonde d'un arc insulaire mature (Tonsina, Alaska; DeBari et Coleman 1989). Les xénolites s'en distinguent toutefois de façon notable par la présence fréquente de phlogopite et la relative abondance d'amphibole.

Par commodité, les xénolites ont été classés en 17 groupes principaux en fonction de leur assemblage minéralogique (mais non de leur mode) et leurs textures: granulométrie, couleur des minéraux, exsolutions, indices de déformation, etc., telles qu'on les observe en lames minces. Des sous-groupes ont été créés pour accommoder certaines différences avec les autres membres d'un groupe, de sorte qu'on obtient une quarantaine de catégories. La petite taille, la granulométrie grossière et l'hétérogénéité de certains xénolites, l'altération et la présence de termes intermédiaires avec d'autres types de fragments, font que la classification est arbitraire dans de nombreux cas. Les caractéristiques texturales, minéralogiques, et géochimiques des différents groupes et sous-groupes sont présentées à l'appendice C. Le tableau 1.5 présente les principaux groupes avec leur minéralogie et leurs textures dominantes. La composition des xénolites qui ont fait l'objet d'analyses de roche totale est présentée graphiquement sur des diagrammes binaires (fig. 1.6) et sur des diagrammes multi-élémentaires (fig. 1.7). Les diagrammes de terres rares sont présentées à l'appendice I. Plusieurs des xénolites (et des minéraux) analysés ne sont pas considérés en détail dans la thèse mais feront l'ojet de travaux ultérieurs.
Des roches potassiques ou ultramafiques affleurent à proximité de la brèche de Rivard et pourraient avoir un lien avec les intrusions potassiques de la région de Mont-Laurier ou avec les xénolites ultramafiques de la brèche de Rivard. Les dykes de lamprophyre à biotite datés à 1.161 Ga et reliés à la suite intrusive de Chevreuil, se distinguent des minettes de Rivard, de Girard et de celles associées aux plutons potassiques, par leur biotite de forme plus irrégulière et par les indications d'injections simultanées de magmas mafique et felsique ("comingling"; Corriveau et al. en préparation).

1.7.1- Dyke de Girard

Ce dyke de minette, contenant une faible proportion de xénolites, est situé à 8 km au sud de la brèche intrusive de Rivard (fig. 1.3; UTM: 480350E, 5121350N; Corriveau et al. 1994a). Il mesure 32 cm de largeur et son attitude est de 180°/85°. Il n'est pas déformé, ni métamorphisé et le contact avec le gneiss quartzofeldspathique encaissant est net. Un dyke mineur de 5 cm (apophyse ?) orienté au 005°/90° a également été relevé. La minette est grise, à grains fins et les épontes montrent des bordures figées aux limites diffuses d'environ 10 mm d'épaisseur. Des petits globules (?) allongés, contenant des feldspaths et de la calcite, apparaissent localement près de la bordure est du dyke. Les xénolites allongés s'orientent parallèlement aux épontes et sont préférentiellement localisés dans la moitié est du dyke, suggérant une sédimentation à l'éponte inférieure. Les xénolites de gneiss, de gabbro et de quartzite sont inférieurs à 10 cm et constituent moins de 1% du volume de la roche. Les macrocristaux de clinopyroxène sont comparables à ceux observés dans la minette de Rivard, c'est-à-dire incolores ou verdâtres, automorphes à xénomorphes et parfois zonés. La minette présente un assemblage et des textures tout à fait similaires à ceux de la minette de Rivard, sauf pour des quantités légèrement plus élevées de carbonate.

La minette de Girard est mafique (45% SiO₂, 8% MgO, mg = 58), alcaline et ultrapotassique (4.7% K₂O, K₂O/Na₂O = 2.2). Comparativement à la minette de Rivard, elle est plus riche en Al₂O₃, Fe₂O₃, CaO, Sc, Ga, Y, Yb, et plus pauvre en P₂O₅, Cr, Ni, Ba, Rb, Th, Hf, Zr et en terres rares légères (fig. 1.7a; éch. 4003, appendice D, Iq).

1.7.2- Péridotite de Rolleau

Ce stock de péridotite de 800 x 300 m est situé à 3.5 km à l'est-nord-est de la brèche de Rivard (fig. 1.3; UTM: 484550E, 5132500N; Corriveau et al. 1996a). La roche est massive, à grains moyens, hétérogranulaire et composée d'olivine, d'orthopyroxène, de clinopyroxène, de spinelle, de phlogopite, d'amphibole et de plagioclase. Les trois derniers minéraux peuvent former de grands cristaux poecilitiques englobant les autres phases et les textures de déséquilibre sont fréquentes. La roche contient 40% SiO₂, 32% MgO (mg =79), 0.5% K₂O, 2500 ppm Cr, 1700 ppm Ni, 300 ppm Ba, 250 ppm Sr et 18 ppm Ce (éch. 4300, appendice D). Un fait important à souligner est qu'en dépit de textures et d'un assemblage minéralogique très différents, le patron d'éléments traces de la péridotite est similaire à celui d'un xénolite de webstérite présent dans la brèche de Rivard (D12-4; fig. 1.7w; appendice Iq).

Figure 1.6. Diagrammes binaires montrant la composition de la minette de Rivard (MNT), ses xénolites, le gneiss encaissant (GS), la minette de Girard et la péridotite de Rolleau (PD). Oxydes en poids%, éléments en ppm. Xénolites: CSL: roches calco-silicatées; CXN: clinopyroxénite, DN: dunite, GB: gabbro, MBS: métabasite, OXN: orthopyroxénite, PXN: pyroxénite, WB: webstérite, WL: wehrlite.

Figure 1.6 (suite)

Figure 1.6 (suite)

Figure 1.7. Diagrammes multi-élémentaires de la minette de Rivard (a), de ses xénolites (b-v), de la minette de Girard (a), de la péridotite de Rolleau (w) et du gneiss encaissant la minette (x). Les xénolites sont généralement regroupés avec des xénolites du même groupe, tel que défini à partir des critères pétrographiques (appendice C). Ils peuvent dans certains cas être mis en relation avec des roches présentant certaines similarités. Les valeurs de normalisation sont tirées de McDonough et Sun (1995).

Figure 1.7 (suite)

Figure 1.7 (suite)

Figure 1.7 (suite)

DEUXIÈME PARTIE

ARTICLES

Chapitre 2

<u>FRAGMENTATION PROCESSES</u> <u>AND XENOLITH TRANSPORT</u> <u>IN A PROTEROZOIC MINETTE DYKE,</u> <u>GRENVILLE PROVINCE, QUÉBEC</u>

David Morin¹ and Louise Corriveau²

¹ Centre géoscientifique de Québec, INRS-Géoressources, C.P. 7500, Québec, QC, Canada, G1V 4C7. dmorin@gsc.nrcan.gc.ca

² Centre géoscientifique de Québec, Commission géologique du Canada, C.P. 7500, Québec, QC, Canada, G1V 4C7. corriveau@gsc.nrcan.gc.ca

Article soumis à *Contributions to Mineralogy and Petrology* en juin 1995, accepté en février 1996 et publié: (1996), vol. 125: 319-331. Des modifications mineures ont été apportées au chapitre 2 après sa publication.

RÉSUMÉ

La brèche intrusive de Rivard fournit un des rares exemples de fracturation des épontes parallèle au dyke associée aux magmas de faible viscosité. Sa mise en place profonde permet d'étudier les processus de formation et de transport des xénolites sans l'interférence des mécanismes liés aux éruptions explosives superficielles. La brèche contient environ 50% de xénolites (< 1 mm - 70 cm) cimentés par un lamprophyre ultrapotassique (minette). Les xénolites constituent un échantillonnage de la lithosphère sous la Ceinture métasédimentaire du Grenville à 1.07 Ga. Ils incluent des pyroxénites et des granulites mafiques provenant de la croûte inférieure ou du manteau supérieur, des gabbroïdes, des gneiss et des quartzites typiques des roches grenvilliennes, de même que des fragments de l'encaissant, détachés à divers degrés.

Les nombreuses apophyses subparallèles au dyke sont interprétées comme des fractures formées lors de la propagation du dyke et envahies par la minette. Les épontes sont dépourvues de bordures figées et montrent localement des microbrèches qui résultent de la corrosion et de la fusion partielle de l'encaissant au contact du magma. L'ouverture du dyke s'est faite par dilatation mais la délamination et la fusion partielle des épontes ont contribué à élargir le dyke.

La composition chimique de la minette permet d'estimer la viscosité du magma qui a transporté les xénolites à environ 40 Pa·s. La présence de gros fragments denses et les déformations fragiles à ductiles affectant la bordure de certains xénolites, suggèrent une ascension rapide et un écoulement turbulent. La vitesse de sédimentation d'un xénolite de pyroxénite de 40 cm permet d'évaluer à environ 50 cm·s⁻¹, la vitesse d'ascension minimum du magma. L'addition progressive de fragments durant la mise en place, a provoqué l'augmentation de la viscosité effective du mélange liquide-solide jusqu'à 10³ Pa·s. Cette viscosité accrue a favorisé la suspension des xénolites, le comportement Bingham et l'écoulement laminaire du magma. Elle a pu également contribuer à ralentir la progression du dyke, impliquant que les brèches de ce type pourraient être restreintes à des niveaux crustaux profonds.

Les observations de terrain permettent d'attribuer la formation des xénolites à 1) la fracturation précoce de l'encaissant pendant la propagation du dyke et 2) la délamination des épontes et l'intrusion de magma le long des fractures. L'arrachement des fragments d'encaissant a entraîné la disparition des bordures figées et une fusion partielle mineure des épontes. Les discontinuités planaires préexistantes ont joué un rôle secondaire durant la fragmentation. Les xénolites pourraient ainsi être abondants dans les magmas alcalins non

seulement parce que ces magmas montent rapidement, mais peut-être également parce que leur faible viscosité est à l'origine d'une fracturation intense du conduit.

ABSTRACT

The Mesoproterozoic Rivard minette dyke provides a case example of dyke-parallel fracturing induced by propagation of low-viscosity melts at deep crustal levels. The dyke constitutes a xenolith-choked intrusion breccia and provides samples of an extensive section of the lithosphere underlying the southwestern Grenville Province of Québec at 1.07 Ga. The xenoliths occupy approximately 50% of the volume of the breccia. They are extremely diverse and include pyroxenites and mafic granulites from the upper mantle and lower crust, and Grenvillian gabbroids, gneisses and quartzites. Wall-rock fragments are detached to various extents along dyke-parallel fractures and apophyses.

The host lamprophyre magma had a calculated viscosity of ca. 40 Pa·s. Rapid ascent of magma and turbulence are suggested by the presence of large, dense fragments and the brittle-to-ductile deformation at the margins of some xenoliths. A minimum ascent velocity of ca. 50 cm·s⁻¹ is estimated from the settling velocity of a 40 cm long pyroxenite xenolith. The progressive addition of xenoliths increased the effective viscosity of the liquid-solid mixture to 10^3 Pa·s during emplacement. This favored Bingham behaviour and laminar flow of the magma, and xenolith suspension.

Field evidence suggests that xenoliths were formed through 1) early fracturing of wall rock by inelastic deformation during dyke propagation, and 2) continuous delamination of wall rock by intrusion of magma along the dyke-parallel fractures. This led to removal of chilled margins, and to fluid infiltration, partial melting and microbrecciation in the wall rock. Pre-existing discontinuities played a minor role in the fracturing process. Xenoliths may thus be abundant in alkaline magmas not only because these magmas ascend rapidly and can transport xenoliths, but possibly also, because their low viscosities promote intense fracturing of wall rock.

2.1 INTRODUCTION

Because of their economic potential, considerable attention has been drawn to kimberlitic and related rocks (Wyllie 1980; Mitchell 1986, 1992), and magmatic-hydrothermal breccias (Burnham 1985; Sillitoe 1985; Jébrak 1992). Hence, brecciation processes at shallow levels are well constrained. However, the specific problem of xenolith formation at depth is poorly understood, as direct field evidence is commonly lacking. The Rivard minette dyke is a rare example of a Proterozoic, xenolith-rich, ultrapotassic, lamprophyre dyke emplaced at a deep crustal level. It provides an opportunity to study the mechanisms of xenolith formation and transport, without interference of shallow-level processes.

The xenoliths originate not only from the Grenvillian Mesoproterozoic country rocks, but also from reworked Paleoproterozoic lower crust and upper mantle (Amelin et al. 1994; Corriveau et al. 1996a). Their abundance and variety suggest that fragmentation was efficient and operated over an extensive section of the lithosphere. Furthermore, the dyke walls preserve evidence of fracturing mechanisms and incipient xenolith formation. In this paper, we use field observations and calculations to evaluate the ascent velocity of the xenolith-rich minette and the influence of fragments on magma behaviour. We then propose a mechanism for xenolith formation operating at deep crustal levels. This, in turn, further constrains rheological models on dyke propagation (Delaney et al. 1986; Pollard 1987; Rubin 1993). Detailed petrographic and geochemical studies of the minette and the xenoliths will be reported elsewhere.

2.2 TECTONIC SETTING

The Rivard minette dyke (Fig. 2.1) is located 27 km southeast of Mont-Laurier in the southwestern Grenville Province of Québec, Canada (Corriveau and Jourdain 1992). It is neither deformed nor metamorphosed, and intrudes a belt of Mesoproterozoic (1.3-1.2 Ga) supracrustal and plutonic rocks, namely the Central Metasedimentary Belt (Wynne-Edwards 1972; Corriveau et al. 1996a, b). This belt was regionally metamorphosed at amphibolite to granulite facies at 1.19 Ga (Boggs et al. 1994; Corriveau et al. 1996b). Biotite-hornblende monzonite, diorite, gabbro and norite were emplaced at 1.16 Ga (Corriveau et al. 1994, 1996b). Between 1.09 and 1.07 Ga, K-rich alkaline magmas formed composite plutons of biotite-rich pyroxenite, diorite, monzonite and syenite (Corriveau et al. 1990; Corriveau and Gorton 1993). These plutons were emplaced at ca. 20 km depth, 100 Ma after regional metamorphism, and induced the radial shortening of their marble-rich country rocks (Corriveau and Leblanc 1995). The country rocks were still

Figure 2.1. Regional setting and location of the Rivard minette dyke in the Central Metasedimentary Belt (CMB; Wynne-Edwards 1972) of the Grenville Province of Québec, Canada. The Mezoproterozoic supracrustal assemblages of the belt (orthogneiss, paragneiss, marble, quartzite, calc-silicate rock, amphibolite), are bordered to the west by the Cayamant (CSZ) and Baskatong-Désert shear zones (BDSZ; Sharma et al. 1993), and to the east by the Labelle Shear Zone (LSZ; Martignole and Corriveau 1991). Marble-rich country rock are blank, gneissic country rock are light grey, gneiss complex is dark grey and 1.08 Ga ultrapotassic plutons, preferentially hosted in marble-rich country rock, are black. Modified from Corriveau and Leblanc (1995).

at temperatures above 480°C at 1.04 Ga (Hanes et al. 1994). The Rivard minette shares the age (1.07 Ga), mineralogy and chemistry with, and is thus a member of, the 1.09 - 1.07 Ga magmatic suite (Amelin et al. 1994; Corriveau et al. 1994; Morin et al. 1994).

2.3 THE RIVARD MINETTE DYKE

The Rivard minette occurs as a north-south-trending, steeply west-dipping dyke $(180^{\circ}/75^{\circ})$, more than 200 m long and less than 1.7 m wide (Figs. 2.2a, 2.3a). It forms an intrusion breccia with ca. 50% xenoliths and multiple lamprophyre injections. The dyke crosscuts the vertical, north-trending gneissosity of the country rock. Its walls present minor asperities and a locally well-developed set of dyke-parallel apophyses. The dyke changes direction and thickness, becomes compound and branches into apophyses at both ends of the main section as it intersects metre-scale mafic layers in the otherwise homogeneous granulitic gneiss (Fig. 2.2a). At the northern end of the main section, the dyke thickness increases to 1.7 m, and its trend changes to the northwest. At the southern end, it becomes narrow (ca. 10 cm) and is poorly exposed. A minor dyke, with chilled margins and scarce xenoliths, is present at this end (Fig. 2.2a).

2.3.1 Minette

At least six injections of cogenetic minette can be recognized from crosscutting relationships and xenolith contents. These separate injections may represent distinct batches of magma or result from local magma remobilization. The first injection is recorded by a few, angular, decimetre-scale breccia fragments composed of tightly packed polygenic xenoliths cemented by ca. 10% lamprophyre matrix. These breccia fragments resemble the dense xenolith accumulations scattered along the footwall of the dyke (Fig. 2.2a) and are interpreted as their dismembered equivalents. The breccia fragments and most of the xenoliths are included in a greenish-grey weathering minette that occupies the bulk of the dyke (Fig. 2.3a). This is the second and main intrusion. Three generations of smaller crosscutting inner dykes occur at the northern end of the main section (3, 4, 5 on Fig. 2.2b). They locally contain sparse sub-angular minette clasts, and have flow foliations, and poorly defined contacts. Their timing relationship with the main intrusion is uncertain. The sixth injection is more felsic and is scattered through the second injection as xenolith-free, cmsized pods. The amoeboid shapes of these pods and the poorly defined limits of many inner dykes suggest that early magmas were still partly liquid during intrusion of the later ones.

Figure 2.2. Schematic view of the Rivard minette dyke drawn after photographs. **a**) The dyke crops out over more than 100 m. Three representative segments are shown; approximately to scale. A xenolith-bearing, 10 cm wide minette dyke crops out further 40 m and 90 m to the south (not shown). Stars indicate minette sample location. The numbers 3a to 3k indicate the location of the photographs shown in Fig. 2.3. **b**) Crosscutting relationship of inner dykes. Stars indicate minette sample location. **c**) Fragments partly imbedded in the microbrecciated walls of an apophyse cutting a partly detached country-rock fragment. **d**) Rose diagram of the orientation of 58 apophyses. **e**) Dyke-parallel apophyses on both sides of the dyke.

The matrix of the breccia is a fresh minette with subhedral clinopyroxene and biotite phenocrysts (0.3 - 3 mm long) in a fine-grained groundmass of K-feldspar, plagioclase, biotite, clinopyroxene, amphibole, apatite, titanite, with traces of sulfides, quartz and zircon. Some of these minerals also occur as xenocrysts (chapter 3). Megacrysts include euhedral dark-green clinopyroxene, up to 50 mm long, and highly resorbed purplish-grey K-feldspar up to 40 mm long. Clinopyroxene phenocrysts have a sieved texture and groundmass feldspars commonly show a radiating extinction pattern. Partial replacement of clinopyroxene by amphibole is deuteric in origin. The random orientation of biotite flakes in the main dyke suggests crystallization after magma emplacement, whereas wall-parallel orientation in minor dyke and apophyses suggests flow of biotite with the magma.

The rock is mafic and ultrapotassic with K_2O/Na_2O (wt %) = 2.2 (Table 2.1), and enriched in large ion lithophile elements (3000 ppm Ba) and light rare earth elements (44 ppm La), with La/Yb = 20. Volatile content is low with 1.0 to 1.7 wt % loss on ignition.

	1	2	3	
	B6-76	mean	sd	
SiO ₂	50.17	50.43	1.13	
TiO ₂	1.40	1.37	0.07	
Al ₂ O ₃	13.63	13.50	0.81	
Fe ₂ O ₃	8.47	8.44	0.25	
MnO	0.13	0.13	0.01	
MgO	8.21	7.63	0.96	
CaO	8.52	7.96	0.53	
Na ₂ O	2.06	2.23	0.16	
K ₂ O	4.54	4.80	0.15	
P_2O_5	1.03	1.01	0.07	
LOI	1.68	1.33	0.30	
Total	99.84	99.55	0.56	

Table 2.1. Minette composition

1: sample used in the calculation of the minette density and viscosity. Oxides in weight %. LOI: loss on ignition. 2: mean of six analyses. 3: standard deviation.

Figure 2.3 a-k. Photographs and photomicrographs of the Rivard minette dyke. The locations of the images are shown on Fig. 2.2. a) General view of a section of the dyke, looking south; the dyke here is 1 m thick. b) Dense accumulation of xenoliths resulting from plugging or constriction of flow; the dyke here is 0.9 m thick. c) A pyroxenite xenolith (dark, 5 cm long) that has indented a gneiss xenolith (outlined by dashline); cm scale. Note the absence of reaction rim around the xenoliths. d) Photomicrograph of contact zone of two colliding pyroxenite xenoliths illustrating the deformation twins and fractures of a clinopyroxene at the margin of the upper xenolith; xenolith limits outlined by dashline; crossed polars; scale bar is 1 mm. e) Photomicrograph of globules in the minette; plane light; scale bar is 1 mm.

Figure 2.3 (continued). **f**) Pyroxenite xenolith (PXN) partly imbedded in a microbreccia in the gneiss wall rock (GS); MNT, minette. **g**) Slab cut across the long axis of the same pyroxenitic xenolith (PXN) as in 3f, showing its relationship to the wall-rock gneiss (GS). Note the ca. 50 cm thick microbreccia zone (BC) at the contact with the minette (MNT); the xenolith is 11 cm long (same scale as above). Note also the alignment of the globules under the xenolith, suggesting that the last movement of magma was upward and deviated by the xenolith. **h**) Contact between country-rock gneiss (GS) and the microbreccia (BC); plane light; scale bar is 1 mm. **i**) Country-rock fragments partly detached by thin apophyses subparallel to the dyke; the dyke is 0.9 m thick. **j**) Apophyses cutting a country-rock fragment. **k**) Incipient apophyse formed by the minette (MNT) invading a dyke-parallel microfracture with microbreccia (BC) at the wall of a 65 mm-thick dyke with chilled margins; GS, gneiss; plane light; the scale bar is 1 mm.

2.3.2 Dyke walls

The walls of the dyke are generally straight, smooth and parallel (Figs. 2.2, 2.3a) but asperities occur locally. For example, differential erosion of the compositional layering is ubiquitous where the dyke cuts sharply across the country-rock foliation (Fig. 2.3b). The main intrusion has no chilled margins. Instead, its walls locally show ca. 4 cm-thick microbreccia zones (Figs. 2.3g, h). On the outcrop, these zones are visible only by the presence of xenoliths partly imbedded in wall rock, indicating that it was plastic (Figs. 2.2a, c, 2.3f, g). The microbreccia comprises rounded to angular, mm to cm-size country-rock fragments in a scarce fine-grained matrix of feldspar, biotite, amphibole, magnetite and apatite. This matrix material replaces wall rock along grain boundaries and microfractures, leading to the formation of pseudobreccia (Fig. 2.3h; Jébrak 1992). Feldspars are turbid, metasomatised and locally symplectic at their margins. Pyroxenes and oxides are replaced by biotite and/or amphibole. The intensity of fracturing and replacement increases towards the lamprophyre. Microbreccia fragments eventually form spherical or irregular, mm- to cm-size globules in the lamprophyre (Fig. 2.3e).

The globules are usually surrounded by thin rims of biotite flakes and are composed of K-feldspar, plagioclase, quartz, carbonate, amphibole, biotite, titanite, zircon and/or apatite. In many globules, feldspars present a radiating extinction as in the minette groundmass, whereas in some others, feldspars and quartz show deformation textures similar to the country-rock gneiss. As the dyke is undeformed, this suggests that the globules are partly molten fragments of country-rock. Partial biotitization of pyroxene in the country-rock gneiss, adjacent to the dyke contact, indicates water supply by the magma. This addition of water may have contributed to trigger partial melting in small country-rock fragments. The spherical or elongate shape of the globules suggests that they were, at least partly, liquid. Their preferential location close to the hanging wall of the dyke may result from a lower density relative to the host magma. No true vesicles, amygdules or miaroles were observed, consistent with the deep setting of the dyke.

A continuum is seen from dyke-parallel fractures, apophyses (mm to cm wide, mm to 6 m long), and fragments detached to various extents from the wall rock (Figs. 2.2, 2.3j, k). These apophyses and fractures occur on both sides of the dyke and branch either towards the north or the south. They show local en échelon structures and both sides fail to match perfectly everywhere. The detached strips of country rock range from 25 x 1 mm to 3.8 x 0.6 m and examples of their gradual "peel-off" are frozen in locally (Figs. 2.2a, e, 2.3i, j). Chilled margins are only preserved along some apophyses or minor dykes. Their absence along the main dyke possibly results from wall-rock delamination and partial

1	2	3	4	5	6
Xenoliths	N	Length	Minerals 1	Minerals 2	Observations
Dunite, wehrlite	6	53 (15-200)	OI Cpx Spl	Phi Srp Sul	Fine to coarse grained, granoblastic, Spl interstitial or included in OI, deformation lamellae in OI; exotic to CMB.
Websterite	41	93 (20-450)	Срх Орх	Bt Am Fel Oxi	Fine to coarse grained, cumulate, foliated, porphyroclastic, granoblastic; interstitial PI or possibly minette; exotic to CMB.
Orthopyroxenite	2	150, 210	Орх РІ Срх		Medium to coarse grained, cumulate, exsolutions, kinks; related to some norites and websterites; uncommon in CMB.
Clinopyroxenite	439	61 (1-320)	Срх	Bt Am Spl Fel OI Opx Scp Sul Ttn Srp	Fine to coarse grained, massive, foliated, cumulate, protoclastic, porphyroclastic, granoblastic, zoned Cpx; uncommon in CMB.
Norite, Gabbro	139	145 (10-600)	РІ Срх Орх	Am Bt Opa Qtz Kfs Scp Spl	Fine to coarse grained, massive, layered, foliated, cumulate, igneous foliation, interstitial PI, subophitic, granoblastic, kinks; common in CMB.
Metabasite, mafic granulite	221	107 (7-520)	РІ Срх	Am Qtz Grt Opa Opx Kfs Bt Ms	Very fine to medium grained, layered, foliated, porphyroclastic, porphyroblastic, granoblastic, mylonitic, retrograded; metabasites are common in CMB, mafic granulites are uncommon.
Biotitite	7	66 (15-180)	Bt	Fel Ttn Qtz	Fine to medium grained, massive, foliated.
Oxide	2	10, 18	Mag	lim	Medium grained, IIm exsolutions.
Sulfide	11	27 (5-80)	Po	Ру Сср	Fine to coarse grained.
Gneiss	331	112 (2-700)	Fel Qtz	Grt Bt Cpx Am Opx Sill Oxi	Very fine to medium grained, layered, foliated, porphyroblastic, granoblastic, mylonitic, retro- graded; orthogneisses and paragneisses typical of CMB, wall-rock gneiss.
Granitoid, pegma- tite, anorthosite	117	95 (5-460)	Fel	Qtz Cpx Grt Am Bt Opx Opa	Fine to coarse grained, massive, foliated, porphyroclastic, granoblastic; common in CMB.
Quartzite	120	104 (1-550)	Qtz	Fel Grt Bt Cpx Oxi	Grey or blue, fine to coarse grained, massive, layered, foliated, porphyroblastic, granoblastic; common in CMB.
Calc-silicate rock	46	92 (6-370)	Cpx Qtz Fel Ttn	Scp Am Ms Bt Grt Car Ep Oxi	Fine to medium grained, layered, foliated, porphyroclastic, granoblastic; common in CMB.
Megacrysts					
Clinopyroxene	95	9 (1-50)			Dark green, euhedral to anhedral, partly resorbed.
K-feldspar	20	14 (1-40)			Purplish grey, highly resorbed.

Table 2.2. Xenoliths and megacrysts of the Rivard minette dyke

1: First column is the rock type which may include highly diversified types of xenoliths with various mineral assemblages and textures. 2: number of observed xenoliths and megacrysts. 3: length in mm (mean and range) of the xenoliths. 4: dominant minerals. 5: minor, occasional or replacement minerals > 1%. 6: observations; CMB = Central Metasedimentary Belt. Mineral abbreviations after Kretz (1983), except: Am = amphibole, Car = carbonate, Fel = feldspar (Pl and/or Kfs), Oxi = oxide minerals (Mag and/or Ilm), Srp = serpentine (may include talc and iddingsite), Sul = sulfides (Po, Py and/or Ccp).

melting, and/or pre-heating by previous injections. The ca. 1 m apparent offset of a mafic horizon in the country rock at the northern end of the dyke indicates opening via dilation (Fig. 2.2a). The partly detached country-rock fragments, the non-matching walls of the dyke and some apophyses, and the globules indicate that delamination and, to a lesser extent, wall-rock microbrecciation and partial melting also contributed to widen the conduit.

2.3.3 Xenoliths

Xenoliths comprise up to 80% of the volume of the breccia, with an average content of ca. 50%. Among the 1500 xenoliths described, 40% are silica-rich (mainly gneisses and quartzites), 30% are mafic (mostly metabasites and gabbroids) and 30% are ultramafic (dominated by various types of pyroxenite). The rock types, their mineralogy and textures are summarized in Table 2.2. The main rock types found in the Central Metasedimentary Belt, also occur as fragments in the dyke, except for marbles and biotite-rich rocks. Their absence implies that these rocks were either not present under the dyke, not sampled, or rapidly dismembered or resorbed. The numerous large fragments of gabbro and norite could indicate that mafic intrusions are either abundant below, present at relatively shallow depths below, or were easily extracted by the minette magma. The mafic granulites and ultramafic rocks are exotic with respect to the known geology of the Central Metasedimentary Belt of Québec. Preliminary geothermobarometric determinations on such xenoliths yield temperatures up to 1100 °C and pressures up to 25 kbar (Corriveau et al. 1996a), indicating a lower crustal to upper mantle origin. This is consistent with a mantle source for minette magmas (Esperança and Holloway 1987; Wallace and Carmichael 1989). However, the maximum pressure estimates represent a minimum depth of origin of the minette magma since none of the xenoliths studied has the isotopic signature of the host magma; hence they are not representative of its source rock (Amelin et al. 1994).

The xenoliths are angular to rounded and < 1 mm to 70 cm long. Field observation and slabs indicate that the xenoliths are matrix-supported and tend to be evenly distributed except in dense mafic and ultramafic xenolith accumulations (Figs. 1.4e, f, 2.2a, 2.3a, b). The first type of cluster consists of tightly packed xenoliths at the footwall of the dyke and the breccia fragments previously described. Their high xenolith content possibly resulted from compaction with concomitant liquid expulsion (Bédard 1993). The second type also occurs at the footwall; it has gradational contacts and a lower xenolith content, and may result from gravitational settling. A third type, occupying the entire width of the dyke, occurs along two metres at the northern end of the main section (Figs. 2.2a, 2.3b). This accumulation contains ca. 80% xenoliths and is bordered by xenolith-poor zones. It could result either from plugging or constriction of flow. In narrow dykes, the xenoliths are preferentially distributed along the center, indicating flow differentiation (Komar 1972). This type of sorting is locally present but less well defined in the wider section of the dyke. There is a tendency for xenoliths of a particular type to be concentrated in some parts of the dyke and for elongate fragments to be locally aligned parallel to the walls.

Some xenoliths are split or brecciated in a similar manner as the dyke walls. Two colliding xenoliths are still attached; the foliation in the quartz-rich gneiss wraps around the edge of the pyroxenite indentor (Fig. 2.3c). Broken crystals and deformation twins in clinopyroxene at the margin of some xenoliths suggest that they were subjected to violent impacts and possibly turbulent flow⁽¹⁾ during ascent (Fig. 2.3d). Some xenoliths have reaction rims, the thickness of which vary according to the mineralogy of the fragment. A very thin rim of clinopyroxene or amphibole isolates quartz xenocrysts from the host magma. In contrast, reaction rims are absent around xenoliths of gabbro and their plagioclase crystals are dissolved preferentially. Many pyroxenites have sieve-textured clinopyroxene along their margins. The most altered grains at the margins eventually detach so that new shells of fresh clinopyroxene become exposed. Hence, peeling prevented growth of reaction rims around these xenoliths. Calculation of residence time of xenoliths in the magma is a major question. However, the complexity and variety of reactions taking place at the xenolith-magma interface hinders assessment of residence time of xenoliths in the Rivard minette magma by the thickness of reaction rims around xenoliths.

The ultramafic xenoliths are usually small (Tables 2, 3), possibly as a consequence of size reduction during longer travel or because their larger equivalents have not been transported to this crustal level. The high proportion of angular and sub-angular ultramafic xenoliths suggests that their small size is not the result of attritional comminution as is observed in fluidized tuffaceous breccias (Platten 1982; Mitchell 1986). The observations made above rather indicate that xenolith-size reduction mostly occurred via fragmentation and corrosion.

⁽¹⁾ Turbulent flow is questionable. See: "Déformation à la bordure des xénolites" p. 232.

2.4 DISCUSSION

The extreme abundance and diversity of xenoliths in the Rivard dyke suggest that the minette magma ascended rapidly through the lithosphere and, in addition, was able to extract numerous fragments from the conduit. We will evaluate fragmentation mechanisms and propose a model for xenolith formation that links field observations with recent rheological models of dyke propagation. But first, it is necessary to constrain the physical conditions of xenolith transport. Estimation of the minimum ascent velocity of the minette will take into account the effect of a solid fraction on magma viscosity.

2.4.1 Xenolith transport

Most authors attribute the common occurrence of xenoliths in alkaline magmas to high ascent velocities in the range $10^1 - 10^3 \text{ cm} \cdot \text{s}^{-1}$ (Spera 1984; Bailey 1985; Maaløe 1987). Alternatively, Sparks et al. (1977) proposed that lower ascent rates are possible because the presence of solid particles in the magma produces a yield strength that increases effective viscosities and favors xenolith transport. From the Stokes law, the minimum ascent rate of a suspension can be estimated by the settling velocity V_0 of its densest fragment (Carmichael et al. 1977; Spera 1980; Maaløe 1987). The largest pyroxenite xenolith of the Rivard dyke (radius r of 20 cm, density d_x of 3.2 g·cm⁻³) would settle in minette magma at a rate of ca. 100 cm·s⁻¹ (3.6 km·h⁻¹):

$$V_0 = (2g \cdot r^2(d_x - d_1)) / 90\mu = 109 \text{ cm} \cdot \text{s}^{-1}$$
(1)

where g is the gravitational acceleration (981 cm·s⁻²). The density of the liquid d_l (2.7 g·cm⁻³) is obtained from the chemical analysis (xenolith-free) of the minette with the method of Bottinga and Weill (1970). The water content of the magma is given the value of the loss on ignition (1.7%). The Newtonian viscosity of the magma μ (40 Pa·s) is estimated according to the method of Shaw (1972). Silicate melt viscosities (exceeding 10¹⁰ Pa·s) calculated with this method are in agreement with laboratory measurements (Shaw 1972; Stein and Spera 1993; Baker and Vaillancourt 1995). Volatiles, temperature, and pressure influence melt viscosity (Shaw 1972; Scarfe et al. 1987). The loss on ignition (1.7 wt %) is a minimum estimate of the H₂O content of the magma because the minette lost an undetermined amount of water to the country rock (biotite and amphibole growth in the wall rock) and because there was no significant post-crystallization addition of water as the rock

is fresh. The fluorine content of the minette is unknown, but its lowering effect on viscosity is comparable to that of water (Baker and Vaillancourt 1995). These magmas are poor in chlorine (Corriveau and Gorton 1993), and CO_2 and S contents are very low, as indicated by the trace amounts of carbonates and sulfides in the minette.

A temperature of ca. 1050 °C was estimated for the magma at the time of emplacement, by comparing the mineral assemblage of the minette with those of experiments on similar K-rich magmas by Esperança and Holloway (1986, 1987). A temperature 100 °C higher would decrease the minette viscosity by only a factor of three (Shaw 1972). The influence of pressure on magma viscosity will depend on the degree of polymerization of the melt (Scarfe et al. 1987). The minette has a theoretical number of non-bridging oxygens to tetrahedrally coordinated cations (or NBO/T) comparable to a basalt (0.5), implying a viscosity decrease of ca. 50% when pressure increases from 1 bar to 25 kbar (Mysen et al. 1984; Scarfe et al. 1987). However, as pointed out by Scarfe et al. (1987) this may not be applicable to hydrous or non-Newtonian magmas (see below). The pressure effect on magma density is smaller and, from 5 to 25 kbar, the density of the minette increases by ca. 5% (Scarfe et al. 1987). Owing to the uncertainties on magma volatile content, effects of pressure and temperature, the calculations give an order of magnitude for the melt viscosity, and the actual viscosity could have been lower than 40 Pas, especially in the early stage of ascent. According to Wada (1994), low viscosity magmas ($10^1 - 10^2$ Pa·s) such as calculated herein, typically form one metre-wide dykes, which is the average width of the Rivard dyke.

The assumed Newtonian behaviour in equation (1) may be invalid because of the presence of xenoliths and crystals which would act to build up a yield strength (Bingham behaviour) and consequently a higher effective viscosity (Johnson and Pollard 1973; Sparks et al. 1977; Spera 1980; Marsh 1981). Thus, it seems more realistic to consider the minette as a Bingham substance, in which the shear stress must exceed a minimum value, or yield strength, before deformation can occur (Johnson and Pollard 1973). The approximately 50% xenolith and crystal content observed on the outcrop probably represents a maximum value reached in the last stage of emplacement. The presence of fragments detached to variable extents from the dyke walls (Figs. 2.2a, e, 2.3i, j) supports this hypothesis. It is here considered that the solid fraction increased, perhaps progressively, from near 0% in the magma reservoir to about 50% at the present erosion level. Ultramafic rocks average 30% of the xenolith population, but their volume occupies about 15% of the breccia. Assuming that all these xenoliths have a mantle or deep crustal origin and that they were reduced in size and have settled downward only to a limited extent, a solid fraction *F* of 0.15 is estimated for an early stage of magmatic ascent. Shaw

(1969) proposed a formula to calculate the settling velocity V of a solid particle in a liquid containing a solid fraction:

$$V = V_0 (1 - F)^{4.65} = 51 \text{ cm} \cdot \text{s}^{-1}$$
(2)

with V_0 obtained from (1). Similar results are obtained with the formula of Spera (1980) or by replacing the Newtonian viscosity in (1) with the solid fraction-dependent effective viscosity μ_e (Marsh 1981):

$$\mu_e = \mu (1-1.67 \text{ F})^{-2.5} = 82 \text{ Pa} \cdot \text{s}$$
(3)

The calculated settling velocity of 50 cm·s⁻¹ gives the order of magnitude of the minimum ascent velocities required to transport rock fragments upward, and compares with other estimates for xenolith-bearing alkaline magmas (Spera 1987). The mafic and ultramafic xenoliths would have travelled from their origin in the upper mantle or lower crust to the present erosion level in less than two days. The presence of large dense xenoliths and the evidence for impacts between xenoliths (Figs. 2.3c, d) support such a rapid ascent. Furthermore, these impacts suggest turbulent flow of the magma. Such flow is promoted by high velocity and low viscosity of the liquid and small width or high roughness of the conduit (Spera 1984; Emerman et al. 1986; Lister and Kerr 1991). The indicators of turbulent flow seem to oppose features more compatible with laminar flow such as local axial distribution of the larger xenoliths, the local concentration of xenoliths of a particular rock type and elongate fragments and crystals oriented sub-parallel to the walls. One can calculate the Reynolds number Re, which is a dimensionless measure of the type of flow:

$$Re = VD_{c}d_{l} / 10\mu_{e} = 19$$
(4)

. . .

where D_c is the mean width of the conduit (110 cm). The obtained value of 19 is well below the limit of ca. 1000 - 2000 (Delaney and Pollard 1981; Huppert and Sparks 1985; Lister and Kerr 1991), at which the flow regime changes from laminar to turbulent. This Reynolds number could be underestimated if the actual ascent velocity was much higher than 50 cm·s⁻¹; alternatively, equation (4) does not apply to non-Newtonian fluids (Hampton 1972). At the present erosion level, the dyke walls are generally straight and regular but abrupt changes in dyke direction, local constriction and plugging of the conduit (Fig. 2.2a) are potential initiators of ephemeral turbulent flow. We favor a second hypothesis to reconcile the apparent contradictory evidences for turbulent and laminar flows: the impacts between xenoliths possibly reflect turbulent flow during an early stage of magma ascent whereas the present xenolith distribution and orientation reflect laminar flow during emplacement (but see "Deformation à la bordure des xénolites" p. 232).

Progressive incorporation of xenoliths into the magma during ascent would greatly increase the viscosity of the mixture and consequently decrease its velocity of ascent (Marsh 1981; Spera 1984; Turcotte et al. 1987). If we consider a solid fraction of 0.5, the actual average xenolith content of the breccia, the minimum ascent velocity decreases to 4 cm·s⁻¹. Furthermore, the conduit is narrow and, as there is no evidence of compaction (the xenolith are matrix-supported), the current width likely represents the final condition of emplacement. As narrow conduits and high magma viscosity restrain magma flow, many dykes never reach surface (Marsh 1981; Spera 1984; Emerman et al. 1986). The Rivard minette was so successful at delaminating and incorporating fragments during its ascent that even if its viscosity was very low initially, it possibly became too viscous to rise, and solidified in the mid crust. The abundant solid fraction could also have contributed to inhibit propagation by enhancing heat loss, leading to premature heat death (Spera 1984). Hence, the ability to generate and transport xenoliths possibly explains why minette extrusive rocks are rare.

2.4.2 Xenolith formation

Fragments associated with magma emplacement could result from 1) remobilization of tectonic clasts in fault zones (Bryant 1968), 2) magmatic fluid exsolution or magma-water interactions in near surface environments (Burnham 1985; Lorenz 1985; Sillitoe 1985; Mitchel 1986; Morin et al. 1996), 3) degassing and gas streaming at mantle depth (Wyllie 1980; Bailey 1985), 4) magmatic stoping due to thermal stress (McBirney 1959; Marsh 1982; Furlong and Myers 1985), 5) magma taking advantage of pre-existing discontinuities (Platten 1982; Delaney et al. 1986; Parker et al. 1990) or 6) dyke propagation and emplacement (Johnson and Pollard 1973; Delaney and Pollard 1981; Delaney et al. 1986; Pollard 1987; Rubin 1993).

The partly detached wall-rock fragments, which represent "frozen examples" of incipient xenoliths (Figs. 2.2, 2.3i, j), the deep setting of the Rivard minette dyke and the presence of mantle-derived xenoliths, invalidate remobilization of tectonic fragments (Bryant 1968) and near-surface explosive mechanisms (Sillitoe 1985) as the fragmentation process. Wyllie (1980) and Bailey (1985) suggested that high-speed and explosive eruptions of many alkaline magmas could be triggered by crystallization or degassing in the mantle. However, Spera (1984, 1987) has shown that such propellant effects are secondary

to crack propagation mechanisms in determining the ascent speed and the lithospheric levels reached by alkaline magmas. The great diversity of xenoliths in the Rivard minette dyke requires a fairly continuous fragmentation process working on an extensive lithospheric section. It is unlikely that instantaneous explosive events operate repeatedly through the entire crust. Hence, the numerous fragments of the Rivard minette dyke are unlikely to have been generated by deep explosive magmatism.

Magmatic stoping of wall-rock fragments in plutonic bodies and volcanic necks is generally attributed to the thermal stress imposed on the wall rock by an intruding magma (McBirney 1959; Marsh 1982; Furlong and Myers 1985). In the main section of the Rivard minette dyke, the absence of chilled margins, which would have partly insulated the country rock from the hot magma, promoted partial melting of wall rock. The scarcity of the globules indicates that only limited amounts of partial melt were produced, probably as a consequence of the dry nature of the country rock and the short duration of heating (Philpotts and Asher 1993). Melting of chilled margins and wall rock tends to occur in thick dykes (typically > 2 m), hot (deep) country-rock, or after pre-heating by previous intrusions (Bruce and Huppert 1990; Philpotts and Asher 1993). However, dyke-parallel microfractures are present not only along the main dyke, but also along the walls of cmwide dykes with chilled margins (Fig. 2.3k). Considering that the volume of magma is too small and the duration of heating is too short to induce significant thermal stress in these narrow dykes, and that the fractures are nevertheless present, magmatic stoping resulting from large thermal gradient is unlikely to be the mechanism of fracturing. The ability of this process to produce fractures will also decrease with depth where ambient temperatures are higher and, by implication thermal gradients are lower.

Pre-existing discontinuities are planes of weakness which may control wall-rock fragmentation (Platten 1982; Parker et al. 1990; Green 1994). Although the dyke and the country-rock gneissosity generally have a common strike, the dyke and apophyses dip less steeply and cut across the foliation. Furthermore, the dyke locally changes strike and cuts the foliation at angles up to ca. 40° (Figs. 2.2a, 2.3b). The observation that some elongate wall-rock fragments have discordant internal structures (Fig. 2.3i) indicates that fragmentation can be independent of the country-rock gneissosity at the present level of erosion. In order to evaluate if, at depth, foliation and layering controlled xenolith formation or shape, width to length ratios (W/L) of 520 foliated and 353 massive xenoliths were measured in the field and compared using a contingency test derived from the X² law (Davis 1986). The W/L of both foliated and massive xenoliths display a roughly normal distribution (Fig. 2.4). Within a 95% confidence, the two groups are not statistically different, even though the foliated xenoliths have a slightly lower mean value of their W/L

Figure 2.4. Frequency distribution of the width to length ratio of the **a**) foliated xenoliths and **b**) massive xenoliths distributed into 10 classes, each with a minimum of 5 measures; sd, standard deviation. The class of width to length ratio > 1 contains only values of 1, since width may not be greater than length.

Figure 2.5. Length versus width of the **a**) foliated xenoliths and **b**) massive xenoliths. R is the correlation coefficient. The regression line of both the foliated and massive xenoliths crosscut the y-axis at positive values, suggesting that small fragments tend to be more equant than large ones.

than the massive ones (Figs. 2.4, 2.5, Table 2.3). This, along with the very presence of massive xenoliths, indicates that foliation or banding is not a prerequisite for fragmentation to occur but may have some influence on the xenolith shape.

Country rocks need not be fractured for dykes to propagate, and their resistance to fracturing is easily exceeded by magma pressure, especially if magma is hydrous (Spera 1984; Emerman et al. 1986; Pollard 1987; Clemens and Mawer 1992). Dramatic pressure drop at the crack tip triggers magma degassing or suction of pore fluids, enhancing crack progression (Lister and Kerr 1991; Rubin 1993). Many rheological models consider that the country rock behaves elastically during dyke propagation (Turcotte et al. 1987; Pollard 1987; Lister and Kerr 1991), resulting in the opening of a single crack with undeformed wall rock. In the present case, the abundance of xenoliths and apophyses suggests that dyke propagation was associated with widespread fracturing.

Xenoliths	N	Length (mm)	sd	R L vs W	W / L mean	sd
Massive xenoliths	353	65	57	0.804	0.653	0.199
Foliated xenoliths	520	121	110	0.867	0.618	0.206
Clinopyroxenites	384	62	47	0.860	0.676	0.205
Websterites	36	92	75	0.961	0.645	0.163
Metabasites	178	97	79	0.868	0.633	0.206
Granitoids, pegmatites	89	100	95	0.922	0.629	0.187
Quartzites	117	99	102	0.895	0.624	0.196
Gneisses	287	117	115	0.863	0.614	0.210
Gabbros, norites	112	145	124	0.846	0.584	0.217

Table 2.3. Xenolith dimensions

N = number of observations; sd = standard deviation; L = length; W = width; R = correlation coefficient of length versus width. Foliated xenoliths are mostly gneisses, quartzites and metabasites. Massive xenoliths are mostly granitoids, ultramafic and mafic rocks.

Model calculation and experiments indicate that inelastic deformation occurs at the leading edge of a propagating crack (Peck et al. 1985; Atkinson and Meredith 1987; Maaløe 1987; Rubin 1993). At high confining pressure, this deformation may result in a set of dyke-parallel fractures extending to tens of metres from the dyke contact (Fig. 2.6; Delaney

Figure 2.6. Schematic representation of inelastic deformation taking place during dyke propagation at high confining pressure. Dyke parallel fractures are created at the crack tip of a propagating dyke and extend to some distance from the walls. Magma eventually invades the fractures to form apophyses, and country-rock fragments are progressively detached. A rapidly ascending magma will entrain the xenoliths upward. Modified after Pollard (1987) and Rubin (1993).

et al. 1986; Pollard 1987; Rubin 1993). Such joint networks, lining kimberlite and minette dykes, have been reported by Andrews and Emeleus (1975), Delaney and Pollard (1981) and Delaney et al. (1986). In the Rivard minette dyke, the discontinuous fractures and apophyses sub-parallel to the contact (Figs. 2.2d, i, 2.3j, k) may represent relicts of fractures formed near the crack tip during dyke propagation (Fig. 2.6). The branching and variations in dyke thickness and direction in the vicinity of mafic horizons (Fig. 2.2a) could reflect enhanced inelastic deformation near zones of anisotropy in the country rock. The fractures are not present everywhere along the dyke length and, although they could have been developed only locally, we suggest that they were once more extensive, and that sequential intrusion of magma along the apophyses have peeled off wall-rock fragments and carried them away (Fig. 2.6). Preservation of wall-rock fractures created during dyke propagation is thus dependent on their lateral extent and on wall-rock delamination. Furthermore, pseudobreccias and globules attest that magmatic fluid infiltrations along micro-channels, and minor partial melting of wall rock contributed to the destruction of the relict zone of inelastic deformation.

Fragmentation via magma intrusion along dyke-parallel fractures should create elongate fragments. The detached strips of wall rock have an aspect ratio up to 25:1 and large xenoliths tend to be more elongate than small ones (Table 2.3). The regression line of the length versus width of the xenoliths crosscut the y-axis at positive values, suggesting that small fragments tend to be more equant than large ones (Fig. 2.5). Progressive segmentation could begin when magma intrudes the fractures and proceeds via collision or magmatic corrosion (Green 1994).

This mechanism of xenolith formation via inelastic fracturing is attractive because it is not restricted to high crustal levels (Rubin 1993) and may explain why xenoliths are present in successive pulses of magma. It also explains the abundance of apophyses and their orientation sub-parallel to the contact (Fig. 2.2d). Thus, the progressive detachment of wall-rock fragments by magma intrusion in fractures, created during dyke propagation, is the preferred fragmentation mechanism for the Rivard minette dyke. Although few examples are reported (Andrews and Emeleus 1975; Delaney and Pollard 1981; Delaney et al. 1986), dyke-parallel joints seem to be associated with alkaline magmas such as kimberlites and minettes. Rubin (1993) suggests a possible link between the presence of these fractures and the low viscosity of magma. If this is so, the common association of xenoliths with alkaline magmas could be a consequence of the intense fracturing created during emplacement of these low viscosity magmas.

2.5 CONCLUSION

The Rivard minette dyke is a well exposed, fresh, undeformed and unmetamorphosed, Proterozoic, xenolith-rich lamprophyre emplaced at mid-crustal level. The highly diverse xenolith suite includes pyroxenites and mafic granulites with upper mantle to lower crustal origins, and Grenvillian rocks including gabbroids, gneisses and quartzites. This rare probe of the middle to lower crust and upper mantle underlying the Grenville Province, at 1.07 Ga, provides insights on the mechanisms by which xenoliths are formed and transported at depth in alkaline magmas.

The Rivard dyke comprises at least six minette injections emplaced over a short time span. Opening of the dyke was dominated by dilation but fragmentation and delamination of wall rock contributed to widen the conduit. The general absence of chilled margins results from wall-rock delamination and partial melting, pre-heating of the walls by previous injection and the deep level of emplacement. Rapid ascent of the magma is suggested by the presence of large, dense, ultramafic fragments and strained crystals at the margins of some xenoliths. A minimum ascent rate of ca. 50 cm·s⁻¹ is estimated from the velocity at which a 40 cm pyroxenitic xenolith would settle in the host magma with ca. 15% ultramafic xenoliths at an early stage of ascent. Progressive xenolith addition increased the solid fraction to ca. 50% at the last stage of emplacement. The high solid fraction raised the effective viscosity to 10^3 Pa·s, thus favoring Bingham behaviour and laminar flow of the magma, and xenolith suspension. This high effective viscosity possibly prevented the xenolith-rich magma from reaching the surface. Intrusion breccias of this type are thus more likely common in deeply eroded terrains than at upper crustal levels.

The abundance and diversity of xenoliths suggest that the fragmentation mechanism was active over an extensive section of the lithosphere. Fragments partly detached from the wall rock, the deep setting of the dyke and presence of mantle-derived xenoliths rule out remobilization of tectonic fragments in a fault zone, high-level brecciation, or magmatic stoping related to high thermal stress as the fragmentation process. Metamorphic or igneous foliation or compositional layering within the wall rock had minor effects on xenolith formation but influenced their shape to a certain extent. Xenolith formation is attributed to 1) fracturing of wall rock during dyke propagation, and 2) progressive fragment detachment as a consequence of magma intrusion along the dyke-parallel fractures. Field evidence supporting this mechanism is the diversity of xenolith types, country-rock fragments at various stages of detachment from the dyke walls, the numerous apophyses sub-parallel to the dyke walls and microfractures invaded by the minette. Reduction in size

and aspect ratio of xenoliths possibly occurred via collisions and magmatic corrosion during ascent.

The proposed fragmentation process is not restricted to shallow lithospheric levels and could explain the presence of crustal as well as mantle-derived xenoliths in alkaline magmas. Thus, the common association of xenolith with alkaline intrusion could result not only from high ascent velocities which permit upward transport, but possibly also, because low-viscosity magmas induce wall-rock fracturing during dyke propagation, which lead to xenolith formation.

Acknowledgements: This paper is part of a Ph.D. thesis by DM. Financial support was provided by KWG Resources and the Geological Survey of Canada. Additional support was provided to the first author through a scholarships from the National Sciences and Research Council of Canada and the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche of Québec. Final and previous versions of the paper greatly benefitted from the critical comments and suggestions of Drs. J. H. Bédard, T. C. Birkett, T. Feininger, M. Jébrak and F. J. Spera. Special thanks are addressed to Dr. D. R. Baker who kindly calculated the viscosity of the magma, to Dr. T. C. Birkett for his many suggestions about magma viscosity evaluation, to Dr. R. Hébert for his help in the study of the xenolith textures, to Dr. M. Jébrak for the many discussions concerning breccia formation and to Dr. O. Tavchandjian for his assistance in the statistical treatment of the data. Our thanks also go to L. Madore, M. L. Tellier, N. Mohan, K. Boggs, M. Simard and M. Mainville for their help in the field. The Ministère de l'Environnement et de la Faune du Québec provided access and lodging in the Papineau-Labelle Wildlife Reserve. This is Geological Survey of Canada contribution 10195.

Chapitre 3

MESOPROTEROZOIC DEEP K-RICH MAGMATISM RECORDED IN A MEGACRYST- AND XENOLITH-BEARING MINETTE DYKE, WESTERN GRENVILLE PROVINCE, QUÉBEC

David Morin¹, Louise Corriveau² and Réjean Hébert³

¹ Centre géoscientifique de Québec, INRS-Géoressources, C.P. 7500, Québec, QC, Canada, G1V 4C7. dmorin@gsc.nrcan.gc.ca

² Centre géoscientifique de Québec, Commission géologique du Canada, C.P. 7500, Québec, QC, Canada, G1V 4C7. corriveau@gsc.nrcan.gc.ca

³ Département de Géologie et de Génie géologique, Université Laval, Ste-Foy, QC, Canada, G1K 7P4. hebert@ggl.ulaval.ca

RÉSUMÉ

La brèche intrusive de Rivard contient des milliers de xénolites qui sont des échantillons des couches lithosphériques traversées par la minette lors de son ascension jusqu'à 17 km de profondeur, à 1.07 Ga. Parmi ces fragments, on retrouve des pyroxénites micacées, et des mégacristaux de clinopyroxène et de feldspath potassique qui témoignent d'intrusions potassiques antérieures à la minette, et de mélanges de magmas en profondeur. Ces fragments indiquent que la suite d'intrusions potassiques post-tectoniques de 1.090-1.075 Ga qui recoupe la Ceinture métasédimentaire du Grenville, s'étend également en profondeur.

Les xénolites et les mégacristaux ont été transportés par un lamprophyre mafique (50% SiO₂, 8% MgO, 500 ppm Cr) et ultrapotassique (5% K₂O, K₂O/Na₂O = 2.2), riche en gros ions lithophiles et en terres rares légères (3000 ppm Ba, 44 ppm La) et dans une moindre mesure en éléments à fort potentiel ionique (1.4% TiO₂, 460 ppm Zr). La brèche comporte six injections de minette qui ont des patrons d'éléments traces identiques avec des anomalies négatives en Th, Nb-Ta et Ti, suggérant une affinité avec les environnements de subduction. Des teneurs élevées en Cr, Ni aussi bien qu'en K, Ba, Sr et La résultent vraisemblablement de la fusion partielle d'un manteau métasomatisé contenant du clinopyroxène et de la phlogopite. La cristallisation fractionnée et la contamination ont été limités mais la minette a connu des mélanges de magmas comme en font foi les nombreuses populations de macrocristaux et les textures de déséquilibre.

Les phénocristaux incluent le clinopyroxène à texture poreuse et la biotite riche en Ti, Ba et F. Les grands cristaux xénomorphes de clinopyroxène incolore sont des fragments de xénolites à grains grossiers. Les mégacristaux automorphes de clinopyroxène (≤ 50 mm) sont verts à brunâtres et peuvent contenir des inclusions d'apatite ou de biotite. Les mégacristaux ont une composition très variable avec un *mg* de 84 à 61 et des contenus élevés en Al^{VI} et faibles en Ca. Ces caractéristiques suggèrent qu'il s'agit de grands phénocristaux formés à hautes pressions et températures. Des mégacristaux avec un *mg* de 61 et contenant jusqu'à 11% Al₂O₃ attestent d'un fractionnement important en profondeur. Les textures complexes de déséquilibre et de surcroissance comme des mégacristaux montrant un coeur riche en Al et Fe, une couronne poreuse, et une bordure riche en Mg et Cr, témoignent du recyclage des cristaux et du mélange de magmas. Les mégacristaux formés à partir d'un liquide riche en K plus évolué que la minette. Les xénolites de pyroxénite micacée sont interprétés comme le résultat du mélange de magmas ou encore de l'infiltration de fluides ou de liquides riches en K dans des cumulats de pyroxènes. Les pyroxènes de certains de ces xénolites sont partiellement remplacés par une phlogopite déformée, indiquant qu'au moins dans certains cas, le mica s'est formé avant la déformation de la roche et l'extraction du xénolite par la minette.

Les intrusions potassiques de la région de Mont-Laurier partagent leur âge et leur mise en place post-tectonique, une minéralogie similaire et des caractéristiques géochimiques comme un fort enrichissement en K, Rb, Ba, Sr, La, Ce, un enrichissement modéré en Zr, Hf, Ti, et des anomalies négatives en Th, Nb-Ta. Ces similarités suggèrent que ces roches appartiennent à un même évènement magmatique prenant sa source dans un manteau enrichi. Une source hétérogène, différentes conditions de fusion partielle, la cristallisation fractionnée, le mélange de magmas et la contamination crustale ont pu contribuer à divers degré à la diversité des signatures géochimiques. Les intrusions potassiques de la région de Mont-Laurier, incluant la brèche de Rivard et ses xénolites de pyroxénite micacée et ses mégacristaux, constituent ainsi diverses manifestations d'un important épisode magmatique potassique ayant affecté la Ceinture métasédimentaire du Grenville au Mésoprotérozoïque. Cette suite magmatique se poursuit également en profondeur, possiblement jusqu'à la limite croûte-manteau et dans le manteau supérieur. Elle représente peut-être la fusion, en réponse au réchauffement ou à la décompression, d'un manteau métasomatisé durant des épisodes de subductions plus anciens.

ABSTRACT

The Rivard dyke contains thousands of xenoliths that are samples of the lithospheric levels crossed by the enclosing minette during its ascent to 17 km depth, at 1.07 Ga. The fragments include mica-pyroxenites, and clinopyroxene and K-feldspar megacrysts attesting to crystallization of K-rich intrusions older than the minette, and to magma mixing. These fragments suggest that the post-tectonic 1.090 - 1.075 Ga K-rich plutonic suite cutting the Central Metasedimentary Belt, to which the Rivard minette belongs, also extends at depth.

The xenoliths and megacrysts were transported in a mafic (50% SiO₂, 8% MgO, 500 ppm Cr), ultrapotassic (5% K₂O, K₂O/Na₂O wt % = 2.2) minette, enriched in LILE (3000 ppm La), LREE (44 ppm La) and to a lesser extent in HFSE (1.4% TiO₂, 460 ppm Zr). The six individual minette injections of the breccia have essentially identical normalized trace element patterns with negative Th, Nb-Ta and Ti anomalies typical of subduction-related magmas. The minette experienced limited fractionation and crustal contamination but has been subject to magma mixing, as evidenced by the many macrocryst populations and widespread disequilibrium textures. Its high content of K as well as Cr, Ni, LILE and LREE most plausibly result from partial melting of a K-metasomatized mantle source containing clinopyroxene and phlogopite.

The minette contains abundant clinopyroxene macrocrysts which are either phenocrysts, xenocrysts or megacrysts. Phenocrysts are sieve-textured diopside and Ti-Ba-F-rich biotite. Large colorless anhedral clinopyroxenes represent dismembered coarsegrained xenoliths. Euhedral clinopyroxene megacrysts ($\leq 50 \text{ mm long}$) are green to brownish and may contain apatite or biotite inclusions. Their euhedral shape, inclusions, wide compositional variation, with *mg* ranging from 84 to 61, high Al^{VI} and low Ca content suggest that they are large phenocrysts crystallized under high pressure and temperature conditions from previous intrusions. Megacrysts with *mg* of 61 and Al₂O₃ contents up to 11% attest to an efficient fractionation operating at depth. Complex disequilibrium and overgrowth textures such as megacrysts with Al-Fe-rich cores, sievetextured mantle and Mg-Cr-rich rims indicate crystal recycling or magma mixing. The resorbed Ba-rich K-feldspar megacrysts possibly represent near-solidus megacrysts from a K-rich magma more evolved than the host minette. Mica-pyroxenite xenoliths are interpreted to result from magma mixing or infiltration of K-rich melt or fluid in a pyroxene cumulate. The pyroxenes of some of these xenoliths are partly replaced by strained phlogopite, showing that at least in some cases, mica crystallized before plastic deformation, and before xenolith extraction.

With the Rivard dyke, the K-rich intrusions of the Mont-Laurier area share a close spatial relationship, a common age and post-tectonic setting, a similar mineralogy, and chemical characteristics (such as strong LILE and LREE enrichment, moderate HFSE enrichment and negative Th, Nb-Ta anomalies). These similarities possibly indicate that these rocks are products of a common K-rich magmatic event, with its source in an enriched mantle. Source heterogeneity, conditions of partial melting, crystal fractionation, magma mixing and crustal contamination contributed, to various extents, to the chemical diversity of the K-rich intrusions of the Mont-Laurier area. These rocks, along with the megacrysts and mica-pyroxenite xenoliths of the Rivard dyke, thus record an extensive and diverse magmatic event that intruded the Central Metasedimantary Belt in Mesoproterozoic time. This K-rich magmatic suite extends at depth, possibly down to the crust-mantle boundary and into the upper mantle. It may record heating- or decompression-triggered melting of a mantle which had been metasomatized during earlier subduction events.

3.1 INTRODUCTION

The Central Metasedimentary Belt of the Grenville Province is cut by a suite of 1.090 -1.075 Ga alkaline K-rich intrusions of the Kensington-Skootamatta suite (Fig. 3.1; Corriveau et al. 1990; Corriveau and Gorton 1993). This K-rich suite also extends at depth, as evidenced by the megacrysts and mica-pyroxenite xenoliths transported in the Rivard intrusion breccia, a xenolith-rich minette dyke cropping out in the Mont-Laurier area, Québec (Fig. 3.1). Minettes are interpreted as partial melts from enriched mantle sources as shown by their primitive compositions, presence of mantle-derived xenoliths, and strong LILE (large ion lithophile element) and LREE (light rare earth element), and moderate HFSE (high field strength elements) enrichments (Ehrenberg 1979; Roden 1981; Rock 1991; Carmichael et al. 1996). Most of them have normalized trace element patterns with Nb, Ta, Ti negative anomalies, typical of convergent margins magmas, although they may have been emplaced after active subduction (O'Brien et al. 1988; Lange et al. 1993; Peterson et al. 1994; Carmichael et al. 1996). They record a complex evolution with a multicomponent source and variable contributions of crystal fractionation, magma mixing and crustal contamination, evidenced by cogenetic intrusions, diverse macrocryst populations, widespread disequilibrium textures and the presence of crustal xenoliths (Roden 1981; LeCheminant et al. 1987; O'Brien et al. 1988; Rock 1991; McDonald et al. 1992; Carmichael et al. 1996).

This paper presents petrography, mineral and whole-rock chemistry of the Rivard minette, its megacrysts and some of its mica-pyroxenite xenoliths, to document an extensive suite of Mesoproterozoic K-rich intrusions emplaced at deep levels in the southwestern Grenville Province. The relationship between the different minette injections, its megacrysts and mica-pyroxenite xenoliths, and between the minette, and other K-rich intrusions of the area are investigated, and we place constraints on mantle source composition. The dyke emplacement mechanisms, host minette properties, ascent velocities and processes of xenolith formation are presented in a companion paper (chapter 2), and the nature and origin of the abundant ultramafic xenoliths will be reported in a series of forthcoming articles (chapter 4).

Figure 3.1. Regional setting and location of the Rivard minette dyke in the outer segment of the Central Metasedimentary Belt (CMB; Wynne-Edwards 1972), Grenville Province, Canada. The Mezoproterozoic supracrustal assemblages of the belt (orthogneiss, paragneiss, marble, quartzite, calc-silicate rock, amphibolite), are bordered to the west by the Cayamant (CZ) and Baskatong-Désert deformation zones (BDZ; Sharma et al. 1993), and to the east by the Labelle deformation zone (LZ; Martignole and Corriveau 1991); NCZ, Nominingue-Chénéville deformation zone; HZ, Heney deformation zone. The location of the Girard dyke and the Rolleau Iherzolite are also shown. Quartzite-rich country rock are light grey, gneiss complex are stippled, 1.165 Ga monzonite and gabbro plutons of the Chevreuil suite are medium grey and 1.090-1.075 Ga K-rich alkaline plutons are black. Modified from Corriveau and Rivard (1997).

The Rivard intrusion breccia (Fig. 3.1) is located 27 km southeast of Mont-Laurier in the southwestern Grenville Province, Québec (Corriveau and Jourdain 1992). It intrudes the Mesoproterozoic Central Metasedimentary Belt, composed of marble, quartzite, amphibolite, paragneiss and tonalitic and granitic gneisses (Wynne-Edwards 1972; Corriveau et al. 1996a). These rocks were regionally metamorphosed at amphibolite to granulite facies at ≈ 1.19 Ga (van Breemen and Corriveau 1995; Boggs 1996). Synkinematic biotite-hornblende monzonite, diorite, gabbro and norite were emplaced at 1.165 Ga (Corriveau et al. 1996a). Between 1.090 - 1.075 Ga, K-rich magmas formed composite felsic to mafic plutons (Fig. 3; Corriveau et al. 1990; Corriveau and Gorton 1993). The magmas belong to two suites: a silica-undersaturated potassic to ultrapotassic suite of syenite, monzonite, diorite and pyroxenite and a critically silica-saturated shoshonitic suite of syenite, monzonite and diorite (Corriveau and Gorton 1993). These plutons were emplaced at ≈ 20 km depth (7 kbar), 100 Ma after regional metamorphism and induced radial shortening of their marble-rich country-rock envelope (Corriveau and Leblanc 1995). The ultrapotassic lamprophyre of the Rivard dyke shares the age (1.07 Ga), mineralogy and many geochemical characteristics of the plutons and is thus part of this Proterozoic K-rich magmatism (Amelin et al. 1994; Morin et al. 1994; Corriveau et al. 1996a). Two additional post-tectonic K-rich intrusions, the Girard minette dyke and the Rolleau mica-amphiboleperidotite stock, crop out in the vicinity of the Rivard dyke (Fig. 3.1; Corriveau et al. 1996a).

3.3 THE RIVARD INTRUSION BRECCIA

3.3.1 Dyke setting

The Rivard minette crops out as a south-trending, steeply west-dipping dyke, more than 200 m long and less than 1.7 m wide (Fig. 1.1; chapter 2). It is not deformed, metamorphosed or altered and cross-cuts a granitic gneiss at granulite facies. The dyke walls are generally straight, with no chilled margins and are cut by dyke-parallel apophyses (Figs. 1.4a, c, d). These offshoots partly detached country-rock fragments, revealing how xenoliths were formed in the Rivard dyke (chapter 2). The dyke is composed of at least six individual minette injections varying in volume, mode, grain-size and xenolith content. The main minette injection (sample B6-76), which constitutes the bulk of the Rivard dyke, is a greyish-green lamprophyre containing around 50% xenoliths (Fig. 1.1). The most mafic minette (A16-1) forms a 30 cm thick, xenolith-poor dyke, whereas the most felsic one (C22-4) occurs as irregular pods of paler, xenolith-free lamprophyre, cross-cutting the main intrusion. The minette magma had a low calculated viscosity of \approx 40 Pa·s and its velocity of ascent is estimated to have been greater than 50 cm·s⁻¹ (chapter 2).

3.3.2 Xenoliths

The Rivard dyke contains on average 50% xenoliths, but this proportion varies from 0 to 80% (Figs. 1.4, 2.2). The xenoliths are angular to rounded, < 1 mm to 70 cm long with thin (≤ 1 mm) reaction rim (Figs. 1.4e, f). The rock types include dunite, wehrlite, websterite, orthopyroxenite, clinopyroxenite, mafic granulites, gabbro, norite, calc-silicate rocks, gneisses and quartzites (Table 1.5). Except for ultramafic and mafic granulite xenoliths, most fragments in the breccia represent rock types mapped in the Central Metasedimentary Belt (Wynne-Edwards et al. 1966; Corriveau et al. 1996a). No xenolith belonging to the Kensington-Skootamatta suite were found in the dyke. The ultramafic xenoliths form about 25% of the xenolith suite and are dominated by pyroxenites containing variable amounts of spinel, phlogopite and amphibole. They display either cumulate, protogranular, porphyroclastic or granoblastic textures and some xenoliths are foliated (Figs. 1.5, 3.2). Geothermobarometric determinations on mafic and ultramafic xenoliths suggest a lower crustal to upper mantle origin, with approximate pressure estimates ranging from 15 to 25 kbar (Tellier et al. 1995). The maximum pressure estimates are minimum depths of origin of the minette magma, as the xenoliths studied have an isotopic

106

composition different to that of the host minette and the K-rich intrusions of the Mont-Laurier area (Amelin et al. 1994; Corriveau et al. 1996a). The Rivard dyke also contains a suite of clinopyroxene and K-feldspar megacrysts (Figs. 1.5d, e, 3.2).

In addition to these megacrysts, only the mica-pyroxenite and one biotitite xenoliths with a possible cognate relationship to the minette are considered in the present study. On the basis of textures and composition, the mica-pyroxenites are divided into the PX1 and PX2. The clinopyroxenes and/or groundmass of PX1 resemble those of the host minette (section 3.3.3). Orthopyroxene is present in some of PX1 and both pyroxenes commonly display disequilibrium textures. PX1a (samples A7-9-1, D14-5) are small (< 30 mm) clinopyroxenite xenoliths composed of fine-grained clinopyroxene akin to those of the minette phenocrysts with interstitial amphibole, biotite and feldspar. PX1b (A7-9-2, C45-11, D15-6) are small (≤ 60 mm) clinopyroxenite xenoliths with fine- to coarse-grained megacryst-like clinopyroxenes. C45-11 forms an open network crystal aggregate of 2 - 5 mm-size clinopyroxenes with sieve-textured core and euhedral rim where in contact with the minette-like groundmass. This crystal aggregate is mantled by fine-grained ($\approx 0.1 \text{ mm}$) colorless, sheaf-like clinopyroxenes showing radiating extinction, or clouded with µmsized dark inclusions (Fig. 1.5c). D15-6 comprises large clinopyroxenes (< 6 mm) with pointed ends, twinning and extremely complex replacement patterns, in a scarce matrix similar to the minette groundmass, but coarser grained (Fig. 3.2h). It also contains patches of quartz, extensively replaced by carbonate, that is possibly xenocrystic in origin. PX1c (A4-17, A5-13) are fine- to medium-grained orthopyroxene-bearing clinopyroxenites with widespread and complex replacement textures (Fig. 3.2i). The PX2 are medium-grained mica-clinopyroxenites and mica-websterites with minor interstitial feldspar, biotite and/or apatite. Clinopyroxenes in PX2a (A5-26, A5-34, D12-1) resemble the megacrysts but show a wavy extinction and sub-grains, the orthopyroxene are kinked and the rock may be foliated (Figs. 1.50, 3.2i). The abundant phlogopite, partly replacing both pyroxenes, is fairly homogeneously distributed with a grain-size comparable to that of pyroxenes. It is also deformed with kink and wavy extinction, and commonly define a foliation. The PX2b (D12-4) present similar textures except for the mica which is finer grained, less abundant, less evenly distributed and show little evidence of deformation (Fig. 3.2k).

A few small (< 50 mm) fine- to medium-grained mica xenoliths were sampled (Fig. 3.21). They are composed of > 90% orange-brown subhedral biotite with minor feldspar, titanite, apatite and sulfide. The biotite laths are usually bent or kinked and define a foliation. An inclusion (garnet ?) totally replaced to amphibole, a green mica and feldspar is present in A6-19.

Figure 3.2. Photomicrographs of the minette, its macrocrysts and xenoliths. All pictures in plane light with a field of view of 2.5 mm. **a**) The Rivard minette (BD-1) showing biotite phenocrysts (B), clinopyroxene microphenocrysts (C) and xenocryst (X). The white matrix is composed of feldspars (F) including apatite needles. **b**) Clinopyroxene phenocryst with a sieve-textured core and euhedral outline (B0-9). **c**) Euhedral green type MC1 clinopyroxene megacrysts and colorless type MC3 (A7-11). **d**) Apatite inclusions (Ap) in a partly resorbed clinopyroxene MC1 megacryst (C). The euhedral apatite (1.5 mm) contains an ovoid crystallized melt inclusion composed of biotite, amphibole, feldspars, apatite and opaques (A7-13). **e**) Euhedral type MC2 showing of a light pinkish-brown pleochroic core (c), a thick sieve-textured mantle (m), a colorless inner rim (r) and a thin outer rim of groundmass clinopyroxene (A7-11). **f**) Euhedral light brown type MC4 megacryst including sulfide blebs (C17-17).

Figure 3.2 (continued). **g**) Megacrystic assemblage (A16-1b) of K-feldspar (K), plagioclase (P) and dark green clinopyroxene (C) including euhedral apatite (Ap). The dark zone between Cpx and Pl is mostly composed of amphibole (A). **h**) Coarse euhedral clinopyroxenes in a minette-like matrix mostly composed of feldspar, apatite and biotite (PX1b D15-6). Clinopyroxene is partly replaced by amphibole (A-C) and locally show fine symplectic zones. **i**) Euhedral clinopyroxene (C) with relic orthopyroxene (O) in a minette-like matrix composed of feldspar, apatite and biotite (B) (PX1c A5-13). **j**) Interstitial phlogopite (B) partly replacing clinopyroxene (C) and orthopyroxene (O) (PX2a A5-26). **k**) Interstitial mica (B) partly replacing orthopyroxene (O) and clinopyroxene (C) (PX2b D12-4). **l**) Small xenolith (A6-19) composed of biotite (B) and plagioclase (P).

3.3.3 Minette petrography

The minette contains abundant macrocrysts, which are either subhedral, 0.3 - 3 mm phenocrysts (clinopyroxene, biotite; Figs. 1.5b, 3.2a, b), subhedral, \leq 50 mm megacrysts (clinopyroxene, K-feldspar and rare biotite; Figs. 1.5d, e, 3.2) or anhedral xenocrysts (clinopyroxene with subordinate quartz, feldspars, garnet, orthopyroxene, titanite, apatite and zircon; Figs. 1.5f, 3.2a). Clinopyroxene and biotite phenocrysts are inferred to represent the liquidus phases, consistent with experiments on minettes (Carmichael et al. 1996) and observations on the K-rich plutons in the Mont-Laurier area (Corriveau 1989; Corriveau and Gorton 1993). The larger size of euhedral clinopyroxene, as compared to the anhedral biotite, in the chilled margin of a minor dyke in which both minerals define an igneous foliation, may indicate that clinopyroxene crystallized slightly before biotite. The minette groundmass is fine-grained and composed of K-feldspar, plagioclase, clinopyroxene, biotite, amphibole, apatite, titanite with trace amounts of quartz, sulfides, carbonate and zircon. The rock is fresh, with no biotite chloritization and very minor carbonate replacement of feldspars. Clinopyroxene can be extensively replaced by amphibole in some minette injections. A deuteric reaction instead of later metamorphic overprint is suggested by the occurrence of amphibole as subhedral to anhedral limpid and inclusion-free groundmass crystals, its variable abundance from one injection to the other (5-30%) and the general unaltered state of the intrusion.

3.3.3.1 Phenocryst and groundmass clinopyroxene

Clinopyroxene phenocrysts and microphenocrysts (Fig. 3.2a) are greyish-green subhedral crystals usually < 2 mm long, but one 12 mm hollow phenocryst has been observed. Some are twinned or contain μ m-sized oxide exsolutions (ilmenite ?) clustering in the core or forming an inner rim. Clinopyroxene phenocrysts generally show a sieve texture with extremely abundant and irregular, fine-grained inclusions of biotite and feldspar, in many cases restricted to the core (Fig. 3.2b). The scattered biotite patches in clinopyroxene usually show a common extinction, suggesting epitaxial growth. The sieve texture seems to progress inward and all intermediates can be seen from unaffected, to marginally, to completely sieve-textured clinopyroxenes. Small aggregates of sieve-textured clinopyroxene growing over sieve-textured clinopyroxene resulted in euhedral crystals with sieve-textured cores (Fig. 3.2b).

Groundmass clinopyroxene occurs as small, light greyish-green, euhedral to anhedral crystals with scarce inclusions and exsolutions (ilmenite ?). Groundmass clinopyroxene (or amphibole) surrounds quartz xenocrysts and forms mm-sized, optically continuous, replacements or overgrowths on pyroxenite xenoliths and macrocrysts.

3.3.3.2 Clinopyroxene and K-feldspar megacrysts

Clinopyroxene megacrysts differ from the phenocrysts by their size, color and textures (Figs. 3.2c, e, f). Their length average 5 - 10 mm but the observed range is 1 - 50 mm; small clinopyroxene displaying textures similar to the large megacrysts are grouped with them. In thin section, they are green to light brown with a weak pleochroism. They are usually subhedral with sieve-textured inner rims or patches and some are twinned. No exsolutions were observed but blebs or trains of μ m-sized opaque inclusions are locally present. Some smaller megacrysts are broken parts of larger grains. Others are fragments of xenoliths, as indicated by their angular shapes and the presence of coarse polycrystalline equivalents. The megacrysts are replaced (by amphibole or biotite) and resorbed to various extents, and typically show a relict core, a greenish to brownish mantle, a sieve-textured inner rim, and a thin greyish green outer rim, similar to groundmass clinopyroxene (Figs. 3.2c, e). Epitaxial growth of biotite and amphibole occur in the sieve-textured zones of the megacrysts.

On the basis of color, shape, alteration pattern and inclusions, the ≈ 100 clinopyroxene megacrysts studied, are divided into 4 types, the characteristics of which are summarized in Table 3.1. The type MC1, are euhedral to subhedral, green, pleochroic with a diffuse darker-green halo and variously sieve-textured (Figs. 3.2c, d). They may contain sulfides (pyrrhotite or pyrite and chalcopyrite) or more commonly apatite inclusions. The apatite inclusions usually contain carbonate and µm-sized dark inclusions, in addition to scarce amphibole, biotite or feldspar. One apatite inclusion contains an ovoid crystallized melt inclusion with a mineralogy and textures akin to the minette groundmass (Fig. 3.2d). The euhedral type MC2 show a pinkish-brown pleochroic core, a sieve-textured mantle, a colorless inner rim and a thin greenish outer rim (Fig. 3.2e). Most type MC3 occur as limpid, colorless, anhedral crystals, with polycrystalline equivalents (Fig. 3.2c) and are interpreted as disaggregated coarse-grained xenoliths. Type MC4 are usually subhedral, light brown and affected to various extents by a dark brown or light greenish replacement, and sieve texture. They can be twinned, have a few polycrystalline equivalents and contain trains of µm-sized opaque grains or pyrrhotite blebs (Fig. 3.2f). MC4-like clinopyroxene occurring as optically continuous mantles over resorbed colorless clinopyroxene, or in near optical continuity on orthopyroxene, suggests that megacrystic clinopyroxenes grew epitaxially on xenocrysts.

Туре:	MC1	MC2	MC3	MC4	PX1b
Shape:	Euhedral Subhedral	ral Euhedral Anhedral Subhedral iral angular		Subhedral	Euhedral anhedral
Color:	Greenish	pinkish core, colorless rim	Colorless, green	Very light brown	Brownish to greenish
Textures:	Weakly pleochroic; one polycrystalline fragment with Fel and Ap	Weakly pleochroic core; zoned	Coarse to fine grained, polycrystalline equivalents	Zoned, twinned, complex extinction patterns	Weakly pleochroic; twinned; cumulate; pointed crystals; minette-like groundmass
Occasional inclusion:	Ap, Sul, Fel ? One Ap inclusion containing a polycrystalline minette-like inclusion		Ttn	Sul, Bt Opx, Rt ?	
Replacement:	Green, pleochroic Am? sieve texture; thin groundmass Cpx outer rim	Thick sieve- textured mantle, thin groundmass Cpx outer rim	Sieve-textured margin, embayments	Brown microcrystalline, greenish pleochroic; sieve texture; thin groundmass Cpx outer rim	Highly complex replacement mostly to Am; sieve-textured core, patches or rim
Type of Cpx:	Subsilicic Al-diopside	Subsilicic Al-Di (Al-Cr augite)	not analysed	Al-augite to Al-diopside	Al-augite to Al-diopside
Analyses table 3	3 - 4	5 (6)	-	7 - 8	10
Al ₂ O ₃ (Wt %)	7.6 - 11.2	10 (4.7)	-	6.2 - 9.0	5.1 - 8.1
TiO ₂ (Wt %)	1.2 - 1.6	1.6 (0.4)	-	0.5 - 1.0	0.4 - 0.8
Wo (mole %)	48 - 52	56 (41)	· _	38 - 48	42 - 48
<i>mg</i> (mole %)	62 - 68	66 (84)	-	72 - 83	76 - 80

Table 3.1. Characteristics of the clinopyroxene megacrysts of the Rivard minette

Mineral abbreviations after Kretz (1983) except Am = amphibole, Fel = feldspar (s), Sul = sulfides; Clinopyroxene from PX1b show textures similar to the megacrysts; mg = 100 (Mg / (Mg+Fe) where Fe is total iron. Number in parentheses for MC2 refers to rim composition (see text). Clinopyroxene classification from Morimoto (1989). K-feldspar megacrysts occur as purplish-grey strongly resorbed crystals up to 40 mm long (Fig. 1.5e). They are undeformed, untwinned and generally monocrystalline. They are clouded with μ m-size inclusions but inclusion-free patches or rims can be present. Subhedral dark reddish-brown biotite inclusions can be present and one large K-feldspar occurs in association with dark green clinopyroxene, plagioclase and euhedral apatite crystals (Fig. 3.2g), suggesting a relationship between the different megacryst species.

3.3.3.3 Biotite

Biotite forms subhedral strongly pleochroic (pale yellow to orange-brown), elongate phenocrysts and groundmass crystals (< 0.1 - 3 mm; Fig. 3.2a). It may be weakly kinked and includes titanite, apatite, opaque, clinopyroxene, feldspars and zircon. Rare larger (≤ 4 mm) biotites with the same color as the biotite phenocrysts occur as isolated macrocrysts or as inclusions in clinopyroxene or K-feldspar megacrysts (Fig. 1.5d).

3.3.3.4 Groundmass minerals

Amphibole forms pale green to dark green, anhedral to subhedral crystals < 1 mm. It is darker green in the more felsic minette. Marginal or complex clinopyroxene replacement to amphibole is extensive in some minette injections (Fig. 1.5b). Both K-feldspar and plagioclase are present in the minette groundmass. In the coarser minette injections, they commonly display irregular microperthitic texture and a radiating extinction. Apatite forms needles up to 1.2 mm long, included in goundmass minerals. Apatite xenocrysts are more equant and round in shape. Titanite forms small crystals less than 1 mm included in, or at the margin of biotite. This intimate association suggests that titanite is the product of some type of reaction with Ti supplied by biotite and Ca possibly by the amphibole replacement of clinopyroxene (Corriveau and Gorton 1993). Groundmass quartz is indistinguishable from the feldspars and was only detected by probing. Xenocrystic quartz, usually strained and inclusion-bearing, is rimmed with fine-grained clinopyroxene or amphibole. Zircon occurs as rare fine-grained crystals in the minette groundmass or as inclusions in biotite; it is slightly coarser-grained in the more felsic injection. Larger, round zircons are xenocrysts. Trace amounts of pyrrhotite, pyrite and chalcopyrite occur in all minette injections, whereas trace amounts of magnetite are only present in the more felsic injection.

3.4 ANALYTICAL METHODS

The minette samples were cut into slabs 5 mm thick to remove all visible xenoliths and xenocrysts. The major and trace elements were analyzed at the Centre géoscientifique de Québec. The concentrations of major and the trace elements (see Table 3.2 for detection limits) Cu, Ga, Ni, Nb, Pb, Rb, Sr, V, Y, Zn, Zr were determined by X-ray fluorescence spectrometry on glass and powder samples. The errors for these trace elements are less than 7 % at 10 times detection limit. The trace elements Ba, Co, Cr, Cs, Hf, Sc, Ta, Th, U and the rare earth element (REE) concentrations were determined by instrumental neuton activation analysis. The error is less than 5% for these elements at 10 times detection limit.

Mineral chemistry was determined by wavelength dispersive spectrometry on a Camebax SX50 microprobe (University of Toronto) with a 15 kV acceleration potential, a beam current of 30 nA (10 nA for feldspar and biotite), a beam size of 1 μ m and a counting time of 15 to 60 seconds. Additional analyses (wavelength dispersive spectrometry) were performed on a Camebax SX50 microprobe (Geological Survey of Canada, Ottawa) with a 15 kV acceleration potential, a beam current of 10 to 30 nA, a spot size of 4 μ m and a counting time of 10 to 40 seconds, and on an ARL 121000 microprobe (Laval University, Québec) with a 20 kV acceleration potential, a beam current of 10 nA and a spot size of 10 μ m. Metals, natural oxides and silicate standards were used. All analyses were corrected for deadtime, background, absorption, fluorescence and atomic number and converted to oxide concentrations using the Cameca PAP scheme (Pouchou and Pichoir 1985) or that of Bence and Albee (1968) for the ARL microprobe analyses. Formula units of the minerals were calculated using the computer program of Pringle (1989).

hole roo	ck analys	es of the I	Kivard m	inette, mi	ca-pyrox	enite xent	onths and	other K-	ric
1	2	3	4	5	6	7	8	9	_
MNT	MNT	MNT	MNT	MNT	PD	PX1a	PX1b	PX1c	
A16-1	B6-76	C22-4	mean	4003d	1663	D14-5	D15-6	A5-13	
49.18	50.17	50.87	51.5	45.13	42.35	47.05	48.67	48.82	
1.49	1.40	1.29	1.3	1.42	0.51	1.00	1.01	0.95	
12.43	13.63	14.75	12.8	17.68	5.12	9.93	8.50	8.58	
8.81	8.47	8.49	7.3	11.59	15.30	9.89	8.86	8.85	
0.13	0.13	0.13	0.12	0.17	0.22	0.16	0.14	0.15	
8.99	8.21	6.37	7.1	8.06	29.18	13.67	13.70	14.99	
8.48	8.52	7.24	6.7	10.76	3.91	11.59	12.16	10.86	
2.15	2.06	2.47	2.0	1.23	0.86	1.39	1.34	1.11	
4.77	4.54	4.96	5.6	2.12	0.92	2.75	2.03	2.62	
1.14	1.03	0.98	0.95	0.52	0.17	0.28	0.29	0.36	
1.13	1.68	1.27	4.1	1.78	1.15	2.58	2.45	2.03	
98.70	99.84	98.82	99.5	100.46	99.69	100.29	99.15	99.32	
67	66	60	66	58	79	73	75	77	
570	410	270	360	180	2400	1400	1400	1700	
35	25	25	35	35	120	45	45	50	
60	70	40	50	35	150	25	30	45	

60

29

270

< 0.5

1100

40

1600

26

< 5

110

< 0.5

0.4

< 3

< 0.3

5.3

240

34

23

85

59

10.7

2.6

1.22

3.80

0.53

1300

16

150

< 0.5

230

20

170

8

5

120

< 0.5

0.7

12

< 0.3

2.6

110

17

11

26

14

3.0

0.7

0.37

1.27

0.18

250

35

250

0.5 2200

60

600

13

< 5

100

< 0.5

1.2

< 3

< 0.3

6.1

210

19

.19

43

33

6.4

1.7

0.78

1.80

0.26

360

27

180

0.6

1700

45

500

12

9

90

< 0.5

1.5

5

< 0.3

5.1

170

21

18

42

30

6.4

1.6

0.80

1.67

0.24

440

27

180

0.6

2200

55

700

9

15

80

1.0

1.5

6

< 0.3

6.0

230

19

17

39

29

5.8

1.4

0.68

1.37

0.22

Table 3.2. Whole rock analyses of the Rivard minette, mica-pyroxenite xenoliths and other K-rich intrusions

Rock

SiO₂

TiO₂

Al₂O₃

Fe₂O₃*

MnO

MgO

CaO Na₂O

K₂Ō

P₂O₅

Total

LŌI

mg ppm

Cr

Со

Cu

Ni

Sc

٧

Cs

Ba

Rb

Sr

Ga

Pb

Zn

υ

Th

Nb

Та

Hf

Zr

Y

La

Ce

Nd

Sm

Eu

Tb

Yb

ш

(5)

(1)

(4)

(3)

(0.1)

(5)

(0.5)

(100)

(5)

(3)

(2)

(5)

(5)

(0.5)

(0.2)

(3)

(0.3)

(0.2)

(3)

(4)

(0.5)

(2)

(5)

(0.05)

(0.1)

(0.1)

(0.2)

(0.05)

190

19

200

1.4

3500

110

1700

15

9

100

1.4

4.0

3

0.5

9.9

420

21

43

96

52

9.7

2.3

0.93

2.27

0.26

120

17

180

1.2

3000

100

1800

19

12

100

0.8

3.4

7

0.6

9.8

440

24

43

90

51

9.7

2.4

0.96

2.21

0.32

100

15

170

1.0

2900

110

1900

27

13

110

1.8

3.9

8

0.8

10.6

470

26

45

98

55

9.8

2.4

1.05

2.42

0.34

200

16

170

2

1800

190

1000

20

24

120

6.0

26

19

1.3

11

300

25

86

176

100

18

4.4

1.5

1.9

0.27

Sample

Weight %

10

PX2a

A5-26

49.53

1.12

7.06

8.04

0.18

14.65

13.41

1.12

1.60

0.51

1.66 98.88

78

1900

45

55

230

38

250

< 0.5

900

60

250

11

9

100

0.8

0.5

3 < 0.3

4.0

130

18

13

34

21

4.9

1.0

0.63

1.6

0.18

11

PX2b

D12-4

50.32

0.58

5.29

10.16

0.24

17.08

13.23

0.82

0.85

0.23

1.40

100.20

77

2500

50

50

220

34

200

< 0.5

450

30

140

12

8

120

< 0.5

0.3

3

< 0.3

3.3

120

18

12

29

16

3.6

0.8

0.50

1.43

0.22

* Total Fe as Fe ₂ O ₃ . MNT: minette, PD: peridotite, PX: pyroxenite. 1-3: minette of the Rivard dyke; 1:
minor dyke of xenolith-poor mafic minette; 2: main injection of xenolith-rich mafic minette; 3: pod of
xenolith-free felsic minette; 4: mean of minettes (Rock 1991); 5: minette of the Girard dyke; 6: coarse-grained
mica-peridotite of the Rolleau stock; 7-11: mica-bearing pyroxenite xenoliths from the Rivard dyke; 7:
clinopyroxenite with sieve-textured, fine-grained clinopyroxene and abundant Am and mica; 8: coarse-grained
clinopyroxenite with a medium-grained minette-like groundmass; 9: fine to medium-grained websterite with
fine-grained minette-like groundmass; 10: medium-grained websterite with abundant interstitial Phl; 11:
medium-grained websterite with fine-grained interstitial Phl.

Figure 3.3. Composition (weight % recalculated to 100% on a volatile-free basis) of the Rivard minette. **a**) $SiO_2 - Na_2O+K_2O$ diagram (LeBas et al. 1986); TB: trachybasalt, BTA: basaltic trachy-andesite. **b**) $SiO_2 - K_2O$ diagram (Peccerillo and Taylor 1976; the limit between shoshonitic and leucitic (here shown as potassic) fields from Wheller et al (1987).

3.5 MINETTE CHEMISTRY

The minette is mafic with 50% SiO₂, 8% MgO and an average $mg \approx 65$ (mg = 100Mg/(Mg+Fe), where Fe is total iron), and ultrapotassic with 4.8% K₂O, and K₂O/Na₂O (wt %) ≈ 2.2 and has 0 - 3% normative nepheline in an H₂O-free calculation. Its major- and trace element composition is comparable to minettes from other localities (Table 3.2). The minette occupies the basaltic trachyandesite field of figure 3.3a and the potassic field of figure 3.3b. The different minette injections form a short line with the samples A16-1 and C22-4 as end members (Fig. 3.4). All minette samples (appendix D) have similar, fractionated REE patterns, with 200 times chondritic abundances of LREE and La/Yb \approx 20 (Fig. 3.5a). On the normalized trace element pattern (Fig. 3.5b), LILE show a strong enrichment, with 100 to 500 times primitive mantle values, and HFSE are moderatly to weakly enriched, with 5 to 50 times primitive mantle concentrations. This results in negative anomalies for Th, Nb-Ta, Ti and Sm. Identical REE and trace element patterns and ratios (Fig. 3.5) suggest that the minette samples represent comagmatic intrusions.

Figure 3.4. Variation diagrams (oxides in weight%, elements in ppm; recalculated on a volatile-free basis) of the Rivard minette and pyroxenites (PX1, PX2). Are also plotted for comparison the Girard minette (4003), the Rolleau peridotite (1663) and the field (light grey) of the Kensington pluton K-rich units; PXN: pyroxenite, DR: diorite, MZ, monzonite, SY: syenite (Corriveau 1989); CG: country-rock gneiss, BC: bulk continental crust (Taylor and McLennan 1985). The minerals are biotite (Bt), clinopyroxene (Cpx), feldspars (Fel), K-feldspar (Kfs), orthopyroxene (Opx) and plagioclase (Pl) from the Kensington pluton for which both major and trace element compositions are available (Corriveau 1989).

Figure 3.4 (continued)

Figure 3.5. Normalized trace element diagrams of the six minette injections. a) REE normalized to chondrites, b) multi-element diagram normalized to primitive mantle. Normalizing values from McDonough and Sun (1995).

3.6 MINERAL CHEMISTRY

3.6.1 Phenocrysts and groundmass clinopyroxene

A wide spectrum of composition is expected from the diversity in clinopyroxene textures (Figs. 3.2a, b). Phenocrysts and groundmass clinopyroxene have 0.8 - 3.0% Al₂O₃, 0.4 - 0.8% Na₂O and mg of 70 - 77 in mafic minette, and 3.2 - 5.2% Al₂O₃, 0.6 - 0.8% Na₂O and mg of 67 - 69 in felsic minette. Cores of crystals suspected to be xenocrysts are much more variable in composition with 0.6 - 7.0% Al₂O₃, 0.4 - 1.5% Na₂O and mg of 68 - 91, whereas their rims compare closely with minette clinopyroxene (Fig. 3.6; also compare analyses 5 - 6 with 9 - 10 on Table 3.3). This supports textural evidence for the presence of xenocrysts and their replacement or overgrowth by groundmass clinopyroxene. However, some xenocryst rims have a composition distinct from minette clinopyroxene, indicating that not every xenocryst was affected by marginal replacement or overgrowth (Fig. 3.6).

No systematic zonation was detected in phenocrysts, but core to rim traverses are hindered by the fine and intricate sieve texture. Groundmass clinopyroxene and discrete sieve-textured pyroxenite aggregates (glomerocrysts or sieve-textured xenoliths) are compositionally similar to the phenocrysts (Fig. 3.6; Table 3.3). They are rich in Si and Ca, poor in Al and Ti, and plot in, or slightly above, the diopside field in the pyroxene quadrilateral. The elements Si, Mg, Ca, Cr correlate together positively, and negatively with Al, Fe, Ti, Na, Mn. The clinopyroxenes from the more felsic minette have slightly lower Si, Cr and Mg, and higher Al, Fe, Ti, Mn contents relative to the more mafic injections, with a concomittant decrease of mg from \approx 73 to \approx 68, consistent with clinopyroxene fractionation (Irving 1974a).

3.6.2 Clinopyroxene and K-feldspar megacrysts

As shown in figure 3.7 (Table 3.3), the clinopyroxene megacrysts show a wide compositional spectrum and differ from the phenocrysts in having higher Al, Ti and Na, lower Ca and Si contents, and highly variable *mg* (Table 3.3, Fig. 3.7). They plot with the megacrysts of alkaline mafic rocks, except for the very Fe-Al-rich MC1 and MC2 (Fig. 3.7). The megacrysts as a whole form a trend in which Al, Ti, Fe, Ca and Na increase with decreasing Si, Mg and *mg*, possibly resulting from fractional crystallization (Irving 1974a; Harte 1983; Schulze 1987). However, the details reveal that the megacrysts are not part of a single lineage, consistent with the textural classification outlined above (Table 3.1).

	1	2	3	4	5	6	7	8	9	10	11	12
Wt %												
SiO ₂	52.56	52.87	52.40	52.30	54.12	51.12	50.34	49.49	50.29	52.77	51.39	52.62
TiO ₂	0.12	0.12	0.10	0.15	0.12	0.28	0.36	0.80	0.71	0.12	0.25	0.15
Al ₂ O ₃	1.44	1.34	1.37	1.36	1.14	2.57	3.65	4.44	3.77	0.90	2.01	1.28
FeO	8.64	8.25	8.17	7.88	3.57	7.88	9.51	10.21	9.04	8.64	9.29	7.33
Cr ₂ O ₃	0.00	0.07	0.04	0.18	0.00	0.24	0.00	0.07	0.27	0.07	0.02	0.10
NiO	0.01	0.00	0.00	0.00	0.00	0.06	0.04	0.00	0.00	0.00	0.01	0.00
MgO	12.76	12.77	13.21	12.96	16.20	13.43	11.97	10.85	12.77	12.96	12.09	13.46
MnO	0.24	0.32	0.35	0.34	0.19	0.20	0.42	0.48	0.30	0.31	0.42	0.27
CaO	23.10	22.95	23.25	23.41	24.30	22.69	22.92	21.56	21.36	22.88	22.90	23.66
Na ₂ O	0.62	0.59	0.53	0.53	0.27	0.44	0.66	0.70	0.71	0.57	0.63	0.50
K ₂ O	0.00	0.00	0.02	0.03	0.00	0.10	0.00	0.15	0.03	0.10	0.03	0.04
Total	99.49	99.28	99.45	99.15	99.91	99.01	99.87	98.74	99.25	99.22	99.04	99.41
Cations ba	ased on 6 d	oxygens										
Si	1.969	1.986	1.961	1.966	1.979	1.919	1.883	1.886	1.887	1.984	1.941	1.966
AI IV	0.031	0.014	0.039	0.034	0.021	0.081	0.117	0.114	0.113	0.016	0.059	0.034
AI VI	0.033	0.045	0.022	0.026	0.028	0.033	0.044	0.086	0.054	0.024	0.031	0.023
Ti	0.003	0.003	0.003	0.004	0.003	0.008	0.010	0.023	0.020	0.003	0.007	0.004
Cr	0.000	0.002	0.001	0.005	0.000	0.007	0.000	0.002	0.008	0.002	0.001	0.003
Fe ³⁺	0.036	0.000	0.051	0.030	0.003	0.057	0.098	0.033	0.063	0.027	0.060	0.036
Fe ²⁺	0.325	0.259	0.205	0.218	0.106	0.191	0.199	0.292	0.221	0.244	0.234	0.193
Ni	0.000	0.000	0.000	0.000	0.000	0.002	0.010	0.000	0.000	0.000	0.000	0.000
Mg	0.713	0.715	0.737	0.726	0.883	0.752	0.668	0.616	0.715	0.726	0.681	0.750
Mn	0.008	0.010	0.011	0.011	0.006	0.006	0.013	0.015	0.010	0.010	0.013	0.008
Ca	0.927	0.932	0.932	0.943	0.952	0.913	0.919	0.880	0.859	0.922	0.927	0.947
Na	0.045	0.043	0.038	0.039	0.019	0.032	0.048	0.052	0.051	0.042	0.046	0.036
M2	1.000	1.000	1.000	1.002	1.000	1.001	1.000	0.999	1.001	1.000	1.000	1.000
Mole %												
Wo	49.44	48.66	49.73	49.97	49.05	49.19	51.46	49.21	47.86	48.73	50.33	50.10
En	38.03	37.69	39.33	38.47	45.49	40.52	37.40	34.45	39.83	38.37	36.97	39.69
Fs	12.53	13.65	10.94	11.56	5.46	10.29	11.14	16.33	12.31	12.90	12.70	10.21
mg	72.5	73.4	74.2	74.5	89.0	75.2	69.2	65.5	71.6	72.8	69.8	76.6

Table 3.3. Representative microprobe analyses of the minette clinopyroxene (phenocrysts and groundmass)

mg = 100 Mg / (Mg + Fe) where Fe is total iron.

1- Core of a 1.5 mm anhedral phenocryst.

2- Rim of the same grain as analysis 1.

3- Core of a 0.6 mm subhedral phenocryst.

4- Rim of the same grain as analysis 3.

5- Colorless core of a 0.2 mm xenocryst. Note the high Si and Mg relative to the minette Cpx (analysis 9, 10).

6- Greyish-green rim (euhedral) of the same grain as analysis 5.

7- Core of a subhedral phenocryst with an amphibole rim (felsic minette).

8- Outer mantle of the same grain as analysis 7.

9- Groundmass clinopyroxene of the minette.

10- Groundmass clinopyroxene of the minette.

11- Clinopyroxene from a sieved clinopyroxenite (PX1a).

12- Limpid intersititial clinopyroxene in a sieved clinopyroxenite.

	1	2	3	4	5	6	7	8	9	10	11	12
	M 1	M 1	M 1	M 2	M 2	M 4	M 4	M 4	M 4	PX1b	PX1b	PX1b
Weiath %												
SiO ₂	45.59	47.09	45.79	46.42	51.36	50.13	48.13	49.41	50.00	49.94	49.91	50.29
TiO ₂	1.42	1.22	1.20	1.63	0.36	0.71	0.95	0.61	0.66	0.70	0.57	0.44
Al ₂ O ₃	10.00	7.25	11.01	10.08	4.68	7.21	7.64	6.72	3.94	7.64	6.26	5.11
FeO	10.92	9.29	10.00	8.54	5.73	8.43	8.76	7.14	8.19	7.23	6.93	6.20
Cr_2O_3	0.00	0.03	0.00	0.00	1.02	0.13	0.01	0.00	0.10	0.05	0.25	0.31
NIO	0.00	0.01	na	na	na	0.00	0.00	0.01	0.00	0.02	0.00	0.03
MgO	9.67	12.15	10.74	9.55	17.09	14.93	13.17	14.90	12.74	14.14	15.15	14.20
MnO	0.18	0.16	0.28	0.19	0.37	0.21	0.25	0.21	0.25	0.27	0.24	0.17
CaO	20.18	19.83	18.84	21.64	18.61	16.69	18.47	18.69	22.56	18.87	17.88	20.83
Na ₂ O	1.10	1.02	1.48	1.58	0.67	0.93	1.20	0.87	0.62	1.30	1.11	0.95
K₂Ō	0.07	0.08	0.00	na	na	0.04	0.06	0.01	0.15	0.01	0.00	0.06
Total	99.13	98.12	99.34	99.63	99.89	99.41	98.64	98.57	99.22	100.19	98.30	98.59
Cations ba	ased on	6 oxvae	ns									
Si	1.722	1.780	1.707	1.730	1.871	1.849	1.797	1.833	1.875	1.823	1.852	1.870
AI IV	0.278	0.220	0.293	0.270	0.129	0.151	0.203	0.167	0.125	0.177	0.148	0.130
	0.167	0.103	0.191	0.173	0.072	0.162	0.133	0.127	0.049	0.152	0.126	0.094
Ti	0.040	0.035	0.034	0.046	0.010	0.020	0.027	0.017	0.019	0.019	0.016	0.012
Cr	0.000	0.001	0.000	0.000	0.029	0.004	0.000	0.000	0.003	0.001	0.007	0.009
Fe ³⁺	0.113	0.122	0.139	0.119	0.057	0.012	0.101	0.069	0.080	0.077	0.060	0.072
Fe ²⁺	0.232	0.172	0.172	0.147	0.118	0.248	0.172	0.153	0.177	0.143	0.155	0.121
Ni	0.000	0.000	-	-	-	0.000	0.000	0.000	0.000	-	0.000	0.001
Μα	0.544	0.685	0.597	0.531	0.928	0.821	0.733	0.787	0.712	0.769	0.838	0.787
Mn	0.006	0.005	0.009	0.006	0.011	0.006	0.008	0.007	0.008	0.008	0.007	0.005
Са	0.817	0.803	0.753	0.864	0.726	0.660	0.739	0.743	0.907	0.738	0.711	0.830
Na	0.080	0.075	0.107	0.114	0.047	0.067	0.087	0.062	0.045	0.092	0.080	0.069
M2	0.999	1.001	1.002	1.000	0.998	1.000	1.000	1.002	1.000	0.999	1.000	1.000
Mole %												
Wo	51.28	48.38	49.47	56.03	40.97	38.17	44.95	43.20	50.50	44.73	41.72	47.76
En	34.15	41.26	39.22	34.44	52.37	47.49	44.59	47.91	39.64	46.61	49.18	45.32
Fs	14.56	10.36	11.30	9.53	6.66	14.34	10.46	8.90	9.85	8.67	9.10	6.96
mg	61	70	65	66	84	76	73	79	74	77	80	80

Table 3.4. Representative microprobe analyses of the clinopyroxene megacrysts

na = not analysed. mg = 100 Mg / (Mg + Fe) where Fe is total iron.

1- Core of a 14 mm euhedral green megacryst with euhedral apatite inclusions.

2- Internal greenish rim of the same grain as analysis 1.

3- Core of a 5 mm long, euhedral green megacryst.

4- Core of a 9 mm long, euhedral light brown megacryst.

5- Inner rim of the same grain as 4. Note the high Si, Mg, Cr and low Al, Ti, Na relative to the core.

6- Light brown core of a subhedral megacryst longer than 6 mm.

7- Greenish pleochroic mantle of the same grain as 6.

8- Light brown core of a 10 mm, subhedral megacryst.

9- Green inner rim of 8 with a composition similar to that of the phenocrysts.

10- Core of brownish Cpx in a medium-grained pyroxenite with textures similar to the megacrysts.

11- Core of brownish Cpx in a medium-grained pyroxenite with textures similar to the megacrysts.

12- Rim of the same grain as 11.

Figure 3.6. 100Mg/(Mg+Fe) vs Al^{total} (cations per formula unit, based on 6 oxygens) diagram of minette phenocrysts, xenocrysts and groundmass clinopyroxene. Sieve-textured clinopyroxenes from pyroxenite (PX1a) have a composition similar to the phenocryst and groundmass clinopyroxene. Tie lines link xenocrystic core to rim (composition similar to the groundmass clinopyroxene). The shaded area indicates the field of the Rivard minette clinopyroxene composition.

As illustrated in figures 3.7 and 3.8 (Tables 3.1, 3.3), there are many compositional similarities between types MC1 and MC2 (Ca-Al-Ti-rich and Mg-Cr-poor) on the one hand, and between type MC4 and clinopyroxene of PX1b (lower Ca, Al and Ti, and higher Mg and Cr) on the other hand. Types MC1 and MC2 are reversely zoned, with type MC2 showing an Al-Fe-Ti-rich core, a thick sieve-textured mantle, an Al-Fe-Ti-poor, Mg-Crrich inner rim, and a thin outer rim similar to the groundmass clinopyroxene (Fig. 3.2e). In contrast, type MC4 show a normal zonation with rimward increase of Ti, decrease of mg, and Al increase or decrease. In most cases, the zonation pattern is not gradational but marked by sharp discontinuities. The Mg-rich inner rim of type MC2 has a composition comparable to type MC4 (Table 3.3, Fig. 3.8). Although replacement or overgrowth with groundmass clinopyroxene may have contributed to the chemical variation observed in the megacrysts (Fig. 3.8), partial re-equilibration with the host magma cannot explain the bulk of the trend defined by the megacrysts because the minette clinopyroxene has a composition so markedly different from that of the megacrysts and because the phenocryst field is outside the megacryst trend (Fig. 3.7). Hence, the different megacryst populations must have different histories. The low mg of types MC1 and MC2 (61 - 68) attests to crystallization from an evolved magma. Euhedral apatite inclusions are restricted to the more evolved Fe-Al-rich type MC1 (Fig. 3.2d), suggesting late apatite saturation in these magmas. The reverse zonation in MC2 indicates that the inner rim (mg 84, 1% Cr_2O_3) crystallized from a melt considerably less fractionated than the core (mg 66, 0% Cr₂O₃) and suggests megacryst recycling or exposure to a more primitive magma. The very thin rim of groundmass clinopyroxene around euhedral megacrysts (Figs. 3.2c, e) suggests a short residence time in the minette. The clinopyroxene of PX1b, which has textures and composition akin those of the Mg-rich MC4 (Fig. 3.7), likely represent cumulate or chilled clinopyroxenes from a magma similar to, but slightly more primitive than, that from which the type MC4 crystallized.

The K-feldspar megacrysts range from Or_{70} to Or_{80} with 1.2 - 2.1% BaO and 0.3 - 0.5% SrO (Table 3.6) and only minor compositional variations within single megacrysts. These variations are not symetrically distributed, possibly due to an uneven resorption of concentrically zoned megacrysts. Compared to other K-feldspar megacryst occurences (uncommon) in alkaline mafic rocks, the K-feldspar megacrysts of the Rivard minette have significantly higher K₂O and BaO. This could be related to difference in melt composition, as the reported megacrysts (mostly anorthoclase) occur in basalts, basanites, nephelinites or alkaline lamprophyres, magmas with K₂O/Na₂O lower than minettes (Binns et al. 1970; Kutolin and Frolova 1970; Irving 1974; Chapman and Powell 1976; Irving and Frey 1984; Rock 1991).

	1	2	3	4	5	6	7	8	9
	Bt	Bt	Bt	Phl	Phl	Bt	Am	Am	Am
Wt %	MNT	MNT	MC1	PX1c	PX2a	GLM	MNT	MNT	MC1
SiO2	35,29	34.83	35.04	34.51	37.74	35.20	42.14	39.71	37.50
TiO ₂	4.49	5.11	5.26	4.14	4.27	4.73	0.86	1.37	1.86
AloOa	13.47	13.77	13.51	14.43	13.87	14.10	10.19	11.45	12.74
CroOa	0.01	0.00	0.00	0.00	0.65	0.00	0.02	0.02	0.00
FeO	15.36	18.85	16.36	11.31	8.58	15.20	15.46	18.89	16.25
NiO	0.05	0.11	0.00	0.07	0.19	0.03	0.04	0.10	0.03
MnO	0.10	0.21	0.03	0.04	0.00	0.11	0.31	0.45	0.12
MaO	14.05	11.39	13.63	16.59	19.14	14.20	11.80	8.82	9.71
CaO	0.01	0.00	0.02	0.01	0.00	0.05	11.76	11.73	11.76
BaO	1.33	1.21	0.57	1.89	0.38	0.36	0.03	0.00	0.20
NaoO	0.01	0.00	0.13	0.09	0.20	0.05	1.23	1.42	1.54
KoO	9.97	9.80	9.84	9.51	9.86	9.85	1.30	1.77	2.14
F	1.37	0.78	0.80	1.69	1.70	1.42	0.49	0.35	0.31
CI	0.28	0.48	0.25	0.34	0.11	0.10	0.42	0.60	0.31
Total	95.79	96.54	95.44	94.62	96.69	95.40	96.05	96.59	94.41
Cations b	ased on 2	2 oxygens ((mica) or 2	3 oxygens	(amphibole)			
Si	5.468	5.418	5.408	5.350	5.546	5.416	6.402	6.178	5.939
AI IV	2.460	2.525	2.457	2.636	2.402	2.558	1.589	1.822	2.061
AI VI	0.000	0.000	0.000	0.000	0.000	0.000	0.226	0.278	0.318
Ti	0.523	0.597	0.610	0.483	0.472	0.548	0.098	0.160	0.221
Cr	0.002	0.000	0.000	0.000	0.076	0.000	0.003	0.002	0.000
Fe ³⁺	-	-	-	-	-	-	0.735	0.532	0.403
Fe ²⁺	1.990	2.453	2.112	1.466	1.055	1.956	1.225	1.925	1.750
Ni	0.006	0.014	0.000	0.008	0.022	0.004	-	-	-
Mn	0.014	0.028	0.003	0.005	0.000	0.014	0.0 40	0.059	0.016
Ma	3.245	2.642	3.136	3.833	1.195	3.258	2.671	2.045	2.292
Ca	0.002	0.001	0.003	0.002	0.000	0.008	1.951	1.956	1.996
Ba	0.081	0.074	0.034	0.115	0.022	0.022	-	-	-
Na	0.002	0.000	0.039	0.026	0.056	0.014	0.362	0.427	0.474
К	1.970	1.946	1.938	1.881	1.850	1.935	0.251	0.352	0.432
F	0.672	0.382	0.389	0.827	0.792	0.691	0.235	0.173	0.157
CI	0.074	0.127	0.064	0.091	0.027	0.026	0.107	0.159	0.084
mg	62.0	51.9	59.8	723	79.9	62.5	57.7	45.4	51.6

Table 3.5. Representative microprobe analyses of biotite and amphibole from the minette and xenoliths

Bt: biotite, PhI: phlogopite, Am: amphibole; mg = 100 Mg / (Mg + Fe) where Fe is total iron. Limit between biotite and phlogopite is arbitrarily set at mg = 67 (Deer et al. 1967). 1: Anhedral biotite flake 0.8 mm long from mafic minette. 2: Subhedral biotite flake 1.2 mm long from felsic minette. 3: Biotite in a crystallized melt inclusion in an apatite included in a MC1. 4: Interstitial phlogopite from sample A4-17. 5: Interstitial phlogopite from sample A5-34. 6: Biotite in biotitite A6-19. 7: Anhedral green magnesian hastingsitic hornblende from mafic minette. 8: Dark green magnesian hastingsite rimming clinopyroxene in felsic minette. 9: Magnesian hastingsite in an apatite included in a MC1 clinopyroxene megacryst. Amphibole names after Leake (1978).

3.6.3 Biotite

With 13.5% Al₂O₃, 4.5% TiO₂, 1.3% BaO, 1.3% F and 0.3% Cl, the minette biotite compares with those of other minettes, but has a relatively low mg of ≈ 60 (Smith and Jones 1983; Bachinski and Simpson 1984; Rock 1991; Carmichael et al. 1996). From the mafic to felsic injection, biotite shows a slight decrease in MgO, mg (63 - 52), BaO, and F, and a slight increase in FeO, TiO₂ and Cl (Table 3.5). The biotite in the crystallized melt inclusion in one type MC1 (Fig. 3.1d) is comparable to minette biotite, with a composition roughly intermediate between the biotite of the mafic and felsic injections (Table 3.5).

3.6.4 Amphibole

Amphibole is a Mg-hastingsitic hornblende or Mg-hastingsite (Leake 1978; Table 3.5). The K_2O content is relatively high (1.3 - 1.8 weight %) and greater than Na₂O (1.2 - 1.4%). From the mafic to felsic injection, amphibole shows a decrease in SiO₂ and *mg* (60 - 43), and a slight increase in Al₂O₃, TiO₂, Na₂O and K₂O (Table 3.5). The Mg-hastingsite in the crystallized melt inclusion in one type MC1 resembles the minette amphibole except for slightly higher Al₂O₃, TiO₂, Na₂O, K₂O, and lower SiO₂ (Table 3.5).

3.6.5 Feldspars

In the groundmass of mafic injections, alkali-feldspars are $Or_{18} - Or_{22}$ and $Or_{84} - Or_{88}$, and plagioclase composition ranges from $An_{21} - An_{32}$ (Table 3.6). In the felsic minette, plagioclase composition is An_{26} and that of the K-feldspar is Or_{90} . The plagioclase and Kfeldspar in the melt inclusion in a MC1 have compositions comparable to the minette feldspars: An_{32} and Or_{84} .

Figure 3.7. Variation diagrams (cations per formula unit, based on 6 oxygens) of minette phenocryst and groundmass clinopyroxene (PC), and clinopyroxene megacrysts (MC). The clinopyroxene from five micapyroxenite xenoliths and clinopyroxene megacrysts in minettes and other alkaline mafic rocks from various localities are also plotted (Other MC; Brousse and Berger 1965; Binns et al. 1970; Irving 1974a; Wass 1979; Barton and van Bergen 1981; Cundari 1982), as well as the field of clinopyroxene from the pyroxenite, diorite and monzonite of the Kensington pluton (K; Corriveau 1989). a) Mg/(Mg+Fe) vs Al^{total}, b) Mg/(Mg+Fe) vs Ti, c) Al^{total} vs Ca, d) Al^{IV} vs Al^{VI}; limit between the fields of clinopyroxene from eclogites, granulites and xenoliths, and lavas from Aoki and Shiba (1973).

Figure 3.8. 100Mg/(Mg+Fe) vs Al^{total} (cations per formula unit, based on 6 oxygens) diagram for the clinopyroxene megacrysts; only representative core and rim compositions are plotted for clarity. Arrows link core to rim compositions.

	· · · · · ·		······		_				
	1	2	3	4	5	6			
Weight %									
SiO ₂	61.41	62.86	61.07	63.68	62.50	62.23			
Al ₂ O ₃	23.67	18.63	24.01	18.38	19.41	19.84			
CaO	5.02	0.00	5.64	0.02	0.43	0.33			
Na ₂ O	8.71	1.37	8.63	1.09	2.03	2.09			
K₂Ō	0.17	14.88	0.13	15.52	13.20	12.89			
BaO	0.00	1.22	0.00	0.55	1.51	1.59			
SrO	0.50	0.21	0.33	0.18	0.33	0.47			
FeO	0.07	0.04	0.00	0.04	0.14	0.02			
Total	99.55	99.21	99.81	99.46	99.55	99.45			
Cations based on a 32 oxygens									
Si	10.981	11.824	10.901	11.905	11.680	11.629			
Al	4.989	4.131	5.051	4.049	4.276	4.370			
Ca	0.962	0.000	1.079	0.005	0.086	0.066			
Na	3.020	0.502	2.985	0.393	0.736	0.757			
к	0.040	3.572	0.030	3.701	3.147	3.076			
Ba	0.000	0.090	0.000	0.040	0.111	0.116			
Sr	0.052	0.023	0.034	0.019	0.036	0.051			
Fe	0.010	0.006	0.000	0.006	0.022	0.037			
Mole %									
Ab	75.09	12.37	72.91	9.59	18.14	19.11			
An	33.92	0.02	26.34	0.12	4.25	3.33			
Or	0.99	87.66	0.74	90.29	77.61	77.55			

Table 3.6. Representative microprobe analyses of the minette feldspars

Ab: albite, An: anorthite, Or: orthoclase. 1: Anhedral plagioclase 0.2 mm long from mafic minette. 2: Subhedral K-feldspar, 0.1 mm long, from mafic minette. 3: Plagioclase < 0.1 mm long from evolved minette. 4: Microperthitic feldspar 0.2 mm long from felsic minette. 5: Center of a 32 mm long K-feldspar megacryst. 6: Rim of 6.

3.6.6 Xenoliths

Mineral chemisty supports textural evidence that clinopyroxenes from PX1a are similar to the phenocrysts and that PX1b are equivalent of the megacrysts, and more specifically the MC4 (Figs. 3.6, 3.7, Tables 3.1, 3.3). PX1c (A4-17) contains Al-Cr-augite, Al-enstatite, Ti-Ba-F-rich phlogopite and Mg-hornblende, with *mg* respectively of 80, 72, 72 and 82. Their clinopyroxenes plot in the field of megacrysts, close to clinopyroxene of PX1b (Fig. 3.7), whereas their phlogopites are Ba-rich, as the minette biotites (Fig. 3.9b). PX2a (A5-34) contains Cr-diopside, enstatite, phlogopite and Mg-hornblende, with *mg* respectively of 84, 75, 80 and 84. Except for higher Mg and Cr, the clinopyroxene resembles that of the minette (Fig. 3.7) but phlogopite differs from minette biotite in having higher *mg* and lower BaO content (Fig. 3.9b). PX2b (D12-4) contains Cr-Al-augite and enstatite, with *mg* respectively of 76 and 70. The clinopyroxene composition is somewhat intermediate between that of the phenocrysts and the Mg-rich megacrysts (Fig. 3.7).

The biotite of A6-19 has a composition resembling that of the minette biotite except for lower BaO (Fig. 3.9). This suggests that this small xenolith could be a fragment of a biotite vein or selvage crystallized from the minette itself or an older cogenetic melt.

Figure 3.9. Binary diagrams for micas in the minette, in a crystallized melt inclusion (within an euhedral apatite (Ap) itself included in a clinopyroxene megacryst MC1), of mica-pyroxenite xenoliths (PX) and of a biotitite xenolith. a) 100Mg/(Mg+Fe) vs Al_2O_3 (weight %). b) 100Mg/(Mg+Fe) vs BaO (weight %).

3.7 DISCUSSION

3.7.1 Origin of clinopyroxene macrocrysts

The many clinopyroxene populations, evidenced by the various textures and compositions, could originate from 1) crystallization in the host magma, possibly at different physical conditions (Wass 1979; Aurisicchio et al. 1988; Pe-Piper and Jansa 1988), 2) dismembering of xenoliths (Barton and van Bergen 1983; LeCheminant et al. 1987), and/or 3) inclusion of crystals formed in, or mixing with, magmas more or less evolved and related to the host (Irving 1980; Pe-Piper 1984; Duda and Schmincke 1985; Bédard et al. 1988; O'Brien et al. 1988; McDonald et al. 1992).

3.7.1.1 Phenocrysts

Clinopyroxene phenocrysts form euhedral, elongate or hollow crystals, commonly with a sieve texture. O'Brien et al. (1988) and Nixon (1988) reported similar textures in clinopyroxene and plagioclase, which they attribute to dissolution and crystallization as a consequence of magma mixing. Compared to diopside produced in 10 - 20 kbar experiments on a mafic minette (Fig. 3.10; Esperança and Holloway 1987), the Rivard minette phenocryst and groundmass clinopyroxene have lower mg and TiO₂ contents, but similar concentrations of SiO₂, Al₂O₃, CaO and Na₂O. The similarities with clinopyroxenes produced in high pressure experiments and the relatively high Al^{VI} contents, which place them in the field of granulites and xenoliths from mantle or lower crustal origin (Fig. 3.7d), suggest crystallization at high pressure.

The minimum pressure for crystallization of the clinopyroxene phenocrysts is constrained by the depth of emplacement of the dyke. From experiments on minettes, Righter and Carmichael (1996) designed a geothermometer and a geobarometer based respectively on TiO₂ and BaO partitioning between biotite and liquid. Application to the Rivard minette, using whole-rock and biotite compositions and assuming $aH_2O = 1$ (Righter and Carmichael 1996), yields temperature of 1050 °C (± 50°) and pressure of 5.7 kbar (± 4). The temperature is consistent with the experiments of Esperança and Holloway (1987) producing a phenocryst assemblage of clinopyroxene and mica below 1080 °C, at pressures < 10 kbar. The presence of biotite phenocrysts points to high water activity (Esperança and Holloway 1986; Righter and Carmichael 1996) although the exact value of aH_2O in the Rivard minette is poorly constrained. Lowering the aH_2O would produce

Figure 3.10. Composition (weight %) of the Rivard minette phenocrysts and groundmass clinopyroxene compared to clinopyroxenes produced in high-pressure experiments on a mafic minette (EH 87; Esperança and Holloway 1987) and clinopyroxenes from other K-rich lamprophyres (data from: Ehrenberg 1979; Luhr and Carmichael 1981; Jones and Smith 1983; Pe-Piper 1984; Venturelli et al. 1984; LeCheminant et al. 1987; O'Brien et al. 1988; Wallace and Carmichael 1989; McDonald et al. 1992; Pognante 1992; Wyman and Kerrich 1993).

higher calculated pressures. The geobarometer has a large error but the result agrees strikingly well with the pressure obtained $(5.6 \pm 0.6 \text{ kbar})$ using the geobarometer of Schmidt (1992; Table 3.7) based on Al content of amphibole, and for which the error is much smaller. Although the latter geobarometer was designed for calc-alkaline intrusions, it is considered to be applicable to the minette since amphibole and quartz ($aSiO_2 = 1$) are both present in groundmass. Corriveau and Leblanc (1995) estimated a slightly higher pressure of 7 kbar for the 1.08 Ga K-rich plutons of the Mont-Laurier area.

· · · · · · · · · · · · · · · · · · ·		[.] 1	2	3	4	5
		T _{RC96}	P _{RC96}	P _{S92}	P _{HZ86}	P _{H87}
Mineral	Analysis	± 50°C	\pm 4 kbar	± 0.6 kbar	±3 kbar	± 1 kbar
Biotite	Bt15	1050°	5.7			
Amphibole	Am37			5.6	5.2	5.5

Table 3.7. Thermometry and barometry on biotite and amphibole of the minette

amphibole. 5) Thermometer of Hollister et al. (1987) based on Al in amphibole.

1) Geothermometer of Righter and Carmichael (1996) based on distribution of TiO_2 between biotite and minette magma. 2) Geobarometer of Righter and Carmichael (1996) based on distribution of BaO between biotite and minette magma. 3) Thermometer of Schmidt (1992) based on Al in amphibole. 4) Thermometer of Hammarstrom and Zen (1986) based on Al in

3.7.1.2 Megacrysts

The clinopyroxene megacrysts of the Rivard minette, with their dark green color, Al-Tirich, Ca-poor composition, and apatite inclusions in Fe-Al-rich varieties, are similar to those found in other alkaline mafic rocks from Europe, North America and Australia (Fig. 3.5; Binns *et al.* 1970; Irving 1974a; Brooks and Printzlau 1978; Ehrenberg 1979; Wass 1979). Except for type MC3, which are interpreted as dismembered coarse xenoliths, the clinopyroxene megacrysts with their euhedral to subhedral shape and occurrence as single crystals, clearly crystallized in a liquid. However, their compositions depart markedly from those of the clinopyroxene phenocrysts (Fig. 3.7). Furthermore, the *mg* of types MC1 and MC2 (61 - 68) is lower than the groundmass clinopyroxene (69 - 75), incompatible with an origin as early phenocrysts from the host minette. Type MC4 have a *mg* equal to or higher than the minette groundmass clinopyroxene, but these megacrysts have embayments and sieve texture, indicating disequilibrium with the host minette. Hence, the megacrysts are most likely xenocrystic in origin. Nevertheless, there is evidence that these clinopyroxenes formed in a minette-like magma. First of all, the high Al content of the megacrysts (5 - 11 wt% Al₂O₃) suggests crystallization in a low-silica melt, although aluminous melts or highpressure conditions also contribute to the Al-rich composition of clinopyroxenes (LeBas 1962; Binns et al. 1970; Thompson 1974; Wass 1979; Foley et al. 1987; Nimis 1995). Secondly, equilibrium of megacrystic clinopyroxene with minette-like magma is suggested by the megacrystic clinopyroxene in D15-6 which has sieve-textured cores but euhedral unaffected rims where in contact with the minette-like groundmass. Thirdly, the presence of a crystallized melt inclusion, entrapped in a prismatic apatite inclusion in one type MC1, suggests that apatite was a rapidly growing phase that sequestered a sample of the liquid from which both apatite and clinopyroxene crystallized. The mineralogy and textures of the melt inclusion resemble the minette groundmass and the composition of the Ti-rich biotite and the K-rich amphibole present in this inclusion approach those of the host minette (Table 3.5). However, the amphibole and phlogopite also resemble those present outside the inclusion in the sieve-textured zones of the clinopyroxene megacryst, suggesting that the minerals in the inclusion may have reacted with the melt (host minette?) responsible for the sieve texture of the host megacryst. The Fe-Al-rich type MC1 are the only megacrysts with apatite inclusions, suggesting late apatite saturation in the magma, as in the host minette. This is compatible with apatite solubility in melts, which has been shown to decrease with fractionation (Green and Watson 1982). Finally, as large biotite (rare) and K-feldspar crystals are also present in addition to clinopyroxene, the megacrystic assemblage (but not the megacryst apparent mode) is similar to that of the minette. The K-feldspar megacrysts are K-Ba-rich (Table 3.6), compatible with crystallization from a K-rich magma. There is also one discrete xenolith with large K-feldspar and plagioclase with euhedral apatite inclusions in contact with one type MC1. In addition, subhedral biotite inclusions are present in some K-feldspar megacrysts and in one type MC4, suggesting a possible link between the different megacryst species.

All K-feldspar megacrysts have strong disequilibrium textures such as round shape and deep embayments, indicating inclusion in a K-feldspar-undersaturated melt, in agreement with feldspars being restricted to the groundmass in the host minette. Chapman and Powell (1976) and Brooks and Printzlau (1978) pointed out that anorthoclase megacrysts must have crystallized from trachyandesitic or more felsic magmas, in spite of their occurrence in magmas of basaltic composition. Absence of feldspar phenocrysts in minettes and other lamprophyres is attributed to high volatile contents which delay feldspar crystallization until near solidus temperatures (Yoder and Tilley 1962; Rock 1991). Although this calls into question the ability of minette magma to crystallize K-feldspar megacrysts, we believe it likely that the particular conditions responsible for the large size of clinopyroxene megacrysts also prevailed during the (late) crystallization of the K-feldspar megacrysts. Megacrystic amphibole, biotite, anorthoclase and apatite have been inferred to represent a near-solidus assemblage precipitated at pressures less than 12 kbar (Irving 1974a). As an alternative origin, Rock (1991) proposed that syenitic magmas, with which lamprophyres are frequently associated, could have supplied the megacrystic feldspar. The presence of K-feldspar or plagioclase megacrysts in syenites, shonkinites and biotite-rich diorites of the potassic intrusions of the Mont-Laurier area (Corriveau 1989; Corriveau and Gorton 1993) indicates that feldspars can crystallize early in some of these magmas. However, these large feldspars differ from those present in the Rivard minette by showing twins, well-developped perthitic texture, and by lacking the abundant μ m-size inclusions, suggesting that there is no link between the feldspar megacrysts present in the Rivard minette and those of the potassic plutons.

From the above observations on clinopyroxene we conclude that the clinopyroxene megacrysts crystallized from different batches of minette-like magma. Mixing of melts at different stages of evolution and megacrysts recycling result in a wide spectrum of clinopyroxene megacryst composition, complex resorption and overgrowth textures. In addition to the Fe-Al-rich clinopyroxene, the most evolved magmas could also have crystallized apatite, biotite and K-feldspar, as indicated by the presence of individual grains or inclusions in other megacryst phases. Thus, the minette appears to have recorded a complex evolution involving inclusion of megacrysts and xenocrysts, and/or mixing with (cogenetic ?) melts.

This suggestion is consistent with models proposed to explain the presence of megacrysts in other alkaline mafic magmas (Irving 1974a, 1980; Brooks and Printzlau 1978; Harte and Gurney 1981; Hunter and Taylor 1984; Irving and Frey 1984). Magma flowing in narrow conduits in the upper mantle can plate the walls with near-liquidus phases to form loosely cemented coarse crystal aggregates (Irving 1980). This mechanism can account for the subhedral shape of the clinopyroxene megacrysts as only part of the crystal would be in direct contact with the melt, and also for the large size of the crystals as they would be continuously fed by flowing magma. The PX1b possibly exemplify such aggregates. A complex network of dykes and sills in the mantle may produce strong temperature gradients and as a consequence, variable *mg* and megacrystic assemblages (Harte and Gurney 1981). A new pulse of more primitive magma can detach and include the megacrysts resulting in many populations of disequilibrium megacrysts and formation of a hybrid melt (Irving 1974; Brooks and Printzlau 1978; Hunter and Taylor 1984; Irving

and Frey 1984; Bédard 1988). Such a model of megacryst evolution finds support in the Mg-Cr-rich rim crystallizing over an Al-Fe-rich core of type MC2 (Fig. 3.2e), which would record the overgrowth of primitive clinopyroxene (the composition of which resemble that of type MC4) on a crystal formed in an older, more fractionated melt.

The high Al content, dominantly as Ca-Tschermak component and the common association with mantle-derived xenoliths has led to the interpretation that clinopyroxene megacrysts represent high pressure and temperature, near liquidus phase from magma possibly cogenetic with their host (Binns et al. 1970; Thompson 1974; Brooks and Printzlau 1978; Wass 1979; Hunter and Taylor 1984; Schulze 1987; Dal Negro et al. 1989). This is supported by experimental data and geothermobarometric determinations vielding a range of conditions of 10 - 50 kbar and 900 - 1400 °C (Green and Hibberson 1970; Thompson 1974; Ehrenberg 1979; Irving 1980; Hunter and Taylor 1984; Duda and Schmincke 1985; Dal Negro et al. 1989; Nimis 1995). Although the negative correlation of mg and Al suggests that differentiation played a role in the Al-enrichment of clinopyroxene megacrysts (5 - 11% wt % Al₂O₃) of the Rivard minette, their high Ca-Tschermak molecule (10 - 19%) and Al^{VI} (0.09 - 0.19 cfu.), which place them in the field of granulites and xenoliths (Fig. 3.7d), suggests formation in high pressure conditions (Thompson 1974; Wass 1979; Bédard et al. 1988; Dal Negro et al. 1989). Unfortunately, the lack of appropriate mineral assemblages prevent more precise pressure determination on clinopyroxene megacrysts.

The thermometer of Lindsley (1983), based on Ca partitioning between two pyroxenes, may be used to estimate minimum temperatures of formation of the clinopyroxene megacrysts. This thermometer yields a range of temperature of 990 - 1300°C (10 kbar), which is similar to other megacryst determinations. The Fe-Al-rich types MC1 and MC2 (mg = 61 - 68) show lower minimum temperatures of 990 - 1220 °C relative to type MC4 (mg = 72 - 83) with temperatures of 1200 - 1280 °C. The Mg-Cr-rich rim of MC2, which is interpreted as an overgrowth in a more primitive magma, also yields high temperature of 1280 °C. These figures could reflect temperatures of crystallization. Hence, from the textural and compositional similarities with other megacrysts, the disequilibrium textures, and the high Ca-Tschermak and Al^{VI} contents, the clinopyroxene megacrysts are inferred to have formed at high-temperature and -pressure conditions, from different batches of alkaline K-rich magma.

3.7.2 Origin and evolution of the Rivard minette

3.7.2.1 Experimental constraints

Experiments on mafic and ultramafic K-rich rocks show that, with increasing pressure, the stability field of olivine is reduced at the expense of pyroxene and/or phlogopite, with clinopyroxene and orthopyroxene dominating in the silica-undersaturated and saturated composition, respectively (Edgar 1987; Edgar et al. 1992). Experiments on minettes show that olivine is a liquidus phase at low pressures, giving way to a liquidus assemblage dominated by clinopyroxene and phlogopite at high pressures (Esperança and Holloway 1987; Righter and Carmichael 1996). Although complete resorption of olivine cannot be excluded, the absence of any relict olivine phenocrysts in the Rivard minette suggests that the crystallization path did not enter the stability field of olivine. This implies high pressures with clinopyroxene and biotite as liquidus phases. Lack of olivine is also characteristic of the K-rich alkaline mafic and ultramafic plutonic rocks of the Mont-Laurier area (Corriveau and Gorton 1993). Recent experiments by Righter and Carmichael (1996) also show that olivine phenocrysts tend to occur in minettes with low CaO/MgO (< 1), and at low pressures (< 2 kbar), whereas higher CaO/MgO or higher pressure conditions produce clinopyroxene, phlogopite and apatite as the liquidus phases. Trace amounts of sulfides occur in all minette injections, and magnetite, accompanying sulfides, is restricted to the more felsic one, suggesting that fO_2 was low but possibly built up during fractionation. From the very low abundance of sulfides and carbonate minerals, the minette magma is inferred to have had low aS and aCO₂. It probably contained some F and Cl, as these volatiles are relatively abundant in biotite and amphibole (Table 3.5). Variations in aH₂O possibly result in variable proportions of amphibole (5 - 30%), which forms extensive deuteric replacement of clinopyroxene in some minette injections.

3.7.2.2 Mafic-felsic minette relationship

The six minette injections show minor compositional variations and form a short trend (Fig. 3.4, Table 3.2). The differences are unlikely to result from contamination by crustal material because, with variable xenolith contents, the six minette injections have similar REE and trace elements patterns (Fig. 3.5). The compositional spectrum could have been controlled by variations in degree of partial melting, crystal accumulation or fractionation. Although the compositional range is small, both the mineral and whole-rock chemistry

Figure 3.11. MgO vs CaO/Al₂O₃ (Wt%) of the six minette injections (black circles). White-headed arrows show the effects of clinopyroxene, olivine or biotite fractionation with percentages (10, 20 30). Squares are three mass balance calculation models: 1) fractionation of 15% Cpx, 11% Bt, 1% Ap (sum of residual, r = 2.4), 2) fractionation of 10% Cpx, 4% Bt, 5% Ol, 1% Ap (r = 0.9), 3) fractionation of 14% Cpx, 11% Bt, 1% Ap (r = 0.6). Clinopyroxene and biotite composition from the Rivard minette in (1) and (2); theoretical Mg-rich clinopyroxene and biotite composition in (3) (appendix G); apatite and olivine composition from the Kensington pluton (Corriveau 1989).

indicate that C22-4 is more evolved than A16-1 (Table 3.2; Fig. 3.4). Different degrees of partial melting are unlikely as all minette injections display similar REE abundances (43 - 45 ppm La) and La/Yb (18 - 23), but comparatively large variations in compatible elements such as MgO (6.4 - 9.0%), Cr (270 - 570 ppm) and Ni (100-190 ppm). The *mg* of clinopyroxene, amphibole and biotite is lower in C22-4, indicating crystallization in a melt more evolved than A16-1. The trend is thus compatible with crystal fractionation.

Modeling with major and trace elements (equilibrium fractionation) adequately relates the more felsic injection (C22-4) to the more mafic one (A16-1) through fractionation of $\approx 15\%$ clinopyroxene, 10% biotite and 1% apatite (Fig. 3.11; appendix G). Mass balance calculation for major elements using mineral composition of the minette produces residuals of 2.4, with MgO and FeOt being the major contributors (appendix G). Residuals can be reduced to less than one if more magnesian phenocrysts are used or if minor olivine ($\approx 5\%$) is added to the fractionating phases. However, from the experimental data discussed above and because any significant olivine fractionation would likely lower Ni concentration below that of the felsic minette, olivine fractionation is considered unlikely. Alternatively, the major element composition of the different minette injections could have been disturbed to some extent by the xenocrysts and xenolith assimilation. Clinopyroxene and biotite occur as phenocrysts and in the groundmass, whereas apatite is restricted to the latter. Green and Watson (1982) suggested that rapid crystal growth can lead to local apatite saturation, and inclusion of minute apatites in the fractionating phenocrysts. Such inclusions have not been detected but would certainly be obscured by the fine and complex sieve texture of the clinopyroxene phenocrysts (Fig. 3.2b). An alternative explanation is the contribution of apatite xenocrysts which are present in A16-1. However, the first possibility is preferred because of the regular decrease of P₂O₅ with MgO (Fig. 3.4e), instead of scattering, as would be expected if P concentration was controlled by apatite xenocrysts. Hence, the most and least evolved minettes can be related through minor fractional crystallization of clinopyroxene and biotite, with inclusions of minute apatite and/or with a limited addition of xenocrysts. This is consistent with models accounting for mafic-felsic relations in minettes of southwestern USA and Mexico (Roden 1981; Wallace and Carmichael 1989; Carmichael et al. 1996).

Crystal fractionation through gravitational settling seems incompatible with a rapidly ascending magma able to transport large dense xenoliths (chapter 2). The differentiation could have taken place in a deep-seated magma body before final ascent or alternatively, operated via flow crystallization, as proposed by Irving (1980). The textural and geochemical evidence for crystallization of the megacrysts in a minette-like magma, lend indirect support to the second possibility.

3.7.2.3 Constraints on source composition

Experimental data, primitive geochemical characteristics, strong LILE-enrichment, presence of mantle-derived xenoliths and isotopic composition, indicate that mafic minettes are partial melts from metasomatised mantle sources, with variable contributions of crystal fractionation, crustal contamination and magma mixing (Ehrenberg 1979; Roden 1981; Esperança and Holloway 1987; Wallace and Carmichael 1989; McDonald et al. 1992; Peterson et al. 1994; Carmichael et al. 1996). The Rivard minette (A16-1) has a relatively primitive composition with 550 ppm Cr, 190 ppm Ni, 9% MgO and an mg of 67. The latter value is a minimum as mg is calculated using total iron as Fe²⁺. This primitive composition suggests a melt equilibriated with a mantle source and rules out crystal fractionation as the main mechanism of LILE and LREE enrichment. Trace element concentrations significantly higher than country-rock gneiss or bulk lower crust (Fig. 3.12c), also invalidate enrichment via crustal material assimilation. Model primitive mantle (McDonough and Sun 1995) only contains trace amounts of LILE and REE so that extremely low degrees of partial melting (< 1%) would be necessary to account for the enrichment observed in the minette, and thus appears unlikely as the sole mechanism of enrichment (Roden 1981; Edgar 1987; Foley et al. 1987). Many high pressure experiments on K-rich magmas have failed to produce near liquidus lherzolite mineral assemblage (Barton and Hamilton 1979; Esperança and Holloway 1987; Edgar and Vukadinovic 1992). Furthermore, the negative Th, Nb-Ta and Ti anomalies of the minette (Fig. 3.5b) imply the presence of phases rich in these elements in the source residue, which disagrees with solubility data for Ti-rich phases (see below). Hence, the minette trace element composition is more likely a characteristic inherited from a metasomatized mantle source.

In the mantle, possible repositories for "incompatible" trace elements are accessory minerals such as apatite, rutile, titanite and zircon. Zircon has only been observed in the felsic minette groundmass. From the equation of Watson and Harrison (1983), zircon saturation would be achieved with approximately 5500 ppm Zr at 900 °C, far above the 400 - 500 ppm Zr in the minette. This suggests that zircon is not residual in the source region from which the magma was been extracted, assuming equilibrium melting. Although more abundant, apatite is also restricted to the groundmass, indicating that the minette magma remained undersaturated in apatite until a late stage of crystallization. With 1% P₂O₅, the minette would have been saturated with respect to apatite at \approx 950 °C (Harrison and Watson 1984), which agrees with the 7.5 kbar apatite saturation curve of Green and Pearson (1982). Hence, apatite undersaturation suggests that the minette separated from a source

containing no residual apatite (assuming equilibrium melting), whereas positive correlation between P_2O_5 and MgO (Fig. 3.4e) could result from minute apatite inclusion in the fractionating clinopyroxene (Green and Watson 1982; Harrison and Watson 1984). As mentioned above, euhedral apatite inclusions restricted to the more evolved Fe-Al-rich type MC1 megacrysts (Fig. 3.2), also suggests late apatite saturation in the melts crystallizing the megacrysts.

Presence of residual Ti-rich accessory phases in the source region, would explain the Nb-Ta and Ti (Th) negative anomalies of the minette (Fig. 3.5b). However, experiments on Ti-solubility (Green and Pearson 1986; Ryerson and Watson 1987) show that most mafic melts are unlikely to be saturated with a Ti-rich accessory phase and that, consequently, such a phase is not residual after equilibrium melting. From the saturation curves of Green and Pearson (1986), the minette reaches rutile or titanite saturation at ≈ 940 °C (7.5 kbar), consistent with textural evidence of late titanite crystallization. This also parallels the calculated temperature of apatite saturation in the minette. Fractionation of Tirich biotite could have caused the positive correlation of TiO₂ with MgO (Fig. 3.4b). Thus, the mantle residue, after minette extraction, probably contained no rutile, titanite, apatite or zircon, suggesting that these phases, if present, were consumed during melting. Although phlogopite was likely present in source region, residual phlogopite is not responsible for the Nb (Ta, Th) negative anomalies of the minette, because of its low partition coefficient for Nb, Ta, Th (Villemant et al. 1981; Haggerty 1991; Green 1994). Thus, the Nb-Ta, Ti and Th negative anomalies and LILE and LREE enrichment of the Rivard minette most plausibly reflect the composition of the metasomatized mantle source.

High Ba/La and La/Nb are characteristics typically found in magmas of convergent margins and are ascribed to the release of LILE and LREE-enriched fluids or melts from the down-going slab (Gill 1981; Vidal et al. 1989; Stevens and Clemens 1993; Sobolev and Chaussidon 1996). High-pressure experiments on serpentine dehydration show that fluids preferentially transport LILE and LREE relative to the less mobile Th, Nb, Ta, Ti, Yb (Tatsumi et al. 1986), possibly accounting for high LILE/HFSE and LREE/HFSE in arcrelated magmas. Alternatively, the presence of a residual Ti-rich phase in the source region of these fluids or melts could impart high La/Nb to the overlying mantle during metasomatism. Foley and Wheller (1990) suggested that the combined effects of relatively low temperature, high pressure, high fO_2 , high contents of alkalies and REE, could significantly depress titanate saturation levels in alkaline mafic melts. Although many K-rich rocks with low Nb, Ta, Ti contents occur contemporaneously with subduction (Stolz et al. 1988; Edwards et al. 1994), others are emplaced long after active subduction, in tectonic regimes such as rifting, uplift or trans-tension (Venturelli et al. 1984; Thompson et al.

1989; Nelson 1992; Peterson et al. 1994; Carmichael et al. 1996). In the southern Grenville Province, arc or back-arc environments are typified by volcanic and plutonic rocks of calcalkaline affinity, with ages spanning 1.4 - 1.2 Ga (Harnois and Moore 1991; Nadeau et van Breemen 1994; van Breemen and Corriveau 1995; Corriveau et al. 1996a; Smith et al. 1997). Isotopic studies are compatible with a mantle enrichment episode having taken place at about 1.3 Ga in the Central Metasedimentary Belt, that is, more than 200 Ma before Krich magma emplacement (Amelin et al. 1994; Corriveau and Amelin 1994). This suggests a decoupling of K-metasomatism and K-magmatism (Nelson 1992; Arnaud et al. 1992; Morris and Hooper 1997), with the latter resulting from melting of a mantle source enriched during previous subduction event (s).

Phlogopite-bearing mantle sources have been deduced from the mica-rich ultramafic xenoliths and the presence of phlogopite as a near liquidus phase in experiments on K-rich melts (Lloyd et al. 1985; Edgar 1987; Esperança and Holloway 1987; Carmichael et al. 1996). The Rivard minette has biotite-phenocrysts and high K, Rb, Ba concentrations (in addition to relatively high Mg, Cr, Ni), compatible with an origin from a mica-bearing mantle source. However, isotopic data on mica-rich ultramafic xenoliths from the minette indicates that none of the studied xenoliths represents the source of the host magma (Amelin et al. 1994). Such unusual mantle was probably subject to a metasomatic enrichment, as as then ospheric mantle contains < 0.1% K₂O (McDonough and Sun 1995). This could occur via melt or fluid circulations in a variously depleted peridotitic mantle (Frey and Green 1974; Lloyd and Bailey 1975; Vidal et al. 1989; McKenzie 1989; Foley 1992b). The fluids or melts could also promote reactions producing phlogopite and clinopyroxene at the expense of olivine and orthopyroxene. Such reactions were evidenced experimentally (Modeski and Boettcher 1973; Wendlant and Eggler 1980; Barton and Hamilton 1982) and find support in ultramafic xenolith suites, including that of the Rivard dyke (chapter 4), where ultramafic xenoliths containing olivine, orthopyroxene and garnet are rare or absent (Lloyd and Bailey 1975). Hence, from the clinopyroxene and biotite phenocrysts of the Rivard minette, experiments on similar K-rich magmas, and in agreement with other inferred mantle sources (Esperança and Holloway 1987; Carmichael et al. 1996), the mantle source of the Rivard minette was most probably rich in clinopyroxene and phlogopite.

3.7.3 Relationship with mica-rich xenoliths

Some mica-pyroxenite xenoliths (PX1, PX2) with a mineralogy and/or textures resembling the minette also display strong LILE, moderate LREE and HFSE enrichments, and a trace element pattern with deep negative Th, Nb-Ta and Ti anomalies (Fig. 3.12) raising the question of their relationship with the host. The PX1 have trace element patterns subparallel to that of the minette (Fig. 3.12a) but most of these xenoliths resemble open network accumulation with euhedral clinopyroxene (and relict orthopyroxene in A4-17 and A5-13) and interstitial feldspar (K-feldspar and plagioclase ?), biotite and apatite, as in the minette groundmass. This groundmass and the widespread disequilibrium textures, suggest that these xenoliths result from the mixing of minette with phenocrysts from a different magma, or from the infiltration of a crystal accumulation by a minette magma. The high mg of pyroxene in PX1b and PX1c attests of a crystallization in a melt less evolved than the minette. Sub-parallel trace element patterns possibly indicate a dilution effect of pyroxene on a LILE and LREE-enriched minette. As a consequence, these xenoliths have lower LILE, LREE, HFSE, and higher mg, Cr, Ni, Co, Sc, than the host minette (Table 3.2, Fig. 3.12a). Thus, with the possible exception of PX1a, which are either glomerocrysts from the host or discrete xenoliths thoroughly affected by sieve texture, the PX1 are inferred to represent a mixture of magmas (more or less related to one another, and with various phenocryst modes and contents). Alternatively they may represent minette magma that includes or infiltrated cumulates from another magma. The minette biotite is Ti-Ba-Frich, a characteristic shared by the phlogopite in PX1c (Table 3.5). However, the phlogopite mg in this xenolith is markedly higher (72) than that of the minette biotite (63), indicating that the interstitial component in this xenolith is significantly less evolved than the host minette.

The PX2 (A5-26, A5-34, D12-1, D12-4) are distinct from the PX1 and host minette in having lower Al, Ba, Th, Sr, Zr, Ba/Rb, K/Rb, Sr/Ce, La/Yb, Sr/Zr and higher Cr, Ni, and Rb/Th (Table 3.8; Fig. 3.12b, d). The PX2a (A5-26, A5-34, D12-1) differ from PX2b (D12-4) in having more prononced negative Th and Sr anomalies, a slight positive P anomaly and no significant negative Ti anomaly (Figs. 3.12b, d). The decoupling of Sr and P (Fig. 3.12b) indicates that apatite fractionation was not responsible for the negative Sr anomaly. The higher P/Nd and REE content of A5-26 relative to D12-1 (Fig. 3.12b) reflects more abundant apatite in this xenolith. The negative Sr and Eu anomalies are unlikely to be a consequence of plagioclase fractionation because these xenoliths only

Figure 3.12. Normalized trace-element diagrams of the Rivard minette (MNT) compared with micapyroxenite xenoliths and mica-bearing mafic and ultramafic intrusions of the Mont-Laurier area. **a**) PX1a. **b**) PX2a. **c**) Pyroxenite (183d) and dioritic dyke (101g) from the Kensington pluton (Corriveau 1989); CRG, country-rock gneiss; BLC, bulk lower crust (Taylor and McLennan 1985). **d**) PX2b (D12-4) compared with the Rolleau peridotite (1663). **e**) Rolleau peridotite compared to the olivine-orthopyroxenebearing pyroxenite of the Kensington pluton (Corriveau 1989). **f**) Comparison of the Rivard minette and Girard minette. Normalizing values from McDonough and Sun (1995).

147

contain minor amounts of interstitial feldspar. Hence, in spite of similarities with the minette and PX1, such as strong Ba, Rb, K enrichment and Th, Nb-Ta negative anomalies (Fig. 3.12b), the PX2 have many distinguishing compositional traits showing that they are not directly related to the host or PX1. As pyroxenes in PX2 are strained and partly replaced by phlogopite (itself strained and defining a foliation), these xenoliths could represent older, primitive (Mg- and Cr-rich) K-rich intrusions, or cumulates from such intrusions. Partial replacement by phlogopite could result from an incomplete reaction, which is common in K-rich igneous rocks (Yoder 1986). Alternatively, these xenoliths could be samples of unrelated ultramafic intrusions or cumulates, infiltrated by K-rich fluids or melts. Phlogopite crystallization is contemporaneous with deformation and must have occurred before xenolith inclusion in the minette. The phlogopite of PX2a is Ba-poor (and Cr₂O₃-rich) in contrast to the micas from both the minette and PX1c (Table 3.5, Fig. 3.9b). The PX2a could thus represent K-rich ultramafic intrusions, or intrusions infiltrated by K-rich fluids or melts, themselves possibly genetically related to the host pyroxenites (Fig. 3.13). A comparable origin is inferred for the PX2b (D12-4). However, the mica partly replacing pyroxenes in this xenolith is finer-grained, less abundant, less evenly distributed and less strained than in PX2a, suggesting later crystallization. This xenolith also has lower K, Ba, Rb, P, Ti, Na₂O/K₂O, Ba/La, Rb/Th, P/Nd, Sr/Zr and Ti/Zr, possibly related to a lesser degree fluid or melt infiltration.

Hence, with the possible exception of some PX1a, the mica pyroxenite xenoliths of the Rivard dyke are not comagmatic with the host minette, although they may have an indirect link with it. The PX1b (and the different megacryst populations) and the PX1c are inferred to result from magma mixing, or inclusion into the host minette of phenocrysts crystallized from different magmas. The PX2 are possibly fragments of K-rich intrusions, or ultramafic intrusions infiltrated by K-rich fluids or melts, possibly related to the host minette magma.

	Rivard dyke	ard Mica-pyroxenite xenoliths ke of the Rivard dyke				Rolleau stock	Girard dyke	Kensington pluton				РМ	
	MNT	PX1a	PX1b	PX1c	PX2a	PX2b	PD	MNT	PX	DR	MZ	SY	LZ
N	6	1	1	1	2	1	1	1	8	7	6	5	
Al ₂ O3	13.5	9.9	8.5	8.6	6.9	5.3	5.1	17.7	8.7	14.8	18.8	17.1	
Ba	3100	2200	1700	2200	1000	400	200	1100	2400	5200	6400	850	6.6
Sr	1750	600	510	720	175	140	170	1650	1400	4700	7000	700	19.9
Zr	460	210	170	230	110	120	110	240	210	380	500	670	10.5
Th	4.1	1.2	1.5	1.5	0.4	0.3	0.7	0.4	4.4	2.9	2.3	14	0.08
La	44	19	18	17	11	12	11	32	70	100	62	150	0.65
Cr	410	1400	1400	1700	1950	2500	2400	200	370	25	3	1	2625
mg	65	73	75	77	77	77	79	58	67	48	44	40	
K20/Na20	2.1	2.0	1.5	2.4	22	1.0	1.1	1.7	1.8	1.7	1.4	1.6	
K/Rb	370	370	360	380	200	220	350	460	322	403	516	361	400
Ba/La	69	120	90	128	65	37	22	34	34	51	103	6	10
Ba/Rb	28	36	35	38	12	14	11	29	42	68	74	5	11
Rb/Th	27	51	32	38	230	126	33	104	13	26	37	12	7.6
Rb/Cs	85	120	75	92					70	99	143	121	29
La/Nb	7		4	3		4	1		11	11	7	7	1
Nb/Ta	10								30	50	50	14	18
Sr/Ce	18	14	12	18	6	5	7	19	8	21	61	2	12
La/Yb	20	10	11	13	8	8	8	8	26	. 38	43	37	1.5
P/Nd	83	37	42	54	99	62	54	39	69	85	65	4	72
Sr/Zr	3.8	2.8	3.0	3.1	1.5	1.1	1.6	6.8	6.5	12	14	1.1	1.9
Zr/Hf	44	34	34	39	31	38	44	46	61	151	294	55	37
Hf/Th	з	5	4	4	9	13	4	14	0.8	0.9	0.7	0.9	4
Th/U	3.1			1.5					5.8	4.8	10	6.6	3.9
Ti/Zr	18	29	35	25	66	28	27	35	52	35	11	89	15

Table 3.8. Selected element concentrations and trace-element ratios of the Rivard minette, mica-pyroxenite xenoliths and K-rich intrusions from the Mont-Laurier area

MNT: minette, PD: peridotite, PM: primitive mantle, PX: pyroxenite, LZ: lherzolite, DR: diorite, MZ: monzonite, SY: syenite, N: number of analyses, mg = 100Mg/(Mg+Fe) where Fe is total iron. Oxides in weight %, elements in ppm. Data from the Kensington pluton from Corriveau (1989); primitive mantle composition from McDonough and Sun (1995).

Figure 3.13. The diverse ultramafic and mafic xenoliths of the Rivard dyke are samples of different magmatic suites emplaced in the deep crust or the uppermost mantle below the Central Metasedimentary Belt (chapter 4). The intrusions were emplaced prior to, or contemporaneously with the potassic magmas that cut the Central Metasedimentary Belt between 1.09-1.07 Ga (Corriveau et al. 1990; 1996a). Potassiumrich magmas also crystallized at depth as evidenced by the megacrysts and the mica-rich pyroxenite xenoliths transported by the Rivard minette. Magmatic intrusions are likely accompanied with crystal fractionation, accumulation and recycling, magma mixing, and melt or fluid infiltration in country rock and previous intrusions. Upward progression of magmas may have been hindered by rheology and density contrast near the crust-mantle boundary (Griffin and O'Reilly 1987; Lister and Kerr 1991), by the presence of marbles behaving plastically and inhibiting dyke propagation, thus favoring growth of plutons (Clemens and Mawer 1992; Corriveau and Leblanc 1995), or by enhanced viscosity related to increasing xenolith abundance in the magma, as in the Rivard minette (Chapter 2). The minette also sampled the rock types present at middle to lower crustal levels which are exemplified by the diverse mafic to felsic xenolith suite. These include many types of gabbroids, metabasites, mafic granulites, mafic calc-silicate rocks, gneisses, granitoids and guartzites (Table 1.5; appendix B, C and D).

3.7.4 Relationship with nearby K-rich intrusions

As there are many post-tectonic mica-rich intrusions in the Mont-Laurier area (Fig. 3.1), it is interesting to investigate their possible genetic relationships with the minette and its micapyroxenite xenoliths. The mica-rich monzonites, diorites and pyroxenites of the Kensington-Skootamatta suite and the Girard minette dyke all have clinopyroxene and biotite as essential mafic minerals. The Rolleau peridotite stock differs in the additional presence of olivine, orthopyroxene and amphibole. As illustrated in figure 3.12d, this peridotite intrusion has a trace element composition strikingly similar to that of mica-pyroxenite xenolith D12-4. Its higher MgO, Fe₂O₃, Co and Ni, and lower SiO₂, CaO and Sc, reflects the presence of olivine and orthopyroxene (Fig. 3.12d, Table 3.2). The close similarity in trace element patterns suggests that these rocks have a common source and that intrusions genetically related to the Rolleau peridotite were present below the Rivard dyke at the time of emplacement. The widespread replacement of olivine and pyroxenes by phlogopite and amphibole, in the Rolleau peridotite, possibly exemplifies incomplete reactions commonly taking place in K-rich rocks (Yoder 1986).

An olivine-orthopyroxene-bearing phlogopite pyroxenite intruding the Kensington pluton has a trace element pattern very distinct from that of the Rolleau peridotite (Fig. 3.12e), invalidating any simple genetic model relating the two olivine-bearing ultramafic rocks. The Rivard and Girard minettes have similar mineralogy and textures, but the latter has higher CaO and Al_2O_3 , and lower SiO₂ contents, lower mg (58) and significantly higher Rb/Th, Sr/Zr and lower La/Yb (Table 3.2, Fig. 3.12f). Although some of the differences in major element contents could result from crystal fractionation, the distinct trace element pattern and ratios suggest that the two minettes had different sources and/or histories.

Chemically, the Kensington complex units share with the Rivard minette a strong LILE and LREE enrichment and prominent negative Th, Nb-Ta anomalies (Fig. 3.12c). However, the plutonic rocks have significantly higher Ba/Rb, Nb/Ta, Sr/Zr, Zr/Hf and La/Yb ratios than the minette and its phlogopite pyroxenite xenoliths (Table 3.6). In addition, apatite is an early crystallizing phase in the Kensington rocks and most mafic units are P-rich (Fig. 3.4e), suggesting that the source region of these magmas contained residual apatite (Corriveau 1989; Andrews 1996). Except for some pyroxenites, which can be derived from diorite by clinopyroxene (\pm biotite) accumulation (Fig. 3.4), crystal fractionation or accumulation is not the main process relating rock types at Kensington (Corriveau and Gorton 1993; Corriveau et al. 1994a; Morin et al. 1994). The Kensington

units probably represent separate batches of magma that reflect variations in source characteristics and conditions of melting (Corriveau and Gorton 1993).

In spite of a composition in many cases intermediate between the Kensington pyroxenite and monzonite or syenite, the possibility that the Rivard minette could result from mixing of two Kensington units is inconsistent with the relatively low LREE and Nb, and high Hf concentrations in the minette (Figs. 3.4, 3.12c). Crustal contamination of a magma corresponding to the Kensington mafic or ultramafic units (37 - 47% SiO₂; Corriveau 1989) to produce the Rivard minette would be compatible with the latter having higher silica content (\approx 50% SiO₂; \leq 3% normative nepheline) and showing evidence of xenolith assimilation (chapter 2). However, this is unlikely because the Kensington diorites, including fine-grained dykes, have more evolved compositions with markedly lower *mg* (42 - 53), Cr (13 - 67 ppm) and Ni (5 - 44 ppm) than the minette (*mg:* 60 - 67, Cr: 270 - 570 ppm, Ni: 100 - 190 ppm), and because the higher MgO and Cr contents in the Kensington pyroxenites are mostly the result of clinopyroxene accumulation as suggested by figure 3.4. Moreover, the minette is richer in K, Rb, Hf than the Kensington diorites and pyroxenites, as well as bulk crust or minette country-rock gneiss (Figs. 3.4, 3.12c).

One major problem in attempting to relate the Rivard minette (or its mica pyroxenite xenoliths, the Rolleau peridotite or the Girard minette) with the Kensington undersaturated units is the distinctly higher Zr/Hf, Nb/Ta, and La/Yb ratios in the latter (Table 3.8). Because Zr and Hf have similar chemical behavior, most basaltic rocks have fairly constant Zr/Hf ratios, close to the primitive mantle value of 36 (Dupuy et al. 1992). However, Dupuy et al. (1992) and Rudnick et al. (1993) showed that Zr-Hf fractionation, producing higher Zr/Hf ratios, could monitor the involvement of carbonatitic melts. Such melts could also produce high Nb/Ta and La/Yb (Rudnick et al. 1993; Green 1995). The high and variable Zr/Hf (47 - 450; Fig. 3.14a), Nb/Ta (11 - 68) and La/Yb (19 - 62) in the Kensington units, possibly indicates that carbonatitic melts played a role in their genesis, either during partial melting of their mantle sources or during an earlier metasomatic event. In support of this idea is the presence of minor carbonatitic intrusions in the Gracefield pluton (although the composition of this intrusion does not represent the enrichment component; Fig. 3.14) and the elevated P₂O₅ concentrations in most Kensington units (Fig. 3.4e). From experiments on ultrapotassic rocks, Barton and Hamilton (1982) proposed that, in addition to pressure, the relative proportion of H₂O to CO₂ during melting influences the silica content and degree of SiO2 saturation. In the presence of H2O alone, more silica-rich magmas result, whereas the additional presence of CO₂ produces more silica-poor melts (Barton and Hamilton 1979, 1982). It is noteworthy that in the

Figure 3.14. Zr/Hf vs Zr/Y (a) and La/Yb vs Nb/Ta (b) diagrams of the Rivard minette, mica-pyroxenite xenoliths, Girard minette, Rolleau peridotite compared with the Kensington pluton silica-undersaturated pyroxenite (PX), diorite (DR) and monzonite (MZ), and critically silica-saturated syenite (Corriveau 1989). Note the high and variable Zr/Hf and Nb/Ta in the Kensington silica-undersaturated units. Rock units with Nb or Ta under detection limit does not appear on figure 3.14b. One carbonatite intrusion from the Gracefield pluton (L. Corriveau, unpublished data) and primitive mantle value (McDonough and Sun 1995) are also shown for comparison.

Kensington pluton, the critically silica-saturated unit has significantly lower Zr/Hf and Nb/Ta than the silica-undersaturated rocks (Table 3.8, Fig. 3.14). The Kensington undersaturated rocks also show more pronounced enrichment in most incompatible elements than the Rivard minette and its mica-pyroxenite xenoliths.

In contrast to the Kensington SiO₂-undersaturated units, the nearly chondritic Zr/Hf (Fig. 3.14) and low Nb/Ta ratio of the Rivard minette indicates a source less affected, or not affected by carbonatitic melts. This agrees with the higher SiO₂ and lower degree of silica-undersaturation in the minette relative to the Kensington mafic rocks with comparable MgO (Fig. 3.4a). Green (1995) proposed that the involvement of a fluid in equilibrium with rutile, could generate Nb/Ta ratios lower than primitive mantle value (≈ 17.5). The Rivard minette has a Nb/Ta ratio around 10, possibly reflecting the role of such (hydrous ?) fluid in its history. As mentioned above, TiO₂ undersaturation in the minette suggests that rutile is not present in its source residue. Consequently, if rutile contributed to fractionation of Ta, this should have taken place in the area from which the metasomatic agent (of the minette mantle source) originated. Crustal materials also shows low Nb/Ta (8 - 13), but it is unlikely that crustal contamination could lower a near-chondritic Nb/Ta down to the minette value, since unrealistically large percentages of assimilation (in excess of 75%) would be necessary, and this conflicts with the relatively primitive composition of the minette (Table 3.2). Hence, the value of this ratio is considered to reflect source composition. These observations possibly apply also to the mica-pyroxenite xenoliths, the Girard minette and the Rolleau peridotite (and Kensington critically silica-saturated unit ?) which resemble the minette in many, but not all, geochemical aspects (Table 3.8, Fig. 3.14a).

Thus, variations in the types and amounts of fluids may account for some of the variations observed in the different K-rich intrusions of the Mont-Laurier area. Foley (1992b) proposed that metasomatism of mantle peridotitic rocks mostly results from melt infiltrations forming networks of veins containing various proportions of clinopyroxene, orthopyroxene, mica, amphibole, apatite and oxides. Upon heating, incipient melt from this heterogeneous mantle will be first dominated by vein material, rich in hydrous minerals and incompatible elements. Further melting will produce a hybrid melt incorporating a larger proportion of the more refractory wall-rock component (Foley 1992b). Hence, a wide range of magma composition is to be expected from variations in 1) the mineralogy and geochemistry of the veins and host rock, 2) the proportion of each component entering the melt, and 3) the conditions of melting, including type and amount of fluid. Chemical variations in other K-rich suites have similarly been considered to originate from heterogeneous mantle sources (Peccerillo 1985; Wallace and Carmichael 1989; Carmichael et al. 1996). Further widening of the compositional spectrum results from various

contributions of crystal fractionation, magma mixing and crustal contamination during magma ascent (LeCheminant et al. 1987; O'Brien et al. 1988; Rock 1991; Carmichael et al. 1996). This potential complexity hinders establishment of any simple relationships between the K-rich rocks of the Central metasedimentary belt. The link between them could be a common, heterogeneously K-metasomatized, phlogopite-bearing mantle source, as is expected in supra-subduction environments (Vidal et al. 1989; Carmichael et al. 1996; Morris and Hooper 1997).

Corriveau and Leblanc (1995) proposed that the marble-rich country rock inhibited dyke propagation and favored ponding of K-rich magmas to form composite plutons at mid-crustal level (Fig. 3.13). This model implies that large layers of marble were not present below the Rivard dyke, and the absence of xenoliths belonging to the Kensington-Skootamatta suite suggests that K-rich plutons were not present along the path of the ascending minette magma. However, the mica-pyroxenite xenoliths and the megacrysts transported in the minette represent other manifestations of the K-rich magmatism that lie in the lower crust and possibly the uppermost mantle. Confinement to deep crustal levels could be a consequence of a decrease in density contrast between the magma and country rock, of the intersection of lithologies or structures inhibiting dyke propagation, or of unfavorable initial conditions of magma ascent (Spera 1984; Lister and Kerr 1991; Clemens and Mawer 1992). However, the similar trace element chemistry of the Rolleau peridotite and one mica-websterite xenolith shows that cogenetic K-rich magmas are present both at the present erosion level and deeper in the lithosphere. Taken together, these mica-rich rocks indicate that the K-rich magmas leave imprints from mid-crustal levels down to the lower crust and possibly the upper mantle (Fig. 3.13).

3.8 EVOLUTION OF THE K-RICH MAGMAS AT DEPTH

The Rivard intrusion breccia contains abundant and diverse xenoliths representing samples of the deep crust and possibly the upper mantle through which the enclosing minette magma ascended. The minette is mafic (50% SiO₂, 8% MgO, 400 ppm Cr, mg = 65), ultrapotassic (5% K₂O, K₂O/Na₂O = 2.2) and enriched in LILE and LREE (3000 ppm Ba, 44 ppm La), and to a lesser extent in HFSE (1.4% TiO₂, 460 ppm Zr). Its trace element pattern shows a pronounced negative Nb-Ta anomaly typical of subduction-related magmas. High concentrations in Cr and Ni in addition to LILE and LREE most plausibly result from partial melting of a K-metasomatized clinopyroxene and phlogopite-bearing mantle source. The minette remained undersaturated with respect to apatite, titanite and zircon until a late stage of crystallization, suggesting that these minerals were probably absent in the mantle source residue, if equilibrium melting conditions prevailed. Fractional crystallization of approximately 15% clinopyroxene, 10% biotite and 1% apatite can explain the small compositional variations between the least and most evolved minette injections. However, a more complex evolution is evidenced by the many macrocryst populations and the widespread disequilibrium textures observed in the Rivard minette.

The macrocrysts, dominantly clinopyroxene, are either phenocrysts, megacrysts or xenocrysts. Phenocrysts are diopside showing widespread sieve texture, and a Ti-Ba-Frich biotite. The deep emplacement of the dyke imposes a minimum pressure of ≈ 5.7 kbar for the crystallization of the phenocrysts. The large, anhedral, colorless clinopyroxenes are fragments of coarse-grained xenoliths, whereas the euhedral to anhedral, light brown to green Al-augite and Al-diopside megacrysts are interpreted as large phenocrysts from previous K-rich magmas. On ponding at depth, possibly near the crust-mantle boundary, these magmas fractionated to produce a wide range of megacryst compositions extending to Fe-Al-rich varieties. Inclusion in, or mixing with magmas of different affinities and degree of differentiation, led to complex disequilibrium and overgrowth textures. Euhedral Mg-Crrich augite rims crystallizing on Fe-Al-rich diopside cores with thick sieve-textured mantles resulted from exposure to more primitive magma. The extreme compositional variations and reverse zoning patterns attest to efficient fractionation at depth and a complex history involving megacryst recycling and magma mixing. The resorbed Ba-rich K-feldspar megacrysts possibly represent near-solidus megacrystic feldspar from an evolved K-rich melt. The small biotitite xenoliths probably represent dismembered veins or selvages crystallized from the host minette or a cogenetic melt.

Resorption and replacement in mica-pyroxenite xenoliths provide further evidence of magma mixing. The coarse-grained xenoliths with megacryst-like clinopyroxenes (PX1b) are inferred to be open network aggregates of large phenocrysts from different batches of K-rich magmas indirectly related to the host minette. Others (PX1c) have textures and compositions suggesting that they resulted from a minette-like magma including pyroxene phenocrysts, or infiltrating a two-pyroxene cumulate. Xenoliths with sieve-textured clinopyroxene compositionally similar to the minette phenocrysts (PX1a) could be glomerocrysts or sieve-textured partially resorbed pyroxenites. The strained, fineto coarse-grained clinopyroxenites and websterites with interstitial phlogopite (PX2) probably represent samples of older K-rich intrusions, or intrusions or cumulates infiltrated by K-rich fluids or melts. Their strained pyroxenes and micas indicate that part of this magmatic activity occurred before or contemporaneously with deformation, and that phlogopite crystallization in these xenoliths is not the result of inclusion in the host minette. This also points to several episodes of metasomatism. A phlogopite-peridotite stock, cropping out near the Rivard dyke has a trace element composition similar to the PX2b, showing that intrusions cogenetic with the peridotite have been sampled by the Rivard minette.

The post-tectonic, K-rich intrusions of the Mont-Laurier area share a similar age and post-tectonic setting, a comparable mineralogy and a chemistry with stong LILE and LREE enrichment and pronounced negative Th, Nb-Ta and Ti (Hf) anomalies. These similarities most plausibly indicate a common magmatic event involving partial melts from a metasomatized mantle source. However, the rocks also display chemical characteristics distinguishing them from one another. In contrast to the Rivard minette, the high Zr/Hf, Nb/Ta and La/Yb ratios of the Kensington SiO₂-undersaturated units possibly record the influence of carbonatitic melt in their source mantle or magmatic history.

Hence, the Kensington-Skootamatta plutonic suite, the Rivard dyke, the Girard dyke, and the Rolleau peridotite record a major and diverse K-rich magmatic event that took place at mid-crustal level in the Central Metasedimentary Belt, in Mesoproterozoic times. The mica-rich pyroxenite xenoliths and the megacrysts transported by the Rivard minette are a deeper expression of this magmatism which extends to lower crustal levels and possibly to the uppermost mantle (Fig. 3.13). The emplacement of the K-rich intrusions, that occurred in a continental environment, more than 100 Ma after regional deformation and metamorphism, suggests that the mantle enrichment responsible for the "arc" signature, and the melting events producing the abundant K-rich magmas, represent distinct event occurring in different tectonic settings, at different times.

Acknowledgments. This paper is part of a Ph.D. thesis by DM. Financial support was provided by KWG Resources and the Geological Survey of Canada. Additional support was provided to DM through a scholarships from the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche of Québec, the Institut National de la Recherche Scientifique - Géoressources (Québec), and the National Sciences and Research Council of Canada, and a research grant (no 1253) to RH from the latter organism. Final and previous versions of the paper greatly benefitted from the critical comments of J. D. Clemens and M. P. Gorton. We wish to thank K. Sharma who kindly showed us samples of ultramafic rocks from tectonic slices located west of Mont-Laurier. Our thanks also go to M. L. Tellier, C. Cermignani (University of Toronto), J. Stirling (Geological Survey of Canada, Ottawa) and J.-P. Tremblay (Laval University, Québec) for their assistance in the microprobe analyses, to G. Pringle (Geological Survey of Canada, Ottawa) for his help in the treatment of mineral chemistry data, to J.-P. Ricbourg, R. Gosselin and M. Greendale (Centre géoscientifique de Québec) for the XRF and INAA whole-rock analyses and to J.-C. Bérubé (Centre géoscientifique de Québec) for the polished thin sections. Field work was assisted by L. Madore, M. L. Tellier, N. Mohan, K. Boggs, M. Simard and M. Mainville. The Ministère de l'Environnement et de la Faune du Québec provided access and lodging in the Papineau-Labelle Wildlife Reserve.

Chapitre 4

XENOLITH SAMPLES OF LATE-PROTEROZOIC, MAGMATISM AND METASOMATISM BELOW THE WESTERN GRENVILLE PROVINCE

David Morin¹, Louise Corriveau², Réjean Hébert³

¹ Centre géoscientifique de Québec, INRS-Géoressources, C.P. 7500, Québec, QC, Canada, G1V 4C7. dmorin@gsc.nrcan.gc.ca

² Centre géoscientifique de Québec, Commission géologique du Canada, C.P. 7500, Québec, QC, Canada, G1V 4C7. corriveau@gsc.nrcan.gc.ca

³ Département de Géologie et de Génie géologique, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4. hebert@ggl.ulaval.ca

RÉSUMÉ

Les milliers de xénolites présents dans la minette de Rivard (1.07 Ga) représentent un échantillonnage varié des lithologies présentes sous la Ceinture métasédimentaire du Grenville. Les fragments ultramafiques sont surtout des clinopyroxénites mais incluent également des dunites et des wehrlites à spinelle, des webstérites et une orthopyroxénite. Les xénolites ont une granulométrie fine à grossière avec des textures protogranulaire à porphyroclastique, et plus rarement polygonale, foliée ou de cumulat. De nombreux xénolites ont une granulométrie, une composition minéralogique et (ou) des textures hétérogènes. Les xénolites de dunite et de wehrlite contiennent une olivine pauvre en Ni et riche en Mg (Fo₈₆ - Fo₉₅) et un spinelle vert riche en Mg et Al dont le rapport 100Al/(Al+Cr+Fe³⁺) varie de 85 - 99. Ces roches sont interprétées comme le produit de cristallisation de magmas alcalins pouvant avoir réagi avec une phase alumineuse. Une wehrlite à spinelle riche en Mg et Al pourrait relier les dunites aux clinopyroxénites, dont le spinelle montre une composition comparable. Les clinopyroxénites ont des compositions très variables avec un rapport 100Mg/(Mg+Fe) de 71 - 92 et un enrichissement marqué en Al (Al₂O₃ = 4 - 18%). Les patrons d'éléments traces normalisés montrent une anomalie négative en Nb-Ta, Ti et P et des enrichissements variables en Ba, Rb, K, Zr et Hf. Le rapport (La/Yb)_N est généralement entre 2 - 5, et le rapport (Zr/Hf)_N est près de, ou légèrement supérieur (0.9 - 1.5) à la valeur du manteau primitif. Bien que les caractéristiques communes suggèrent un lien entre les clinopyroxénites, certaines différences géochimiques montrent qu'elles ne sont pas liées entre elles par la cristallisation fractionnée. Le liquide modèle en équilibre avec le clinopyroxène est enrichi en gros ions lithophiles et en terres rares légères avec un rapport (La/Yb)_N de 10 - 27, selon la proportion de liquide piégé considérée dans le calcul. Les clinopyroxénites sont interprétées comme des cumulats formés près de la limite croûte-manteau à 55 - 60 km, à partir de magmas alcalins légèrement différents et plus ou moins évolués. Les liquides modèles pour les xénolites à orthopyroxène montrent un plus faible enrichissement en gros ions lithophiles et en terres rares légères avec un rapport (La/Yb)_N de 4 - 9. Les données géochimiques indiquent qu'il n'existe pas de lien génétique entre les clinopyroxénites, les webstérites, l'orthopyroxénite et la minette.

Les xénolites de dunite, de wehrlite et de clinopyroxénite ont été affectés par différents types de métasomatisme antérieurs au transport dans la minette. L'olivine et le clinopyroxène sont remplacés à divers degrés par de la phlogopite (± titanite, feldspath K, scapolite, carbonate) qui apparaît aux joints de grains ou dans des veines. La comparaison

de xénolites riches en phlogopite avec ceux qui en sont exempts suggère que l'agent responsable du métasomatisme contenait H₂O, K, Ti, P, Ba, Rb, Nb et F, et possiblement des terres rares légères et du Th. Dans d'autres clinopyroxénites, le métasomatisme pourrait avoir favorisé la cristallisation de diopside et la dilution des éléments mineurs et traces. Le remplacement du clinopyroxène par l'amphibole (\pm calcite, scapolite, clinopyroxene, titanite, mica) est plus répandu mais généralement moins intense que la phlogopitisation, et progresse le long des joints de grains ou de veinules. Outre un ajout de H₂O et CO₂, l'amphibolisation ne produit qu'une augmentation mineure de K, Sr, F et Cl. La carbonatisation intense est plus rare mais semble causer des altérations chimiques importantes comme en témoignent les rapports (La/Yb)_N très faible (0.3), et (Zr/Hf)_N très élevé (40) d'une clinopyroxénite.

La minette de Rivard a ainsi transporté des fragments de roche appartenant à de nombreuses suites magmatiques présentes sous la Ceinture métasédimentaire du Grenville. L'abondance et la diversité des xénolites ultramafiques de même que l'absence d'équivalents de surface, indiquent que ces suites intrusives sont confinées à des niveaux profonds et suggèrent que la croûte inférieure contient une composante ultramafique variée. Les xénolites sont probablement les témoins de différents épisodes d'intrusions et d'accumulations de magmas, mis en place dans la croûte inférieure ou près de la limite croûte-manteau, avant l'ascension de la minette à 1.07 Ga. Le métasomatisme des xénolites ultramafiques est possiblement relié à ces différents évènements magmatiques. Plusieurs xénolites montrent un enrichissement en gros ions lithophiles et en terres rares légères et une anomalie négative en Nb-Ta-Ti qui suggèrent qu'au moins une partie du magmatisme est lié, de façon directe ou indirecte, aux épisodes de subduction qui se sont produits avant ou pendant les premiers stades de l'orogénie grenvillienne.

ABSTRACT

Xenoliths of the 1.07 Ga Rivard minette dyke provide a sampling of rock types underlying the Central Metasedimentary Belt, in the southwestern Grenville Province. Ultramafic fragments are mainly clinopyroxenites but also include spinel dunites and wehrlites, websterites and one orthopyroxenite. These xenoliths are fine- to coarse-grained with dominantly protogranular to porphyroclastic textures and rarer polygonal, foliated or cumulate types. Many xenoliths are heterogenous with respect to grain-size, mineral composition and/or texture. Dunites and wehrlites contain Ni-poor Mg-rich olivine (Fo86 -Fo95) and Mg-Al-rich green spinel with 100Al/(Al+Cr+Fe³⁺) of 85 - 99. These rocks are interpreted as products of crystallization from alkaline melts that may have reacted with an aluminous phase. One wehrlite xenolith with Al-Mg-rich spinel possibly links the dunite xenoliths to the abundant clinopyroxenites, many of which also contain Al-Mg-rich spinel. The clinopyroxenite xenoliths show a wide spectrum of composition with 100Mg/(Mg+Fe) of 92 - 71 and strong Al-enrichment (Al₂O₃ = 4 - 18%). Normalized trace-element patterns display negative Nb-Ta, P and Ti anomalies and variable Ba, Rb, K, Zr and Hf enrichment. The $(La/Yb)_N$ is usually between 2 and 5, and the $(Zr/Hf)_N$ is 0.9 - 1.5, close to or slightly higher than primitive mantle values. Whereas common textural and chemical characteristics imply a relationship between most clinopyroxenites, differences in some trace-element ratios indicate that they are not related to one another by simple magmatic processes such as fractional crystallization. Model melt in equilibrium with clinopyroxene is enriched in LILE and LREE with (La/Yb)_N of 10 - 27, depending on the amount of trapped liquid allowed for in the calculations. Clinopyroxenites are interpreted as fragments of crystal accumulation formed near the crust-mantle boundary at ≈ 55 - 60 km, from slightly different, variously evolved, LILE- and LREE-enriched melts. Model melts for orthopyroxene-bearing xenoliths show less enrichment, with La/Yb_N between 4 - 9. The chemical data indicate that the clinopyroxenites, the orthopyroxenite and the websterites have no genetic relationship with one another or with the host minette.

The dunites, wehrlites and clinopyroxenites were affected by different types of metasomatism prior to transport in the minette. Replacement of olivine and clinopyroxene by phlogopite (\pm titanite, K-feldspar, scapolite and carbonate) occurred along grain boundaries or in veins and was of variable intensity. Comparison of phlogopite-bearing and phlogopite-free clinopyroxenite compositions suggest that the metasomatic agent, plausibly a silicate melt, supplied H₂O, K, Ti, P, Ba, Rb, Nb, Cs, F, and possibly LREE and Th. In some clinopyroxenites, the metasomatism may have resulted in diopside crystallization and

dilution of minor and trace-elements. Clinopyroxene replacement by amphibole (\pm calcite, scapolite, clinopyroxene, titanite and mica) is more widespread but generally less intense than phlogopitization, and takes place in veinlets or interstitial patches. Apart from addition of H₂O and CO₂, amphibolitization produced only minor enrichment in K, Sr, F and Cl in the rock. Intense carbonate metasomatism is rare but caused profound chemical changes, exemplified by the very low (La/Yb)_N (0.3) and high (Zr/Hf)_N (40) in one clinopyroxenite.

The ultramafic xenoliths transported in the Rivard minette thus represent rock samples of numerous magmatic suites lying in the depths of the Central Metasedimentary Belt. The abundance and diversity of ultramafic xenoliths and the general absence of surface equivalents indicate that these suites are mostly confined to deeper levels. This suggests that the lower crust here includes a diverse ultramafic component. The xenolith suite probably records different episodes of magmatic underplating and intrusions that took place in the lower crust, or near the crust-mantle boundary, prior to minette emplacement at 1.07 Ga. Metasomatism of ultramafic xenoliths is possibly related to the various magmatic events. Many xenoliths show LILE and LREE enrichment and negative Nb-Ta-Ti anomalies suggesting that at least some of the magmatism is related, directly or indirectly, to subduction events that took place prior to, or during the early stages of the Grenvillian orogeny.

4.1 INTRODUCTION

Xenoliths transported by mantle-derived alkaline magmas provide important information on the composition and evolution of deep lithospheric levels (McGetchin and Silver 1972; Frey and Green 1974; Harte 1983; Nixon 1987a, b; Wilshire et al. 1988; Ruiz 1992; Xu et al. 1998). Along with ophiolites they show clear evidence that the lithospheric mantle is highly heterogenous as a consequence of complex, ancient and ongoing magmatic, metamorphic and metasomatic processes (Lloyd and Bailey 1975; Frey et Prinz 1978; Irving 1980; Menzies 1983; Vidal et al. 1989; Foley 1992a; Varfalvy et al. 1996; Xu et al. 1996; Bédard and Hébert 1997). Xenolith-rich rocks in the Grenville Province are not reported in the litterature (e.g. Mitchell 1987; Rock 1991; Rudnick 1992) although Mesozoic intrusions cutting the Appalachians or the St. Laurence lowlands may contain fragments of underlying Grenville rocks (Hodgson 1968; Marchand 1970; Mahlburg Kay et al. 1983; Raeside and Helmstaedt 1982; Gold et al. 1986; Trzcienski and Marchildon 1989; Owen et al. 1991). The Rivard intrusion breccia is thus a unique example of late Proterozoic xenolith-rich minette that brought rock fragments from deep levels of the Grenville to the surface (Corriveau and Jourdain 1992; chapters 2 and 3). The ultramafic xenoliths include dunite, wehrlite, orthopyroxenite and websterite but are largely dominated by various types of clinopyroxenite. The peculiar textures and compositions of the ultramafic xenoliths of the Rivard dyke record a complex history of magmatic and metasomatic events that took place in their source areas. In this paper, we use petrography and mineral and whole-rock chemistry to constrain the origin and evolution of this xenolith suite. The dyke setting, xenolith formation and transport, and the behavior, viscosity and ascent velocity of the minette magma are dealt with in Morin and Corriveau (1996). The petrography, mineralogy and chemistry of the minette, its clinopyroxene megacrysts and a phlogopite-rich pyroxenite xenolith suite that is possibly related to the minette, will be presented in a companion paper (chapter 3).

Figure 4.1. Regional setting and location of the Rivard minette dyke in the Central Metasedimentary Belt (CMB; Wynne-Edwards 1972) of the Grenville Province of Québec, Canada. The Mezoproterozoic supracrustal assemblages of the belt (orthogneiss, paragneiss, marble, quartzite, calc-silicate rock, amphibolite), are bordered to the west by the Cayamant (CZ) and Baskatong-Désert deformation zones (BDZ; Sharma et al. 1993), and to the east by the Labelle deformation zone (LZ; Martignole and Corriveau 1991). Quartzite-rich country rock are light grey, 1.165 Ga monzonite and gabbro plutons of the Chevreuil suite are medium grey and 1.090 - 1.075 Ga K-rich alkaline plutons are black. Modified from Corriveau and Rivard (1997).

4.2 GEOLOGICAL SETTING

The 1.07 Ga Rivard intrusion breccia is located 27 km southeast of Mont-Laurier in the southwestern Grenville Province of Québec, Canada (Fig. 4.1). It is neither deformed nor metamorphosed, and intrudes a belt of Mesoproterozoic (1.3-1.2 Ga) supracrustal and plutonic rocks regionally metamorphosed up to granulite facies at 1.19 Ga, namely the Central Metasedimentary Belt (Wynne-Edwards 1972; Boggs 1996; Corriveau et al. 1996a). The area was intruded by the Chevreuil suite composed of biotite-hornblende monzonite, diorite, gabbro and norite at 1.165 Ga (Corriveau et al. 1994a, 1996a). Between 1.090 - 1.075 Ga, K-rich alkaline magmas formed the composite plutons of biotite-rich pyroxenite, diorite, monzonite and syenite of the Kensington-Skootamatta suite (Corriveau et al. 1990; Corriveau and Gorton 1993). The Rivard minette shares the age (1.07 Ga), mineralogy and chemistry, and is thus member of this K-rich intrusive suite (Corriveau et al. 1994a).

The Rivard intrusion breccia is a 1 m-wide, at least 200 m-long, north-south trending (180°/75°) minette dyke containing $\approx 50\%$ xenoliths (Corriveau and Jourdain 1992; Corriveau et al. 1994a; Morin and Corriveau 1996). The minette is fine-grained with subhedral clinopyroxene and biotite phenocrysts ($\leq 3 \text{ mm}$) in a groundmass of K-feldspar, plagioclase, biotite, clinopyroxene, amphibole, apatite, titanite ± quartz, sulfides and zircon. The rock is mafic and ultrapotassic with 50 wt% SiO₂, 8% MgO 5% K₂O, 500 ppm Cr, mg (100Mg/(Mg+Fe) where Fe is total iron) = 65 and $K_2O/Na_2O = 2.2$. It is enriched in incompatible trace-elements with 3000 ppm Ba, 1700 ppm Sr, 450 ppm Zr and 43 ppm La (chapter 3; appendix D). The xenoliths are < 1 mm to 70 cm long, angular to rounded, and commonly show minor reaction rims. Ultramafic fragments, most of which are exotic relative to surface rock types in the Central Metasedimentary Belt of Quebec, are dominated by clinopyroxenites with subordinate websterites, orthopyroxenites, wehrlites and dunites. Xenoliths of mafic to intermediate composition, which have outcrop equivalents in the area, include gabbros, norites, mafic gneisses and calc-silicate rocks. Felsic clasts are gneisses, granitoids and quartzites. Clinopyroxene and K-feldspar megacrysts \leq 50 mm long are also present (chapter 3). The formation, and transport up to the present erosion level (17 km), of this extremely abundant and diverse xenolith suite, resulted from intense fracturing during dyke propagation and rapid ascent (> 50 cm·s⁻¹) of the low viscosity (≈ 40 Pa·s) minette magma (chapter 2).

4.3 XENOLITH TEXTURES

4.3.1 Dunites and wehrlites

Spinel dunites (A5-38, C45-12 and C45-13) are fine- to medium-grained with heterogranular to polygonal textures. Euhedral to anhedral light green spinel (5 - 18%, <0.1 - 2 mm) is interstitial or included in olivine. As shown in figure 4.2a, spinel may occurs as extremely abundant fine inclusions in olivine, locally forming $\approx 45\%$ of rock volume. These inclusion-rich zones commonly form the centers of olivine grains whereas less abundant and coarser spinel is present near the margin or at grain boundaries. This suggests that, with recrystallization or diffusion, the inclusions assembled or were expelled from olivine to form larger crystals. Mercier and Nicolas (1975) report olivine dusted by tiny spinel grains (< 0.02 mm), in spinel lherzolite xenoliths, but they have no explanation for this texture. Phlogopite, carbonate and clinopyroxene inclusions are less common in the spinel dunite xenoliths of the Rivard dyke. Phlogopite also occurs as coarse (5 mm) anhedral grains with acicular rutile (?) exsolutions, and spinel and relict olivine inclusions (Fig. 4.2b). Olivine locally shows a preferred orientation, or deformation lamellae (Fig. 1.5g) which attest to high-temperature plastic deformation before transport in the host minette. Small amounts of sulfides, dominated by pyrrhotite, are present in some dunite and wherlite xenoliths (Fig. 1.5h).

Two small (\approx 3 cm) wehrlite xenoliths (A4-19 and A6-24) are fine- to mediumgrained, more or less equigranular and heterogenous (Fig. 1.5h). Their olivine is restricted to a zone sandwiched by serpentine-rich layers. Olivine may show deformation lamellae and phlogopite is kinked. Subhedral spinel is light green (A4-19) or olive green (A6-24), the latter occurring with pyrrhotite (Fig. 1.5h). A third xenolith (B1-19; Fig. 1.5i), which is actually an olivine-phlogopite clinopyroxenite, is grouped with the wehrlites because its relatively low olivine content is partly the result of widespread replacement of olivine by a yellowish brown, very fine-grained material which is probably a mixture of talc, serpentine, clay and opaque minerals and, locally, orthopyroxene. The rock is fine-grained and heterogenous with respect to mineral composition. Olivine has deformation lamellae and phlogopite is kinked, but clinopyroxene shows little evidence of deformation.

4.3.2 Clinopyroxenites

Clinopyroxenite forms approximately 85% of ultramafic xenoliths in the Rivard dyke and many types are recognized on the basis of mineral assemblages and textures (section 1.6.6.3; appendix B and C). In this paper we focus on a suite of clinopyroxenites, hereafter referred to as CX, which are distinct from the others in having a nearly monomineralic clinopyroxene assemblages and 0 - 10% spinel. These ultramafic xenoliths are the most abundant, with more than 120 sampled. They are herein subdivided on the basis of whole-rock and mineral chemistry (see below). Their assemblages may also include phlogopite, amphibole, sulfides, feldspar and, more rarely minor orthopyroxene, garnet or calcite. Phlogopite or amphibole-rich xenoliths were grouped with CX wherever we found textural evidence that the hydrous minerals were secondary phases replacing clinopyroxene (Figs. 1.50, 4.2i, j, k). The CX have a fine to coarse grain-size and textures grading from heterogranular to porphyroclastic to polygonal, similar to those characterizing mantle rocks (Mercier and Nicolas 1975; Boudier and Nicolas 1991; Figs. 1.5j, 4.2c, d). Some xenoliths are foliated. In hand specimen, the xenoliths are beige to dark brown or grey.

In thin section, clinopyroxene (< 0.1 - 12 mm) is anhedral, colorless to light brown and may include spinel, phlogopite, carbonate, amphibole, sulfides or apatite. There are a few examples of clinopyroxene containing abundant fine-grained spinel inclusions (Fig. 4.2e). The texture recalls that observed in the dunite (Fig. 4.2a) but differs in that the spinel inclusions have an olive green color, are less abundant ($\approx 17\%$) and show a crystallographically controlled preferred orientation. However, as in the dunite, spinel tends to cluster to form coarser interstitial or included euhedral to anhedral crystals next to zones riddled with fine-grained inclusions. This may be similarly interpreted, as a consequence of diffusion or recrystallization. Trains of fine carbonate or fluid inclusions (secondary) are locally abundant, whereas isolated three-phase (primary?) inclusions are less common. Clinopyroxene commonly shows a variously developed sieve-textured grain boundary with very fine and irregular amphibole and carbonate (feldspar, titanite?) inclusions (Fig. 1.5n). The origin of this texture is uncertain but plausibly results from fluid infiltrations along grain boundaries as a similar assemblage also characterizes veinlets cutting the CX. In porphyroclastic-textured xenoliths (Fig. 4.2c) clinopyroxene shows a wavy extinction and sub-grains, attesting of high-temperature plastic deformation (Kirby and Kronenberg 1984).

Spinel (0 - 10%, < 0.1 - 6 mm) is light green, olive green or dark brown and forms euhedral to anhedral inclusions in clinopyroxene or interstitial crystals with a grain-size usually proportional to that of clinopyroxene. In two xenoliths (A6-3, C24-7), garnet is

Figure 4.2. Photomicrographs of ultramafic xenoliths of the Rivard dyke. **a**) Contrasting habit of green spinel (S) in spinel dunite C45-13. To the left: very abundant (\approx 50%) spinel inclusions in olivine (OI); to the right: coarser inclusions interpreted as resulting from clustering of fine inclusions with diffusion or recrystallization. Field of view is 1 mm long, plane light. **b**) Inclusions of olivine (OI) and spinel (S) in a coarse phlogopite (P) also containing fine dark brown inclusions (rutile ?). Spinel dunite A5-38; field of view is 1 mm long, plane light. **c**) Porphyroclastic texture in spinel clinopyroxenite A5-3; C: clinopyroxene, S: spinel; field of view is 2.5 mm long, crossed nicols. **d**) Polygonal texture in spinel clinopyroxenite A4-29. Note the very thin xenolith reaction rim (\approx 0.2 mm) and the darker color of spinel (S) near xenolith margin; C: clinopyroxene, M: minette; the field of view is 2.5 mm, plane light. **e**) Spinel (S) occurs either as abundant (\approx 17%) olive green, fine and oriented inclusions, or as coarser grains surrounded by clear clinopyroxene (C). Spinel (Inopyroxenite A5-40; field of view is 1 mm, plane light. **f**) Garnet (G) corona, locally altered to fine-grained material, around euhedral spinel (S) in spinel clinopyroxenite A6-3; C: clinopyroxene. Field of view is 1 mm, plane light.

Figure 4.2 (continued). g) Anhedral orthopyroxene (O) in clinopyroxenite B1-2, C: clinopyroxene, S: spinel. The texture suggests that orthopyroxene is replaced by clinopyroxene. Field of view is 1 mm, plane light. h) Reaction rim on spinel dunite xenolith (A5-38) showing an orthopyroxene (O) rim. Both orthopyroxene and olivine (OI) are replaced by fine-grained material, mostly talc (T). The outer rim is composed of amphibole (A) and biotite (B); M: minette. Field of view is 2.5 mm, plane light. i) Clinopyroxene (C) replaced by phlogopite (P) along grain boundaries in clinopyroxenite A21-1. Field of view is 2.5 mm, plane light. j) Margin of a 10 mm thick phlogopite vein cutting clinopyroxenite B3-89. From left to right: host clinopyroxene (C), fine symplectites of clinopyroxene and scapolite (Sc), K-feldspar (K) and the vein itself, composed phlogopite (P) with abundant titanite inclusions. Field of view is 2.5 mm, plane light. See also Fig. 1.5r. k) Interstitial secondary minerals in clinopyroxenite A2-2. One zone with light green clinopyroxene (C2) and scapolite (Sc) and the other of amphibole (A) and calcite (Ca). Field of view is 2.5 mm, plane light. I) Intense carbonatization of clinopyroxene, S: spinel, Ca: calcite. Field of view is 2.5 mm, plane light.

present as isolated crystals with thick reaction rim or more commonly forming coronas around spinel (Fig. 4.2f). Since garnet is variously replaced by very fine-grained material (muscovite?), similar material (± amphibole) surrounding spinel in other xenoliths possibly represents completely altered garnet coronas. If this is the case, the texture could have been once more widespread. Apatite inclusions were only observed in the clinopyroxene of B0-1. Orthopyroxene is restricted to B1-2 ($\approx 2\%$) and occurs as grains of variable size showing lobate contours with embayments filled with clinopyroxene (Fig. 4.2h). The texture is ambiguous but suggests partial replacement of orthopyroxene by clinopyroxene, but it can not be excluded that orthopyroxene represents recrystallized exsolutions. Mica (<0.1 - 20 mm) is pale (phlogopite) to dark orange brown (biotite) and forms subhedral to anhedral inclusions in clinopyroxene or, more commonly, interstitial grains partly replacing clinopyroxene (Figs. 1.5p, 4.2i). Mica is generally kinked and may define a foliation (metamorphic). Some clinopyroxenite xenoliths are somewhat transitional to calc-silicate rocks (typical examples of which also occur in the Rivard dyke) in having abundant carbonate, relatively coarse titanite, feldspathic layers, minor quartz, or a dark green clinopyroxene (appendix C). With the exception of two calcite-rich clinopyroxenites (C24-7 and D14-6), clinopyroxene-rich xenoliths akin to calc-silicate rocks exposed to the surface are not considered in detail in the present work.

4.3.3 Orthopyroxenite and websterite

The only orthopyroxenite xenoliths sampled (B1-3) shows cumulate texture with coarse, kinked, euhedral orthopyroxene with clinopyroxene and scarce dark brown (spinel, rutile?) exsolutions, and $\approx 5\%$ interstitial plagioclase and clinopyroxene. The mineral assemblage and textures of B1-3 are comparable to those observed in the abundant norite xenoliths also present in the Rivard dyke, suggesting a possible relationship with them (appendix C). These mafic xenoliths are not considered in detail here, but their chemistry, as exemplified by B11-16, will be used to evaluate the hypothesis of a cogenetic relationship.

The websterites A5-145 and B3-12 are fine- to medium-grained cumulate rocks with subhedral orthopyroxene, anhedral clinopyroxene and interstitial magnetite and plagioclase. B3-12 contains abundant dark-green amphibole, rich in magnetite inclusions (Fig. 1.5k). The rocks have crude igneous layering and foliation, and both pyroxenes are slightly deformed with kinks, wavy extinction and sub-grains.

The pyroxenes in B6-39 are extensively replaced by amphibole and phlogopite, the hydrous phases approximating 80 volume % of rock (Fig. 1.5m). Traces of relict olive green spinel are present. The rock is also layered and foliated with mm-sized bands

enriched in orthopyroxene (kinked), clinopyroxene or amphibole. Phlogopite is rather homogenously distributed.

4.3.4 Metasomatism and alteration

Most ultramafic xenoliths of the Rivard dyke show textural evidence of light to intense, polyphase mineral replacement taking place at xenolith margins or within the xenoliths themselves. Dunite and wehrlite xenoliths have reaction rims in which olivine is totally replaced by fine-grained orthopyroxene, phlogopite, amphibole, serpentine, clay minerals, talc, carbonate and/or opaque minerals (Fig. 4.2h). Spinel is only partly replaced, with a secondary assemblage of muscovite, amphibole and very fine-grained unidentified minerals. Because these secondary minerals mostly occur at xenolith margins, this alteration is ascribed to contact with the host minette magma. Reaction rims around clinopyroxene, amphibole and brown biotites similar to those of the enclosing minette (Fig. 4.2d). Spinel near xenolith margins takes a darker color (Fig. 4.2d) or is partly replaced by amphibole, very fine-grained minerals or corundum. Some xenoliths are cut by thin minette veins composed of feldspar (containing acicular apatite inclusions), biotite and minor amphibole and titanite.

Secondary minerals, mostly phlogopite and amphibole, also occur within the xenoliths. They are fine- to coarse-grained and form patches, lenses or veins. The phlogopite replacement of clinopyroxene is evidenced by clinopyroxene having resorbed contours with deep embayments in contact with phlogopite (Fig. 4.2i), the presence of clinopyroxene relicts in phlogopite, and the patchy distribution of mica, usually along grain boundaries. That phlogopite replacement is not related to the host minette is shown by the mica abundance and distribution, generally independant of xenolith margins, the mica grain-size which tends to be proportional to that of the xenolith, the color of mica, paler than that of the minette biotite, and the presence of some micas that are kinked or define a foliation. Phlogopite replacement of clinopyroxene may be so intense that some clinopyroxenites (e.g. A21-1) contain up to 60% mica. Mica is locally associated with Kfeldspar, scapolite, titanite and minor carbonate. In some xenoliths, interstitial or included phlogopite may be altered to quartz, chlorite (?) or carbonate (Fig. 1.5p). A late-stage, lowtemperature reaction for this is rejected because minette biotite is unaltered. Another way in which mica replaces clinopyroxene is illustrated by a 10 mm phlogopite vein cutting B3-89 (Fig. 4.2j). The vein core is composed of phlogopite containing abundant titanite inclusions, and lesser K-feldspar, scapolite and relict clinopyroxene. The vein core grades into host clinopyroxene through a 1 - 2 mm zone of very fine and intricate symplectites of clinopyroxene and scapolite, identified in coarser examples (Fig. 1.5r). Textures suggest that K-feldspar replaces the symplectite phases (Fig. 1.5r). Clinopyroxene adjacent to the vein has low analytical totals ($\approx 97\%$) suggesting partial alteration, although there is no textural evidence of partial replacement.

Not only is phlogopite replacing clinopyroxene but there is also evidence that coarse phlogopite replaces olivine and orthopyroxene. In a Spl-dunite (A5-38), relicts of olivine are present within a coarse, colorless, anhedral phlogopite (Fig. 4.2b). In a websterite (B6-39), the orthopyroxene in contact with phlogopite shows resorbed contours. It worth noting that intense phlogopitization is not observed in all types of ultramafic xenoliths and is absent from the websterite (A5-145, B3-12), orthopyroxenite (B1-3), mafic and felsic fragments. Thus, phlogopitization possibly represents a deep process. It is, however, observed in other types of pyroxenite xenoliths of the Rivard dyke (Figs. 1.5m, o, 3.2j, k; chapter 3).

Polyphase amphibole (pargasite, hornblende, hastingsite or tremolite) replacement of clinopyroxene is also common. It occurs along grain boundaries, in interstitial patches or sub-mm veinlets. Amphibole is usually associated with carbonate (calcite?) and/or scapolite, titanite, a light green clinopyroxene and rare mica (biotite or phlogopite), feldspar and/or allanite (Fig. 4.2k). Amphibole grows epitaxially on clinopyroxene with a color intensity matching that of the replaced clinopyroxene, and the irregular amphibole inclusions in one clinopyroxene have a common extinction angle close to that of host clinopyroxene (Fig. 1.5n). Comparable textures are reported in alkali pyroxenite intrusions in the Bancroft terrane of Ontario (Mungall 1989). In spite of numerous exceptions, there is a tendancy for patches and veins to show two end-member assemblages: one with amphibole and carbonate, and the other with an inclusion-free light green diopside, scapolite and titanite (Fig. 4.2k). Zoned veins show from their margins inward: host clinopyroxene, amphibole, a second clinopyroxene, scapolite ± titanite and carbonate (calcite?). Compared with the host clinopyroxene, the second clinopyroxene has lower Ti, Al, Ca, Na and mg (i.e. analysis CX25, appendix E3). Crystallization of phlogopite in an amphibole vein, is restricted to the contact with green spinel. There is textural evidence for both amphibole replacement of mica and vice versa, suggesting that there was more than one episode of phlogopite and amphibole growth (Fig. 1.5m, q).

Two clinopyroxenites are rich in calcite showing different textures. D14-6 contains a relatively coarse and strained, interstitial calcite. The textures suggest partial replacement of clinopyroxene or of a previous interstitial mineral. Next to a scapolite vein, calcite is replaced by scapolite. In the spinel-garnet-clinopyroxenite C24-7, calcite forms extremely abundant trains of fine-grained inclusions or interstitial patches, recording passage of CO_2 bearing fluids (Fig. 4.21).

In B3-12, pyroxenes are partially replaced by a fine- to medium-grained, dark green, Fe-pargasite-rich in magnetite inclusions (Fig. 1.5k), and the rock is cut by a veinlet of magnetite-free amphibole. In B6-39, orthopyroxene and clinopyroxene are replaced by amphibole and phlogopite (Fig. 1.5m). Textures indicate three generations of hydrous mineral crystallization: 1) development of a relatively coarse bluish green Mg-hastingsite, locally forming porphyroblasts, 2) crystallization of phlogopite and 3) replacement of all phases by a fine-grained colorless tremolitic hornblende. Ultramafic xenoliths thus preserved records of several metasomatic events that took place before transport in the Rivard minette.

Late-stage amphibole veins cutting both xenoliths and host minette were also observed. They are distinct from the other amphibole veins or patches occurring within the xenoliths in containing a darker green hornblende and the additional presence of quartz and sulfides (pyrrhotite, pyrite, chalcopyrite).

4.4 ANALYTICAL METHODS

The major and trace-elements were analyzed at the Centre géoscientifique de Québec. The xenoliths were cleared from their reaction rims before analysis. The concentrations of major and the trace-elements Cu, Ga, Ni, Nb, Pb, Rb, Sr, V, Y, Zn and Zr were determined by X-ray fluorescence spectrometry on glass and powder samples. The errors for these traceelements are < 7 % at concentration > 10 times the detection limit. The trace-elements Ba, Co, Cr, Cs, Hf, Sc, Ta, Th, U and the rare-earth element (REE) concentrations were determined by instrumental neutron activation analysis. The error is less < 5% for these elements at concentrations > 10 times the detection limit. Mineral chemistry was determined (by wavelength dispersive spectrometry) on a Camebax SX50 microprobe (University of Toronto) with a 15 kV acceleration potential, a beam current of 30 nA (10 nA for feldspar and biotite), a beam size of 1 µm and a counting time of 15 to 60 seconds. Additional analyses were performed on a Camebax SX50 (Geological Survey of Canada, Ottawa) with a 15 kV acceleration potential, a beam current of 10 to 30 nA, a spot size of 4 μ m and a counting time of 10 to 40 seconds. Metals, natural oxides and silicate standards were used. The analyses were corrected for deadtime, background, absorption, fluorescence and atomic number, and converted to oxide concentrations using the Cameca PAP scheme (Pouchou and Pichoir 1985). Mineral formule were calculated using the computer program of Pringle (1989).

XNL no Rock	C45-12 DN	B1-19 WL	B1-2 <i>CX-I</i>	A4-4 <i>CX-1</i>	A23-10 CX-I	A4-105 CX-I	A6-3 CX-II	A4-10 CX-II	B0-1 <i>CX-II</i>	A5-18 <i>CX-III</i>	A21-1 CX-III
							· · ·				
weignt %	31 50	10 51	48 23	49.01	49 52	44,98	40.64	41.41	47.94	48.85	41.40
SIU ₂	31.52	49.04	40.20	0.45	0.28	0.74	0.77	1.14	1.08	0.69	1.52
	0.05	0.39	0.40	7 74	6 72	12 25	18 00	14 96	12.34	8.50	11 97
Al ₂ O ₃	11.//	3.48	0.07	1.74	2010	5.69	5 01	5 00	7 98	4.83	5.89
Fe ₂ O ₃	11.81	5.43	6.05	4.33	3.05	0.00	0.01	0.07	1.50	4.00	0.00
MnO	0.13	0.12	0.12	0.10	0.08	0.08	0.10	10.10	0.12	10.08	10 70
MgO	40.90	22.02	15.58	14.32	14.85	13.85	12.82	10.13	9.61	12.53	18.72
CaO	0.43	13.52	18.13	20.83	22.13	20.21	19.73	21.03	19.60	22.26	8.15
Na ₂ O	0.07	0.39	0.82	0.81	0.66	0.41	0.61	0.94	1.27	0.65	0.51
κō	0.02	1.52	0.31	0.25	0.07	0.31	0.48	0.63	0.24	0.13	5.45
P.O.	0.01	0.17	0.02	0.03	0.02	0.03	0.01	0.02	0.03	0.01	0.07
10	2.28	3.21	1.95	1.59	1.03	2.03	2.90	3.63	0.71	1.10	3.08
Total	99.03	99.96	98.96	99.75	99.32	100.79	101.30	99.97	101.01	99.69	97.08
nom											
ρρι Ο κ	125	17	4200	3120	3430	800	15	33	22	880	100
	44	11	35	20	22	25	14	28	18	15	19
	20	15	28	30	41	38	9	28	13	5	26
Cu	30	10	157	122	131	215	24	31	22	45	27
NI	42	11	107	20.2	220	31.9	82	10.9	13.3	23.3	16.8
Sc	3.1	5.1	40.2	30.3	33.0	100	202	10.5	75	20.0	65
Zn	152	93	90	97	84	190	200	40	167	125	144
V	121	55	166	119	102	100	90	100	10/	120	0.0
Cs	< 0.5	0.9	< 0.5	< 0.5	< 0.5	0.6	0.5	< 0.5	< 0.5	< 0.5	0.8
Ba	< 100	792	< 100	114	< 100	160	340	215	1/1	< 100	1654
Rb	< 3	49	6	9	3	16	15	15	7	8	150
Sr	9	482	196	175	155	143	171	284	203	80	196
Ga	22	6	< 3	7	14	17	25	19	22	7	14
Th	< 0.2	0.9	2.1	2.1	1.3	0.9	1.0	0.7	2.1	0.7	0.5
Nb	< 3	3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	29
To	-03	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.3	0.3	< 0.3	< 0.3
14	< 0.0	17	1.4	29	1.8	6.2	8.7	4.1	6.6	6.4	1.7
	15	92	68	106	100	201	418	204	275	298	82
Zr	15	14	17	100	18	13	24	22	32	18	10
Ŷ	5	14	10.2	0.5	64	10	10.1	9.0	14 1	4.2	8.0
La	< 0.5	14.6	10.3	0.0	10.4	16.9	26.9	26.1	47.2	12.9	19.8
Ce	< 2	39.4	24.0	20.3	19.4	10.0	20.5	20.1	39.6	12.5	11.4
Nd	< 5	25.1	12.8	16.6	16.0	12.9	23.0	E 16	977	3 15	2.51
Sm	0.11	4.67	3.38	4.08	3.44	3.77	5.01	5.10	0.77	0.70	0.61
Eu	< 0.1	1.11	0.92	1.02	0.84	0.82	1.32	1.34	2.04	0.70	0.01
Tb	< 0.1	0.50	0.48	0.60	0.47	0.43	0.76	0.66	1.04	0.43	0.29
Yb	< 0.2	1.34	1.46	1.59	1.56	0.94	1.88	1.62	2.90	1.56	0.49
Lu Lu	< 0.05	0.21	0.22	0.23	0.22	0.13	0.28	0.25	0.43	0.24	0.09
				0 0 0	00.0	92.0	02 E	77 2	70.5	83.7	86.3
mg	87.3	88.9	83.6	86.8	89.0	02.9	03.5	11.5	70.0	00.7	00.0
Primitive	mantle-non	malized tra	ce-elemen	t ratios					1.0	0.0	20
La/Sm		2.0	1.9	1.3	1.2	0.8	1.1	1.1	1.0	0.8	2.0
La/Yb		7.4	4.8	3.6	2.8	3.5	3.7	3.8	3.3	1.8	11
Tb/Yb		1.7	1.5	1.7	1.3	2.0	1.8	1.8	1.6	1.2	2.7
Nd/P		2.4	11	9.1	13	7.1	39	19	22	21	2.7
Hf/Sm		0.5	0.6	1.0	0.8	2.4	2.2	1.1	1.1	2.9	1.0
Zr/Hf		1.3	1.3	1.0	1.5	0.9	1.3	1.3	1.1	1.3	1.3
Zr/Y	3.0	2.4	1.6	2.3	2.3	6.3	7.1	3.8	3.5	6.8	3.4
Sm/Yh	0.0	3.8	2.5	2.8	2.4	4.4	3.2	3.5	3.3	2.2	5.6
Sc/Vh		0.1	0.8	0.5	0.6	0.9	0.1	0.2	0.1	0.4	0.9
		V.1	*								
Mode; ap	proximative	e volume %	• "								
OI .	80	8	4	. 4	. 1	а	Á	2			
Spl	15		1	< 1	< 1	3 00	4	50	0.8	90	40
Срх		50	88	95	99	90	90	50	20		10
Орх		< 1	2	_		-			. 4		60
Phl	2	15	2	2	< 1	< 1	< 1	< 1	< 1	. 4	20
Am	< 1	5	5	5	< 1	6	4	40	< 1	< 1	< 1
Car	< 1		< 1	< 1	< 1	2	1	3	< 1	< 1	< 1
Other	Srp Ms	Srp				Scp	Grt	Scp	Ар		Sui

Note: LOI: loss on ignition. CX: clinopyroxenite, DN: dunite, WB: websterite, WL: wehrlite, XNL: xenolith; mineral abbreviations after Kretz (1983) except Am: amphibole, Car: carbonate, Sul: sulfides; Phl includes Bt; Srp may include talc and iddingsite; mg = 100Mg/(Mg+Fe) where Fe is total iron. *Visual estimate of modal proportions from thin section are approximative because of the heterogeneity, coarse grain-size or small size of xenoliths. Primitive mantle normalizing values from McDonough and Sun (1995).

Table 4.1. Modal and whole-rock composition of representative ultramafic xenoliths from the Rivard dyke

Table 4.1 (suite)

VAIL	A 4 4 A 4	D2 0F	C04 7	D4 0	AE 44E	D2 10
	A4-104	CY IV	624-1 CY IV	0	HO-145	D3-1∠ ₩/₽
ROCK	0,-10	0,-10	0,-10	- 07	VVD	~~~
weight %	50.06	40.01	40.20	E0 40	47 41	12 20
SIO ₂	52.20	49.01	40.30	0.25	47.41	43.20
	0.25	0.52	10.29	0.35	1.03	0.11
	3.40	2.05	2 02	4.00	2.09	10.01
Fe ₂ O ₃	2.01	3.25	0.10	0.25	0.60	0.34
Mao	16 10	14.20	15 28	23.46	15.61	12.83
NigO CoO	23.54	22.64	18.52	3 02	7 53	11.62
Na O	0.40	0.95	0.51	0.39	0.37	1.35
	0.40	0.00	0.35	0.00	0.06	0.42
P.O.	0.02	0.01	0.01	0.06	0.29	0.20
	0.68	0.96	3.09	0.08	0.00	0.08
Total	99.72	100.26	100.85	99.53	99.50	99.94
nnm	00172					
Cr	17	13	9	1390	1060	300
Co	4	4	.11	83	74	73
Cu	< 3	7	5	75	387	63
Ni	5	9	15	390	166	133
Sc	5.7	4.7	17.5	31.0	47.7	47.4
Zn	79	72	68	131	388	286
V	52	61	92	183	484	559
Cs	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ba	< 100	< 100	139	< 100	136	< 100
Rb	< 3	< 3	7	5	5	< 3
Sr	174	204	94	60	32	144
Ga	3	10	18	5	20	12
Th	0.3	0.6	0.3	0.3	0.5	< 0.2
Nb	< 3	< 3	< 3	< 3	5	< 3
Та	< 0.3	0.4	0.5	< 0.3	< 0.3	< 0.3
Hf	2.3	3.0	0.9	0.6	2.4	2.4
Zr	107	143	86	32	75	84
Y	13	16	12	10	45	30
La	5.4	7.8	0.6	3.1	10.9	7.4
Ce	16.5	22.9	< 2	5.6	32.5	21.2
Nd	14.4	2.07	< 5	< 5	20.9	E 02
Sm	3.12	3.97	0.29	0.94	7.07	5.02
EU Th	0.70	0.67	0.15	0.25	1.24	0.83
1D Ma	0.40	1 33	1.50	1 10	1.24	2 49
	0.37	0.22	0.24	0.17	0.68	0.36
ш	0.10	0.22	0.24	0.17	0.00	0.00
mg	91.9	89.7	88.5	75.8	55.9	56.2
Primitive	e mantie-n	ormalize	a trace-el	ement ra	tios	0.0
La/SIII	3.8	4.0	1.3 0 3	10	17	20
Lavitu Th/Vh	1.8	17	0.5	0.6	12	1.5
Nd/P	12	29	0.0	0.0	1.5	1.4
Hf/Sm	1.1	1.1	4.3	1.0	0.4	0.7
Zr/Hf	1.2	1.3	2.6	1.4	0.9	1.0
Zr/Y	3.4	3.7	2.9	1.3	0.7	1.2
Sm/Yb	3.5	3.2	0.2	0.9	1.9	2.2
Sc/Yb	0.3	0.1	0.3	0.8	0.3	0.5
Mode: ap	proximative	volume %	*			
0						
Spl			10			
Срх	10	99	65	1	30	65
Орх				95	65	15
Phi		< 1		< 1	< 1	< 1
Am	< 1	< 1	?	< 1	2	15
Car	< 1	< 1	20		< 1	
Other			Grt	PI	Mag	Mag

Figure 4.3. Binary diagrams of ultramafic xenoliths of the Rivard dyke; oxides in weight %, elements in ppm. CX: clinopyroxenite, DN: dunite, OX: orthopyroxenite, WB: websterite, WL: wehrlite. Are shown for comparison, the composition of the minette (MNT) and mica-pyroxenite xenoliths (MPX), of clinopyroxenites from the Kensington pluton (KEN; Corriveau 1989), of calc-silicate rocks (CSL) from the Central Metasedimentary Belt (Gauthier 1982; Lapointe 1995; L. Corriveau, unpublished data), of bulk continental crust (CC; Taylor and McLennan 1985), and the field of peridotites (PD) and clinopyroxenite (CXN) xenoliths from other localities (Kutolin and Frolova 1970; Frey and Green 1974; Chapman 1975; Frey and Prinz 1978; Irving 1980; Wass and Rogers 1980; Cundari 1982; Kempton et al. 1984; Moukadiri and Kornprobst 1984; Lloyd et al. 1985; Eggler et al. 1987b; Wilshire et al. 1988; Giannetti and Luhr 1990; Federico et al. 1994). Primitive mantle Zr/Hf is taken from McDonough and Sun (1995).

179

4.5 WHOLE-ROCK CHEMISTRY

4.5.1 Dunites and wehrlites

The dunite C45-12 is mainly composed of four major elements: SiO₂ (31%), Al₂O₃ (12%), Fe_2O_3 (12%) and MgO (41%, mg (100Mg/(Mg+Fe) where Fe is total iron) = 87; Table 4.1), which reflects the simple olivine+spinel assemblage. Although the MgO and TiO₂ contents, and mg, are comparable to those of mantle-derived peridotite xenoliths, this dunite has distinctly higher Al₂O₃ and lower Cr (Fig. 4.3). The compatible trace-elements are low (e.g. 125 ppm Cr and 44 ppm Ni) and most incompatible trace-element concentrations are below detection limits, except for Zr (15 ppm), Y (5 ppm), Sr (9 ppm), Sm (0.1 ppm) and Ga (22 ppm), the latter likely substituting for Al in spinel (Horn et al. 1994). The high volatile contents of the olivine-bearing rocks (2 - 3% loss on ignition) can be attributed to phyllosilicates replacing olivine. The wehrlite B1-19 is relatively rich in MgO (22%; mg = 89), K₂O (1.5%), Ba (790 ppm) and Rb (50 ppm), consistent with presence of $\approx 15\%$ phlogopite. This xenolith has MgO, TiO₂ and Al₂O₃ contents comparable to peridotite xenoliths, but has a low Cr content, as in the dunite xenolith (Fig. 4.3). The normalized trace-element pattern displays a progressive enrichment in the most incompatible elements, except for Th, Nb, Ta and Ti which form negative anomalies (Fig. 4.4). Light rare earth elements (LREE) have ≈ 20 times primitive mantle abundance, with $(La/Sm)_N$ of 2 and $(La/Yb)_N$ of 7 (N = primitive mantle-normalized ratio). The two other wehrlite xenoliths (A4-19, A6-24) were not analyzed because of their small sizes.

4.5.2 Clinopyroxenites (CX)

In spite of a nearly monomineralic assemblage, the CX show a wide compositional spectrum for most major elements with (excluding mica-rich A21-1) SiO₂ = 40 - 52%, Al₂O₃ = 3 - 18%, MgO = 10 - 16% and K₂O = 0.05 - 1.0% (Table 4.1). Concentrations of P, Ba, Rb, Pb, U, Nb, Ta and Cs are generally low and often below detection limit. Major and trace-element compositions of CX generally compare with those of clinopyroxene-rich xenoliths from the U.S.A. and Australia, except that some CX have higher Al₂O₃, Cr, or mg (Fig. 4.3). They may also show a greater enrichment of incompatible trace-elements than Al-rich clinopyroxenite and wehrlite xenoliths in basanites from other localities (Fig. 4.4). Except for some extreme values, they have similar (La/Yb)_N of 1.2 - 4.8 and nearly chondritic (Zr/Hf)_N of 0.9 - 1.5 (Figs. 4.3e, f). The normalized trace-element patterns are

similar in most CX, with 5 - 15 times primitive mantle abundance of LREE, deep P and lesser negative Sr and Ti anomalies (Fig. 4.5). The large ion lithophile elements (LILE), Zr, Hf and Sc show the greatest variations, whereas Nb and Ta are in most cases below detection limits. The common geochemical characteristics point to a link between the CX and support their being grouped together, as inferred from textural evidence. They are texturally and chemically distinct from the mica-rich pyroxenite xenoliths having common characteristics with the host minette (chapter 3; annexe C), the orthopyroxenite and websterite xenoliths, and the pyroxenites from the Kensington pluton (Figs. 4.3, 4.5).

The CX define a scattered trend on binary diagrams in which SiO₂, MgO and CaO correlate negatively with Al₂O₃, Fe₂O₃, TiO₂ and Na₂O, reflecting substitutions in clinopyroxene, such as Al^{IV}+Al^{VI} <=> Si+Mg (Morimoto 1989; Fig. 4.6a). Part of the geochemical scatter also mirrors the presence of mica or spinel (i.e. A21-1 on Fig. 4.6b). For convenience, and to help in the understanding of compositional variations among the CX, they are subdivided in four groups, based on whole-rock chemistry (Fig. 4.6d). The analyzed CX-I include four xenoliths (A4-4, A4-105, A23-10, B1-2) with high concentrations of transition compatible elements (Cr, Ni, Co, Cu, V, Sc) in addition to high MgO and mg (83 - 89), and relatively low concentrations of incompatible elements (Ba, Rb, Th, Ga, REE, Sr, Zr, Hf, Y) accompanying low Al₂O₃, TiO₂ and K₂O (Table 4.1, Fig. 4.6). On normalized trace-element diagrams, they generally plot in the lower part of the range of CX (Fig. 4.5a). A23-10 and A4-4 have comparable compositions in terms of most major and trace-elements and thus possibly represent samples of the same rock unit. Slightly higher TiO₂, K₂O, Ba, Rb, LREE in A4-4 reflects the presence of minor phlogopite in this xenolith (Fig. 1.5p; Table 4.1). The composition of A4-105 is transitional to the CX-II in having relatively high Al₂O₃, Zn, Ba, Rb, Zr, Hf and low SiO₂, Cr and mg.

Compared with the CX-I, the CX-II (A4-10, A5-3, A6-3, B0-1, C25-1) are poor in compatible elements (and MgO), and relatively rich in incompatible trace-elements (and Al₂O₃, TiO₂ and K₂O; Fig. 4.6). B0-1 has the lowest mg (71) and high incompatible trace-element contents (14 ppm La and 32 ppm Y). A5-3 has relatively high mg (82), Cr (130 ppm), Sc (35 ppm) and Zn (435 ppm), whereas A6-3 (mg = 84) is the most enriched in Al₂O₃ (18%), Zr (420 ppm) and Hf (8.7 ppm). On normalized trace-element plots, they occupy the upper parts of the range of CX (Fig. 4.5b). The decrease in compatible elements concomitant with an increase in incompatible element concentrations from the CX-I to CX-II, suggests that fractional crystallization may have played a role in the chemical variations between these two types of xenolith. This hypothesis will be addressed below.

The CX-III (A5-18, A21-1, B3-6, C31-3) are variable in composition, being intermediate between other sub-groups, or enriched or impoverished in some elements (Fig. 4.6). The abundant mica in A21-1 (and to a lesser extent in C31-3) is expressed as elevated TiO₂ (1.5%), K₂O (5.5%), Ba (1650 ppm) and Rb (150 ppm). A21-1 also has high MgO (19%), Nb (29 ppm), low HREE (0.5 ppm Yb) and Y (10 ppm) contents, and a high (La/Yb)_N of 11 (Fig. 4.5c). A5-18 has high Zr (300 ppm) and Hf (6.4 ppm), comparable to CX-II, whereas B3-6 is distinct from other CX in having very low LREE (1.9 ppm La) and (La/Yb)_N (1.2). This results in more variable normalized trace-element patterns that may depart significantly from the general trend of the other CX (Fig. 4.5c).

The CX-IV are characterized by high mg and low concentrations of both compatible and incompatible trace-elements (Fig. 4.6d). They are further subdivided into the monomineralic CX-IVa (\geq 99% clinopyroxene; A4-104, B3-25, C31-4) and the carbonatebearing (\approx 10%) CX-IVb (C24-7, D14-6). The first ones have the highest mg (90 - 92) and SiO₂ (50 - 52%) among the CX, and the lowest contents of Fe₂O₃ (\leq 3.2%) and K₂O (\leq 0.08%), and are poor in both compatible (13 - 74 ppm Cr) and incompatible (107 - 176 ppm Zr) trace-elements (Fig. 4.6). Their trace-element patterns resemble those of CX-I except for significantly lower Ba, Rb, Th, K and Sc (Fig. 4.5d). The CX-IVb have a mg of 87 - 89, low SiO₂ (40 - 46%), and low compatible trace-element concentrations (9 - 42 ppm Cr). Compared with the CX-IVa, D14-6 is enriched in P, LILE and LREE (Fig. 4.5d). C24-7 is poor in most incompatible trace-elements, in cases below detection limit, producing a very irregular pattern (Fig. 4.5d). This irregular pattern likely reflects the textural evidence of intense carbonate alteration in this xenolith (Fig. 4.2l).

Hence, and although there is exceptions, the CX show comparable trace-element signatures that link them together and distinguish them from other ultramafic rocks occurring as xenoliths in the Rivard dyke, or as intrusions in the Central Metasedimentary Belt. Apart from a few intensely metasomatized xenoliths, the trace-element patterns of clinopyroxenites containing hydrous minerals compares closely with those of clinopyroxenites free of secondary phases. This suggests that metasomatism affected the whole-rock chemistry only to a limited extent. The compositional similarities and variations among CX, can thus provide insights on the origins and histories of these rocks.

Figure 4.4. Primitive mantle-normalized trace-element patterns of the phlogopite-wehrlite xenolith B1-19 compared to the field of clinopyroxenite xenoliths (CX). Are shown for comparison the field of Al-spinel clinopyroxenite and wehrlite xenoliths from alkali basalts (CXN and WL) and one wehrlite xenolith (SD72-1P) plotting outside that field (Irving 1980). Normalizing values from McDonough and Sun (1995).

Figure 4.5. Primitive mantle-normalized trace-element patterns of the clinopyroxenite xenoliths (CX). Each sub-group is compared to the field defined by CX as a whole (light grey). See figure 1.7j-p (CXN8) for all individual trace-element pattern of CX. **a**) Field of CX-I (A4-4, A4-105, A23-10, B1-2) in dark grey. Crosses indicate the normalized value of detection limit. Minette (MNT) composition is shown for comparison. **b**) Field of CX-II (A4-10, A5-3, A6-3, B0-1, C25-1) in dark grey. **c**) CX-III (A5-18, B3-6, A21-1, C31-3). Clinopyroxenites which depart markedly from the other CX (A21-1, B3-6) were not included in the light grey field of CX. **d**) Field of CX-IVa (A4-104, B3-25, C31-4) in dark grey. The CX-IVb C24-7, and to a lesser extent D14-6, are distinct from the other CX.

Figure 4.6. The four sub-groups of clinopyroxenites; oxides in weight %, elements in ppm. **a**) Negative correlation between SiO₂ and Al₂O₃ indicates clinopyroxene control on whole-rock composition; correlation coefficient is -0.91. **b**) CX-IV, A6-3 and A21-1 plot outside the trend of increasing Sc with MgO. **c**) Scattered trend of increasing Hf with Sm; correlation coefficient is 0.66. **d**) CX-I, II and III define a scattered trend of increasing Y with decreasing Cr; CX-IV plot outside that trend; note the log scale for Cr.

Figure 4.7. Primitive mantle normalized trace-element diagrams of the orthopyroxene-bearing xenoliths. **a**) Orthopyroxenite B1-3. Are shown for comparison the trace element pattern of a norite xenolith (B11-16), the field of CX as in figure 4.5 and the field of mafic and ultramafic units of the 1165 Ma Chevreuil suite (CS; N=7; L. Corriveau, unpublished data). **b**) Websterites A5-145 and B3-12 compared with the field of CX and that of the 1165 Ma Chevreuil suite. CX, clinopyroxenite; NR, norite; OX, orthopyroxenite; WB, websterite. Normalizing values from McDonough and Sun (1995).

4.5.3 Orthopyroxenite and websterite

The orthopyroxenite B1-3 has a mg of 76 with relatively high contents of Cr (1400 ppm) and Ni (390 ppm), and very low concentrations of Rb (5 ppm), Zr (32 ppm) and La (3 ppm). With less than five times primitive mantle abundance of LREE and (La/Yb)_N of 1.9, the trace-element pattern of B1-3 is distinct from that of the CX (Fig. 4.7a). The mg and the ratios K/Na, Ti/Y, Zr/Hf, Hf/Yb, La/Yb of this xenolith are close to those of a norite xenolith (B11-16; Fig. 4.7a). Higher plagioclase/pyroxene in the norite explains higher Al₂O₃, Na₂O and Sr, and lower MgO, Fe₂O₃ and Cr relative to orthopyroxenite. Common assemblage, textures and trace-element ratios suggest that the orthopyroxenite and norite xenoliths are cogenetic rocks belonging to a suite distinct from the CX. These orthopyroxene-bearing xenoliths also differ from the exposed Chevreuil plutonic suite that cut the Central Metasedimentary Belt around 1.165 Ga, in having significantly lower concentrations of REE and higher Hf/Sm (Fig. 4.7a).

The websterites A5-145 and B3-12 share the same low mg of 56. The differences in chemistry are readily explained by variations in mode. A5-145 has higher MgO, Fe₂O₃, Cr and lower CaO, reflecting its orthopyroxene-rich composition, whereas B3-12 is richer in TiO₂, Na₂O, K₂O and V, reflecting more abundant amphibole and magnetite. Relative to the nearly flat normalized pattern of B3-12, that of A5-145 is enriched in most trace-elements except K, Sr, Zr, Hf, Eu and Ti (Fig. 4.7b). The trace-element pattern of the websterite is distinct from that of the CX and the orthopyroxenite but has in common with the 1.165 Ga Chevreuil suite, a low Hf/Sm (Fig. 4.7b).

XNL no	A5-38	C45-13	A4-19	A6-24	B1-19
Rock	DN	DN	WL	WL	WL
Weight %	5				
SiO ₂	41.20	41.09	41.52	40.48	40.49
FeO	7.11	8.72	5.68	12.16	11.75
NiO	0.00	0.01	0.01	0.03	0.00
MgO	51.24	50.15	52.43	47.43	47.83
MnO	0.12	0.18	0.15	0.25	0.25
CaO	0.01	0.00	0.03	0.03	0.00
Total	99.68	100.15	99.82	100.38	100.32
Cations b	based on	4 oxygens			
Si	1.000	1.000	1.000	0.999	0.998
Fe	0.144	0.177	0.114	0.251	0.242
Ni	0.000	0.000	0.000	0.001	0.000
Mg	1.853	1.819	1.882	1.744	1.757
Mn	0.003	0.004	0.003	0.005	0.005
Ca	0.000	0.000	0.001	0.001	0.000
Total	3.000	3.000	3.000	3.002	3.004
mg	92.8	91.1	94.3	87.4	87.9

Table 4.2. Representative microprobe analyses of olivine in ultramafic xenoliths of the Rivard dyke

Note: DN: dunite, WL: wehrlite, XNL: xenolith; total Fe as FeO; mg = 100Mg/(Mg + Fe).

	1	2	3	4	5	6	7	8	9	10
XNL no	A5-38	C45-13	A4-19	A6-24	B1-2	C21-1	A5-3	A6-3	C31-2	C31-2
Rock	DN	DN	WL	WL	CX-I	CX-I	CX-II	CX-II	CX-IV	CX-IV
Color	pale green	pale green	pale green	olive green	brown green	olive green	pale green	pale green	pale green	dark green
Weight %	6			54.00	40.00	FE 04	6E 00	62.07	66 15	61.07
Al ₂ O ₃	67.30	66.30	67.35	54.00	40.22	10.57	0.10	0.02	00.15	01.27
Cr ₂ O ₃	0.01	0.09	0.04	9.59	15.45	10.57	0.10	1.00	1.05	. 0. 10
Fe ₂ O ₃	2.25	1.30	1.76	4.43	4.26	1.51	2.21	1.02	1.00	2.02
V ₂ O ₃	na	0.09	na	na	0.09	0.02	0.00	0.00	0.07	0.08
TiO ₂	0.00	0.02	0.01	0.01	0.01	0.00	0.01	0.03	0.04	0.00
SiO ₂	0.04	na	0.03	0.00	0.00	na	0.01	0.14	na	na
FeO	5.26	8.40	5.98	13.41	21.51	12.57	13.63	15.83	10.55	22.91
MgO	24.07	21.79	23.45	17.12	11.04	17.28	18.12	16.71	20.40	11.81
MnO	0.07	0.07	0.10	0.16	0.21	0.14	0.20	0.18	0.14	0.33
ZnO	0.27	0.09	0.53	0.51	0.40	1.05	0.82	0.51	0.19	0.29
NiO	0.06	0.03	0.00	0.03	0.10	0.03	0.01	0.00	0.06	0.02
CaO	0.01	na	0.01	0.02	0.00	na	0.01	0.02	na	na
Total	99.34	98.18	99.26	99.28	99.29	98.21	100.12	99.23	98.84	99.71
Cations	based on	32 oxyger	าร							
AI	15.648	15.768	15.717	13.655	12.454	13.953	15.638	15.647	15.787	15.501
Cr	0.002	0.015	0.006	1.627	2.793	1.797	0.016	0.003	0.030	0.030
Fe ⁺³	0.334	0.197	0.263	0.715	0.733	0.244	0.340	0.284	0.160	0.455
v	-	0.014	-	-	0.016	0.004	0.000	0.000	0.011	0.014
Ti	0.000	0.004	0.001	0.002	0.002	0.000	0.002	0.005	0.006	0.000
Si	0.008	-	0.006	0.001	0.000	-	0.002	0.029	-	-
Fe ⁺²	0.868	1.418	0.990	2.406	4.112	2.261	2.327	2.748	1.787	4.112
Ma	7.077	6.555	6.921	5.474	3.763	5.542	5.513	5.169	6.158	3.778
Mn	0.012	0.011	0.016	0.030	0.040	0.026	0.035	0.032	0.023	0.060
Zn	0.039	0.013	0.077	0.081	0.068	0.167	0.124	0.078	0.028	0.045
Ni	0.009	0.005	0.000	0.006	0.018	0.005	0.002	0.000	0.010	0.003
Ca	0.002	•	0.003	0.004	0.000	-	0.002	0004	-	-
Total	23.999	24.000	24.000	24.001	23.999	23.999	24.001	23.999	24.000	24.998
0.	QO 1	80.0	875	69.5	47.8	71.0	70.3	65.3	77.5	47.9
mg≥+	07.0	00.7	01.0	85.4	77.9	87.2	97.8	98.2	98.8	97.0
al	97.9	30.7	30.3	00.4	11.3	J. 10	57.0			

Table 4.3. Representative microprobe analyses of spinels in ultramafic xenoliths from the Rivard dyke

Note: CX: clinopyroxenite, DN: dunite, WL: wehrlite, XNL: xenolith; na: not analyzed; $mg^{2+} = 100Mg/(Mg+Fe^{2+})$; $al = Al/(Al+Cr+Fe^{3+})$.

4.6 MINERAL CHEMISTRY

4.6.1 Dunite and wehrlite

Minerals of the olivine-bearing xenoliths are very Mg-rich. Olivine composition is Fogo-F093 in Spl-dunites (A5-38, C45-12; Table 4.2) and F086 - F095 in wehrlites (A4-19, A6-24, B1-19). Contents in NiO and CaO are low and generally < 0.05%. Olivine and spinel have homogenous compositions within samples except near xenolith margins where they tend to become richer in Fe, giving spinel a darker green color (Fig. 4.8). The light green spinel has a very high al (100Al/(Al+Cr+Fe³⁺)) of 95 - 99 and a mg^{2+} (100Mg/(Mg+Fe²⁺)) of 80 - 90 which are respectively similar to and higher than those of spinels from CX-II and CX-IV (Table 4.3; Fig. 4.8). Contents of ZnO are < 0.7% and those of TiO₂, MnO and NiO are < 0.1%. There are only minor compositional differences between the fine spinel inclusions and larger spinels in C45-13 (Fig. 4.2a) such as slightly lower Al₂O₃ (66.0 -66.2%) and higher Fe₂O₃ (1.8%) content in the former as compared to 66.2 - 66.6% Al₂O₃ and 1.1 - 1.3% Fe₂O₃ in the latter. The olive green spinel of A6-24 is richer in Fe and Cr, with mg^{2+} of 70 and al of 86 (Fig. 4.8). Contents of MnO are < 0.2%, ZnO < 0.9% and those of TiO₂ and NiO are < 0.05%. Oxygen fugacities markedly lower than quartzfayalite-magnetite buffer (QFM) are inferred from very low calculated Fe³⁺ in spinel (Roeder and Reynolds 1991), giving Fe³⁺/(Fe³⁺+Cr+Al) of 0.01 - 0.02 in light green spinels (A4-19, A5-38, C45-13) and 0.04 - 0.05 in olivine green spinel (A6-24). Similar green Al-spinels are reported in clinopyroxene-rich xenoliths from various localities (Chapman 1975; Wilshire et al. 1988). Clinopyroxene in the olivine-bearing xenoliths contains 15 - 19% MgO (mg = 89 - 96), 5 - 6% Al₂O₃ and low Cr₂O₃ (0 - 0.03%; Table 4.4). The clinopyroxene of B1-19 differs in having very low Al₂O₃ (0.9%) whereas, in A6-24, clinopyroxene has high concentrations of Cr_2O_3 (0.5 - 0.7%) and Na_2O (1.3 -1.7%). Phlogopite has a mg of 94 - 97, with 0.9 - 1.5% TiO₂, 0.2 - 0.3% BaO and 1.9 -4% F (Table 4.5, Fig. 4.9).

Figure 4.8. Diagram of $100Mg/(Mg+Fe^{2+})$ versus $100Al/(Al+Cr+Fe^{3+})$ of spinels in the clinopyroxenite (CX), dunite (DN) and wehrlite (WL) xenoliths of the Rivard dyke. With alteration, light green spinel becomes darker (tie line in C21-1), reflecting enrichment in Fe, mostly Fe²⁺. The field of spinel composition in clinopyroxenite-rich xenoliths is shown for comparison (data from Kutolin and Frolova 1970; Chapman 1975; Moukadiri and Kornprobst 1984; Rasskazov et al. 1989).

Figure 4.9. Composition (weight %) of micas from clinopyroxenite (CX), dunite (DN), wehrlite (WL) and one websterite (WB; B6-39) xenoliths of the Rivard dyke compared to those of the minette (MNT), micarich pyroxenite xenoliths related to the minette (MPX; chapitre 3), and K-rich intrusions of the Kensington pluton (KEN; Corriveau 1989). Are also shown for comparison the field of mica from kimberlites, lamproites and minettes, of clinopyroxenite (CXN) and MARID xenoliths, and of peridotites xenoliths from other localities (Velde 1971; Frey and Green 1974; Francis 1976a; Jones and Smith 1983; Bachinski and Simpson 1984; Venturelli et al. 1984; Dawson 1987; Erlank et al. 1987; Esperança and Holloway 1987; LeCheminant et al. 1987; Nixon 1987; Wilshire et al. 1988; Conticelli and Peccerillo 1990; Giannetti and Luhr 1990; Lloyd et al. 1991; McDonald et al. 1992; Peterson and LeCheminant 1993; Federico et al. 1994; Ionov and Hoffman 1995; Righter and Carmichael 1996).

Figure 4.10. Microprobe traverses across two clinopyroxenite xenoliths showing variations (weight %) in the MgO and Al₂O₃ concentration of clinopyroxene. Only unaltered clinopyroxene compositions are plotted. a) Constant clinopyroxne composition except at xenolith margin of C31-13. Decrease in MgO and Al₂O₃ are coupled with an increase in SiO₂, FeO^{total} and MnO and a minor decrease of TiO₂ and CaO. The compositional range of the minette clinopyroxene (chapitre 3) is shown for comparison. b) Variations of clinopyroxene composition from core to rim in B3-25. Increase in Al₂O₃ and decrease in MgO are coupled with an increase in SiO₂ and CaO and decrease of FeO^{total}, TiO₂ and Na₂O.

4.6.2 Clinopyroxenites

Microprobe traverses across small CX xenoliths were carried out to assess homogeneity (Fig. 4.10). Except at the outermost xenolith rim, the clinopyroxene composition is very homogeneous throughout C31-13, whereas compositional variations occur in B3-25. These variations likely correspond with sieve-textured grain boundaries in B3-25. The traverses indicate that, except at the outer rims, or at grain boundaries in some xenoliths, small fragments are not affected by cryptic alteration. The lower MgO and Al₂O₃ at the margin of C31-13 reflect overgrowth or replacement by the minette clinopyroxene, which confirms textural evidence. Variations of composition in B3-25 are marked by a decrease in Al₂O₃, toward minette clinopyroxene composition, but an increase in MgO, away from minette clinopyroxene (Fig. 4.10b). Where change in clinopyroxene composition is toward that of the host minette (margin of C31-13) one could argue that crystallization of this clinopyroxene is related to the host minette magma. However, as secondary clinopyroxene compositions tend to be different from minette clinopyroxene, it is not likely to be related to the minette. These observations suggest that the presence of clinopyroxene with a different composition accompanying other phases, such as amphibole and calcite, are related to fluid infiltrations along grain boundaries that took place before transport in minette magma. This hypothesis will be further discussed in the section 4.8.

Clinopyroxenes in CX are extremely variable in composition with 9 - 19% MgO (mg = 69 - 99), 0.5 - 14% Al₂O₃, 0.05 - 1.6% TiO₂, 0 - 0.7% Cr₂O₃ and 0 - 1.3% Na₂O (Table 4.4; Fig. 4.11). They have comparable Cr₂O₃, and TiO₂ to those of clinopyroxenite xenoliths from other localities but may extend to more aluminous compositions (Fig. 4.11a). They are distinct from the minette clinopyroxene and the subdivision of CX, based on whole-rock chemistry, is supported by clinopyroxene compositions (Figs. 4.11b, c). Clinopyroxene of CX-I (A4-4, A22-1, B1-2, C21-1, C31-13) have high mg (85 - 92), Cr₂O₃ (0.2 - 0.7%), intermediate Al₂O₃ (5 - 7%), and low TiO₂ (0.2 - 0.5%). Orthopyroxene of B1-2 contains 4.5% Al₂O₃, 0.8% CaO with a mg of 84. The clinopyroxene of CX-II (A2-7, A4-30, A5-3, A6-3, A6-4, D3-2) have lower mg (71 - 86) and Cr₂O₃ (0 - 0.1%) and higher Al₂O₃ (11 - 14%) and TiO₂ (0.6 - 1.5%). Clinopyroxene of CX-II (A5-18, B3-6) have intermediate composition between those of CX-II and CX-IV or CX-I. Clinopyroxenes in CX-IVa (A4-31, A5-9, A5-41, A6-25, A23-3, B3-25) have variable composition but are rich in diopside components with mg reaching extremely high values (88 - 99), and generally poor in Al, Ti and Cr (Table 4.4).

XNL no	A4-19	A6-24	B1-19	B1-2	B1-2	A4-4	A5-3	D3-2	D3-2	B3-6	B3-25
Bock	WL	WL	WL	CX-I	CX-I	CX-I	CX-II	CX-II	CX-II	CX-III	CX-IV
Mineral	Срх	Срх	Срх	Срх	Opx	Срх	Срх	Срх	Срх	Срх	Срх
Weiaht %	6										
SiO ₂	51.90	51.07	54.47	51.29	53.49	50.38	45.00	44.83	52.19	47.61	49.68
TiO ₂	0.26	0.21	0.14	0.44	0.17	0.34	0.84	0.89	0.08	0.91	0.54
Al ₂ O ₃	5.71	6.13	0.96	5.08	4.50	6.50	13.52	14.33	1.61	9.53	7.60
FeO	1.37	3.15	2.26	4.45	9.77	3.30	3.81	6.99	7.55	5.18	2.71
Cr ₂ O ₃	0.03	0.66	0.00	0.56	0.25	0.51	0.00	0.00	0.00	0.06	0.02
NiO	0.02	0.08	0.00	0.00	0.03	0.03	0.00	0.00	0.01	0.00	0.01
MgO	16.02	15.15	18.34	15.85	31.01	14.28	11.10	9.67	13.80	12.21	14.23
MnO	0.11	0.05	0.13	0.16	0.21	0.07	0.14	0.11	0.26	0.12	0.09
CaO	23.43	21.46	22.99	21.31	0.76	22.73	23.49	21.62	24.02	22.47	23.65
Na ₂ O	0.59	1.43	0.38	0.75	0.06	0.87	0.65	1.08	0.29	1.02	0.93
Total	99.43	99.39	99.67	99.89	100.25	99.01	98.55	99.52	99.81	99.11	99.46
Cations	based on	6 oxygei	าร								
Si	1.883	0.857	1.973	1.868	1.867	1.851	1.669	1.660	1.941	1.759	1.811
AI ^{IV}	0.117	0.143	0.027	0.132	0.133	0.149	0.331	0.340	0.059	0.241	0.189
AI VI	0.127	0.119	0.014	0.086	0.052	0.132	0.260	0.286	0.012	0.174	0.137
Ti	0.007	0.006	0.004	0.012	0.004	0.010	0.023	0.025	0.002	0.025	0.015
Cr	0.001	0.019	0.000	0.016	0.007	0.015	0.000	0.000	0.00	0.002	0.000
Fe ³⁺	0.015	0.092	0.033	0.057	0.069	0.048	0.072	0.083	0.060	0.086	0.082
Fe ²⁺	0.026	0.004	0.036	0.079	0.216	0.053	0.047	0.072	0.161	0.074	0.000
Ni	0.001	0.002	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000
Ma	0.867	0.821	0.990	0.861	1.613	0.782	0.613	0.534	0.765	0.672	0.773
Mn	0.003	0.001	0.004	0.005	0.006	0.002	0.004	0.003	0.008	0.004	0.003
Ca	0.911	0.836	0.892	0.832	0.029	0.895	0.933	0.858	0.957	0.890	0.924
Na	0.042	0.101	0.027	0.053	0.004	0.062	0.047	0.078	0.021	0.073	0.066
Total	4.000	4.001	4.000	4.001	4.001	4.000	3.999	4.000	4.000	4.000	4.000
Mole %											
Wo	50.50	50.33	46.51	46.95	1.57	51.73	58.37	56.26	50.45	54.40	54.45
En	48.06	49.43	51.62	48.59	86.81	45.20	38.48	35.02	40.32	41.08	45.55
Fs	1.44	0.24	1.87	4.46	11.63	30.64	2.95	8.72	9.23	4.52	0.00
mg	95.5	89.5	93.5	86.4	85.0	88.6	83.7	71.2	76.5	80.8	90.4

Table 4.4. Representative microprobe analyses of pyroxenes of xenoliths from the Rivard dyke

.

Note: CX: clinopyroxenite, WB: websterite, WL: wehrlite, XNL: xenolith; mineral abbreviations after Kretz (1983); total Fe as FeO; mg = 100Mg/(Mg+Fe) where Fe is total iron.

Table 4.4 (continued)

XNL no	A6-25	B1-3	B1-3	B3-12	B3-12	B6-39	B6-39
Rock	CX-IV	OX	OX	WB	WB	WB	WB
Mineral	Срх	Срх	Opx	Срх	Орх	Срх	Орх
Weight %	6						50.04
SiO ₂	54.88	50.49	52.25	50.85	52.03	52.10	53.94
TiO ₂	0.08	0.60	0.07	0.38	0.12	0.13	0.01
Al ₂ O ₃	0.42	4.22	3.93	4.45	2.56	4.20	2.72
FeO	0.44	5.95	15.14	9.82	20.42	5.85	14.12
Cr ₂ O ₃	0.00	0.44	0.08	0.00	0.05	0.34	0.10
NiO	0.03	0.02	0.03	0.00	0.02	0.06	0.14
MgO	18.26	15.20	27.16	13.18	23.46	14.87	28.10
MnO	0.04	0.15	0.26	0.32	0.55	0.14	0.28
CaO	25.71	21.62	0.70	18.75	0.44	19.87	0.56
Na ₂ O	0.01	0.63	0.02	1.23	0.00	1.26	0.06
Total	99.87	99.32	99.64	98.98	99.65	98.82	100.03
Cations I	based on	6 oxyger	s				
Si	1.984	1.862	1.879	1.901	1.942	1.923	1.927
AI IV	0.016	0.138	0.121	0.099	0.076	0.077	0.073
	0.002	0.046	0.046	0.097	0.035	0.106	0.042
Ti	0.002	0.017	0.002	0.011	0.003	0.004	0.000
Cr	0.000	0.013	0.002	0.000	0.001	0.010	0.003
Fe ³⁺	0.012	0.092	0.072	0.069	0.033	0.045	0.033
Fe ²⁺	0.001	0.091	0.384	0.238	0.599	0.136	0.389
Ni	0.001	0.001	0.001	0.000	0.001	0.002	0.004
Ma	0.983	0.831	0.877	0.735	0.927	0.818	0.918
Mn	0.001	0.005	0.008	0.010	0.017	0.004	0.009
Ca	0.996	0.854	0.027	0.751	0.018	0.786	0.021
Na	0.001	0.045	0.002	0.089	0.000	0.090	0.004
Total	4.000	4.000	4.000	4.000	4.000	4.001	4.001
Mole %							
Wo	50.27	47.95	1.45	43.56	0.94	45.17	1.11
En	49.67	46.94	77.99	42.63	67.70	47.01	78.49
Fs	0.05	5.11	20.57	13.81	31.36	7.82	20.41
mg	98.7	81.7	76.2	70.5	67.2	81.9	78.0

Note: CX: clinopyroxenite, WB: websterite, WL: wehrlite, XNL: xenolith; mineral abbreviations after Kretz (1983); total Fe as FeO; mg = 100Mg/(Mg+Fe).

	1	2	3	4	5	6	7	8	9 P2 90	10	11
	A5-38	A6-24	B1-19	B1-2	A4-4	A4-30	A0-25	AD-41	03-89 CX-IV	во-39 и/в	B0-76
HOCK		WL	VVL	UX-1	0,7-1		0,-10	07-10	07-11	•••D	
Weight %	6 38.88	37 14	40.66	37.70	36.88	34.33	40.40	38.64	37.19	40.81	35.29
SIU2	14 34	15.63	13.72	15.74	15.03	14.10	12.48	13.75	14.90	14,48	13.47
Al2O3	0.87	1 23	154	2.31	2.82	4.70	0.87	1.33	2.31	0.90	4.49
102	0.07	0.59	0.03	1.05	0.54	0.00	0.00	0.00	0.05	0.13	0.01
Cr ₂ O ₃	1.40	0.00	0.00	7.05	5.71	15.86	0.00	2.85	7.24	673	15.36
FeO	1.40	2.94	2.00	7.80 m	0.00	0.00	0.43	0.00	0.00	0.11	0.05
NiO	0.00	0.03	0.00	18	0.00	0.00	0.01	0.00	0.00	0.05	0.00
MnO	0.00	0.01	0.00	20.12	20.05	12 /1	0.00	24.26	20.09	23.25	14.05
MgO	25.84	24.13	20.08	20.13	20.00	0.04	0.02	0.00	0.00	0.01	0.01
CaO	0.00	0.00	0.00	0.00	0.00	1.07	0.03	0.00	0.00	0.01	1 22
BaO	0.25	0.29	na	na	0.27	1.27	0.09	0.00	0.00	16	CC.1
Na ₂ O	0.76	0.68	0.38	0.13	0.15	0.04	0.00	10.08	10.00	0.34	0.01
K ₂ O	9.41	9.57	9.75	9.79	10.46	9.67	11.31	10.39	10.42	9.80	9.97
F	1.86	2.09	na	na	2.23	0.82	3.39	3.95	1./1	na	1.37
CI	0.11	0.07	na	na	0.06	0.14	0.08	0.10	0.19	na	0.28
Total	93.72	94.39	94.72	94.85	95.09	94.52	96.50	95.93	94.84	96.67	95.79
Cations	based on	22 oxyge	ens								
Si	5.667	5.455	5.751	5.493	5.480	5.365	5.822	5.702	5.556	5.763	5.468
AIIV	2.333	2.545	2.249	2.507	2.520	2.598	2.120	2.298	2.444	2.237	2.460
AIVI	0.130	0.161	0.039	0.196	0.112	0.000	0.000	0.093	0.180	0.174	0.000
Ti	0.095	0.135	0.164	0.253	0.315	0.552	0.095	0.148	0.259	0.096	0.523
Cr	0.000	0.067	0.003	0.122	0.063	0.000	0.000	0.000	0.006	0.015	0.000
Fe	0.171	0.361	0.303	0.969	0.713	2.073	0.058	0.351	0.904	0.795	2.047
Ni	0.000	0.003	0.000	-	0.000	0.000	0.001	0.000	0.001	0.012	0.002
Mn	0.000	0.001	0.000	0.006	0.007	0.018	0.000	0.000	0.021	0.006	0.017
Mg	5.615	5.285	5.498	4.371	4.619	3.123	5.876	2.338	4.474	4.894	3.164
Ca	0.000	0.000	0.000	0.000	0.000	0.007	0.005	0.000	0.000	0.002	0.004
Ва	0.014	0.016	-	-	0.016	0.078	0.005	0.034	0.033	-	0.089
Na	0.214	0.192	0.104	0.036	0.044	0.013	0.000	0.024	0.000	0.093	0.009
K	1.750	1.794	1.759	1.820	1.983	1.928	2.079	1.956	1.986	1.776	1.944
F	0.859	0.972	-	-	1.046	0.404	1.545	1.844	0.808	-	0.594
CI	0.028	0.016	-	-	0.016	0.038	0.020	0.026	0.047	-	0.093
mg	97.0	93.6	94.8	81.9	86.6	60.1	99.0	93.8	83.2	86.0	60.7

Table 4.5. Representative microprobe analyses of micas of ultramafic xenoliths from the Rivard dyke

Note: CX: clinopyroxenite, DN: dunite, MNT: minette, WB: websterite, WL: wehrlite, XNL: xenolith, na: not analyzed; total Fe as FeO mg = 100Mg/(Mg+Fe) where Fe is total iron.

	1	2	3	4	5	6	7	. 8	9
XNL no	B1-2	C21-1	A2-7	A4-30	A5-18	B3-25	B6-39	B6-39	B6-76
Rock	CX-I	CX-I	CX-II ?	CX-II	CX-III	CX-IV Ma Ha	WB Ma Ha	WB Tr-Hbl	MN I Ma-Hhi
Am type	мд-ны	Pig	Pig	15-101	Piy	wiy-ris	wy-ns		wy-ribi
weight %	51 27	41 42	40.70	41.39	39.80	43.09	42 44	53.11	44.67
	5 70	14.88	14 15	11.00	13.67	12.71	13.45	4.12	8.75
Al ₂ O ₃	0.21	1 10	1 15	1 40	1.51	0.74	0.49	0.08	0.84
HO ₂	0.31	0.02	0.02	0.00	0.15	0.74	0.40	0.00	0.05
Cr ₂ O ₃	0.29	0.83	0.03	0.00	0.15	0.01	0.20	5.67	10.00
FeO	4.53	4.20	8.86	13.94	9.47	6.81	9.50	5.67	12.97
MnO	0.12	0.00	0.16	0.14	0.00	0.11	0.14	0.17	0.17
MgO	20.75	17.17	14.56	11.84	13.70	16.98	14.95	20.37	13.24
CaO	12.74	12.73	12.40	11.78	12.39	12.61	12.11	12.79	12.30
Na ₂ O	0.94	1.26	1.91	1.48	1.88	1.58	1.87	0.77	1.04
K ₂ O	0.18	2.98	1.41	1.59	0.67	0.93	1.41	0.20	1.07
F	na	na	0.63	0.56	1.06	na	na	na	0.49
CI	na	na	0.35	0.27	0.07	na	na	na	0.22
Total	96.83	96.67	96.31	95.62	94.37	95.57	96.68	97.48	95.81
Cations b	ased on 2	23 oxygens							
Si	7.155	6.009	6.047	6.324	6.051	6.242	6.181	7.389	6.723
Aliv	0.845	1.991	1.953	1.676	1.949	1.758	1.819	0.611	1.277
AI ^{VI}	0.092	0.553	0.524	0.343	0.501	0.412	0.489	0.065	0.275
Ti	0.032	0.129	0.128	0.163	0.172	0.081	0.053	0.009	0.095
Cr	0.032	0.095	0.004	0.000	0.018	0.001	0.030	0.022	0.006
Fe ⁺³	0.529	0.222	0.403	0.407	0.369	0.652	0.621	0.455	0.334
Fe ⁺²	0.000	0.288	0.697	1.374	0.836	0.173	0.543	0.205	1.299
Mn	0.014	0.000	0.020	0.018	0.000	0.014	0.017	0.020	0.022
Ma	4316	3,713	3,225	2.696	3.103	3.667	3.246	4.223	2.970
iviy Co	1 905	1 978	1 974	1 928	2018	1.957	1.890	1.906	1.983
Ua Na	0.254	0.354	0.549	0.437	0.553	0.443	0.529	0.207	0.303
ina Iz	0.032	0.551	0.267	0,310	0 129	0 172	0.261	0.035	0.204
ĸ	0.002	0.301	0.207	0.270	0.123	0.172	0.201	-	0.235
F	-	-	0.231	0.270	0.009	-	-	_	0.057
Cl	-	-	0.066	0.009	0.019	-	-	-	0.007
mg	89.1	87.9	74.6	60.2	72.0	81.6	73.6	86.5	64.5

Table 4.6. Representative microprobe analyses of amphiboles from xenoliths of the Rivard dyke

Note: CX: clinopyroxenite, MNT: minette, WB: websterite, XNL: xenolith, Mineral abbreviation from Kretz (1983), Am: amphibole; amphibole name from Leake (1978); na: not analyzed; mg = 100Mg/(Mg+Fe) where Fe is total iron.

The dark brown to olive green spinels in CX-I have relatively low mg^{2+} (48 - 71) and the highest Cr₂O₃ (10 - 15%) giving *al* of 76 - 90 (Table 4.3; Fig. 4.8). With high Al₂O₃ (61 - 66%) and low Cr₂O₃ concentrations (< 0.2%) resulting in *al* of 97 - 99, the green spinels of CX-II and CX-IV compare with those of olivine-bearing xenoliths. However, they are distinct in having higher Fe²⁺ and lower mg^{2+} (65 - 79; Table 4.3, Fig. 4.8). As in the olivine-bearing xenoliths, spinels in CX have very low Fe³⁺/(Fe³⁺+Cr+Al) ranging from 0.01 to 0.07 which suggest oxygen fugacities lower than QFM (Roeder and Reynolds 1991). The garnet that rims spinel in A6-3 contains 47 mol% pyrope, 20% grossular and 17% almandine (Table 4.7).

Phlogopite in CX-I shows elevated concentrations of Al_2O_3 (15 - 16%), Cr_2O_3 (0.4 - 1%) and F (2.2%) with a mg of 82 - 92 (Fig. 4.9). Biotite (mg = 60) and phlogopite (mg = 72) of CX-II have 14% Al_2O_3 , 4.1 - 4.7% TiO₂, 1.3 - 1.9% BaO and 0.8 - 1.9% F. In CX-IV, phlogopite (mg = 79 - 99) contains 12 - 15% Al_2O_3 , 0.8 - 2.7% TiO₂ and 1.4 - 4.5% F. Micas present in CX (and those of olivine-bearing xenoliths as well) thus differ from the minette biotite in having their higher contents of MgO, higher mg and higher F, and lower TiO₂, BaO and Cl (Table 4.5, Fig. 4.9).

Amphiboles are rich in Al, Na and some in K, and are pargasites, hastingsites or hornblendes (Table 4.6). Compared to the minette amphibole, those of CX have higher Al (mostly Al^{VI}), Na (Fig. 4.12) and *mg* (60 - 90), and lower K/Na (< 0.5). The *mg* increases with that of the replaced clinopyroxene (Fig. 4.13), consistent with petrographic observations. Exceptions are the amphiboles in A4-30 (C31-13, D3-2) which resemble minette amphibole, in B1-2 which plot with the low Al, Ti, Na, K amphiboles of mica-rich pyroxenites related to the minette (chapter 3) and in C21-1 which is distinct by its very high K₂O (3%; K/Na = 1.6 - 2) and Cr₂O₃ (0.8%).

In summary, compared with the other types of CX, the minerals in CX-1 are generally richer in MgO and Cr_2O_3 , those of CX-II are richer in FeO, TiO₂ and Al₂O₃, and those of CX-IV are Mg-rich but Cr-poor. The minerals of CX-III are not as clearly defined and tend to have intermediate compositions between those of other groups.

4.6.3 Orthopyroxenite and websterite

The clinopyroxene of B1-3 has a mg of 82 and contains $\approx 4\%$ Al₂O₃, 0.5% TiO₂ and 0.5% Cr₂O₃, whereas orthopyroxene has a mg of 76 with $\approx 3.5\%$ Al₂O₃, 0.05% TiO₂ and 0.3% CaO. The clinopyroxenes of B3-12 show relatively high MnO (0.2 - 0.4%) and Na₂O (0.2 - 2%) and low mg (66 - 73). Orthopyroxene contains 2.4 - 2.7% Al₂O₃ and 0.4 - 0.7% CaO with a mg of 65 - 67. Amphibole are hastingsites or pargasites rich in TiO₂ (2%) with a low K/Na (< 0.3) and mg of 57 - 59.

The clinopyroxene in B6-39 is relatively Cr- and Na-rich and Al-poor with a mg of 82 (Table 4.4). Orthopyroxene contains 2.7 - 2.9% Al₂O₃, 0.1% Cr₂O₃ and 0.6 - 0.9% CaO with a mg of 78. Phlogopite has a mg of 86 and a composition comparable to those of CX or the olivine-bearing xenoliths (Table 4.5, Fig. 4.13). The coarse green pargasite resembles the amphibole of CX in terms of Al, Mg, K and Na, with a mg of 74 (Figs. 4.12, 4.13). The younger, fine, colorless amphiboles (mg = 86) plot with those found in the mica-rich pyroxenites related to the minette (Fig. 4.12).

Figure 4.11. Clinopyroxene composition of the CX, orthopyroxenite (OX), wehrlites (WL) and websterites (WB). **a**) Al_2O_3 vs Cr_2O_3 (weight %); the field of clinopyroxene from peridotite (PD) and clinopyroxenite (CXN) xenoliths from other localities are shown for comparison (Aoki and Kushiro 1968; Kutolin and Frolova 1970; Chapman 1975; Lloyd and Bailey 1975; Francis 1976a; Wass 1979; Lloyd 1981; Cundari 1982; Griffin et al. 1984; Mukadiri and Kornprobst 1984; McGuire 1988; Wilshire et al. 1988; Eggler et al. 1987b; Rasskazov et al. 1989; Conticelli and Peccerillo 1990; Giannetti and Luhr 1990; Lloyd et al. 1991; Neumann 1991; Vaselli et al. 1995; Umino et al. 1996). **b**) 100Mg/(Mg+Fe) versus Cr (cations pfu.) with the field of minette phenocrysts (MNT) shown for comparison. **c**) Mg vs Al^{total} (cations pfu.) with tie line relating clinopyroxne with different composition in the same xenolith. **d**) Al^{IV} versus Al^{VI} (cations pfu.) with the field of the minette phenocrysts (MNT) and megacrysts (MC) shown for comparison. Limits between the fields of clinopyroxnes from eclogites, xenoliths and granulites, and lavas from Aoki and Shiba (1973).

Figure 4.12. Composition of amphiboles (cations pfu.) from clinopyroxenite (CX) and websterite xenoliths compared to those of the minette (MNT) and mica-rich pyroxenites related to the minette (MPX; chapitre 3). a) AI^{VI} vs Ti. b) Na vs K.

Figure 4.13. Variation of 100Mg/(Mg+Fe) of mica and amphibole with that of clinopyroxene in CX. R is the correlation coefficient. Tie line link the two different amphiboles in B6-39: the coarse-grained green hastingsite (left) and the fine-grained colorless tremolitic hornblende (right). The field of biotite and amphibole of the minette is shown for comparison. The arbitrary limit between biotite (Mg/Fe < 2) and phlogopite (Mg/Fe > 2) is taken from Deer et al. (1966).

	1	2	3	4	5
XNL no	A6-3	A2-7	B3-89	B3-89	B3-89
Rock	CX-II	CX-II?	CX-II?	CX-II?	CX-II?
Mineral	Grt	Scp	Scp	Kfs	Ttn
Weight %					
SiO ₂	39.92	50.66	44.55	61.44	30.07
TiO ₂	0.17	0.00	0.03	na	36.12
Al ₂ O ₃	23.08	23.88	26.50	18.33	1.85
Cr ₂ O ₃	0.00	0.00	0.01	na	0.04
FeO	10.08	0.29	0.07	0.06	0.35
MnO	0.29	0.02	0.03	na	0.05
MgO	13.25	0.01	0.01	na	0.00
CaO	12.51	11.63	16.80	0.00	28.14
SrO	na	0.10	0.21	0.07	na
BaO	na	0.00	0.04	2.60	na
Na ₂ O	na	6.90	3.44	0.57	0.00
K ₂ O	na	0.60	0.69	15.32	0.12
F	na	0.00	0.00	na	na
CI	na	1.82	1.11	na	na
SO3	na	0.03	0.16	na	na
Total	99.30	95.94	93.65	98.39	96.74

Table 4.7. Microprobe analyses of minor phases in ultramafic xenoliths from the Rivard dyke

Note: CX: clinopyroxenite. Mineral abbreviation from Kretz (1983). 1- Garnet rim around spinel, Grt is $AIm_{17}Adr_6Grs_{29}Prp_{47}Sps_1$. 2- Scapolite in a veinlet with Am, Cpx₂, Ttn and Cal; Scp is Me₆₄ (100Ca/(Ca+Na+K)). 3- Symplectitic scapolite with clinopyroxene at the margin of a Phl vein; Scp is Me₈₃. 4- K-feldspar in the Phl vein. 5-Titanite in the same Phl vein.

4.7 ORIGIN OF ULTRAMAFIC XENOLITHS

The first part of this section discusses possible origins of the different ultramafic xenoliths in the Rivard dyke. More specifically, the petrographic and chemical data will be used in an attempt to understand the peculiar compositions of the dunites and wehrlites, and the processes responsible for the chemical similarities and variations observed among the abundant clinopyroxenite xenoliths. The relationship between the orthopyroxene-bearing xenoliths with the other ultramafic xenoliths and mafic intrusive suites of the Central Metasedimentary Belt is also evaluated. The second part considers the various types of metasomatism that affected the xenoliths and the extent to which metasomatism could have overprinted their primary composition.

4.7.1 Dunite and wehrlite

Dunites may have different origins such as peridotitic rocks from which large percentages of magmas have been extracted, products of olivine accumulation, or of melt-wall rock intereaction (Quick 1981; Cannat et al. 1990; Kelemen et al. 1992; Umino and Yoshizawa 1996). The spinel dunite xenoliths (and wehrlite A4-19) of the Rivard dyke have minerals with high *mg* but olivine contains $\leq 0.01\%$ NiO, and spinel and clinopyroxene have $\leq 0.1\%$ Cr_2O_3 . These characteristics exclude a residual origin for the dunites as Ni and Cr are compatible elements in olivine and spinel respectively (Green 1994). If they are to represent cumulate rocks, then Ni must have partitioned into early fractionating olivine or into a sulfur-rich liquid. The latter possibility would be favored by the low oxygen fugacities inferred from low calculated Fe³⁺ in spinel and presence of pyrrhotite in some dunites, and by the high *mg* of olivine (89 - 95), which precludes significant olivine fractionation. Although sulfide fractionation may operate through minute sulfide inclusions in early crystallizing phases, as reported in the K-rich plutons of the Mont-Laurier area (Andrews 1996), such inclusions have not been observed in the olivine-bearing xenoliths.

The Al content of spinel is dominantly controlled by the Al₂O₃ content of melt and is relatively insensitive to pressure, temperature or fO_2 (Maurel and Maurel 1982; Roeder and Reynolds 1991). From the equation of Maurel and Maurel (1982), nearly Cr-free spinels, such as those found in dunites, require a melt containing $\approx 22\%$ Al₂O₃, which appears very high, especially without significant olivine fractionation to assist Al-enrichment. This weakens the cumulate hypothesis for the dunite xenoliths, although it cannot be ruled out, since basaltic rocks with up to 22% Al₂O₃ are present in some arc settings (Rouer et al. 1989). However, primive Al-rich basalts are also rich in Cr and Ni, which conflicts with the Al-rich and Cr-poor composition of spinel (and clinopyroxene), and the low-Ni olivine. The Cr-Ni-poor characteristics are shared with other clinopyroxene-rich xenolith suites present in alkali basalts, which are interpreted as high-pressure cumulates from silica-undersaturated magmas that interacted with their enclosing peridotites (Wilshire and Shervais 1975; Frey and Prinz 1978; Irving 1980; Wilshire et al. 1988).

Olivine-saturated melts intruding peridotites may dissolve wall-rock pyroxenes and precipitate olivine (\pm spinel), generating dunitic bodies (Kelemen et al. 1992; Allan and Dick 1996). The Cr-spinel may represent the refractory residue after pyroxene dissolution, and possibly also Cr-Al solid solution exchanges in spinel (Kostopoulos 1991; Foley 1992b; Varfalvy et al. 1996). This may result in melt enrichment in Al, Ca, Ti and Si leading to clinopyroxene saturation and precipitation (Quick 1981; Kelemen et al. 1992). Reaction or incongruent dissolution is thus likely to leave an imprint of the replaced minerals and Bédard and Hébert (1997) proposed that the composition of spinel produced by reaction may depend more on the nature of the reactant minerals than on magma composition. The very abundant spinel inclusions in olivine in C45-13 (Fig. 4.2a) possibly result from the incongruent dissolution of an aluminous phase. From the approximately 45% spinel inclusions in zones where the two phases are not separated, and 66% Al₂O₃ content of most garnets (\approx 20%) but matches that of a plagioclase of \approx An₆₅. The reaction can be schematically illustrated by:

$$CaAl_2Si_2O_8 + 3MgO \iff Mg_2SiO_4 + MgAl_2O_4 + CaO + SiO_2$$
(1)
Plagioclase melt Olivine Spinel melt

Hence, and although poikilitic inclusion of Al-spinel can not be ruled out, the local extreme abundance of spinel inclusions and their very Al-rich composition are better explained by incongruent dissolution of an Al-rich phase, possibly plagioclase, by a melt saturated in olivine and spinel. If this model is correct, the incongruent dissolution of an aluminous phase, possibly plagioclase, and crystallization of olivine and spinel would progressively enrich the melt in CaO and SiO₂, as suggested by equation (1), leading to clinopyroxene saturation and precipitation. A4-19 is somewhat intermediate in composition between the dunites and clinopyroxenites, although it cannot directly link them because the mg of olivine and clinopyroxene in this xenolith are higher than those in dunite and most clinopyroxenites. Many wehrlite xenoliths from other localities are also interpreted as products of interaction between peridotites and melt intrusions or infiltrations (Lloyd et al. 1991; Thibault et al. 1992; Xu et al. 1996). Dissolution of Ca-poor pyroxene by a liquid

undersaturated in orthopyroxene, probably a silica-undersaturated melt, produces rocks dominated by clinopyroxene and olivine (Zinngrebe and Foley 1995; Xu et al. 1996). Wehrlites, which commonly accompany clinopyroxenite in xenolith suites, are alternatively viewed as high-pressure cumulates from SiO₂-undersaturated melts (Frey and Prinz 1978; Irving 1980). We believe that melt-wall rock reaction and high-pressure cumulate origins are not mutually exclusive models to account for the wehrlite (dunite and clinopyroxenite?) xenoliths. Reactions may have taken place contemporaneously with liquidus phase crystallization (Varfalvy et al. 1996; Bédard and Hébert 1997).

Compared with minerals in A4-19, olivine, spinel and clinopyroxene in wehrlite A6-24 have significantly higher Fe and Cr contents (Tables 4.2, 4.3, 4.4), suggesting a different origin for this xenolith. The abundant pyrrhotite possibly explains the low NiO (0.03%) content of the olivine. An origin as a cumulate or crystallization product from a relatively primitive magma is compatible with the high mg of olivine (87) and clinopyroxene (89), and relatively high Cr_2O_3 contents of spinel (10%) and clinopyroxene (0.7%).

In contrast to the other wehrlite xenoliths, B1-19 is free of spinel and has relatively abundant phlogopite. Heterogeneity, with olivine restricted to some zones, and textural evidence (although ambiguous) of olivine replacement by phlogopite and possibly clinopyroxene, suggest that the rock experienced metasomatism. This is supported by a normalized trace-element pattern with 20 times primitive mantle abundance in LREE and progressive enrichment in the most incompatible elements, except for Th, Nb, Ta, Ti and Sc, which form negative anomalies (Fig. 4.4). In addition to textural and mineralogical differences, this xenolith is geochemically distinct from the dunite in having higher incompatible element and lower compatible elements, and distinct from most CX in having higher LILE, P and La/Yb (Fig. 4.4). These characteristics could be a consequence of phlogopite metasomatism (section 4.8) but could also reflect a different origin.

4.7.2 Clinopyroxenites

Possible origins for the clinopyroxenites are that they represent: crystallized picritic magmas (Gruau et al. 1991), high-pressure crystal precipitates from basaltic melts (Aoki and Kushiro 1968; Irving 1980; DeBari and Coleman 1989; Fabriès et al. 1991; Wilkinson and Stolz 1997), products of interaction between a melt and country rock (Lloyd and Bailey 1975; Wilshire and Shervais 1975; Bédard 1991) or metasomatism or metamorphism of carbonate rocks (Gauthier 1982; Mahlburg Kay et al. 1983; Rasskazov et al. 1989; Federico et al. 1994). The protogranular, porphyroclastic or polygonal textures of the CX show that they underwent deformation and recrystallization that obliterated their primary textures prior to extraction by the minette magma (Figs. 1.5j, 4.2c, d). These textures are common in mantle rocks which suggests a deep origin for the CX (Mercier and Nicolas 1975; Cannat et al. 1990). Due to their very high CaO contents (17-24%), the CX are unlikely to represent a crystallized mafic liquid; their composition is more compatible with a crystal accumulation origin (without implying gravitational settling).

Some CX resemble mica-pyroxenite xenoliths interpreted as fragments of metasomatized mantle peridotites (Lloyd and Bailey 1975; Lloyd et al. 1985, 1991). These xenoliths typically have the high Cr and Ni contents that characterize mantle rocks. Although some CX are Cr-rich (Table 4.1), they also present textural and compositional similarities with more Al-rich and Cr-poor CX, suggesting that they could be linked with them through crystal fractionation and accumulation processes.

Other Al-spinel clinopyroxenite xenoliths were interpreted as high-pressure cumulates from silica-undersaturated melts in which spinel is a cotectic and/or an exsolved phase from clinopyroxene (Aoki and Kushiro 1968; Kutolin and Frolova 1970; Irving 1974a, 1980; Chapman 1975; Frey and Prinz 1978; Moukadiri and Kornprobst 1984; Wilkinson and Stolz 1997). With comparable mineral assemblage, mode, whole-rock and mineral composition, a similar origin can be postulated for the clinopyroxenites of the Rivard dyke. A cumulate origin for CX-I is consistent with their high MgO (14 - 16%), mg (83 - 89) and Cr (800 - 4200 ppm), and low Ce (17 - 26 ppm) and Zr (70 - 200 ppm). The CX-II, with lower MgO (10 - 13%), mg (71 - 84), Cr (9 - 130 ppm), and higher Ce (25 - 47 ppm) and Zr (200 - 420 ppm) could be cumulates from more evolved magmas. Efficient fractionation at depth is illustrated by the high-pressure Al-Fe-rich clinopyroxene megacrysts (mg = 61) present in the Rivard minette (chapter 3). With the possible exception of A4-4 and A23-10, which have similar compositions, the CX-I and CX-II could

be samples of a common magmatic suite, and constrain the type of melt that could have produced such cumulates.

The CX-II have lower mg, Cr and Sc/Yb than CX-I, consistent with clinopyroxene fractionation since $D^{Cpx/melt}_{Yb} < D_{Sc}$ (0.43, 3.9, respectively, with $D^{Cpx/melt}$ taken from Bédard 1994a; appendix G). However, because $D^{Cpx/melt}_{La} < D_{Sm}$, clinopyroxene fractionation alone cannot to account for lower La/Sm in the CX-II. Either 1) another mineral is involved, 2) CX-I and CX-II are not cogenetic or 3) another process is superimposed to alter some trace-element contents and ratios. The hypothesis of significant spinel fractionation is rejected since $D^{Spl/melt}_{La} = D_{Sm}$ and because higher Hf/Sm in CX-II is incompatible with $D^{Spl/melt}_{Hf} > D_{Sm}$ (0.08 and 0.0006, respectively; appendix G). Higher contents of TiO₂, K₂O, Ba and Rb in CX-II relative to CX-I, and textural evidence of relatively late phlogopite and amphibole crystallization also invalidate significant fractionation of these minerals.

Apatite fractionation is also rejected because inclusions of this mineral are only present in (B0-1), the CX with the lowest mg (71). In addition, the LREE, which have high D^{Ap/melt} (Irving and Frey 1984; Fujimaki 1986; Greenough 1988), do not correlate positively with P₂O₅ (correlation coefficient ≤ 0.08) and the CX-II have significantly higher Nd/P than the CX-I (Table 4.1) when apatite fractionation is expected to lower Nd/P of the melt (Andrews 1996). Thus magmas producing CX-I and CX-II were probably undersaturated in apatite, implying that they did not equilibrate with apatite and, consequently, that apatite is probably not a residual phase of their source region, assuming equilibrium melting. Hence, apatite as a fractionating or residual phase is ruled out and the very low P₂O₅ content in CX is most plausibly an attribute of the source from which the parent magmas originated. As shown on figure 4.4, high Nd/P also typifies clinopyroxenerich xenoliths in basanites from the U.S.A. and Australia.

Titanite has high $D^{\text{Ttn/melt}}_{\text{REE}}$, D_{Hf} , D_{Nb} and D_{Ta} (Green 1994; Bea 1996), and potentially controls incompatible-element concentrations. It is present in trace amounts in most CX but its common association with amphibole and carbonate at grain boundaries or in veins indicates a late or secondary origin. The negative correlation of TiO₂ with MgO and *mg* (correlation coefficient of -0.71 and -0.81 respectively, excluding the Mg-rich A21-1; Fig. 4.3b) shows TiO₂ to behave incompatibly and argues against significant fractionation of either titanite or another Ti-rich phase. This suggests that the magmas were also undersaturated with respect to titanite and did not equilibrate with this mineral at the time of extraction from the source region. Experiments have shown the solubility of a Ti-rich accessory phase to vary positively with temperature and inversely relative to pressure, fO_2 , and silica and alkali contents of the melt (Green and Pearson 1986). Hence, although derivation of CX-II from liquids more evolved than CX-I is consistent with many geochemical characteristics, such as lower *mg*, Cr, Sc and Sc/Yb, and higher LREE and Hf in the CX-II, differences in some incompatible trace-element ratios (e.g. La/Sm, Sm/Yb, Hf/Yb and Zr/Y; Table 4.1) and scatter on binary diagrams (Figs. 4.3 and 4.6) show that the two sub-groups were not generated from a common melt by closed system processes.

The trace-element composition of the melt in equilibrium with the CX can be estimated from mode, whole-rock chemistry and available distribution coefficients (D^{mineral/melt}; Bédard 1994a). Incompatible trace-elements may be concentrated in the trapped melt fraction which, from textural evidence, is inferred to be $\leq 2\%$ in both A23-10 (CX-I) and B0-1 (CX-II). The distribution coefficients used are taken from the compilation of Bédard (1994a). The composition of calculated melt in equilibrium with the clinopyroxene of A23-10 (CX-I) has a fractionated pattern with (La/Yb)_N of 10 - 20 with between 1 and 10% trapped melt fraction. Except for elements with very low D^{Cpx/melt}, the calculated liquid composition is relatively insensitive to variations of inferred trapped melt fraction (Fig. 4.14a). The model melt for CX-I shows a level of enrichment generally similar to or higher than that of OIB or the host minette. It is, however, distinct from typical OIB in having higher Th, Ce/Sr, Hf/Sr, Hf/Sm smf Zr/Hf, and a deep negative Ti and Ta-Nb anomalies. From the minette it is distinct in having higher Th, Ce/Sr, Hf/Sr and Zr/Hf and a deeper negative Ti and Ta-Nb anomalies. The calculated liquid composition for CX-II produces a pattern comparable to that of CX-I but with higher concentrations and slightly higher (La/Yb)_N of 14 - 27 for 1 - 10% trapped melt fraction (Fig. 4.14a). Hence, assuming that these rocks are cumulates last equilibrated with their parent magma, the traceelement compositions of CX-I and CX-II are compatible with derivation from LILE- and LREE-enriched alkaline magmas having (La/Yb)_N in the upper range of 10 - 27, as inferred from low estimated trapped melt fractions. The negative Nb-Ta and Ti anomalies of the CX plausibly indicate the contribution of an arc component in their genesis (Pearce 1983; Tatsumi et al. 1986; Ionov and Hofmann 1995). Another process efficient in fractionating trace elements is carbonatitic metasomatism, which could explain the high Nb/Ta, La/Yb and Zr/Hf in the K-rich units of the Kensington pluton (section 3.7.4; Fig. 3.14). However, the high La/Nb, as inferred from the low Nb and Ta concentrations (generally below detection limit) in the CX, is not accompanied by an increase in Zr/Hf and a decrease of Hf/Sm, as expected for carbonatitic metasomatism (Table 4.1; Dupuy et al. 1992; Rudnick et al 1993). Hence, this mechanism is unlikely to be responsible for high La/Nb in CX.

C / primitive mantle

Figure 4.14. Model melt composition in equilibrium with minerals of xenoliths (Bédard 1994a). a) Model melt composition in equilibrium with clinopyroxene of A23-10 (dark grey) and B0-1 (light grey). Upper limit of each field is for 1% trapped melt fraction (TM) and lower limit for 10% trapped melt fraction. Textures suggest low trapped melt fraction (< 2%) in both A23-10 and B0-1. Ta is below detection limit (0.3 ppm) in A23-10. The distribution coefficients are taken from the compilation of Bédard (1994a; appendix G). Shown for comparison are the pattern of mid-ocean ridge basalt (MORB; Sun and McDonough 1989), calc-alkaline basalt (CAB; Edwards et al. 1994), ocean-island basalt (OIB; Sun and McDonough 1989) and the host minette (MNT; chapter 3). b) Model melt composition in equilibrium with orthopyroxene of B1-3. The grey field represent calculated melt with 1% trapped melt fraction (TM; upper limit) to 10% trapped melt fraction (lower limit). Interstitial plagioclase and clinopyroxene in this xenolith suggest a trapped melt fraction of \approx 5%. Ta and Nd are below detection limit. c) Model melt composition in equilibrium with minerals of B3-12. The grey field represents calculated melt for 5% trapped melt fraction (TM; upper limit) to 25% trapped melt fraction (lower limit). Intersitital amphibole and magnetite in this xenolith suggest ≈ 20% trapped melt fraction. Rb, Th, Ta are below detection limit. Normalizing primitive mantle values from McDonough and Sun (1995).

211

Other spinel pyroxenite xenoliths were also interpreted as crystal cumulates generated from alkali basalt magmas at deep crustal or upper mantle levels (Aoki and Kushiro 1968; Kutolin and Frolova 1970; Irving 1974a, 1980; Frey and Prinz 1978; Moukadiri and Kornprobst 1984; Wilshire et al. 1988; Wilkinson and Stolz 1997). Such an origin is supported by high-pressure experiments on Al-rich spinel-clinopyroxenite xenoliths with modes, mineralogies and whole-rock compositions approaching those of the CX-I and CX-II (Chapman 1975). Chapman (1975) showed that at 18 kbar, Alclinopyroxene can dissolve up to 6% Al-spinel component, which exsolves below the solidus. He concluded that the xenoliths represent high-pressure clinopyroxene cumulates from alkali basalts. At pressures > 20 kbar, garnet instead of spinel is expected to be the exsolved phase (Chapman 1975; Sen 1988). The proportion of spinel in CX (0 - 10%) is grossly in agreement with an origin as exsolutions from clinopyroxene. The general absence of textural evidence of spinel exsolutions in clinopyroxene could be a consequence of deformation, recrystallization or diffusion, which separated the exsolved phase from host. There are, however, a few examples of clinopyroxenes containing abundant fine Al-Cr-spinel inclusions (Fig. 4.2e), but their abundance ($\approx 17\%$) greatly exceeds the maximum 6% determined from experiments (Chapman 1975). Either clinopyroxene can dissolve more Cr-Al-spinel than pure Al-spinel (?), or the inclusions represent cocrystallizing spinel or a product of reaction, poikilitically enclosed in a manner similar to that proposed for the abundant spinel inclusions in olivine (Fig. 4.2a).

The trace-element pattern of CX-IVa is comparable to that of CX-I except for significantly lower contents in Ba, Rb, Th, K and Sc (Fig. 4.5d) and is strikingly similar to that of B0-1, except for their lower abundances (Fig. 4.15). Whilst the similarities in textures and trace-element patterns suggest a link with other CX, low contents of both compatible and incompatible trace-elements accompanying the highest mg is difficult to reconcile with a cumulate origin. Although pure clinopyroxenite (CX-IVa) or carbonatebearing clinopyroxenite (CX-IVb) recalls calc-silicate-rock assemblages, CX-IV differs from typical clinopyroxene-rich calc-silicate paragneisses from the Central Metasedimentary Belt (Kretz 1980; Gauthier 1982; Lapointe 1995) or those occurring in the Rivard dyke (Table 1.5; appendix B, C). These differences include 1) a near-monomineralic assemblage in which tremolite, coarse-grained titanite, quartz or wollastonite are notably absent, 2) absence of compositional layering, 3) a colorless clinopyroxene (Mg-rich) as opposed to green or dark-green (Fe-Mn-rich), and 4) higher Al₂O₃ and TiO₂, and lower SiO₂ and MnO contents (Figs. 4.3a, b). In addition, carbonate and scapolite when present, appear to be late relative to clinopyroxene, occurring at grain boundaries or in veins. Thus, the CX-IV do not represent typical calc-silicate rocks, although some other clinopyroxenite xenoliths

have some of the characteristics observed in calc-silicate rocks (minor disseminated and relatively coarse titanite, irregular feldspar lenses, or relatively high SiO_2 and $low Al_2O_3$ and TiO_2 contents (A4-104)). The possibility that the low trace-element concentrations of CX-IVa represent a dilution effect is discussed below.

Thus, genesis of CX by accumulation of clinopyroxene from slightly different alkaline magmas at different stages of evolution agrees with whole-rock and mineral composition and with high-pressure experiments on xenoliths with similar assemblage and composition (Chapman 1975). The abundant spinel inclusions locally present in clinopyroxene may represent exsolutions, inclusions of a cotectic phase or the products of a melt-wall rock reaction.

Geobarometric determinations on the CX is hindered by the lack of orthopyroxene and garnet. Common presence of spinel and rarity of plagioclase in CX (dunite and wehrlite) indicate that these rocks crystallized in the stability field of spinel. The high AlVI content of clinopyroxene, which place them in the field of xenoliths and granulites on figure 4.6d, is compatible with crystallization at high pressure. In a few xenoliths, spinel is rimmed with pyrope garnet (Fig. 4.2f). Similar garnet coronas are reported in spinelpyroxenite xenoliths from Hawaii and Australia, and interpreted as products of sub-solidus reaction during isobaric cooling in the stability field of spinel, close to the garnet-spinel transition (Griffin and O'Reilly 1987; Sen 1988). From peridotite assemblages, this limit occurs between 25 and 70 km, depending on temperature (1000 - 1400 °C) and the system studied (Lane and Ganguly 1980; Saxena and Eriksson 1983; Sen 1988). Sen and Jones (1988) determined the conditions of equilibration of pyroxenite xenoliths having spinels with garnet coronas to be 19 kbar and 1150 °C. This pressure is just one kbar higher than that prevailing in the experiments conducted by Chapman (1975) on Al-rich spinelclinopyroxenites. The comparable textures, modes, mineral assemblages and compositions with the xenoliths on which experiments and pressure determinations were carried out (Chapman 1975, Sen and Jones 1988) stongly suggest that the CX originate from similar depths, in the range of 55 - 60 km.

Crustal thickness 1.07 Ga ago can be estimated to have been approximately 60 km, as inferred from the depth of the Moho in the Mont-Laurier terrane, which is today at 42 km (Martignole and Calvert 1996) and a depth of emplacement of the minette of 17 km (chapter 3). The CX would thus represent samples of the lowest part of the crust or possibly the uppermost mantle. The crust-mantle boundary is a favorable site for magma accumulation, due to contrast in gravity and rheology (Griffin and O'Reilly 1987; DeBari and Coleman 1989; Lister and Kerr 1991). Xenolith and seismic data imply that deep continental crust is largely composed of mafic intrusions and ultramafic cumulates (McGetchin and Silver

1972; Griffin et al. 1984; Griffin and O'Reilly 1987; Nelson 1991; Wadepohl 1995). The deep crust may also be a zone of magmatic underplating, magma mixing and phenocryst recycling, as evidenced by the mica-pyroxenite xenoliths and megacrysts of the Rivard dyke (chapter 3).

4.7.3 Orthopyroxenite and websterite

The orthopyroxenite (B1-3) shares its textures and mineral assemblage with a norite xenolith (B11-16). A genetic relationship between these two rocks is supported by comparable trace-element ratios and normalized pattern (Fig. 4.7a). Higher Sr, Al₂O₃, Na₂O and Eu point to plagioclase accumulation. The calculated liquid in equilibrium with B1-3, with the 5% trapped melt component deduced from petrographic observation, has a fractionated trace-element pattern with $(La/Yb)_N$ of 9 (Fig. 4.14b). The level of incompatible element enrichment compares with that of the minette or OIB but the modelled liquid shows significantly higher Y, Yb, Sm/Hf and Zr/Hf than the minette or OIB (Fig. 4.14b). Compared to the 1.165 Ga Chevreuil suite, the xenoliths have significantly lower concentrations of LREE, and lower La/Yb and Sm/Hf (Fig. 4.7a) Hence, this orthopyroxenite, along with the norite fragments (B11-16), represent samples of a magmatic suite derived from incompatible-element-enriched melt (s), unrelated to the host minette, the CX, or the Chevreuil suite.

As mentioned above, a genetic link between the two websterite xenoliths A5-145 and B3-12 is suggested from comparable textures and parallel trace-element patterns for the REE (except Eu), P and Y (Fig. 4.7b). However, the pattern of A5-145 differs in having lower Sr/Ce, Hf/Sm, Ti/Tb, Eu/Tb and Sc/Yb. Although negative Sr, Eu and Ti anomalies could possibly be explained by plagioclase and minor magnetite fractionation, lower Hf/Sm is unlikely to be the result of zircon fractionation, as this mineral has not been observed in the websterite xenoliths. Low Hf/Sm is a characteristic of many units of the 1.165 Ga Chevreuil suite (Fig. 4.7b), suggesting a possible link with these intrusions. On the other hand, the rocks of this suite generally display lower La/Yb, and positive Sr and Eu anomalies on normalized trace-element diagrams (Fig. 4.7b). Taken together, the differences suggest that the websterite xenoliths have no relationship with the Chevreuil suite. However, the possibility remains that the differences represent complementary signatures with the websterite xenoliths typifying deep pyroxene cumulates (carried upward by the Rivard minette) whereas the mafic rocks of the suite cropping out in the Central Metasedimentary Belt could be units having a cumulate plagioclase component responsible for positive Sr and Eu anomalies (Fig. 4.7b). The rocks of the Chevreuil suite display abundant evidence of magma mixing and intense crustal material assimilation (Corriveau et al., in preparation) which may contribute to conceal a possible relationship with the xenoliths.

Assuming that the abundant amphibole and magnetite are late magmatic in origin, and represent the trapped melt component, the calculated melt in equilibrium with the pyroxenes of B3-12 has a smooth pattern, except for negative $Sr \pm Eu$ anomalies (Fig. 4.14c). It is enriched in LREE but the (La/Yb)_N of 4 - 8 is significantly lower than those of OIB or the minette, which invalidates a link with these rocks. Both the lower La/Yb and presence of orthopyroxene in the assemblage suggest that the parent melts of the websterite (and orthopyroxenite) xenoliths were less alkaline and silica-undersaturated than those of clinopyroxenites. Since the websterites have geochemical characteristics in common with A5-145, a genetic relationship with the Chevreuil suite cannot be rejected, but requires a more detailed investigation (Fig. 4.7b).

The ultramafic xenoliths of the Rivard dyke thus represent samples of numerous magmatic suites present below the southwestern Grenville Province. The diversity in mineral assemblage, texture and geochemical signature show that these suites have different sources, and magmatic and tectonic histories. The abundance and variety of ultramafic fragments (Table 1.5, appendix B, C, D), suggest that large portions of the deep Central Metasedimentary Belt are composed of intrusive bodies including a significant proportion of ultramafic rocks. The present data and regional surveys (Corriveau et al. 1994a, 1996a) indicate that many ultramafic rocks have no equivalents in the outcrops of the Central Metasedimentary Belt. This suggests that the parent magmas of these rock fragments never reached the presently exposed mid-crust, and probably ponded at lower crustal or upper mantle levels. This conclusion is compatible with the evidence of magma mixing and phenocryst recycling provided by the various high-pressure megacrysts and mica-rich pyroxenite xenoliths of the Rivard dyke (chapter 3). Magma intrusion, accumulation and differentiation is likely to have been accompanied by melt-wall rock reaction, fluid segregation and infiltration, and metasomatism.

4.8 METASOMATISM IN ULTRAMAFIC XENOLITHS

Most ultramafic xenoliths show some evidence of metasomatism with partial replacement of pyroxenes and olivine by hydrous phases taking place along grain boundaries or veins. These reactions are probably coupled with chemical changes which could overprint initial composition to various extent. Two main types of replacement affect the CX with one dominated by mica (\pm K-feldspar, scapolite, titanite, carbonate) and the other by amphibole (\pm carbonate, scapolite, feldspar, titanite, a second clinopyroxene, phlogopite, allanite). Carbonate metasomatism is observed in only a few clinopyroxenites.

4.8.1 Phlogopite metasomatism

Phlogopite replacement within ultramafic xenoliths is unlikely related to host lamprophyre for the following reasons: 1) grain-size of phlogopite tends to be proportional to that of clinopyroxene and phlogopite distribution is generally irregular and independant of xenolith margins, 2) phlogopite is variously strained whereas minette biotite is rarely kinked, 3) when both a pale and a darker mica are present in a xenolith, the former occurs as inclusions or isolated interstitial patches whereas the latter, probably minette-related, occurs in discontinuous veinlets following grain boundaries, 4) in some xenoliths, phlogopite may be altered to quartz and phyllosilicates or carbonates, whereas minette biotite is unaltered, 5) with the exception of biotite in A4-30, phlogopite composition is distinct from that found in the minette (and other types of mica-rich pyroxenite xenoliths of the Rivard dyke) in being poorer in TiO₂ and BaO, and richer in F (Fig. 4.9). Hence, phlogopite replacement of clinopyroxene in CX predates xenolith transport and the fluids that crystallized phlogopite were not directly related to the minette magma. The locally intense phlogopite replacement of clinopyroxene (A21-1, A5-41, B3-89) can be schematically illustrated by:

$$\begin{array}{ccc} 6CaMgSi_2O_6 + Al_2O_3 + K_2O + 2H_2O & <=> & 2KMg_3AlSi_3O_{10}(OH)_2 + 6CaO + 6SiO_2 & (2) \\ Diopside & Fluid & Phlogopite & Fluid \end{array}$$

Comparable mg of phlogopite and host clinopyroxene (Fig. 4.13) suggests that the metasomatic fluid or melt supplies K₂O, H₂O and Al₂O₃, whilst most of MgO and FeO are contributed by the host rock. However, the higher MgO (18.7%) and mg (86) of A21-1 (\approx 60% phlogopite) relative to other CX of comparable Cr and Ni contents (mg = 76 - 83), suggest that MgO may be added during intense phlogopite crystallization. A21-1 also

indicates that phlogopite replacement of clinopyroxene is responsible for enrichment in TiO₂ (1.5%), P₂O₅ (0.08%), Ba (1650 ppm), Rb (150 ppm), Nb (29 ppm), and possibly also Cs (0.8 ppm) as this element is below detection limit (0.5 ppm) in other CX. On the other hand, this xenolith has very low concentrations of Sm (2.5 ppm), Yb (0.5 ppm; $(La/Yb)_N = 11)$ and Y (10 ppm) which could be the result of leaching or dilution of these elements during phlogopitization. Assuming for A21-1, concentrations in Sm, Eu, Tb, Yb and Y equivalent to the average content in CX-II before phlogopitization, then the wholerock composition in MREE, HREE and Y can be accounted for by 40% clinopyroxene in the xenolith. A similar, although more subtle, type of enrichment is observed in A4-4 relative to A23-10 (Fig. 4.16a). These two xenoliths have comparable major and traceelement compositions except that A4-4 contains $\approx 2\%$ phlogopite and displays slightly higher Ba, Rb, Th, K, LREE, Hf and Ti. This enhancement cannot be the result of clinopyroxene fractionation as A23-10 and A4-4 have comparable mg and Cr contents (respectively 89 - 87 and 3400 - 3100 ppm), and is more probably related to minor addition of phlogopite. Addition of F is inferred from the generally high F content of phlogopite in CX (Fig. 4.9b). As the majority of CX have Nb and Ta below detection limit, the high Nb content of A21-1 (29 ppm) is striking and can also be ascribed to phlogopitization. Tantalum is below detection limit, attesting to a preferential enrichment in Nb giving $(Nb/Ta)_N > 5$. Fractionation of these two elements may indicate carbonatitic metasomatism or involvement of a Ti-rich phase (rutile, titanite or ilmenite) with $D^{Ti-phase/melt}_{Ta} > D_{Nb}$ (Green 1995). Since $D^{Rt/fluid}_{Ta} < D_{Nb}$, high Nb/Ta is more probably associated with a silicate melt than a fluid (Green 1995). Since carbonatitic metasomatism commonly produces marked increase of Zr/Hf and decrease of Hf/Sm (Dupuy et al. 1992; Rudnick et al. 1993), the $(Zr/Hf)_N = 1.3$ and $(Hf/Sm)_N = 1.0$ of A21-1, which are within the range of other CX (Table 4.1), also points to a silicate (rather than carbonatitic) melt as a metasomatic agent. It should be noted, however, that because the Dmineral/fluid values are poorly known (Green 1994), it is more difficult to comment on the behavior of traceelements if the metasomatic agent was a fluid.

The textural evidence for phlogopite replacement of olivine is ambiguous in B1-19 (Fig. 1.5i). However, in dunites, the small olivine (and spinel) included in coarse phlogopite strongly suggests that they are relicts representing olivine incompletely replaced by phlogopite (Fig. 4.2b). This reaction can be expressed by:

$$3Mg_{2}SiO_{4} + K_{2}O + Al_{2}O_{3} + 3SiO_{2} + 2H_{2}O \iff 2KMg_{3}Si_{3}AlO_{10}(OH)_{2}$$
Forsterite
Fluid
Phlogopite
(3)

Figure 4.16. Primitive mantle-normalized diagrams comparing trace-elements patterns of phlogopite-bearing xenoliths. **a**) Two clinopyroxenites have comparable composition; A4-4 contains $\approx 2\%$ phlogopite. **b**) The wehrlite B1-19 with the mica-rich clinopyroxenite A21-1.

Compositions of phlogopites in olivine-bearing xenoliths are comparable to those of phlogopites in CX, suggesting a similar origin (Fig. 4.9). They differ, however, by higher Na₂O contents which tend to vary inversely with clinopyroxene abundance (columns 1 - 4 of Table 4.5), reflecting preferential partitioning of Na into clinopyroxene. Phlogopite replacement of orthopyroxene is also observed in B6-39. It may be significant that the wehrlite B1-19, with \approx 15% phlogopite, shows a trace-element pattern resembling to that of A21-1 (Fig. 4.16b), possibly indicating that phlogopitization may leave a similar imprint on different rocks. The differences between the two patterns, as for example lower Th, and higher K and Ti in A21-1, could reflect differences in initial composition and intensity of metasomatised xenoliths, phlogopitization appears to be accompanied by variable enrichment in K, Ti, P, Ba, Rb, Nb, Cs, F and possibly also LREE and Th. Additions of SiO₂, H₂O and Al₂O₃ are inferred from reactions (2) and (3) that schematically describe the phlogopite replacement of clinopyroxene and olivine.

Late magmatic fluids or melts associated with the xenoliths themselves, or unrelated younger metasomatic events have both been called upon to explain the presence of secondary phlogopite in ultramafic xenoliths (Erlank et al. 1987; Sen 1988; Vidal et al. 1989; Lloyd et al. 1991). In support to the former hypothesis is the presence of minor euhedral phlogopite inclusions with sharp contacts relative to enclosing clinopyroxene. The textural evidence that interstitial phlogopite replaces clinopyroxene at grain boundaries or in veins (Figs. 4.2i, 4.2j) demonstrates that the two minerals are not in equilibrium, which supports the second hypothesis. Moreover, if phlogopite (biotite) was a late magmatic phase of the same melt crystallizing the CX, one would expect mica to be more abundant in Fe-rich CX. This is not the case, however, as the abundance of phlogopite is highly variable (0-60%) but generally low (< 1%; Table 4.1), and because both mica-rich and Mgrich (A21-1), and mica-free and Mg-poor (B0-1) xenoliths are present. This suggests that the intense phlogopitization observed in some CX is not directly related to the parent magmas. Experiments on K-rich magmas have shown the mg of phlogopite to be similar to, or lower than that of coexisting clinopyroxene (Edgar et al. 1976; Barton and Hamilton 1979; Edgar and Arima 1983; Esperança and Holloway 1987). However, the disequilibrium textures observed in the CX suggest that the mg of phlogopite, similar to that of clinopyroxene (Fig. 4.13), is more probably a consequence of phlogopite growth at the expense of clinopyroxene, with the mg of phlogopite being dictated by that of the replaced mineral. Phlogopite crystallization could be associated with the circulation of a Krich fluid or melt. Presence of many different magmatic suites in the deep levels of the Central Metasedimentary Belt is suggested by the abundant and diverse ultramafic and

mafic xenoliths in the Rivard dyke. It is thus likely that the fluids associated with the melt intrusions fractionating at depth could have infiltrated and metasomatized previous intrusions (Fig. 3.13).

As shown by reactions (2) and (3), the metasomatic agent responsible for phlogopite growth at the expense of clinopyroxene and olivine should contain K₂O, Al₂O₃, SiO₂ and H₂O. Circulations of relatively silica-rich and aluminous melts or fluids containing variable amounts of H₂O, CO₂ and alkalis are revealed by fluid inclusions studies on metasomatized mantle xenoliths (Schiano et al. 1995; Xu et al. 1996). Zinngrebe and Foley (1995) proposed that circulation of Al-rich, orthopyroxene-undersaturated silicate melts could generate Ca-rich rocks. A possible case for clinopyroxene replacement of orthopyroxene occurs in B1-2, where orthopyroxene shows embayments filled with clinopyroxene (Fig. 4.2g). Diopside replacement of enstatite would consume CaO and liberate MgO. However, it is still possible that orthopyroxene represents interstitial recrystallized exsolutions from clinopyroxene. Circulating fluids or melts are likely to evolve as they interact with the rocks through which they circulate. The trace-element patterns of two CX-IVa (A4-104, B3-25) are similar (except Ta and Sr) to that of B0-1 but with lesser enrichment (Fig. 4.15). As mentioned above, lower abundances of nearly all trace elements irrespective of their behaviors, coupled with the highest mg, is inconsistent with magmatic processes such as crystal extraction or accumulation. The similar shapes of patterns and differences in levels of enrichment rather suggest a simple dilution effect in which both compatible (Co, Cu, Ni, V and Sc) and incompatible (Ba, Rb, K, Ti, Th, P, Ga, Zr, Hf, REE and Y) trace-elements concentrations are lowered, compared with those in B0-1, down to levels similar to those in A4-104. It is hypothesized that enrichment in CaO and SiO₂ in the metasomatic melt or fluid, following phlogopite replacement of clinopyroxene and olivine, may result in the formation of diopsidites, examples of which are the CX-IVa. Although the exact mechanism by which this may take place is uncertain, a possible illustration of this process at the grain scale could be the variation of clinopyroxene composition at grain boundaries in B3-25, which tends toward more diopsidic composition with concomitant decrease in Al, Ti and Na (Fig. 4.10b). The metasomatic fluid or melt may thus evolve according to the mineral and chemical composition of the rocks through which it has percolated.

As stated above, phlogopite in CX is distinct from that of the K-rich magmas, including the minette, that intruded the Central Metasedimentary Belt between 1.09 - 1.07 Ga. However, the K-rich fluids or melts that metasomatized the clinopyroxenites may have an indirect link with the K-rich suite, since the presence of phlogopite-rich ultramafic bodies below an area intruded by abundant K-rich plutons and dykes is likely not

fortuitous. The widespread, alkaline, K-rich magmatism of the Central Metasedimentary Belt suggests that a considerable portion of the underlying mantle has been enriched in K, possibly during previous subduction events related to basin closure and terrane accretion in the southwest Grenville Province (McEachern and van Breemen 1993; Corriveau et al. 1996a; Smith et al. 1997). Fluids or melts from the subducting slab can migrate upward and metasomatize the overlying mantle (Gill 1981; Wyllie and Sekine 1982; Tatsumi et al. 1986; Vidal et al. 1989; Arnaud et al. 1992; Stevens et Clemens 1993). It has been suggested that circulation of small fractions of potassic melt would generate a metasomatic layer with low solidus temperature in the upper mantle which, upon heating, decompression or delamination, may produce K-rich melts (McKenzie 1989; Foley 1992a; Platt and England 1993). The isotopic compositions of the xenoliths indicate that they are not samples of the source region of the late-Proterozoic K-rich magmatism (Amelin et al. 1994). However, the xenoliths could be directly or indirectly related to the K-metasomatism that affected the mantle (and lower crust ?) below the Central Metasedimentary Belt, or to magmatic event (s) post-dating mantle K-enrichment but pre-dating the 1.09 - 1.07 Ga magmatic episode.

4.8.2 Amphibole metasomatism

Amphibole (\pm calcite, scapolite, titanite, a light green clinopyroxene, rarer mica, feldspar or allanite) replacement of clinopyroxene of variable intensity is common in interstitial patches and veinlets. One such simplified reaction can be written:

$$5CaMgSi_2O_6 + H_2O + 3CO_2 \iff Ca_2Mg_5Si_8O_{22}(OH)_2 + 3CaCO_3 + 2SiO_2$$
(4)
Diopside Fluid Amphibole Calcite Fluid (4)

Because *mg* of amphibole increases proportionally with that of host clinopyroxene (Fig. 4.13), MgO and FeO in amphibole were probably supplied by the original pyroxene. The hydrous fluid contained minor K₂O, as shown by presence in a veinlet (cutting A2-7) of scarce phlogopite which is restricted to the contact with Al-spinel. Amphibole compositions also suggest that the fluid contained K as well as F and Cl (A2-7, Table 4.6). Except for slight Sr enrichment (280 ppm), the composition of A4-10, which contains $\approx 40\%$ amphibole, compares with that of other CX-II (Table 4.1). This suggests that the main changes during amphibolitization were addition of H₂O and CO₂ with minor K, Sr, F and Cl.

However, the reaction is more complex than shown by equation (3), with scapolite, euhedral light green clinopyroxene and titanite commonly accompanying amphibole and

calcite. There is a tendancy for patches and veins to show two assemblage end-members with one of amphibole and carbonate, and the other with the second clinopyroxene, scapolite and titanite (Fig. 4.2k). Zoned veins show, from the margins inward: host clinopyroxene, amphibole, a light green clinopyroxene, scapolite \pm titanite and carbonate. This suggests that clinopyroxene, scapolite and titanite become progressively more stable as H₂O and CO₂ are consumed by amphibole and carbonate crystallization. Scapolite contains Cl and probably CO_2 as shown by its high meionite content (100Ca/(Ca+Na+K) = 63) and low oxide totals (< 96%; Table 4.7). The light green clinopyroxene is in optical continuity with adjacent host clinopyroxene and has a composition resembling those of hightemperature hydrothermal clinopyroxenes, with high Si and Ca, and low Al, Ti, Na and Cr contents (Manning and Bird 1986). The Al-Ti-poor composition of the light green clinopyroxene may suggest preferential partitioning of Al into scapolite, leaving insuffisient Al in clinopyroxene to incorporate Ti (as CaTiAl₂O₆), and promoting titanite precipitation. The relative abundance of titanite in the calc-silicate assemblage could likewise be associated with whole-rock depletion in Al₂O₃. Boudier and Nicolas (1991) report scapolite and clinopyroxene as high-temperature hydrothermal alteration products of ultramafic bodies. Amphibole patches in clinopyroxene, similar to those present in many CX, are also reported from 1.05 Ga alkaline pyroxenites in the Bancroft terrane and are interpreted as orthomagmatic hydrothermal alteration products (Mungall 1989). Interstitial or vein amphibole in mantle peridotites were interpreted as results of alkali-rich fluid infiltrations into the mantle (Francis 1976a, b; Griffin et al. 1984; McPherson et al. 1996).

Evidence that the amphibole patches and veinlets in CX represent fluid infiltrations that are unrelated to the minette magma includes that facts that 1) clinopyroxene replacement by amphibole is highly variable in intensity, being absent in many CX and uncommon in other types of xenoliths, 2) the distribution and sizes of the amphibole patches are not related to xenolith margins or xenolith sizes, 3) amphibole patches and veins contain minerals that are rare or absent in the minette (e.g. calcite and scapolite) and lack or contain scarce biotite which is a dominant phase in the minette, 4) amphibole composition in CX contrasts with that in the minette in having higher mg, Al (mainly Al^{VI}), and significantly lower K/Na (Figs. 4.12 and 4.13).

Amphibolitization represents a metasomatic event(s) distinct from intense phlogopite crystallization. There is evidence of both amphibole replacing phlogopite and the opposite, suggesting more than one episode of crystallization for both hydrous phases (Figs. 1.5m, q; appendix C). This shows that the xenoliths were subject to widespread and diverse melt and/or fluid circulation adding mostly H₂O, CO₂, K₂O, Al₂O₃ and various incompatible trace-elements. The orthopyroxene-bearing xenoliths were not affected by phlogopite

metasomatism, and amphiboles in websterite have textures and compositions distinct from those of amphiboles in CX (Fig. 4.12). This suggests that the orthopyroxenite and websterite fragments have a different history to, and possibly come from shallower levels than, the phlogopitized xenoliths.

4.8.3 Carbonate metasomatism

Calcite-rich clinopyroxenite xenoliths are less common and show variable textures and compositions. In D14-6, calcite forms relatively coarse strained crystals interstitial to clinopyroxene. The textures suggest that calcite infiltrated the clinopyroxenite along grain boundaries or replaced a previous interstitial phase. Because calcite is replaced by scapolite next to a scapolite (± light green clinopyroxene, titanite and mica) vein, this suggests that calcite precipitation predated scapolite (and also the amphibolization to which scapolite is commonly related). The clinopyroxenite C24-7 has been affected by a different type of metasomatism. In this xenolith, calcite is fine-grained and either interstitial or forms extremely abundant inclusions in clinopyroxene, suggesting passage of carbonate-bearing fluid (Fig. 4.21). C24-7 differs from other CX in having a significantly higher Zr/Hf and Hf/Sm (Figs. 4.3f, 4.5d) and extremely low LREE and La/Yb (Table 1.4; Fig. 4.3e). This is probably a result of carbonatitic metasomatism which is known to strongly modify traceelement ratios (e.g. Nb/Ta and Zr/Hf) that commonly show limited variations during most magmatic processes (Dupuy et al. 1992; Rudnick et al. 1993; Green 1995). This hypothesis finds direct support in the textural evidence of carbonate alteration in this xenolith (Fig. 4.21). Judging from the xenolith sampling, the carbonate alteration, as shown by C24-7, is much rarer than phlogopite and amphibole metasomatism.

4.9 MAGMATIC AND METASOMATIC HISTORY OF THE ULTRAMAFIC XENOLITHS

The Rivard minette transported abundant and diverse ultramafic xenoliths with a mineralogy dominated by clinopyroxene and textures ranging from protogranular to porphyroclastic or granoblastic. The assemblages of clinopyroxenite xenoliths can include green Al-Mg-rich spinel or sulfides and scarce orthopyroxene, garnet or feldspar, with variable amounts of secondary phlogopite, amphibole, calcite and/or scapolite. The Rivard dyke also contains a few small and heterogenous xenoliths of Al-spinel dunite and wehrlite, and larger xenoliths of orthopyroxenite and websterite with cumulate textures.

From mineral and whole-rock compositions, and comparison with other clinopyroxene-rich xenolith suites, the clinopyroxenites are interpreted as high-pressure crystal accumulations from melts underplating the crust (Fig. 3.13). Crustal thickness is estimated to have been ≈ 60 km at the time of minette emplacement, 1.07 Ga ago. Clinopyroxenites have major- and trace-element variations, with mg of 90 - 71 and Cr content of 4000 - 10 ppm, compatible with clinopyroxene fractionation and accumulation. Absence of orthopyroxene, stong Al-enrichment and model melts with high LILE and LREE contents indicate that the clinopyroxenites were generated from alkaline silicaundersaturated magmas. Negative anomalies for Nb-Ta and Ti, in addition to LILE and LREE-enrichment, suggest the presence of a subduction zone component in their genesis. Similarities and differences in the trace-element patterns of clinopyroxenites suggest that they are not related to one another by closed system processes, but crystallized from slightly different batches of magma at various stages of evolution. These magmas, with modelled $(La/Yb)_N$ in the range of 10 - 27, are distinct from the minette or the parent melt of other pyroxenite xenoliths of the Rivard dyke. Reaction with country rock and metasomatism probably contributed to the chemical diversity of the clinopyroxenites.

The textures and Mg-rich, Ni-poor composition of olivine, and Mg-Al-rich composition of spinel, suggest that the dunite xenoliths result from a reaction between a melt and an aluminous phase. A possible link with the clinopyroxenites is exemplified by a wehrlite xenolith with Mg-rich Ni-poor olivine and Al-Mg-rich spinel. One phlogopite-rich wehrlite has fractionated trace-element pattern that is plausibly a consequence of phlogopite metasomatism. Evidence of phlogopite replacement of olivine and clinopyroxene predating transport in the minette, is observed in many xenoliths. The replacement reactions imply addition of H_2O , K_2O , Al_2O_3 and SiO_2 to the rock, with variable enrichment in Ti, P, Ba, Rb, Nb, P, Cs, F, LREE and Th, most probably by a silicate melt. The reactions also

imply leaching of CaO and SiO_2 that may have participated in the formation of diopsidites in which both compatible and incompatible trace-elements were diluted.

Clinopyroxene is also partly replaced by amphibole (with calcite, scapolite, a light green clinopyroxene, titanite and mica) in veins or at grain boundaries. Amphibole and calcite growth are associated with slight enrichments in K, Sr, F and Cl, with the added H₂O and/or CO₂. Rare clinopyroxenites also record intense carbonation which resulted in a highly irregular trace-element pattern with high (Zr/Hf)_N = 40, and low LREE producing (La/Yb)_N = 0.3.

The orthopyroxenite xenolith has textures and a composition compatible with an origin as a cumulate related to a suite of mafic xenoliths which are abundant in the Rivard dyke. The calculated liquid in equilibrium with orthopyroxene has a fractionated trace-element pattern with $(La/Yb)_N$ of ≈ 9 and is distinct from the minette or calculated liquids for other ultramafic xenoliths. The two websterite xenoliths share textural and chemical similarities, but also show differences, some of which could result from crystal fractionation. The calculated liquid has a smooth trace-element pattern with high HREE and low $(La/Yb)_N$ of ≈ 6 , precluding a relationship with the minette or the other ultramafic xenoliths. The low Hf/Sm of websterites possibly links them to the 1.165 Ga Chevreuil suite present in the Central Metasedimentary Belt.

The Rivard minette thus sampled rock units belonging to numerous magmatic suites characterized by various degrees of LILE- and LREE-enrichment. The general absence of outcrop equivalents shows that these magmatic suites were trapped at depths greater than 17 km, probably in the deep crust and possibly down to the upper mantle. The variety and abundance of ultramafic fragments present in the Rivard dyke suggests that the lower crust and upper mantle in the Central Metasedimentary Belt contains diverse ultramafic igneous bodies. The lowermost crust and crust-mantle boundary were plausibly the site of abundant magma intrusion, accumulation, differentiation, melt-wall rock interaction and metasomatism. This multistage magmatic underplating could be related to the complex succession of events, including basin closure, terrane accretion, crustal thickening and delamination that took place in the course of, and possibly prior to, the Grenvillian orogeny.

Acknowledgements: This paper is part of a Ph.D. thesis by DM. Financial support was provided by KWG Resources and the Geological Survey of Canada. Additional support was provided to the first author through a scholarships from the National Sciences and Research Council of Canada and the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche of Québec. Final and previous versions of the paper greatly benefitted from the critical comments and suggestions of Y. Amelin, J. H. Bédard, J. D. Clemens, M. P. Gorton and M. Laflèche. Special thanks are addressed to J. H. Bédard who kindly shared his expertise and ideas and to Guoxiang Chi for his time spent in looking for tiny fluid inclusions. Our thanks also go to L. Madore, M. L. Tellier, N. Mohan, K. Boggs, M. Simard and M. Mainville for their help in the field and to C. Cermignani, R. Gosselin, M. Greendale, J. Stirling, J.-P. Ricbourg and M. L. Tellier for their assistance in the chemical analyses of the rocks and minerals. The Ministère de l'Environnement et de la Faune du Ouébec provided access and lodging in the Papineau-Labelle Wildlife Reserve.

Chapitre 5

CONCLUSIONS GÉNÉRALES

La brèche intrusive de Rivard représente une intrusion exceptionnelle par l'abondance et la diversité des xénolites qu'elle contient. Ces xénolites fournissent un accès indirect aux couches profondes de la Ceinture métasédimentaire du Grenville à 1.07 Ga. Chercher à savoir pourquoi la minette de Rivard a transporté une aussi grande quantité et une aussi grande variété de fragments a permis de mieux comprendre les processus de formation et de transport des xénolites. Il a ainsi été possible de déterminer que la minette était peu visqueuse et qu'elle était montée à une vitesse supérieure à 50 cm·s⁻¹ (> 1 km·h⁻¹) pour atteindre le niveau d'érosion actuel, correspondant à 17 km de profondeur. En établissant un lien entre les structures observées à l'éponte du dyke et des modèles théoriques sur la propagation des dykes (Pollard 1987; Rubin 1993), on est en mesure de proposer un modèle expliquant la formation continue de xénolites en profondeur. Les étapes successives de la genèse des xénolites sont illustrées par les fractures et les apophyses parallèles au dyke, les fragments partiellement détachés de l'encaissant et les milliers de xénolites isolés dans le lamprophyre. Les apophyses sont les reliques d'une fracturation produite lors de la propagation du dyke, fracturation qui pourrait être favorisée par les magmas peu visqueux comme les minettes ou les kimberlites. On en déduit que la présence fréquente de xénolites dans les magmas alcalins est liée non seulement à leur vitesse d'ascension élevée mais aussi à leur capacité de fracturer l'encaissant. L'augmentation progressive de la fraction solide dans le magma amène un accroissement de la viscosité effective qui peut inhiber la progression du magma vers les niveaux crustaux supérieurs et favoriser sa contamination.

La minette qui a transporté les xénolites est mafique et ultrapotassique, et riche en éléments traces compatibles (500 ppm Cr) et incompatibles (3000 ppm Ba) avec des rapports Ba/La, La/Nb et La/Yb élevés. Ces caractéristiques sont comparables à celles d'autres minettes et s'accordent avec une origine par fusion partielle d'un manteau enrichi en gros ions lithophiles et en terres rares légères, et la contribution d'une composante de subduction. Puisque que la minette s'est mise en place plus de 100 Ma après le métamorphisme régional, cette composante pourrait être liée aux épisodes de subduction associés à la fermeture de bassins et à l'accrétion de terranes qui ont marqué la marge laurentienne avant ou pendant l'orogénie grenvillienne. Par sa localisation, son âge, sa composition minéralogique et chimique, la minette se rapproche des plutons alcalins potassiques mis en place entre 1.090 et 1.076 Ga dans la région, sans toutefois leur être directement associée. Bien que les différentes injections de la minette de Rivard puissent être reliées par le fractionnement de faibles quantités de clinopyroxène, de biotite et d'apatite, les textures des différentes familles de macrocristaux de la minette attestent d'une histoire plus complexe. Les mégacristaux de clinopyroxène peuvent montrer une texture poreuse, des zonations brusques, normales ou inverses, et des rapports 100Mg/(Mg+Fe) très variables (84 - 61) qui suggèrent le recyclage de phénocristaux ou le mélange de magmas à différents degrés de fractionnement. Les mégacristaux ont vraisemblablement cristallisé dans la croûte profonde ou à la limite croûte-manteau à partir de liquides comparables à la minette. D'autres indices de mélange ou d'infiltration sont fournis par des xénolites de pyroxénite montrant des phénocristaux de clinopyroxène et d'orthopyroxène résorbés dans une matrice comparable à la minette ou avec de la phlogopite interstitielle.

La minette de Rivard a échantillonné des types lithologiques très variés parmi lesquels on retrouve, par ordre décroissant d'abondance, différents types de gneiss, de gabbroïdes, de métabasites, de quartzites, de clinopyroxénites, de roches calco-silicatées, de granitoïdes, de webstérites, et de plus rares granulites mafiques, orthopyroxénites, wehrlites et dunites. Les textures, ignées ou métamorphiques, sont extrêmement variées. Alors que la majorité des fragments mafiques et felsiques trouvent des équivalents sur les affleurements de la région, la plupart des roches ultramafiques paraissent exotiques. Un xénolite webstéritique possède toutefois une signature géochimique très similaire à celle de la péridotite de Rolleau, qui affleure à proximité de la brèche, et est probablement cogénétique de cette intrusion en dépit d'un assemblage minéralogique très différent. Une autre webstérite montre certaines caractéristiques géochimiques communes avec les intrusions de la suite de Chevreuil, mise en place à 1.165 Ga. Ce lien de parenté demeure toutefois hypothétique et nécessite une étude plus poussée. Certaines lithologies présentes dans la région ne sont pas représentées dans la brèche, notamment les marbres et les intrusions potassiques de la suite de Kensington-Skootamatta, suggérant que ces roches n'étaient pas présentes sous la brèche ou que les fragments ont été désagrégés durant le transport dans le lamprophyre. Notons également la rareté des fragments anorthositiques.

Un certain nombre de xénolites de webstérites, de wehrlites, de dunites et d'abondantes clinopyroxénites, ont fait l'objet d'une étude plus détaillée. Plusieurs des xénolites à orthopyroxène présentent des textures de cumulat alors que les fragments à olivine et/ou clinopyroxène montrent plutôt des textures protogranulaire, porphyroclastique ou granoblastique qui attestent d'une déformation ou d'une recristallisation antérieure au transport dans la minette. Les textures et la composition des xénolites à olivine et spinelle suggèrent que ces roches pourraient résulter d'une interaction entre un magma et une phase

alumineuse. Les différents types de xénolites ultramafiques ont des signatures géochimiques propres indiquant qu'ils appartiennent à des suites distinctes les unes des autres, et distinctes de la minette. Plusieurs clinopyroxénites partagent toutefois de nombreuses caractéristiques communes suggérant que ces fragments sont apparentés bien qu'ils ne puissent être liés par la cristallisation fractionnée. Ces xénolites pourraient représenter des accumulations de clinopyroxène formées à partir de liquides à différents stades d'évolution. La modélisation de ces liquides indique qu'ils étaient enrichis en gros ions lithophiles et en terres rares légères avec des rapports (La/Yb)_N de 10 - 27, suggérant une affinité alcaline. Des données expérimentales et géobarométriques sur des xénolites de composition minéralogique comparable, permettent d'estimer à environ 55 - 60 km, la profondeur d'origine de certaines clinopyroxénites à spinelle. Cette profondeur correspond approximativement à la limite croûte-manteau (à 1.07 Ga), déduite de la profondeur de mise en place de la minette (17 km) et de la profondeur actuelle du Moho (42 km), telle que relevée sur le récent profil sismique LITHOPROBE. Ces données, couplées à des résultats géothermobarométriques préliminaires (Tellier et al. 1995) et une étude isotopique sur des xénolites mafiques et ultramafiques de la brèche de Rivard (Amelin et al. 1994; Corriveau et al. 1994, 1996), suggèrent que la brèche ne possède pas de potentiel diamantifère.

Plusieurs xénolites ultramafiques contiennent des minéraux secondaires comme la phlogopite, l'amphibole ou la calcite qui attestent d'un métasomatisme de nature et d'intensité variables. Les remplacements partiels des pyroxènes et de l'olivine progressent généralement le long des joints de grains ou de veinules et ont précédé le transport des xénolites dans la minette. Le remplacement partiel de l'olivine et du clinopyroxène par la phlogopite s'accompagne par un ajout de H₂O, K, Al, Si, Ti, P, Ba, Rb, Nb, Cs, F (Th, terres rares légères), possiblement par un liquide silicaté. Le métasomatisme pourrait se manifester pour d'autres clinopyroxénites par la cristallisation d'un diopside très pauvre en éléments mineurs et traces, compatibles et incompatibles. L'amphibolitisation partielle de certains xénolites ne s'accompagne que de variations chimiques mineures. Par contre, la carbonatisation intense que l'on observe dans une clinopyroxénite se traduit par une modification importante de sa composition comme le montrent les rapports La/Yb très faible et Zr/Hf très élevé.

La minette de Rivard a ainsi transporté des macrocristaux et des fragments de roches ultramafiques qui sont les témoins d'intrusions mises en place sous la Ceinture métasédimentaire du Grenville avant l'emplacement de la minette à 1.07 Ga. L'abondance et la diversité des xénolites utramafiques suggèrent que la croûte profonde et la limite croûtemanteau sous la Ceinture métasédimentaire sont recoupés par des suites intrusives diverses incluant une proportion significative de roches ultramafiques. Alors que la variété des compositions minéralogiques et chimiques indique la présence de plusieurs suites ignées distinctes, la diversité des textures de déformation et de recristallisation pourrait suggérer que ces suites ont des âges différents. La cristallisation fractionnée, le mélange de magmas, les interactions avec l'encaissant, la ségrégation de liquides résiduels, et le métasomatisme des roches en place peuvent être expliqués simplement par des intrusions successives de magmas dans une même région. Des intrusions abondantes et diverses dans la croûte profonde et à la limite croûte-manteau sont compatibles avec un modèle de sous-plaquage magmatique (Nelson 1991; Kay et Mahlburg Kay 1993; Platt et England 1993; Davis 1997). Ce sous-plaquage pourrait être associé à un ou plusieurs épisodes de délamination de la lithosphère profonde, délamination consécutive à l'épaississement lithosphérique qui a marqué le paroxisme de l'orogénie grenvillienne vers 1.19 Ga (Corrigan et Hanmer 1996; McLelland et al. 1996; Corriveau et Rivard 1997).

QUESTIONS EN SUSPENS

Le présent travail de recherche a permis d'éclairer plusieurs des questions soulevées par la brèche intrusive de Rivard. Les résultats quant à eux, suscitent de nouvelles interrogations et maintes questions demeurent sans réponses. Nous énumérons ici un certain nombre de questions et de problèmes, généraux ou spécifiques, qui pourraient orienter des travaux de recherche futurs sur la minette de Rivard et ses xénolites.

Déformation à la bordure des xénolites. Au chapitre 2, la déformation localisée à la zone de contact entre deux xénolites (fig. 2.3c, d) a été interprétée comme le résultat de chocs associés à l'écoulement turbulent du magma. Toutefois, cette interprétation est discutable pour les raisons suivantes. 1) Les indices d'une déformation localisée au contact entre deux xénolites (et attribuée à une collision violente) sont également observés dans les accumulations denses de xénolites, incluant un xénolite bréchique. Ces structures suggèrent que la déformation résulterait plutôt d'une compaction importe à hautes températures. 2) Le fait que les xénolites présumés être entré en collision soient toujours en contact paraît incompatible avec un écoulement turbulent (qui aurait du les séparer). 3) Le nombre de Reynolds est faible et considérablement sous la valeur de la transition laminaire-turbulent (\approx 1000). La vitesse d'ascension devrait être \approx 60 fois supérieure (3000 cm/s), ou la viscosité \approx 50 fois inférieure (1.5 Pa·s), pour que le nombre de Reynolds atteigne la limite laminaire-turbulent. Ces valeurs paraissent irréalistes. Toutefois, comme il a été mentionné au chapitre 2, l'équation utilisée pour calculer le nombre de Reynolds peut ne pas être

applicable à des liquides non-newtoniens. 4) Des turbulences locales et passagères peuvent très bien survenir dans un écoulement généralement laminaire.

Bréchification des épontes. La formation des microbrèches aux épontes du dyke de minette a été abordée brièvement au chapitre 2. Une étude plus détaillée de ces structures fourniraient des informations pertinentes sur les processus de contamination des magmas mafiques (e.g. Philpotts et Asher 1993).

Géothermobarométrie. Des xénolites de granulite mafique dont l'assemblage incluait les deux pyroxènes et le grenat ont fait l'objet de travaux préliminaires de géothermobarométrie (Tellier et al. 1995; tableau 1.4). Les pressions et les températures déterminées peuvent varier de façon considérable à l'intérieur d'un même xénolite, en fonction des couples baromètre-thermomètre utilisés et surtout des groupes d'analyses considérés. Ces variations sont vraisemblablement liées en grande partie aux textures de déséquilibre présentes dans les xénolites de granulite mafique, et dont il faudra tenir compte lors d'études géothermobaro-métriques plus approfondies.

Minette de Girard. Un lien entre la minette de Rivard et la minette de Girard est suggéré par 1) l'attitude et la localisation de ce dernier, situé dans le prolongement de la brèche de Rivard, à 8 km plus au sud, 2) une composition minéralogique et des textures similaires, et 3) la présence de xénolites (gneiss, gabbros) et de xénocristaux de clinopyroxène. Pourtant, ces deux minettes ont des compositions chimiques distinctes (section 1.7.1; fig. 1.7a; tableau 3.2; appendice Iq) qu'il serait intéressant de chercher à expliquer plus en détail.

Péridotite de Rolleau. Un fait notable est la similarité du patron d'éléments traces d'un xénolite de webstérite (D12-4) avec celui du stock de Rolleau (section 1.7.2; fig. 1.6w; appendice Iq). En plus d'indiquer que des roches apparentées à la péridotite étaient présentes en profondeur sous la brèche, cette similitude montre que des signatures géochimiques comparables peuvent accompagner des assemblages minéralogiques très différentes. Soulignons que les textures de déséquilibres sont omniprésentes dans la péridotite. Il serait intéressant de chercher à préciser quels sont les facteurs qui contrôlent les différences minéralogiques entre ces deux roches.

Autres intrusions riches en K. Des phlogopitites (certaines exploitées pour le mica) sont présentes dans les cantons de Suzor, de Letondal et de Chasseur (M. Gauthier, comm.

pers. 1992). Quelles sont les caractéristiques minéralogiques et géochimiques de ces roches rares? Ont-elles un lien avec la suite de Kensington-Skootamatta?

Magmas ultrapotassiques. Une question vaste et complexe est celle de l'origine des roches ultrapotassiques, leur lien potentiel avec les couches métasomatisées du manteau, et les évènements qui ont favorisé ce métasomatisme et la fusion du manteau (McKenzie 1989; Foley 1992b; Carmichael et al. 1996). De façon plus spécifique, on pourra se pencher sur les événements tectoniques (subduction, épaississement crustal, délamination, etc.) du Grenville qui sont à l'origine des roches ultrapotassiques qui affleurent dans la Ceinture métasédimentaire et celles qui ont été échantillonnées par la minette de Rivard. Ces questions pourraient être étudiées à la lumière des modèles de McKenzie (1989) et Foley (1992b) sur la formation de couches métasomatisées dans le manteau. Ces niveaux sont interprétés comme une conséquence du refroidissement de petites fractions liquides riches en K circulant dans le manteau. Ces zones enrichies en K et autres éléments incompatibles peuvent entrer en fusion, préférentiellement aux péridotites encaissantes à la suite de légère perturbations thermiques ou barométriques (point chaud, décompression, délamination).

Analyses chimiques. Plusieurs xénolites ultramafiques et mafiques, pour lesquels des analyses géochimiques sont disponibles, n'ont pas été étudiés en détail dans la présente thèse. Certains d'entre eux pourraient être cogénétiques et appartenir à une même suite (fig. 1.7) ou montrer une signature géochimique similaire à celles de roches affleurant dans la région. On pourra aussi s'attarder sur deux xénolites composites, l'un (A3-14; fig. 1.7d) constitué d'un métagabbro recoupé par un petit dyke de clinopyroxénite, et l'autre (A2-29; fig. 1.7g), montrant le contact entre une clinopyroxénite et un gabbro, cogénétiques. La clinopyroxénite de A2-29 est particulière par ses teneurs très élevées en terres rares moyennes et lourdes (Sm = 20 ppm), Yb (13.5 ppm) Y (123 ppm) et Sc (99 ppm) qui pourraient indiquer l'assimilation de grenat, ou un type particulier de métasomatisme (?).

Intrusions mafiques. Bien que cette question ait été abordée au chapitre 4, il apparaît important de vérifier plus à fond si les nombreux xénolites mafiques à intermédiaires présents dans la brèche ont des équivalents sur les affleurements de la région. Par exemple, une importante suite intrusive, la suite de Chevreuil datée à 1.165 Ga (Corriveau et al. 1996a; Corriveau et Rivard 1997) et composée principalement de gabbros et de monzonites, affleure dans la région de Mont-Laurier, alors qu'une suite anorthositique légèrement plus jeune affleure dans le terrane de Morin. Signalons également le pluton de Lapeyrère, une intrusion de gabbronorite datée à 1070 \pm 3 Ma (le même âge que la minette de Rivard) et qui

affleure beaucoup plus à l'est, dans la région de Portneuf-St-Maurice (Nadeau et Brouillette 1997). Il reste également à évaluer la possibilité que certains xénolites de métabasites représentent des fragments des niveaux mafiques présents dans l'encaissant de la brèche.

Sous-plaquage magmatique. Davis (1997) a récemment proposé qu'un sous-plaquage magmatique important pouvait accompagner certains réseaux de dykes (MacKenzie, Malley-McKay) associés à des plumes mantelliques. Ce sous-plaquage pourrait s'étendre latéralement le long de la limite coûte-manteau, jusqu'à des distances importantes (> 700 km) du centre présumé de la plume mantellique. Moser et Heaman (1997) ont quant à eux suggéré que des magmas associés au rift huronien se sont mis en place à la limite croûte-manteau et sont responsables du métamorphisme de xénolites de la croûte inférieure. Il pourrait ainsi être intéressant de considérer les suites magmatiques représentées par les xénolites mafiques ou ultramafiques de la brèche de Rivard à la lumière de ces modèles.

LITHOPROBE. Le récent sondage sismique qui a traversé le Grenville dans l'ouest du Québec est passé à 15 km seulement au nord de la brèche de Rivard. Le profil sismique (Martignole et Calvert 1996) apporte donc des renseignements pertinents sur la structure de la croûte sous la brèche, et pourra permettre d'établir un lien entre certains réflecteurs et les suites magmatiques représentés par les xénolites mafiques et ultramafiques de la brèche. Certains réflecteurs représentent possiblement des intrusions profondes associées à des suites magmatiques comme la suite de Chevreuil (Corriveau et al. en préparation).

Clinopyroxénites. Un certain nombre de caractéristiques géochimiques des CXN8 demeurent inexpliquées. Par exemple, la faible variation des contenus en Sr comparativement à d'autres éléments incompatibles, la variation importante des teneurs en Zr et Hf, et les concentrations plus élevées en Th dans les CXN8 les plus riches en éléments compatibles. D'autre part, il a été proposé (chapitre 4) que la composition chimique particulière des CX-IVa (mg = 90-92, et faibles teneurs en éléments traces compatibles et incompatibles) pouvaient être le résultat d'une dilution des éléments traces de la roche lors du remplacement partiel par un fluide ou un liquide favorisant la cristallisation de diopside. Il serait intéressant d'investiguer plus à fond ce type de processus en prenant pour point de départ les remplacements partiels observés aux joints de grains dans certaines CX (B3-25). Il faut également souligner la ressemblance du patron d'éléments traces de fragments de roche calco-silicatée (fig. 1.7q) avec celui de certaines CXN8 qui pourrait suggérer un lien entre ces roches.

Inclusions fluides. Certaines CXN8 sont riches en fines inclusions solides (carbonate notamment) et fluides (monophasées ou polyphasées) qui forment des traînées ou apparaissent de façon isolée. L'étude de ces inclusions pourraient contribuer à une meilleure compréhension de l'histoire magmatique ou métasomatique de ces roches. D'autre part, un mégacristal de clinopyroxène contient des inclusions automorphes d'apatite, et l'une d'elle contient une inclusion ovoïde polycristalline (feldspath K, plagioclase, biotite, hastingsite, sulfures) dont les textures et la composition rappellent la minette (fig. 3.2d). Cette inclusion pourrait peut-être représenter le liquide (cristallisé) à partir duquel se sont formés le clinopyroxène et l'apatite. Son étude plus détaillée pourrait aider à préciser l'origine des mégacristaux et leur lien avec la minette qui les a transporté. Ce mégacristal et ses inclusions pourraient de plus contribuer à une meilleure compréhension des conditions particulières à l'origine de la formation des grands cristaux dans les magmas alcalins. Toutefois, il est possible que les minéraux de cette inclusion aient été altérés ou rééquilibrés lors de la résorption du clinopyroxène hôte qui présente une texture poreuse.

Remplacements. La question des différents types de remplacements affectant les xénolites ultramafiques a été abordée en partie aux chapitres 3 et 4. Toutefois, la diversité des assemblages secondaires et la grande complexité des textures demandent une recherche plus poussée pour déterminer de façon plus précise, l'origine et la signification du métasomatisme dans ces xénolites. Par ailleurs, il a été proposé que les inclusions de spinelle extrêmement fines et abondantes, dans l'olivine d'un xénolite de dunite (chapitre 4), marquent possiblement une réaction entre un magma et une phase alumineuse. Cette hypothèse, faite par Jean Bédard, mérite d'être étudiée plus en détail.

Isotopes stables. Une étude sur les isotopes du carbone et de l'oxygène des carbonates associés aux minéraux secondaires comme l'amphibole et plus rarement la phlogopite présents dans de nombreux xénolites de clinopyroxénite pourraient apporter des renseignements importants sur l'origine des fluides responsables du métasomatisme.

Diagrammes de terres rares. Pour caractériser et différencier les xénolites, les diagrammes multi-élémentaires ont été utilisés tout au long de la thèse. Ces diagrammes ont été préférés aux diagrammes de terres rares parce qu'ils incluent plusieurs autres éléments traces pouvant apporter des informations pertinentes sur l'origine et l'histoire des roches. Les patrons de terres rares (annexe I) n'ont pas été considérés en détail mais pourraient contribuer à lever certaines interrogations à propos de ces roches complexes.
BIBLIOGRAPHIE

- Allan, J.F., Dick, J.B. 1996. Cr-rich spinel as a tracer for melt migration and melt-wall rock interaction in the mantle: Hess Deep, Leg 147. Dans Proceedings of the Ocean Drilling Program, Scientific Results, vol. 147: 157-170, édité par C. Mével, K.M. Gillis, J.F. Allan, P.S. Meyer.
- Amelin, Y. 1994. Report of investigations on the Pb-Sr-Nd isotopic and U-Pb geochronological study of pyroxenite and granulite xenoliths from a lamprophyre dyke in the SW Grenville Province, Québec. Rapport non publié présenté à la Commission géologique du Canada.
- Amelin, Y., Corriveau, L., Morin, D. 1994. Constraints on the evolution of Grenvillian lithosphere from Nd-Sm-Pb clinopyroxene and garnet and U-Pb zircon study of pyroxenite and mafic granulitic xenoliths. United States Geological Survey Circular 1107: 68.
- Andrews, J.R., Emeleus, C.H. 1975. Structural aspects of kimberlite dyke and sheet intrusion in south-west Greenland. Physics and Chemistry of the Earth, 9: 43-50.
- Andrews, O.E.G. 1996. Apatite in the Kensington and Sainte-Véronique plutons, near Mont-Laurier, Québec: An indicator of magmatic and hydrothermal processes. Mémoire de maîtrise, Université McGill, Montréal, Canada.
- Aoki, K. 1987. Japanese island arc: xenoliths in alkali basalts, high-alumina basalts, and calc-alkaline andesites and dacites. *Dans* Mantle Xenoliths, *édité par* P. H. Nixon. J. Wiley and Sons, pp 319-334.
- Aoki, K., Kushiro, I. 1968. Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contributions to Mineralogy and Petrology, 18: 326-337.
- Aoki, K., Shiba, I. 1973. Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6: 41-51.
- Arai, S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships. Reviews and interpretation. Chemical Geology, 113: 191-204.
- Arima, M., Edgar, A.D. 1983. High pressure experimental studies on a katungite and their bearing on the genesis of some potassium-rich magmas of the west branch of the African rift. Journal of Petrology, 24: 166-187.
- Arnaud, N.O., Vidal, P., Tapponnier, P., Matte, P., Deng, W.M. 1992. The high K₂O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth and Planetary Science Letters, 111: 351-367.
- Atkinson, B.K. 1987. Introduction to fracture mechanics and its geophysical applications. *Dans* Fracture Mechanics of Rock, *édité par* B.K. Atkinson. Academic Press, London, pp 1-26.
- Atkinson, B.K., Meredith, P.G. 1987. Experimental fracture mechanics data for rocks and minerals. *Dans* Fracture Mechanics of Rock, *édité par* B.K. Atkinson. Academic Press, London, pp 477-525.
- Aurisicchio, C., Federico, M., Gianfagna, A. 1988. Clinopyroxene chemistry of the high-potassium suite from the Alban Hills, Italy. Mineralogy and Petrology, 39: 1-19.
- Bachinski, S.W., Scott, R.B. 1979. Rare earth and other trace element contents and the origin of minettes (mica lamprophyre). Geochimica et Cosmochimica Acta, 43: 93-100.
- Bachinski, S.W., Simpson, E.L. 1984. Ti-phlogopites of the Shaw's Cove minette: a comparison with micas of other lamprophyres, potassic rocks, kimberlites, and mantle xenoliths. American Mineralogist, 69: 41-56.

Bailey, D.K. 1982. Mantle metasomatism-continuing chemical change within the earth. Nature, 296: 525-530.

- Bailey, D.K. 1985. Fluids, melts, flowage and styles of eruption in alkaline ultramafic magmatism. Transcriptions of the Geological Society of South Africa, 88: 449-457.
- Baker, D.R., Vaillancourt, J. 1995. The low viscosities of F + H₂O-bearing granitic melts and implications for extraction and transport. Earth and Planetary Science Letters, 132: 199-211.
- Baker, M.B., Wyllie, P.J. 1992. High-pressure apatite solubility in carbonate-rich liquids: Implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 56: 3409-3422.
- Ballhaus, C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156: 185-193.
- Ballhaus, C., Berry, R.F., Green, D.H. 1991. High pressure experimental calibration of the olivineorthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107: 27-40.
- Barton, M., Hamilton, D.L. 1979. The melting relationships of a Madupite from the Leucite Hills, Wyoming, to 30 kb. Contributions to Mineralogy and Petrology, 69: 133-142.
- Barton, M., Hamilton, D.L. 1982. Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineralogical Magazine, 45: 267-278.
- Barton, M., van Bergen, M.J. 1981. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contributions to Mineralogy and Petrology, 77: 101-114.
- Bea, R. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology, 37: 521-552.
- Bédard, J.H. 1988. Comparative amphibole chemistry of the Monteregian and White Mountains alkaline suites, and the origin of amphibole megacrysts in alkali basalts and lamprophyres. Mineralogical Magazine, 51: 97-103.
- Bédard, J.H. 1991. Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. Journal of Geology, 99: 225-249.
- Bédard, J.H. 1994a. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chemical Geology, 118: 143-153.
- Bédard, J.H. 1994b. Mesozoic east North American alkaline magmatism: Part I. Evolution of Monteregian lamprophyres, Québec, Canada. Geochimica et Cosmochimica Acta, 58: 95-112.
- Bédard, J.H., Hébert, R. 1996. The lower crust of Bay of Islands ophiolite, Canada: petrology, mineralogy and importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. Journal of Geophysical Research, 101: 25105-25124.
- Bédard, J.H., Hébert, R. 1997. Intra-crustal chromitites, North Arm Mountain Massif, Bay or Islands ophiolite: Formation by incongruent dissolution of feldspar and pyroxene into intrusions of peridotite. soumis au Journal of Geophysical Research.
- Bédard, J.H., Williamson, M.-C. 1998. Parental magmas of the Nain plutonic anorthosites and troctolites: a geochemical modelling approach. Soumis à Earth and Planetary Science Letters.

- Bédard, J.H., Francis, D.M., Ludden, J. 1988. Petrology and pyroxene chemistry of Monteregian dykes: the origin of concentric zoning and green cores in clinopyroxenes from alkali basalts and lamprophyres. Canadian Journal of Earth Sciences, 25: 2041-2058.
- Bédard, L.P. 1993. Injections multiples de magmas dans un conduit nourricier: implications sur le remplissage des plutons et l'extraction de magmas. Revue Canadienne des Sciences de la Terre, 30: 124-131.
- Bence, A.E., Albee, A.L. 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76: 382-403.
- Binns, R.A., Duggan, M.B., Wilkinson, J.F.G. 1970. High pressure megacrysts in alkaline lavas from northeastern New South Wales. American Journal of Science, 269: 132-168.
- Boggs, K. 1996. Retrograde cation exchange in garnets during slow cooling of mid crustal granulites and the P-T-t trajectories from the Mont-Laurier region, Grenville Province, Québec. Mémoire de maîtrise, Université du Québec à Chicoutimi, Chicoutimi, Québec.
- Boggs, K., van Breemen, O., Corriveau, L. Sawyer, E.W. 1994. New insights on metamorphism in the Central Metasedimentary Belt of Québec, Grenville Province. Mineralogical Magazine, 58A: 105-106.
- Bossé, J., Bourne, J.H. 1991. Geochemistry of ultramafic and calc-alkaline lamprophyres from the Lac Shortt area, Québec. Mineralogy and Petrology, 45: 85-103.
- Bottinga, Y., Weill, D.F. 1970. Densities of liquid silicate systems calculated from partial molar volumes of oxide components. American Journal of Science, 269: 169-182.
- Bottinga, Y., Weill, D.F. 1972. Viscosities of magmatic silicate liquids: An empirical method of prediction. American Journal of Science, 272: 870-893.
- Boudier, F., Nicolas, A. 1991. High temperature hydrothermal alteration of peridotite, Zagargad Island (Red Sea). Journal of Petrology, Special Lherzolite Issue: 243-253.
- Boudier, F., Nicolas, A. 1995. Nature of the Moho transition zone in the Oman ophiolite. Journal of Petrology, 36: 777-796.
- Brey, G.P. 1989. Geothermobarometry for lherzolites: experiments from 10 to 60 kb, new thermobarometers and application to natural rocks. Habilitations thesis, Technishche Hochschule Darmstadt.
- Brey, G.P. 1991. Programme de géothermobarométrie; disponible sur demande.
- Brey, G.P., Kohler, T., Nickel, K.G. 1990. Geothermobarometry in four-phase lherzolites; 1, experimental results from 10 to 60 kbar. Journal of Petrology, 31: 1313-1352.
- Brooks, C. K., Printzlau, I. 1978. Magma mixing in mafic alkaline volcanic rocks: the evidence from relict phenocryst phases and other inclusions. Journal of Volcanology and Geothermal Research, 4: 315-331.
- Brousse, R., Berger, E. 1965. Grands cristaux d'augite dans une brèche volcanique intrusive. Bulletin de la Société Française de Minéralogie et de Cristallographie, 88: 525-526.
- Bruce, P.M., Huppert, H.E. 1990. Solidification and melting along dykes by the laminar flow of basaltic magma. *Dans* Magma Transport and Storage, *édité par* M.P. Ryan. John Wiley and Sons, New York, pp 87-102.
- Bryant, D.G. 1968. Intrusive breccias associated with ore, Warren (Bisbee) mining district, Arizona. Economic Geology, 63: 1-12.

- Burnham, C.W. 1985. Energy release in subvolcanic environments: implications for breccia formation. Economic Geology, 80: 1515-1522.
- Campbell, I.H., Gorton, M.P. 1980. Accessory phases and the generation of LREE-enriched basalts A test for disequilibrium melting. Contributions to Mineralogy and Petrology, 72: 157-163.
- Cannat, M., Bideau, D., Hébert, R. 1990. Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth and Planetary Science Letters, 101: 216-232.
- Carmichael, I.S.E., Lange, R.A., Luhr, J.F. 1996. Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contributions to Mineralogy and Petrology, 124: 302-333.
- Carmichael, I.S.E., Nicholls, J., Spera, F.J., Wood, B.J., Nelson, S.A. 1977. High-temperature properties of silicate liquids: applications to the equilibration and ascent of basic magma. Philosophic Transaction Royal Society London, 286: 373-431.
- Chapman, N.A. 1975. An experimental study of spinel clinopyroxenite xenoliths from the Duncansby Ness Vent, Caithness, Scotland. Contributions to Mineralogy and Petrology, 51: 223-230.
- Chapman, N.A., Powell, R. 1976. Origin of anorthoclase megacrysts in alkali basalts. Contributions to Mineralogy and Petrology, 58: 29-35.
- Chen, C.H., Presnall, D.C., Stern, R.J. 1992. Petrogenesis of ultramafic xenoliths from the 1800 Kaupulehu flow, Hualalai volcano, Hawaii. Journal of Petrology, 33: 163-202.
- Clark, T.H., Kranck, E.H., Philpotts, A.R. 1967. Ile Ronde breccia, Montreal. Canadian Journal of Earth Sciences, 4: 507-513.
- Clemens, J.D. 1993. Experimental evidence against CO₂-promoted deep crustal melting. Nature, 363: 336-338.
- Clemens, J.D., Mawer, C.K. 1992. Granitic magma transport by fracture propagation. Tectonophysics, 204: 339-360.
- Clement, C.R. 1975. The emplacement of some diatreme-facies kimberlites. Physic and Chemistry of the Earth, 9: 51-59.
- Conrad, W.K., Kay, R.W. 1984. Ultramafic and mafic inclusions from Adak Island: Crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. Journal of Petrology, 25: 88-125.
- Conticelli, S., Peccerillo, A. 1990. Petrological significance of high-pressure ultramafic xenoliths from ultrapotassic rocks of Central Italy. Lithos, 24: 305-322.
- Corfu, F., Easton, M. 1997. Sharbot Lake terrane and its relationship to Frontenac terrane, Central Metasedimentary Belt, Grenville Province: new insights from U-Pb geochronology. Canadian Journal of Earth Sciences, 34: 1239-1257.
- Corrigan, D., Hanmer, S. 1997. Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere? Geology, 25: 61-64.
- Corriveau, L. 1989. Potassic alkaline plutonism in the Southwestern Grenville Province. Thèse de doctodat, Université McGill, Montréal.
- Corriveau, L. 1990. Proterozoic subduction and terrane amalgamation in the southwestern Grenville province, Canada: Evidence from ultrapotassic to shoshonitic plutonism. Geology, 15: 614-617.

- Corriveau, L., Jourdain, V. 1992. Terrane characterization in the Central Metasedimentary Belt of the southern Grenville Orogen, Lac Nominingue, Quebec. *Dans* Current Research, Part C, Geological Survey of Canada, Paper 92-1C: 81-90.
- Corriveau, L., Gorton, M. P. 1993. Coexisting K-rich alkaline and shoshonitic magmatism of arc affinities in the Proterozoic: a reassessement of syenitic stocks in the southwestern Grenville Province. Contributions to Mineralogy and Petrology, 113: 262-279.
- Corriveau, L., Amelin, Y. 1994. Sources of Proterozoic K-rich alkaline and shoshonitic magmatism in the SW Grenville Province, Québec: Nd-Sr-Pb isotopic study. United States Geological Survey Circular 1107: 68.
- Corriveau, L., Leblanc, D. 1995. Sequential nesting of magmas in marble, SW Grenville Province, Québec: from fracture propagation to diapirism. Tectonophysics, 246: 183-200.
- Corriveau, L., Rivard, B. 1997. De la source à la surface: l'extraction, le transport et la mise en place des magmas dans une perspective grenvillienne. Guide d'excursion B4, Association Géologique du Canada-Association Minéralogique du Canada.
- Corriveau, L., Morin, D., Madore, L. 1994a. Géologie et cibles d'exploration de la partie centre est de la Ceinture métasédimentaire du Québec, Province de Grenville. Geological Survey of Canada, Paper 94-C: 355-365.
- Corriveau, L., Amelin, Y., Gorton, M.P., Morin, D. 1994b. Geochemical constraints on Proterozoic Krich alkaline and shoshonitic magmas evolution in the SW Grenville Province. Geological Association of Canada-Mineralogical Association of Canada annual meeting, Waterloo, May 1994, Program with abstracts, 19: A23.
- Corriveau, L., van Breemen, O., Rivard, B. Crustal signature of pre-1.2 Ga convergence and subsequent intraplate reactivation in western Grenville, Quebec (en préparation).
- Corriveau, L., Heaman, L.M., Marcantonio, F., van Breemen, O. 1990. 1.1 Ga K-rich alkaline plutonism in the SW Grenville Province. Contributions to Mineralogy and Petrology, 105: 473-485.
- Corriveau, L., Tellier, M.L., Morin, D. 1996a. Le dyke de minette de Rivard et le complexe gneissique de Bondy; implications tectoniques et métallogéniques pour la région de Mont-Laurier, Province de Grenville, Québec. Commission géologique du Canada, Dossier public 3078.
- Corriveau, L., Morin, D., Tellier, M.L., Amelin, Y., van Breemen, O. 1996b. Le dyke de minette de Rivard et ses xénolites, témoins de la lithosphère sous-jacente à la Province de Grenville à 1.08 Ga et des mécanismes de mise en place des minettes. *Dans* Searching for Diamonds in Canada, édité par A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio, K.A. Richardson. Commission Géologique du Canada, Dossier public 3228: 141-144.
- Cousens, B.L., Allan, J.F., Gorton, M.P. 1994. Subduction-modified pelagic sediments as the enriched component in back-arc basalts from the Japan Sea: Ocean Drilling Program sites 797 and 794. Contributions to Mineralogy and Petrology, 117: 421-434.
- Cox, K.G., Bell, J.D., Pankhurst, R.J. 1979. The Interpretation of Igneous Rocks. Unwin Hyman, London.
- Cundari, A. 1982. Petrology of clinopyroxenite ejecta from Somma-Vesuvius and their genetic implications. Tschermaks Min. Petr. Mitt., 30: 17-35.
- Currie, K.L. 1996. The relation of diamond-bearing rocks to other alkaline rocks. *Dans* Searching for Diamonds in Canada, *édité par* A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio, K.A. Richardson. Commission Géologique du Canada, Dossier public 3228: 87-90.

- Currie, K.L., Ferguson, J. 1970. The mechanism of intrusion of lamprophyre dikes indicated by "offsetting" of dikes. Tectonophysics 9: 525-535.
- Dal Negro, A., Manoli, S., Secco, L., Piccirillo, E.M. 1989. Megacrystic clinopyroxenes from Victoria (Australia): crystal chemical comparisons of pyroxenes from high and low pressure regimes. European Journal of Mineralogy, 1: 105-121.
- Dautria, J.M., Dupuy, C., Takherist, D., Dostal, J. 1992. Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin. Contributions to Mineralogy and Petrology, 111: 37-52.
- Davidson, A. 1995. A review of the Grenville orogen in its North American type area. Journal of Australian Geology and Geophysics, 16: 3-24.
- Davis, J. 1986. Statistical and data analysis in geology, Elsevier, Amsterdam.
- Davis, W.J. 1997. U-Pb zircon and rutile ages from granulite xenoliths in the Slave province: Evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms. Geology, 25: 343-346.
- Dawson, J.B. 1987. The MARID suite of xenoliths in kimberlite: Relationship to veined and metasomatised peridotite xenoliths. *Dans* Mantle Xenoliths, *édité par* P.H. Nixon. J. Wiley & Sons, Chichester, pp 465-473.
- DeBari, S.M., Coleman, R.G. 1989. Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. Journal of Geophysical Research, 94: 4373-4391.
- DeBari, S., Mahlburg Kay, S., Kay, R.W. 1986. Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: Deformed igneous cumulates from the Moho of an island arc. Journal of Geology, 95: 329-341.
- Deer, W.R., Howie, R.A., Zussman, J. 1966. An Introduction to the Rock Forming Minerals. Longman, Harlow.
- Delaney, P.T., Gartner, A.E. 1997. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geological Society of America Bulletin, 109: 1177-1192.
- Delaney, P.T., Pollard, D.D. 1981. Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. United States Geological Survey Professional Paper 1202.
- Delaney, P.T., Pollard, D.D. 1982. Solidification of basaltic magma during flow in a dike. American Journal of Science, 282: 856-885.
- Delaney, P.T., Pollard, D.D., Ziony, J.I., McKee, E.H. 1986. Field relations between dikes and joints: emplacement processes and paleostress analysis. Journal of Geophysical Research, 91: 4920-4938.
- Devine, J.D., Sigurdsson, H. 1980. Garnet-gassaite calc-silicate nodule from La Soufrière, St.Vincent. American Mineralogist, 65: 302-305.
- Doig, R. 1991. U-Pb zircon dates of Morin anorthosite suite rocks, Grenville Province, Quebec. Journal of Geology, 99: 729-738.
- Draper, D.S., Green, T.H. 1997. P-T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions. Journal of Petrology, 38: 1187-1224.
- Drury, M. R., Urai, J. L. 1990. Deformation-related recrystallization processes. Tectonophysics, 172: 235-253.

- Duchesne, J.-C., Berza, T., Liégeois, J.-P., Vander Auwera, J. 1998. Shoshonitic liquid line of descent from diorite to granite: The late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Soumis à Lithos.
- Duda, A., Schmincke, H.-U. 1985. Polybaric differentiation of alkali basaltic magmas: evidence from greencore clinopyroxenes (Eifel, FRG). Contributions to Mineralogy and Petrology, 91: 340-353.
- Dudas, F.O., Grosch, C.E., Jensen, E.R., Weiner, B.L. 1994. Constraints on magma ascent velocities from xenoliths in volcanic pipes. Eos, 75: 353.
- Dupuy, C., Liotard, J.M., Dostal, J. 1992. Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56: 2417-2423.
- Easton, R.M. 1986. Geochronology of the Grenville Province. *Dans* The Grenville Province, *édité par* J.M. Moore, A. Davidson, A.J. Baer. Geological Association of Canada, Special Paper 31: 127-174.
- Easton, R.M. 1992. The Grenville Province and the Proterozoic history of central and southern Ontario. Dans Geology of Ontario, édité par P.C. Thurston, H.R. Williams, R.H. Sutcliffe, G.M. Scott. Ontario Geological Survey, Special Volume 4: 715-904.
- Edgar, A.D. 1987. The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. *Dans* Alkaline Igneous Rocks, *édité par* J.G. Fitton, B.G.J. Upton. Geological Society Special Publication 30: 29-52.
- Edgar, A.D., Arima, M. 1983. Conditions of phlogopite crystallization in ultrapotassic volcanic rocks. Mineralogical Magazine, 47: 11-19.
- Edgar, A.D., Arima, M. 1984. Experimental studies on K-metasomatism of a model pyrolite mantle and their bearing on the genesis of ultrapotassic magmas. Proceedings of the 27th International Geological Congress, 9: 509-541.
- Edgar, A.D., Vukadinovic, D. 1992. Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos, 28: 205-220.
- Edgar, A.D., Green, D.H., Hibberson, W.O. 1976. Experimental petrology of a highly potassic magma. Journal of Petrology, 17: 339-356.
- Edgar, A.D., Charbonneau, H.E., Mitchell, R.H. 1992. Phase relations of an armacolite-phlogopite lamproite from Smoky Butte, Montana: applications to lamproite genesis. Journal of Petrology, 33: 505-520.
- Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., Morris, J.D., Leeman, W.P., Harmon, R.S. 1994. The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser Complex, east Java, Indonesia. Journal of Petrology, 35: 1557-1595.
- Eggler, D.H. 1987. Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. *Dans* Mantle Metasomatism, *édité par* M.A. Menzies, C.J. Hawkesworth. Academic Press, London, pp 21-41.
- Eggler, D.H., Dudas, F.O., Hearn, B.C., McCallum, M.E., McGee, E.S., Meyer, H.O.A., Schulze, D.J. 1987a. Lithosphere of the continental United States: xenoliths in kimberlites and other alkaline magmas. *Dans* Mantle Xenoliths, *édité par* P. H. Nixon. John Wiley and Sons, Chichester, pp 41-58.
- Eggler, D.H., McCallum, M.E., Kirkley, M.B. 1987b. Kimberlite-transported nodules from Colorado-Wyoming; A record of enrichment of shallow portions of an infertile lithosphere. Dans Mantle Metasomatism and Alkaline Magmatism, édité par E.M. Morris, J.D. Pasteris. Geological Society of America, Special Paper 215: 77-90.

- Ehrenberg, S. N. 1979. Garnetiferous ultramafic inclusions in minette from the Navajo volcanic field. *Dans* Kimberlites, Diatrems and Diamonds, *édité par* R.R. Boyd, H.O.A. Meyer, pp 330-344.
- Ellis, D.J., Green, D.H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contibutions to Mineralogy and Petrology, 71: 13-22.

Emerman, S.H., Marrett, R. 1990. Why dikes ? Geology, 18: 231-233.

- Emerman, S.H., Turcotte, D.L., Spence, D.A. 1986. Transport of magma and hydrothermal solutions by laminar and turbulent fluid fracture. Earth and Planetary Science Letters, 41: 249-259.
- Emslie, R.F., Hunt, P.A. 1990. Ages and petrogenetic significance of igneous mangerite-charnockite suites associated with massif anorthosites, Grenville Province. Journal of Geology, 98: 213-231.
- Erlank, A.J., Waters, F.G., Hawkesworth, C.J., Haggerty, S. E., Allsopp, H.L., Rickard, R.S., Menzies, M.A. 1987. Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. *Dans* Mantle Metasomatism, *édité par* M.A. Menzies, C.J. Hawkesworth. Academic Press, London, pp 221-312.
- Ertan, I.E., Leeman, W.P. 1996. Metasomatism of Cascades subarc mantle: Evidence from a rare phlogopite orthopyroxenite xenolith. Geology, 24: 451-454.
- Esperança, S., Holloway, J.R. 1986. The origin of the high-K latites from Camp Creek, Arizona: constraints from experiments with varible fO_2 and a_{H2O} . Contributions to Mineralogy and Petrology, 93: 504-512.
- Esperança, S., Holloway, J.R. 1987. On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contributions to Mineralogy and Petrology, 95: 207-216.
- Fabriès, J., Lorand, J.-P., Bodinier, J.-L., Dupuy, C. 1991. Evolution of the upper mantle beneath the Pyrenees: evidence from orogenic spinel lherzolite massifs. Journal of Petrology, Special Lherzolites Issue: 55-76.
- Federico, M., Peccerillo, A., Barbieri, M., Wu, T.W. 1994. Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology, 115: 384-401.
- Ferreira, V.P., Sial, A.N., Whitney, J.A. 1994. Large-scale silicate liquid immiscibility: a possible example from northeastern Brazil. Lithos, 33: 285-303.
- Foland, K.A., Gilbert, L.A., Sebring, C.A., Jiang-Feng, C. 1986. ⁴⁰Ar/³⁹Ar ages for plutons of the Monteregian Hills, Québec: Evidence for a single episode of Cretaceous magmatism. Geological Society of America Bulletin, 97: 966-974.
- Foley, S. 1992a. Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos, 28: 187-204.
- Foley, S.F. 1992b. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435-453.
- Foley, S.F., Wheller, G.E. 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates. Chemical Geology, 85: 1-18.
- Foley, S.F., Venturelli, G., Green, D.H., Toscani, L. 1987. The Ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Science Review, 24: 81-134.
- Fowler, M.B., Henney, P.J. 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology, 126: 199-215.

- Francis, D.M. 1976a. The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. Journal of Petrology, 17: 357-379.
- Francis, D.M. 1976b. Amphibole pyroxenite xenoliths: cumulate or replacement phenomena from the upper mantle, Nunivak Island, Alaska. Contributions to Mineralogy and Petrology, 58: 51-61.
- Francis, D.M. 1987. Mantle-melt interaction recorded in spinel lherzolite xenoliths from the Alligator Lake volcanic complex, Yukon, Canada. Journal of Petrology, 28: 569-597.
- Francalanci, L. 1989. Trace element partition coefficients for minerals in shoshonitic and calc-alkaline rocks from Stromboli Island (Aeolian Arc). Neues Jahrbuch Miner. Abh., 160: 229-247.
- Francalanci, L., Peccerillo, A., Poli, G. 1987. Partition coefficients for minerals in potassium-alkaline rocks: data from Roman Province (Central Italy). Geochemical Journal of the Geochemical Society of Japan, 21: 1-10.
- Franz, L., Brey, G.P., Okrusch, M. 1996. Reequilibration of ultramafic xenoliths from Namibia by metasomatic processes at the mantle Boundary. Journal of Geology, 104: 599-615.
- Frey, F.A., Green, D.H. 1974. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta, 38: 1023-1059.
- Frey, F.A., Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38: 129-176.
- Friedman, R., Martignole, J. 1995. Mesoproterozoic sedimentation, magmatism and metamorphism in the southern part of the Grenville Province (western Quebec): U-pb geochronological constraints. Canadian Journal of Earth Sciences, 32: 2103-2114.
- Fryer, B.J., Greenough, J.D., Owen, J.V. 1997. Iapetus ocean floor stuffed into a suture zone: xenolith Nd isotopic evidence for Dunnage - equivalent basement in central Newfoundland. Canadian Journal of Earth Sciences, 34: 1392-1400.
- Fujimaki, H. 1986. Partition coefficient of Hf, Zr and REE between zircon, apatite and liquid. Contributions to Mineralogy and Petrology, 94: 42-45.
- Furlong, K.P., Myers, J.D. 1985. Thermal-mechanical modeling of the role of thermal stresses and stoping in magma contamination. Journal of Volcanology and Geothermal Research, 24: 179-191.
- Gaetani, G.A., Grove, T.L. 1995. Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochimica et Cosmochimica Acta, 59: 1951-1962.
- Gast, P.W. 1968. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32: 1057-1086.
- Gauthier, M. 1982. Métallogénie du zinc dans la région de Maniwaki-Gracefield, Québec. Ministère de l'Énergie et des Ressources du Québec, MM 82-03, 107 p.
- Geist, D.J., Baker, B.H., McBirney, A.R. 1985. GPP-A program package for creating and using geochemical data files. Center for Volcanology, University of Oregon, Eugene, Oregon, USA.
- Gianetti, B., Luhr, J.F. 1990. Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth and Planetary Science Letters, 101: 404-424.
- Gibson, S.A., Thompson, R.N., Leat, P.T., Morrison, M.A., Hendry, G.L., Dickin, A.P., Mitchell, J.G. 1993. Ultrapotassic magmas along the flanks of the Oligo-Miocene Rio Grande Rift, USA: Monitors of

the zone of lithospheric mantle extension and thinning beneath a continental rift. Journal of Petrology, 34: 187-228.

Gill, 1981. Orogenic Andesites and Plate Tectonics. Springler-Verlag, Berlin.

- Gold, D.P. 1972. Les collines montérégiennes: diatrèmes, kimberlites, lamprophyres et brèches intrusives à l'ouest de Montréal. 24e congrès géologique international, Ottawa, livret-guide d'excursion B10.
- Gold, D.P., Bell, K., Eby, G.N., Vallée, M. 1986. Carbonatites, diatremes and ultra-alkaline rocks in the Oka, Québec. Geological Association of Canada, annual meeting, Ottawa, field trip guidebook 21.
- Graziani, G., Lucchesi, S. 1982. The thermal behavior of scapolites. American Mineralogist, 67: 1229-1241.
- Green, D.H., Ringwood, A.E. 1967a. The genesis of basaltic magma. Contributions to Mineralogy and Petrology, 15: 103-190.
- Green, D.H., Ringwood, A.E. 1967b. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31: 767-833.
- Green, D.H., Hibberson, W.O. 1970. Experimental duplication of conditions of precipitation of high pressure phenocrysts in a basaltic magma. Physics of the Earth and Planetary Interior, 3: 247-254.
- Green, L.G. 1994. Mechanism for middle to upper crustal contamination: evidence from continentalmargins magmas. Geology, 22: 231-234.
- Green, T.H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 10 years later. Chemical Geology, 117: 1-36.
- Green, T.H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120: 347-359.
- Green, T.H., Watson, E.B. 1982. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to "orogenic" rock series. Contributions to Mineralogy and Petrology, 79: 96-105.
- Green, T.H., Pearson, N.J. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chemical Geology, 54: 185-201.
- Greenough, J.D. 1988. Minor phases in the Earth's mantle: evidence from trace- and minor-element patterns in primitive alkaline magmas. Chemical Geology, 69: 177-192.
- Griffin, W.L., O'Reilly, S.Y. 1987. The composition of the lower crust and the nature of the continental Moho xenolith evidence. *Dans* Mantle Xenoliths, *édité par* P.H.J. Nixon. Wiley & Sons, pp 413-430.
- Griffin, W.L., Wass, S.Y., Hollis, J.D. 1984. Ultramafic xenoliths from Bullenverri and Gnotuk maars, Victoria, Australia: petrology of a sub-continental crust-mantle transition. Journal of Petrology, 25: 53-87.
- Gruau, G., Lecuyer, C, Bernard-Griffiths, J., Morin, N. 1991. Origin and petrogenesis of the Trinity ophiolite complex (California): new constraints from REE and Nd isotope data. Journal of Petrology, Special Lherzolites Issue: 229-242.
- Gupta, A.K., Yagi, K. 1980. Petrology and Genesis of the Leucite-Bearing Rocks. Springer-Verlag, Berlin.
- Hack, P.J., Nielsen, R.L., Johnston, A.D. 1994. Experimentally determined rare-earth element and Y partitioning behavior between clinopyroxene and basaltic liquids at pressures up to 20 kbar. Chemical Geology, 117: 89-105.

- Haggart, M.J., Jamieson, R.A., Reynolds, P.H., Krogh, T.E., Beaumont, C., Culshaw, N.G. 1993. Last gasp of the Grenville orogeny: thermochronology of the Grenville front tectonic zone near Killarney, Ontario. Journal of Geology, 101: 575-589.
- Haggerty, S.E. 1991. Oxide mineralogy of the upper mantle. *Dans* Oxide Minerals, *édité par* D.H. Lindsley. Mineralogical Society of America, 25: 355-407.
- Hammarstrom, J.M., Zen, E.-A. 1986. Aluminium in hornblende: an empirical igneous geobarometer. American Mineralogist, 71: 1297-1313.
- Hampton, M.A. 1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Petrology, 42:775-793.
- Hanes, J.A., Corriveau, L., McBridge, S.L. 1994. Late-stage cooling history of the Central Metasedimentary Belt of Québec in the southwestern Grenville Province from ⁴⁰Ar/³⁹Ar dating of 1083-1076 Ma K-rich alkaline plutons. Geological Association of Canada, Program with Abstracts: 19: A46.
- Hanmer, S. 1988. Ductile thrusting at mid-crustal level, southwestern Grenville Province. Canadian Journal of Earth Sciences, 25: 1049-1059.
- Hanmer, S., McEarchern, S.J. 1992. Kenematical and rheological evolution of a crust-scale ductile thrust zone, Central Metasedimentary Belt, Grenville orogen, Ontario. Canadian Journal of Earth Sciences, 29: 179-200.
- Hansteen, T.H., Andersen, T., Neumann, E.-R., Jelsma, H. 1991. Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: Implications for mantle metasomatism. Contributions to Mineralogy and Petrology, 107; 242-254.
- Harley, S.L. 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contibutions to Mineralogy and Petrology, 86: 359-373.
- Harnois, L., Mineau, R., Morency, M. 1990. Rare earth element geochemistry of alnoitic Cretaceous rocks and ultramafic xenoliths from Ile Bizard (Québec, Canada). Chemical Geology, 53: 135-145.
- Harnois, L., Moore, J.M. 1991. Geochemistry of two metavolcanic arc suites from the Central Metasedimentary Belt of the Grenville Province, southeastern Ontario, Canada. Canadian Journal of Earth Sciences, 28: 1429-1443.
- Harris, P.G., Middlemost, E.A.K. 1969. The evolution of kimberlites. Lithos, 3: 77-88.
- Harrison, T.M., Watson, E.B. 1984. The behavior of apatite during crustal anatexis: equilibrium and kinematic considerations. Geochemica et Cosmochimica Acta, 48: 1467-1477.
- Hart, S.R., Dunn, T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contibutions to Mineralogy and Petrology, 29: 163-179.
- Harte, B. 1983. Mantle peridotites and processes the kimberlite sample. *Dans* Continental Basalts and Mantle Xenoliths, *édité par* C.J. Hawkesworty, M.J. Norry. Shiva Geology Series, pp 46-91.
- Harte, B. 1987. Metasomatic events recorded in mantle xenoliths: an overview. *Dans* Mantle Xenoliths, édité par P.H. Nixon, P.H. John Wiley and Sons, New York, pp 625-640.
- Harte, B., Gurney, J.J. 1981. The mode of formation of chromium-poor megacryst suites from kimberlites. Journal of Geology, 89: 749-753.
- Hawkesworth, C.J., Rogers, N.W., van Calsteren, P.W.C., Menzies, M.A. 1984. Mantle enrichment processes. Nature, 311: 331-335.

- Heaman, L.M., Lumbers, S.B., Vertolli, V. 1988. The timing of carbonatite emplacement within the Central Metasedimentary Belt, Ontario. Friends of Grenville meeting, Gananoque (résumé).
- Hirose, K., Kushiro, I. 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114: 477-489.
- Hodgson, C.J. 1968. Monteregian dike rocks. Ph.D. thesis, McGill University, Montréal, Canada.
- Hoffman, P.F. 1989. Speculations on Laurentia's first gigayear (2.0-1.0 Ga). Geology, 17: 135-138.
- Hogart, D.D. 1981. Partie ouest de la région de Quinnville. Ministère de l'Énergie et des Ressources du Québec, DPV-816.
- Hogart, D.D. 1997. Carbonatites, fenites and associated phenomena near Ottawa. Association géologique du Canada-Association minéralogique du Canada, livret-guide A4.
- Hogart, D.D., Lapointe, P. 1984. Amphibole and pyroxene development in fenite from Cantly, Quebec. Canadian Mineralogist, 22: 281-295.
- Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Sisson, V.B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72: 231-239.
- Holm, P.E., Smith, T.E., Huang, C.H., Gerasimoff, M., Grant, B., McLaughlin, L. 1986. Geochemistry of metavolcanic rocks and dykes from the Central Metasedimentary Belt, Grenville Province, southeastern Ontario. *Dans* The Grenville Province, *édité par* J.M. Moore, A. Davidson, A.J. Baer. Geological Association of Canada, Special Paper 31: 255-269.
- Horn, I., Foley, S.F., Jackson, S.E., Jenner, G.A. 1994. Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chemical Geology, 117: 193-218.
- Hunter, R.H., Taylor, L.A. 1984. Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County, Pennsylvania. American Mineralogist, 69: 16-29.
- Huppert, H.E., Sparks, S.J. 1985. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth and Planetary Science Letters, 74: 371-386.
- Indares, A., Martignole, J. 1984. Evolution of P-T conditions during a high-grademetamorphic event in the Maniwaki area (Grenville Province). Canadian Journal of Earth Sciences, 21: 853-863.
- Indares, A., Martignole, J. 1990. Metamorphic constraints on the tectonic evolution of the allochtonous monocyclic belt of the Grenville Province, western Quebec. Canadian Journal of Earth Sciences, 27: 371-386.
- Indares, A., Martignole, J. 1991. Evolution of P-T conditions during a high-grade metamorphic event in the Maniwaki area (Grenville Province). Canadian Journal of Earth Sciences, 21: 853-863.
- Ionov, D.A., Hofmann, A.W. 1995. Nb-Ta-rich mantle amphibole and micas: implications for subductionrelated metasomatic trace element fractionations. Earth and Planetary Science Letters, 131: 341-356.
- Irvine, T.N. 1980. Magmatic density currents and cumulus processes. American Journal of Science, 280: 1-58.
- Irving, A.J. 1974a. Megacrysts from the Newer basalts and other basaltic rocks of Southeastern Australia. Geological Society of America Bulletin, 85: 1503-1514.

- Irving, A.J. 1974b. Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. Journal of Petrology, 15: 1-40.
- Irving, A.J. 1980. Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. American Journal of Science, 280A: 389-426.
- Irving, A.J., Frey, F.A. 1984. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta, 48: 1201-1221.
- Jébrak, M. 1992. Les textures intrafiloniennes, marqueurs des conditions hydrauliques et tectoniques. Chronique de la Recherche Minière 506: 25-35
- Jébrak., M. 1995. Les brèches hydrothermales: géométries, physique et métallogénie. Notes de cours intensif C2, 8e congrès de l'Association des géologues et géophysiciens du Québec, Laval, Canada.
- Johnson. A.M., Pollard, D.D. 1973. Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. Tectonophysics 18: 261-309.
- Jones, A.P., Smith, J.V. 1983. Petrological significance of mineral chemistry in the Agathla Peak and the Thumb minettes, Navajo volcanic field. Journal of Geology, 91: 643-656.
- Kay, R.W., Mahlburg Kay, S. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177-189.
- Kelemen, P.B., Dick, H.J.B., Quick, J.E. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358: 635-641.
- Kempton, P.D., Menzies, M.A., Dungan, M.A. 1984. Petrography, petrology and geochemistry of xenoliths and megacrysts from the Geronimo volcanic field, southeastern Arizona. *Dans* Kimberlites II: The Mantle and Crust-Mantle Relationships, *édité par J.* Kornprobst, Elsevier, pp 71-83.
- Kesson, S.E., Ringwood, A.E. 1989. Slab-mantle interactions 1. Sheared and refertilised garnet peridotite xenoliths- samples of Wadati-Benioff zones? Chemical Geology, 78: 83-96.
- Kirby, S.H., Kronenberg, A.K. 1984. Deformation of clinopyroxenite: evidence for a transition in flow mechanisms and semibrittle behavior. Journal of Geophysical Research, 89: 3177-3192.
- Kjarsgaard, B.A. 1994. Potassic magmatism in the Milk River area, southern Alberta: petrology and economic potential. *Dans* Current Research 1994-B. Geological Survey of Canada, pp 59-68.
- Kjarsgaard, B.A., Davis, W.J. 1996. Sweet Grass minettes, Alberta. *Dans* Searching for Diamonds in Canada, *édité par* A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio, K.A. Richardson. Commission Géologique du Canada, Dossier public 3228: 141-144.
- Komar, P.D. 1972. Flow differentiation in igneous dikes and sills: profiles of velocity and phenocryst concentration. Geological Society of America Bulletin, 83:3443-3448.
- Kostopoulos, D.K. 1991. Melting of the shallow upper mantle: a new perspective. Journal of Petrology, 32: 671-699.
- Kretz, R. 1980. Occurrence, mineral chemistry, and metamorphism of Precambrian carbonate rocks in the portion of the Grenville Province. Journal of Petrology, 21: 573-620.
- Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277-279.
- Krogh, E.J. 1988. The garnet-clinopyroxene Fe-Mg geothermometer reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 99: 44-48.

- Kutolin, V.A., Frolova, V.M. 1970. Petrology of ultrabasic inclusions from basalts of Minusa and Transbaikalian regions (Siberia, U.S.S.R.). Contibutions to Mineralogy and Petrology, 29: 163-179.
- Lacroix, A. 1893. Les Enclaves des Roches Volcaniques. Protat Frères, Macon.
- Laflèche, M., Dupuy, C., Dostal, J. 1991. Archean orogenic ultrapotassic magmatism: an example from the southern Abitibi greenstone belt. Precambrian Research, 52: 71-96.
- Lane, D.L., Ganguly, J. 1980. Al₂O₃ solubility in orthopyroxene in the system MgO-Al₂O₃-SiO₂: A reevaluation and mantle geotherm. Journal of Geophysical Research, 85: 6963-6972.
- Lange, R.A., Carmichael, I.S.E., Renne, P.R. 1993. Potassic volcanism near Mono basin, California: evidence for high water and oxygen fugacities inherited from subduction. Geology, 21: 949-952.
- Lapointe, S. 1995. Étude métallogénique de gîtes d'uranium, de thorium, de molybdène et de terres rares de types magmatique et métasomatique d'âge protérozoïque dans le sud de la Province de Grenville, région de Maniwaki-Grand-Remous, Québec. Mémoire de maîtrise, Université du Québec à Montréal, Montréal.
- Laughlin, A.W., Aldrich, M.J., Shafiqullah, M., Husler, J. 1986. Tectonic implications of the age, composition and orientation of lamprophyre dikes, Navajo volcanic field, Arizona. Earth and Planetary Science Letters, 76: 361-374.

Leake, B.E. 1978. Nomenclature of amphiboles. Canadian Mineralogist, 16: 501-520.

- LeBas, M.J. 1962. The role of aluminium in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260: 267-288.
- LeBas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750.
- LeCheminant, A.N., Gorton, M.P. 1984. Early Proterozoic shoshonitic lamprophyres from central District of Keewatin; distribution and petrogenesis. Geological Association of Canada-Mineralogical Association of Canada annual meeting, Waterloo, Program with abstracts, 9: 83.
- LeCheminant, A.N., Miller, A.R., LeCheminant, G.M. 1987. Early Proterozoic alkaline igneous rocks, District of Keewatin, Canada: petrogenesis and mineralization. *Dans* Geochemistry and Mineralization of Proterozoic Volcanic Suites, *édité par* T.C. Pharaoh, R.D. Bechinsale, D. Richard. Geological Society Special Publication 33: 219-240.
- Lemarchand, F., Villemant, B., Calas, G. 1987. Trace element distribution coefficients in alkaline series. Geochimica et Cosmochimica Acta, 51: 1071-1081.
- Liang, Y., Elthon, D. 1990. Geochemistry and petrology of spinel lherzolite xenoliths from Xalapasco de la Joya, San Luis Potosi, Mexico: Partial melting and mantle metasomatism. Journal of Geophysical Research, 95: 15859-15877.

Lindsley, D.H. 1983. Pyroxene thermometry. American Mineralogist, 68: 477-493.

- Lister, J.R., Kerr, R.C. 1991. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. Journal of Geophysical Research, 96B6: 10049-10077.
- Lloyd, F.E. 1981. Upper-mantle metasomatism beneath a continental rift: clinopyroxenes in alkali mafic lavas and nodules from South West Uganda. Mineralogical Magazine, 44: 315-323.
- Lloyd, F.E., Bailey, D.K. 1975. Light element metasomatism of the continental mantle: the evidence and the consequences. Physics and Chemistry of the Earth, 9: 389-416.

- Lloyd, F.E, Arima, M., Edgar, A.D. 1985. Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contributions to Mineralogy and Petrology, 91: 321-329.
- Lloyd, F.E, Edgar, A.D., Forsyth, D.M., Barnett, R.L. 1991. The paragenesis of upper-mantle xenoliths from the Quaternary volcanics south-east of Gees, West Eifel, Germany. Mineralogical Magazine, 55: 95-112.
- Lorenz, V. 1985. Maars and diatremes of phreatomagmatic origin: a review. Transcription of the Geological Society of South Africa, 88: 459-479.
- Luhr, J.F., Carmichael, I.S.E. 1981. The Colima volcanic complex, Mexico: Part II. Late-Quaternary cinder cones. Contributions to Mineralogy and Petrology, 76: 127-147.
- Luhr, J.F., Carmichael, I.S.E., Nelson, S.A., Hasenaka, T. 1989. Primitive calc-alkaline rock types from the western Mexican volcanic belt. Journal of Geophysical Research, 94: 4515-4530.
- Maaløe, S. 1987. The generation and shape of feeder dykes from mantle sources. Contributions to Mineralogy and Petrology, 96: 47-55.
- MacDonald, R., Upton, B.G.J., Colerson, K.D., Hearn, B.C., James, D. 1992. Potassic mafic lavas of the Bearpaw Mountains, Montana: mineralogy, chemistry and origin. Journal of Petrology, 33: 305-346.
- MacGregor, I.D. 1974. The system MgO-Al₂O₃-SiO₂: solubility of Al₂O₃ in enstatite for spinel and garnet peridotite compositions. American Mineralogist, 59: 110-119.
- MacRae, N.D., Armitage, A.E., Jones, A.L., Miller, A.R. 1995. A diamondiferous lamprophyre dike, Gibson Lake area, Northwest Territories. International Geology Review, 37: 212-229.
- MacRae, N.D., Armitage, A.E., Miller, A.R., Roddick, J.C., Jones, A.L., Mudry, M.P. 1996. The diamondiferous Akluilâk lamprophyre dyke, Gibson Lake area, N.W.T. Dans Searching for Diamonds in Canada, édité par A.N. LeCheminant, D.G. Richardson, R.N.W. DiLabio, K.A. Richardson. Commission Géologique du Canada, Dossier public 3228: 101-108.
- Mahlburg Kay, S., Snedden, W.T., Foster, B.P., Kay, R.W. 1983. Upper mantle and crustal fragments in the Ithaca kimberlites. Journal of Geology, 91: 277-290.
- Malpas, J., Foley, S.F., King, A.F. 1986. Alkaline mafic and ultramafic lamprophyres from the Aillik Bay area, Labrador. Canadian Journal of Earth Sciences, 23: 1902-1018.
- Manning, C.E., Bird, D.K. 1986. Hydrothermal clinopyroxenes of Skeargaard intrusion. Contributions to Mineralogy and Petrology, 92: 437-447.
- Marchand, M. 1970. Ultramafic nodules from Ile Bizard, Québec. Mémoire de maîtrise, Université McGill, Montréal, Canada.
- Marsh, B.D. 1981. On the crystallinity, probability of occurrence and rheology of lava and magma. Contribution to Mineralogy and Petrology, 78: 85-98.
- Marsh, B.D. 1982. On the mechanics of igneous diapirism, stoping and zone melting. American Journal of Science, 282: 808-855.
- Martignole, J., Corriveau, L. 1991. Lithotectonic studies in the Central Metasedimentary Belt of the southern Grenville Province: lithology and structure of the Saint-Jovite map area, Québec. Geological Survey of Canada Paper 91-1C: 77-87.
- Martignole, J., Calvert, A.J. 1996. Crustal-scale shortening and extension across the Grenville Province of western Québec. Tectonophysics, 15: 376-386.

- Maurel, C., Maurel, P. 1982. Étude expérimentale de la distribution de l'aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: teneur en chrome des spinelles. Bulletin de Minéralogie, 105: 197-202.
- Maury, R.C., Defant, M.J., Joron, J.-L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 360: 661-663.
- McBirney, A.R. 1959. Factors governing emplacement of volcanic necks. American Journal of Science, 257:431-448.
- McDonald, R., Upton, B.G.J., Colerson, K.D., Hearn, B.C., James, D. 1992. Potassic mafic lavas of the Bearpaw Mountains, Montana: chemistry and origin. Journal of Petrology, 33: 305-346.

McDonough, W.F., Sun, S.-S. 1995. The composition of the Earth. Chemical Geology, 120: 223-252.

- McEachern, S.J., van Breemen, O. 1993. Age of deformation within the Central Metasedimentary Belt boundary zone, southwest Grenville orogen: constraints on the collision of the Mid-Proterozoic Elzevir terrane. Canadian Journal of Earth Sciences, 30: 1155-1165.
- McGetchin, T.R., Silver, L.T. 1972. A crustal-upper-mantle model for the Colorado Plateau based on observations of crystalline rock fragments in the Moses Rock Dike. Journal of Geophysical Research, 27: 7022-7037.
- McGuire, A.G. 1988. Petrology of mantle xenoliths from Harrat al Kishb: The mantle beneath western Saudi Arabia. Journal of Petrology, 29: 73-92.
- McKenzie, D. 1985. The extraction of magma from the crust and mantle. Earth and Planetary Science Letters, 74: 81-91.
- McKenzie, D.P. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95: 53-72.
- McLelland, J., Chiarenrelli, J., Whitney, P., Isachsen Y. 1988. U-Pb zircon geochronology of the Adirondack Mountains and implications for their geologic evolution. Geology, 16: 920-924.
- McLelland, J., Daly, J.S., McLelland, J.M. 1996. The Grenville orogenic cycle (ca. 1350-1000 Ma): an Adirondack perspective. Tectonophysics, 265: 1-28.
- McPherson, E., Thirlwall, M.F., Parkinson, I.J., Menzies, M.A., Bodinier, J.L., Woodland, A., Bussod, G. 1996. Geochemistry of metasomatism adjacent to amphibole-bearing veins in the Lherz peridotite massif. Chemical Geology, 134: 135-157.
- Menzies, M.A. 1983. Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. *Dans* Continental Basalts and Mantle Xenoliths, *édité par* C.J. Hawkesworty, M.J. Norry. Shiva Geology Series, pp 46-91.
- Menzies, M.A. 1987. Alkaline rocks and their inclusions: a window on the earth's interior. *Dans* Alkaline Igneous Rocks, *édité par* J.G. Fitton, B.G.J. Upton. Geological Society Special Publication 30: 15-27.
- Mercier, J.-C., Nicolas, A. 1975. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16: 454-487.
- Milkereit, B., Forsyth, D.A., Green, A.G., Davidson, A., Hanmer, S., Hutchison, D.R., Hinze, W.J., Mereu, R.F. 1992. Seismic images of a Grenville terrane boundary. Geology, 20: 1027-1030.

Mitchell, R.H. 1986. Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York.

- Mitchell, R.H. 1987. Mantle-derived xenoliths in Canada. *Dans* Mantle Xenoliths, *édité par* P.H.J. Nixon. Wiley and Sons, Chichester, pp 33-40.
- Mitchell, R.H. 1992. Kimberlites and lamproites: primary sources of diamond. Geoscience Canada, 18:1-16.
- Mitchell, R.H., Berman, S.C. 1991. Petrology of Lamproites. Plenum Press, New York.
- Modreski, P.J., Boettcher, A.L. 1973. Phase relationships of phlogopite in the system K₂O-MgO-CaO-Al₂O₃-SiO₂-H₂O to 35 kilobars: a better model for micas in the interior of the earth. American Journal of Science, 273: 385-414.
- Mooney, W.D., Meissner, R. 1992. Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. *Dans* Continental Lower Crust, *édité par* D.M. Fountain, R. Arculus, R.W. Kay. Elsevier, Amsterdam, pp 45-79.
- Morimoto, N. 1989. Nomenclature of pyroxenes. Canadian Mineralogist, 27: 143-156.
- Morin, D., Corriveau, L. 1995. Xenolith formation and transport in a 1.08 Ga minette intrusion breccia: sampling of the Grenvillian lithosphere. International Conference on Tectonics and Metallogeny of Early/Mid Precambrian orogenic Belt. Precambrian 1995, Program with Abstracts, p. 299.
- Morin, D., Corriveau, L. 1996. Fragmentation processes and xenolith transport in a Proterozoic minette dyke, Grenville Province, Québec. Contributions to Mineralogy and Petrology, 125: 319-331.
- Morin, D., Marquis, R., Jébrak, M. 1996. Un diatrème phréatomagmatique montérégien dans les Appalaches du Québec. Revue Canadienne des Sciences de la Terre, 33: 649-655.
- Morin, D., Corriveau, L., Hébert, R. 1998. Magmatic suites underplating the southern Grenville Province: Ultramafic xenoliths of the 1.07 Ga Rivard dyke. Geological Association of Canada-Mineralogical Association of Canada annual meeting, Québec, May 1998, Abstracts, 23: A127.
- Morin, D., Jébrak, M., Beaufort, D., Meunier, A. 1993a. Metamorphic evolution of the late Archaean Cadillac tectonic zone, McWatters, Abitibi belt, Quebec. Journal of Metamorphic Geology, 11: 121-135.
- Morin, D., Jébrak, M., Bardoux, M., Goulet, N. 1993b. Pontiac metavolcanic rocks within the Cadillac tectonic zone, McWatters, Abitibi belt, Quebec. Canadian Journal of Earth Sciences, 30: 1521-1531.
- Morin, D., Corriveau, L., van Breemen, O., Tellier, M. L. 1994. A 1070 Ma ultrapotassic breccia dyke in the Central Metasedimentary Belt of Québec. Geological Association of Canada-Mineralogical Association of Canada annual meeting, Waterloo, May 1994, Program with abstracts, 19: A79.
- Morris, G.A., Hooper, P.R. 1997. Petrogenesis of the Colville igneous complex, northeast Washington: Implications for Eocene tectonics in the northern U.S. Cordillera. Geology, 25: 831-834.
- Moser, D.E., Heaman, L.M. 1997. Proterozoic zircon growth in Archean lower crustal xenoliths, southern Superior craton - a consequence of Matachewan ocean opening. Contributions to Mineralogy and Petrology, 128: 164-175.
- Moukadiri, A., Kornprobst, J. 1984. Garnet and/or spinel bearing pyroxenites in alkali basalts near Azrou (Middle Atlas, Morocco): mantle erived Alumina-rich xenoliths related to the "Ariegite-Grospydite" trend. *Dans* Kimberlites II: The Mantle and Crust-Mantle Relationships, *édité par J.* Kornprobst. Developments in Petrology, IIB, Elsevier, Amsterdam, pp 179-189.
- Müller, D., Rock, N.M.S., Groves, D.I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineralogy and Petrology, 46: 259-289.

- Mungall, J.E. 1989. Geochemistry of carbonatite and alkali pyroxenite, Bancroft terrane, Grenville Province, Ontario. Mémoire de maîtrise, Université McGill, Montréal, Canada.
- Murase, T., McBirney, A.R. 1973. Properties of some common igneous rocks and their melts at high temperatures. Geological Society of America Bulletin, 84: 3563-3592.
- Mysen, B.O., Virgo, D., Seifert, F.A. 1984. Redox equilibria of iron in alkaline earth silicate melts: relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids. American Mineralogist, 69: 834-847.
- Nadeau, L., Brouillette, P. 1997. Field relationships and petrology of Lapeyrère gabbronorite, south-central Grenville Province, Quebec. Geological Survey of Canada, Current Research 1997-E: 61-71.
- Nadeau, L., van Breemen, O. 1994. Do the 1.45-1.39 Ga Montauban Group and the La Bostonnais complex constitute a Grenvillian accreted terrane ? Geological Association of Canada-Mineralogical Association of Canada annual meeting, Waterloo, May 1994, Program with abstracts, 19: A81.
- Nelson, D.R. 1992. Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos, 28: 403-420.
- Nelson, K.D. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophysical Journal of Interior, 105: 25-35.
- Neumann, E.-R. 1991. Ultramafic and mafic xenoliths from Hierro, Canary Islands: Evidence for melt infiltration in the upper mantle. Contributions to Mineralogy and Petrology, 106: 236-252.
- Nicholls, L.A., Witford, D.J. 1983. Potassium-rich volcanic rocks of the Muriah complex, Java, Indonesia: products of multiple magma sources? Journal of Volcanology and Geothermal Research, 18: 337-359.
- Nickel, K.G., Green, D.H. 1985. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73: 158-170.
- Nimis, P. 1995. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology, 121: 115-125.
- Nimis, P., Vannucci, R. 1995. An ion microprobe study of clinopyroxenes in websteritic and megacrystic xenoliths from Hyblean Plateau (SE Sicily, Italy): constraints on HFSE/REE/Sr fractionation at mantle depth. Chemical Geology, 124: 185-197.
- Nixon, G.T. 1988. Petrology of the younger andesites and dacites of Iztaccihuatl volcano, Mexico: I. Disequilibrium phenocryst assemblages as indicators of magma chamber processes. Journal of Petrology, 29: 213-264.
- Nixon, P.H. 1987a. The American plates. *Dans* Mantle Xenoliths, *édité par* P.H. Nixon. John Wiley and Sons, Chichester, pp 13-22.
- Nixon, P.H. 1987b. Kimberlitic xenoliths and their cratonic setting. *Dans* Mantle Xenoliths, *édité par* P.H. Nixon. John Wiley and Sons, Chichester, pp 215-239.
- O'Brien, H.E. 1991. Eocene potassic magmatism in the Highwood Mountains, Montana: petrology, geochemistry and tectonic implications. Journal of Geophysical research, 96B8: 13237-13260.
- O'Brien, H.E., Irving, A.J., McCallum, I.S. 1988. Complex zoning and resorption of phenocrysts in mixed potassic mafic magmas of the Highwood Mountains, Montana. American Mineralogist, 73: 1007-1024.
- O'Hara, M.J., Yoder, H.S. 1967. Formation and fractionation of basic magmas at high pressures. Scottish Journal of Geology, 3: 67-117.

- Ohnenstetter, D., Brown, W. 1991. Overgrowth textures, disequilibrium zoning and cooling history of a glassy four-pyroxene boninite dyke from New Caladonia. Journal of Petrology, 33: 231-271.
- Olafsson, M., Eggler, D.H. 1983. Phase relations of amphibole, amphibole-carbonate, and phlogopitecarbonate peridotite: Petrogenetic constraints on the asthenosphere. Earth and Planetary Science Letters, 64: 305-315.
- O'Neil, H.S.C., Wall, V.J. 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth's upper mantle. Journal of Petrology, 28: 1169-1191.
- Owen, J.V., Greenough, J.D., Fryer, B.J. 1991. The nature of sialic basement to the Dunnage zone, northern Newfoundland: evidence from crustal xenoliths. Canadian Journal of Earth Sciences, 28: 1073-1077.
- Parker, A.J., Rickwood, P.C., Tucker., D.H. 1990. Mafic dykes and emplacement mechanisms. Proceedings of the second International dyke conference, Adelaide, South Australia 23: 421-430.
- Pearce, J.A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental Basalts and Mantle Genesis, *édité par* C.J. Hawkesworth, M.J. Norry, pp 230-249.
- Peccerillo, A. 1985. Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology, 13: 103-106.
- Peccerillo, A., Taylor, S.R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81.
- Peck, L., Barton, C.C., Gordon, R.B. 1985. Microstructure and resistance of rock to tensile fracture. Journal of Geophysical Research, 90: 11533-11546.
- Pe-Piper, G. 1984. Zoned pyroxenes from shoshonite lavas of Lesbos, Greece: inference concerning shoshonite petrogenesis. Journal of Petrology, 25: 453-572.
- Pe-Piper, G., Jansa, L.F. 1987. Geochemistry of late middle Jurassic-early Cretaceous igneous rocks of the eastern North America margin. Geological Society of America Bulletin, 99: 803-813.
- Peterson, J.W., Newton, R.C. 1990. Experimental biotite-quartz melting in the KMASH-CO₂ system and the role CO₂ in the petrogenesis of granites and related rocks. American Mineralogist, 75: 1029-1042.
- Peterson, T.D., LeCheminant, A.N. 1993. Glimmerite xenoliths in early Proterozoic ultrapotassic rocks from the Churchill Province. Canadian Mineralogist, 31: 801-819.
- Peterson, T.D., Esperança, S., LeCheminant, A.N. 1994. Geochemistry and origin of the Proterozoic ultrapotassic rocks of the Churchill Province, Canada. Mineralogy and Petrology, 51: 251-276.
- Philpotts, A.R. 1974. The Monteregian Province. *Dans* The Alkaline Rocks, *édité par* H. Sørensen. J. Wiley & Sons, London, pp 293-310.
- Philpotts, A.R., Asher, P.M. 1993. Wallrock melting and reaction effects along the Higganum diabase dike in Connecticut: contamination of a continental flood basalt feeder. Journal of Petrology, 35: 1029-1058.
- Platt, J.P., England, P.C. 1993. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. American Journal of Science, 293: 307-336.
- Platten, M. 1982. A late Caledonian breccia dyke swarm in Glen Creran, near Glen Coe in the Grampian Highlands. Geological Magazine, 119:169-180.

- Platten, I.M., Watterson, J. 1987. Magma flow and crystallization in dyke fissures. Dans Mafic Dyke Swarms, édité par H.C. Halls, W.F. Fahrig. Geological Association of Canada Special Paper, 34: 65-73.
- Pognante, U. 1992. Shoshonitic and ultrapotassic post-collisional dykes from northern Karakorum (Sinkiang, China). Lithos, 26: 305-316.
- Pollard, D.D. 1987. Elementary fracture mechanics applied to the structural interpretation of dykes. *Dans* Mafic Dyke Swarms, *édité par* H.C. Halls, W.F. Fahrig. Geological Association of Canada Special Paper, 34: 5-24.
- Pouchou, J.L., Pichoir, F. 1985. "PAP" O(pz) procedure for improved quantitative microanalysis. Microbeam Analysis, 20: 104-106.
- Powell, R. 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3: 231-243.
- Pringle, G.J. 1989. A fortran computer program to produce corrected microprobe analyses. Geological Survey of Canada, Open File 2127.
- Quick, J.E. 1981. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contributions to Mineralogy and Petrology, 78: 413-422.
- Quick, J.E., Gregory, R.T. 1995. Significance of melt-wall rock reaction: A comparative anatomy of three ophiolites. Journal of Geology, 103: 187-198.
- Raeside, R.P., Helmstaedt, H. 1982. The Ile Bizard intrusion, Montréal, Québec kimberlite or lamprophyre? Canadian Journal of Earth Sciences, 19: 1996-2011.
- Rasskazov, S.V., Bogdanov, G.V., Medvedeva, T.I. 1989. Xenoliths of skarn-like clinopyroxenites from basalts of the Tunka depression in the Baikal rift zone. Geologiya i Geofizika, 30: 54-61.
- Righter, K., Carmichael, I.S.E. 1996. Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contributions to Mineralogy and Petrology, 123: 1-21.
- Rivers, T., Martignole, J., Gower, C.F., Davidson, A. 1989. New tectonic divisions of the Grenville Province, southeast Canadian Shield. Tectonics, 8: 63-84.
- Rock, N.M.S. 1977. The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth Science Review, 13: 123-169.
- Rock, N.M.S. 1984. Nature and origin of calc-alkaline lamprophyres: minettes, vogesites, kersantites and spessartites. Transactions of the Royal Society of Edinburgh: Earth Sciences, 74: 193-227.
- Rock, N.M.S. 1991. Lamprophyres. Blackie and Sons, Glasgow.
- Roden, M.F. 1981. Origin of coexisting minette and ultramafic breccia, Navajo volcanic field. Contributions to Mineralogy and Petrology, 77: 195-206.
- Roeder, P.L., Reynolds, I. 1991. Crystallization of chromite and chromium solubility in basaltic melts. Journal of Petrology, 32: 909-934.
- Rogers, N.W., Bachinski, S.W., Henderson, P., Parry, S.J. 1982. Origin of potash-rich basic lamprophyres: trace element data from Arizona minettes. Earth and Planetary Science Letters, 57: 305-312.

- Rogers, N.W., De Mulder, M., Hawkesworth, C. J. 1992. An enriched mantle source for potassic basanites: evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contributions to Mineralogy and Petrology, 111: 543-556.
- Roscoe, R. 1952. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3: 267-269.
- Rouer, O., Lapierre, H., Coulon, C., Michard, A. 1989. New petrological and geochemical data on mid-Paleozoic island-arc volcanics of northern Sierra Nevada, California: evidence for a continent-based island arc. Canadian Journal of Earth Sciences, 26: 2465-2478.
- Rubin, A.M. 1993. Tensile fracture of rock at high confining pressure: implications for dike propagation. Journal of Geophysical Research, 98: 15919-15935.
- Rudnick, R.L. 1992. Xenoliths Samples of the lower continental crust. *Dans* Continental Lower Crust, *édité par* D.M. Fountain, R. Arculus, R.W. Kay. Elsevier, Amsterdam, pp 269-316.
- Rudnick, R.L., McLennan, S.M., Taylor, S.R. 1985. Large ion lithophile elements in rocks from highpressure granulite facies terrains. Geochimica et Cosmochimica Acta, 49: 1645-1655.
- Rudnick, R.L., McDonough, W.F., Chappell, B.W. 1993. Carbonatite metasomatism in the northern Tanzanian mantle: petragraphic and geochemical characteristics. Earth and Planetary Science Letters, 114: 463-475.
- Ruiz, J. 1992. Xenoliths in Proterozoic crust: evidence for reworking of the lower crust. Dans Proterozoic Crustal Evolution, édité par K.C. Condie. Developments in Precambrian Geology, 10: 361-382.
- Ryerson, F.J., Watson, E.B. 1987. Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86: 225-239.
- Sack, R.O., Ghiorso, M.S. 1991. Chromian spinel as petrogenetic indicators: Thermodynamics and petrological applications. American Mineralogist, 76: 827-847.
- Sahama, T.G. 1974. Potassic-rich rocks. *Dans* The alkaline rocks, *édité par* H. Sorensen. John Wiley, New York, pp 96-109.
- Saxena, S.K., Eriksson, G. 1983. Theoretical computation of mineral assemblages in pyrolite and lherzolite. Journal of Petrology, 24: 538-555.
- Scarfe, C.M., Mysen, B.O., Virgo, M., Virgo, D. 1987. Pressure dependance of the viscosity of silicate melts. *Dans* Magmatic Processes: Physicochemical Principles, *édité par* B.O. Mysen. Geochemical Society Special Publication, 1: 59-67.
- Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R.C., Jochum, K.P., Hofmann, A.W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377: 595-600.
- Schmidt, M.W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304-310.
- Schultze, D.J. 1987. Megacrysts from alkalic volcanic rocks. *Dans* Mantle Xenoliths, *édité par* P. H. Nixon. J. Wiley and Sons, pp 433-451.
- Scott, B.H. 1979. Petrogenesis of kimberlites and associated potassic lamprophyres from central West Greenland. Dans Kimberlites, Diatremes and Diamonds: their Geology, Petrology and Geochemistry, édité par F.R. Boyd, H.O.A. Meyer. American Geophysical Union, pp 190-205.

- Sen, G. 1988. Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post-eruptive lithosphere beneath Oahu. Contributions to Mineralogy and Petrology, 100: 61-91.
- Sen, G., Jones, R.E. 1988. Exsolved silicate and oxide phases from clinopyroxene in a single Hawaiian xenolith: implications for oxidation state of the Hawaiian upper mantle. Geology, 16: 69-72.
- Sharma, K.N.M., Hocq, M., Lévesque, J., Rive, M. 1993. Excursion des amis du Grenville au Québec: Observations structurales et importance économique. Région de Grand-Remous-Maniwaki-Danford Lake. Ministère des Ressources Naturelles, Québec, MB 93-50.
- Sharma, K.N.M., Giguère, E., Cimon, J., Madore, L. 1995. Les roches ultramafiques dans le Grenville de l'Outaouais: contexte tectonique et potentiel minéral. Ministère des Ressources naturelles, Québec, PRO 95-08.
- Shaw, D.M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta: 34: 243-247.
- Shaw, H.R. 1969. Rheology of basalt in the melting range. Journal of Petrology, 10: 510-535.
- Shaw, H.R. 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. American Journal of Science, 272: 870-893.
- Shaw, H.R., Wright, T.L., Peck, D.L., Okamura, R. 1968. The viscosity of basaltic magma: an analysis of field measurements in Makaopuhi lava lake, Hawaii. American Journal of Science, 266:225-264.
- Shaw, R.K., Arima, M. 1996. High-temperature metamorphic imprint on calc-silicate granulites of Rayagada, Eastern Ghats, India: implications for the isobaric cooling path. Contributions to Mineralogy and Petrology, 126: 169-180.
- Sillitoe, R.H. 1985. Ore-related breccias in volcanoplutonic arcs. Economic Geology, 80: 1467-1514.
- Simkin, T., Smith, J.V. 1970. Minor-element distribution in olivine. Journal of Geology, 78: 304-325.
- Skulski, T., Minarik, W., Watson, E.B. 1994. High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chemical Geology, 117: 127-147.
- Smith, T.E., Holm, P.E. 1990. The petrogenesis of mafic minor intrusions and volcanics of the Central Metasedimentary Belt, Grenville Province, Canada: MORB and OIB sources. Precambrian Research, 48: 361-373.
- Smith, T.E., Holm, P.E., Dennison, N.M., Harris, M.J. 1997. Crustal assimilation in the Burnt Lake metavolcanics, Grenville Province, southeastern Ontario, and its tectonic significance. Canadian Journal of Earth Sciences, 34: 1272-1285.
- Sobolev, A.V., Chaussibon, M. 1996. H₂O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H₂O storage and recycling in the mantle. Earth and Planetary Science Letters, 137: 45-55.
- Sparks, R.S.J., Pinkerton, H., MacDonald, R. 1977. The transport of xenoliths in magmas. Earth Planetary Science Letters, 35: 234-238.
- Spence, DA., Turcotte, D.L. 1985. Magma-driven propagation of cracks. Journal of Geophysical Research, 90: 575-580.
- Spera, F.J. 1980. Aspects of magma transport. *Dans* Physics of Magmatic Processes, *édité par* R.B. Hargraves. Princeton University Press, New Jersey, pp 265-323.

- Spera, F.J. 1984. Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contributions to Mineralogy and Petrology, 88: 217-232.
- Spera, F.J. 1987. Dynamics of translithospheric migration of metasomatic fluid and alkaline magma. *Dans* Mantle Metasomatism, *édité par* M.A. Menzies, C.J. Hawkesworth. Academic Press, London, pp 1-20
- Stein, D.J., Spera, F.J. 1993. Rheometry of a dacitic melt: experimental results and tests of empirical models for viscosity estimation. Geophysical Research Letters, 20: 1923-1926.
- Stern, R.A., Hanson, G.N. 1992. Origin of Archean lamprophyre dykes, Superior Province, Canada: rare earth element and Nd-Sr isotopic evidence. Contributions to Mineralogy and Petrology, 111: 515-526.
- Stevens, G., Clemens, J.D. 1993. Fluid-absent melting and the roles of fluids in the lithosphere: A slanted summary? Chemical Geology, 108: 1-17.
- Stolz, A.J. 1987. Fluid activity in the lower crust and upper mantle: mineralogical evidence bearing on the origin of amphibole and scapolite in ultramafic and mafic granulites. Mineralogical Magazine, 51: 719-732.
- Stolz, A.J., Varne, R., Wheller, G.E., Foden, J.D., Abbott, M.J. 1988. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contributions to Mineralogy and Petrology, 98: 374-389.
- Streckeisen, A. 1979. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks. Geology 7: 331-335.
- Sun, S.-S., McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. *Dans* Magmatism in the Ocean Basins, *édité par* A.D. Saunders, M.J. Norry. Geological Society Special Publication 42: 313-345.
- Tarney, J. 1992. Geochemistry and significance of mafic dyke swarms in the Proterozoic. *Dans* Proterozoic Crustal Evolution, *édité par* K.C. Condie. Developments in Precambrian Geology 10: 151-179
- Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293-309.
- Taylor, R., McLennan, S.M. 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford.
- Teertstra, D.K., Sherriff, B.L. 1997. Substitution mechanisms, compositional trends and the end-member formulae of scapolite. Chemical Geology, 136: 233-260.
- Tellier, M.L., Corriveau, L., Morin, D. 1995. La brèche de Rivard le potentiel diamantifère de la lithosphère et du magmatisme ultrapotassique de la région de Mont-Laurier, Québec. Commission géologique du Canada, rapport final présenté à la compagnie Ressources KWG Inc. dans le cadre du Programme de Partenaires industriels, projet IPP 920002-1-XY.
- Thibault, Y., Edgar, A.D., Lloyd, F.E. 1992. Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. American Mineralogist, 77: 784-794.
- Thompson, R.N. 1974. Some high-pressure pyroxenes. Mineralogical Magazine, 39: 768-787.
- Thompson, R.N., Fowler, M.B. 1986. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro-Ordovician syenites from Scottish Caledonides. Contributions to Mineralogy and Petrology, 94: 507-522.

- Thompson, R.N., Leat, P.T., Dickin, A.P., Morrison, M.A., Hendry, G.L., Gibson, S.A. 1989. Strongly potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of northwest Colorado, U. S. A. Earth and Planetary Science Letters, 98: 139-153.
- Treuil, M., Varet, J. 1973. Critères volcanologiques, pétrologiques et géochimiques de la genèse et de la différenciation des magmas basaltiques: exemple de l'Afar. Bulletin de la Société Géologique de France, 15: 506-540.
- Trzcienski, W.E., Marchildon, N. 1989. Kyanite-garnet-bearing Cambrian rocks and Grenville granulites from the Ayer's Cliff, Québec, Canada, lamprophyre dyke suite: deep crustal fragments from the northern Appalachians. Geology, 17: 637-640.
- Turcotte, D.L., Emerman, S.H., Spence, D.A. 1987. Mechanics of dyke injection. *Dans* Mafic Dyke Swarms, *édité par* H.C. Halls, W.C. Fahrig. Geological Association of Canada Special Paper 34: 25-29.
- Tuttle, O.F., Bowen, N.L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi₃O₈-KAlSi₃O₈-SiO₂-H₂O. Geological Society of America, Memoir 74: 135-144.
- Umino, S., Yoshizawa, E. 1996. Petrology of ultramafic xenoliths from Kishyuku lava, Fukue-jima, southwest Japan. Contributions to Mineralogy and Petrology, 124: 154-166.
- Valentine, G.A., Groves, K.R. 1996. Entrainment of country rock during basaltic eruptions of the Lucero volcanic field, New Mexico. Journal of Geology, 104: 71-90.
- van Bergen, M.J., Vroon, P.Z., Varekamp, J.C., Poorter, R.P.E. 1992. The origin of the potassic rock suite from Batu Tara volcano (East Sunda Arc, Indonesia). Lithos, 28: 261-282.
- van Breemen, O., Corriveau, L. 1995. Evolution of the Central Metasedimentary Belt in Quebec, Grenville orogen: U-Pb geochronology. International Conference on Tectonics and Metallogeny of Early/Mid Precambrian orogenic Belt. Precambrian 1995, Program with Abstracts, p 137.
- Varfalvy, V., Hébert, R., Bédard, J.H. 1996. Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: implications for the genesis of boninitic and related magmas. Chemical Geology, 129: 71-90.
- Varne, R. 1985. Ancient subcontinental mantle: A source for K-rich orogenic volcanics. Geology, 13: 405-408.
- Vaselli, O., Downes, H., Thirlwall, M., Dobosi, G., Coradossi, N., Seghedi, I., Szakacs, A., Vannucci, R. 1995. Ultramafic xenoliths in Plio-Pleistocene alkali basalts from the eastern Transylvanian basin: Depleted mantle enriched by vein metasomatism. Journal of Petrology, 36: 23-53.
- Venturelli, G., Thorpe, R.S., Dal Piaz, G.V., Del Moro, A., Potts, P.J. 1984. Petrogenesis of calcalkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from northwestern Alps, Italy. Contributions to Mineralogy and Petrology, 86: 209-220.
- Velde, D. 1971. Les lamprophyres à feldspath alcalin et biotite: minettes et roches voisines. Contributions to Mineralogy and Petrology, 30:216-239.
- Vidal, P., Dupuy, C., Maury, R., Richard, M. 1989. Mantle metasomatism above subduction zones: trace element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines). Geology, 17: 1115-1118.
- Villemant, B. 1988. Trace element evolution the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contributions to Mineralogy and Petrology, 98: 169-183.

- Villemant, B., Jaffrezic, H., Jorin, J.-L., Treuil, M. 1981. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine du Puys (Massif Central, France). Geochimica et Cosmochimica Acta, 45: 1997-2016.
- Wada, Y. 1994. On the relationship between dike width and magma viscosity. Journal of Geophysical Research, 90: 17743-17765.
- Wadepohl, K.H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217-1232.
- Wagner, C., Velde, D. 1987. Aluminous spinels in lamproites: occurence and probable significance. American Mineralogist, 72; 689-696.
- Wallace, P., Carmichael, S.E. 1989. Minette lavas and associated leucitites from the western front of the Mexican volcanic belt: petrology, chemistry and origin. Contributions to Mineralogy and Petrology, 103: 470-492.
- Wass, S.Y. 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos, 12: 115-132.
- Wass, S.Y., Rogers, N.W. 1980. Mantle metasomatism-precursor to continental alkaline volcanism. Geochimica et Cosmochimica Acta, 44: 1811-1823.
- Watson, E.B., Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295-304.
- Wells, P.R.A. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62: 129-139.
- Wendlandt, R.F., Eggler, D.H. 1980. The origins of potassic magmas: 2, Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO₄-MgO-SiO₂-H₂O-CO₂ at high pressures and high temperatures. American Journal of Science, 280: 421-458.
- Wheller, G.E., Varne, R., Foden, J.D., Abbott, M.J. 1987. Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas. Journal of Volcanology and Geothermal Research, 32: 137-160.
- Wiechert, U., Ionov, D.A., Wedepohl, K.H. 1997. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: A record of partial melting and cryptic metasomatism in the upper mantle. Contributions to Mineralogy and Petrology, 126: 345-364.
- Wilkinson, J.F.G., Stolz, A.J. 1997. Subcalcic clinopyroxenes and associated ultramafic xenoliths in alkali basalt near Glen Innes, northeastern New South Wales, Australia. Contributions to Mineralogy and Petrology, 127: 272-290.
- Wilkinson, J.J., Nolan, J., Rankin, A.H. 1996. Silicothermal fluid: A novel medium for mass transport in the lithosphere. Geology, 24: 1059-1062.
- Wilshire, H.G., Shervais, J.W. 1975. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Physics and Chemistry of the Earth, 9: 257-272.
- Wilshire, H.G., Meyer, C.E., Nakata, J.K., Calk, L.C., Shervais, J.W., Nielson, J.E., Schwarzman, E.C. 1988. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. U.S. Geological Survey Professional Paper 1443.
- Wilson, M. 1989. Igneous Petrogenesis. Unwin Hyman, London.
- Windley, B.F. 1986. Comparative tectonics of the western Grenville and the western Himalaya. *Dans* The Grenville Province, *édité par* J.M. Moore, A. Davidson, A.J. Baer. Geological Association of Canada, Special Paper 31: 341-348.

- Windley, B.F. 1993. Proterozoic anorogenic magmatism and its orogenic connections. Journal of the Geological Society of London, 150: 39-50.
- Winkler, H.G.F. 1979. Petrogenesis of Metamorphic Rocks. Spinger-Verlag, New York.
- Wooley, A.R., Bergman, S.C., Edgar, A.D., LeBas, M.J., Mitchell, R.H., Rock, N.M.S., Scott Smith, B.H. 1996. Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic, and leucitic rocks. Canadian Mineralogist, 34: 175-186.
- Wolfe, J.A. 1980. Fluidization versus phreatomagmatic explosions in breccia pipes. Economic geology, 75: 1105-1111.
- Wolff, J.A. 1984. Variation in Nb/Ta during differentiation of phonolitic magma, Tenerife, Canary islands. Geochimica et Cosmochimica Acta, 48: 1345-1348.
- Wulff-Pedersen, E., Neumann, E.-R., Jensen, B.B. 1996. The upper mantle under La Palma, Canary Islands: formation of Si-K-Na-rich melt and its importance as a metasomatic agent. Contributions to Mineralogy and Petrology, 125: 113-139.
- Wyllie, P.J. 1980. The origin of kimberlites. Journal of Geophysical Research, 85: 6902-6910.
- Wyllie, P.J., Sekine, T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contributions to Mineralogy and Petrology, 79: 375-380.
- Wyman, D.A., Kerrich, R. 1993. Archean shoshonitic lamprophyres of the Abitibi Subprovince, Canada: Petrogenesis, age and tectonic setting. Journal of Petrology, 34: 1067-1109.
- Wynne-Edwards, H.R. 1972. The Grenville Province. *Dans* Variations in Tectonic Styles in Canada, *édité* par R.A. Price, R.J.W. Douglas. Geological Association of Canada, Special Paper 11: 264-335.
- Wynne-Edwards, H.R., Gregory, A.F., Hay, P.W., Giovanella, C.A., Reinhart, E.W. 1966. Mont-Laurier and Kempt Lake map-areas, Québec. Geological Survey of Canada Paper, 66-32.
- Xing-Zhong, Z., Roy, R., Cherian, K.A., Badzian, A. 1997. Hydrothermal growth of diamond in metal-C-H₂O systems. Nature, 385: 513-515.
- Xu, Y., Mercier, J.-C., Menzies, M.A., Ross, J.V., Harte, B., Lin, C., Shi, L. 1996. K-rich glass-bearing wehrlite xenoliths from Yitong, Northeastern China: petrological and chemical evidence for mantle metasomatism. Contributions to Mineralogy and Petrology, 125: 406-420.
- Xu, Y., Menzies, M.A., Vroom, P., Mercier, J.-C., Lin, C. 1998. Texture-temperature-geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology, 39: 469-493.
- Yoder, H.S. 1986. Potassium-rich rocks: phase analysis and heteromorphic relations. Journal of Petrology, 27: 1215-1228.

Yoder, H.S. et Tilley, C. E. 1962. Origin of basalt magmas. Journal of Petrology, 3: 343-532.

- Yoder, H.S., Kushiro, I. 1969. Melting of hydrous phase: phlogopite. American Journal of Science, 267: 558-582.
- Zinngrebe, E., Foley, S.F. 1995. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contributions to Mineralogy and Petrology, 122: 79-96.

TROISIÈME PARTIE

APPENDICES

APPENDICES

A	Mesures planaires26A1 Brèche de Rivard26A2 Dyke de Girard26A3 Apophyses de la brèche de Rivard26	55 55 55
В	Liste et description sommaire des xénolites de la brèche de Rivard2631Abréviations2632Liste et description des xénolites27	57 57 72
C	Caractéristiques pétrographiques et géochimiques de la minette de34Rivard, ses macrocristaux et ses xénolites34C1Minette34C2Macrocristaux34C3Xénolites34	43 43 44 47
D	Analyses chimiques de roches totales37D1Composition chimique de la minette et ses xénolites37D2Composition estimée de certains xénolites ultramafiques38D3Comparaison de la composition du clinopyroxène et de la roche38	73 74 81 82
E	Analyses des minéraux38E1Olivine38E2Spinelle38E3Pyroxènes39E4Micas Fe-Mg47E5Amphibole48E6Feldspaths49E7Grenat50E8Autres minéraux (scapolite, titanite, allanite, calcite, etc.)52	 33 34 89 99 79 86 92 04 26
F	Table de contingence (forme des xénolites) 52	29
G	Calcul de la cristallisation fractionnée et coefficients de distribution53G1Composition du parent et des minéraux utilisés53G2Modèles de cristallisation fractionnée pour les éléments majeurs53G3Modèles de cristallisation fractionnée pour les éléments traces53G4Coefficients de distribution53	30 30 30 31 32
Н	Thermobarométrie sur les minéraux de la minette de Rivard53H1Mégacristaux et phénocristaux de clinopyroxène53H2Biotite et amphibole de la minette53	33 33 34
I	Diagrammes de terres rares des xénolites	35

Appendice A

MESURES PLANAIRES

A1 Attitude du dyke de Rivard, de certaines apophyses, de la gneissosité de l'encaissant et des joints recoupant le dyke et l'encaissant

Section	Plan mesuré	Direction / pendage
A16	Bordure est d'une apophyse de 12 cm	186° 84°
A16	Bordure ouest d'une apophyse de 12 cm	183° 70°
A19	Fragment d'encaissant à la bordure ouest du dyke	185° 70°
A21	Bordure est du dyke	185° 70°
A23	Bordure est du dyke	172 °74°
C42	Bordure ouest du dyke	165° 84°
D7	Bordure est du dyke	180° 73°
D15	Bordure ouest du dyke	179° 77°
D19	Bordure d'une apophyse de 5 cm	179° 73°
D20	Bordure d'une apophyse de 6 cm	185° 73°
D17	Foliation de l'encaissant	185° 85°
D19	Foliation de l'encaissant	000° 90°
	joint recoupant le dyke et l'encaissant	270° 73°
	joint recoupant le dyke et l'encaissant	265° 75°
	joint recoupant le dyke et l'encaissant	275° 85°
	joint recoupant le dyke et l'encaissant	280° 90°
	joint recoupant le dyke et l'encaissant	285° 70°

A2 Attitude du dyke de Girard (situé 8 km au sud de la brèche intrusive de Rivard)

Plan mesuré	Direction / pendage
Bordure du dyke (32 cm)	005° 90°
Petit dyke (5 cm)	005° 90°
Joints recoupant le dyke	060° 75°
Foliation du gneiss encaissant	250° 90°

Appendice A (suite)

A3 Longueur et orientation	des 58 apophyses	de la brèche de Rivard	(mesures par M. Tellier)
----------------------------	------------------	------------------------	--------------------------

Section*	Côté	Côté Longueur Orientation (cm)		Section*	Côté	Longueur (cm)	Orientation
A2	E	5	190°	C19	W	35	175°
A2	Ē	20	000°	C22	Е	40	175°
A7	W	25	345°	C22	W	140	190°
A10	Е	20	010°	C24	W	110	340°
A10	E	60	140°	C25	W	150	195°
A10	W	80	190°	C25	Е	35	115°
A13	W	70	195°	C26	E	35	000 °
A16	Е	450	000°	C31	W	130	195°
A18	W	150	175°	C31	Е	90	000°
A19	E	75	03 0°	C31	E	70	015°
A23	W	30	200°	C33	Е	160	010°
B1	Е	15	025°	C33	E	95	000°
B1	W	5	340°	C33	Е	310	170°
B1	Е	35	005°	C38	Е	45	145°
B2	Е	40	025°	C44	W	300	195°
B6	W	15	200°	C44	E	100	015°
B9	W	40	195°	D2	W	70	175°
B10	Е	15	030°	D3	W	140	180°
B10	E	80	005°	D3	E	100	355°
B11	W	40	185°	D4	E	140	010°
C4	W	60	220°	D5	W	105	185°
C5	Е	130	005°	D7	W	95	185°
C6	Е	60	000°	D9	W	30	175°
C7	W	250	210°	D14	W	190	190°
C12	E.	65	000°	D17	W	600	175°
C13	Е	35	015°	D19	W	85	205°
C13	W	30	220 °	D20	W	> 350	180°
C14	Е	20	000°	D21	W	> 400	175°
C18	E	150	355°	D21	W	410	180°

* Le dyke a été divisé en sections de un mètre, du nord vers le sud, et numérotées: A1, A2, A3... B1...etc. L'orientation donne également la direction vers laquelle pointe l'apophyse: 015° indique que la fin de l'apophyse est située vers le N015° relativement à son ouverture sur le dyke. Ainsi, les apophyses de la bordure est (E) du dyke ont des orientations généralement comprises entre 000° et 180° alors que celles de la bordure ouest (W) ont généralement des orientations comprises entre 180° et 360°. Les mesures de l'orientation des apophyses sont compilées dans la rosette de la figure 2.2d.

Appendice B

LISTE DES ABRÉVIATIONS ET LISTE DES XÉNOLITES DE LA BRÈCHE DE RIVARD

B1 ABRÉVIATIONS

Ab	albite
All	allanite
Alm	almandin
Alt	altéré, altération, remplacements
Am	amphibole (s)
AMP	amphibolite
An	anorthite, contenu en anorthite du plagioclase
ANO	anorthosite
Ap	apatite
Aug	augite
Autom	automorphe
BC	brèche
Bt	biotite (mica Fe-Mg)
bord	bordure
CAB	basalte calco-alcalin
Cal	calcite
Car	carbonate (s)
CC	croûte continentale moyenne
CClast	cataclase, cataclastique
Ccp	chalcopyrite
Cen	clinoenstatite
Cfs	clinoferrosilite
Chl	chlorite
Chr	chromite
CMB	Ceinture métasédimentaire du Grenville
Cml	cumulat
Comp	composition
Cour	couronne
cpfu	nombre de cations par formule structurale
Cpx	clinopyroxène
Cpx2	clinopyroxène secondaire, néoformé
Crn	corindon
CSL	roche calco-silicatée
CX, CXN	clinopyroxénite
D	coefficient de distribution
Di	diopside
DN	dunite

Ech	échantillon
ECL	éclogite, éclogitique
EGran	équigranulaire
En	enstatite
Epitax	épitaxial
Fel	feldspath (plagioclase et/ou feldspath potassique)
Fo	forstérite
Fol	folié, foliation
Frac	fracture, fracturé
Frag	fragment
Fs	ferrosilite
GB	gabbro, métagabbro, gabbroïde
GBlast	granoblastique
GBN	gabbronorite
Géoch	géochimie
gf	grains fins
gg	grains grossiers
GLM	glimérite, biotitite
gm	grains moyens
GNL	granulite, granulite mafique
GPClast	granoporphyroclastique
Gporph	gloméroporphyrique
Gr	graphite
Granul	granulaire
GR	granite, granitique, granitoïde
Grs	grossulaire
Grt	grenat
GS	gneiss
gtf	grains très fins
Hbl	hornblende
Hem	hématite
HFSE	élément à fort potentiel ionique
HGan	hétérogranulaire
HREE	terre rare lourde
Hs	hastingsite
Hy	hypersthène
Hypid	hypidiomorphe
HZ	harzburgite
Ilm	ilménite
Incl	inclusion, inclus
Incol	incolore
Interst	interstitiel
KEN	pluton de Kensington
Kfs	feldspath potassique
Ky	kyanite
Larg	largeur (mm)
LILE	gros ion lithophile
Liq	liquide (magma)

LMP	lamprophyre
Long	longueur (mm)
LZ	lherzolite
Maf	mafique, minéraux mafiques
Mag	magnétite
Mas	massif
MBL	marbre
MBS	métabasite
MC	mégacristal mégacristaux
	minette
MODD	handte de ride océenique
MORD	microporthito microporthitique
MPerin	microperunte, microperuntique
MPX	pyroxemile micacee
Ms	muscovite
Mx	minéral, minéraux
MYL	mylonite, mylonitique
MZ	monzonite
	(1 /l) ¹
Ne	nepheline
NBlast	néoblaste
NR	norite
OID	hasalta d'île océanique
OID	olivino
	Olivine
Opa	mineraux opaques (suffures, oxides)
Ophit	ophitique
Opx	orthopyroxene
Oxi	oxyde (s)
OX, OXN	orthopyroxenite
DD1a at	nomburghlastique normburghlaste
PDIast	porphyrobiastique, porphyrobiaste
PClast	porphyrociastique, porphyrociaste
PC	pnenocristal, aux
PD	peridotite
Perth, Pth	perthite, perthitique
pfu	par formule structurale (cations)
PGran	protogranulaire
PGM	pegmatite
Phl	phlogopite
Pl	plagioclase
Pn	pentlandite
Ро	pyrrhotine
Poec	poecilitique
Porph	porphyre, porphyrique
Prg	pargasite
Prp	pyrope
Px	pyroxène (s)
PX, PXN	pyroxénite
Ру	pyrite
	((11
QFP	quartzoteidspatnique
Qtz	quartz
QZ	quartzite

Recrist	recristallisé
REE	terres rares
Reliq	relique
Remp	remplacement
Rt	rutile
Rub	rubané, ruban
Scn	scapolite
S-grains	sous-grains
SHS	shoshonite, shoshonitique
Sil	sillimanite
Sol	solide (minéral)
SOnhit	subophitique
Sol	spinelle
Srn	sementine (+ talc_iddingsite)
Sul	sulfure (s)
Symn	symplectite symplectitique
Symp	symplectic, symplectuque
TBA	trachy-andésite
TBS	trachybasalte
TM	liquide piégé
TN	tonalite
Tr	tremolite
Ttn	titanite
Tur	tourmaline
UК	ultrapotassique
UME	ultramafique
OWI	unumunque
WB	webstérite
WL	wherlite
Wo	wollastonite
XNL	xénolite
Xénom	xénomorphe
XC	xénocristal, xénocristaux
Zm	zircon
≠	différent
±	plus ou moins
//	parallèle, parallèlement
=	égal, semblable à
~	approximativement égal à. environ
> 2	plus grand que, plus grand ou égal à
< <	plus petit que, plus petit ou égal à
->	remplacé par, produit

Les abréviations des minéraux sont tirées de Kretz (1983), à l'exception de certains termes génériques qui n'apparaissent pas dans la liste de Kretz (par exemple: Am = amphibole, Car = carbonate).

Appendice B2

LISTE DES XÉNOLITES DE LA BRÈCHE DE RIVARD

L'appendice B2 donne la liste des xénolites décrits sur l'affleurement et en lames minces. La colonne No donne le numéro du xénolite et la colonne Roche, le nom de la roche (abréviations à l'appendice B1) tel que déterminé sur l'affleurement ou en lame mince. Les 12 colonnes suivantes (Cpx-Autre) inventorient les minéraux présents (en pourcentage; le "x" indique la présence du minéral lorsque le mode n'a pas été déterminé, ou sa présence en quantité inférieure à 1% dans les cas où le mode a été déterminé par estimation visuelle). La colonne Maf indique le pourcentage approximatif de minéraux mafiques (Ol+Spl+Grt+Cpx+Opx+Am+Bt+Opa). La colonne Gra donne la granulométrie du xénolite: F: grains fins (TF: grains très fins), M: grains moyens, G: grains grossiers. La colonne Arr donne l'arrondi du xénolite: G: anguleux, S-G: subanguleux, S-R: subarrondi, R: arrondi. Les colonnes Long et Larg donnent la longueur et la largeur du xénolite en millimètre. La colonne Remarques fournit des indications sur les textures et des observations diverses. On trouvera des informations supplémentaires sur la classe auquel appartient le xénolite à l'appendice C. La colonne Éch indique que le xénolite a été échantillonné (x), et qu'on a réalisé une lame mince (L), une lame mince polie (P), une analyse géochimique (G).

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
AQ.1	MNIT			1.							-								avec GS encaissant	
A0-1											1						1		GS à Grt + CXN + GS encaissant	x
AU-2	CDNA	00	15	2				62				~	Mag2 Bt2	38	м		>100		Fol ignée: subophit: + déf.: Opx ont cour Bt+Am; ex- A4-22?	Р
AU-3		20	15	2				02		^		^	Magerite	100		· · · · · · · · · · · · · · · · · · ·				x
A0-4	GS	2	X					x	x				Mag	100					Échantillon de l'encaissant pris à 5 m au NE de A15	L/G
				_									2	100	м	8.6	50	25	Gran: Cox brun très pâle, vénom: Cox->Am joints grains	Р
A1-1	CXN8	97		3				X	X			X	(100		5-0	00	60	OEP: Fol: GBiast: alt par MNT	1
A1-2	GS	?			X	-		70	30				Ора	1		3-0	00	17		×
A1-3	PXN ?	x	1											100	-	<u>S-G</u>	25	17	OFD: crie câle: Fol // allengement XNI : remalacements	
A1-4	GS	+					X	X		<u> </u>				0	F	<u>S-R</u>	210	85	QFP; gris pale, For // allongement Arts, remplacements	
A1-5	GS	?						×	X					20	+	G	25	25	GFP; FOI, Alt	
A1-6	QFP	 		?				x	X					1	м	S-G	80	45	Roche QFP; Mas, All	
A1-7	GS ?	ļ			x			X	_						М	G	50	10	Mas; Alt	
A1-8	MBS	x					ļ	x						50	М	S-G	30	25	Mas; Ait	
A1-9	GB	x						x						20	M	G	45	35	Fol	×
A1-10	GS			x				x	X					50	F	S-R	280	250	Fol	<u> </u>
A1-11	QZ								x					0	F	S-G	30	20	Mas	ļ
A1-12	CXN	x			x									100	М	S-G	30	30	Mas; vert Foncé	ļ
A1-13	CXN	?												100	М	S-G	30	20	Mas; gris vert; Alt	
A1-14	GB	?						x	x					50	FΜ	R	180	110	Zone grain grossier // all XNL ± Fol	
A2-1	CSL9	25		x	x			23	15		x	x	Scp Ttn	25	F	S-R	40	28	Métagabbro? Fol; Rub; poecilobl; myl; recrist?	Р
A2-2	CXN8	74		20	x			x	x		x	5	? Scp? Ttn	95	м	S-R	60	45	EGran; alt joints grains; veinule Am+Car+Scp?	Р
A2-3	WB3	30	30	30	1	x	x	1	x		1	x	?	98	F	S-R	100	100	Fol; PClast; Alt; Grt résorbé; Px->Am; lentilles Am+PI+Car+Bt	Р
A2-4	CXN8	94		5	×			1			x		OI?	99	MG	S-G	90	60	Cpx brun très pâle, hypid? Granul; zones + alt; PhI ≠ MNT	L
A2-5	PXN	x	x	x	x			x	x			x	ScpllmOl?	85	FM	S-G	90	>60	Métagabbro; très hétérogène, zone riche Qtz; PClast	Ρ
A2-6	CXN	× ×			Y				+	-		1		100	м	A	45	30	Fol	x
A2-7	CXN8	94		5	x		1				x	x	Ttn Scp	100	F	R	34	32	PClast; GBlast; Spl interst; veine Am+Scp+Car+Cpx2; XNL cour Cpx+Am	Р
12.9	CYN			Ť	v v		·	-	1	1	+	1		100	м	S-G	40	20	Avec 1 XNL CXN8	x
No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
--------	-------	-----	-----	----------	----------	-----	-----	-----	-----	----	-----	-----	-------------	-----	-----	-----	------	------	--	-------
A2-9	CXN8	95		5				x			x	x	? Ttn Scp	100	MG	S-G	50	40	Cpx brunåtre; GBlast; veine 5mm: Fel+Cpx+Scp+Car; cour 5mm å Cpx+Am+Bt autour XNL	L
A2-10	GS	5	2	1	15	25		25	25		x		Mag Ms Zrn	10	м	S-R	380	260	QFP, granulitique, gris pâle; Fol; Rub; alt par MNT; rétrog.	Р
A2-11	CXN	x												100	МG	S-R	>70	45	Mas	x
A2-12	GS			?				x	x					5	F	R	40	35	QFP; Foi±	
A2-13	GB	x						?	x					30	м	S-R	80	35	Mas	
A2-14	CXN8	x												100	м	S-G	40	25	Mas; gris vert	
A2-15	MBS	?	1			†		x						75	F	G	160	100	Fol; gris	
A2-16	CXN8	x			1									100	м	S-G	70	40	Mas	
A2-17	CXN8	x									1			100	M	S-G	60	55	Mas	
A2-18	GB5	66	1	5	x	x	25				1	?	Opa	72	м	S-R	120	80	Métagabbro; Fol; ±GBlast; reliq. subophit; rétrogr; =A2-29	L/G
A2-19	CXN8	×				1		-		1		1		100	м	S-G	70	15	Fol?	
A2-20	CXN	x										1		100	м	S-R	35	25	CSL ? Mas; Vert foncé; rouillée	
A2-21	GB	x	+		1	1		x						50	G	G	105	15	Fol // allongement XNL	
A2-22	Спх	x	1				1							100	G	G	10	10	Monocristallin; pas de couronne de réaction	
A2-23	CXN	x		1			-							100	MG	S-R	80	50	Mas	
Δ2-24	GS 2		+		<u>+</u>		1	x	x					5	F	S-G	15	15	Rosé	
A2-25	GS			<u> </u>	x	x		x	x					25	м	S-R	55	25	QFP; gris; PBlast.; Grt rétrogradé en Bt	
A2-26	CXN	x					-		1					100	м	S-G	235	55	Mas; gris vert	
Δ2-27	GS		+				-	x	x	1		x		0	F	G	45	20	QFP; Mas; Alt	
A2-28	CXN8	×						-						100	м	S-G	140	60	Mas; Alt	
A2-29a	CXN5	96	x	x	x			2	-		x	x	Mag Ilm Qtz	97	FG	S-G	110	110	PClast; GBlast; "poches" PI et MNT; contact gabbro	P/G
A2-29b	GB5	45	1	x	1	x		50	?	x	x	x	Mag Ilm	50	F	S-G	110	110	Métagabbro; Fol; GBlast; subophit; cogénétique A2-29a	(L)/F
A2-30	GS				1	1	-	x	x					?	F	S-G	280	120	QFP; veine Qtz-Bt; Alt autour Cx	
A2-31	CXN8	x						1						100	м	S-G	90	90	Mas	
Δ2-32	07				1			x	x	1	1		-	0	м	G	50	, 45	Mas	
A2-33	GB	×			+			x	x		-			40	м	S-G	90	25	Mas	
A2-34	65.7	2				1	-	?	x	1				?	F	S-G	240	115	QFP équigranulaire; Mas; remplacements	
A2-35	GS	+		2	-	-		×	x	+		+		20	M	G	55	35	QFP; Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			ļ	ļ			ļ													
A2-36	GS			?				x	x				Kfs PI	10	F	S-G	25	25	QFP; Fol	
A2-37	GS			?				x	x					5	F	S-G	124	40	QFP; Fol; Alt	
A2-38	CXN	x												100	F	S-G	90	50	Gris vert; Fol	
A2-39	?	?						?	x					?	М		120	55	Fol±	
A2-40	GS			?				×	х					20	F	S-R	110	90	QFP; gris pâle; Fol; rouillé	
A2-41	CXN	x										x		100	F	S-R	200	180	brun rouilte	
A2-42	GS							x	x					0	MG	S-G	45	> 30	QFP; gris pâle; Mas	
A2-43	QZ								x					0	м	S-G	40	20	Gris; ± rouillé	
A2-44	GS	?		x				x	x					25	м	S-G	150	35	QFP; gris pâle; Fol // all XNL	
A2-45	WB ?	?	x					?							М	X-G	120	60	Gris pâle; PBlast. Opx; Mas	
A2-46	WB	x	x											100	F	S-G	75	45	Gris pâle; ± rouillé; Mas	-
A2-47	CXN8	×			-									100	м	S-G	70	50	Gris pâle; Mas	
A2-48	GB	x	?	?				x						30	MG	G	270	60	PBlast ?; Px = 15 mm; ± blanc	_
A2-49	OXN	1	x											100	F	S-G	95	70	Gris moyen; Mas	
A2-50	CXN8	x												100	F	G	110	90	brun pâle ± rouillé; Mas	
A2-51	CXN8	x										1		100	м	S-G	40	40	brun pâle; ± Fol	
A2-52	CXN8	x		1	1		1							100	м	S-G	60	60	brun pâle; Mas	
A2-53	OXN	+	x		1									100	м	G	240	>60	Noir en cassure fraîche; Alt rouille; Mas	
A2-54	WB ?	?	x				1	?							М	S-G	80	45	brun rouille; ± Fol	
A2-55	CXN8	x		1	x					1				100	М	S-G	95	45	Mas; (avec A2-29)	x
A3-1	MBS5	50	x	10	x	x		30	1		x	x	Ilm Mag	60	F	S-R	70	35	Fol; ± Rub; exsolutions Cpx; cour. Am. autour Cpx	Р
A3-2	CSL	10						5	75	1			Scp Ttn	10	м	S-G	95	>50	Mylonite; Fol; PClast	L
A3-3	07	10	+	1				19	70			x	Ttn Oxi	10	F	G	90	75	Verdâtre; Impure; ± Fol	E
A3-4	GS	1	?	x	5	15		58	20	-	x		Oxi?		FM	S-G	280	150	QFP; Fol // allongement XNL; Rub; mylonitique?	L
A3-5	CXN8	50	· · · · ·	2	50			x			x	-	Bt? Zr? Srp?	100	м	S-G	200	160	Hétérogène; ± GBlast; Fol: Bt; veinule Bt	P
A3-6	CXN	x	†	† ·			-					+		100	F	S-R	35	15	Alt; + fragment XNL Gneiss Grt ?	x
Δ3-7-1	CSI 2	2	+	+	+			×	Y			-		?	м	S-G	150	50	Soudé à l'encaissant (voir carnet 8 p. 64)	2P
A3-7-2	WB10a	+	+			-	-	+				+						1		

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		ļ	ļ	ļ																
A4-3	GB5	40	?	x	x	L		58		2			Mag?	40	MG	G	55	55	GBlast; PClast; veinules PI+Bt; 2 niveaux (PI/Px).	· L
A4-4	CXN8	95		5	2		x	x	×		x	x	? Ttn Tlc?	100	М	S-G	100	>40	Mas; PClast; Alt; 12 frag	P/G
A4-5	CXN5	x		x	1			1		x			Mag?	99	Μ	S-G	55	45	GBlast; PClast; = niveau maf. de A4-3, A4-1?; Alt	P
A4-6	GS				7	15	x	45	30		x		Sil Rt? Mag	7	М	S-R	60	45	Fol;± PBlast; Gt->Bt; ressemble encaissant; perthites	<u> </u>
A4-7	CXN8	97		x	x		2	x	?			1		97	м	S-R	27	23	GBlast; ± couronnes autour Spl	P
A4-8	CSL9	98			?			1	?	x	x		Mag Ttn	98	F	S-G	80	50	EGran; GBlast; Autom; ± Fol; veinule MNT	Р
A4-9	CSL9a	25		x				1	20		?	x	Ttn Scp?	27	F	S-G	40	30	Fol±; GBlast; PClast ? hétérogranulaire	P
A4-10	CXN8	50		40	x		2				3	1	Scp Ttn	92	М	S-R	>100	75	Alt; veinule Am+Car+Opa+?; Spl vert foncé	L/G
A4-11	PD ?	x		x									OI?	100	м	S-G	55	50		
A4-12	MBS11	x		1										100	F	S-R	100	50	Vert foncé; Alt; Veines ? // Fol	L
A4-13	OXN		x											100		S-G	60	35		x
A4-14	CXN	x												100	F	S-R	30	15	Fol	x
A4-15	QZ					x			x					0	М	S-G	60	50	Aussi CXN P; + A4-16	L
A4-16	GS				x	x		x	x					1	м	S-R	40	20	QFP; avec A4-15 sur LM	
A4-17	WB1c	57	5	20	8		1	10	x	x	x			90	F	S-R	55	40	Cumulat? poches FeI+Bt+Ap+Am; MNT?	L
A4-18			-												F	S-R	25	15		
A4-19-1	GS	-			4	25		40	28				Sil	4	F	S-G	40	40	PBlast; GBlast; Fol	Р
A4-19-2	WL7b	49			3	1	7	-					41% OI	100	м	R	>15	>12	Alt: EGran; GBlast	P
A4-20	GS			<u> </u>		1		x	x		1			0	м	S-R	35	20	QFP	x
A4-21	CXN	×					1	-	-					100	м	S-G	60	15	Et autres XNL	×
A4-22	GB	x			+		1	x							м	S-G	130	55	Fol ≠ all. subophit; = A0-3; + Sul, GS, WB	x
A4-23	CXN	x			x				-			-		100	м	S-R	35	30	Aussi XNL OXN?	x
A4-24	CXN8	×						1		1	-			100	G	S-G	50	30	Brun pâle	x
A4-25	PD?			+					-				OI?	100	G	S-G	50	40	ou CXN ?	x
A4-26	CXN	x	+				-			<u> </u>		1		100		S-G	60	20	Idem A4-24	
A4-27	CXN	×							1	1				100	м	S-G	85	50	QFP; Fol	x
A4-28	GS		-	-	3	24	x	50	10	-	+		Sil Rt Opa Zrn	3	F-G	S-R	100	60	Fol; Rub; PClast; GBlast; Grt->Bt	L
A4-29-1	CXN8	96		+	+		6				1	-	OI?	100	F	S-G	30	25	GBlast polygonal; Alt en surface	P

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
				1		L	1	<u> </u>				ļ								
A4-29-2	QZ				6	20	ļ	20	50				Opa Zrn	6	F-M				Impure; PClast; Grt->Bt+Opa	P
A4-30-1	CXN8	98		1	x			x			x		Ttn Tlc?	98	МG	S-R	30		Adcumulat? (avec A4-31)	Р
A4-30-2	CXN8	96	?	x	x			3		x	x		Ttn Scp	97	М		> 30	> 15	GBlast? Cpx résorbé; Fel interstitiel	P
A4-30-3	CXN8	98		x	1			x			, X			100	МG				Granulaire; Cpx hypid	P
A4-31-1	CXN8	91		5	1		3				x		Tlc ?	100	M-G	G	>30		Hétérogranulaire; bordure réaction (avec A4-30)	Р
A4-31-2	CXN	90		3	5					x		2		100	FM	S-G	> 25		Divers "faciès" Cpx; cumulat?	P
A4-32	GS				2	3		x	x		x		Kfs Pl Opa	2	M-G				QFP; Fol; Rub; PClast; GBlast; (avec A4-14, 17, 20)	<u> </u>
A4-33	GB	20	x	1	.1	x		75	x		x		Mag?	22	F				Métababbro; mylonitique; Fol; Rub (Avec A4-14)	L
A4-34	Po											x					20		(avec A4-23)	x
A4-35	GB5	20	2	x	1			75	x	x		x	Zrn Mag Ilm	23	FM	S-R	>130	>60	Métagabbro; GBlast; PClast; Fol; gf/gtf; reliq. subophit	P
A4-36	GB	x			1			x						40	F	S-R	50	40	GBlast ?	
A4-37	PXN	?	?	1		1								100	F	S-R	60	40	Mas	
A4-38	CXN	x	+	1										100	м	S-G	50	35	Mas	
A4-39	GS ?	1		?		1		x	x	1					FΜ	S-G	180	90	Partie ≠ composition ? Gris pâle; remplacements	
A4-40	CXN8	×							1					100	MG	S-G	55	45	Gris pâle; Mas	
A4-41	OXN		x		1	1								100	м	R	20	20	Mas	
A4-42	CXN	×		-	x			1	-					100	м	S-G	25	25	Vert; Mas	
A4-43	NB5?	1	35	1	x	x	?	40	x	x	x	x	Ilm Zrn Ms	38	F	S-G	200	150	Subophit; Fol ignée	P/G
A4-44	GS				x	x		×	x	1	-			25	м	R	50	40	QFP; PClast Grt; ruban Qtz; Grt couronne Bt	
Δ4-45	GS		1	×		x		x	x		-			25	1	S-G	25	20	QFP; Fol	
A4-46	GS	-		2			-	x	x		-		Mag?	5	F	S-R	240	200	QFP; Fol; géochronologie	
Δ4-47	GS	-	<u>+</u>	1	-	10		x	x					0	м	S-R	45	35	QFP; Fol	
A4-49	CXN	×	+				+			+		-		100	F	S-G	30	30	Mas; GBlast	
A4 40	CYN	Ĵ								-		×		100	F	S-R	30	30	Mas	
A4-43	CYNB	Ŷ	-											100	F	S-R	35	22	Mas; GBlast	
A4-50	CXN	-								-		-		100	F	R	29	28	Mas	
A4-51		^		v				×	-	-				30	F	R	40	28	Mas; mésocrate; GBlast	
A4-52				^				1 ^	-		y			50	F	S-R	60	35	Mas; GBlast; rouillé	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
A 4 5 4	0										<u> </u>			50	F		55	33	Mas: GBlast	<u> </u>
A4-54	(X			+			×	~					0			30	20	OEP: Fol	1
A4-55	07		-			2		X	×		-			0	M	S-B	120	40	Fol	
A4-30	MDC	~			-	2	-	Ĵ	†^					75	F	0	140	105	Mésocrate: Fol: veine Pl	1
A4-57	GS	^						Ŷ	x					0	M	S-G	105	70	QFP: Fol; riche Qtz (> 40%)	
A4-50	GB	~	-	+				Ŷ				+		25	F	S-G	50	20	Métagabbro: linéation d'étirement: mx mafiques	
A4-60	GS	- ^		-		5		65	30		-			0	TF	S-G	75	45	QFP; Fol; mylonitique	
A4-61	CXN8	x	-		+			00				+		100	M	S-G	55	50	Mas; autom	
A4-62	CXN	x		+	1	1					-		OI?	100	F	S-G	25	20	Mas	
A4-63	MBS		x			+		x						40	F	S-G	35	15	Mas; GBlast	
A4-64	?	?						?	x					0	F	S-G	115	50		
A4-65	GB	x	x			-		?						75	м		90	70	Composite?	
A4-66	NR		x					x						50	F		45	40	Métanorite; linéation étirement ?	
A4-67	MBS ?	?	x	1				x					01?	100	FM	S-G	105	60	Mas; hypid	x
A4-68	MBS		x			x		x				x		40	F	S-G	105	75	Granulite	G
A4-69	GB	x			-			x						15	F	S-G	300		Métagabbro; Fol: mx maf.; GBlast; linéation Px; Rub: maf	
A4-70	TN	1				15		x	x					0	м	S-G	360	220	Veine gg 10 cm; linéation; veine Qtz	
A4-71	CXN8	x									1			100	м	S-G	40	30	Mas	
A4-72	GB	x		1				x						30	м	S-G			Subophit; PI:1x6 mm; Fol ignée	
A4-73	PXN	?											OI?	100	м				Mas	
A4-74	CXN	x												100	м	S-R	30	25	Vert olive, Alt?	
A4-75	GS							x	x					0	F	S-G	27	18	QFP; GBlast	
A4-76	WB	x	x											100	м	S-G	55	27	Mas; hypid	
A4-77	CXN	x												100	м	S-R	40	39	Rouillé; Mas	-
A4-78	CXN	x			x								OI?	100	М	S-R	70	35	Vert olive; Mas; hypid; ± Fol	
A4-79	?					10		x							м	S-R	150	60	Couronne réaction 1-8 mm	<u> </u>
A4-80	CXN8 ?	x			x				x			x			М	S-R	160	125	CSL ? rouillée	
A4-81	CXN8 2	2							x				Wo?	ł	M	S-G	70	35	Gris pâle; Mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fei	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
							1													
A4-82	CXN	x	1		1									100	м	S-G	70	40	Vert foncé; Mas	
A4-83	QZ							x	x					0	F	S-R	80	30	Fol	
A4-84	CXN8	x									1			100	М	S-G	80	40	Mas; hypid	
A4-85	CXN8	?	1				1	1	x				Wo ?		м	S-R			Ressemble CXN8	
A4-86	?	x	x	-	1			x	x					20	F	G	150	100	Rub: Qtz+PI+Cpx / PI+Cpx	
A4-87	CXN2a	x												100	F	S-G	40	38	Vert foncé; Mas	
A4-88	CXN8	x	-											100	F	S-R	40	30	Vert foncé; Mas	
A4-89	CXN8	x									1			100	М	S-G	60	15	Mas	
A4-90	QZ	x			1	1		x	x					5	М	S-G	70	20	Linéation; couronne PI autour Cpx	
A4-91	AMP	1	1	x		1		x						60	F	S-R	27	20	Mésocrate; GBLast	
A4-92	WB	x	x											100	м	S-G	25	10	Mas	
A4-93	WB	x	x											100	м	S-G	30	15	Mas	
A4-94	CXN8	x												100		S-G	25	19	Vert foncé; Mas	
A4-95	CXN	x												100		S-G	29	19	Vert foncé; Mas	
A4-96	ANO				1			x						0	F	S-G	15	11	Gris; Mas	
A4-97	WB2a	60	5	10	25			x	x	?	x	x	Tlc Zrn	100	м	S-G	70	55	Vert moyen; Mas; couronne Am autour Px	P
A4-98-1	CXN8	87		5				x	1		5		Ms? OI? Ttn	93	FΜ	S-G	> 40	> 20	PClast	Р
A4-98-2	GB/Po	25		x		<u> </u>		25				50	Ttn Tic Chi	25	MG	R	20	10	Avec coeur silicate; résorbé; (avec A4-46)	P
A4-99	CSL9a	76		x	x			2			x	x	Scp Ttn	78	F	R	95	82	Alt; poches Fel; veine Fel; (avec A4-21)	P/G
A4-100	CXN8	x				1								100	FM	G	35	30	Mas	x
A4-101	GS				x	x		x	?					5	М	S-G	>50	>35	Fol; PBlast; Grt->Bt; (avec A4-21)	x
A4-102-1	CXN8	x						?							м	S-G	>25	>10	Mas; résorbé; (avec A4-21)	P
A4-102-2	GB5																			
A4-103	CXN8	x												100	М	G	25	22	Avec A4-21	x
A4-104	CXN8	100)	x				?	x		x	~		100	м	S-G	75	>50	Granonématoblastique; Fol; (avec A4-24)	P/G
A4-105	CXN8	90		6	x	1	3		x	1	2	x	Ttn Scp Mag?	96	G		>60		Granulaire; remplac. importants (avec A4-22)	P/G
A4-106	GS				x	x		x	x					30	м	S-G	100	50	Fol±; PBlast; Grt->Bt; (avec A4-22)	x
A5-1	CXN8	85	-	6	1		-	5	?		x	3	Scp Ttn	90	М	R	65	50	Alt; GBlast; Granulaire; symplectites ?	Р

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
AE 0	OVNO	00		7									2Son Tio?	07	м	S D	22	22	Granulaire +: Alt: rouillé	P
A5-2	CAINO	90		1	X		-		X		×	×		97	NA NA	5-n	50	10	Eol: PClast: rouillá: Sol vert émeraude	P/G
A5-3		90		2	X	05	5	50			X	2		90		3-0 0 D	32	40	PPlast : Grt récorbé: L partie XNL CXN	P
A5-4	GS			-	10	25	X	50	3					100		0-n	40	35	Vardêtre en esseure freîsbe: Granulaire: PClast: - 46-7	
A5-5	CXN8	98		2	X						X		TIC	100		5-H	70	40	Aporthopito2 Monzonite2 2 frag : perthites	+
A5-6	?	-	-	X				X	X				0	00		5-0	70	>35	PRiort: CPlant: + Fol: pouronnes réactions	p
A5-7	GNL6a	81	2	3	X	8	X	4		X			Ора	90		<u>м</u>	55	35		D
A5-8	CXN3	96		2	X			X			X	1	Scp I th lim	100		5-G	45	25		-
A5-9	CXN8	100		X	X		-							100	M	S-R	20	20	Polast, Gblast, ± Fol, Di Al	
A5-10	CXN8	99		1	X			?			-		? Ttn	100	м	S-G	30	20	Partie du XNL seulement; PClast; GBlast; ±Fol	
A5-11-1	CXN8	94		5	X	ļ		x			X	x	Scp Ttn	100	FG	S-G	26	22	Noir; PClast; GBlast?; Fol?	P
A5-11-2	GB	20		3	3			68		x		?	Ора	26	FM	S-R	> 10	> 5	Métagabbro; Cpx->Am; exsolutions	P
A5-11-3	Grt				25	68		5					? Opa	25	G	R	19	18	Résorbé; Grt->Bt+Fel+Opa? MC ou XC?	P
A5-12	CXN	x	ļ											100	М	S-G	80	70	2 niveaux distincts; = A4-16	
A5-13	WB1c	20	1	49	25			5	x	x	x	x		95	М	S-R	120	60	Px all; rempl.; matrice = MNT?=A5-14?	P/G
A5-14	WB2a	30	65	2	x			x		x	x	x	Mag IIm	100	м		>120	>70	GPClast; Rub? Fol±; PClast; (avec A5-29)	P
A5-16	PD ?												OI?	100	м		18	15	Très petit et altéré	x
A5-17	PXN	x												100	м	S-G	35	30	Fol	x
A5-18	CXN8	99		x	x			x			x	x	Tlc	99	МG	S-R	100	80	GBlast; ± Fol; veinules Idem A4-24; (avec A5-37)	P/G
A5-19	PXN	x												100	м	S-R	35	35	Avec A5-35	L
A5-20	CXN	x												100	м	S-G	45	40		x
A5-21	CXN	x		1	x		1					1		100	м	S-G	45	25	Grise; Bt automorphe	L
A5-22	CXN8	x												100		S-G	85	35	Idem A4-24	
A5-23	CXN8	x									1		······	100	F	S-R	125	50	Veine Cpx? fin; =A4-24	
A5-24	GS			1		1		x	x		1			0	м	S-G	190	110	QFP; Fol // à l'allongement	
A5-25	CXN8	×					+		†	+	-			100	1	S-R	50	30	Idem A4-24	L
A5-26-1	WB2a	74	5	5	15	1		1		x	x	×	RtZrnOpa	99	м	S-R	130	50	Fol±; Rub± ; réactions; = A5-34	P/G
A5-26-2	WB2a							· ·			<u> </u>								idem A5-26-1	Р
A5-27	CYNR	90		5	Y			1	×	x	Y	2	ScoTicBt	100	FM	S-G	200	100	ZrnTur; GBlast ?; Fol? veinule Fel+Am+Bt+Tur	L

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
A5-28	CXN ?	x												100	F	S-G	60	50	Plusieurs XNL CXN	×
A5-29	PXN	x												100	м	S-R	45	20	Aussi XNL CXN, QZ, etc.	x
A5-30	GS							x	x					0	F	S-R	50	45	QFP; petit, altéré	x
A5-31-1	Grt				25	68		5				1	? Oxi		G	R	19	18	Xénocristal résorbé; Grt -> Bt+Fel+Opa	P
A5-31-2	CXN	x		x							x		? Opa	100	М	S-G	40	20	Aussi XNL ECL?: Grt Px	P
A5-32-1	CXN8	98		x	x			x	x		x	x	Rt Srp?	99	М	S-G	55	35	Protoclastique? exsolutions? partie de A5-32	Р
A5-32-2	Sul				?				?		x	99	PyrPyCcp	100	G	R	> 25	10	Veinules Car+Bt? ± résorbé; couronne Bt+Fel	P
A5-32-3	MBS11b	10		x	x	1		88	x	x	x	x	? Zrn	11	FM	S-R	> 25	> 15	Fol; lentilles Cpx; symplect; microperth; Cpx2	Р
A5-32-4	CSL9a	92		x	x			5	?			x	Rt Mag	95	F	R	6	4	Cpx zoné; exsol Opa; "poches" Fel+Qtz?	Р
A5-32-5	NR4	x	x	x	x			x	1	-					MG		> 5	> 16	2 Bt; remplacements partiels; peu déformé	P
A5-32-6	CXN	85		10	3			x					Opa	100	F		>7		Mas; cumulat; = Cpx MNT?	P
A5-33	QZ				1	x			x						F	S-R	25	15		
A5-34-1	WB2a	10	70	2	15		-	2	x	x	x	x	Zrn Rt	98	MG	S-R	70	30	Mésocumulat; protoclastique; Fol; =A5-26, A5-14	Р
A5-34-2	Срх	x		x	x			x		x	x	x			G	R	> 9		Différent autres MC? = PC? "poche" MNT	Р
A5-34-3	CXN1a	-																		Р
A5-35-1	CXN8	98		?	x		1	x	?	1	x		OI?TtScOp	98	м	S-G	30	-	GBlast polygonal; Partie 2 XNL PXN ≠	L
A5-35-2	CXN8 ?	90		x	x	1		5	x	x	x	?	Ttn Scp	90	м	G	> 25	> 20	Résorbé; Alt; Granulaire	L
A5-36-1	QZ						1		80		20	x	Zrn Ttn	0	FG				Bleue; Fol; Rub; CClast; (avec A5-32)	L
A5-36-2	CXN	98		x	x	1	(x)	x		x	x	?	Ttn Tlc	98	м		> 25	> 15	Fol; Alt; veinules Bt+Am+Ap, etc.	L
A5-37-1	CXN8	98	+	x	1			2	x	1	x	?	Ttn	98	М	S-G	50	25	Protoclastique; Fel interst; (avec A5-18)	L
A5-37-2	CXN8	x		x	x	1	1	x			x	?	Tlc	100	м				Granulaire	L
A5-38-1	DN7a				2		5						93%OI Srp	100	FG	S-G	28	24	PClast; ± déformé; ± Fol; Alt à 40%	P
A5-38-2	OXN	?	x	x	×								Scp? Mag		м	S-R	15	9	Opx zoné; très Alt	Р
A5-39-1	Mag ?				1								Mag ?		-	S-G			Avec A5-9 et A5-30	Р
A5-39-2	MBS11a	1	1	+				1	+											Р
A5-40-1	Man		1	+	×			x		1		x	Mag Ilm OI?		м	G	18	10	Cumulat ? + 2 autres XNL (avec A5-31)	P
A5-40-2	CXN8	85		x	10	1		+	-		+	2	Tlc	98	м	S-G	12	8	Hypid; Bt déformée, ≠ de celle de la matrice; Mas	Р
A5-40-3	CXN8	x		×	x		x	+		-		×	Tic Ms	98	м	G	15	10	Cpx Alt, déformé, zoné? Bt ≠ matrice; Mas	Р

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
	0/11													00	EM	6	1	1	PRizet: Alt: Mac: Bt - MNT	P
A5-40-4	CXN	X		X	X				+		+	X		99		<u> </u>	-		1 grain: fine bordure Cox vert	P
A5-40-5	CXN	×												100	M	<u> </u>	3	3		- '
A5-40-6	Срх	X					+							100	M	<u> </u>	4	2	AC autom, zone, verdatie, remplacements	
A5-40-7	GS ?						?	X	×		X		Zrn	1	<u> </u>	<u> </u>	2	2	QFP; Couronne Bt autour ANL	
A5-40-8	Qtz	-							X					0		G	1	1	1 grain; Inclusions aciculaires; couronne Cpx IIIs	
A5-41-1	CXN8	50			50		· · ·	X			X	X	Scp	100	F-M				Fol; Rub; GBlast; (collision avec A5-41-1); avec A5-28	
A5-41-2	CXN8 ?	99		X	×		ļ	?	-		x		Scp Ttn Ms?	100	М				GBlast; collision avec A5-41-1	<u>Ч</u>
A5-42-1	CXN8	x	<u> </u>	ļ			· .	X	<u> </u>	L			OI?		F-M				3 XNL CXN; avec A5-27	P
A5-42-3	GB5																			P
A5-43	CSL9a	96		?				3	x		x	?	Ttn Opa	96	F	S-G	> 40	> 25	CSL? vert foncé; PClast; GBlast; Fol; lentilles Fel	L
A5-44	MBS	x						x						60	FΜ	S-G	275	180	Fol; Rub: CXN GBlast/MBS GBlast; Bandes gg	
A5-45	CXN8	x											Wo?	100	М	S-R	145	95	Mas; hypid; homogène	
A5-46	GB	x						x	x					40	FΜ	S-R	250	180	Métagabbro; Fol; rouillé	
A5-47	CXN ?	x		1	x										F	S-R	60	40	CSL? Mas; ± Fol: Phl	_
A5-48	CXN8	x	1			1								100	F	S-R	75	50	Vert foncé; Fol	
A5-49	CXN	x	+											100	G	S-G	20	20		
A5-50	CXN	x						-						100	G	S-G	20	20		
A5-51	CXN	×	1			1		-						100	G	S-G	20	20		5
A5-52	CXN8	×		+			·							100	м	S-G	55	20	Vert foncé; Mas	
A5-53	CXN8							-		+	+			100	м	S-G	30	20	Vert foncé; Mas	
45-54	GB	1 v			-			Y			-			10	м	G	25	20	Fol ignée; leucocrate	
A5 55	CYN	+ ^												100	F	S-G	35	22	Mas	
A5-55		+ Ĉ										-	Man	100	M	S-G	50	22	Magnétique: gris métallique	
A5-50	CVND	^		1		+							widg	100	M	5.6	35	20	Mas	
A5-57	CXN8	X		-								+		100		9.0	35	20	Mas	
A5-58		X												100		5-0	77	25	Vert foncé: Mas	
A5-59	CXN8	X										+		100	-	5-0	05		Vert foncé: Mas	
A5-60	CXN8	X						_						100	+	5-G	25	22	Ventionce, Mas	
A5-61	CXN8	X												100	M	S-G	27	15	vert tonce; mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques Éch
	-																		
A5-62	WB	x	x											100	М	S-G	100	70	Mas; hypid; Cpx pâle
A5-63	MYL			x		x		x							F	S-G	55	42	Fol; Éclogite, mylonitique ?
A5-64	QZ								x					0	М	S-G	80	50	Fol; Qtz blanc
A5-65	CSL?	x									1				F	S-G	40	20	CXN8 ?; rouillée
A5-66	WB	x	x					?		?				95	М	S-R	50	35	≠ des autres CXN vert foncé
A5-67	AMP	x		x				x						40	М	S-G	35	22	Mas; GBlast
A5-68	CXN8	x			x									100	м				Mas; homogène
A5-69	CXN	x												100	м				Mas
A5-70	CXN	x						x						90	F	S-G	70	30	Fol
A5-71	MBS			x				x						20	F	S-G	30	30	Mas
A5-72	Am			x										100	G	S-G	17	17	MC
A5-73	CXN	x												100		S-G	20	15	Mas
A5-74	CSL	x	1					x	x					15	F	S-G	35	30	Rub
A5-75	CXN8	x			x									100	М	S-R	35	20	Mas; vert foncé; remplacements
A5-76	CXN8	x		1					1					100	м	S-G	30	25	Vert foncé; Mas
A5-77	CXN8	x			1									100	F	S-G	30	15	Mas
A5-78	CXN8	x												100	М	S-G	50	25	Mas; vert foncé
A5-79	GS			x				x	x					1	F	S-G	130	50	QFP; FoI; encaissant ?
A5-80	GS			x				x	x					1	F		40	20	QFP; Fol; encaissant ?
A5-81	CXN	x		x										100	F	S-R	35	20	Mas
A5-82	GS			x				x	x					1	F		30	10	QFP; fragment de l'encaissant ?
A5-83	CXN8	x												100	м				Mas; vert foncé; rouillé
A5-84	GS			5				x	x					5	F	S-R	25	17	QFP; GBlast
A5-85	CXN8	x												100	М	S-R	20	17	Mas; vert foncé
A5-86	CXN8	x						1						100	F	S-G	28	20	Mas; vert foncé; remplacements
A5-87	CXN8	x		1										100	М	S-R	20	20	Mas
A5-88	ECL	x			+	x								100	М				Mas; pas couronne réaction autour Grt
A5-89	AMP			x		-								100	м				Noire; Mas

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			ļ			1	<u> </u>													
A5-90	UMF				ļ				·					100						
A5-91	GS		· · ·					x	X					0	FM	S-R	30	15	QFP; Fol	
A5-92	CXN8	x	ļ				-							100	F				Vert foncé; Mas	
A5-93	GS		ļ		x	x		x	x						ļ	S-G	40	20	QFP; couronne Bt autour Grt	-
A5-94	AMP			40				x						40	F	R	35	20	GBlast; mésocrate; Mas	
A5-95	CXN8	x												100	м	S-R	25	25	Mas; hypidiomorphe	
A5-96	?							x						0	FΜ	S-G	40	15	PI recristallisé	
A5-97	QZ							x	x					0	м	S-G	40	30	Impure; ± Fol	
A5-98	GB ?	x							x					50	TF	S-G	225	25	Métagabbro ? CSL ?	
A5-99	QZ							x	x					0		S-G	150	50	Impure	
A5-100	CXN8	x												100	F	S-G	30	30	Mas; vert foncé	
A5-101	QZ					5			x					0	м	S-G	80	80	Impure	
A5-102	CXN	x	1			x								100	F					
A5-103	ANO			x				x	x					5	FΜ	S-R	35	35	GBlast 1-2 mm	
A5-104	CXN8	x		ļ										100	М	S-R	140	105	Mas	
A5-105	GS	1				x	1	x	x						F	S-G	115	15	QFP	
A5-106	MBS	1		x		+		x						10	м	S-G	75	25	Fol; leucogabbro ?	
A5-107	CXN8	x	1		1	·		-						100	м	S-G	25	20	Mas	
A5-108	ANO	x			+			x						5	F	S-R	70	40	GBlast	
A5-109	CXN	×			x				1		-			100	м	S-G	60	30		
A5-110	GS							x	x					0	F	S-G	70	25	QFP; GBlast	
A5-111	GS				×	×	1	x	×						F		40	15	QFP; couronne Bt autour Grt; Fol	
A5-112	CXN	×				<u> </u> -						+		100	м		25	10	Mas	
A5.113	07	^	+		+	+		10	90		-			0	M	S-G	50	30	Fol	
A5-114	Cny		+	v		+								100	G	G	20	15	MC noir	
A5-115	MBS			Î	v		•	v			+	-			F	S-G	120	50	Fol: Bub	
A5 116	60	^	+		Ĵ						+	-		10	F	S-P		+	QEP: Fol	
A5-110	CVN	~		<u> </u>			<u> </u>	Û				-			+	S-R	15	10		

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			[]]				<u> </u>											·	
A5-118	CXN	x												100	F	G	25	15	Mas	
A5-119	GB			x	x		×							10	М	R	35	20	Métagabbro	
A5-120	?														F		22	10	Pâle	
A5-121	QZ						x	x						0		S-G	50	20	Impure; Fol	
A5-122	Срх			x										100	G	G	10	10	MC	
A5-123	?					x		x							F	S-G	15	5	· · · · · · · · · · · · · · · · · · ·	
A5-124	?					1					L						10	5		
A5-125	CXN8	x	1											100	F		20	20	Mas; vert pâle	.
A5-126	CXN8	×x												100	М	S-G	130	90	Mas	
A5-127	CXN8	x												100	F	S-G	25	25	Vert foncé; Mas	
A5-128	CXN ?	x												100	М	S-R	40	35	Vert foncé	
A5-129	?	+					+								TF		35	15		
A5-130	?	+													F	S-G	30	25	Blanc	
A5-131	GS	<u> </u>					+	x	x					0	FΜ		50	30	QFP	
A5-132	PD ?	1				1			1	<u> </u>			OI?	100	F	S-G	35	23	Mas	
A5-133	GS				†	x		x	x				Grt			S-G	160	130	Paragneiss	
A5-134	MBS			×	x			x		1						S-G	50	50	Mas; hypid	
A5-135	CXN	x	1			1				-				100	F	S-G	80	40	Mas	<u>.</u>
A5-136	CSL	x			<u> </u>	<u> </u>	1	x	x						F	S-G	30	25		
A5-137	UMF	+	1						\square					100	TF	S-G	30	17		
A5-138	CXN8	x	<u> </u>			1					\top			100	м	S-G	10	5		
A5-139	CSL?	x						1	x						F	S-G	25	20		
A5-140	UMF	1	+	?				·		1	-			100	F	R	25	25		
A5-141	CXN8	x			+	+				+				100	F	G	80	50	Mas	
A5-142	UMF			×	h	+				1		· /		100	F	S-R	25	20		
A5-143	CXN8	×	-			+	÷	+		-		1		100	F	S-G	30	15	Mas; vert foncé	
A5-144	FCI			†		x	+	-	+	+	1	+	OI?		F	S-R	20	20		
A5-145	WB5	30	65	2	×	+			-	+			Маа	99	м	S-G	60	60	Fol±, Bt secondaire	Ρ

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
										······										
A5-146	CXN8	x										x		100	F				Rouillée; Mas; (avec A5-35)	G
A6-1	CXN8	97		x	2		1		?			x		100	М	S-G	25	20	Spl vert olive; ± EGran; veinule Bt	Р
A6-2	CXN8	93		2	1		2						Tlc Scp?	98	FΜ		25	25	ou WL7c? PClast; Fol?; remplacements	Р
A6-3	CXN8	90		4	x	x	4	?			1	x	TIc Crn Opa	100	м	S-R	55	55	Granulaire; ±GBlast; réactions; symplectites	P/G
A6-4	CXN8	98		x		x		?	?		x	x	TIc Ttn	99	МG	S-R	50	35	PClast; GBlast; symplect; Opx->Am+Tlc+Car	Р
A6-5	CXN5	90	5	3	x			x					llm Mag	100	F	S-R	30	20	GBlast; PClast; 2 Fol? veinules.	Ρ
A6-6	CXN8	92		5	2			1	x	x	x	x	Ttn	99	м	S-G	40	35	PClast; Alt; fracturé; poches Mx secondaires	Р
A6-7	CXN8	100		x	x									100	FG	S-G	100	80	PClast; GBlast; ± Fol; idem A5-5?	Ρ
A6-8	MBS11a	x						x					Mag ?	100	F	S-R	150	110	Très foncée; ± Fol; exsol Cpx	L/G
A6-9	CXN8	97		2	x		1				x	?	Ttn Tlc	100	МG	S-G	45	40	Granulaire; ± GBlast; Cpx néoformés?	L
A6-10	OXN		x											100		S-G	25	25	Porphyrique; veinules rouilles	
A6-11	CXN	x												100	м	S-R	35	25		x
A6-12	CXN	x												100	F	G	35	35		x
A6-13	PD?												OI?	100	м	S-R	30	25		
A6-14	GS			1		x		x	x						м	S-G	40	35	QFP; avec A6-16, A6-25	x
A6-15	CXN	x			x	1						x	OI?	100	FM	S-R	100	40		
A6-16-1	Grt				x	x		x				x	Rt Zrn Mag?		G	R	30	30	Bt verte et brune; couronne de réaction	P
A6-16-2	CXN8	x		x	x			x		x		?	Ора		М				Ap et Am grossières; Cpx2; MNT interstitielle	Р
A6-17	CXN	x												100	F	S-R	20	20	idem A6-15	x
A6-18	WB	x	x	x	x			x					PI		М	S-G			PClast, GBlast, kinks	Ρ
A6-19	GLM			1	95				?			x	Ms? Srp	95	м	S-G	50	30	Fol; incl. ou relique? de Bt verte, Am, Fel; (avec A6-19)	Р
A6-21	CXN	x	?		x		x						01?	100		G			Alt; aussi partie de 2 autres XNL	Р
A6-22	QZ				x	x		x	x						м	S-R	45	30	Remplacements; (avec A6-19)	×
A6-23	ECL ?	x	1	x	x	x		x				x			м	S-R	>30		ou Gneiss?; PBlast; GBlast; Veine Qtz? (avec A6-21)	Р
A6-24A-1	WL7b	53		x	2		10		1		x	10	25%OI Srp	100	F	S-G	20	20	GBlast; OI -> Cpx, Srp; Spl -> Phl; avec A6-12	2P
A6-24A-2	CXN8	90		3	x			?	1		x	x	Scp	96	FΜ		> 20	> 5	Granulaire; PClast?	P
A6-24A-3	CXN8 ?	95		x	5			x			?	x	Scp	100	FM	G	20	5	PClast; CClast	Р
A6-24A-4	MBS	15		1	x			78	1		<u> </u>	5	llm	16	F		> 15	> 8	Fol; GBlast; remplacements importants	Р

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
A6-24A-5	CXN M	x		x	x			x				x		100	м	R			Adcumulat? Cpx zoné; remplacements	P
A6-25-1	CXN8	99	+	x	x		1	x		x	x	x	Ttn Phl Bt	100	G	S-G	>60	30	Granulaire; Rosée; (avec A6-16)	Р
A6-25-2	CXN1b	83		10	<u> </u>	5		x		x	x	x	Tic Opa	93	м	SR	> 21	> 12	Cumulat; Cpx->Am+Fel+Opa; Grt->Tlc+Opa+Am	P
A6-26	GS/MBS	x			x			x	x					15	F	S-R	50	50	Fol; Rub: Gneiss QFP/métabasite	
A6-27	Срх	x				+	-			1				100	G	G	15	7	Phénocristal vert foncé; autom	
A6-28	UK	x	+		x	1								100	м	S-G	25	22		
A6-29	?	?						?							TF	S-G	35	15	Gris pâle; Mas	
A6-30	MBS	x					-	x	x		+			10	F	G	45	30	Mas	
A6-31	MBS	x				1		x	x					10	F	S-G	30	24	Mas	
A6-32	CXN	x										x		100	F	S-G	40	25	Alt; brun rouille; Mas	
A6-33	MBS	?		x	1	1		x	1					30	F	G	55	25	Fol	
A6-34	CXN8	x					-							100	FM	G	50	32	Vert foncé; Mas	
A6-35	?				1	x		x	1	1			Ms	0	F	S-R	55	40	Fol±; Alt.	
A6-36	CXN	x					-					x		100	F	S-G	30	25	brun rouille; Alt; Mas	
A6-37	CXN	x	?	-			-	-						100	F	S-G	30	20	Mas	
A6-38	OXN ?	?	x									x		100	FΜ	S-G	30	25	Mas	
A6-39	GR ?	1						x						0	F	S-G	35	14	Roche granitique; Mas; couronne Px autour XNL	
A6-40	CXN8	x					?							100	FM	S-G	50	18	Gris pâle; Mas	
A6-41	MBS	x			x			x						15	F	S-G	54	33	Fol±	
A6-42	CXN8	x		<u> </u>										100	F	S-G	36	21	Vert foncé; Mas	
A6-43	CXN8	x			1									100	F	G	40	25	Vert foncé; Mas	
A6-44	CXN	x	-			1		x	1					95	F	S-G	28	40	Vert moyen; ±Fol	
A6-45	?					1		x						0	м	S-G	55	22	Roche feldspathique; Rosée; Mas	
A6-46	?		1	1					1			x				S-R	55	33	Brun rouille; remplacements importants	
A6-47	CXN8	x		-						1				100	м	S-G	25	18	Gris pâle; Mas	
A6-48	MBS	x			1	1		x						25	F	S-G	33	28	Fol±	
A6-49	GR	1	1					x	x					0	F	S-G	52	35	Roche quartzofeldspathique; brun rouille; Mas	
A6-50	GS	×			x			x	x					15	F	S-G	55	32	QFP; ±Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
A6-51	CXN8	x												100	МG	G	50	40	Brun pâle; Alt; Mas	ļ
A6-52	GS				x			x	x					1	F	S-G	45	30	QFP; Fol	×
A6-53	WB ?	x	x											100	TF	S-G	50	25	Mas; en 2 parties	x
A6-54	GR ?			?				x	x					< 1	FM	G	115	40	Roche granitique; Mas; résorbé	x
A6-55	MBS	x		?				x						40	F	S-G	40	20	Mas	x
A6-56	?	x		?				x						40	F	R	30	20	Mas	
A6-57	WB	80	20											100	м	G	40	25	Vert foncé; Mas	x
A6-58	MBS	x						x	x					20	F	S-G	35	35	Fol	x
A6-59	MBS	x						x				1		15	F	S-R	56	28	Fol	
A6-60	MBS ?	?		x			l .	x						30	F	S-G	40	40	Fol	
A6-61	GB4	65	?	25	x			10	x		x	x	Mag Ilm	90	м	S-G	35	25	Mélagabbro; mésocum.; exsol. Spl Ilm; Fol? peu déformé CXN Pl	Р
A6-62	CXN	x						x				x		97	FM	S-G	90	35	Cpx vert olive; ±Fol	
A6-63	Срх	x			x	-								100	G	G	12	8	Phénocristal autom Cpx contenant Bt	
A6-64	GNL	60	1	28	5	3		3		?	x	x	RtZmllm	97	F	S-R	90	60	Rub; 2 Fol? linéation; GBlast; Grt -> PI+Bt	P
A6-65	CXN	x												100	М	S-G	40	20	Alt; Mas	
A6-66	CXN	x						x	1					95	F	S-R	45	25	Fol±	
A6-67	GR ?	1	1					x	x			x		0	F	S-G	60	65	Roche QFP; rouillée; Alt; Mas	
A6-68	GS							x	x					0	F	S-G	70	30	QFP; Fol; mylonitique	
A6-69	GR ?	1	x				1	x	x					10	F	S-G	50	20	Roche QFP; Rub fin; mylonitique	
A6-70	CXN	x		1				x	ſ			x			м	S-R	75	60	Brun rouille; Alt; Mas	
A6-71	MBS ?	x	1					x	x					10	F	G	120	65	Fol; GBlast	
A6-72	CXN8	x					-				1			100	F	S-G	35	22	Vert pâle; Mas; veine Fel ?	
A6-73	CXN8	x			-									100	м	G	30	20	Vert foncé; Mas	
A6-74	MBS	x		?				×				1		40	F	S-R	45	30	Fol±	
A6-75	CXN8	x			-	-	-	-						100	M	G	65	35	Brun pâle; Mas	
A6-76	QFP			x		?		x	x		-			5	F	S-G	65	40	Roche QFP; Mas; Grt rétrogradé en ?	
A6-77	CXN8	x	<u> </u>											100	М	S-G	30	25	Vert foncé; Mas	
A6-78	MBS	×			1			x	x		1			15	F	S-R	50	35	Mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
					<u>(</u>															<u> </u>
A6-79	QZ							x	x			x		0	FM	S-R	30	25	Rouillé; Mas	
A6-80	QFP	?			1			x	x					5	F	S-G	15	10	Mas	
A6-81	Kfs				1			x						0	G	S-G	24	5	MC violacé	
A6-82	QFP	1		x				x	x					3	М	S-G	65	50	Mas; GBlast	1
A6-83	CXN8	x	1			1							and a shade a factor of the	100	м	S-G	61	40	Mas; GBlast	
A6-84	GS				1			x	x			x		0	м	S-G	39	31	QFP; Alt; Fol	
A6-85	GS	x	1					x	x					3	FΜ	G	45	30	QFP; Fol	
A6-86	GS	x	1					x	x					1	М	S-G	55	47	QFP; ±Fol	
A6-87	QFP	?					-	x	x					1	м	S-R	70	65	QFP; ±Fol	
A6-88	GB		x	x		x		x	x		1			10	FG	G	68	22	Fol; cour Am autour Opx; veine Qtz 3mm; PBlast	
A6-89	QFP	+				-		x	x			< 1		0	FΜ	S-R	47	23	Rouillé; Mas	
A6-90	QFP	x	1	+				x	x					1	G	S-G	50	35	Mas	
A6-91	GS			1	1			x	x					0	М	R	45	18	QFP; Fol	
A6-92	GR ?	1						x	x					0	м	S-G	94	63	Roche granitique; textures myrmékitiques; Mas	
A6-93	CSL ?	?			x			?		?	-		Ms		м	S-G	48	54	Ap vert pâle (ou Cpx ?); Mas	
A6-94	QZ	< 1				5		< 1	x					< 1	F	S-R	38	25	PBlast Grt; couronne Cpx+Pl autour Grt	
A6-95	CXN8 ?	x	-			?								100	F	G	31	22	ECL ? couronne Bt autour XNL	
A6-96	GB	5	-				-	x	x			x		5	FM	G	32	10	Fol±	
A6-97	GB	5				?		x	x					5	м	G	40	13	Alt; recristallisé	
A6-98	GB	10	1					x	x					10	М	S-R	60	40	±Fol; recristallisé; même XNL que A6-99	
A6-99	GB	10			1		1	x	x					10	М	S-G	37	32	Alt; ±Fol; recristallisé; même XNL que A6-98	
A6-100	GS	3						x	x					3	м	G	60	13	QFP; Rub; Alt; recristallisé	
A6-101	GB	15	1	1				x	x					15	FM	G	24	16	Recristallisé	
A6-102	GS	x		•				x	x						FM	FM	35	25	Rub: riche Cpx/QFP	
A6-103	GS	?		-				x	x					20	F	G	30	10	QFP; PBlast Px; Rub Qtz; mylonitique	
A6-104	CXN8	x					-	-						100	м	G	32	21	Alt; Mas	
A6-105	QZ		+	1		1		-	x					0	F	S-G	40	39	Fol±	
A6-106	CXN8	x	1					x						98	М	R	53	26	GBlast; PI interst	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
												L								<u> </u>
A6-107	QFP							x	x					0	FΜ	R	80	55	Rouillé	
A6-108	CXN8	x						< 1					· · · · · ·	100	М	G	30	28	Rouillé; PI interst	
A7-1	CXN8 ?	85		3	x	?		x				x	? Ttn Scp?	89	М	S-R	40	30	ou CSL? granulaire; Alt; résorbé?	Р
A7-2	CXN	x													G	G	15		2 XNL CXN	
A7-3-1	CXN G ?	?		84	15					x	1	?	Ора	99	F		> 30	11	Zoné; sphérules Am Car ± Bt Opa Ap; remplacements	Ł
A7-3-2	CXN	x		x	x									100	F	G	> 6	4	± Fol; Cpx "accrétés"	L
A7-3-3	CXN	x		x	x			x	?		x	?	Ms? Opa		FΜ	G	4	3	Protoclastique ? néoblastes	L
A7-3-4	ANO ?			x	x			x					Opa	0						L
A7-3-5	Срх	х		x	x			x					Opa	99	G	н	·> 15	9	MC1; zones reliq vertes au centre; Am et Bt (bord.) épitax	L
A7-3-6	Срх	x	ĺ	x	x			x		x			Opa	99	G	н	10	5	MC1; 2 cx; très résorbé; poreux; zones Am vert foncé	L
A7-3-7	Срх	x		x	x			x					Opa	99	G	н	> 8	4	MC1; brun-vert; zones poreuses; extinc± nette; incl: Ap	L
A7-3-8	Срх	x		x	x			x					Opa	98	G	х	7	> 4	MC1; brun-vert; zones reliques Cpx et zones poreuses	L
A7-3-9	Срх	x								x					м	н	5	4	MC1; très résorbé; 2cx accolés même extinc? incl Ap et autre	L
A7-3-10	Срх	x								x					м	Α	2.5	2.5	MC1? gris brun; résorbé; reliq coeur "oscillatory zoning"	L
A7-6	Sul ?				• 							x							Très altérés	x
A7-7-1	CXN1b	x		x	x		-						Srp?		F	G	> 26	> 13	MC4; polycrist; xénom; résorbé; coeur brun pâle; fract en bordure	L
A7-7-2	CXN8 ?	80		10	1						9			91	FΜ	S-G	> 26	> 6	Protoclastique? sous-grains; Car et Am interst	L
A7-8	MNT	20		2	30			48	?	x		x	Zrn? Ttn	52	F				Suite de A7-9; gf/gm; microporphyrique; microperthitique	L
A7-9	MNT	x		x	x			x		x		x			F				Suite de A7-8 (voir carnet de note 8 p. 31)	P
A7-9-1	CXN1a	92		1	3			2	1	x	1		Opa Zrn	96	F	G	>20	8	Mas; Granulaire; "poches" MNT et Am+Qtz+Car	P
A7-9-2	CXN1b	94		5	1	1		×	x		x		? Opa	100	FM	х	>15	>11	Cpx vert, mâclés; rempl; poreux en bordure XNL	P
A7-9-3	Срх	x											Rt?	100	G	н	10	5	MC4; brun pâle, alt brune fract; traînées Opa: Rt?	Р
A7-9-4	Срх	x		x	x			x					? Opa	100	G	н	7	4	MC4; 1/2 autom brun pâle, 1/2 vert brun; extinc irrégulière	P
A7-9-5	Срх	x		x	x			x						100	G	н	>11	>5	MC4; résorbé; reliq brun pâle, manteau gris vert	Р
A7-9-6	CXN1a?	65		5	30			x	?		1		Opa Zrn	100	м	G	3	3	2 cx	P
A7-9-7	Срх	x	-	x	x	-		-		+			MI d'Alt?	100	м	Α	3	2	MC4; 2 cx reliq brun pâle, alt brun foncé	P
A7-9-8	CXN	x		x	x			x	-	1			Ора	100	М	G	>3	2	Accumulation cx Cpx? contour irrégulier; =A7-9-1	Р
A7-10	MNT	?		?	?			?	1	?					F				Échantillon pour géochimie roche felsique, grain fin	x

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
									-											
A7-11-1	Срх	x		x	x			x		x	x	x		100	G	Α	13	8	MC1; vert à vert-brun; zones poreuses; incl Ap	Р
A7-11-2	Срх	x		x	x			x					Opa	100	G	х	10	> 6	MC1; vert à vert brun; infiltration MNT; fines incl? Fel	Р
A7-11-3	Срх	x		x	x			x					Ора	100	G	н	4	3	MC1; résorbé; coeur vert, cour poreuse, bord Cpx MNT	Р
A7-11-4	Срх	x		x	x	1		x						100	G	н	6	5	MC4 (MC3); brun très pâle; extinction texturée	Р
A7-11-5	Срх	x		x	x	1	1	x						100	G	н	6	6	MC4 (MC3); brun très pâle; fine bord Cpx MNT	Р
A7-11-6	CXN	x		x	x	?		x		x	x		Opa Ttn		М	S-R	16	10	± désagrégé; remplacements importants; Cpx2	Р
A7-11-7	MNG ?		x	x	x			x	x	x			Opa Ttn Zrn		FΜ		> 24	>7		Ρ
A7-11-8	Срх	x			1						-				G	Α	9	3	MC2; coeur vert-brun rosé; zone poreuse, bord=Cpx MNT	Р
A7-11-9	Срх	x			1										М	A	3	2	MC4; 1/2 autom; très poreux, reliq près bordure	Р
A7-12	MNT	25		1	35			39	x	x	?	x	Ttn Mag	61	F				Contact MNT gf/gm; microporphyrique; (avec A7-11)	Р
A7-12-1	Срх	x		x	x			x		x	x			99	G	A	> 15	> 9	MC4; coeur brun-vert; bord poreux; extinc "chamoirée"	Р
A7-12-2	Срх	x		x	x	1		x		x			Ора	95	G	Α	> 6	3	MC1 ou MC4? cx cont optiq; vert à vert-brun trainées Opa	Р
A7-12-3	CXN8	60	1	x	x			x	?				Scp Opa	95	м	S-R	> 12	> 7	Granulaire; Alt; bordure réaction	Р
A7-12-4	Срх	x	<u> </u>	x	x		1	x		x	x			99	G	х	10	> 4	MC4; résorbé; vert pâle à vert-brun, reliq brun pâle diffuse	Р
A7-12-5	Срх	x	1	x	x	1		x		x			Opa	95	м	х	4	3	MC3 (XC); incol; bord Cpx MNT très fine	Р
A7-12-6	CXN8	97		1	2									97	м	S-G	5	2	Cpx isométriques arrondis; ± 120	P
A7-12-7	Срх	x	1	x	x			x		x	x			99	м	G	4	1.5	MC résorbé; Alt; =A7-12-1	Р
A7-12-8	?		1	98	1			?	1		1		Ора	99	F	G	3	2	XC totalement remplacé par Am en gerbes	P
A7-12-9	Срх	x		x	x			x		x		<u> </u>		100	м	х	> 6	> 3	MC1; vert à vert-brun; très résorbé; inclu Ap incluant Car	P
A7-12-10	Срх	x		x	x		-	x		x	x			99	м	Α	2	2	MC1; reliq vert à vert brun; très poreux; bord Cpx = MNT	Р
A7-12-11	?				1			98	?	x	x			1	М	G	8	1	XNL? textures magmatiques: PI? en gerbes	Р
A7-12-12	?	1	?	1	x		+	x				x	Tic Ilm Zrn Hrr		FM	S-R	> 10	6	Sous grains Fel; Bt en gerbes; résorbé; remplacé	P
A7-12-13	Срх	x		1			-	1		1				100	G	G	4	2	XC Cpx clair (=CXN8?); fine bordure réaction	Р
A7-12-14	Срх	x		x	x		1		-	-			?	100	М	Α	2	1.5	MC4; 1/2 autom; reliq brun pâle, alt. brune; exsol Opa boro	I P
A7-12-15	Cpx ?	2		x	x			1		x				95					Cpx amphibolitisé? Incl. autom Ap-> incl. orientées	P
A7-13-1	CXN	99		x	x		-	x		x	x		Opa Ttn	100	м	G	14	11	Protoclastique; Fol? zone de réaction avec A7-13-2	P
A7-13-2	?	?		x		1		-			x	1	TIc Srp mica		М	S-G	> 10	10	Totalement remplacé	Ρ
A7-13-3	WB	x	?	x	x	-	-	x		x	x	1	<u> </u>		F	S-R	> 20	12	Fol? presque totalement remplacé	Р

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			<u> </u>																	
A7-13-4	Срх	x		x	x									100	G	Х	10	2	MC4; résorbé; brun pâle; pas zones verdâtres; alt brune	Р
A7-13-5	Срх	x		x	x			x							G	н	10	6	MC4; reliq brun pâle, manteau verdâtre; bordure poreuse; résorbé	Р
A7-13-6	Срх	x		x	x			x		x		x	Ttn		G	Α	13	11	MC1; incl Ap autom avec incl ovale "liquide" ~ MNT et Car	Р
A7-13-7	Срх	x		x	x			x							G	Α	6	> 5	MC4; mâcle: 1/2 très alt et l'autre moins; résorbé, poreux	Р
A7-13-8	Срх	x		x	x			x							G	Α	7	5	MC4; coeur reliq? manteau brun pâle, bord Cpx = MNT	Р
A7-13-9	Срх	x													М	н	3	2	MC4; brun pâle, frac brun foncé; bord poreuse.	Р
A7-13-10	Срх	x		x											М		3	1.5	MC4; Am dans zone remplacement en bordure	Р
A7-13-11	Срх	x													М	Α	2	1	MC1; coeur vert à vert-brun, zoné; bord. poreuse=Cpx MNT	· P
A7-23	GB			x						x	x		Zrn						Alt; CSL?	
A10-1	GB	x					,	x					Mag		MG		80	20	Métagabbro; hétérogène; Mag abondante	
A10-2	Sul											x			м		20	10	Géode? avec pyrite autom.	
A10-3	CSL	x						?	x						F		180	150	Fol±; Alt brune; Cpx vert foncé	
A11-1	CSL ?	x			x	x		x	x						F	S-G	90	40	Fol; Rub; résorbé	
A11-2	GS	x						x	x				Mag		FΜ	G	630	210	QFP = gneiss encaissant; beige \pm rosé	
A12-1	MNT																		MNT le + jeune; accumul. XNL bordure W; réaction?	x
A12-1-1	Срх	x											Ttn		G	х	7	5	MC3 (XC); incolore, inclusion Ttn	2L
A12-1-2	Срх	x													G	н	5	5	MC1; zones reliq et poreuses recoupées par bord pâle zone	á 2L
A12-2	CSL9a	25				x		1	5	x	x	x	Scp Ttn Mag	26	F		25	15	GBlast; Fol; Rub	Р
A13-1	AMP	x		?				x							F	G	520	150	Frag amphibolite encaissante; Fol; GBlast; résorbée	
A13-2A	MNT (4)*	5		25	15			54		x		x	Ttn ou Rt		F				Recoupé par (3); ≈ 25% de XNL, PC, MC et XC	P/G
A13-2B	MNT (5)	6		10	25			58		x	x	x	Ttn Zrn? Qtz?		F				Recoupe (2); ≈ 15% XNL et CX; sphérules felsiques	L/G
A13-3	MNT														F				Apophyse 10 cm (2?) et encaissant amphibolite	L
A16-1A	MNT (3)	5		15	19			60		x		x	Ttn IIm		F				Recoupé par (2); Porphyr; GPorphyr; < 5% XNL+CX	P/G
A16-1b-1	MC	x						x		x			Kfs PI		M	н	2	2	MC1; polycrist; vert foncé; accolé à Kfs-PI-Ap	В
A17-1	MNT (4?)	24		1	25			50		x		x	Ttn Zrn?		F				Bordure de réaction ≈ 1 cm autour frag. encaissant	P
A17-2	?	?						x						6440-3890-A P A	F	G	220	20	Idem B17-1 mais libre; Vert moyen; // dyke	Р
A19-1	?	-	1		1	-									М		20	10	XC? avec enveloppe Cpx vert	
A21-1	CXN8	40	1	x	60	-	1	?		1	x	x	1		М	S-R	180	120	brun rouille; Mas	P/G

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
											ļ									
A21-2a	CXN8	x										x	Scp		м	S-R	320	180	Gris; zone moins alt à Cpx ±Scp, Sul	L
A21-2b	CXN8?	x			x							x			м	S-R	320	180	Gris; zone riche en Bt; autre XNL accolé	L
A21-3	CXN8																			G
A22-1-1	CXN8	x	?												F	S-G	35	25	Cpx vert bouteille	Р
A22-1-2	MBS11b																			Р
A22-2	CXN1c?	x			x										F	R	170	120	Rub	P/G
A22-3	CXN8	84		x	10		5	x			x	x	Scp Ms Ttn	99	G	S-G	50	20	Protogranulaire; ±Fol; remplacements interstitiels	Р
A22-4	CXN8	x						1				x			F	S-R	85	75	Très foncée; PClast? (diffère de la description sur l'affl.)	L
A22-5	MBS	x						x							FG	G	180	50	Hétérogène: niveaux CXN/MBS	
A22-6	WB	x	?		x		1								FM	S-R	150	110	Brun, rouillé; Fol; hétérogène	
A22-7	GB3	55	7	15	x	x	5	17				x	Ilm Mag	83	FΜ	S-G	110	35	Mélanocrate; (CXN); Fol ignée; cristall: Cpx/Spl/Opx/Pl,Am	P/G
A22-8	CSL9a	x	x					x											Vert foncé; PClast?; veine Fel	L
A22-9	GS				x	x		x	x						M		140	> 50	QFP; Fol; résorbé; PBlast: Grt rose fine couronne Bt (avec A22-7)	x
A23-1	CXN	x						1							м	S-G	80	50	brun; Mas	
A23-2	CXN ?	?										x				G	40	30	Noire	
A23-3	CXN8 ?	x		1			?								м	S-G	100	80	Veinule pâle; (avec A23-10)	Р
A23-4	CXN	x							?						F	S-R	40	30	Vert foncé; Fol	
A23-5	MBS	x			1			x							F	S-G	90	30	Mas	
A23-6	CXN	x								1			?		м	G	40	30	Très pâle; Mx d'altération blanc	
A23-7	PXN ?	?			1	?									F		30	20		
A23-8	OXN		x		-					-					м	G	70	40	brun foncé; Mas	
A23-9	CXN8	x		1	x		x		1						м	G	70	60	Mas	
A23-10	CXN8	99	+	x	x		x		1		x	x		100	FG				Vert bouteille clair; 60%PClast; veine; =A4-98, A5-10	P/G
			<u> </u>				-	1		1	1									
*Les numé	ros entre p	arent	hèses	s réfèr	rent a	ux dif	féren	tes de	énérat	ions	de mi	nette	(voir fig. 2.2b)	· · · · · · · · · · · · · · · · · · ·						

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B0-1	CXN8b	98		x	x			x		x	x	?	Scp Ms? Opa	100	МG				HGran; Cpx rappelle MC; veinules Am Fei Scp Cpx2 Ttn	P/G
B0-2	CXN	x					?							100	м					x
B0-3	MNT	x			x			x		x					FΜ				Ech. pour géochimie MNT peu de XNL	x
B0-4	MNT	x			x			x		x					FΜ				Structure concentrique coeur + riche Mx felsiques	2L/G
B0-4-1	Срх	x													м	x	5	4	MC4? coeur brun foncé, manteau verdâtre, bord poreuse	Р
B0-4-2	MNT																			Р
B0-5	MYL	x						x	x						F				Plusieurs fragments	x
B0-6	QZ					x		x	x						FM				Grt ± résorbé	x
B0-7	CXN	x												100	G					x
B0-8	MNT	x			x			x		x					м				Echantillon pour géochimie: peu de XNL	x
B0-9-1	CXN8a	95		x	1		x				3	x	? Ttn	96	м	S-R	135	95	PBlast; fractures; = CQA91-1655 a3	Р
B0-9	MNT	35		2	35			27	x	1	x	x	Ttn, ?		F				Porphyrique; Cpx poreux	Р
B0-10	MNT	30		1	30			38	x		x	x	Ttn	61	FM				Porphyrique; perthites; grain moyen; CQA91-1655d1	L
B0-10-1	CXN8	90		1	x		1	x	?		1	?	Scp Tlc Chl	92	МG	R	> 30	30	Granulaire; Alt; CQA91-1655 d1	L
B0-10-2	CXN1a?	x		x	x			x	?	x		?	Opa	95	м	S-R	26	20	Contient nombreux Cpx différents; Fel interstitiels	L
B0-10-3	CXN1b?	x		x	x			x	?		x			98	G	S-G	25	15	Polycristall; 2 MC4 + petits Cpx; résorbé; reliq XC?	L
B0-11	MBS11a																		CQA91-1655-d2	L
B1-1	PXN	x			-	x									F	S-G	130	65	Poeciloblastique	
B1-2	CXN8c	88	2	5	2		1	x			x	x	Tic?	100	м	S-G	> 100		GPClast; PClastes Opx résorbés -> Cpx; veinules Bt/Am.	P/G
B1-3	OXN4	1	95	x	x			3		x	x	x	Rt	97	м	G	150	100	Mésocumulat; protoclastique; résorbé; avec B1-28	P/G
B1-4	ECL ?	x			x	25		x						15	м	S-G	85	55	Folié; couronne Bt autour Grt	
B1-5	MBS11b	x				?		?	x					10	м	R	85	80	Gloméroblastique; veines Cpx	L
B1-6	CXN	x												100		S-G	125	60		
B1-7	MBS	?			Ι			x						20	F	S-R	80	58	Fol; GBlast	_
B1-8	MBS	x			x			x						10	F	S-G	215	105	Fol; Rub; GBlast	_
B1-9	MBS	x						x						35	FΜ	S-R	115	95	Fol; Rub; reliques subophit; Cpx vert olive	
B1-10	GR ?	?						x	x					5	F	S-G	60	35	Mas; hétérogène	
B1-11	07		1						x		1			0	MG	S-R	65	80	Gris bleu; Mas	

No	Boche	Cov	Ony	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Lona	Larg	Remarques	Éch
		UPA	- OpA														_	Ĵ		
B1-12	GS	x					1	x	x					10	F	S-G	70	50	QFP; Fol; Rub Qtz; GBlast	
B1-13	GS			?				x	x		1			< 1	F	S-G	18	15	QFP; Fol	
B1-14	CXN	x			x		+					x		100	F	S-G	30	21	Vert; Mas	
B1-15-1	ANO ?							x						0	FM	S-G	85	40	Mas; avec B1-67 et CXN 5 (B1-?)	L
B1-15-2	CXN8b	x																		
B1-16	OXN		x											100	м	S-G	100	75	Rouillé; Mas	
B1-17	CXN	x	-											100	F	S-G	105	50	Vert; Mas; rouillé	
B1-18	MBS	x						x	x		1			1	F	S-G	33	12	Mas	
B1-19	CXN7c	50		4	15							1	10% OI TIc	100	F	S-R	140	90	Hétérog.; OI ± remplacée par ldd, Tlc, PhI? Cpx?	P/G
B1-19	MBS	x					1	x	x			<u> </u>		30	F	S-G	22	22	Fol	
B1-20	MBS	x					-	x	x					10	F	S-R	25	16	Fol; GBlast	
B1-21	MBS	x						x						70	F	S-R	35	26	Mas	
B1-22	QFP	x		-	x			x	x					10	F	S-R	18	14	Mas	
B1-23	MBS	x	1		x			x	x					35	F	S-R	32	25	Fol±; GBlast	
B1-24	MBS	x						x	x			x		15	F	S-G	125	45	Fol; Rub; hétérogène	
B1-25	MBS	x						x	x					30	FM	G	135	50	Fol; Rub; veine Qtz grain grossier // Fol	
B1-26	GS	x		?				x	x			1		5	F	S-R	22	20	QFP; ±Fol	
B1-27	QZ			x		x		x	x					5	F	G	480	310	Fol; Rub; Grt rosé	
B1-28	CXN11b	90	1					10		1				90	F	S-R	110	70	PI marque Fol ignée; avec B1-3	P/G
B1-29	CXN	x			x									100	F	S-G	24	8	Mas	
B1-30	QZ				x	x			x					10	F	S-G	18	12	Mas; Grt rétrogradée Bt	
B1-31	GS	x						x	x					20	F	S-R	22	15	QFP; Fol	
B1-32	QZ	1		<u> </u>	1	?	?		x		1				м	S-G	55	30	Mas	
B1-33	QZ				†·			x	x					0	F	S-G	45	32	Impure; Mas; GBlast	
B1-34	MBS	x			1			x	?					5	F	S-R	30	13	Fol; cour. autour mx mafiques.; GBlast	
B1-36	GS			?	1		-	x	x					20	F	G	95	20	QFP; Fol perpendiculaire à l'allongement du XNL	
B1-37	QZ		1				1	x	x					0	F	G	280	170	Gris; impure; Fol; Rub	
B1-38	MBS	x			x	1		x	1		1	1		10	F	S-R	25	20	Mas	
1 2.00			. 1	1	1		1		_	1		-	L		and an average of the	L .		A		

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B1-39	GR					?		x	x					0	FΜ	S-G	235	110	Fol±	
B1-40	GS			+	x	-		x	x					10	F	S-G	22	10	QFP; rosé; ± Fol	
B1-41	MBS	x			x			x	x					10	F	S-R	115	90	Fol; mylonitique; = B1-59	
B1-42	GS	x			x		1	x	x					15	F	S-R	110	90	QFP; Fol; cour. pâle autour XNL; ressemble encaissant	
B1-43	QZ							?	x			?		0	FM		30	28	Brun rouille; Mas	
B1-44	GS	x						x	x					20	F	S-G	35	11	QFP; Fol; ressemble encaissant	
B1-45	MBS	` x					1	x	x					15	F	G	44	30	Fol±; reliques phénocx Cpx ?	
B1-46	GS	x						x	x					20	F	G	40	35	QFP; Fol; ressemble encaissant	
B1-47	MBS	x				1		x						25	FM	S-G	230	110	Fol; résorbé; GBlast; reliques phénocx Px	
B1-48	UMF													100	F	S-R	80	70	Vert Foncé; Fol±	
B1-49	?							x					Ms		F	S-R	40	20		
B1-50	MBS	x						x	-					10	F	G	25	5	Fol	
B1-51	MBS	x						x						50	F	S-R	20	10	Fol ·	
B1-52	GR							x	x					0	FM	S-G	20	7	Mas; veine Qtz 5 mm d'épaisseur	
B1-53	?													0		S-R	15	8	Fol	
B1-54	MBS	x			?			x						10	FM	S-R	15	10	Mas	
B1-55	GS	x						x	x					10	F	S-R	20	20	QFP; Fol; Rub Qtz	
B1-56	MBS	5						85	10					5	F	G	32	28	Fol; métadiorite ?	-
B1-57	MBS	x		x				x					Mag	10	F	S-R	30	18	Fol; Cpx altéré en Am	_
B1-58	MBS	x						x						80	F	G	35	14	Alt; ±Fol	
B1-59	MBS ?	x						x	x					15	F	S-G	50	35	Fol; Rub Qtz; = B1-41	
B1-60	MBS	x						x						10	F	S-R	385	170	Fol	
B1-61	QFP	?						x	x					3	FM	S-G	48	30	Mas	
B1-62	QZ								x					0	м	G	30	15	Blanc; Mas	
B1-63	QZ								x					0	м	S-G	70	40	Fol	
B1-64	CXN	x			x									100	F	G	72	15	Vert Foncé; ±Fol	
B1-65	CXN	x												100	м	S-G	140	70	Rouillé; Mas	
B1-66	MNT	x	1		x			x		x									Échantillon pour géochimie	x

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B1-67	AMP			x				x						45	F	S-G	450	250	Fol; sur lame avec B1-15	L
B1-68	?	?						x	?			x		5	FМ	S-G	>100	> 45	Partie du XNL seul.; ± résorbé	x
B1-69	MNT																		Bloc (petit) pour géoch? reste rien; avec B1-5	x
B1-70	QZ	?							x					5	М				Bleutée; impure; Fol; avec B1-3, B1-28	L
B1-71	CXN5	x												100	м	G	16	10	Cpx déformés; résorbé ?; cumulat ? avec B1-69	Р
B1-72	QZ					x			x					0	G	S-R	250		Il y avait 2 XNL marqués B1-2 sur photo	
B2-1											1					S-G	145	85		
B2-2	QZ					x			x							S-G	220	200	Fol // à l'allongement du XNL	
B2-3	MBS	x							x					5	F	S-R	190	160	Fol	ļ
B2-4	QZ	1				x			x						F	R	80	60	2 niveaux: Qtz/Grt	
B2-5	QZ	x				x			x						FM	S-R	150	90	Impure; poeciloblastique; GBlast	
B2-6	CXN	x			x									100	F	Arr	70	60	Vert moyen; ± Fol	
B2-7	GNL6c	28	5	4	x	30	x		1	x	x	x	Tlc? IIm	69	F	S-G	105	70	Mafique; Intersert?; subophit; PBlast; Fol; veine Qtz.	P/G
B2-8	ECL ?	x				x									м	S-R	70	50	CXN ?	
B2-9	CXN	x											ana na sana ana ana ana ana ana ana ana	100	F	R	55	55	Veine	
B2-10															F	S-G	35	25		
B2-11	CXN	x					-	-						100	F	S-G	55	20		
B2-12	ECL ?	x				x		x								S-G	140	140	Folié; porphyroblastique	
B2-13	ECL	x				x										S-R	110	40	Fol	
B2-14	ECL?		Ī													S-G			Fol; gloméroblastique	
B2-15	ECL ?														F		190	100	Poeciloblastique	
B2-16	UK				x									100		S-G	120	60		
B2-17	TN					-		x	x							S-R	170	125	Myrmékitique ?	
B2-18	GS16b				1	25		40	33			1	Sil Rt? Zrn	1	м	S-R	560	210	PBlast; Fol; veine Qz grain MG; = A4-6? géochronologie?	' L
B2-19	CSL		1										?		F	S-G	42	35	Minéral vert émeraude	
B2-20	MBS	x	†		1		1	x				1		15	F	S-R	36	30	Fol	_
B2-21	GS			?	?			x	x		1			20	F	S-R	28	15	QFP; hétérogène; cour autour Cpx et XNL	
B2-22	MBS	x			1		1	x		1				15	F	S-R	30	15	Mas; reliques subophitique	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
					<u> </u>												ļ			L
B2-23	QZ	-		?	x			x	x					5	F	G	28	26	Impure; Mas	
B2-24	QZ								x					0	М	S-G	29	22	Brunâtre; Mas	
B2-25	QZ					1			x					0	F	S-G	71	40	Gris moyen; GBlast; Grt résorbé	
B2-26	MBS	?						x	x					15	F	S-R	100	25	Mas	
B2-27	?											?				S-R	40	30	Alt; rouillé	
B2-28	MBS	x						x						45	F	S-R	70	65	Fol±	
B2-29	AMP			x										100	F	G	32	28	Mas	
B2-30	MBS	x						×	?					5	F	S-G	19	16	Mas; anorthosite ?	
B2-31	GS			?				x	x					1	F	S-R	30	22	QFP; Fol	
B2-32	WB ?	x	x											100	F	S-G	31	24	Brun rouille; Mas	
B2-33	MBS	x		?				x	x					15	F	S-G	45	35	Fol±; cour. Hbl autour Cpx	
B2-34	Срх	x												100	G	G	15	12	MC automorphe	
B2-35	GS					x		x	x					0	F	S-G	230	90	Rosé; granitique, Fol; GBlast	
B2-38	MBS	x						x						75	м	S-G	80	60	Mas; Alt; rouillé	
B2-39	GS	x			x			x	x					15	F	R	80	75	QFP; Fol; GBlast; ressemble encaissant	
B2-40	CXN	?			x									100	F	S-R	45	20	Gris pâle; Mas	
B2-41	MBS	x			x			x					Mag	80	F	S-R	95	50	Mas; GBlast	
B2-42	MBS	x	x		x	1		x	x					10	F	S-G	35	17	Fol	
B2-43	QFP				x			×	x					1	FM	S-R	35	18	Mas; GBlast; Alt	
B2-44	GS		?	x	x			x	x					10	F	S-G	60	30	QFP; rosé; Fol; cour Am autour Px	
B2-45	MBS	x			x			x	x				,	15	F	S-G	30	20	Mas	
B2-46	MBS	x	ļ		x			x	x					15	F	S-G	16	14	Mas	
B2-47	CXN	x									?			100	м	S-G	90	85	Mas; vide entre les cx: minéral altéré	
B2-48	QFP			x	x			x	x					30	F				GBlast; avec B2-13	
B2-56	SY12b	19	?	1	x			80	x	x		x	Kfs Pl Zrn	5	FG	S-G	120	75	Hétérogène; PClast; néoblastes; résorbé? Fol	P
B2-57	GS							x	x		1			0	F	S-G	45	40	Fol; granitique, GBlast	
B2-58	CXN	x			x									100	F	S-R	25	14	Vert pâle; Mas	
B2-59	CSL	?							x		?			40	F	S-R	35	35	Fol±; GBlast; minéral dissout	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			1									L					ļ			
B2-60	CXN	x						x						95	FΜ	S-R	200	145	Mas; recoupé par veines de MNT	
B2-61	AMP ?	?		x				x						80	F	G	80	35	Fol	
B2-62	GS					2		x	x					0	м	S-G	105 -	95	Fol; granitique, hétérogène	
B2-63	GR		T			x		x	x				Sil Mag	0	м	S-G	460	160	Fol ±; = B4-23	
B2-64	CXN	x			x								? Mx rose	100	F	S-R	150	75	Vert pâle; veine Bt; Mas	
B2-65	GS			x				x	x					10	FΜ	R	14	9	QFP ?; Fol	
B2-66	UK				x									100	М	S-G	25	20	Mas	
B2-67	GS	x			x			x	x					5	F	R	20	16	QFP; Fol; cour. Px autour XNL	
B2-68-1	CXN	85	2	8	x		x	8			x	x	Ilm Ttn	92	м	G	230	185	Mas; PI interst; cumulat.; CClast.; veinule Car/Py	Р
B2-68-2	MBS11c	5		2	3			89	x		x	?	ZrnllmMag	10	FM		T		ou GB4? PClast; reliques subophit? ± Fol	P/G
B2-69	GS	x			x			x	x					10	F	S-G	90	35	QFP; GBlast; ±Fol; ressemble encaissant	
B2-70	OXN		x											100	м	S-G	60	40	Mas; fracturé	
B2-71	CXN	x			1				1					100	м	S-G	80	45	Gris pâle; Mas	
B2-72	GS	x	1					x	x					10	F	S-G	35	20	QFP; Fol	
B2-73	GS		1		x	x		x	x					5	FM	S-R	18	18	Granitique, Grt rétrogradé Bt; Fol	
B2-74	QZ		<u> </u>	-				1	x					0	м	G	22	5	Bieuté; Mas	
B2-75	?			1		-									-	S-R	15	11	Très Alt.	
B2-76	GS				x		-	x	x					5	F	S-R	19	19	Granitique, Fol	
B2-77	GS	1		?	x	?		x	x	1				15	м	R	125	115	Granitique, Fol; Rub Qtz; = B2-63	
B2-78	MBS	x	1					x	x			• • • • • •		20	F	S-R	95	60	Fol; GBlast	
B2-80	QZ	-						-	x					0	м	S-G	35	30	Brunâtre; ± rouillé; Mas	
B2-81	MBS	x	-	-	x			x						15	F	S-G	25	12	GBlast	
B2-82	MBS	x			x	1		x	x					15	F	S-G	30	12	GBlast	
B2-83	MBS	x			x		1	x	x	1				15	F	S-R	50	25	GBlast	
B2-84	GS			x	x			x	x			1		30	FΜ	S-G	98	25	Fol; Rub: AMP/ANO	1.
B2-85	MBS	×	+	+	x		+	x	x	-				10	F	S-G	30	26	Fol; GBlast; B2-87	
B2-86	GS		-	2	x	1		x	x			-		5	FM	S-G	200	150	QFP; Fol; ±Rub	
B2-87	MBS	x	-	-	x	+		x	x	1				10	F	S-G	20	8	Fol; GBlast; = B2-85	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B2-88	MBS	x			x			x	х					10	F	S-G	62	15	Fol; GBlast; = B2-85	
B2-89	MBS	x						x	x					25	FΜ	S-R	220	200	Fol	
B2-90	MBS	×						x						70	F	S-R	60	30	Mas; reliques subophitiques	
B2-91	ANO	x						x						1	F	S-G	48	35	Fol±; GBlast; recristallisé	
B2-92	MBS	x			x			x						50	FG	S-G	95	35	Rub: zone gf = B2-90	
B2-93	MBS	x						x	x					15	F	S-G	40	20	En 2 parties; Fol; GBlast	
B2-94	GR							x	х					0	F	S-G	15	10	Roche granitique	
B2-95	MBS	x			?			x	x					1	TF	G	55	14	Blanc; Fol; mylonitique	
B2-96	MBS	x						x						50	F	S-R	40	30	Foi; Rub	
B2-97	GS	x	x					x	х					15	FΜ	S-G	65	45	QFP; Fol; couronne Px? autour parties XNL	
B3-1	CXN8a	98		х	x		x	x			x	x	Ttn	100	м	S-G	60	45	GBlast; Spl interst; Bt poecilitique interst; veinules.	Р
B3-2	GS16b				x	x		x	х						M	S-G	100	50	QFP; contient 3 clastes; Grt ± remplacé Bt	Р
B3-3															м	S-R	35	25		
B3-4	ECL ?	x				x										S-G			Veine	
B3-5	MBS11b	30		12	2	2		53	х	х	x	x	llmMagMs	46	F	S-R	>110	>90	GBlast; PBlastes Grt; Rub; Fol; subophit?	P/G
B3-6	CXN8b?	97		2	x			x			x	x	Ttn Scp	99	МG	S-G	175	100	GBlast; granulaire; remplacements interstitiels; Mas	P/G
B3-7				ĺ												G	100	50	Fol; Rub	
B3-8	CXN8b	98		x	x			x			x		ScpTtnSrp	99	МG	S-R	>100	60	Hétérogranulaire; ±Fol; veinules; fractures	Р
B3-9																S-G	100	40		
B3-10																G	75	50		
B3-11-1	Срх	x						?							G	н	21	11	MC4; mâclé; coeur brun, manteau vert-brun, bord poreux	L
B3-11-2	Срх	x											Opa		G	н	8	6	MC4? zones reliq brunes, bord int. poreuse, ext. =Cpx MNT	L
B3-11-3	Срх	x													G	н	7	7	MC1? reliq pâle; zones poreuse avec Am int. et Bt ext.	L
B3-12	WB5	65	15	15	x			x		x		x	IIm Mag	100	м	R	200	180	PClast; Fol; veinule Am; Px -> Am+Opa; Bt inégal. répartie	P/G
B3-13	GS	x			x	x			x						м	R	50	35		L
B3-14	GNL6d	45	?	x	x	55		x	[x	Mag lim Ms?	100	МG				SKN?; HGran; Rub; texture ignée? Pl interst ->Grt?	Р
B3-15	GB11c	x			x			x						15	F				Avec B3-13	L
B3-16	MBS11b	x			x			x	x						F				Folié (avec B3-13)	L

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																				<u> </u>
B3-17	MBS11b	35		10	x	5		47				x	lim Mag Rt	54	М		>80	>50	Métagabbro; Fol; GBlast; portait peut-être autre no	P/G
B3-18	QFP	x						x	x					15	F	S-R	33	15	Mas; ressemble encaissant	
B3-19	GS				x	x		x	x				Mag ?	5	FΜ	S-G	285	125	QFP; Fol; Rub; Qtz bleu; Grt -> Bt	x
B3-21	MBS	x		?				x	x					15	F	S-R	52	48	Mas; GBlast	x
B3-22	QFP				x			x	x						F	S-G	45	35	Gris; ressemble B3-25	
B3-23	QZ	1		1				x	x			x		0	м	S-R	60	40	Brunâtre; Mas	
B3-24	CXN	?		1	1									100	F	S-R	42	35	Brunâtre; GBlast ± PClast; veinules Am+Cpx+Car+Bt+etc	. P
B3-25	CXN8b	99	1	x	x			x			x	x	Ttn	100	F	S-G	185	155	Vert pâle; Fol; PClast; veinules	P/G
B3-26	GS		1	x				x	x					20	F	S-R	60	40	QFP; Fol; ressemble GS encaissant	
B3-27	CXN	x										x		100	F	S-G	20	15		
B3-28	QFP							x	x					0	F	R	18	15	Mas	_
B3-29	QZ					1			x					0	м	S-G	18	10	Mas	
B3-30			+			1													Avec B3-6 ou B3-8	
B3-31	MBS	x			1		1	x		1				50	М	S-G	85	40	Mas; reliques subophitiques	
B3-32	. 			1				1			1								Avec B3-6 ou B3-8	
B3-33				+•															Avec B3-6 ou B3-8	
B3-34	MBS	x	-		1			x						40	F	S-R	20	15	Mas	
B3-35	MBS	?		-				x	5					3	FM	G	55	22	Mas	
B3-36	GS	1	1	x	x	<u> </u>		x	x					15	F	S-G	30	20	QFP; ±Fol	
B3-37	GS	x		1	x			x	x	1				5	F	S-G	80	65	QFP; Fol; GBlast	
B3-38	CXN	x			x	1						1		100	F	S-G	25	25	Mas	
B3-39	CSL ?	?		1				x			1	x			F	G	120	120	Alt; Rub ou veine	
B3-40	CSL ?	x	-		-			x	x			-	-	30	FΜ	S-R	150	120	Rub	
B3-41	GS	2						x	x	1				5	М	S-G	130	50	QFP; Fol	
B3-42	2	Ť				-		-		1							95	65	Relief négatif	
B3-43	2																30	30	Relief négatif	
B3-44	2		+										1	1	F	S-R	28	15	Gris Foncé	
B3-45	GS	X				?		x	x				1	20	F	S-R	30	20	QFP; ± Foi	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		1	 											L						
B3-46	GS	x						x	x					20	F	S-R	25	18	QFP; ±Fol	
B3-47	MBS	x						x						30	F	S-G	320	140	Fol; GBlast	
B3-48	GS	2						x	x					2	FΜ	S-G	35	35	QFP; ±Fol	
B3-49	QZ								x					0	F	S-G	40	15	Blanc; homogène; Mas	
B3-52					x			x	x						F	S-R	30	23	Rub	
B3-53	MBS	15						x	x					15	F	S-G	95	70	Fol±	
B3-54	QZ					5		x	x					0	м	G	35	28	Fol±	
B3-55	GS				x			x	x			x			F	R	28	25	QFP; rosé; Fol	
B3-56	QFP	x						x	x					10	F	S-G	30	22	Mas	
B3-57	GR							x						0	м	S-G	25	20	Roche feldspathique; Mas	
B3-58	GS							x	x					0	F	S-R	28	18	QFP; Fol; couronne Cpx autour XNL	
B3-59	MBS	x			x				x					85	F	S-R	25	25	Mas	
B3-60	CXN	x			x									100	F	R	35	30	Mas	
B3-61	GS	x						x	x						F	S-R	50	25	QFP; Fol; ressemble encaissant	
B3-62	GR	x			x			x	x					1	F	S-G	45	20	Roche granitique; Mas; cour. Bt autour Cpx	
B3-63	GB	×		х				x						25	м	S-G	295	70	Mas; reliques subophitiques	
B3-64	QZ							x	x					0	М	S-G	25	25	Mas; rouillé	
B3-65	MBS	x						x	?					10	F	S-R	20	16	Fol	
B3-66	MBS	x		x				x						70	FM	G	180	160	Mas; Alt; hétérogène	
B3-67	CXN	x												100	м	S-G	32	30	Jaune Brunâtre; Mas	
B3-68	OXN		x		x									100	М	S-G	120	50	Mas	
B3-69	GB	x						x					Mag	20	м	S-R	55	30	Mas; reliques subophitiques	
B3-70	GS	x			x			x	x					10	F	S-R	35	18	QFP; ±Fol	
B3-71	QZ								x					0	м	G	42	9	Fol±	
B3-72	OXN		x											100	F	G	110	80	Alt; rouillé; Mas	
B3-73	GS	x .					1	x	x					15	F	S-G	150	150	QFP; ±Fol; GBlast	
B3-74	CSL		1	x		1	-		x				Tre?		м	G	150	140	Fol; Rub	
B3-75	MBS	x	+	1	1	1		x	1					25	F	S-G	45	30	Fol±; GBlast	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			ļ			ļ		<u> </u>				1					1			-
B3-76	AMP ?	?		x			ļ	x	 					80	F	S-G	280	140	Fol±	
B3-77	CXN ?	?									ļ			100	м	G	60	50	Alt	
B3-78	CXN	x						ļ						100	м	S-G	150	115	Mas; Alt	
B3-79	?											?				S-G	40	25	Très Alt; rouillé	
B3-80	CXN ?	?						1				x		100	F	S-G	120	20	Alt	
B3-81	CXN	x												100	м	S-R	150	125	Mas	
B3-82	MBS	x						x	?				Mag	15	F	S-G	45	38	Fol; Rub; GBlast	
B3-83	GS			x	1	?		x	x					10	FΜ	S-R	85	50	QFP; Fol	
B3-84	GS							x	x					0	м	S-G	22	9	QFP; Fol	
B3-85	QZ			?					x		1			1	F	S-G	45	20	Brunâtre; Fol	
B3-86	GS	x					1	x	x					10	F	S-R	40	26	QFP; Fol; GBlast; couronne autour XNL	
B3-87	MBS	x						x	x					15	F	S-R	150	100	Hétérogène; couronne mafique autour XNL	
B3-88	SY12a?							x	?					0	MG		>70	>25	ANO? Roche feldspathique; très résorbée; avec B3-11	x
B3-89	CXN8b	x		x	x			x			x	x	ScpSrp?RtTur?	100	F		>70	>50	± Fol; veine Phl 6mm, symplec à l'éponte; avec B3-17	P
B3-90	CXN8b	x	+	?				-						100	м	S-R	110	100	Veinule Alt Am ? avec B3-5	L
B4-1	MBS11a	x	x	1		x		x	x			x		30	F	G	160	100	Métagabbro; Grt résorbé; Fol; = B8-1	P/G
B4-2	QZ				x	5		x	x	1				5	м	S-R	210	200	Fol±; GBlast; Grt -> Bt	
B4-3	?	?			-	1		+	x							G	270			
B4-4	GS	x						x	x		1	1		10	F	G	38	28	QFP; Fol	
B4-5	GS					1		x	x		1		-	0	F	S-R	20	10	QFP; Fol; mylonitique	
B4-6	MBS	x		?		1		x	x	-	1			30	FG	S-G	230	230	Fol; hétérogène; résorbé	
B4-7	CSL ?	x					-	?	x				Ms		F	S-R	200	130	Hétérogène; Mas	
B4-8	07		+				+		x		1		1	0	м	G	65	30	Brun rouille	
B4-9	MBS	Y			+	+		×	x					55	F	S-R	75	70	Fol; Rub; GBlast	
B4-10		2	+	Y			+	x		+			Mag	40	FM	S-G	450	150	Fol; GBlast; veine Fel 5 mm; =B4-11	
B4-11		2	+	Ŷ			+	×		+	+	+	Mag	40	FM	S-G	520	140	Fol; GBlast; veine Fel = B4-10	
B4-12	2	+		Ŷ		+				-		-				S-G	13	5	Alt	
B4-13	2		1	· .		-	1	×		+	-	+	-	0	F	S-G	20	15	Roche feldspathique; Mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
							<u> </u>													
B4-14	CXN	x												100	F	S-R	25	18	Mas	
B4-15	MBS	x						x						30	F	S-R	160	150	Mas; GBlast; recristallisé	
B4-16	GS	x						x	x					5	F	S-G	60	50	QFP; Fol; mylonitique; Cpx vert olive	
B4-17	MNT	x		15	15			68		1		х	Ttn Mag	30	F				Felsique; ± Porphyrique; Cpx -> Am.	Р
B4-17-1	MBS11a	x			x	?		x						30	F	S-G	150	105	Mas; (+ MNT grain fin) voir B4-40	x
B4-18	GS							x	x					0	м	G	80	40	Granitique; Fol; Rub Qtz; (+MNT grain fin)	x
B4-19	?	?			x			x	?						F	S-R	12	11		
B4-20	?															R	8	6	Brun rouille	
B4-21	CXN	x			x									100	F	R	20	13	Vert; Mas; très Alt	
B4-22	NR	x	x					x						40	FG	S-G	85	55	Hétérogène; Phénocx ou Pblast Px (+MNT grain fin)	Р
B4-23	GS					x		x	x				Sil	0	FΜ	S-G	210	170	Granitique; Fol; Rub; = B2-63	
B4-24	QZ				?	20			x				Mag	1	FΜ	S-G	110	85	Impure; Mas	
B4-25	ANO	5						95						5	FG	S-R	185	150	Fol; Rub; ou CXN; géoch MNT grain moyen; avec B4-40	L
B4-26	GS	x						x	x					10	FΜ	S-R	80	48	QFP; Fol; GBlast; recristall.; ressemble encaissant	
B4-27	QFP							x	x					0	F	S-G	12	12	Mas	ļ
B4-28	QFP							×	x					0	м	S-G	18	12	Mas	ļ
B4-29	CSL	x						?	?		?			75	F	S-R	120	100	Mas	
B4-30	GS	?						x	x					10	F	S-G	80	50	QFP; Fol; GBlast	
B4-31	QFP	?						×	x					10	F	S-R	45	30	Mas	
B4-32	QFP	?						x	x					10	F	G	42	22	Mas	
B4-35	QZ								x					0	м	G	60	22	Brun rouille; Mas	
B4-36	QZ								x					0	м	G	55	20	Mas	
B4-38	MBS	x						x	?					10	F	R	30	25	Fol	
B4-39	QFP							x	x			?		0	м		320	170	Très Alt.	
B4-40	MNT														FΜ				Géochimie MNT; avec B4-25 (+MNT grain fin)	
B4-41	MNT														FΜ				Contact MNT GF/GM; contient partie de B4-17	Р
B5-1	GS			x				x	x					5	F	S-G	180	100	QFP; tonalitique; linéation	
B5-2	AMP			x										50?	М	S-G	290	175	Mésocrate; veine granitique	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
						ļ		1			ļ									
B5-3	MYL			ļ		x		x	x					0	F	S-G	110	40	Grt stable	<u> </u>
B5-4	QFP	1				10		x	x					0	М	S-R	95	40	Mas; Grt couronne Bt+Pl; résorbé; = B5-5	X
B5-5	GS16b					10		x	x					0	м	S-G	150	70	Mas; Grt couronne Bt+Pl; résorbé; = B5-4	P
B5-6	MBS	30				1		×						30	F	S-G	100	100	Fol; mésocrate	
B5-7	QFP					10		x	x					10	М	R	80	55	Mas; Grt couronne Bt+Pi	
B5-8	WB	x	x		x									100	G	S-G	105	80		
B5-9	AMP			x		x		x							м	S-G	190	70		
B5-10	MYL	x		x										100	F	S-G	270	110	Rub: CXN/AMP; Alt différentielle	
B5-11	GS							x	x					0	м	S-G	50	45	QFP; Fol; avec B5-3	x
B5-12	GS							x	x					0	F	S-G	50	40	QFP; Fol	
B5-13	CXN	x	<u> </u>		x									100	м	S-G	45	40	Mas	
B5-14	AMP			x				?						50	F	S-G	340	225	GBlas; veine GR avec enclaves MBS	
B5-15	CSL														м	S-R	40	25	Pâle	
B5-16	GS		1		x			×	x	-					м	S-G	50	40	QFP	
B5-17	GS							-							М	S-G	70	50	QFP; Fol; ex-Grt ou ex-Px ?	
B5-18	GS		†		1			x	x					0	F		80	50	QFP; Fol	
B5-19	GB	35	1						x	1				35	м	S-G	240	90	Fol ignée; subophitique	~
B5-20	GS			?				x	x						F	S-G	120	65	QFP ?; Fol	
B5-21	GS	?	1		1	10	-	x	x		1			0	м	S-G	85	60	QFP; Fol; Grt rosé avec couronne Cpx?	
B5-22	GS ?	-		-	?	+		x	x						TF	S-R	40	35	QFP	
B5-23	GB	x				+		-			-			50	м	G	180	70	Mas; + gabbro: Cpx grain moyen 40%; lité	
B5-24	GS				x		1	x	x	1				0	TF	S-R	30	15	QFP	
B5-25	NB	45				1		x			1			45	м	S-G	200	120	Fol ignée; homogène; lattes fines	
B5-26	GS	1			+	1		x	x					0		G	60	10	QFP; Fol	
B5-27	CXN	×				+	+			1		1	+	100	м	G	100	35	Vert bouteille	
B5-28	SY ?	· · · ^				-		×		· · ···			· · · · · · · · · · · · · · ·	5	М	S-G	130	70	Mas; hypidiomorphe	
B5-29	WB	Ŷ	Y	-	1	+		+	-					100	TF	S-G	160	110	Granoblastique	
B5-20	69		1 î		+		-					x			1	S-G		25	QFP ?; Fol; Alt, rouillé	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
							ļ					ļ								
B5-31	AMP	x		x				x						90	F	S-G	140	60	Fol±; mésocrate	
B5-32	GR	L	x			x		x	х							S-G	90	90	Fragment de veine granitique	_
B5-33	?															S-G	80	40		
B5-34	OXN		x											100	М	S-R			Mas	
B5-35	GB	1	10					x						10	F	S-G	70	50	Métagabbro; gris, leucocrate; recristallisé	
B5-36	GS							x	x						м	S-G	65	60	QFP ?; Fol	
B5-37	MBS	x			x										ΤF	S-G	230	90	Zones grain moyen avec Cpx	-
B5-38	GS					x		x	х					0	М	S-G	40	30	QFP	
B5-39	GB	x						x						50	м	S-G	150	80	Fol ignée; ophitique; lattes Pl: 1x5 mm	
B5-40	CXN	x												100	F	S-R	50	25	Vert pâle	
B6-1	CXN8b	92	?	5	1			x			x	x	Rt Tic Srp	100	FΜ	S-G	>50	65	PClast; Fol; remplacements interstitiels; fractures	Р
B6-2	GB ?	x		?				x				x		30	FΜ	S-G	160	120	Fol; métagabbro ou CSL ?	
B6-3	GB	x				x		x						50	FΜ	S-R	130	90	Métagabbro; Fol; linéation	
B6-4	OXN		x											100	м	S-G	210	110	Noir; ± Fol	
B6-5	GS							x	x					0	F	G	160	100	Granitique, mylonitique; L > S	
B6-6	GS			10				x	x					10	F	S-G	90	40	QFP; Fol	
B6-7	GS	f		10				x	x					10	F	S-R	40	25	QFP; Fol	
B6-8	GB	20				-	1	80						20	F	S-G	440	165	Métagabbro; litage dc à cm; linéation: maf; recristallié	
B6-9	GS	1		7	x			x	x					7	м	S-G	70	25	QFP; couronne Bt autour Am; Fol	
B6-10	GS	2		3				x	x					5	F		35	35	QFP; Fol	
B6-11	GS			5	x		1	x	x					5	м	S-G	65	30	QFP; couronne Bt autour Am; Fol	
B6-12	GS							x	x					0			30	10	Granitique	
B6-13	QZ	1						10	90					0	МG	S-G	550	150	Mas; Qtz bleuté	
B6-14	GS		?			x		x	x						F	S-G	220	110	QFP; Fol	
B6-15	GB	35						65						35	м	R	50	40	Subophitique; lattes PI: 2x4xmm; Cpx interstitiels	
B6-16	GB	x		x				x						20	F	S-G	70	70	Métagabbro; GBlast	
B6-17	GB	?		?				x						35	1	S-G	45	30	Métagabbro; Fol; reliques lattes Pl; recristallisé	
B6-18	GS				x	x		x	x			1		1		S-G	150	70	QFP; Fol; Rub; leucosomes	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																				<u> </u>
B6-19	?	x				[?	?						ΤF	S-R	100	70		
B6-20	CSL	50						x						50	м	S-G	100	35	Mas; rouillé	
B6-21	PGM	10		x				?	?					10	G?	S-G	120	70	couronne Am	
B6-22	GB	x	x	x				x						30	МG	S-G	110	50	Couronne Am autour Opx; recristallisé	
B6-23	MYL	?						x						20	TF	S-G	80	30	Fol	
B6-24	QZ								x				Tur?			S-R	140	90	Veine granitique avec tourmaline ?	
B6-25	QZ							40	60					0		S-G	165	130	Impure; Fol	
B6-26	CXN	x												100		R	20	20	Couronne Px 1 mm	
B6-27	?	T			x			x	x						TF	S-G	90	30		ļ
B6-28	?	?		1				x	x					20	TF	S-G	110	55	Fol; = 29	
B6-29	?	?	1					x	x					20	TF	S-G	130	70	Fol; = 28	
B6-30	CSL ?	?							x				Tre?		м	R	70	45		ļ
B6-31	MBS	×				x		x						50	F	S-G	30	20	Fol	
B6-32	CXN	x												100		S-R	20	20	Vert pâle; = 26	
B6-33	GS			ļ				x	x					0	м	S-R	20	20	Granitique	
B6-34	GS							x	x					0	м	S-R	30	20	Granitique	<u> </u>
B6-35	GS	?		?				x	x					5	F	S-G	100	55	QFP; Fol	
B6-36	CXN	x			x									100	F	S-G	100	45	Fol; vert foncé	
B6-37	CXN	x												100	м	S-G	50	30	Mas	ļ
B6-38	GS	x		x		?		x	x					3	м	R	135	130	QFP; cour Am autour Cpx; Fol; cour Cpx autour XNL	
B6-39	WB	10	7	43	40		x	x			x	x	Fus? Zm Rt?	100	F	S-G	450	360	Am	P/G
B6-40	CXN ?	?												100	FΜ	S-G	170	70		
B6-41	AMP			x		÷								100	м	S-G	30	25	Noir; Mas	
B6-42	MYL														F	S-R	45	25	Fol; gris pâle	<u> </u>
B6-43	Sul											x				R	10	10	Rouillé	
B6-44	CXN ?	?												100	FΜ	S-G	70	50	idem B6-40	<u> </u>
B6-45	QFP	x						x	x					15	F	S-G	50	40	Mas; homogène	
B6-46	MYL	x													F	S-R	60	45	Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		ļ	Ļ		ļ	ļ		ļ		<u> </u>										1
B6-47	GS	x			ļ	ļ		x	x						F	S-R	80	60	QFP; Fol; couronne Cpx autour XNL	ļ
B6-48	ANO							x	?					0	М	S-G	50	30	Mas; blanc; couronne Cpx autour XNL	
B6-49	GS				x	x		x	x					10	FΜ	S-G	300	210	QFP; Grt->Bt; Fol; Rub	
B6-50	Sul											x	Ру Сср		М	S-R	80	70	Très Alt; rouillé	ļ
B6-51	GS			-	x			x	x			x			м	S-G	260	50	QFP; Fol; Qtz bleuté	ļ
B6-52	?							x						0	F	S-G	20	10	Fol; blanc	
B6-53	QFP	5						x	x					5	F	S-G	40	15	Mas; homogène	
B6-54	GS							x	x						F	G	20	15	QFP; Rouillé	
B6-55	GS16b				x	15		x	x					2	м	S-G	140	105	Granitique; Grt->Bt; Grt grossier; sul dans matrice: B6-77	L
B6-56	GBN4	x	x			1		x						10	MG	G	170	160	Ophitique; lité	Ρ
B6-57	QZ							15	85					0	м	S-G	25	25	Bleue; Mas; homogène	
B6-58	CXN	x			x									100	F	S-G	50	15	Fol±	
B6-59	MBS	15						85						15	F	S-R	60	40	Mas; homogène	
B6-60	MBS	15			1			85						15	F	S-G	30	15	Mas; homogène; = 59	
B6-61	CXN	x			<u> </u>				1					100	F	S-R	55	20	Mas; Cpx hypidiomorphes	
B6-62	GS	?		1				x	x					5	F	S-G	340	110	QFP; ressemble encaissant	<u> </u>
B6-63	QZ	1		1					x					0	М	S-G	30	15	Mas	
B6-64	MBS	x					1	x	x						F	S-G	55	15	Gblas; ±Fol; couronne Cpx autour XNL	
B6-65	MBS	10		1			+	x						10	F	S-G	55	30	Fol; PI recristallisé	
B6-66	CSL	×				-		x	x						F	G	35	25	Rub	
B6-67	QZ	-		1	x	10	1	×	x		1	1			м	G	120	55	Grt-> Bt; Fol; Grt = 4 mm	
B6-68	GS	?			*****			x	x					5	F	S-G	80	55	QFP; Mas; ressemble encaissant; = B6-62	
B6-69	MBS	x	1					x		1					FM	S-G	80	60	Rub: Cpx vert/gabbro; Pclas	
B6-70	GS		1		x			x	x			-		5	F	S-G	145	60	Granitique; Fol; Rub; Bt très fine	
B6-71	GS							x	x	1				0	FM	S-G	90	50	Granitique; mylonitisé ±; Fol	
B6-72	GS		1		1			x	x	1				0	F	S-G	170	50	Granitique; Fol	
B6-73	GB	50					1	x			1	1		50	F	S-G	60	50	Mas	
B6-74	MYI	×	+	+		1		x	x	1	1				TF	S-G	190	40	MBS; Fol; Rub	
No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
-------	-------	-----	-----	----	----	-----	----------	-----	-----	----	-----	-----	-----------	-----	-----	-----	------	------	--	----------
					1		<u> </u>				1									ļ
B6-75	CXN	x												100	G	S-R	90	55	Mas; vert-jaune pâle	
B6-76	MNT														м				Échantillon pour géochimie: pauvre en XNL	P/G
B6-77	Sul	1										x	Ру Ро Сср						Remplacement XNL (GS16b?); avec B6-55	Р
B6-78	GS				5	20		x	x					5	FΜ		>90		QFP; Pblast; Grt->Bt; avec B6-76	x
B7-1	GBN4	x	x	x	x			x	x						G	G	>80	40	Exsolutions	Р
B7-2	CSL9d	x			x			x	x			x			М				Fol; Alt; + 1 fragment de GS; avec B7-84	Р
B7-3	?														F	S-R	135	70	Vert pâle	L
B7-4	MBS	x				-		x						10	м	S-G	170	90	Fol; recoupé veine tonalitique	
B7-5	GB	x	x	x	1			x						10	F	G	100	50	Métagabbro; recristallisé; cour Hbi autour Px	
B7-6	QZ		?		x				x						м	S-G	50	25	Fol	
B7-7	GB	x	x	x	-			x						15	м	S-G	130	70	Métagabbro; ressemble B7-5	
B7-8	GB	x						x	1			1		25	FM	S-G	200	145	Fol; couronne Am autour Px; Bandes cm à grain moyen	ļ
B7-9	GB	x	?		1	1	1	x						15	F	S-G	120	35	Métagabbro; cour. Am autour Cpx	ļ
B7-10	GB	x			x			x						15	F	S-R	85	70	Métagabbro; Fol; recristallisé; résorbé; cour réaction XNL	
B7-11	?							×	x						ŤF	S-G	40	30		
B7-12	WB ?	x	x		1									100	М	R	15	10	Mas	
B7-13	OXN	?	x							1				100	F		25	8	Mas; GBlast	
B7-14	AMP		x	x				x						35	F	S-G	220	70	Fol; GBlast; leucosome granit + Opx+Am à grain fin	
B7-15	CXN	x												100	F	R	20	17	Vert foncé	
B7-16	GB		1		-	1		-			1	1		20	MG	S-G	290	130	Mas; subophitique	
B7-17	GB													20	МG	S-G	70	35	Fragment de B7-16	
B7-18	MBS		x		x			x						15		S-G	170	110	Fol; PI recristallisé; ressemble B7-5	<u> </u>
B7-19	GB	x		1				x						40	м	S-R	200	110	Subophitique; PI parallèle à Fol ignée	
B7-20	DB?				x			x	-					40	м	S-G	130	130	DR potassique ?; Mas	
B7-21	CXN	x							1	1				100	F	S-G	100	40	Mas	
B7-22	GS	+	x					x	x	1				45	F	S-R	40	40	QFP	
B7-23	CXN ?	x		1		x			x				llm ?		F	R	70	70	Vert pâle; Mas; Alt des sulfures brune	x
B7-24	MBS	x	x	x				x	1			1		10	F	S-G	50	30	Idem B7-5	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B7-25	GB	x	x					x						35	МG	S-G	180	110	Fol ignée; Pl = 2 x 10 mm; subophit.; noritique	
B7-26	QZ					x			x					0	М	S-R	37	27	Bleutée; Mas	
B7-27	QZ								x					0	м	S-G	100	65	Grise; Mas	
B7-28	MBS	x	x			x		x		-				20	F	S-G	50	30	Fol; mylonitique	
B7-29	MBS ?	x						x	x					25	FM	S-G	420	280	GS? Fol Rub: QFP/Px; veine granitique; avec B7-30	x
B7-30	ANO11f?	. x						x					Kfs ?	15	TF	S-G	120	80	Fol; coeur rouillé; (mylonitique ?); avec B7-29	
B7-31	QZ					x		x	x					0	м	S-G	380	180	Bleutée; Fol; veine riche Pl; cour. autour Grt	
B7-32	MBS	x						x						25	F	S-G	90	80	GBlast; ressemble B7-5; veine TN, Cpx Fol 20 mm	
B7-33	MBS	x						x						25	F		220	120	Fol; = B7-32	
B7-34	AMP			x				x						30	F	S-G	70	35	Fol; Rub; veine leucocrate	
B7-35	?							x	x					0			35	15		
B7-36	GS							x	x					2			30	15	QFP; Fol	
B7-37	GS							x	x					2	F		25	30	QFP; Fol; linéation	
B7-38	GS							x	x					2	F		20	17	QFP	_
B7-39	PI		{					x						0	G	G	17	8	Hypidiomorphe; PClaste ou XC ?	
B7-40	?							x	x					0	F	S-G	65	60		
B7-41	MBS	x	x	x				x						25	F		100	50	Idem B7-5 ?	
B7-42	Срх	x												100	FM	S-G	50	40	Phénocristal ou PClaste ? vert foncé	
B7-43	GB	x						x	x					85	м	S-G	140	35	Métagabbro; Mas; recristallisé	
B7-44	GB	x		-				x						10	F	S-R	50	30	Métagabbro; recristallisé	
B7-45	GS							x	x					0	F	S-G	35	20	QFP; rosé	
B7-46	ANO							x						0	TF	S-G	60	15	Grise; GBlast	
B7-47	GB	x	x	x				x						20	FM	S-G	110	30	Métagabbro; Fol; 2 veines granitiques; = B7-5 ?	
B7-48	GR	?			-	2		x	x				llm		м	S-G	100	60	Roche granitique; Mas; cour autour Grt	
B7-49	GS	?				x		x	x				llm		TF	S-G	90	50	Granitique; Fol	
B7-50	?	x				x		x	x					10	F	S-R	160	65	Mas; cour autour Grt	
B7-51	QZ					1		x	x					0	М	S-G	55	25	Fol	
B7-52	MYL	x	1	1		5		x	x					15	TF	G	350	120	Fol; Rub Qtz; linéation; géochronologie	L

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B7-53	MBS11a	x		x	x			x				х		30	F	S-G	140	85	Coeur Cpx rouillé; perthites?	L/G
B7-54	GS	x						x	x					5	FΜ	R	90	50	2 parties: QFP+Px GBlast Px/veine granit Mas	
B7-55	MBS	x						x						80	F	S-R	85	40	Mélanocrate	
B7-56	MBS	x						x					Kfs		м	S-G	85	50	Métabasite + veine	
B7-57	MBS		x					x						20	F	S-G	230	170	Fol; +QFP à Cpx à GF	
B7-58	MBS	x				x		?							ΤF	S-R	75	65	Zones mélanocrates et leucocrates	
B7-59	GR							x	x					0	м	S-G	70	50	Roche granitique; Mas; cour Cpx autour XNL	
B7-60	SY?					?		x							м	S-R	40	40	Leucocrate	
B7-61	?	x						x							ΤF	S-R	40	20	Fol	
B7-62	CXN	x												100	F	S-G	25	10	Mas	
B7-63	GS							x	x					0	F		15	10	QFP	
B7-64	QZ								x					0	м		40	17		
B7-65	MBS	?						x						20	м	S-R	155	100	Fol; recristallisée; veine GR Fol à gm 4 cm; = B7-5?	
B7-66	MBS	x	x					x						20	F	S-G	110	90	Fol; recristallisé	
B7-67	QZ							x	x					0	TF	S-G	160	120	Impure	ļ
B7-68	QZ							x	x					0	TF	R	60	45	Fol; impure: QFP ?	
B7-69	GS				?			x	x						F	S-G	55	35	QFP; Fol; Rub Qtz; mylonitique; leucocrate	L
B7-70	CXN8b	96		1	x						x		Scp Ttn	100	м	S-R	70	45	Texture poreuse aux joints de grains	L
B7-71	GS	x						x	x					10	м	S-R	45	25	QFP	
B7-72	GS	1				10	1	x	x					0	F	S-G	325	175	Granitique; Fol; Mylonit. Rub Qtz; Grt=2 mm; géochron.	L
B7-73	GB	x						x						85	F	S-G	30	15	Métagabbro; GBlast	
B7-74	GS							x	x					0	TF	S-R	70	40	Rosé	
B7-75	GS	Γ				x		x	x					0	F	S-G	50	35	Rosé	
B7-76	MBS	x						x						85	F	S-G	60	55	GBlast	
B7-77	CXN	x												100	F	S-G	45	15		
B7-78	GR ?		1					x	x					0	F	S-R	30	17	Roche granitique; Mas	
B7-79	GR ?	x						x	x					3	FΜ	S-G	280	100	Roche granitique; linéation; cour Cpx autour XNL	
B7-80	GB	?		1			1	x						70	FG	S-G	350	210	Métagabbro; hétérogène; ± bréchifié	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		<u>.</u>															ļ			
B7-81	MBS	x						x						25	F	S-G	160	120		_
B7-82	WB10d	x	x	x	x					x			Opa		MG		65	30	Vert pâle; textures ? avec B7-53	L
B7-83	QZ							x	x			?		1	F	G	120	60	Blanc gris; XNL séparé en 2 par MNT	x
B7-84	QZ								x					0	М	G	60	45	Bleutée; Mas; avec B7-2	x
B7-85	?	?			x			x											XNL presque total. résorbé ? avec B7-53; = B0-4	
B8-1	GS	x			x	x		x	x						м	G	100	80	QFP; Foi; =B3-2	L
B8-2	WB	x	x					x						95	м	S-G	135	75	Mas	
B8-3	GS	x						x	x					4	TF	R	35	25	QFP ?	
B8-4	?							x	x					-	TF	R	85	80		
B8-5	GR ?					x		x	x					0	м	S-G	120	60	Roche granitique; Grt rose	
B8-6	CSL ?	?							x					40	TF	R	70	60		
B8-7	?							x	x					0	F	S-G	60	55	Rosé	
B8-8	?			x				x							М					
B8-9	CXN	x												100	F	S-R	30	27	Bt déformée autour XNL	
B8-10	CXN	x												100	F	S-R	25	25	Mas	
B8-11	MBS	x						x	x					15	F	S-G	160	20	Fol; GBlast; veines granitiques	
B8-12	MBS	x						x						60	FM	S-G	160	160	Hétérène: CXN GBlast gf/MBS Pl Cpx gf-gm	
B8-13	AMP	x		x		1		x						50	FΜ	S-G	220	125	Rub; leucosome Am Cpx Pl gf; GBlast; reliq. subophit	_
B8-14	MBS ?								x					30	F	S-G	150	65		
B8-15	GS					x		x	x					0	FΜ	S-G	60	27	Granitique; mylonitique	
B8-16	GR	3				< 1		x	x					3		S-G	45	20	Roche granitique; Mas	
B8-17	GS							x	x					0	м	S-G	30	25	QFP; Fol; leucocrate	
B8-18	CXN	x												100	F	S-G	50	15	Mas	
B8-19	CXN	x		1										100	F	S-G	60	30	Mas	
B8-20	MBS	x						x				1			F	S-G	140	140	Ressemble à B7-5	
B8-21	QFP	1						x	x					0	М	S-G	90	50	Mas	
B8-22	GB	x		1	1			x						90	F	S-R	120	60	Métagabbro; Fol	
B8-23	AMP	x		x	<u> </u>			x	x					70	F	S-G	150	50	Fol; mylonitique; veine Qtz // Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
	_ ,																			
B8-24	CXN	x			x			<u>.</u>						100	М	R	50	30	Mas	
B8-25	?			x				x							F	S-R	120	85		
B8-26	CXN	x	+											100	м	S-G	40	30	Contient zones MNT ?	
B8-27	GS16a			x	3	x	1	30	50		x	x	?ZrnMsllm	4	FG	G	530	260	Granitique; Fol; Rub; mylonitique; Grt rond; PBlast?	Р
B8-28	MBS	1	1			x								20	TF	S-G	40	12	Fol	
B8-29	GS	x						x	x					5	м	S-G	90	70	Granitique; légèrement Fol	
B8-30	MBS	x						x						40	F	S-G	200	150	Fol; veines Qtz > 10 mm Mas	
B8-31	GS		1		<u> </u>			x	x		<u> </u>			0	F	S-G	20	10	QFP; rosé; Fol	
B8-32	CSL	x	1		1				x		x		Kfs Tre?		F	S-G	300	185	Hétérogène; zones Kfs; skarn ?	
B8-33	QZ	x	+				<u> </u>	1	x					2	М	S-R	30	20	Mas	
B8-34	MBS	x			+			x						10		R	10	10		
B8-35	QZ								x					0	F	S-G	170	150	Impure; Fol; GBlast	
B8-36	GS			ļ		x		x	x			1		0	TF	S-G	400	210	QFP; Fol; GBlast; Grt rétrogradé	
B8-37	QFP						1	x	x					0	F	S-G	15	10		
B8-38	?	x			1	< 1		x	x			1		40	F	R	47	40	Fol	
B8-39	?	x				?		x	x		1			40	F		90	40	Idem 38; + veine granit; Fol	
B8-40	QFP							x	x	1		1		0	F	S-G	15	15	Mas	
B8-41	QFP	1						x	x			1		10	F	S-R	15	10		
B8-42	MBS	x		-				x	1	1				30	F	S-G	120	60	Granoblastique	L
B8-43	?	x			1		1	x	x					10	F					
B8-44	GS ?	x			-	1.	1	x	x	1				15	М	S-G	90	40	Granitique; Mas; ressemble encaissant	
B8-45	GS	x		x		1	1	x	x						М	S-G	220	150	Tonalitique; Fol; cour Hbl autour Cpx; + Gneiss QFP Fol	L
B8-46 •	GS	+	+	1		1		x	x						TF	S-G	65	24	QFP; peu Fol	<u> </u>
B8-47	?							x	x	1		1	5% Ms	0	F	S-R	225	19	Mas	
B8-48	?		×					x	x	1	-			30	FM	R	175	120	Gris; hétérogène	
B8-49	MBS	x				1		x					Mag ?	15	м	S-G	105	70		
B8-50	GS	+		+	x		1	x	x		-		Ť	20	TF	S-R	50	25	QFP; GBlast; Fol	
B8-51	GS				+			x						5	м	S-R	20	10	QFP ?; rosé; Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spi	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B8-52	Срх	Y			<u> </u>								ou Ot ?	100	G	S-G	23	16	XNL ou PC	
B8-53	2 2	<u> ^</u>			x	1	1		1					100	M	S-G	85	50	Hétérogène; Mx avec couronne Bt	
B8-54	CSI	2		2				x	x				Di ou Tre?		M	S-G	125	100	Verdâtre; recristallisé; veine Qtz	
B8-55	200E	· ·					1								F	G	8	8	Brun; cour Cpx autour XNL	
B8-56	MBS	x						×	x				Mag ?	25	FM	G	70	35		
B8-57	GB	x						x						50	F	S-G	42	25	Métagabbro; couronne Cpx autour XNL	
B8-58	2							x												
B8-59	MBS	x					1	x				x		85	F	S-G	80	60	Fol	
B8-60	GS	×						x	x				Mag ?	5	F	S-G	25	20	QFP	
B8-61	GS			<u>`</u>				x	x				ŭ		F	S-G	22	18	QFP; couronne 1 mm autour XNL	
B8-62	GS					20		x	x					0	F	S-G	115	50	QFP; mylonitique; Fol; Rub Qtz; Grt totalement Alt ?	
B8-63	CXN	x	-		x									100	м	S-G	180	70	Fol	
B8-64	QFP	?				?		x	x						м	S-R	95	75	Hétérogène; Grt totalement Alt.	
B8-65	WB?	x	x		x		1	1		<u> </u>	1			100	FΜ	S-G	40	25	Mas	
B8-66	GR ?				x			x	x				Mag	5	F	S-G	105	80	Roche granitique; Mas; GBlast	
B8-67	MBS	x						x	x	†	1		<u> </u>	15	F	S-G	50	43	Foi	
B8-68	CSL ?	?		-	<u> </u>	1			x	†	1		1	40	FM	G	225	110	Hétérogène; Rub	
B8-69	CSL ?	?	1	1					x					40	FM	S-G	65	44	Hétérogène; Rub	
B8-70	QZ							x	x		1			0	M	S-G	35	15	Fol	
B8-71	GB	x				+		x	x		1			10	м	S-G	50	48	Métagabbro; Fol; reliques textures ophitiques	
B8-72	MBS	x			1			x	x					20	F	S-G	210	80	Fol; Rub; rouillé	
B8-73	MBS11a	?		?				?		1				95	TF	S-G	112	100	Fol; mylonitique; résorbé	P/G
B8-74	QZ		+			-			x					0	F	S-G	26	12	Rosé; Mas	
B8-75	MBS	?		x				x	x	1				25	F	S-G	310	120	Hétérogène; veine Qtz à grain grossier	
B8-77	CXN	x	1	+	x					1		-		100	F	S-G	50	21	Mas	
B8-78	QZ		1				1	x	x					0	FΜ	S-R	75	65	Fol; Qtz gris foncé	
B8-79	GS	x	1				1	x	x					5	F	S-R	20	12	QFP; Fol; couronne Cpx ? autour XNL	
B8-80	QZ				-		1		x		1			0	м	S-G	110	30	Bleutée; Mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
88-81	MBS	x						x	x			1		15	F	S-G	45	40	Fol	
B8-82	GS	-			1	-		x	x					0	FM	S-G	175	150	QFP; Rub	
B8-83	GB	x						x	<u> </u>					35	F	S-G	22	18	Mas; religues ophitique; phénocx Pl	
B8-84	GB	x						x	?		-			10	FM	S-R	450	160	Métagabbro; légèrement Fol; reliques subophhit; = B9-65	
88-85	GB			2				x	x					5	м	G	115	32	Fol	
B8-86	GS			· ·				x	x					<1	F	S-G	280	110	QFP; Fol; Rub	
B8-87	?		 											1						
B8-89	AMP			x		1		x						30	F	S-R	35	30	Fol; reliques subophitique	
B8-90	WB?	x	x									+		100	м	S-R	135	65	Mas; Alt	
B8-91	QFP							x	x					0	F	S-G	70	45	Granoblastique	
B8-92	GR ?			-				x	x		1			0	F	S-G	110	50	Roche granitique; rosée; Fol	
B8-93	CXN	x			1		?	1						100	F	G	180	38	Vert moyen; Mas	
B8-94	?				fa			x						0	м	S-G	11	6	Roche feldspathique; Mas	
B8-95	QZ								x					0	м	S-G	33	30	Gris blanc; Mas	
B8-06	QZ					1			x					0	м	G	150	70	Bleutée; Mas	
B9-1	GB		1	+			1							15	F	S-G	100	60	Métagabbro; gris; GBlast; homogène	
B9-2	GB		1											15	F	R	25	20	Métagabbro; gris; GBlast; homogène	
B9-3	GB			+	1														Métagabbro	
B9-6	AMP	x		x				x			-			40	м	S-G	270	250	Fol; veines granitiques à grain moyen, Cpx, Hbl // Fol	
B9-7	?						1													
B9-8	GS			x			1	x	x						MG	S-G	110	80	Granitique; Fol; veine recoupant AMP mésocrate gf	
B9-9	GR	5		1	1	< 1		x	x					5	F	S-G	70	70	Roche granitique leucocrate; Grt au coeur Cpx	
B9-10	GS	-				?		x	x					5	FM	G	180	140	Granit.; Fol; beige-rose; MI rond 4 mm = Grt?; ex-veine?	
B9-11	GB	10		5			-	x	x					10	F	S-G	80	60	Métagabbro; couronne Hbl autour Cpx	
B9-12	GB	10		x	1	1		x	x	-				10	FΜ	S-G	110	75	Métagabbro; Fol; gris beige; ressemble B9-11; recristall.	
B9-13	QFP	x						x	x		1				F	R	20	15		
B9-14	QFP					-		x	x					0	F	S-G	80	20	Rosée	
B9-15	OFP	1			1			x	x	1		1		1	F	S-G	110	70	Fol; érosion différentielle	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
				ļ	ļ									ļ			1			
B9-16	QFP	L			1			x	x					1	F	S-G	100	20	Fol; érosion différentielle; même frag. que B9-15	
B9-17	GS							x	x					0	М	S-G	200	100	Granitique; Fol; Qtz étiré // Fol	
B9-18	QFP							x	x						FM	S-G	30	15		
B9-19	GS	x						x						5	F	S-G	140	80	Syénitique; Rub: couche leucocr 40 mm Cpx 3%/Cpx 10%	
B9-20	GB	15	15					x						30	F	S-G	90	80	Métagabbro; Fol; recristall; GBlast; veine granitique mm	
B9-21	MBS				x			x							ΤF	S-G	45	40		
B9-22	AMP			x	x			x							F	S-G	50	25	Mésocrate	
B9-23	AMP	2		45				x						47	F	S-G	110	100	Relique text. subophitique; GBlast; veine granitique gf; Fol	
B9-24	AMP	2		45				x						47	F	S-G	120	45	Idem B9-23; Veine PI+Hbl gm	
B9-25	CXN	x												100	F	S-G	80	40	Fol; couronne réaction autour XNL	
B9-26	AMP			x	x			x						60	FM	S-G	100	50	Tacheté; GBlast; mésocrate	
B9-27	GS					?		x	x					0	F	S-G	150	95	Granitique; Fol; veine granit GM Fol; 30% Grt? Alt	
B9-28	OXN		x								1			100	м	G	170	60	Granulaire; homogène	
B9-29	GB	15	5	x				x						20	F	S-G	40	30	Métagabbro; GBlast; recristall; couronne Hbl autour Cpx	
B9-30	QZ								x					0	TF	S-R	55	25	Impure; mylonitique; Rub Qtz; cour. Cpx 3mm	
B9-31	?				1		1	x	x				Ms 30%	0	F	R	20	20		
B9-32	GS			1		10		x							F	S-G	100	40	Syénitique; Fol; Grt rétrogradé	
B9-33	QZ				1	1			x				Ms 25%	0	F	S-G	55	25		
B9-34	CSL ?		1						x				Tre				25	15		
B9-35	MBS	x		?				x						50	TF	S-G	200	90	Fol; Rub: mésocr/Cpx, GBlast; mylonitique	
B9-36	GB	30		1				x						30	F	S-G	65	45	Métagabbro; Mas; reliques subophit; GBlast; veine granit.	
B9-37	GB	x	-	x	1	-		x						40	F	S-G	70 ·	50	Métagabbro; gris; Fol; cour. Hbl autour Cpx; rouillé	
B9-38	?		1		x			x							TF	S-G	90	70	Rouillé	
B9-39	GB	x		1				x						30	м	S-G	55	40	Fol; recrist; relique subophit; zone Cpx autour XNL	
B9-40	GS	-			1	10		x	x	<u> </u>				0	м	S-R	90	70	Granitique; Fol; Grt alt.; zone réaction à l'intérieur XNL	
B9-41	GB11c	40	<u> </u>	x	3	1		x			1			43	м	S-G	480	220	Fol; recristallisé; reliques ophit; Pl gf, Cpx gm; =B9-102	Р
B9-42	?				1			x	1			1		0	м	S-G	70	45	Roche feldspathique; rouillée	
B9-43	OFP ?	20	-			-	1	x	x					20	F	S-G	55	25	Métagabbro ou gneiss?	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		ļ						ļ												
B9-44	QFP			x	x			x	x						F		20	15		
B9-45	QFP							x	x				-	ļ	F		30	20	Leucocrate; couronne Cpx autour XNL	
B9-46	CXN	x			x									100	М	S-R	30	25	Légèrement résorbé	
B9-47	QZ ?				x				x					15		S-R	35	20		
B9-48	CXN	x												100	TF	S-G	10	5		
B9-49	MBS	x		x				x							TF	S-R	25	20	Mésocrate; couronne Am autour Cpx; rouillé	
B9-50	MBS	80						x						80	F	S-G	75	60	Fol; Couronne Cpx 2mm autour XNL	
B9-51	Fel							x						0	м	G	15	15	Couronne Cpx	
B9-52	GS							x	x					0	М	S-G	60	40	Granitique; Fol; leucocrate	
B9-53	GS		1					x	x					0	F	S-G	95	20	Granitique; Fol	
B9-54	?							x						0	м	G	35	20	Roche feldspathique; Idem B9-51; couronne autour XNL	
B9-55	CXN	x					1	x							м	S-G	90	85	Pl interstitiel; Mas	
B9-56	CSL	?	1	x	x				x					40	м	S-G	370	230	Rub; Mas; GBlast; légèrement résorbé	
B9-57	CXN ?	x						x							F		50	50	Couronne réaction autour XNL	
B9-58	MBS	15						x						15	F	G	70	25	Leucocrate; recristall; GBlast; Mas; = B9-60	
B9-60	MBS	15	1					x						15	F	S-G	25	15	Leucocrate; recristall.; GBlast; Mas; = B9-58	
B9-61	AMP	1		60		1	-	x			1			60	F	S-G	110	60	Mésocrate; GBlast; Mas; veine leucocrate	
B9-62	MBS	10						x			1			10	F	S-G	25	20	Mas	
B9-63	QZ	x					+	1	x	-	1				F	S-R	35	30		
B9-64	CSL ?	x						x	x						TF	G	280	140	Rub	
B9-65	GB	10		x			1	x	1					10	F	S-G	450	160	Métagabbro; gris; recristallisé; reliques subophit; ± Fol	
B9-66	SY	-	-		<u> </u>			x	x					0	F	R	50	30	Rosée; Fol	
B9-67	QFP	-		x		15		x	x			+					1		Grt (grains ronds 3 mm) total. rétrogradé Pl	
B9-68	CXN 2	×							+			+			F	S-G	40	15	CSL ? couronne réaction autour XNL	
B9-69	?				1			x				+			F	S-R	40	30	Vert brunâtre	
B9-70	CXN	x	+		×			+	-	No	1			100	F	S-G	70	5	Mas	
B9-71	CSI ?	x							x					80	м	S-G	100	90	Fol marquée par Qtz	
B9-72	GB	x	+	x		+	-	x			1	1		15	F	G	130	80	Métagabbro; beige; Fol; Rub Qtz; veine QFP granitique	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B9-73	GB			x				x							F	S-G	25	20	Métagabbro; GBlast	
B9-74	CXN	x												100	F	S-G	60	40	Recristallisée	
B9-75	QFP							x	x					0	F	S-G	50	35	Rosée; Mas	J
B9-76	GB	40		х				x						40	FΜ	S-R	180	110	Métagabbro; Fol; recrist; subophit; cour Hbl autour Cpx	L
B9-77	QFP							x	x					0	F	S-G	25	14	Fol±; GBlast	L
B9-78	QFP			?				x	x					10	F	S-R	22	16	Mas	
B9-79	CXN	x			x									100	F	S-G	45	30	Vert moyen; Mas; Alt	L
B9-80	MBS	x						x						10	F	S-G	180	75	Fol marquée par Cpx; mylonitisée;	L
B9-81	CSL	x			x			x	x					60	FΜ	S-R	175	135	Hétérogène; ± Fol; résorbé	
B9-83	QZ								x					0	F	S-G	28	22	XNL en 2 parties; GBlast	
B9 -84	?							x						0	F	S-G	22	20	Fol±; couronne Cpx autour XNL	
B9-85	MBS	x				x		x	x					15	F	S-R	225	125	Fol; Rub	
B9-86	GB	x						x	5					40	м	S-R	105	100	Métagabbro; reliques ophitiques; veine GR 20 mm // Fol	ļ
B9-87	MBS	x			x			x	x					10	F	R	30	20	GBlast; très Alt	
B9-88	QFP	x		x				x	·x					15	F	S-R	65	40	Hétérogène; Cpx autour Qtz	
B9-89	GB	40		x	3			x						43	м	S-R	32	15	Métagabbro; Fol; recristallisé; reliques ophit; = B9-41	
B9-90	QFP							x	x				- MA 1987 - 11	0	м	S-G	60	30	Fol±	
B9-91	QZ				< 1				x					0	F	R	25	15	Mas; homogène	
B9-92	GS		1		x			x	x			x			F	S-R	45	30	QFP; Fol; rouillé	
B9-93	GB	x			3			x						50	F	S-R	50	30	Métagabbro; Fol±; reliques ophitique; = B9-100	
B9-94	CXN	x												100	F	S-G	50	32	Vert foncé; Mas	
B9-95	CXN	x		x										100	F	G	105	95	Couronne autour XNL	
B9-96	MBS	10			2			x						12	F	S-G	45	22	GBlast; reliques subophitique	
B9-97	CSL	x						x	x				Ttn		FM	S-R	170	90	Fol; Rub; GBlast; couronne Cpx autour XNL	
B9-98	GR ?		-					x						0	F	S-G	32	22	Roche feldspathique; GBlast	
B9-99	GS				10			x	x					10	F	S-R	30	22	QFP; Fol; rouillé	
B9-100	GB	x			3		1	x						50	F	S-R	45	20	Métagabbro; Fol±; reliques ophitique; = B9-93	
B9-101	MBS	x						x							FΜ	S-R	85	55	Fol±; reliques subophitique	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B9-102	GB11c	x	?	x	x			x				x		15	F	S-G	295	90	MétaGB; Fol; Recristall; GBlast; cour autour XNL; résorbe	9 P
B9-103	MBS	60						x						60	F	S-R	125	45	Fol±; reliques subophitique	
B9-104	MBS	x						x						80	F	S-G	95	30	Porphyroclastique; PClastes=?	
B9-105	GS	5						x	x					5	FM	S-G	33	12	QFP; Fol; GBlast	
B9-106	QZ								x	1				0	М	G	20	13	Blanche; Mas	-
B9-107	QFP			5		x		x	x					5	FΜ	S-R	170	120	Fol; Grt -> Am + Pl	
B9-108	?	x						x	x						FM					
B9-109	AMP			?				x	x					40	м	S-G	42	38	Hétérogène; Cour Cpx? 3mm autour XNL	
B9-110	QFP				1			x	x					0	F	S-G	16	15	Granoblastique	
B9-111	MBS	x	 		x		1	x	?		1			10	F	S-R	55	28	Fol±; GBlast; ressemble encaissant sans Qtz ?	
B9-112	MBS	x			x	-		x	?					10	F	S-G	49	45	Fol±; GBlast; = B9-111	
B9-113	QZ	?	1	 		+	1		x		1			5	м	S-G	25	20	Impure; GBlast; Mas	
B9-114	MBS	x	1		1	<u> </u>		x						10	F	S-G	25	18	Fol±; GBlast	
B9-115	GB	x	1		1		<u> </u>	x		†****				35	МG	R	75	65	Métagabbro; reliques subophitique	
B9-116	MBS ?	?		x	-			x	1		-			30	FG	S-G	260	105	Linéation; niveaux grain grossier; cour Am? autour Cpx	
B9-117	MBS	x	1	1		†		x	x	1				10	F	S-R	135	115	Fol; GBlast	
B9-118	GS	x		x				x	10			1		3	F	S-R	55	30	QFP; Fol; GBlast	
B9-119	QFP	x				-		x	x					10	F	S-G	20	15	Rosée; Mx mafiques proviennent MNT ?	
B9-120	GS		+	x		1		x	x					5	F	S-G	19	13	QFP; Mas; GBlast; Bt MNT ?	_
B9-121	MBS	x						x						30	FM	S-G	100	60	Fol; reliques ophitique	
B9-122	QZ	1		x				x	x	1		1		2	FM	S-G	85	70	Impure; Fol; ± Rub	
B9-123	CXN	x	··		x		1				1			100	м	S-G	120	95	Mas	
B9-124	MBS	x		-				x	x	1		-		15	F	S-R	160	115	Mas; GBlast; reliques subophitique	
B9-125	CXN ?	?	<u> </u>		1	1	1	1			1	1			м	S-G	32	- 30	Mas; rouillée	
B9-126	GS	+		1	x	25		x	x					3	FM	S-R	200	110	QFP; Fol; Rub Qtz; PClast Grt rétrogradé	
B9-127	OZ			-	<u> </u>	1		-	x		-			0	FΜ	G	30	18	Mas; rouillée	
B9-128	07	1	- <u> </u>	+	x	-		+	x	1	+			5	F	G	30	20	Grisâtre; Fol	
B9-129	MBS	Y	-	1	x			x	?	1				10	F	S-G	40	16	Fol; cour Bt autour Cpx	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B9-130	MBS	x			x			x	?					10	F	S-R	40	30	Fol; cour Bt autour Cpx	
B9-131	QZ			?					x						TF	S-G	35	30	Fol; couronne minéraux foncés autour XNL	
B9-132	QZ								x					0	F	R	25	16	Fol	
B9-133	GS	x		x				x	x					3	F	S-R	15	12	QFP; rosé; Fol	
B9-134	MBS	x						x						60	F	S-G	30	22	Fol; Rub	
B9-135	GS	1			x	?		x	x					10	FΜ	S-G	80	85	QFP; PClastes Grt rétrogradé Bt; Rub; Fol	
B9-136	MBS	x						x	?					5	F	S-G	22	16	Mas; ressemble encaissant	
B9-137	MBS	x		?	x			x						10	м	S-G	115	80	Fol	
B9-138	CXN	x												100	м	S-G	25	15	Brune; Mas	
B9-139	GB			x	x			x						30	G	S-R	90	75	Métagabbro; Fol; hétérogène	
B9-140	GS	x			x			x	x					3	F	S-G	42	20	QFP; Fol; GBlast	
B9-141	AMP			x				x					Mag	45	F	S-G	110	65	Fol±; couronne mx noirs autour XNL	
B9-142	CSL ?	x			1			x	x					20	м	R	40	35	GBlast	
B9-143	QZ			?	x				x	- -				10	F	S-G	105	65	Impure; Fol; GBlast	
B9-144	GB			x				x						40	F	S-R	75	47	Métagabbro; Fol; ± Rub; reliques ophitique	
B9-145	GS			x	x			x	x					5	F	S-G	42	41	QFP; GBlast	
B9-146	CXN	x												100	м	S-G	32	20	Gris vert; Mas	
B9-147	Срх	x	1											100	G	G	11	11	MC automorphe ± résorbé	
B9-148	MBS	5						x	?					5	F	S-R	20	14	Fol	
B9-149	MBS	x		?	x			x						35	FΜ	S-R	28	15	Fol	
B9-150	MBS	x						x	x					20	F	S-R	22	15	Foi	
B9-151	CXN ?	x			x			x						90	FΜ				Mas; CSL ?	
B9-152	CXN8b	x			x									100	МG	G	60	35	Zone Phl grossière; avec B9-102	P
B9-153	CSL9d	x						x				x			FM	S-G	85	40	2 parties: CXN 4/MBS? avec B9-41	P
B10-1	GS			5				x	x					5	F	S-R	285	220	QFP; mylonitisé; Homogène; bordure + blanche	L
B10-2	GS			x				x	x						F	S-G	160	80	QFP; Mas; GBlast; homogène; = encaissant?	
B10-3	GS			x				x	x						F	S-G	30	20	QFP; Mas; GBlast; homogène; = encaissant?	
B10-4	GS		1	x				x	x						F	S-G	110	75	QFP; Mas; GBlast; homogène; = encaissant?	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
			<u> </u>		<u> </u>				4	<u> </u>	<u> </u>	ļ!	+		ļ					
B10-5	AMP		Ļ	x	x	ļ	<u> </u>	x				!	-	90	F	R	38	35	Fol	
B10-6	QZ	ļi	ļ	<u> </u>	ļ		<u> </u>	5	95				ļ	0	F	S-G	250	100	Gris; Fol; homogène	
B10-7	GS		+					x	x					0		S-R	55	34	Granitique	
B10-8	GS		ļ	?	ļ		_	x	x							S-R			QFP; idem encaissant	
B10-9	GS			15				x	x					15	F	S-G	110	10	QFP; XNL courbe	
B10-10	GS							x	x					0	м	S-G	40	20	Granitique	
B10-11	ECL ?	x		ļ		x		x							м	S-R	240	160	Tonalitique ? Mas; couronne autour Cpx, Grt	
B10-12	GBN	35	5					60						40	М	S-R	110	35	Mas	
B10-13	QZ					2		ł	x					0	М	S-R	90	60	Grt rosé	
B10-14	PGM ?							x	x					0	G	S-G	64	50	Gris	
B10-15	GS							x	x					0	м	G	162	120	QFP: rosé; granulo variable; couronne Cpx 1mm	
B10-16	GB ?			35				65					[35	FG	S-G	600	260	Métagabbro ? Fol; Rub; PClast	
B10-17	QZ							/	x		· · · · · ·			0	F	S-G	185	52	Fol; homogène	
B10-18	GR							x	x		[0		S-R	80	60	Frag. veine granitique	
B10-19	PGM							x	x		1			0	G	S-G	95	45	Veine pegmatitique	
B10-20	AMP			30				x	x		1			30	FG	S-R	280	220	Contient veine granitique	
B10-21	UMF	T									[100	F	S-G	100	65	¥	
B10-22	GS					x		x	x				1	-	м	S-G	110	65	QFP; Grt rétrogradé	
B10-23	GR	x						x	x				i		м	S-G	180	40	Veine granitique Mas recoupant gneiss QFP Fol	
B10-24	GS					x		x	x					0	F		140	80	QFP: Grt rétrogradé: Fol	
B10-25	GS		x		x			x	x					10	F	S-G	110	90	QFP ? Fol	
B10-26	GS		x		x			x	x					10	F	G	250	110	QFP ? Fol	
B10-27	MBS	50		5				45			1			55	FM	S-G	230	50	Rub: mésocrate	_
B10-28	AMP			50				x	?]	50	F	R	40	40	Fol	
B10-29	GS	15						x	x		1		· · · · · · · · · · · · · · · · · · ·	15	FM	S-G	80	75	QFP	
B10-30	MBS	x		x				x	1		[50	F	S-R	330	180	Rub: ex-ophitique: mylonitisé: Fol	
B10-31	GR				2	5		x	x		+			2	TF	S-G	240	120	Veine granitique Fol: C/S: Grt-> Bt	
B10-32	GS							x	x		+			0	F	S-G	85	40	Granitique: mylonitisé	

												·					· · · · · · · · · · · · · · · · · · ·			Éalt
No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	ECU.
																				+
B10-33	GS							x	x		ļ			0	F	S-G	85	30	Granitique; mylonitise	
B10-34	AMP	50		5				х						55	FΜ	S-R	100	40	Reliques textures ophitique Cpx	
B10-35	AMP?	x						x						25	F	S-G	150	90	Veine granitique à Cpx	
B10-36	GS							x	x					0	F	S-G	95	70	QFP; très Fol; résorbé; couronne Cpx	_
B10-37	TN ?	x						x	x					15	F	S-G	110	45		
B10-38	QZ				-				x					0	М	S-G	120	100	Mas	+
B10-39	GS			1				x	x					0	м	S-R	370	170	Rose; granitique	
B10-40	GS	3	- 1					x	x					4	F	S-R	360	120	QFP; échantillon pour géochronologie	-
B10-41	GS	x			-	x		x	x					15	FΜ	S-R	80	50	QFP; Fol; Cour Pl autour Grt; cour Am autour Cpx	
B10-42	GS	x		1		x	-	x	x					15	FΜ		70	35	QFP; Fol; Cour Pl autour Grt; cour Am autour Cpx	
B10-43	GS				x	?		x	x						м	S-G	590	160	QFP; Ex-veine granitique ± pegmatitique; mylonitisé	
B10-44	CXN	x	1		1								OI ?	100	F	S-G	145	65	Mas	
B10-45	CSL	x		-	-	x			x					50	F	S-G	80	60	Fol	
B10-46	?														F	S-G	80	55	Leucocrate	
B11-1	MBS	25	-	+	+			x						25	F	S-R	50	40	GBlast; mésocrate	
B11-2	AMP	x	1	x			\uparrow	x						90	F	S-R	65	40		
B11-3	GS					15	1	x	x					0	FM	S-G			QFP; Grt arrondi: 4 mm	Ļ
B11-4	GS	10		+	-	2		x	x					10	F		230	160	Couronne autour Grt	
B11-5	GS			+	-	x	-	x	x					15	м	S-G	190	160	QFP; Rub: partie gf 20mm GBlast; =B11-3	
D11 6	ECI	v	-	1	1	5		×	x						FM	S-G	205	125	Mylonitisée; C/S;	
D11-0		^			+				×					0	м	S-G	90	37	Qtz bleu; Mas	
B11-7										-	-			50	F	S-R	40	20		
B11-8	АМР			×	-			×		-			+	10	F	S-R	40	35		
B11-9	AMP			X				X							M	S.D	90	80	Mas	
B11-10	QZ	+						X	X		+			0		<u>с с</u>	00	= 00 = 0	OFP	
B11-11	GS		<u> </u>			+		X	X					0		5-G	92	50		
B11-12	GS	x	_	x				x	X	_				15	F	S-R	60	40		
B11-13	GB			1							_				F	S-R	20	15		
B11-14	AMP			×				x								S-G	27	20	Mésocrate	

No	Roche	Срх	Орх	Am	Bt	Grt	Spi	Fei	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B11-15	GR				 			x	x				-	0		R	20	20	Veine? couronne Cpx autour XNL	
B11-16	BC															S-G	540	380	Matrice peu abondante = MNT	Р
B11-16-1	QZ								x					0	м	S-G	45	30	Qtz bleu; Mas	Р
B11-16-2	AMP	x		x										50	F				Fol	Р
B11-16-3	QZ								x					0	м	G	15	10	Qtz bleu; Mas; = B11-16-1	Р
B11-16-4	ANO	x						x						5	G	S-R	35	15	Anorthosite gabbroïque; en 2 frag. = B11-16-7	Р
B11-16-5	CXN	x						1						100			60	35	Vert olive; Mas; MNT: aussi 6 et 7 en partie	Ρ
B11-16-6	NR4	3	41	3	3	1		50		x	x	x	Tlc? Chl?	50	FG	G	450	260	Cumulat; ± Fol, Rub ignés; Pl interst; kinks, s-grains	P/G
B11-16-7	ANO	x				-		x	-					5	F	S-G	180	115	Fol±	Р
B11-16-8	Phl	x		x			1							100	G	S-R	125	60	Zone Phl? Px grain moyen	Р
B11-16-9	MNT ?	x			ļ — —	-									МG				Matrice brèche	Р
B11-16-10	Срх	x			<u>†</u>		<u> </u>		-		-			100	G	А	> 15	> 10	MC2; coeur brun rosé, manteau poreux, bordure incol	Р
B11-16-11	Срх	x		x	1	1		1		<u> </u>				100	G	Α	5	5	MC4? coeur pâle, zones vertes, bord =MC2, bord poreuse	9 P
B11-16-12	Срх	x		x				x		x			Ора	100	м	Α	3	3	MC1; vert-brun à brun rosé; résorbé local.; alt fractures	Р
B11-16-13	Срх	x	1	†		1								100	G		5	3	MC4; bordure incol par endroits; localement bréchifié	Р
B11-16-14	Срх	x	x	1										100	G	A	7	4	MC4? MC2? brun pâle, extinc nette; inclu partiell Opx alt	Р
B11-16-15	Срх	x												100	м	н	4.5	2.5	MC1?; bréchifié; incl polycristall: Kfs PI Bt	Р
B11-16-16	Срх	x												100	G		> 7		MC4? brun très pâle; polycristall; zone très alt	Р
B11-16-17	Срх	x		x	x	1		x					Ора		М	Α	4	> 3	MC4? coeur résorbé; bordure 0.6 mm brun très pâle	Р
B11-17	QZ						-		x					0	м	R	120	70	Gris-bleu; ±Fol	
B11-18	GS		i					x	x					0	М	S-R	180	70	QFP; Rub; Fol	
B11-19	MBS	x					1	x	?					25	FΜ	S-G	120	60	Fol	
B11-20	?	x		1					x					75	FM	G	100	45	Zone Qtz ?	1
B11-21	CXN	x												100	м	G	210	40	ou anorthosite ? brun pâle; Mas	
B11-22	GS			?	1			x	x		-			35	М	G	280	190	QFP; Rub; Fol	
B11-23	GS			?	1	1	1	x	x	1	1			5	F	S-G	370	190	QFP; Rub; Fol	
B11-24	07	-	1	1			-	?	x			1		0	F	S-G	180	170	Brun pâle; Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
B11-25	QZ								x					0	М	G	80	65	Fracturée	
B11-26	GS			x				x	x					15	F	S-G	90	40	QFP; ±Fol	
B11-27	QZ			?					x					5	F	S-G	145	55	Rub: 5 mm maf =?	
B11-28	QZ								x					0	м	G	180	100	QTZ bleu; ±Fol	
B11-29	GS							x	x					0	м	S-G	95	30	QFP; Fol	
B11-30	WB	x	x					x						75	FΜ	S-R	125	60	Rub±; Alt; CSL ?	
B11-31	GB	x						x						40	F	S-R	35	20	Métagabbro; Mas	
B11-32	ANO?					1		?						0	F	S-R	35	30	Gris-blanc	
B11-33	GS	x			1			x	x					10	FM	S-G	120	95	QFP; ressemble encaissant; peu Fol	
B11-34	GS	x						x	x					5	F	S-R	90	65	QFP; rosé; Fol; couronne Px autour XNL	
B11-35	AMP			x				x						40	F	S-G	140	42	Ex-gabbro; Fol ignée // Fol tectonique (PI)	
B11-36	QZ				x				x					1	м	R	44	20	Mas	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
C0-1	Срх	x		x	x			x			x		Ора		G	Α	12	11	MC4; 2cx; zone infiltration MNT local à grain grossier	P
C2-1	GB			x				x								S-G	70	-	Métagabbro; Rub; poeciloblastique	
C2-2	GB	x						x							F	S-R	300			
C2-4	CXN	x													М	G	20			
C2-5	?															S-G	70		Fol; Rub	
C2-6	MYL							x	x						F	S-G			Fol; Rub Qtz; mylonitique; PClastes Pl	
C4-1	GS							x	x					0	FΜ	S-G	300	120	QFP; Fol; Linéation; Alt; rouillé	
C4-2	CXN	x	1											100	М	S-G	57	35	GBlast	
C4-3	GB	x	x				1	x						40	МG	R	235	190	Mas	
C4-4	CXN	x		-	1									100	М	R	30	22	Mas; Gblast	
C4-5	GS				1	-	-	x	x					1		R	150	115	QFP; Fol; rouillé	
C4-6	CSL ?	x	1		1				x		?			15	FM	R	85	54	Fol; Rub Qtz; Alt; Mx érodés; mylonitique	
C4-7	CXN	x		1				x						100	М	S-R	52	50	Vert foncé; Pl interstitiel; GBlast	
C4-8	GS	1						x	x					0	МG	G	72	14	QFP; Fol; cour Cpx autour XNL	
C4-9	GB	x	1	?	1		1	x						15	FM	G	60	57	QFP; Fol; couronne Am autour Cpx	
C4-10	GS					1		x	x					0	FΜ	R	44	28	QFP; Fol; Rub Qtz; mylonitique ?	
C4-11	MBS	x		-	1			x	x					5	F	S-G	125	100	Fol; recristallisé	
C4-12	CXN	x	-			1		x				1		95	FΜ	R	50	29	PI interstitiel; Mas	
C4-13	MBS	×		1		1		x	?	<u> </u>				15	F	R	40	30	Fol±; recristallisé; PBlastes Cpx	
C4-14	MBS	×			1	1		x		1	1	1		30	FG	S-G	300	120	Rub: gf/gm; recristallisée	
C4-15	QZ	1		1		1	1		x					0	TF	R	35	19	Blanc; Mas; couronne Cpx? autour XNL	
C4-16	Срх	?	-		1			1		1	-			100	G	G	17	15	Autom; MC	
C4-17	MBS	×				x		x	x	1				5	TF	S-R	225	180	Couronne Pl autour Grt; Pl+Qtz autour Cpx	
C4-18	07				3	+	+		x		-	1		3	FM	S-G	390	175	Niveaux Bt // Fol	
C4-19	PGM	-	-	-	1		+	x	x	1				0	G	S-G	220	192	Granitique; Mas	
C4-20	07	y	+	-		1	+	x	x	1	1			1	м	S-G	445	285	Impure; niveaux Cpx; Fol; Rub	
C4-21	GS		1	+		-		x	x	+				0	F	G	110	55	QFP; ±Fol	
C4-22	MBS	v	-			+		x	2	1				5	F	S-G	280	125	Fol; recristallisée	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
C4-23	QZ				?	x			x						FM		260	120	Fol; Rub Qtz	
C4-24	CXN	x													F	S-G	40	30	Mas; Cpx vert bouteille	
C5-1	MBS			?				x	x						F	S-G	120	100	Fol	
C5-2	GS				?	x		x	x						F	S-R	100	45	QFP; Grt rouge, couronne Bt?	
C5-3	CXN	x			x			?							М	S-R	90	70	Vert foncé; Mas; riche Bt; CXN8 ou CXN2?	
C5-4	Срх	x						?							М		30	20	MC?; résorbé; ?inclu Fel gris violacé?	
C5-5	CXN	x						?			?				F	S-R	70	40	Vert foncé; mx Alt en relief négatif = Fel, Car?	
C6-1	CXN ?	x														R	40	40		
C6-2	GS					x		x	x										QFP; Rub	
C6-3	CXN	x											?		F	S-G	40	30	Minéral pâle	
C6-4	GS				x	x		x	x							S-G	20	10	QFP	
C6-5	GS	?		?		x		x	x			x			F	G	250	140	QFP; Qtz bleu; Grt rouge; veine MNT//Fol; Rub; PBlast?	L
C6-6	CXN	x			x			?							FΜ	S-G	80	60	Mas; riche en Bt à grain moyen; CXN2 ou CXN8?	
C7-1	GS				x	x		x	x							G	80	70	QFP; Grt rose, partiellement rétrogradé en Bt	
C7-2	ANO	x						x								S-G	250	170	PClast	
C7-3	ANO ?														F		70	50	Gris pâle; couronnes de réaction	
C8-1	GS					x		x	x						М	R	80	70	Paragneiss; Fol	
C8-2	CXN	x			x			?							F	R	70	30	Riche Bt; CXN8 ou CXN2?	
C8-3	ANO ?							?								G	30	10		
C8-4	GS					x		x	x							R	50	30	QFP; Grt rose	
C8-5	GS					x		x	x								70	70	QFP; Grt avec incl; pas de rétrogression	
C8-6	GNL6b	5	1	10	15	35		5	25	x	x	?	Ms Zm Iim?	76	FM		130	80	Grt rouge-orange; pas rétrogradé; PClast; Fol; Rub	Р
C9-1	WB	x	x				?										60	40		
C9-2	GB	?				x		x								S-R	90	60	Métagabbro; GBlast	
C9-3	?	x	x				?		x						F	R	60	40	Minéral noir	
C9-4	GS					1											200	130	QFP; mylonitique; leucocrate	
C9-5	ANO ?						1	1							F	G	300	200	GBlast	
C9-6	QZ	?			x	x			x								460	200	Rub: +roche calco-silicatée + gneiss Bt	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
						<u> </u>														ļ
C9-7	GB														F	R	90	90	QFP; leucocrate; GBlast; Fol	
C9-8	ANO ?	x						x							FΜ	S-G	420	160	ou syénite ?	ļ
C10-1	CXN	x				x		ļ	L						м	S-R	50	40		
C10-2	GS										1					S-G	40	. 30	QFP; très abondantes couronnes de réaction	
C10-3	MYL																90	80	Pegmatite; PClast	
C10-4	CXN	x				x								ļ	F		5	5	GBlast; Grt rouge	<u> </u>
C11-1	GS															R	50	20	QFP	ļ
C11-2	WB	x	x														20	10		<u> </u>
C11-3	GS					x		x	x								260	140	QFP; riche en Grt (peu d'inclusions, partiell. rétrogradé)	
C11-4	CXN	x															20	10		ļ
C11-5	CXN	x														G	50	20		
C11-6	CXN	x					?									S-G	40	30	Minéral noir	
C11-7	CXN	x														S-G	60	40	Pâle	
C12-1	MBS	x						x									90	45	Rub	
C12-2	ANO ?															G	70	25	Noire	
C12-3	MYL					x		x					?			G	170	130	Minéral jaune; photo: 6-7	ļ
C12-4	CXN8b	x											? bleuté		F	S-G	40	30	Vert OI alt; vert gris foncé cassure fraî.; ±FoI; Bt bordure	P
C13-1	GS					x		x	x							S-G	160	60	QFP; rétrogression	
C13-2	CXN ?	?													F	S-G	110	100	Pâle	
C13-3	OXN		x												G	R	60	60		
C13-4	NR	x	x					x	1							S-R	130	80	Mas; PI interstitiel	ļ
C13-5	MBS		1	x				x								S-R	150	60	Rub; GBlast	
C13-6	UMF															R	80	50	Pâle; couronne. (photo: 6-4)	
C13-7	CXN8b	x			x										м	R	150	60	Gris foncé cassure fraî.; Bt gross. en bord. et joints grains; CXN8?	
C13-8	NR	x	x				1	x								R	120	110	Mas	
C13-9	GS16b	?	1		x	x			x	?			? Mag				260	100	QFP; Fol; ±Rub; PClast Grt < 2cm; Qtz bleu; (photo: 6-5, 6-6)	P
C13-10	CSL9d		1					x	x			x			F		> 80	> 40	Ignée? bordure ± nette (avec C13-9)	P
C14-1	GS		1							1						S-G	220	130	QFP; Rub; mylonitique. (photo: 5-39, 6-3)	x

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
												ļ								
C14-2	CXN10c	95		x							x	x	Ttn Ms?	100	F	S-R	100	60	Cpx bruns (Ti?); GPClast; PClastes avec exsol.; Fol -> Sul.	P/G
C14-3	GB	x	?					x								S-R	370	30	Hétérogène	
C14-4	MBS11a	x						?							F				Même couleur que MNT; Fol; (avec C14-2)	L
C15-1	CSL9a	x				?									F	R	40	10	Grt rose (photo: 5-38)	Р
C15-2	CXN8b	x			?							x			F	S-G	55	45	Vert foncé; Mas; homogène; Mx noir (photo: 5-38)	Р
C15-3	CXN8b	x			x										FΜ	S-R	> 110	70	Gris; PClast? Bt interst et bordure XNL; fracturé	Р
C15-4A	CSL	98		x				x	x	х		x	Ttn	99	FM	S-R	90	60	Forme irrégulière; Cpx vert; PClast? Fol; veine Sul; Cpx2	P/G
C15-4B	CXN	x	?			?									F	S-R	90	60		Р
C15-5	ECL	?			x			x							м		35	20	Grt rosé rétrogradé; (avec C15-2)	Ρ
C15-6	CXN8b	x			x										м	G			Cpx vert bouteille clair; Mas; homogène; (avec C15-2)	L
C15-7	CXN8 ?	x													МG	G			Gris; Mas; PClast ? (avec C15-2)	x
C16-1	GS					x		x	x								560	240	QFP; riche en Grt; PBlast. (photo: 5-38)	
C16-2	GB	x						x					Mag				240	140	Métagabbro; Fol; recristallisée; couronnes	
C16-3	GS					x		x	x				Mag		F		90	80	QFP	
C16-4	MBS			[220	50	Fol; veines granitiques	
C17-1	CXN ?	x			1								OI?				20	10		
C17-2-1	CSL9c	25				5						9	Scp Ms Ép Mag	36	F	S-R	30	20	GBlast; Fol; Rub; couronne autour XNL	Р
C17-2-2	Срх	x		x										100	G	А	> 15	9	MC4; poreux, altération Am importante; bordure Cpx = MN	Р
C17-3	?			-		x									F		5	5	Couronnes de réaction	
C17-4	?												OI?		м		5	5		
C17-5	CXN ?	x				x											10	5	Rouillé	
C17-6	CXN ?	x				x											10	10	Rouillé	
C17-7	GS				x	x		x	x		-					S-G	80	60	Paragneiss; Fol	
C17-8	UK	<u> </u>	-		x		1				+				F		220	190	Cogénétique MNT?	
C17-9	GS	+				x		x	x				Мад				170	40	QFP; leucocrate; veine Qtz	
C17-10	GS	<u> </u>		+		x		x	x			1					170	20	QFP; Grt rose avec inclusions	
C17-11	GS				1	x	1	x	x						м		80	70	QFP	1
C17-12	GS					x	1	x	x				Sil		FM		330	120	QFP; Fol; ±Rub; linéation; riche en Bt	L

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																				ļ]
C17-13	Ру											x					10	10	Géode contenant de la pyrite	
C17-14	GLM				x												20	10	Résorbée	
C17-15	Opx?	?	x			?									F	G	7	4	Couronne foncée autour XNL; (avec C17-2)	Р
C17-16	CXN6a?	x													м				Vert foncé; Mas; homogène; (avec C17-2)	L
C17-17-1	Срх	x		x								x		100	G	Α	11	9	MC4; zones brun pâle, zonées; manteau vert, bord poreuse	L
C17-17-2	Am		-	x	x									100	G	н	17	10	MC Am? 2 positions extinction, clivages Am; cour Bt+Am	L
C18-1	QZ					x			x							R	120	60	Grt métamorphique avec inclusions	
C18-2	GS				1	x		x	x				Mag						QFP; Grt métamorphique avec couronne et inclusions	
C18-3	GB	x						x								S-G	170	150	Blanc au centre, rose à la bordure; couronne Cpx	1
C18-4	CXN	x	1		x										М		90	60	Mas; riche Bt	
C18-5	CXN	x			x				1						м	R	30	20	Cpx vert; riche Bt	
C18-6	ANO							x							F	S-G	150	90	Grise; légèrement recristallisée	ļ
C18-7	GLM				x										м	S-R	40	10	Phl jaunâtre	
C18-8	GS					x		x	x							G	160	150	QFP; Grt rose avec inclusions; pas de rétrogression	
C18-9	WB	x	x					x							м	S-G	180	100	Mas; ± litage avec 2% et10% PI interstitiel	
C18-10	CXN	x			x										F	R	60	20	riche Bt; CXN8 ou CXN2?	
C18-11	QZ	?		?			1	?	x							S-G	350	250	Bleue; résorbé; niveau de métabasite	
C18-12	MPL		?		x	x		x	x								140	50	Bt abondante; Rubanée	
C18-13	MBS	x	1	1				x					Mag			S-G	160	60	Fol	
C18-14	GS					x		x	x							S-R	80	40	QFP; mylonitisé	
C19-1	QTZ/GS	-				x		x	x										Grt rose, incl; Qtz allongé; mylonit.; niveau CSL	
C19-2	UMF														TF	S-G	30	20	En contact veine granitique	
C19-3	OXN		x				?									G	40	20	Minéral noir = Spl?	
C19-5	CXN	x					?					<u> </u>	-		F	S-G	40	35	Veine granitique	
C19-6	Grt		1	1	1	x									G	S-R	10	30	MC ou XC ?	
C19-7	OXN		x	1	1		?	1				1				S-R	60	30		
C19-8	WB	x	x	+		1	-			1					М	S-R	100	60	Mas	
C20-1	MBS	x			1	1		x									40	40	Mas; GBlast	

No	Roche	Срх	Орх	Am	Bt	Grt	Spi	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
C20-2	MBS	x				×		×								S-R	40	30		
C21-1	CXN8a	92		1	3	2						2			FM		160	90		Р
C21-2	GS		x					x	x						FM	G	300	180	QFP; Rub, niveau Opx; veines granitiques	
C21-3	GNL6b	x	x	x	x	x		X	x	x	x	x	MsTtnOxiZrn		FM		310	200	Mafique; Fol; Rub; PClast; résorptions	Р
C21-4	CXN	x			x								OI?						Riche Bt; CXN2 ou CXN8?	
C21-5	OXN		x				?													
C21-6	CXN	x				x									F				Vert foncé; inclu? dans roche à Fel+Mx noir (avec C21-1)	Р
C21-7	CXN	x			?		?								F				Vert foncé; = C21-6 sans Grt; Qtz bleuté autour	x
C21-8	3 XNL	x						x											3 XNL accolés dont 2 CXN8b: CXN verte, CXN brune, ANC	P
C21-9-1	Срх	x						x	1						G	н	12	7	MC1? poreux; incluant? inclu MC Kfs+MNT	L
C21-9-2	CXN8b	x																		
C21-10-1	CXN1b	x		x	x			x		x	x	x	Ttn		м	н	35	20	Cumulat MC4? mâclés, zonés; fantômes Cpx; MNT interstitielle	Р
C21-10-2	Срх	x													G	Н	5	5	MC4? vert-brun pléoch; manteau et bordure poreux	Р
C21-10-3	Срх	x			x			x							G	А	12	1	Phénocristal squelettique; finement poreux	P
C22-1	QZ					x			x				MI noir						Grt rétrogradé	
C22-2	CXN	x													F		100	30	Vert bouteille	
C22-3	GS		x		x			x	x								400	140	QFP; mylonitique	
C22-4	MNT	1		25	20			54	x	x	x	x	Ttn Zrn? Ilm?	46	FΜ				"Pod" MNT plus pâle (fels.); porphyrique; Cpx -> Am±Bt.	P/G
C22-5	CXN	x													F		140	80	Comme exemple	
C22-8	CSL9b	x																	(CXN)	L
C23-1	CXN8b	x	?				x								F	S-R	190	140	Vert pâle surface altérée; Veine Fel, Cpx+Spl?	P
C23-2	MBL ?	1			x						?				F	S-R				
C23-3	CXN	x											OI?		F	R	30	20		
C23-4	GS				?	x		x	x						м				QFP ou roche granitique? PBlast; riche Grt rose (avec C23-1)	x
C24-1	CXN	x														R	40	30	Pâle	
C24-2	WB	x	x		x											S-G	40	30		
C24-3	CXN	x					?								F		90	50	Mas; Mx noirs	
C24-4	QFP	1	1			x		x	x							R	20		Grt rougeâtre	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																				ļ
C24-5	CXN	x															80	60		
C24-6	Срх	x																	1 cristal vert	
C24-7-1	CXN8a	65		?		x	10	?			20		Ms?		М	S-R			CXN carbonatisée; trainées incl. Car? abondantes	P/G
C24-7-2	Срх	x													м	х	3	3	MC4; coeur brun pâle, manteau verdâtre; pas bordure Cpx = MNT	Р
C24-7-3	Срх	x		x											G	н	7	5	MC1; brunâtre; très résorbé; zones MNT; rempl Am	Р
C24-7-4	Срх	x													м	х	4.5	3	MC3 (XC); incolore; bordure poreuse < 0.1 mm	Р
C24-7-5	Kfs	-						x											Fragment MC Kfs	Р
C24-8-1	Fel ?			1				?							м	G			Gris brun; forme "pods" ou brèche ou veine? (voir B11-16)	Р
C24-8-2	Срх	x													м	н	4	4	MC4; mâclé; reliq brun pâle, manteau vert-brun, extinct texturée	Р
C24-8-3	CXN	x													м	н	3	2.5	MC4; 4 cx; 1 mâclé; brun pâle, alt brune, bordure gris-bert poreuse	Р
C24-8-4	Kfs	+						x					Kfs						Fragments mégacristaux Kfs	Р
C24-9	CXN1b	x										x			FG	S-G	> 26	> 22	MC3 (XC); polycristallin; incolore	L
C24-10-1	CXN8b	x													F				Gris vert foncé (≠ C24-9); semble soudé à l'encaissant	L
C24-10-2	Срх	x												100	G	Α	7	5	MC1? vert à brun; extinct nette; bord poreuse, bord ext = Cpx MNT	L
C24-11-1	CXN8b	x				-						x	PoCcpPy?						Sul abondants; avec C24-9, 10	Р
C24-11-2	CXN8b	x	†								1									Р
C25-1	CXN8a	x	x		x		?	1				x			м	S-G	240	100	Accolé à fragment d'encaissant	2L/G
C26-1	OXN	1	x				?									S-G	90	50	Mas; Mx noir	
C26-2	GS				x	x		x	x		1	1			F				QFP; Grt rétrogradé; couronne Bt autour Grt	
C26-3	GB	x	x				<u> </u>	x				1				S-G	190	70		
C26-4	MBS ?	x	+			x		x								S-R	100	80	Grt rouge; (CSL ?)	
C27-1	GS	x			1	x		x	x	1	t					1			QFP; Rub; bandes Cpx+Grt; Grt rétrogradé	
C27-2	CXN	x						×	1	1		1	PI				60	40		
C27-3	CXN8a		+				?		1	-					FΜ	S-G	60	30	Vert olive; GBlast; Mx noirs; petit XNL à Grt en bordure	Р
C27-4	CXN8b		×									1					70	30	brune; Mas; fractures	L
C27-5	GS			+	x	x		x	x		+	1		1			130	90	QFP; riche Grt rose altéré; veine Qtz bleuté recoupe Fol	
C28-1	NR 2	2	2				+	x	+	1				····	F	S-R	70	60		
C28-2	MBS	2	÷	1		1	-	x		1				1	TF	S-R	100	60	Mylonitisée; Fol	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																0.0	000	050		
C28-3	GS			×		?		X	X							5-R	260	250		
C28-4	GS					X		X	x								400	320	Paragneiss typique CMB; Git rose non retrograde	
C28-5	GS	<u> </u>													TF		200	40	QFP; rose	
C29-1	?											X				S-R	380	190	Très rouillé	[
C29-2	GS					x		x	x						FΜ	S-G	80	40	QFP; Grt rosé rétrogradé; cour. réaction; veine minette?	
C29-3	GS			x		x		x	x						F	S-G	420	370	QFP; Grt rosé; fine cour. réaction;	
C29-4	ANO							x	?			х			FM	S-R	420	210	Beige; recristallisé? PBlast? veinules grisâtres	Р
C30-1	GS	?		?				x	x						F	S-G	700	230	QFP; Fol; Rub; niveaux plus riches en mx mafiques	Ļ
C30-2	GB	x		×				x	x				Mag?		F	S-G	510	250	Leucocrate; Fol; recristallisé	
C30-3	MNT																		"Pod" ou XNL? claire; riche Fel; contour irrégulier	
C31-1	GS					x		x	x							S-R	300	250	Fol; Rub; paragneiss; Grt rouge brunâtre	
C31-2	CXN8a	96		1	x		3				х	x	Ms Ttn	100	FΜ	S-G	50	15	Granulaire; ± sous-grains; Fol; Spl interst; (avec C31-3)	Р
C31-3	CXN8a	x			x								OI?		м	S-G	110	40	Noire ± vert en cass fraîche; CXN8? (avec C31-2)	L/G
C31-4	CXN8b	x										х			м	S-R	90	80	Pâle, vert brun; Mas; Sul inégalement répartis; fractures	L
C31-5	GS					x		x	x				Sil? Mag?				90	60	Paragneiss; peu de rétrogr; résorbé; riche Grt	x
C31-6	CSL9b	99		x				x		x	х	x	ScpTtnMag	100	FG	S-G	> 38	> 22	(CXN) polycrist; vert; 1 grand Cpx, petits Cpx: PClast? CSL?	Р
C31-7	CXN ?	x						x					Kfs		м	S-G	110	50	Mas	
C31-8	UMF	x				x	?									S-R	45	30		
C31-9	GS				?	x		x	x						FΜ	G			QFP; hétérog; Qtz bleu; Grt rouge-rosé, cour. Bt; (avec C31-4)	Р
C31-10	CXN ?	x						?				x			МG				Gabbro? hétérog; "pods" Fel intest; résorbé; suite: C31-5	Р
C31-11	GNL6a	x				x						x			F	S-G	50	20	Résorbé	Р
C31-12	ECL ?	x	1			x		?							FM		50	25	±Rub; (avec C31-5)	P
C31-13	CXN8b	98		x	2			x			x	x	Ttn ou Rt?	100	MG	S-R	40	20	PGran; ± PClast; Fol; Bt gg en bordure; veinule	Р
C32-1	GB	x			1			x							TF		160	120	Métagabbro; mylonitique; GBlast; Fol	
C32-2	GB	x		x				x							F				Métagabbro; mylonitique; leucocrate; Cpx cour Am	
C33-1	MBS	x														S-G	7	40	Avec CXN	
C33-2	GS					x		x	x								360	260	Paragneiss; Grt rose, incl., plus rétrogradés au coeur du XNL	
C34-1	MBS11b	x	1					x	x							G	260	220	QFP; gris beige; Fol; Rub; Qtz bleu; mylonit; résorbé; veine MNT	P

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
																				ļ
C35-1	GS					x		x	x										QFP; Grt rouge orange clair rétrogradé	<u> </u>
C35-2	GS					x		x	x								10	5	QFP; Grt rouge orange clair rétrogradé	-
C35-3	GS					x		x	x										QFP; Grt rouge orange clair rétrogradé	
C35-4	AMP			x				x								S-G	60	40	Fol	
C36-1	WB	x	x					x							м	S-R	110	110	PI interstitiel; Cpx automorphes	
C36-2	GS					x		x	x										QFP; Grt rosé avec inclusions	
C36-3	Cpx ?	?	!												G	G			MC noir, automorphe	
C37-1	CXN	x					x										40	30	Alt	
C38-1	CXN	x			x		1		1			1			FΜ				Riche Bt; CXN8?	
C38-2	QZ		1	1		x		1	x								300	130	Grt rose; peu de rétrogression	
C41-1	CXN	x	1			x		x								S-G	60	50	Très pâle; lentilles Fel	
C41-2	GS	x			1	x		x	x							S-R	50	40	QFP; Fol	
C43-1	CXN	x				1									м	S-R	130	70	Mas; homogène	
C43-2	GS	1				x		x	x			x			м	S-G	150	50	QFP; rouillé+alt jaune; Grt clair; Qtz bleu; résorbé; (B11-16)	Ρ
C43-3	CXN	x		1			?	x		1		x			FG	S-G	> 150	110	Brèche: veines MNT; lentilles QFP selon Fol?	x
C43-4	CXN	x			x		1								м				Vert bouteille clair; =A23-10 (C31-13?); coutour flou	Р
C43-5-1	CXN8b	×		1	-	-									м				Partie de C43-4 avec encaissant (?) noritique (B11-16)	Р
C43-5-2	Срх	x							ľ						м	A	3	3	MC1; vert à vert-brun pâle	Р
C43-5-3	Ορχ		x			-		1		1					G		16	15	XC? Opx ± en contact avec XNL contentant grand Grt	P
C44-1	CXN8a	x			x	1		-		1	1				м		70	60	CXN8-1; Cpx autom? alt. en bordure; Bt interstitielle abondante	L
C44-2-1	GS					x		x	x	1	1						15	10	QFP; gros Grt rouge ± brun peu rétrogradé	L
C44-2-2	Спх	x					-			-			Opa		G	н	10	7	MC4? brun très pâle; bordure poreuse; traînées Opa	L
C44-2-3	Grt					x					1				G	X	11	7	XC; bordure résorbée	L
C44-3	OFP		2			x	-	x	x	1		1	Mag ou lim			S-R	220	110	Grt clair, couronne réaction	
C44-4	WB	×	Y	+	+			×				-				G	80	30	PI interstitiel	
C44-5	Kfe	· ^-	† ^	+			1	x	-		1					R	30	30	1 cristal gris violacé; homogène	
C44-6	GS	+	1	×	+	×		×	x	+		+				1	450	190	QFP; rose; Fol; plissé; migmatisé	
C44-7	CXN	x										-			м	R	> 20		Zone de remplacement; CXN8? (avec C45-7)	x

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
				ļ	. 															
C44-8-1	Kfs			-				x							G	S-R	40	23	Gris violacé; résorbé; Mx noir dans zone résorbée	P
C44-8-2	Срх	x													G	Н	10	7	MC2; coeur brun rosé; manteau poreux; bord ext exsol Opa	i P
C44-8-3	Срх	x		x											G	Α	> 13	3	MC1? reliq brun pâle; résorbé; amphibolitisé	Р
C45-1	WB	x	?		x	?										S-G	35	20	paraît partiellement inclu dans l'encaissant	
C45-2	CSL	x					?	x					?		F	S-R	200	120	Vert jaune; Cpx vert	Р
C45-3	CXN	x		?	x										м	G	80	20	Noire; Mas; résorbé? Bt inégalement répartie	x
C45-4-1	CXN8b																			Р
C45-4-2	WB?	x	x	?											FΜ	G	50	30	Gris ± violacé; Mas; granul. variable; bordure nette	Ρ
C45-5	Kfs							x								S-R	20	10	MC ou XC? gris violacé	x
C45-6	CXN	x					?								F	S-G	50	40	Vert pâle; homogène	x
C45-7	GNL6b	x		?		x		?	x			x	Oxi?				50	50	GBlast; résorbé; fractures; mx remplacement	Р
C45-8	MBS	?		?	?	x		x				x			м		> 80		Couronne autour Grt; peut-être la suite de C45-7?	Р
C45-9	CXN	x						?		-					М				Gris ± violacé; Mas; remplacements interstitiels	x
C45-10	GS ?				x	x			x						М	R	20	15	Grt rosé abondant; Qtz bleuté; (avec C45-4)	x
C45-11	CXN1b	x		x	x			x					Mx bleuté		м		> 20	26	MC gris-vert coeur poreux, bord non-p.; petits Cpx incol	L
C45-12a	DN7a			x	2		15						80%Ol Srp		F				Couronne 10 mm de Cpx vert/Opx ou Bt; (avec C45-4)	P/G
C45-12b	DN7a			x	x								OI Ms						Couronne réaction; voir C45-12a; (avec C45-4)	L
C45-13	DN7a				x		18	?					OI Srp		М				Abondantes incl. Spl dans Ol; bordure verte (avec C45-2)	Р
C45-14-1	Kfs							x									32	7	Gris violacé; résorbé	Р
C45-14-2	Срх	x											Opa		G	н	6	> 3	MC4; reliq brun pâle; manteau vert; bord poreux et Cpx = MNT	Р
C45-14-3	Срх	x		x							T		Opa		G	Α	10	> 4	MC4; zones verdâtres ± pléochroïque = Am?	Р
C45-15	NR4	x		x				x							M	S-G	75	45	Fol±; (avec C45-3)	Р
C45-16-1	Grt				x	x										S-G	6	5	XC Grt rouge résorbé, couronne Bt; (avec C45-3)	P
C45-16-2	Срх	x	1	x											м	н	2.5	2	MC4? coeur brun pâle, manteau Am?, bordure poreuse	Р
C45-16-3	CXN8b	x														T				Р
C45-17	CXN	x	<u> </u>	1			1								м	S-G	45	40	Grise; Mas; fractures; + autre CXN8? (avec C45-16)	x
C45-18	CXN8b	x										1			М	G			Blanche; ± résorbée; Mas (avec C45-3)	L
C45-19	GNL6b	?			1 -	x		1	x			1	<u> </u>		F				Fol; résorbé; (avec C45-3)	Ρ

No	Roche	Срх	Орх	Am	Bt	Grt	Spi	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
C45-20	CXN8b	x			x						1				F	S-R	> 130		Bt inégal. répartie; résorbée, fragment détaché; (avec C45-3)	X
C45-21	CXN8a	x			x							x			м		> 60		Bt et Sul inégalement répartis (second ?); Bt local grossière	Р
C45-22	CSL9a	x						x					Mx noir		м	S-R	75	35	Vert olive surface alt; vert foncé cassure fraîche (avec C45-3?)	Р
C46-1	MBS							x							F				Fol; lentilles PI; métamorphique	
C46-2	CXN	x		x								x			F	S-R	80	50	Fol; homogène; "collision" avec GS: C46-1	Р
C46-3	MBS ?	?				x		?	x						F				Grt non rétrogradé.; Fol déviée par CXN en contact	x
C46-4	GS					x		X	x				Sil			S-G	320	170	Grt rétrogradé; paragneiss typique de la CMB	
C46-5	Globules			?	x			x							F	R	< 5		Ronds, ovales, polygones ± réguliers; + norite; (avec C46-2)	x
C47-1	?	?				x													Très altéré, en relief négatif	_
C48-1	WB	x	x		?	?											40	30		
C49-1a	CSL9a	93	1	x	x			4	2	x	x	x	Scp Ttn Ilm		FG	S-R	170	160	HGran; Hétérogène; Fol; zone + grossière à Ttn+Qtz	P/G
C49-1b	CSL9a	x		1															(CXN) idem C49-1a, mais de l'autre côté fracture	L
C49-2	MYL	1															170	130	Fragmentée; rouillée; kinks	
C49-3	GS														F		230	150	Leucocrate; granulitique; typique de la CMB	
C49-4	Globules		1		?			x							F		< 7		Localement abondants; + gabbro; (avec C49-1)	Р
C49-5	Globules			1															Près de QZ d'où elles originent ??	L
D1-1	GS	?			x	x		x	x										QFP; Grt clair, couronne PI Cpx? Bt	
D1-2	GS	1				x		x	x										QFP; Grt rétrogradé	
D2-1	GB	x					1	x					Mag ou Ilm						Métagabbro; leucocrate; Fol; recristallisé	
D2-2	GS				x	x		x	x										Paragneiss	
D2-3	CSL ?																			x
D2-4	GS					x		x	x										QFP	
D3-1	GS	x				x		x	x										Grt rouge avec inclusions; typique CMB	
D3-2	WB ?	x	x				?								м		40	25	Gris vert foncé en cassure fraîche; fracture	P
D3-3	GS																		QFP; typique de la CMB	
D3-4	WB?	?	?				?	-							м		40	20	Idem D3-2	
D3-5	GS			1			-	1							TF				QFP; mylonitique; Fol; linéation	
D3-6	Grt	x		1		x		x	-										En relief négatif; Grt rose brun, couronne vert pâle	<u> </u>

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
D3-7	Bt																7	6	XC?	x
D3-8-1	CXN8b	x													м	G	20	10	Vert jaune en surface alt; bordure nette; (avec D3-2)	L
D3-8-2	Срх	x													G	н	10	6	MC4? poreux; bordure petits Cpx en continuité opt.	L
D4-1	GS					x		x	x						F	S-G	50	30	QFP; (portait no D4-1; perdu)	<u> </u>
D4-2	GS16b		?		?	x		x	x						FM	S-G	130	40	QFP; PClast Grt rose < 6mm, peu incl; cour Opx? Bt?; Fol	Р
D4-3	?				x	x											150	20	Grt rose, couronne Bt	x
D4-4	GB11d	x	?		?			x				x			FM				Rub; Cpx+Sul/Fel+Opx+Sul (ou 2 XNL?); (avec D4-2)	L
D4-5	QZ				1			?	x			x			F	S-G	> 50	> 30	(CSL?) Fol; Rub; Qtz bleuté; Fel beige ou verdâtre; (avec D4-2)	L
D4-6	GS					x		x	x						м	S-G			QFP; Qtz bleuté; Grt rouge foncé, cour; ± résorbé (avec D4-2)	L
D4-7	ANO ?							x							м		> 30	> 20	Résorbée; sur même lame que D4-6; (avec D4-2)	x
D5-1	CXN	x	x			x										S-R	25	15	Granulite mafique	
D5-2	GS					x		x	x						м	S-G	280	160	QFP; Fol; Grt rosé rond, incl, non rétrogradé	
D5-3	?	x	?		x				x							S-R	40	35		
D5-4	GS	x			x	x		x	x						FM	R	70	60	Éclogite?; Grt rouge rosé sans incl < 10m mm; résorbé	Р
D5-5	?	x				?			x						TF		80	70		x
D5-6	GB	x						x				x	Po		м		> 120	> 65	Leucocrate; coupe // et proche bordure XNL; Sul abondants	Р
D6-1-1	CXN8a	x													М	S-G	30	25	Vert bouteille clair en surface alt; Mas; fracture	P
D6-1-2	Срх	x													М	Н	4.5	4	MC; gris vert, totalement poreux, bordure néoformée	P
D6-1-3	CXN1b?	x													F		4	> 3	Incol, gerbes, incl (voir C45-11)	Ρ
D6-2	ANO	1					-	x	x						TF	S-G	180	60	Gris blanc; mylonitique; Qtz rare	
D6-3	WB	x	x		1											S-G	100	60	Vert pâle	
D6-4	OXN	x	x					x								S-G	190	130	Noire	
D6-5	GS				x	x		x	x							S-R	10	10	QFP	
D6-6-1	CSL9e	60	25	1	5			3	5	x		x	Ms		F	S-G	65	60	Blanc; Fol (2 Fol?); Rub? Hétérogène; minéraux incolores	Р
D6-6-2	Bt				x			x					Opa		м	н	4	3	MC Bt? jaune pâle à brun orangé	P
D6-7-1	QZ			t					x			x	Ms?		F	S-G	25	10	Qtz bleu; + globules (avec D6-1)	L
D6-7-2	Срх	x	1	1											м	н	3.5	2	PXN1b? gris vert (voir C45-11)	L
D6-7-3	Срх	x			1										м	Α	4	3	MC?; gris-vert = Cpx MNT; totalement poreux	L

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
		 :																		
D6-7-4	Срх	x							 	x					м	Н	2.5	2.5	MC1; gris-vert = Cpx MNT; totalement poreux	L
D6-7-5	Срх	x		x						x					м	н	4	3	MC1; vert à vert-brun; très poreux; fine bordure Cpx = MNT	L
D6-7-6	Срх	x													м	Α	3	2.5	CXN1b? 2 cx; autom mais forme complexe	L
D6-7-7	Срх	x													м	А	3	2	MC1; coeur reliq vert, manteau poreux, bordure Cpx = MNT	L
D6-7-8	Срх	x													G	х	> 10	5	MC4? brun très pâle; très résorbé	L
D6-7-9	CXN	x													м		6	3.5	3 cx incolores	L
D6-7-10	Kfs							x						-	м	х	4	3	MC Kfs gris violacé	L
D6-8-1	GS	t	?	?		x		x	x						F	S-R	120	90	QFP; Fol; Rub; résorbé; niveaux Mx noirs; (avec D6-1)	L
D6-8-2	Срх	x											Ора		G	х	8	4	MC1 ou MC4? zones reliques vert-brun; poreux	L
D6-8-3	Срх	x	-												G	Н	6	> 4	MC1 ou 4? zones reliq verdâtres; local. bordure int. = MC2?	L
D6-9	GR12c?				1	x		x							м	S-R			Blanc ± vert; Grt près bordure; (avec D6-6)	L
D6-10-1	WB8c?				1		1	?				1			TF	G	11	5	Vert émeraude; fine couronne + pâle; (avec D6-6)	Р
D6-10-2	Срх	x	t												G	н	6	3	MC4; vert-brun pâle, pléoch; mâclé; bord poreuse sur 1/2	Р
D6-10-3	Срх	x				1									G	A	9	5	MC4; partiell résorbé; infiltration MNT: "trous"	Ρ
D6-10-5	CXN8b	x			1			-												Ρ
D6-11	CXN5?	x	x	1							1	x			м	S-G	20	15	Sul interstitiels abondants; (avec D6-6)	Р
D6-12	CXN	x	1			?									м		> 20	15	Cpx vert Foncé; contour XNL imprécis; (avec D6-6)	L
D6-12-2	CXN1b	x													М		20	11	Cpx incol prismatique ou gerbes (voir C45-11)	L
D6-12-3	Срх	x		1	<u></u>					x					м	н	4	3	MC1; très poreux; fine bordure non poreuse = Cpx MNT	L
D6-12-4	Срх	x				1	-		1						G	x	5	3	MC complètement poreux, très résorbé	L
D6-12-5	Срх	x	1	-	-	1					1				м	н	> 3	2	MC complètement poreux, résorbé; fine bordure = Cpx MNT	L
D6-13-1	CXN8b?	x				1		1							м	S-G	> 18	> 15	Cpx vert émeraude foncé; résorbé; + globules (avec D6-6)	L
D6-13-2	CXN	x			-	-	-		-						м	х	8	5	MC? 3 cx complètement poreux; contacts très irréguliers	L
D6-13-3	Срх	x			x				-					1	G	н	5	2.5	MC; gris-vert-brun; très finement poreux; grande Bt épitax	L
D6-14	Sul	+		+	+	-	1	?	?			x	Po Ccp Py			-	20	10	Forme quelconque; (avec D6-6)	Ρ
D7-1	?	x			x	×	1	1	· ·	<u>†</u>	• • • • • •				F		110	90	Grt rose, couronne Cpx; Bt non orientée	
D7-2	WB	x	×	-			1	-	+	+				1	F	S-G	60	35		
D7-3	GS	x	<u></u>	+		2	-	x	x			1		1	F	S-G	240	80	Vert; homogène; GBlast; ± résorbé; ± Fol	L

٥N	Roche	CpX	xdo	Am	ā	ß	Spl	Fel	77 0	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
D7-4	SY12a	×	د.	×		1		×			2			-	ΤF	S-P	250	110	PClast; résorbé // Fol; zones réaction amiboïdes	5
D8-1	RN	×	×					×							Σ	s S	200	80	Mas; mésocrate; PI interstitiel	
D8-2	89	×	×					×											Fol ignée (Pl autom. alignés)	
D9-1	MBS																240	170	Rétrogradée; + gneiss QFP	
D9-2	Grt					×											20	20	Grt rosé dans gneiss QFP	
D9-3	QFP					×		×	×								400	250	Grt rose rétrogradé; métasédiment	
D9-4	AMP			×											L	σ	190	120	Fol; homogène; (CMB)	
D11-1	6Z 2					×			×		-			0		S-R	8	00	Avec XNL de QZ; analyse chimique MNT	×
D11-2	CXN																			σ
D12-1	CXN2a	×			×		×							100	Σ	ი ი	~ 60	>35	XNL felsique "collé" sur CXN ?	-
D12-2	CXN2a?	×			×									100	Σ		6	60	Bordure XNL réaction avec gneiss? (=B12-1?)	ا بہ
D12-3	GB	×		×				×						35	U V	s S	280	80	Très Fol; Fol ≠ all. XNL	L
D12-4	WB2b	81	9	ო	ъ		+	-		×	×	×	RtZm?Tlc?	66	Σ		>235		Cumulat déformé? ±Fol; mx interstitiels	P/G
D12-5	MBS11b	12	<i>c</i> .	ω	ო	0		1	ю	×		ć	Zrn Oxi?	18	ш	ດ ດ	330	100	Fol; Rub; ± mylonitique; GBlast; PClast	<u>a</u>
D12-6	GB	×	 					×	×			×		64	Σ	လ ပ	300	140	Fol	
D12-7	CXN	×			×							×		100	Σ	S-R	100	65	Mas; vert	
D12-8	σz		ļ						×				-	0	Σ	ა ი	20	20	Gris-brun; Fol?	
D12-9	GB		 	×				×	×			×	Mag ?	30	ш	თ	6	35	Fol; rouillé	
D12-10	CXN	×			×									100	Σ	ა ე	35	25	Gris Foncé; Mas	
D12-11	GS		L	-				×	×					-	Σ	თ	20	25	Granitique? veine verte gf	
D12-12	ANO ?							×						0	დ	S S S	15	13	Veinules	
D12-13	GB	×		 	×			×						30	Σ	თ	180	30	Mas	
D12-14	CXN F	×	ļ											100	Σ	S-G	80	50	Mas; vert foncé	
D12-15	σ	1							×					0	Σ	с С	20	25	Mas; bleuté	
D12-16	GB			8				×						30	M G	S-G	120	20	Fol	
D12-17	GB			4				×						40	Σ	ъ S	380	140	Subophitique	
D12-18	MYL							×	×					0	ш	σ	8	67	Bien Fol; couronne Cpx autour XNL	
D12-19	σ							×	×					0	Σ	s G	8	8	Fol; brun pâle	

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ap	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
D12-20	QZ								x					0	МG	S-G	45	30	Bleu; Mas	
D12-21	GB		?	x				x						40	F	S-G	55	20	Subophitique ?	
D12-22	CXN	x			x							x	OI ?	100	М	S-G	100	80	Vert foncé	
D12-23	QZ							?	x					0	м	G	220	110	brun pâle; peu Fol	
D12-24	QZ							x	x					0	м	S-G	90	45	brun pâle; Fol; couronne Cpx autour XNL	
D12-25	MYL			?				x	x					10	F	G	170	28	Gris pâle; Très Fol	
D12-26	MYL							x	x			-		0	FM	G	90	35	Bien Fol; Alt	
D12-27	GR	?	1					x	x				Kfs Pl	1	м	S-G	40	30	Rosé; Mas; Alt	
D12-28	CXN	x		1		?								100	м	S-G	30	20	Mas; vert foncé	
D12-29	GS				1 1			x	x					0	м	S-G	125	50	QFP; peu Fol	
D12-30	QZ ?		-						x			x			F	S-R	120	60	Très rouillé: riche Sul	
D12-31	GS			?				x	x					2	м	S-R	100	70	QFP; peu Fol	
D12-32	MYL		1					x	x					0	м	S-R	25	15	brun pâle; Fol	
D12-33	AMP			x				x						60	F	S-G	410	210	Mylonitique; Fol; linéation	
D12-34	GR					10		x	x					0	м	S-G	30	15	Couronne autour Grt	
D12-35	CXN	x		?							T			100	F	S-G	10	8	Vert foncé	
D12-36	CXN	x	1			?								100	F	S-G	25	25	Mas; vert foncé	
D12-37	ANO ?							x						0	F	S-G	20	10	brunâtre; Mas	
D12-38	GB			?				x						20	F	S-R	55	35	Mas	
D12-39	GB			40				x	x					40	м	S-G	> 60	55	Amphibolite ? Fol	
D13-1	NR		x	x				x				x		100	МG	R	100		Très fracturé; = B11-16-6	Р
D13-2	GNL?	x	x	1	1			x	x					30	FΜ	S-R	320	220	Subophitique; Fol; veine MNT recoupe XNL	Р
D13-3	GB	x		-				x						30	м	S-R	> 280	230	Ophitique; Mas	
D13-4	CXN	x		1	+									100	F	S-G	70	50	Fol; vert foncé	
D13-5	QZ			1				x	x					0	FΜ	S-G	110	60	Fol; zone de composition gabbroique (30%)	
D13-6	GR					1		75	25		-			0	М	S-G	150	80	Mas; Alt	
D13-7	CXN	x			x		1		-		1			100	м	S-G	70	40	Vert foncé; Mas; avec D13-2	x
D13-3	?	?	-				<u> </u>	?	?			1		5	TF	S-G	> 60	60	Rosé; très Fol; avec D13-2	x

Ech		×	×	×	° Q _	P/G	×	٩	×	۵.	<u>ب</u>	٩			px px	×				٩	+	۲ ۲	د	٩	'st P	٩	۵.
Remarques	75% PClast; Fol; veinule vert foncé; (avec D14-2, 3)			Résorbé; fragment de D14-6 (avec D14-5)	Cogénétique MNT?: + riche Cpx; +D14-4; =D14-6	Vert; partie de D14-4; résorbé; avec D14-5	Petit, altéré	Aussi partie autre XNL	Petit, trop superficiel	Fol // allongement? (avec D14-12, 13,14)	QFP; pas de Mx noirs (avec D14-14)	Fol ignée; sub-ophitique; légèrement déformé	Grt rouge \pm rose, clair; (portait no D14-1, août 93)	Gris pâle; GBlast; ± résorbé; (portait no D14-2)	QFP; Fol; mylonitique; Grt rouge clair, couronne PI+C	Cumulat? en 2 parties (avec D14-20)	Reliques batonnets PI; Cpx -> Am; Grt -> ?	Inclusions dans Grt		GBlast; Fol; Grt brun ± rétrogradé; Cpx vert pâle	Gneiss éclogitique? Grt rose clair, Fol	Vert olive påle; vert \pm bleu en cassure fraîche; PBlast	Gris violet foncé en cass. fraî; ± résorbé	Ressemble à MNT; Bt non orientée; Grt = rouille?	MC allongés, mâclés; textures complexes; MNT inter	Vert foncé en cassure fraîche et alt	Vert foncé en cassure fraîche et alt
l Larg				>80		>30		õ		09		240	10	35	6		20	S	-	15	50	50	35	45	> 20	ဗ္ဂ	
Long				95	20	>30	20	55		~80		350	20	60	130		30	9		25	120	8	35	8	> 40	65	
Arr	æ			s.G	s,G	S G	ပ ပ	s-G		s S		ა ს	თ						:	œ	ა ე	ດ ດ	ດ ບ		A	s 9	
Gra	Б П	ш	Ľ.	₹ E	Ľ	Х Ц	Σ	Σ		Σ	Σ L	Σ		μ	ΤF	Σ		_		∑ LL		Σ	Σ	Σ	G	ш	ш
Maf	10	<u>6</u>	100	100 1	9 8	6						25				1				67							
Autre	Zm?				Zrn					Sil		llm Mag								ScpTtnÉp?				012			
Sut					×							×										×			•		>
Car	×				×															×					×		
Ap					×							×													×		
Ę										×	×				×			×			×						
Ē	×				5					×	×	75	×	×	×	×	×			×			×	×	×		
t Sp																				10							
ې ۲					10					×					×		×	×		4	×	<u>с.</u>		نے د			
e E	×				1		×			×	-	×											×	×	- -		
px Ar	×											8	×			×	×										
lo Xd	o o	×	×	×	ιΩ	×	×	×				2	×	-	ļ	~ ~	×		×	õ		×	×	×	×	^ ×	,
ပ စ	о д				a G	د م		50		٩	-			~					٩	ц) O		م			م	10	5
Roch	CXNB	CXN	CXN	CXN	CXN1	CXNB	CXN	CXN8	GB ?	GS16	GS	Н	MBS	ANO	GS	Ë	MBS	GS	CXN8	CSL9	gs	CXN8	CXN	CXN	CXN1	CXN	CXNE
۶	D14-1	D14-2	D14-3	D14-4	D14-5-1	D14-6	D14-8	D14-9	D14-12	D14-15	D14-16	D14-17	D14-18	D14-19	D14-20	D14-21	D15-1	D15-2-1	D15-2-2	D15-3	D15-4	D15-5-1	D15-5-2	D15-6-1	D15-6-2	D15-7-1	D15-7-0

No	Roche	Срх	Орх	Am	Bt	Grt	Spl	Fel	Qtz	Ар	Car	Sul	Autre	Maf	Gra	Arr	Long	Larg	Remarques	Éch
D15-7-4	CXN1b	x			x							x			FG	н	10	5	MC4; polycristall: 1MC + petits Cpx; incl Bt 1.5 mm et Sul	Р
D15-7-5	CXN1b?	x													F		5	4	Cpx incol, exsol? (voir C45-11)	Р
D15-7-6	Kfs							x					Kfs		G				MC Kfs	Р
D15-8	ECL	?		?	?	x		x					?		FM	S-R	45	25	Grt rosé, couronne Bt? ± Fol; (avec D15-6)	Р
D16-1	CXN	x		ĺ.		x		x							F	S-G	70	30	Grt rétrogradé, couronne PI; Fol	
D16-2	GS ?	x				x		?	x								200	150	Grt rétrogradé; Rub Qtz; Fol; remplacements importants	
D16-3	NR ?	?	?					x									20	10	Noire	
D16-4	GS					x		x	x						F	S-G	100	50	QFP; Grt rouge-rose, incl, rétrogradé; Mas	
D16-5	CXN	x															50	20	Vert bouteille; contour irrégulier	
D16-6	CSL ?			?									Tre?			S-G	140	70	Vert pâle; résorbé? Mas; homogène	
D16-7	GB	x						x					Oxi			S-R	300	150	Mas; hétérogène; non rétrogradé	
D16-8	WB	x	x												М				Hétérogène	
D17-1	CXN	x			x											R	20	15	Vert pâle	
D18-1	ANO ?			x				x								S-G	260	110	Bordure résorbée; recristallisée ?	
D20-1	Kfs							x							М	G			Gris violacé; autom; non mâclé; plusieurs XNL (ou XC)	
D25-1	MNT														F				Apophyse 65 mm, bordure et encaiss; pas bord trempe	2L
D25-2	MNT												·····		F				Apophyse 35 mm + encaissant; pas bordure de trempe	2L
Autres roc	hes qui ne	sont	pas	des x	énoli	ites														
1663	PD	9	7	8	10		2	4		?	x	x	OI	96	МG				Rolleau; HGran; nombreuses textures de remplacements	P/G
4097	DR ?														F				Brèche monogénique mélanocrate	x
4118	CXN	x		x	x									100	F				Vert foncé; Mas; (pour comparaison avec XNL)	L/G
4003	MNT	27		x	32			40	x	x	x	?	Ора	60	F				Porphyr; XC; dyke de Girard ≈ MNT Rivard	L/G
4003d-a	MNT														F				Bordure figée+encaiss; sphérules Car? ± allongées	x

Appendice C

<u>CARACTÉRISTIQUES PÉTROGRAPHIQUES ET GÉOCHIMIQUES</u> <u>DE LA MINETTE DE RIVARD ET SES XÉNOLITES</u>

Caractéristiques pétrographiques, minéralogiques et géochimiques de la minette de Rivard (appendice C1) et des différents types de macrocristaux (C2) et de xénolites (C3). Les numéros d'échantillons pour lesquels des analyses à la microsonde sont disponibles sont <u>soulignés</u> alors que ceux qui ont fait l'objet d'analyses géochimiques de roche totale sont indiqués en caractères **gras**. La classification des xénolites est principalement basée sur la composition minéralogique et les textures telles qu'on peut les observer en lames minces. Elle est dans de nombreux cas arbitraire, particulièrement lorsqu'un xénolite présente des caractéristiques intermédiaires entre deux classes. Le pourcentage des minéraux constituants a été évalué visuellement. Les xénolites felsiques sont décrits de façon beaucoup plus sommaire que les xénolites ultramafiques. La mise en place du dyke et les structures observées sur le terrain sont traitées plus en détail à la section 1.6 et au chapitre 2, la minette, ses phénocristaux, ses mégacristaux, ses textures, leur composition et leur origine probable, au chapitre 4 (les clinopyroxénites (CX) considérées au chapitre 4 sont les CXN8 de l'appendice C3). On trouvera la signification des abréviations à l'appendice B1, la liste complète des xénolites avec une description sommaire à l'appendice B2, les analyses de roches à l'appendice D et les analyses de minéraux à l'appendice E.

C1- MINETTE

MNT: A7-3, A7-8, <u>A7-9</u>, A7-11, A7-12, <u>A7-13</u>, A13-2a, A13-2b, A16-1, A17-1, B0-9, B0-10, <u>B6-76</u>, C21-9, C49-4, D25-1, D25-2 (MNT felsique: <u>B0-4-1</u>, B4-17, C22-4)

PÉTROGRAPHIE. Lamprophyre à phénocristaux de Cpx et Bt dans une matrice de Kfs, Pl, Cpx, Bt, Am, Ap, Qtz, Ttn ± Sul, Car, Zrn. La roche est gris foncé en cassure fraîche et gris verdâtre en surface altérée. Les différentes injections varient légèrement par leur teinte, leur granulométrie et leur mode, et contiennent des quantités très variables de xénolites et de xénocristaux. La granulométrie est fine, mais plus grossière dans l'intrusion principale. La roche est fraîche: la Bt n'est pas chloritisée et les Fel ne montrent qu'une altération mineure en carbonate; le remplacement partiel du Cpx par l'Am est tardi-magmatique. La proportion d'Am est variable et atteint 25% dans certaines injections. Seule la Bt montre localement les indices d'une déformation mineure. Les phénocristaux sont généralement distribués de façon homogène; il est difficile d'évaluer la proportion des phénocristaux parce qu'il existe tous les intermédiaires granulométriques entre les phénocristaux et les cristaux de la matrice et parce que les xénocristaux de Cpx peuvent être abondants (et que ces derniers sont partiellement remplacés par le Cpx de la MNT). Parfois gloméroporphyrique. Les phénocristaux allongés sont généralement orientés de façon aléatoire, sauf dans des petits dykes où ils sont parallèles à l'éponte, ou en bordure de certains xénolites où la Bt tend à s'orienter de façon tangentielle.

Les globules felsiques (<1-10 mm) parfois présents près de l'éponte supérieure du dyke sont ronds, ovoïdes ou allongés, et montre généralement une fine couronne de Bt tangentielles (entre autre: A3-7, A22-1, C49-4, C49-5, D6-7, D6-13). Ils sont à grains fins à moyens et composés de Fel ± Qtz, Ttn, Car, Am, Bt, Cpx, Ap, Zrn, Opa. Ces globules ont des textures similaires à celles de la matrice de la minette avec une extinction radiale ou roulante des Fel, ou présentent des indices de déformation comme on en observe dans le gneiss encaissant; ils sont interprétés comme des fragments d'encaissant plus ou moins fondus.

Cpx: (2-35%, <0.1-2 mm) les phénocristaux et microphénocristaux de Cpx sont vert grisâtre et montrent généralement une texture poreuse avec de très abondantes inclusions irrégulières de Fel et Bt. Ils sont

automorphes à xénomorphes, à peu près isométriques et font généralement moins de 2 mm, bien qu'un cristal creux très allongé de 12 mm ait été observé. Ils sont parfois mâclés et peuvent contenir de fines exsolutions d'Opa (Ilm ?) formant parfois une couronne interne. Ce type d'exsolutions semble plus fréquent dans les Cpx des dykes mineurs. Les phénocristaux sont rarement mâclés et parfois zoné. Cette zonation semble résulter de la croissance de Cpx autour de xénocristaux de Cpx, très abondants dans la MNT. Les petits Cpx de la matrice ne sont pas poreux. Le Cpx forme fréquemment un couronne autour des xénocristaux de Cpx et de quartz ou des xénolites de clinopyroxénite. Bt: (15-30%, <0.1-3 mm) jaune pâle à brun orangé, plus foncée dans les intrusions plus felsiques. Les phénocristaux et microphénocristaux sont hypidiomorphes à xénomorphes et allongés. Fel: (28-50%, <0.1-1 mm) xénomorphe, restreints à la matrice. En raison de la granulométrie fine et de la rareté des mâcles dans les Pl il n'est pas possible de distinguer le Kfs du Pl (Qtz); la proportion relative des feldspaths (57% Kfs, 40% Pl, 3% Qtz) a été évaluée à partir de 405 analyses (complètes ou partielles) à la microsonde. Là où la texture est la plus grossière, les Fel montrent une extinction roulante ou diffuse, et localement des textures microperthitiques. Am: (5-27%, <1 mm) vert jaune à vert foncé (vert très foncé dans la MNT felsique), hypidiomorphe, cristaux isolés dans la matrice ou remplacement partiel du Cpx. Ttn: (<1-4%) brune pléochroïque, parfois rougeâtre, hypidiomorphe, en inclusion ou à la bordure de la Bt. Ap: (2-4%, <1.5 mm) fines aiguilles incluses dans Fel ± Am, Bt. Qtz: (<1%) restreint à la matrice, détecté à la microsonde. Car: (<1%) xénomorphe, remplacement partiel Fel, petites plages dans la matrice. Sul: (<1%) Py ± Ccp, Po, petits grains xénomorphes disséminés. Oxi: (<1%) Mag ± Ilm, très fines exsolutions dans Cpx et petits grains disséminés dans la MNT felsique seulement.

CHIMIE MINÉRALE. Le **Cpx** est un diopside (Wo49-50) pauvre en Al (Al^{total}: 0.04-0.12 cat.) et Ti (<0.01 cat.) avec un mg de 72-75. La **Bt** contient 13-14% Al₂O₃, 4.7-5.1% TiO₂, 0.7-1.2% BaO, 0.8-1.9% F, avec un mg de 51-63. Les **Am** sont des magnésio-hornblendes et des hastingsites magnésiennes avec 8-12% Al₂O₃, 0.7-1.8% TiO₂, 1.0-1.4% Na₂O, 1.1-2.2% K₂O, 0.2-0.5% F, un mg de 43-65 et un rapport K/Na élevé de 0.67-1.1. Les **Fel** sont des Kfs avec une composition: Or₈₄₋₉₀ ou Or₂₂, et un Pl de An₂₁₋₃₄. Les Kfs d'un globule felsique ont des compositions Or₇₆₋₈₆ ou Or₄₇ et le Pl est une andésine de An₂₁.

GÉOCHIMIE. La MNT (A16-1, B6-76, A13-2a, A13-2b, C22-5, D25-2) est mafique et ultrapotassique avec 49-52% SiO₂, 12-15% Al₂O₃, 6-9% MgO (mg = 60-67), 4.5-5% K₂O (K₂O/Na₂O = 2.0-2.2), et 270-565 ppm Cr, 2860-3440 ppm Ba, 420-470 ppm Zr, 43-45 ppm La (La/Yb = 18-23). Toutes les injections de MNT ont un des patrons d'éléments traces (normalisés au manteau primitif) similaires qui montrent, de façon générale, un degré d'enrichissement proportionnel à l'incompatibilité des éléments (dans les systèmes basaltiques). Comparativement aux valeurs du manteau primitif, les LILE sont enrichies 100-500 fois, les LREE 200 fois, et les HFSE 5-50 fois (fig. 3.5). Une anomalie négative apparaît pour Th, Nb-Ta; les terres rares légères et moyennes ont des teneurs normalisées légèrement plus faibles que les éléments de comportement chimique similaire: Sr>Ce, P>Nd, Zr>Sm. La similarité des patrons d'éléments traces des six injections de minette suggère qu'il s'agit d'intrusions comagmatiques et que la contamination a été limitée. Pour expliquer la variation totale des contenus en La, par la contamination (dilution), < 9% de matériel crustal (Taylor et McLennan 1985) ou < 7% de clinopyroxène (xénocristaux, auxquels on attribue la valeur moyenne des CXN8) sont nécessaires.

REMARQUES. La minette de Girard (4003; localisée 8 km au sud de la brèche de Rivard) ressemble à la minette de Rivard, sauf pour une plus faible proportion de xénolites et une plus grande abondance de carbonate. Sa composition diffère surtout de celle de la minette de Rivard par des teneurs plus faibles en SiO₂ (45%), K₂O (2.1%), Cr (180 ppm), Ba (1100 ppm), Zr (240 ppm) et La (32 ppm) et plus élevées en Al₂O₃ (18%), Yb (3.8 ppm), ainsi que des rapports plus faibles: mg = 58, K₂O/Na₂O = 1.7 et La/Yb = 8. Un dyke de MNT du pluton de Kensington (83DMC-72D) montre des textures similaires à celles de la minette de Rivard, sauf pour des contenus plus élevés en Am et Ttn.
C2- MACROCRISTAUX

Outre les phénocristaux de clinopyroxène et de biotite, la MNT contient d'autres macrocristaux (mégacristaux ou xénocristaux) de Cpx, Kfs, Bt, Grt et Am <50 mm. La distinction entre mégacristaux et xénocristaux est arbitraire puisque la plupart des macrocristaux de la MNT montrent des textures de déséquilibre et sont donc à strictement parlé, des xénocristaux. Les grands cristaux isolés de Grt et d'Am (rares) et certains Cpx sont désignés comme des xénocristaux parce qu'ils semblent avoir des équivalents dans des xénolites. Les Cpx verts (automorphes), le Kfs (xénomorphe) et la Bt (rare; hypidiomorphe) sont désignés comme des mégacristaux. On regroupe avec les mégacristaux les petits cristaux (<5 mm) qui présentent des textures similaires à celles des "grands mégacristaux".

Clinopyroxène

MC: A7-3-5, 6, 7, 8, 9, 10, A7-9-2, 3, 4, 5, 6, A7-11-1, 3, 4, 5, 8, 9, A7-12-1, 2, 4, 5, 9, 10, 14, A7-13-4, 5, 6, 7, 8, 9, 10, 11, A12-1-1, 2, A16-1b-1, B0-4-2-1, B0-10, B3-11-1, 2, 3, B11-16-10, 11, 12, 13, 14, 15, 16, 17, C0-1, C17-2-2, C17-17-1, C21-9-1, C21-10-1, 2, C24-7-2, 3, 4, C24-8-2, 3, C24-9, C24-10-2, ?C31-6, C44-2-2, 3, C44-8-2, 3, C43-5-2, 3, C45-11, C45-14-2, 3, C45-16-2, D3-8-2, D6-1-2, 3, D6-6-2, D6-7-2, 3, 4, 5, 6, 7, 8, 9, 10, D6-8-2, 3, D6-10-2, 3, D6-12-2, 3, 4, 5, D6-13-2, D6-13-3, D15-6-2, D15-7-4, 5.

PÉTROGRAPHIE. Cristaux généralement isolés (<50 mm), vert très foncé sur l'affleurement, verdâtre à brunâtre en lames minces, automorphes, hypidiomorphes ou xénomorphes, parfois mâclés, souvent zonés et montrant une texture poreuse, fine à grossière, plus ou moins développée. Les clivages sont généralement absents. Les grands cristaux de Cpx xénomorphes et incolores sont interprétés comme des fragments de xénolites grossiers: xénocristaux. Certains MC (par exemple: A7-11-8) ont une zonation bien marquée avec un coeur pléochroïque bordé d'une épaisse zone poreuse, puis d'une bordure interne automorphe et incolore et une fine bordure externe similaire au Cpx de la MNT (tous les Cpx en continuité optique). Ces textures et les variations suggèrent que les MC ont une histoire complexe (chapitre 3). Les MC peuvent inclure des cristaux d'Ap automorphes (<1.5 mm), de Bt hypidiomorphe (<1.5 mm) ou de Sul xénomorphes (Po \pm Py, Ccp). On peut également observer des traînées d'opaques fins (?). L'extinction des mégacristaux n'est pas nette mais plutôt finement texturée. L'altération se manifeste généralement du coeur vers la bordure, par une zone relique vert pâle ou brun pâle, une zone diffuse verte ou brune plus foncée et pléochroïque (Am?), une bordure interne poreuse avec de nombreuses inclusions irrégulières d'Am et de Bt (montrant une extinction commune, proche de celle du cristal hôte) (\pm Fel), et une fine bordure externe de Cpx similaire à celui de la matrice de la MNT. Certains MC peuvent être totalement poreux. Voir section 3.3.3.2 et tableau 3.1.

Particularités. Une inclusion d'Ap dans un MC (A7-13-6) contient elle-même une inclusion ovoïde (liquide cristallisé ?) polycristalline à Fel, Am, Bt, Opa, montrant des textures similaires à celles de la matrice de la minette. Certains MC ont un coeur composé de Cpx incolore résorbé ou d'Opx (B11-16-14) et montre une extinction commune ou proche de celle de ce coeur, suggérant qu'ils se sont développés de façon épitaxiale sur des xénocristaux. A16-1b-1 est un petit xénolite composé de Cpx amphibolitisé, Kfs, Pl et Ap.

CHIMIE MINÉRALE. La composition des mégacristaux de Cpx varie d'un cristal à l'autre et à l'intérieur d'un même cristal, montrant qu'il existe plusieurs populations de MC et qu'ils sont zonés. Ce sont des augites et des diopsides (Wo₃₈₋₅₅) généralement alumineux (Al^{total}: 0.04-0.45 cat.), parfois chromifères (Cr: 0.0-0.03 cat.) ou sodiques (Na: 0.04-0.11 cat.), avec un mg de 61-84.

Particularités. Dans l'inclusion à l'intérieur d'une Ap automorphe contenue dans un mégacristal de Cpx, la Bt a une composition comparable à celle de la MNT, avec 13.5% Al_2O_3 , 5.3% TiO_2 , 0.6% BaO, 0.8% F et un *mg* de 60; l'Am contient 12.7% Al_2O_3 , 1.9% TiO_2 , 1.5% Na_2O , 2.1% K_2O , avec un *mg* de 52 et un rapport K/Na de 0.5; le Kfs et le Pl ont des compositions: Or84 et An32.

REMARQUES. Les Cpx de certains xénolites ont des couleurs et des textures similaires à celles des MC (voir XNL1b).

Feldspath potassique

<u>A16-1b-1</u>, C21-9, C24-7, C24-8, C24-9-2, <u>C44-8</u>, <u>C45-14</u>, D6-7-10, D6-12-1, D15-7-2

PÉTROGRAPHIE. Grands cristaux (<40 mm) isolés, gris violacé en affleurement, toujours résorbés avec des formes arrondies et des golfes de corrosion marqués. Ils sont criblés d'inclusions cryptocristallines, sauf localement en bordure ou dans des zones internes. Ils sont parfois fragmentés et présentent l'aspect de brèches avec une matrice de MNT. Ils incluent rarement la Bt ou l'Ap. A16-1b-1 est polycristallin et composé de Cpx amphibolitisé, de Kfs, Pl et Ap.

CHIMIE MINÉRALE. Ce sont des Kfs avec une composition variant de Ab₁₄An₀Or₈₆ à Ab₂₅An₆Or₆₈, avec 1.2-2.1% BaO et 0.3-0.5% SrO. Les variations de composition à l'intérieur d'un mégacristal ne sont pas distribuées de façon concentrique, suggérant une résorption asymétrique. Les zones exemptes de fines inclusions sont plus pauvres en FeO, MgO et CaO. Le xénolite A16-1b-1 contient également un Pl (An₃₉) avec 0.3-0.5% SrO.

Biotite A16-1a, C24-7, C24-8, D6-1-3

PÉTROGRAPHIE. Rares "grands" (<4 mm) cristaux hypidiomorphes de Bt brune, aux couleurs similaires à celles de la Bt de la MNT, ils contiennent de fines inclusions de Ttn et parfois des inclusions plus grossières de Ttn, Ap, Cpx (?) (ou peuvent être inclus dans des mégacristaux de Kfs ou Cpx: D15-7).

REMARQUES. Il ne s'agit pas à proprement parlé de mégacristaux (<4 mm) mais ces Bt se distinguent de celles de la MNT par une forme plus isométrique et une taille légèrement plus grande. On les retrouve souvent à proximité de mégacristaux de Kfs, ou plus rarement en inclusions dans les mégacristaux de Kfs ou les Cpx, suggérant un lien entre les différentes espèces de mégacristaux.

Grenat A5-31-1, A6-16-1, A7-8-1, C43-4, C44-2-3, C43-4, C45-16-2, D3-6

PÉTROGRAPHIE. Grands xénocristaux (8-30 mm) xénomorphes, résorbés, avec remplacements importants du Grt par Fel, Bt (Phl), Opa, Ms?, en bordure des cristaux et le long des fractures, rares inclusions de Zrn, Rt?. Le Fel forme une couronne immédiate autour des reliques de Grt et croît souvent perpendiculairement à la bordure. La Bt est généralement brune, comme celle de la minette, mais on peut localement observer une Bt verte (plus ancienne ?) dans certaines zones internes des Grt.

CHIMIE MINÉRALE. La composition de trois xénocristaux de Grt varie respectivement de Alm₄₅Gro₆Pyr₄₄ à Alm₅₅Gro₅Pyr₃₄, de Alm₅₃AGro₃Pyr₃₉ à Alm₅₇Gro₃Pyr₃₄ et de Alm₄₀Gro₇Pyr₄₄ à Alm₄₁Gro₁₀Pyr₄₁. Du centre vers la bordure, on note généralement une augmentation du contenu en almandin (\pm spessartine, andradite) et une diminution du contenu en pyrope (\pm grossulaire). La Phl verte contient 17% Al₂O₃, 0-0.4% TiO₂, 0.1% BaO, 1.9% F, avec un *mg* de 70; la Bt brune contient 16% Al₂O₃, 3% TiO₂, 0.2% BaO, 1% F, avec un *mg* de 63.

REMARQUES. La présence de GS contenant des grands porphyroblastes de Grt partiellement remplacés en Bt verte et brune (par exemple C31-9, D3-6), suggère que les xénocristaux de Grt sont des fragments de gneiss porphyroblastiques.

Amphibole C17-17-2

PÉTROGRAPHIE. C17-17-2 est un grand cristal d'Am (17x10 mm), vert foncé, grossièrement rectangulaire, finement découpé par des réseaux de clivages, il est formé de 2 cristaux imbriqués, avec deux positions d'extinction et deux teintes de biréfringence légèrement différentes, certains espaces sont occupés par de la Bt. Épaisse couronne de Bt brun verdâtre et d'Am vert foncé. Les similarités dans la forme et les textures, avec les grands Cpx intensément amphibolitisés et carbonatisés que l'on observe dans un xénolite hétérogène (D12-2, CXN2a?) suggèrent que cette Am isolée représente un fragment d'un xénolite apparenté à D12-2.

C3- XÉNOLITES

Les XNL1 regroupent les xénolites de clinopyroxénite dont les Cpx (et/ou la matrice) rappellent ceux de la minette, ou les mégacristaux. Ces xénolites montrent généralement des textures de déséquilibre important.

XNL1a Clinopyroxénites (Cpx, Bt, Am, Fel ± Car, Ap, Qtz, Ttn, Zrn, Sul)

CXN: A4-21-2, A5-34-3, ?A7-3-1?, <u>A7-9-1</u>, **D14-5-1**

PÉTROGRAPHIE: Petits xénolites (< 30 mm de longueur) parfois constitués de quelques cristaux seulement. CXN à grains fins, équigranulaire, Am et (ou) Bt parfois abondantes. Le Cpx ressemble aux phénocristaux de la MNT avec une texture poreuse et de très abondantes inclusions fines et irrégulières de Fel et Bt. Remplacement partiel du Cpx par Am et Bt. Zones interstitielles à Am Qtz, Car, Zrn? ou à Fel, Ap, Bt, Cpx2. Non déformés. (ex-CXN G).

Cpx: (60-95%, <2 mm) vert grisâtre pâle, hypidiomorphe à xénomorphe, texture poreuse avec très abondantes inclusions fines et irrégulières de Fel et Bt, localement inclusions (exsolutions?) d'Opa fins (IIm?), parfois mâclé, zoné? remplacement partiel par Am verte. Présence occasionnelle (A7-9-1, <1%) d'un Cpx vert clair, exempt d'inclusions et de texture poreuse ressemblant au Cpx de la matrice de la minette. **Bt**: (3-20%, <2 mm) jaune pâle à brun orangé, cristaux \pm allongés hypidiomorphes, interstitiels, contact flou avec Am. Très peu déformée. Am: (1-15%, <0.8 mm) incolore à vert pâle \pm brunâtre, xénomorphe à automorphe, parfois mâclée, remplacement partiel Cpx, automorphe dans zones interstitielles avec Fel, Car, Bt, Ap; deutérique ? Fel: (<1-5%) Pl et Kfs, xénomorphe; textures microperthitiques plus ou moins bien développées localement présentes. Ap: (<1%) fines aiguilles en inclusions dans Fel. **Car**: (<1%) xénomorphe, interstitiel, avec Am, Bt, Fel, remplace partiellement Am, Fel et Qtz. **Qtz**: (0-<1%). **Ttn**: (0-<1%) et (ou) Zrn, All?, petits grains \pm arrondis inclus dans Fel, Bt et dans zones interstitielles avec Fel, Am, Bt. **Sul**: (<1%, <0.1 mm) petits grains xénomorphes disséminés.

CHIMIE MINÉRALE. Les Cpx des CXN1a sont des diopsides (Wo₄₆₋₅₃ mole%) non ou peu alumineux (Al^{total}: 0.06-0.15 cat.) avec un mg de 67-72. Aucune zonation n'a été détectée. Leur composition est similaire à celle des phénocristaux de la MNT. Le Cpx vert clair (Cpx2) est également un diopside (Wo₄₉₋₅₀) non alumineux (Al^{total}: 0.03-0.05 cat.) avec un mg de 76-81.

GÉOCHIMIE. Le xénolite analysé (D14-5-1) est ultramafique et potassique avec 47% SiO₂, 13.7% MgO, 2.8% K₂O, 1400 ppm Cr, un *mg* de 73, et un rapport K₂O/Na₂O = 2.0. Les teneurs en éléments traces incompatibles sont élevées avec 2240 ppm Ba, 600 ppm Sr, 210 ppm Zr et 19 ppm La, et La/Yb = 10.3. Les éléments Nb, Ta, U et Pb sont sous le seuil de détection (appendice D). Le patron d'éléments traces normalisé au manteau primitif montre des anomalies négatives en Nb-Ta, Th, Ti.

REMARQUES. Ces petits xénolites représentent des glomérocristaux, des accumulations de phénocristaux ou de xénocristaux, et/ou des xénolites ayant réagi avec la MNT.

XNL1b Clinopyroxénites (Cpx ± Am, Bt, Fel, Ap, Car, Qtz, Ttn, Sul, Oxi, Grt)

CXN: A6-25-2, A7-7-1, A7-9-2, C21-10, C45-11, D6-12-1, D15-6-1, D15-6-2, D15-7-3

PÉTROGRAPHIE. Petits xénolites de CXN (9 à 30 mm) de forme irrégulière, parfois constitués de quelques cristaux seulement. La roche prend souvent l'aspect de cumulat très ouverts avec une matrice similaire à celle de la minette, quoique généralement plus grossière. Les Cpx ressemblent aux mégacristaux isolés présents dans la minette. Ils sont généralement automorphes et peuvent être allongés avec des terminaisons pointues. Ils montrent des textures de remplacement (ou d'intercroissance ?) extrêmement complexes en Am (et Cpx?) et sont souvent partiellement poreux. Altération généralement plus importante aux joints de grains, au contact de la matrice ou en bordure du xénolite. Non déformés. (ex-CXN M, C ou MC5).

Particularités. A6-25-2 présente une couronne interne irrégulière de grenats fins, xénomorphes, altérés en micas fins, Opa, Spl, Am?, Fel?. A7-9-2 et C21-10 contiennent un Cpx vert clair exempt d'inclusion ou de texture poreuse, similaire à celui de la matrice de la minette ou observé dans A7-9-1. Dans C45-11, les Cpx ont un coeur poreux et présentent une bordure automorphe là ils sont en contact avec la matrice. Le xénolite possède une couronne de petits Cpx, incolores ou riches en inclusions noires, localement en gerbes ou montrant une extinction roulante. Ces derniers Cpx sont également représentés dans D6-1-2 (aussi A7-3?). D15-6-1 contient des Cpx allongés, parfois pointus et des textures de déséquilibres importantes: remplacements complexes en Am, symplectites. Il montre également des zones interstitielles à Qtz (xénocristaux ?), Car, Am dans lesquelles le Car semble remplacer les autres minéraux.

Cpx: (45-95%, 0.1-20 mm) vert pâle à vert brunâtre ou grisâtre, cristaux généralement automorphes, parfois pointus et montrant des textures de réaction ou de remplacement très complexes, surtout en Am ou en minéraux fins brun foncé; textures poreuses, symplectites (Cpx-Am?), parfois zoné ou mâclé, extinction finement texturée. Les textures sont similaires à celles des mégacristaux isolés de la minette. Les Cpx en contact avec la matrice montrent généralement une bordure de réaction (Am, Bt) sauf dans C45-11 où les Cpx ont un coeur poreux et une bordure automorphe en contact avec la matrice. Am: (<1-35%, <1 mm) vert pâle à vert olive, hypidiomorphe, remplacement partiel du Cpx, elle apparaît également dans des zones interstitielles avec Car, Qtz, Bt, où elle a tendance à être plus grossière et automorphe. Bt: (<1-10%, <2 mm) jaune à brun orangé foncé, hypidiomorphe, interstitielle ou plus rarement en inclusion dans Cpx. Fel: (<1-10%, <1 mm) surtout Kfs (non mâclé), textures similaires à celles de la matrice de la minette entre les grands Cpx. Ap: (<1%) fines aiguilles en inclusions dans Fel. Ttn: (0-<1%) dans zones interstitielles avec Am, Qtz, remplacement partiel de Qtz, Fel, Bt et Am (?). Qtz: (0-<1%) partiellement remplacé en Car, xénocristaux ? Sul: (<1%) Py et Ccp. Oxi: (0-<1%). Grt: (0-5%, \approx 0.5 mm) couronne interne discontinue dans A6-25-2 seulement, incolore, grains fins, xénomorphe, altéré en Opa, Spl, Tlc?, Fel, Am?

CHIMIE MINÉRALE. Les Cpx de A7-9-2 sont des augites et des diopsides (Wo_{42-48}) alumineux (Al^{total} = 0.21-0.31 cat.) avec un *mg* de 76-80. Leur composition ressemble à celle des MC4. Du coeur vers la bordure, les Cpx montrent une légère diminution des teneurs en Al, Mg, Na et une légère augmentation des contenus en Ca avec des concentrations variables pour les autres éléments.

GÉOCHIMIE. Le xénolite analysé (D15-6) est ultramafique avec 48.7% SiO₂, 13.7% MgO, 1430 ppm Cr et un mg de 75. Il contient 2.0% K₂O avec un rapport K₂O/Na₂O = 1.5. Les teneurs en éléments traces incompatibles sont élevées avec 1660 ppm Ba, 515 ppm Sr, 173 ppm Zr et 18 ppm La, et La/Yb = 11. Le patron d'éléments traces normalisés au manteau primitif est similaire à D14-5-1 (CXN1a) avec des anomalies négatives en Nb-Ta, Th, Ti.

REMARQUES. Ces petits xénolites sont des équivalents polycristallins des mégacristaux isolés présents dans la minette. Ces cumulats ont une matrice qui ressemble à la minette et qui pourrait représenter le liquide à partir duquel les Cpx ont cristallisé, ou l'infiltration de minette dans des accumulations de mégacristaux formés dans un autre magma.

XNL1c Clinopyroxénites (ex-WB?)

 $(Cpx, Phl, Am \pm Opx, Fel, Car, Ap, Sul)$

CXN: <u>A4-17</u>, **A5-13**, ?<u>A22-2</u>, ?D6-14-2

PÉTROGRAPHIE. Xénolites (55-170 mm) de CXN à grains fins à moyens, riches en Phl (A22-2) et Am (A5-13). Prend localement l'aspect de cumulats avec une matrice ressemblant à celle de la minette; texture intergranulaire plus ou moins bien développée. Textures de déséquilibre complexes et omniprésentes: symplectites, textures poreuses, remplacements importants des Px en Am, Phl (et Cpx?). (ex-PXN D, K)

Particularités. A22-2 ne montre pas de zones interstitielles felsiques comme dans les deux autres xénolites et se distingue par la très grande abondance de Phl automorphe interstitielle. D6-14-2 est un petit xénolite (6x3 mm) de WB montrant des textures de remplacement complexes, avec des symplectites et où l'Opx semble être remplacé par le Cpx.

Cpx: (20-60%, 0.1-2 mm) incolore à verdâtre ou brunâtre, hypidiomorphe, aspect sale, mâclé ou zoné; textures complexes, couronnes, symplectites, 2 générations ? remplacement partiel par Phl et Am, cristaux allongés parfois pliés. **Opx**: (<1-5%, <0.1-3 mm) brun très pâle, petis cristaux hypidiomorphes parfois allongés, formant généralement de petites reliques dans les Cpx, parfois aspect strié en lumière polarisée (exsolutions ?), partiellement remplacé par Cpx, Am, Phl. **Phl**: (8-45%, 0.1-4 mm) jaune pâle à brun orangé, automorphe à xénomorphe, interstitielle, remplacement partiel des Px, très peu déformée (kinks). **Am**: (5-20%, <1 mm) incolore, xénomorphe, interstitielle, remplacement partiel des Px. **Fel**: (<1-5%, <1 mm) surtout Kfs (non mâclé), extinction floue, localement textures microperthitiques, partiellement carbonatisés. **Ap**: (<1%, <1 mm) fines aiguilles en inclusions dans Fel. **Car**: (<1%) xénomorphe, aspect sale, remplacement partiel Fel. **Qtz**: (<1%, <0.5 mm). **Sul**: (<1%) Po, Py, Ccp, Pen (et autres ?).

CHIMIE MINÉRALE. Les **Cpx** de A4-17 sont des augites et des diopsides (Wo₄₁₋₄₇) alumineux (Al^{total} = 0.20-0.31 cat.) parfois chromifères (Cr = 0.00-0.04 cat.) avec un mg de 79-82. L'**Opx** est une enstatite alumineuse (Al^{total} = 0.17-0.37 cat.) avec 0.001-0.09 cat. Ca (Wo_{0.6-4.8}) et un mg de 67-76. Le total des oxydes constituants est souvent inférieur à 99% suggérant que les pyroxènes sont partiellement amphibolitisés. L'**Am** est une magnésio-hornblende, parfois trémolitique, avec 4-6% Al₂O₃, 0.6-1.0% Na₂O, 0.2-0.4% K₂O, un rapport K/Na de 0.5 et un mg de 82-86. Certaines analyses montrent des contenus élevés en CaO (16%) suggérant qu'il s'agit de Cpx partiellement amphibolitisés. La **Phl** contient 4.1-4.5% TiO₂, 14-15% Al₂O₃, 1.9% BaO et 1.7% Cl et a un mg de 72-74. Les Fel analysés sont des **Pl** An₂₇ contenant environ 0.5% SrO.

GÉOCHIMIE. La WB A5-13 et la CXN A22-2 sont ultramafiques avec 45.4-48.8% SiO₂, 15.0-16.2% MgO, 1125-1715 ppm Cr et un mg de 77-78. Ils sont ultrapotassiques avec 2.6-3.8% K₂O et un rapport K₂O/Na₂O de 2.4-5.9. A5-13 est riche en éléments traces incompatibles, avec 2190 ppm Ba, 715 ppm Sr, 230 ppm Zr, 17 ppm La et La/Yb de 12.5. Son patron d'éléments traces normalisés au manteau primitif ressemble à celui des PXN1a et PXN1b sauf pour des anomalies négatives en Th, Nb-Ta, Ti et une légère anomalie positive en Sr et Zr-Hf. A22-2 est très riche en K₂O (3.8%), TiO₂ (1.9%), Ba (4265 ppm), mais moins en Sr (290 ppm), Zr (92 ppm) et La (3.5 ppm); les éléments U, Th, Nb, Ta sont sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif montre une anomalie négative très importante en Th et moins marquée en Nb-Ta, La-Ce, P et Ti.

REMARQUES. Origine ignée. La présence d'Opx sous forme de fines reliques dans Cpx ou Am suggère que la roche pouvait avoir été plus riche en Opx (WB?). Les textures de ces xénolites et la composition particulière de A22-2 suggèrent qu'ils représentent des mélanges ou qu'ils contiennent un importante proportion de phénocristaux (Cpx, Opx) recyclés.

Les XNL2 regroupent les xénolites de webstérite et de clinopyroxénite riches en Phl et montrant des signes de déformation.

XNL2a Pyroxénites (Cpx, Opx, Phl, Am ± Pl, Ap, Car, Ttn, Zrn, Qtz, Sul, Oxi)

WB: A4-97, <u>A5-14</u>, **A5-26**, <u>A5-34-1</u>, D6-11-2 CXN: **D12-1** (<u>**B6-39**</u>?, D12-2?)

PÉTROGRAPHIE. Xénolites (15-130 mm) de WB et CXN de granulométrie fine à moyenne, riches en Phl. Textures granulaire ou en mortier, cumulats déformés? Les minéraux sont généralement xénomorphes et légèrement déformés: extinction ondulante, kinks (Opx), quelques sous-grains et foliation plus ou moins nette marquée surtout par l'orientation préférentielle de la phlogopite et de quelques porphyroclastes de Px. La Phl remplace partiellement les pyroxènes, elle est interstitielle et généralement uniformément répartie avec une granulométrie proportionnelle à celle des pyroxènes; elle montre aussi des indices de déformation: kinks. Parfois rubanement grossier marqué par des niveaux irréguliers plus riches en Opx (origine ignée). Remplacement partiel des Px par Am. Petites zones interstitielles à Fel, Ap, Phl, Am, Ttn, Opa, Qtz. (ex-PXN K).

Particularités. D12-1 ne contient pas d'Opx et les Cpx rappellent ceux des CXN1b. B6-39, le plus gros xénolite ultramafique de la brèche de Rivard (450x360 mm), est très riche en Am ($\approx 45\%$) et en Phl ($\approx 40\%$) qui remplacent les Px. La roche est rubanée avec des niveaux plus riches en Opx, Cpx, Am ou Phl. La foliation (2 foliations?) est marquée par l'orientation préférentielle des Phl et Am. On peut noter deux générations d'Am: une Am vert pâle dont les cristaux montrent localement une orientation commune (porphyroblastes ?) et une Am incolore, plus fine et non orientée, qui remplace toutes les autres phases.

Cpx: (10-80%, <0.1-3 mm) Cpx vert très pâle, grains généralement isométriques, xénomorphes, parfois mâclés, parfois allongés parallèlement à la foliation; extinction ondulante, sous-grains remplacements partiels par Am et Phl. Opx: (0-70%, 0.1-4 mm) incolore à brun pâle, parfois hypidiomorphe, ou légèrement arrondis, kinks, sous-grains, fractures, remplacements partiels en bastite (Tlc, Srp ?), Am et Phl le long des clivages et des fractures, et en bordure des grains. Phl: (10-25%, <0.1-2 mm) jaune pâle à brun orangé, hypidiomorphe, interstitielle, remplacement partiel des Px, kinks, extinction ondulante, peut contenir des inclusions aciculaires orientées (Rt?); montre parfois une orientation préférentielle qui défini une foliation (métamorphique). Croissance de Qtz dans les clivages des Phl déformées. Am: (2-15%, <0.1-2 mm) incolore à vert pâle ± brunâtre, hypidiomorphe, interstitielle, croissance épitaxiale sur les Px, couronne autour des Px, partiellement remplacée par Phl? Fel: (<1-2%, <1mm) Pl (et Kfs?) dans petites zones interstitielles, xénomorphe, mâclé, zoné, partiellement altéré en Car. Ap: (<1%, <1 mm) hypidiomorphe, peut contenir de fines inclusions orientées parallèlement à l'allongement du cristal, parfois plages interstitielles polycristallines ou inclusion dans Opx, localement allongée parallèlement à la foliation. Aussi aiguilles claires en inclusion dans Fel. Car: (<1%) xénomorphe, petites plages interstitielles et remplacement partiel des Fel. Qtz (0-<1%) dans zones interstitielles. Ttn: (<1%) brun pâle à brun rougeâtre, petits grains dans zones interstitielles avec Fel, Am, Phl, Opa, Car ou en inclusions dans Phl. Zrn?: (<1%, <0.2 mm) petits grains arrondis. Sul: (<1%, <0.6 mm) Py, Po, Ccp en petits grains hypidiomorphes disséminés, souvent associés à Phl. Oxi: (0-<1%) Ilm et Mag?

CHIMIE MINÉRALE. Le **Cpx** des WB A5-14 et A5-34 est un diopside (Wo₄₇₋₅₀) parfois alumineux (Al^{total}: 0.09-0.24 cat.) ou chromifère (Cr = 0.04-0.015 cat.) avec un mg de 82-86. L'**Opx** a environ 0.09 cat. Al et 0.02 cat. Ca (Wo_{1.2}) avec un mg de 78. L'**Am** est une hornblende trémolitique avec 4-5% Al₂O₃, 0.8-1.0% Na₂O, 0.3% K₂O, un rapport K/Na de 0.17-0.26 et un mg de 84-86. La **Phl** est pauvre en Al₂O₃ (13.9%) et riche en F (1.7%) avec un mg de 80. Le Fel est un **Pl** de An₂₇₋₅₆.

Le Cpx de B6-39 est une augite ou un diopside (Wo₄₄₋₄₅) alumineux (Al^{total}: 0.18-0.19 cat.), parfois chromifère avec un mg de 82-83. L'Opx a 0.11-0.12 cat. Al et 0.2-0.4 cat. Ca (Wo_{1.2-2.0}) et un mg de 76-78. L'Am verte (N = 1) est une magnésio-hastingsite (13.5% Al₂O₃, 1.9% Na₂O, 1.4% K₂O) avec un mg de 74 et un rapport K/Na de 0.5. L'Am incolore (N = 1) est une hornblende trémolitique (4.1% Al₂O₃) avec un mg de 87 et un rapport K/Na de 0.17. La Phl (N = 1) contient 14.5% Al₂O₃ et 0.9% TiO₂ et a un mg de 86.

GÉOCHIMIE. Les WB2a (A5-26, D12-1) ont 48.6-49.5% SiO₂, 14-7-15.4% MgO, 1860-1950 ppm Cr et un *mg* de 76-78. Ils sont potassique à ultrapotassique avec 1.6-2.2% K₂O et un rapport K₂O/Na₂O de 1.4-2.9. Les teneurs en éléments traces incompatibles sont plus ou moins élevées avec 880-1050 ppm Ba, 100-250 ppm Sr, 85-130 ppm Zr et 9-13 ppm La (La/Yb = 7-8). Les éléments U, Th, Nb, Ta sont sous, ou près du seuil de détection. Le patron d'éléments traces normalisés au manteau primitif est marqué par des anomalies négatives en Th, Nb-Ta, Sr et une légère anomalie positive en P.

REMARQUES. Les textures et la composition de la roche et des minéraux suggèrent qu'il s'agit de roches ignées (cumulats?) plus ou moins déformés. La Phl pourrait être tardi-magmatique ou métasomatique. Le fait que celle-ci soit déformée et marque la foliation (métamorphique) indiquent qu'elle a cristallisé avant l'inclusion des xénolites dans la minette. L'abondance de la Phl dans B6-39 suggère que cette roche est associée aux PXN2a, bien qu'il soit difficile d'en être certain en raison du métasomatisme intense et polyphasé qui a affecté cette roche. Le xénolite D12-2 est hétérogène avec 1) une CXN présentant des textures similaires à D12-1, 2) une zone intermédiaire riche en Am (plus ou moins foncée), Fel, Qtz, Bt (brune ou verte) et 3) un gabbroïde (originellement porphyrique ?) contenant des grands cristaux (<6 mm) ou des plages polycristallines de Cpx, largement amphibolitisé (± Car) et présentant des reliques d'exsolutions (?) dans une matrice de feldspaths à grains fins (texture polygonale), incluant des porphyroclastes (<7 mm) de feldspath (Kfs perthitique ?). On observe également dans cette zone, de grands zircons (<0.8 mm)

automorphes et des lentilles polycristallines d'Ap. La roche est recoupée par une veinule diffuse de Qtz. Le lien entre les deux roches et la nature du contact sont incertains.

XNL2b Webstérite (Cpx, Opx, Phl, Am ± Pl, Kfs, Ap, Ttn, Sul)

WB: **D12-4**

PÉTROGRAPHIE. Xénolite (>235 mm) à grains moyens contenant de la Phl. Textures similaires à celles des PXN2a sauf pour la phlogopite qui est plus fine, moins abondante, inégalement répartie, non orientée et non déformée. La roche montre une foliation grossière marquée par l'alignement des Px allongés (peu). Zones interstitielles à Phl, Kfs et/ou Pl, Ap, Phl, Am, Ttn, Opa. (ex-WB K).

Cpx: (80%, 0.1-3 mm) vert pâle, xénomorphe, parfois peu allongés, exsolutions (?) brunes (Spl, Rt?), extinction ondulante, lamelles de déformation, traînées d'inclusions fines, texture poreuse en bordure des zones interstitielles à Fel, Am, Bt, Ap, Opa, fine couronne Am. **Opx**: (10%, <2 mm) vert pâle à brun rosé, grains xénomorphes à hypidiomorphes, parfois allongés selon la foliation, extinction ondulante, kinks, fine couronne d'Am, localement remplacé par Cpx. **Phl**: (5%, <1 mm) jaune pâle à brun orangé (même couleur que celle de la minette), hypidiomorphe, interstitielle, contact souvent flou et irrégulier avec Am. Présence locale de Bt verte (plus ancienne ?). **Am**: (3%) incolore à vert pâle (légèrement plus foncée dans les zones interstitielles avec Fel, Bt, Ap, etc., généralement xénomorphe, couronne épitaxiale autour Px. **Fel**: (1%) Pl (et Kfs?), parfois zoné, dans petites zones interstitielles, avec Am, Phl, Ap, Opa, etc. **Ap**: (<1%, ≈0.3 mm) plus ou moins arrondie et riche en inclusions noires (Sul?), interstitielle, en inclusion dans Fel. **Ttn**: (<1%) et/ou Zrn? petites inclusions dans Phl. **Sul**: (<1%) Py, Ccp.

CHIMIE MINÉRALE. Le **Cpx** est un diopsides (Wo₄₈₋₅₀) alumineux (Al^{total}: 0.15-0.16 cat.) et chromifère (Cr: 0.012-0.016 cat.) avec un mg de 76-77. L'**Opx** a 0.1 cat. Al et 0.2-0.3 cat. Ca (Wo_{1.1-1.4}) et un mg de 69-71. Les Fel analysés (N = 2) sont des **Pl** de An₂₄ ou An₅₁.

GÉOCHIMIE. La WB2b (D12-4) contient 50.3% SiO₂, 17.1% MgO, 0.8% K₂O, 2480 ppm Cr avec un mg de 77 et un rapport K₂O/Na₂O de 1.0. Les teneurs en éléments traces incompatibles sont comparables à ceux des XNL2a avec 435 ppm Ba, 140 ppm Sr, 124 ppm Zr et 12 ppm La (La/Yb de 8.3). Les éléments U, Th, Nb, Ta sont sous, ou près du seuil de détection. Le patron d'éléments traces normalisés au manteau primitif ressemble à celui des XNL2a sauf pour un enrichissement moins important en Ba, Rb, K, P et une légère anomalie négative en Ti. Ce patron est simailaire à celui de la péridotite de Rolleau (échantillon 1663).

REMARQUES. Les textures, la composition minéralogique et chimique de la WB D12-4 suggèrent une origine similaire à celle des WB2a: cumulat légèrement déformé. Parce qu'elle est plus fine, moins abondante et non déformée, la Phl de D12-4 pourrait être métasomatique plutôt que tardi-magmatique. La composition en éléments traces, similaire à celle de la péridotite de Rolleau (éch: 1663) pourraient suggérer que des intrusions cogénétiques étaient présentes sous la brèche de Rivard au moment de sa mise en place.

XNL3a Pyroxénites, gabbros (Cpx, Opx, Am, Pl ± Spl, Grt, Bt, Qtz, Oxi, Sul, Ms, Car)

WB:	<u>A2-3</u>
CXN:	<u>A3-14a</u>
GB:	A 2 2 - 7

PÉTROGRAPHIE. Xénolites (110-60 mm) de WB, CXN et GB à grains fins et à texture polygonale ou intergranulaire. La texture polygonale s'accompagne de chapelets d'Opa et Fel? très fins distribués aux joints de grains. Foliation et rubanement plus ou moins bien développés, marqués par niveaux lenticulaires mm à Pl, Am, Phl, Car, Opx, Ms?, Opa?, Spl?, ou alignements d'Opx. Zones interstitielles ou veinules à Am, Fel, Car. Remplacements interstitiels complexes. Présence de Grt très résorbé à granulométrie souvent plus grossière: xénocristaux ? La roche ne montre pas d'indices de déformation. (ex-PXN X).

Particularités. A3-14a forme un dyke de CXN à grains fins de 25 mm, recoupant un métagabbro folié (A3-14b). La CXN montre une texture polygonale et des zones de remplacements interstitiels à Am, Fel, Car (plus importantes près du contact) ou à minéraux cryptocristallins, Spl, Opa, Ms?. Le contact avec le GB est marqué par la cristallisation d'Am, Bt, Scp et Car à grains plus grossiers. A2-3 est recoupé par de fines veinules de Qtz, Car, Am? A22-7 montre une texture intergranulaire avec des Pl hypidiomorphes et des Cpx fortement zonés.

Cpx: (≈25-92%, 0.1-2 mm) vert brunâtre, parfois légèrement pléochroïque, xénomorphe, aspect sale ou strié, partiellement remplacé par Am. Localement présence d'un Cpx néoformé, vert clair, limpide, en continuité optique sur l'autre Cpx. Opx: (≈1-30%, 0.1-2 mm) vert pâle à brun rose, parfois brun foncé (altéré ?) xénomorphe à automorphe, forme souvent des plages polycristallines. Am: (≈5-30%, <0.6 mm) incolore à vert olive foncé, remplacement partiel des Px ou dans zones interstitielles, ou dans veinules ou dans lentilles felsiques, inclusions d'Opa fins. Pl: (<1-17%, <1 mm) automorphe à xénomorphe, grains allongés ou isométriques dans zones interstitielles, peut contenir de fines inclusions noires, quelques mâcles de déformation, parfois séricitisé. Spl: (0-5%, <0.2 mm) vert foncé, généralement automorphe, dans zones interstitielles avec Opx, Pl, Am, en inclusion dans Opx, en partie le produit de remplacement du Grt. Grt: (<1%, <2 mm) incolore, très intensément altéré en Spl, Opx, Opa et minéraux cryptocristallins, xénocristaux ? Bt: (<1-1%, <0.5 mm) jaune pâle à brun orangé, hypidiomorphe, interstitielle, parfois plus abondante en bordure des xénolites ou restreinte aux lentilles felsiques. Qtz: (<1%). Ms?: (<1-5%, <0.1 mm) et/ou Tlc?, minéral d'altération très fin. Sul: (<1%) Py, Ccp, Po, Pen, grains fins interstitiels ou dans veinules. Oxi: (<1%) Ilm et Mag, petits grains très fins avec Fel? aux joints de grains dans les roches présentant une texture polygonale. Car: (0-1%), xénomorphe, dans lentilles felsiques ou zones interstitielles avec Am et Fel.

CHIMIE MINÉRALE. Les **Cpx** des PXN3a (A2-3, A3-14a) sont des augites et des diopsides (Wo43-48) alumineux (Al^{total}: 0.18-0.25 cat.) avec un mg de 77-81. L'**Opx** a un mg de 69-73 et des contenus en Al de 0.12-0.23 cat. et Ca de 0.02-0.03 cat. (Wo_{1.1-1.6}). Les Px analysés ont souvent des totaux <99% suggérant qu'ils sont partiellement amphibolitisés. La composition du **Grt** (xénocristaux ?) varie de Alm₃₀And₂Gro₁₂Py₅₄Spe₁ à Alm₅₅And₄Gro₈Py₂₉Spe₅. La **Phi** analysée contient 13.7% Al₂O₃, 1.5% TiO₂, 2.2% F et 0.5% Cl, avec un mg de 76. L'Am est une magnésio-hornblende contenant 9-11% Al₂O₃, 0.4-1.2% TiO₂, 1.2-1.7% Na₂O, 0.6-0.8% K₂O et 0.6% F, avec un mg de 75 et un rapport K/Na de 0.24-0.40. Le **Pl** a un An₃₀₋₃₃.

GÉOCHIMIE. La CXN3 A3-14a contient 45.6% SiO₂, 11.4% MgO, 910 ppm Cr. Les rapports mg et K₂O/Na₂O sont respectivement de 66 et de 0.8. Les teneurs en éléments traces incompatibles sont plus ou moins élevés, avec 770 ppm Ba, 255 ppm Sr, 120 ppm Zr et 18 ppm La, et La/Yb = 6.6. Le patron d'éléments traces normalisés au manteau primitif montre des anomalies négatives en Th, Nb-Ta, Sr, P, Zr-Hf et Ti.

REMARQUES. La texture intergranulaire de A22-7 suggère une origine ignée, mais la texture polygonale des autres XNL3 indique une recristallisation importante. Les textures de déséquilibres, les lentilles felsiques et les veinules suggèrent que la roche a connu des infiltrations de fluides importantes. La granulométrie souvent plus grossière du Grt, sa distribution irrégulière et son altération très intense suggèrent qu'il s'agit de xénocristaux.

XNL3b Clinopyroxénite (Cpx ± Am, Pl, Bt, Ttn, Oxi, Sul, Car)

CXN: <u>A5-8</u>

PÉTROGRAPHIE. Xénolite (45x25 mm) de CXN à grains fins et à texture polygonale. Veinule à Pl, Car, Bt, Scp, Ttn parallèle à la foliation mal définie, recoupée par veinule à Am, Cpx. Zones altérées interstitielles riches en Am. Granules d'Opa et Fel? aux joints de grains, plus abondantes près des veinules et des zones altérées. Non déformée. Diffère des XNL3 par l'absence d'Opx, Grt et Spl.

Cpx: (95%, 0.1-1 mm) vert brunâtre pâle, légèrement pléochroïque, xénomorphe, zoné, aspect sale ou strié, inclusions Ap?, partiellement remplacé par Am. Cpx vert clair dans veinule avec Am. **Am**: (2%,

<0.1 mm) incolore à vert olive, xénomorphe, remplacement partiel des Px ou dans zones interstitielles. PI: (<1%) xénomorphe, dans veinule avec Am, Car, Bt, Scp, Ttn, partiellement scapolitisé. Bt: (<1%) vert pâle à brun foncé, xénomorphe, restreinte à veinule avec Pl, Am, Car, Scp, Ttn. Ttn: (<1%). Sul: (<1%) Py, Ccp, Po, grains fins interstitiels ou dans veinules. Oxi: (<1%) Ilm et Mag, localement inclus dans Py. Petits grains très fins avec Fel? aux joints de grains dans les roches polygonales. Car: (0-1%), xénomorphe, dans lentilles felsiques ou zones interstitielles avec Am, Pl, etc.

CHIMIE MINÉRALE. La composition du Cpx de A5-8 diffère de façon notable de celle des CXN3a. Il s'agit d'un diopside (W054-55) subsilicique (Si: 1.70-1.74 cat.) et alumineux (Al^{total}: 0.4) avec un *mg* de 72-76.

XNL4 Pyroxénites, norites, gabbros (Opx, Cpx, Pl ± Am, Bt, Ap, Ttn, Car, Oxi, Sul)

OXN: **B1-3** WB: <u>C45-17</u> NR: A0-3, A5-32-5, B4-22, **B11-16-6**, C45-15, D13-1, D13-2, D14-17 (?**A4-43**) GBN: B6-56, B7-1 GB: A6-61, **B2-68**

PÉTROGRAPHIE. Xénolites (30 à 450 mm de longueur) d'OXN, WB, NR, GBN et GB à grains moyens à grossiers, plus rarement fins; cumulats; foliation ou rubanement ignés, relativement peu d'indices de déformation, textures intergranulaire, en mortier ou protoclastique. (ex-PXN N).

Particularités. A6-61 et B2-68 contiennent peu d'Opx (mélagabbros). D13-2 est à grain fin et rappelle A4-43 (NR3 ?), sauf pour une plus grande abondance de Cpx (remplaçant Opx ?). C45-17 contient de grands cristaux (≈ 6 mm) poecilitiques de Cpx et de Pl englobant des Opx automorphes.

Opx: (<1-95%, 0.1-12 mm) brun à vert pâle, automorphe à xénomorphe, exsolutions Cpx et Spl ou Rt?, inclusions Ap; kinks, sous-grains, parfois intensément bastitisé, remplacement par Am (et Cpx?). L'Opx montre fréquemment une fine couronne interne d'Am et une fine couronne externe de Bt verte à brune. Cpx: (<1-85%, 0.1-6 mm) gris vert pâle, automorphe à xénomorphe, parfois interstitiel, zoné ou mâclé, poecilitique et inclu Opx; exsolutions (Opx et Spl ou Rt ?), extinction ondulante, kinks, sous-grains, fine couronne Am et Bt. **Pl**: (3-75%, 0.1-8 mm) automorphe à xénomorphe, lattes avec mâcles primaires et secondaires; extinction ondulante, lamelles de déformation, sous-grains, polygonisé, poecilitique et inclu Opx; marque la foliation ignée ou interstitiel; partiellement séricitisé. Am: (<1-25%) jaune ou vert pâle à vert olive, xénomorphe, généralement fine et interstitielle, présence occasionnelle de biotite verte (antérieure ?). Ap: (0-<1%) aiguilles en inclusion dans Pl. Sul: (0-2%) Py, Ccp, Po, Pen?, grains fins interstitiels. Oxi: (0-<1%) Ilm et Mag. Ttn: (0-<1%) rare, petits grains hypidiomorphes, avec Am et Car. Car: (0-<1%) rare, remplacement partiel du Pl; aussi interstitiel ou dans veinules.

CHIMIE MINÉRALE. Les **Opx** ont un mg de 67.7-76.4 et des contenus en Al de 0.07-0.17 et en Ca de 0.01-0.03 cat. Les **Cpx** sont des augites et des diopsides (Wo45-49) alumineux (Al^{total}: 0.13-0.18) et chromifère (Cr: 0.01-0.07 cat.) avec un mg de 73.7-81.7. Le **Pl** est une andésine de An₄₇₋₄₉.

GÉOCHIMIE. Les xénolites analysés (B1-3, B2-68, B11-16-6) sont ultramafiques à mafiques avec 49-52% SiO_2 , 14-23% MgO, 760-1390 ppm Cr. Les rapports mg et K₂O/Na₂O sont respectivement de 74-76 et de 0.3-0.4. Les teneurs en éléments traces incompatibles sont faibles avec Ba < 170 ppm, Sr < 275 ppm, Zr < 100 ppm et La < 8 ppm (La/Yb de 2-3). Les éléments Nb, Ta, et parfois Pb, Ba, U, sont sous le seuil de détection. Le GB B2-68 se distingue par des teneurs plus élevées en terres rares, Zr, Hf et Sc. Les patrons d'éléments traces normalisés au manteau primitif sont irréguliers et dissemblables, avec des anomalies négatives en Th, Nb-Ta et des anomalies de signes et d'intensités variables en Sr, Nd, P, Zr, Tb et Ti.

REMARQUES. Roches ignées incluant des cumulats, peu déformés. Comparativement aux PXN5, ces roches sont plus riches en Opx, plus pauvres en Oxi, et sont en général moins déformées et n'ont pas d'équivalents granoblastiques. Elles montrent une composition minéralogique et des textures tout à fait

similaires à celles des plutons de 1165 Ma de la Ceinture métasédimentaire du Grenville (exemple: CQA91-2159). Lien avec les PXN1c, PXN2a et PXN2b?

XNL5 Pyroxénites, gabbros (Cpx, Opx, Pl, Am, Mag ± Kfs, Ap, Bt, Grt, Qtz, Car, Sul, Zrn)

```
WB: A4-1, A5-145, A6-18, B3-12,
```

```
CXN: A2-29a, A4-5, A6-5, ?B1-71, D15-7-1
```

GB: A2-18, A2-29b, ?A3-1, A4-3, A5-42-3 (A4-43, A4-12, A4-35, A4-102-2)

PÉTROGRAPHIE. Xénolites (30-200 mm)) de WB, CXN et GB à grains fins, moyens ou parfois grossiers, textures en mortier, localement polygonale. Parfois foliés avec orientation préférentielle des porphyroclastes allongés. Parfois bien rubanés avec niveaux plus riches en Cpx, Opx ou Pl. Reliques de textures subophitiques. La texture polygonale et la foliation ou le rubanement métamorphiques sont généralement mieux développés dans les GB. (ex-PXN O).

Particularités: A2-29 montre le contact entre une CXN (A2-29a) et un GB (A2-29b), les deux contenant de faibles quantités d'Opx. B3-12 contient environ 15% d'Am vert foncé formant des cristaux \pm isométriques < 3 mm, riches en inclusions d'Opa, ou formant couronne de remplacement autour Px: Am tardi-magmatique ? Une veinule d'Am, exempte d'inclusions d'Opa, recoupe la foliation.

Cpx: (20-98%, 0.1-7 mm) vert, légèrement pléochroïque, aspect strié, exsolutions? noires à brun foncé (Spl ou Rt?); extinction ondulante, lamelles de déformation, sous-grains, remplacement partiel par Am. Opx: (<1-30%, <1-4 mm) vert pâle à brun rosé, parfois automorphe, inclusions de Cpx; porphyroclastes, extinction ondulante, kinks, sous-grains, remplacement partiel par Am. Pl: (<1-75%, <1-8 mm) aussi Kfs? généralement turbide, mâcles de déformation. Interstitiel dans les WB et CXN. Am: (<1-15%) vert foncé à vert brunâtre avec fines inclusions opaques. 2e génération d'Am plus fine et vert plus pâle formant couronne autour Opa et Px ou apparaissant dans veinules recoupant la foliation. Opa: (<1-10%, <1 mm) Mag avec exsolutions lamellaires d'Ilm, interstitielle. Petits cristaux Opa abondants aux joints de grains dans les roches granoblastiques. Ap: (0-2%) cristaux peu allongés riches en fines inclusions noires (Sul?) ou aiguilles en inclusion dans Fel. Bt: (<1%) jaune à brun orangé, fine, interstitielle, souvent associée à Am et Opa. Qtz: (0-<1%) interstitiel ou produit remplacement des Px, avec Am et Opa. Grt: (0-<1%) brun orangé pâle, petits cristaux automorphes ou xénomorphes partiellement altérés en phyllosilicates fins, et opaques. Origine métamorphique et possiblement reliques de xénocristaux (?). Car: (0-<1%) dans zones interstielles avec Am, Fel, Bt, Opa, Qtz. Sul: (0-<1%) Py, Po, Ccp, grains disséminés et veinules. Au moins en partie postérieurs à la mise en place de la brèche: veinules recoupant le xénolite et le lamprophyre. **Zrn**: (0-<1%) rare.

CHIMIE MINÉRALE. Les **Cpx** des WB (A5-145, B3-12) sont des augites et des diopsides (W038-48) parfois alumineux (Al^{total}: 0.14-0.22 cat.) ou sodiques (Na = 0.04-0.11) avec un *mg* de 64-73. Les **Opx** ont un *mg* de 55-68 et des contenus en Al^{total} de 0.08-0.15 et en Ca de 0.02-0.09. Les **Am** sont des pargasites ferrifères ou des hasingsites magnésiennes, avec approximativement 13% Al₂O₃, 2% TiO₂, 2.2% Na₂O, 0.8-1.1% K₂O, un *mg* de 57-59 et un rapport K/Na de 0.24-0.34.

GÉOCHIMIE. Les xénolites analysés (A5-145, B3-12, A2-18, A2-29a, A2-29b) sont ultramafiques à mafiques avec 43-50% SiO₂, 6.6-15.6% MgO, 90-1060 ppm Cr. Les rapports mg et K₂O/Na₂O sont faibles, respectivement de 46-56 et de 0.2-0.3. Les teneurs en éléments traces incompatibles sont faibles avec Ba <170 ppm, Sr <160 ppm, Zr < 135 ppm et La < 11 ppm (La/Yb = 0.7-3.0). Les éléments Nb, Ta, et parfois Ba, U, Th, sont sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif montre des anomalies négatives d'intensité variable en Th, Nb-Ta, Sr, P, Ti. Les PXN5 et GB5 se distinguent de la plupart des autres PXN par des teneurs relativement élevées en Fe₂O₃ (14.6-24.4%), MnO (0.2-0.6%), V (280-560 ppm) et des valeurs faibles de leur mg (46-56), La/Yb (0.7-3.0) et Zr/Y (1-4).

Particularités: La CXN A2-29a est très riche en terres rares moyennes (19.8 ppm Sm) et lourdes (13.5 ppm Yb), en plus de Y (123 ppm) et Sc (99 ppm), et montre des anomalies négatives très prononcées en Sr, P et Ti. Les teneurs extrêmes en terres rares moyennes et lourdes et en Sc pourraient être le résultat de l'assimilation de grenat, dont on observe les reliques dans certains XNL5.

REMARQUES. Roches ignées mafiques et ultramafiques déformées et métamorphisées à divers degrés. Les WB et certaines CXN représentent probablement des cumulats. Bien que les PXN5 ressemblent superficiellement aux PXN4, elles s'en distinguent par des quantités plus faibles en Opx et généralement plus importantes en Oxi. Le lien de la NR A4-43 avec les XNL5 est incertain. Cette roche a un patron d'éléments traces très semblable à celui de B3-12 mais montre une minéralogie et des textures différentes: peu de Cpx, texture subophitique bien développée, séricitisation localement importante du Pl, peu déformée. Certaines MBS (A4-12, A4-35, A4-102-2) ont des caractéristiques intermédiaires entre les GB5 et les MBS11a.

Les XNL6 regroupent les xénolites mafiques et ultramafiques d'origine incertaine, dont l'assemblage minéralogique inclu les deux pyroxènes et le grenat. Les textures sont surtout métamorphiques mais les textures de déséquilibre, dans certains cas attribuables au contact avec la minette encaissante, peuvent être très importantes.

XNL6a Granulites mafiques (CXN à Grt) (Cpx, Grt, Opx, Am, Bt, Pl, Qtz, Ms, Opa)

GNL: <u>A5-7</u>, <u>C31-11</u>

PÉTROGRAPHIE. Petits xénolites (45-55 mm) à grains fins à moyens, textures granoblastique, porphyroblastique (Grt) et porphyroclastique (Opx), foliation ou rubanement grossiers marqués par alignement des Grt et Opx et orientation des plages de Pl. Résorption intense du Grt en bordure des xénolites. (ex-ECL).

Cpx: (\approx 80%, 01-1 mm) verdâtre à brunâtre, aspect sale et strié, cristaux généralement isométriques et xénomorphes, couronne Am, Opa, Qtz?, prend une texture poreuse en bordure des xénolites, non déformé. **Opx**: (<2%, 0.1-3 mm) vert à brun, hypidiomorphe, kinks, cataclases (porphyroclastes déformés), couronne Am et Opa. **Grt**: (\approx 10%, 0.1-3 mm) brun très pâle, xénomorphe, inclu Cpx, Opx, Pl, Ap? et fines inclusions aciculaires orientées avec un angle d'extinction de 0-30°. Les grains près de la bordure des xénolites sont intensément résorbés et remplacés en Opa, Bt, Fel? **Pl**: (\approx 5%, <1 mm) xénomorphe, contient de fines inclusions qui lui donne un aspect turbide, zoné, mâcles de déformation. **Am**: (\approx 3%) incolore à vert olive, xénomorphe, couronne autour des Px et Grt. **Bt**: (<1%) jaune pâle à brun orangé (similaire à la Bt de la MNT), cristaux non orientés associés à Grt ou localement abondants à la périphérie du xénolite. **Ap**: (<1%) grains arrondis peu allongés. **Spl**: (<1%) vert très foncé, associé à Opa. **Opa**: (2%)

CHIMIE MINÉRALE. Les **Cpx** sont des augites et des diopsides (Wo₄₁₋₅₂) alumineux (Al^{total}: 0.12-0.34 cat.) contenant 0.05-0.10 cat. Na, avec un *mg* de 64-76. Plusieurs analyses ont des totaux <99%, suggérant que les Cpx sont partiellement amphibolitisés. Les **Opx** sont peu alumineux (Al^{total}: 0.09-0.10 cat.) et contiennent 0.02-0.07 cat. Ca (Wo_{0.8-3.7}) avec un *mg* 60-65. Les **Grt** ont une composition variant approximativement entre Alm₄₆And₇Gro₁₃Pyr₃₄ et Alm₅₉And₄Gro₁₀Pyr₂₅. Les **Am** sont surtout des magnésio-hornblendes ou des hornblendes hastingsitiques, actinolitiques ou tschermakitiques, contenant 4-12% Al₂O₃, 0.6-2.0% Na₂O, 0.0-0.8% K₂O et 0.5-0.7% F, avec un *mg* de 61-75. La **Phl** contient 15.6% Al₂O₃, 2.6% TiO₂, avec un *mg* de 90. Les **Pl** ont un An₁₈₋₂₂ ou An₄₃.

XNL6b Granulites mafiques (Cpx, Opx, Grt, Fel, Qtz, Am, Bt, Opa, Ap, Ms, Car)

GNL: <u>C8-6</u>, <u>C45-7</u>, <u>C45-19</u>, ?<u>A6-64</u>, ?A7-13-3, ?C21-3, ?C43-4

PÉTROGRAPHIE. Petits xénolites (50-130 mm) de GNL à grains fins à moyens, hétérogranulaires, très hétérogènes, localement granoblastiques, porphyroblastiques (Grt), rubanés avec niveaux plus riches en Cpx, Grt, Pl ou Qtz, foliation plus ou moins bien définie marquée par orientation des minéraux allongés. L'abondance des minéraux est très variable. Textures de remplacements abondantes et complexes résultant au moins en partie de réactions avec la MNT, Grt très résorbé et remplacé par des minéraux fins: surtout Opa, Bt, Fel. (ex-ECL).

Particularités. A6-64 est à grains fins et beaucoup plus homogène, bien que rubané. Ce xénolite présente des textures similaires à celle de B8-73 (?A7-13-3, MBS11a) sauf pour une amphibolitisation moins importante.

Cpx: (<2 mm) vert brunâtre, aspect sale, xénomorphe, parfois zoné, couronne Am. Parfois Cpx vert clair près de la bordure xénolite, remplace Am? Opx: (<3 mm) vert à brun pâle, grains parfois allongés orientés selon la foliation, altération brune, en Car ou Am. Petits Opx néoformés? en contact avec Qtz. Aussi Opx clairs formant petits grains croissant au contact des zones riches en minéraux fins et des plages de Qtz. Grt: (<0.1-5 mm) brun rose pâle, porphyroblastes xénomorphes, inclusions de Cpx, Qtz, Opa et vermicules irréguliers à extinction ondulante (?), remplacement localement très importants en Opa, Bt, Fel, Am, Spl, Opx? Ms? Présence de petits Grt automorphes (néoformés ?) riches en Opa fins dans les couronnes de minéraux d'altération entourant les grands porphyroblastes de Grt. Fel: (<2 mm) Pl et Kfs? xénomorphe, zoné, présente parfois une couronne turbide, extinction ondulante, mâcles de déformation, cristaux allongés localement présents avec Bt et Opx: produit remplacement d'autres minéraux? parfois textures symplectitiques, partiellement remplacé en Ms? Qtz: xénomorphe, forme rubans aux grains plus ou moins allongés, ou chapelets de petits grains, extinction ondulante, sous-grains, contient des minéraux vermiculaires et Bt, Zrn, Cpx?, Ap?, Rt?. Am: incolore à vert bleuté à vert olive, hypidiomorphe, remplacement partiel des Px et Grt, souvent en association avec Bt, peut former des gerbes en bordure du xénolite. Opa. Ap: contient de fines inclusions lui donnant une teinte grisâtre. Zrn: petits grains arrondis. Bt: jaune pâle à brun orangé (= Bt MNT) ou verte en association avec Grt, hypidiomorphe. Ms: très fine, remplacement partiel des Fel. Car.

CHIMIE MINÉRALE. Les **Cpx** sont des augites et des diopsides (Wo₄₂₋₅₀) alumineux (Al^{total}: 0.14-0.30 cat.) avec un mg de 66-79. L'**Opx** est parfois alumineux (Al^{total}: 0.04-0.44 cat.) et contient 0.01-0.10 cat. Ca (Wo_{0.4-5.8}), avec un mg de 60-75. La composition du **Grt** varie approximativement entre Alm₃₀And₆Gro9Pyr₅₅ à Alm₆₄And₄Gro₈Pyr₁₉. L'**Am** est une hornblende trémolitique ou une magnésio-hornblende contenant 5-8% Al₂O₃, 0.7-1.0% Na₂O et 0.2-0.3% K₂O, avec un mg de 79-80 et un rapport K/Na de 0.2. Les **Fel** analysés sont des Kfs (Or₇₀Ab₂₄An₄ à Or₇₃Ab₂₂An₃) contenant 0.5-0.7% BaO, et des Pl (An₂₆₋₅₀).

XNL6c Granulite mafique (Cpx, Grt, Opx, Ms?, Am, Opa ± Qtz, Kfs, Bt, Spl, Car, Ap, Sul)

GNL: <u>**B2-7**</u>

PÉTROGRAPHIE. Xénolite (100x70 mm) de GNL à grains fins, plus ou moins porphyroblastique et granoblastique, pas de foliation et de rubanement bien définis, légèrement déformée. (ex-ECL).

Cpx: ($\approx 28\%$, 0.1-1.2 mm) vert pâle, xénomorphe, exsolutions? Ilm?, Spl brun?, zones et niveaux polycristallins granoblastiques; déformé, extinction irrégulière. **Grt**: ($\approx 30\%$, 0.1-2 mm) brun très pâle en lame mince, petits porphyroblastes xénomorphes, plus ou moins poecilitiques avec inclusions de Cpx, Qtz, Ilm, Am; chapelets de petits Grt systématiquement présents au contact Cpx et Ms?; plus ou moins résorbé. **Opx**: ($\approx 5\%$, <1 mm) vert pâle à brun rose pâle, xénomorphe, inclusions Opa, remplacements importants en minéraux fins brun foncé, Am et Opa. **Ms**?: ($\approx 30\%$) phyllosilicate très fin, incolore, couleur de biréfringence de la fin du ler ordre, extinction droite, forme gerbes, remplacement Pl? **Am**: ($\approx 4\%$) incolore à verte, hypidiomorphe, couronne autour des Px, souvent en association avec Qtz. **Ilm**: (2%, <1 mm) xénomorphe, interstitielle ou dans Grt. **Sul**: (<1%) Py, As? **Bt**: (<1%) jaune pâle à brun, xénomorphe,

interstitielle, forme localement des symplectites avec Qtz. Spl: (<1%) vert foncé, petits grains hypidiomorphes, minéral secondaire. Car (<1%). Ap: (<1%).

CHIMIE MINÉRALE. Le **Cpx** est un diopside (Wo45-52) parfois alumineux (Al^{total}: 0.08-0.13) avec un mg de 71-76. Des inclusions de Cpx dans le Grt sont plus pauvres en Ca (Wo39-41) et Mg (mg = 62-65). L'**Opx** contient 0.3-0.4 cat. Ca (Wo1-2) avec un mg de 59-61. La composition du Grt varie entre Alm₅₈And₄Gro₁₄Pyr₂₁ à Alm₅₁And₃Gro₁₈Pyr₂₆. Les **Am** analysées sont des magnésio-hornblendes avec 4.4-5.5% Al₂O₃, 0.4-0.5% Na₂O, 0.1% K₂O et 0.5% F, un mg de 73-74 et un rapport K/Na de 0.12-0.17; une actinote est également présente avec 1.8% Al₂O₃, 0.2% Na₂O, et un mg de 79.

GÉOCHIMIE. La GNL B2-7 contient 46% SiO₂, 13% Al₂O₃, 11.7% MgO (mg = 48), 2.3% K₂O, 240 ppm Cr, 760 ppm Ba, 100 ppm Zr, 6 ppm La, avec un rapport La/Yb de 2. Les éléments U et Nb sont sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif est plat et régulier, sauf pour un enrichissement important en Ba, Rb, K (créant une importante anomalie négative en Th), et de légères anomalies négatives en P et Sc (Nb).

XNL6d Granulite mafique (skarn ?)

 $(Cpx, Grt, (Opx) \pm Am, Bt, Opa, Fel, Ms?, Spl)$

GNL: <u>B3-14</u>

PÉTROGRAPHIE. Xénolite (40 mm) de GNL à grains moyens à grossiers, rubané, texture ignée primaire ? Épaisse zone de réactions à Am, Bt, Opa, Fel, Ms?, Spl, Opx? en bordure du xénolite. (ex-ECL).

Cpx: ($\approx 45\%$, 0.5-6 mm) vert brunâtre, cristaux automorphes \pm arrondis, forme des niveau à grains moyens avec Grt et niveau à grains moyens à grossiers, larges reliques d'exsolutions, parfois courbées, maintenant occupées par du Grt et Opa; extinction ondulante, altéré. **Grt**: ($\approx 55\%$, <8? mm) brun pâle, petits et grands cristaux xénomorphes incluant partiellement le Cpx, interstitiel, remplacement Pl?, plus résorbé à la bordure du xénolite. **Opx**: reliques totalement bastitisées. Am, Bt, Fel, Ms?, Spl, Opx? dans bordure de réaction du xénolite.

CHIMIE MINÉRALE. Le Cpx est un diopside (Wo₄₄₋₅₀) alumineux (Al^{total}: 0.19-0.24 cat.) avec un mg de 74-79. L'Opx (difficile à analyser parce que très altéré) contient 0.23 cat. Al et 0.08 cat. Ca (Wo_{4.6}), avec un mg de 69. Le Grt a une composition variant de Alm₄₆And₆Gro₁₁Pyr₃₅ à Alm₃₉And₇Gro₈Pyr₄₄.

Les XNL7 regroupent les xénolites contenant de l'olivine.

XNL7a Dunites (OI, Spl, Phl, ± Tlc, Ms, Car, Sul)

DN: <u>A5-38-1</u>, **C45-12**, <u>C45-13</u>

PÉTROGRAPHIE. Xénolites (30-120 mm) de DN à grains fins à grossiers, granulaire, hétérogranulaire, ou granoblastique, localement orientation préférentielle des Ol allongées. Les xénolites montrent une altération concentrique avec un coeur non altéré, une couronne interne où l'Ol est remplacée par des minéraux fins brunâtre (Idd ?) et une couronne externe brun jaunâtre plus pâle, à Tlc et Car (?). Les xénolites peuvent également montrer une couronne externe à Phl ou Opx ou Am et Bt.

Particularités. C45-13 montre un rubanement marqué par des niveaux de différentes granulométries et différentes orientations des cristaux allongés d'olivine (<10x2 mm). A5-38 possède une fine (≈0.1 mm) couronne externe d'Opx croissant perpendiculairement à la bordure du xénolite; l'Opx et l'Ol sont localement remplacées par des minéraux criptocristallins (Tlc, Car?). C45-12 possède une couronne (10 mm) de Phl brune dans laquelle les reliques d'Ol ont une couronne d'Opx.

OI: (75-90%, <1-10mm) grains xénomorphe isométriques ou allongés, fracturés; inclusions fréquentes et parfois extrêmement abondantes de Spl, plus rarement de Sul ou Phl et exceptionnellement de Cpx; quelques lamelles de déformation; altéré en Srp, Phl, Tlc, Idd, Opa. **Spl**: (5-12%, <0.1-2 mm) vert pâle, automorphe ou xénomorphe, cristaux interstitiels ou en inclusions, parfois fines et extrêmement abondantes, dans l'Ol, inclusions d'Ol; plus altéré et légèrement plus foncé à la bordure xénolite. **Phl**: (5%, <5 mm) incolore à brun orangé très pâle, abondantes inclusions aciculaires (Rt?), xénomorphe, localement poecilitique avec reliques d'Ol; légèrement déformée. Également présente dans une veinule avec Car, Ms? Opx? **Tlc**: (30-40%, <0.1 mm) \pm Srp, Ms, Idd, Car? remplacement partiel de l'Ol, en bordure xénolite et dans des microfractures. **Car**: (<1%) très fin, avec Phl, Tlc, Ms. **Ms**: (<1%), fine, couronne autour Spl en bordure xénolite. **Sul**: (<1%) Py, Po, As? **Ilm**: (<1%) petits cristaux en périphérie des inclusions de Spl dans la Phl.

CHIMIE MINÉRALE. L'OI est très magnésienne: F089-93 mais pauvre en NiO: 0.0-0.05% avec des teneurs en CaO < 0.13% et généralement < 0.03%. Elle ne semble pas zonée. Le **Spl** est un *spinelle* presque pur, avec 63-68% Al₂O₃, 21-24% MgO, un *mg* de 80-89 et un *al* (Al/Al+Cr+Fe³⁺) de 83-99. Les teneurs en Cr₂O₃, MnO, ZnO et V₂O₃ sont généralement <0.1%. Il ne semble pas zoné, si ce n'est pour des totaux souvent plus faibles à la bordure des grains. La **PhI** est également très magnésienne (26% MgO) et elle est riche en Na₂O (0.8%), F (1.9%) et pauvre en TiO₂ (0.9%) et Cr₂O₃ (0.0%), avec un *mg* de 93.5.

GÉOCHIMIE. La DN C45-12a contient 31.5% SiO₂, 11.8% Al₂O₃, 40.9% MgO (mg = 87), 0.4% CaO, 0.02% K₂O et 125 ppm Cr et 42 ppm Ni. Les éléments Pb, Ba, U, Th, Nb, Ta, Hf et les REE sont sous le seuil de détection.

XNL7b Wehrlites (OI, Cpx, Spl ± Phl, Srp, Tlc, Am, Sul)

WL: <u>A4-19-2</u>, <u>A6-24a-1</u>

PÉTROGRAPHIE. Petits xénolites (≈20 mm) de WL à grains fins à moyens montrant une texture granulaire; hétérogène avec zones plus riches en Ol ou en Cpx; prend localement l'aspect d'une CXN à Spl (bordure du xénolite ?). Zones intensément altérées en Srp, Tlc, Phl et (ou) Bt, Ms?, Opx, Am, particulièrement en bordure des xénolites.

OI: (0.2-2 mm) xénomorphe, fracturée, lamelles de déformation; inégalement répartie, localement complètement remplacée par des phyllosilicates: Srp, Tlc, Ms ou Phl. Spl: (<1 mm) A6-24a1: vert kaki, A4-19-1: vert pâle devenant vert plus foncé en bordure du xénolite. Hypidiomorphe, interstitiel ou en inclusion dans l'Ol ou le Cpx, parfois associé à Sul; partiellement remplacé par la Phl. Cpx: (≈1 mm) incolore, xénomorphe, localement interstitiel avec formes arrondies, parfois zoné, extinction ondulante, remplace Ol? Phl: (<2 mm) jaune pâle à brun orangé, plus foncée en bordure du xénolite, hypidiomorphe, interstitielle, Tlc: \pm Srp, Ms?, Idd, fine, remplacement partiel de l'Ol, surtout en bordure du xénolite. Sul: Py, Ccp, Po avec exsolutions de Pen, plages interstitielles xénomorphes, souvent avec Spl. Am: vert pâle, xénomorphe, en bordure des xénolites.

CHIMIE MINÉRALE. Il faut ici distinguer les deux xénolites dont les minéraux ont des compositions différentes. A4-19 a une **Ol** de F094-95, contenant 0.0-0.1% NiO et 0.0-0.08% CaO. Le **Spl** contient 68% Al₂O₃, 24% MgO avec un *mg* de 88-90 et un *al* de 99. Les teneurs en ZnO sont de 0.5-0.7% et celles en Cr₂O₃, MnO et V₂O₃ sont <0.1%. Le **Cpx** est un diopside (W049-52) alumineux (Al^{total}: 0.20-0.28 cat.) avec un *mg* de 95-96. La **Phl** contient 14.4-15% Al₂O₃, 1.3-1.5% TiO₂, 0.3-0.5% Na₂O, avec un *mg* de 97. Elle est très riche en F: 3.4-4%.

L'Ol de A6-24a-1 est moins magnésienne que celle de A4-19-2, avec Fog8-89, <0.1% NiO et <0.2% CaO. Le **Spl** contient 53% Al₂O₃, 17% MgO, avec un *mg* de 68-70 et un *al* de 84-87, des teneurs en Cr₂O₃ de 9.2-9.9%, en MnO de 0.12-0.19%, en ZnO de 0.4-0.9% et en V₂O₃ de 0.0-0.1%. Le **Cpx** est un diopside (Wo₅₀) alumineux (Al^{total}: 0.25-0.27 cat.), chromifère (Cr: 0.14-0.20 cat.) et sodique (Na: 0.09-0.12) avec

REMARQUES. Bien que ces deux xénolites présentent des assemblages minéralogiques et des textures similaires, les différences dans la composition des minéraux suggèrent qu'il n'existe pas de lien entre eux.

XNL7c Clinopyroxénite à Ol (Ol, Cpx, Phl, Sul, Srp, Tlc)

CXN: **B1-19** (?A4-2, ?A6-2, ?A6-21-1, ?C15-6, ?C43-5-1, ?D6-10-2)

PÉTROGRAPHIE. Xénolite de CXN à grains fins montrant une texture granulaire et une foliation très mal définie marquée par l'alignement des Cpx allongés; minéralogiquement inhomogène avec des zones reliques plus riches en Ol et des zones plus riches en Tlc, Cpx ou Phl; réactions incomplètes avec remplacements partiels plus importants pour l'Ol. Peu déformé.

Cpx: (\approx 50%, <3 mm) incolore, xénomorphe, extinction parfois ondulante, rares mâcles de déformation, localement remplacé par Am ou Tlc? Le Cpx remplace Ol? **Ol**: (\approx 10%, <1 mm) xénomorphe, fracturée, lamelles de déformations, forme chapelets entre les grains de Cpx; l'Opx apparaît parfois comme produit du remplacement de l'Ol, altération localement complète en Srp, Tlc, Idd, Opa. **Phl**: (\approx 15%, <2 mm) jaune pâle à brun orangé pâle, plus foncé en bordure du xénolite, hypidiomorphe, interstitielle, kinks, localement remplacée par Am. **Tlc**: (\approx 20%) ± Idd, Car?, très fins, remplacement partiel de l'Ol, près de la bordure du xénolite. **Am**: (\approx 4%, <1 mm) incolore à vert pâle, xénomorphe, remplacement partiel Cpx, Phl. **Sul**: (1%, <1 mm) Po ± Ccp, Py, xénomorphe, interstitiels, plus ou moins également répartis dans la roche, recoupés par Phl?

CHIMIE MINÉRALE. L'OI de B1-19 est exempte de NiO et CaO avec un Fo₈₆₋₈₉. Le Cpx est un diopside (Wo₄₅₋₄₆) pauvre en Al (0.04 cat.) et exempt de Cr. La PhI contient 13.5% Al₂O₃, 1.5% TiO₂ avec un mg de 95.

GÉOCHIMIE. B1-19 contient 49.5% SiO₂, 3.5% Al₂O₃, 22.0% MgO, 13.5% CaO, 17 ppm Cr et seulement 11 ppm Ni, son *mg* est de 89. Les éléments Pb, U et Ta sont sous le seuil de détection. La roche est relativement riche en Ba (790 ppm), Sr (480), Zr (82 ppm) et La (15 ppm) avec un rapport La/Yb de 11. Le patron d'éléments traces normalisés au manteau primitif montre une anomalie négative en Th, Ta, P et Ti.

REMARQUES. C43-5-1 est une CXN à grains moyens contenant des zones interstitielles à Phl, ou à Tlc (+Car, Srp?, Qtz?) qui pourraient être le résultat du remplacement de l'Ol; D6-10-2 est totalement remplacé par du Tlc et Srp? (Car, Am et autres) et la couronne d'Opx (?) croissant en bordure du xénolite est similaire à celle de la DN A5-38. Les CXN8a (à Spl vert kaki) A4-2 et A6-2 contiennent également des plages de minéraux d'altération fins bruns à jaune brunâtre (Idd, Tlc Car?) qui pourraient marquer la présence antérieure d'Ol.

Les CXN8 sont les xénolites ultramafiques les plus abondants dans la brèche intrusive de Rivard. Elles sont ici arbitrairement divisées en trois groupes en fonction de la présence (CXN8a) ou de l'absence (CXN8b) de Spl et de la présence d'Opx (CXN8c). Toutefois les trois catégories présentent des textures similaires bien que très variables. Ces xénolites sont traités en détail au chapitre 4.

XNL8a Clinopyroxénites (Cpx ± Spl, Am, Phl (ou Bt), Fel, Ttn, Ms?, Tlc, Scp, Grt, Car, Sul)

CXN: <u>A2-7</u>, A4-2, <u>A4-4</u>, A4-7, <u>A4-10</u>, A4-29, <u>A4-30-1</u>, <u>A4-31-1</u>, A4-102-1, <u>A4-105</u>, <u>A5-3</u>, A5-40-3, A6-1, <u>A6-2</u>, <u>A6-3</u>, A6-9, <u>A22-1-1</u>, A22-3, <u>A23-10</u>, B0-9-1, B0-10-1, <u>B3-1</u>, ?C17-16, <u>C21-1</u>, C24-7, C25-1, C27-3, <u>C31-2</u>, C31-3, C44-1, C45-21, ?<u>D3-2</u>, D6-1, D14-9.

PÉTROGRAPHIE. Xénolites (25-120 mm) de CXN beige à gris foncé, à grains fins à grossiers montrant des textures variées: granulaire, hétérogranulaire, porphyroclastique, polygonale. Texture poreuse plus ou moins bien développée à partir des joints de grains avec remplacement partiel du Cpx par Am \pm Car, Scp, Cpx2, Ttn, Fel, Phl. Présence de zones interstitielles et de veinules montrant généralement une zonation avec, du coeur vers la bordure: Scp (\pm Car, Ttn), Cpx2 (vert clair), Am, Cpx1 (incolore ou brunâtre \pm Car, Fel, Ttn). Les xénolites de CXN8a ont une couronne de réaction généralement peu développée (0.1-2 mm) à Cpx vert et Am \pm Bt. (ex-CXN P, B, F).

Particularités. A4-2 et A6-2 contiennent des minéraux fins brunâtres à jaune brunâtre (Idd, Tlc, Car?) qui pourraient être le produit de remplacement d'une Ol antérieure? C24-7 montre une altération intense et généralement très fine en Car, Ms?, Am. C44-1 et C45-21 sont riches en Phl ($\approx 40\%$); dans C44-1, les grands cristaux de biotite, peu déformés, séparent localement des Cpx automorphes ou xénomorphes; dans C45-21, la Bt est plus déformée, et orientée perpendiculairement aux rubans irréguliers dans lesquels elle apparaît préférentiellement. A6-3 contient du Grt formant quelques cristaux isolés et résorbés ou plus souvent formant une courone autour du Spl.

Cpx: (50-99%, <0.1-15 mm) incolore à brunâtre, grains xénomorphes isométriques ou peu allongés, contours réguliers ou dentelés, parfois zoné (surtout Cpx brunâtre); clivages généralement absents; inclusions de Spl, Phl, Car, Sul traînées d'inclusions fines, solides et liquides; extinction ondulante, sousgrains, remplacement partiel par Am. Localement présence d'un Cpx limpide vert clair (Cpx2). Spl: (<1-8%, <2 mm) vert pâle à vert foncé, kaki ou brun vert foncé, grains xénomorphes à automorphes en inclusions dans Cpx, grains ou plages interstitielles polycristallines, les grains interstitiels sont généralement plus grossiers que les inclusions; plus foncé avec l'altération (bordure xénolite); remplacement partiel par Phl, Am, Crn, Ms, Tlc?, Chl? (granulométrie très fine). Le Spl montre une fine couronne de Grt plus ou moins altéré dans certains xénolites. Am: (<1-40%, <0.5 mm) incolore à vert, plus foncé avec le Cpx brunâtre, le plus souvent xénomorphe, remplacement partiel Cpx, croissance épitaxiale sur Cpx, dans zones interstitielles avec ± Car, Fel, Ttn, Scp, Cpx2 ou dans veinules. Phl: (<1-40%, <2 mm) incolore à brun orangé, généralement plus pâle que la Bt de la MNT, hypidiomorphe, habituellement fine et interstitielle, parfois partiellement remplacée par Chl, Qtz, Car ou Am. légèrement déformée. Fel: (0-1%, <0.1- mm) Pl et/ou Kfs (généralement impossibles à distinguer), xénomorphes, interstitiels ou dans veinules. Car: (0-3%) xénomorphe, interstitiel, dans veinules ou en inclusions dans Cpx. Scp: (0-<1%) rare, xénomorphe, occupe veinule ou plages interstitielles. Ttn: (<1%) brunâtre, faiblement pléochroïque, hypidiomorphe, dans zones interstitielles. Tlc?: (<1-2%, <0.1 mm) et/ou Ms, très fin, incolore, ± fibreux, interstitiel. Sul: (<1-5%, <0.1-4 mm) Po, Py, Ccp, hypidiomorphe, souvent inégalement distribués, parfois oxydés ou partiellement remplacés par Car. Des veinules tardives de Sul recoupent localement les xénolites et la minette encaissante.

CHIMIE MINÉRALE. Nous traitons ici ensemble la chimie minérale des CXN8a, CXN8b et des CXN8c; les distinctions seront abordées dans les particularités (paragraphe suivant). La composition des Cpx des CXN8 est extrêmement variable. Ce sont des augites et des diopsides (Wo44-58), parfois subsiliciques (Si: 1.66-1.99), alumineux (Altotal: 0.02-0.54 cat.) et rarement chromifères (0.0-0.16 cat.) avec un mg variant de 71-99.6. Les Cpx riches en Mg sont incolores alors que les Cpx plus riches en Fe, Ti, Al prennent des teintes brunes. Les Spl des CXN8a montrent également des variations de couleur qui reflètent différentes compositions. Le Spl vert brun foncé (A22-1, B1-2) contient 45-48% Al₂O₃, 11-13% MgO avec un mg de 48-59 et un *al* de 76-80. Les teneurs en Cr_2O_3 sont de 13-15%, en MnO <0.25%, en ZnO de 0.4-0.6% et celles en V2O3 <0.1%. Le Spl vert kaki (A4-4, A6-2, A23-10, C21-1) contient 55-57% Al2O3, 16-18% MgO, avec un mg de 68-72 et un al de 88-89. Les teneurs en Cr_2O_3 sont de 8.6-10.5%, en MnO <0.2%, en ZnO de 0.4-1.3% et celles en V2O3 <0.1%. Avec l'altération, le Spl vert kaki prend une teinte brune traduisant une diminution des rapports mg et al. Le Spl vert clair (A2-7, A5-3, A6-3, A4-31, A4-105, C24-7, C31-4) à vert foncé (A4-10, C25-1, C31-2, C31-3, D3-2) contient 64-66% Al2O3, 17-20% MgO avec un mg de 65-79 et un al de 97-99. Les teneurs en Cr₂O₃ sont de 0.02-1.3%, en MnO 0.1-0.2%, en ZnO de <0.2% et celles en V2O3 <0.08%. Avec l'altération, le Spl vert clair prend une teinte plus foncée qui s'accompagne d'une réduction de son mg et de son al. Les Phl (ou Bt) contiennent 13.8-15.7% Al₂O₃, 1.3-4.7% TiO₂, 0.0-0.6% Cr₂O₃, 0.03-0.5% BaO et 0.8-4.5% F et ont un mg de 60-94. Les Am sont des pargasites, des magnésio-hastingsites et des hornblendes hastingsitiques ou tschermakitiques avec 11.2-15.8% Al₂O₃, 1.2-2.5% Na₂O, 0.1-3.2% K₂O, un mg de 58-88. On retrouve plus rarement des magnésiohornblendes avec 6-9% Al₂O₃, 0.9-1.3% Na₂O, 0.1-0.2% K₂O, un mg de 84-89. Les Fel analysés (N = 3) sont des Pl (An₃₂₋₄₉). La **Scp** de A2-7 est une mizzonite (Me₆₅₋₇₅) (où Me = 100Ca/Ca+Na) contenant 0.5-0.6% K₂O, 1.2-1.8% Cl et <0.06% SO₃. Les totaux <96% suggèrent que la Scp pourrait contenir des quantités significatives de CO₂.

Particularités. Les Cpx des CXN8a ont souvent des teneurs plus élevées en Al et Ti et plus faibles en Si et Mg, comparativement aux Cpx des CXN8b. A5-1 contient un Cpx néoformé (Cpx2) dont la composition tend vers celle du diopside de la minette. La Scp présente dans A5-1 est une méionite (Me₈₁₋₈₂) contenant 0.3-0.9 K₂O, 1.0-1.2% Cl et 0.9-1.0% SO₃; le Fel est un Kfs (Or₈₇₋₉₄) contenant 0.1-0.3% BaO. Le Grt de A6-3 a une composition: Alm₁₇And₆Gro₂₇Pyr₄₉. La Phl formant une veine recoupant B3-89 contient 14.6-15.1% Al₂O₃, 2.1-2.7% TiO₂, 0.0-0.6% BaO et 1.4-1.7% F, avec un *mg* de 80-84. Le Kfs présent dans la même veine est une Or94 riche en BaO (2.5-2.8%), alors que la Scp est une méionite (Me₈₃₋₈₅) contenant 0.3-0.7% K₂O, 0.2% SrO, 0.6-1.1% Cl et 0.1-1.0% SO₃. Les totaux <96% suggèrent que la Scp pourrait être riche en CO₂. L'Opx présent dans B1-2 est alumineux (Al^{total}: 0.19 cat.) avec 0.03 cat. Ca (Wo_{1.6}) et un *mg* de 85. L'Am est une magnésio-hornblende avec 5.7% Al₂O₃, 0.9% Na₂O, 0.2% K₂O, et un *mg* de 89.

GÉOCHIMIE. Les CXN8 ont des compositions chimiques très variables avec 41-52% SiO₂, 0.3-1.4% TiO₂, 3.3-18% Al₂O₃, 10-18% MgO (mg = 70-92), 0.01-0.03% P₂O₅, 0.05-1.0% K₂O (K₂O/Na₂O = 0.1-1.2), 9-3400 ppm Cr, <100-340 ppm Ba, 26-418 ppm Zr, 2-14 ppm La (La/Yb = 2-7). Les éléments Pb, Ba, U, Nb, Ta sont souvent sous le seuil de détection. Les patrons d'éléments traces normalisées au manteau primitif sont relativement peu pentés et montrent généralement des anomalies négatives en Nb-Ta, P, Ti, parfois en Sr, Sc, et dans certains cas une anomalie positive en Zr-Hf.

Particularités. À contenu en MgO équivalent, les CXN8a contenant un Spl vert pâle, sont plus riches en Al₂O₃ (>12%). A21-1 (riche en Phl) contient 41% SiO₂, 1.5% TiO₂, 18.7% MgO (mg = 86), 5.5% K₂O (K₂O/Na₂O = 11), 0.07% P₂O₅, 1650 ppm Ba, 8 ppm La (La/Yb = 16). C24-7 et D14-6 (riches en Car) ont respectivement 18.4 et 9.0% Al₂O₃, 0.01 et 0.11% P₂O₅, 0.6 et 16 ppm La avec un rapport La/Yb de 0.4 et 16. La composition de B1-2 (CXN8c, à Opx) se compare à celle des autres CXN8 sauf pour des teneurs plus élevées en Cr (4200 ppm).

REMARQUES. La MNT contient de nombreux xénocristaux de clinopyroxène dont les textures et la composition suggérent qu'ils sont des fragments de CXN8.

XNL8b Clinopyroxénites (Cpx ± Am, Phl, Fel, Scp, Car, Ttn, Ap, Sul)

CXN: A1-1, A2-2, A2-4, A2-9, A3-5, A4-30-2, A4-98-1, A4-104, A5-1, A5-2, A5-5, A5-9, A5-10, A5-11-1, A5-18, A5-27, A5-31-2, A5-32-1, A5-35-1, ?A5-35-2, A5-36-2, A5-37-1, A5-37-2, A5-40-2, A5-40-4, A5-40-5, A5-40-5, A5-41-1, A5-42-1, A5-42-2, A6-4, A6-6, A6-7, A6-16-2, A6-21-2, A6-24a-2, A6-24a-3, A6-25-1, ?A7-1, A7-7-2, A7-11-6, A7-12-6, A21-1, A21-2a, A21-3, A22-4, ?A23-3, B0-1, B0-10-1, B1-15-2, B3-6, B3-8, B3-25, B3-89, B3-90, B6-1, B7-70, B9-152, C12-4, C13-7, C15-2-1, C15-3, C15-6, C21-8-1, C21-8-3, C21-9-2, C23-1, C24-9-1, C24-10-1, C24-11-1, C24-11-2, C27-4, C31-4, C31-13, C43-5, C44-2, C45-4-1, C45-16-1, C45-18, C45-20, ?C45-22, ?C49-1, D3-8-2, D3-8-1, D6-10-5, ?D6-13-1, D14-1, D14-6, D15-2-2, D15-5-1.

PÉTROGRAPHIE. Xénolites (5-200 mm) de CXN à grains fins à grossiers montrant des textures similaires à celles des CXN8a: granulaire, équigranulaire, hétérogranulaire, en mortier, porphyroclastique, polygonale ou foliée. Texture plus ou moins poreuse à partir des joints de grains avec remplacement partiel du Cpx par Am surtout, extinction nette ou ondulante, sous-grains, fractures (qui peuvent transgresser la limite des xénolites). Présence de zones interstitielles et de veinules souvent zonées avec, du coeur vers la bordure: Scp (\pm Car, Ttn, All, Tur), Cpx2 (vert clair), Am, Cpx1 (incolore ou brunâtre \pm Car, Fel, Ttn). Les xénolites de CXN8b ont une couronne de réaction généralement peu développée (0.1-2 mm) à Cpx vert et Am \pm Bt. (ex-CXN P, B, F).

Particularités. Les CXN A3-5, A5-41-1, A21-1, A21-2b, B3-89, B9-152, C13-7, C45-20 (A6-6, C12-4, C43-5) sont riches en Phl (<70%; ± Kfs) remplaçant le Cpx le long de zones ou de veines plus ou moins définies (plans de foliation ?). La roche peut prendre un aspect rubané avec alternance de niveaux plus riches en Phl, Kfs ou Cpx, ou peut montrer une foliation définie par l'orientation des cristaux de Phl et/ou Cpx

(A4-104, A5-41-1, A21-1). C44-2 contient des Cpx automorphes à xénomorphes, séparés par des cristaux de Bt. Les Cpx formant l'éponte d'une veine de Phl (\pm Kfs, Scp, Car, Tur) de 6 mm d'épaisseur peuvent montrer des symplectites fines à Cpx-Scp (B3-89). D'autre part, le contact d'un xénolite de CXN sur A5-41-1 a produit des mâcles de déformation et des cassures dans les Cpx de la zone de contact. A5-1 montre d'importantes zones interstitielles à Kfs, Scp, Phl qui semblent s'infiltrer entre les Cpx. D14-6 contient environ 10% de Car montrant des mâcles de déformation formant des plages interstitielles mono- ou polycristallines et environ 1% de Scp que l'on retrouve dans, ou à proximité immédiate d'une veinule de 0.2 mm. C24-11-1 est riche en Po interstitielle. C15-6 contient des minéraux fins brunâtres à jaune brunâtre (Idd, Tlc, Car?) qui pourraient être le produit de remplacement d'une Ol antérieure? Certaines CXN8, comme par exemple A23-3, C45-22 et D14-5-2 montrent des textures et/ou un assemblage qui rappellent certaines CSL (voir remarques XNL9a).

Cpx: (50-100%, <0.1-20 mm) incolore à brunâtre, xénomorphe ou rarement automorphe, grains isométriques ou allongés aux contours réguliers ou dentelés, rarement mâclé, inclusions de Phl, Car, Ap, Sul, Fel; parfois intensément fracturés, généralement peu ou pas déformé, extinction nette ou ondulante, quelques lamelles de déformation, parfois sous-grains qui peuvent former des chapelets de petits cristaux autour des grands Cpx; clivages généralement absents; remplacement partiel fréquent par Am, et plus rarement Phl, Car, Scp, Fel, à partir des joints de grains. Am: (<1-20%, <0.1-1.5 mm) incolore à vert, plus foncée avec le Cpx brunâtre, hypidiomorphe, interstitielle, remplacement partiel du Cpx, croissance épitaxiale sur Cpx. Phl: (0-70%, <1-3 mm) incolore à brun orangé, hypidiomorphe, interstitielle, parfois partiellement remplacée par Chl, Qtz ou Car, légèrement déformée; peut former veines ou zones plus ou moins régulières. Fel: (0-25%) Pl et/ou Kfs, xénomorphe, interstitiel. Scp: (0-5%) xénomorphe, interstitielle ou dans veinules, parfois grands cristaux interstitiels ± poecilitiques, contient localement des inclusions d'Opa fins. Car: (0-10%, <0.1-3 mm) surtout Cal, xénomorphe, interstitielle, dans veinules ou en inclusions arrondies, parfois très fines dans Cpx. Ttn: (0-<1%, <0.3 mm) brunâtre ou rosée, pléochroïque, généralement dans zones interstitielles ou veinules avec Am. Ap: (0-<1%) très rare petits grains dans zones interstitielles ou plus rarement en inclusion dans Cpx. Tlc?: (0-3%) et/ou Ms, Scp? très fin, interstitiel. Sul: (0-5%, <0.1-2 mm) Po, Py, Ccp, interstitiels, souvent inégalement répartis. Qtz: (0-<1%, <0.1 mm) interstitiel, dans clivages de Phl et dans zones interstitielles avec Am, Bt, Car, Ttn, Ap.

XNL8c Pyroxénites (Cpx, Opx ± Spl, Am, Phl, Fel, Car, Sul)

WB: D6-10-1 CXN: <u>B1-2</u>

PÉTROGRAPHIE. Xénolites (25->100 mm) de CXN ou WB à grains fins à moyens à texture granulaire ou porphyroclastique (Opx), porphyroblastique ? (Am); les textures ressemblent à celles des autres CXN8. Présence de veinules: veinule de 1.5 mm à Bt, Am \pm Fel, Sul, Car, recoupé par veinule de 1 mm à Am, Fel, Sul \pm Bt, Car. Amphibolitisation importante.

Cpx: (~85%, 0.1-2.5 mm) incolore, grains isométriques xénomorphes, parfois lobés, zonés ou mâclés, inclu Spl, extinction ondulante, remplacements localement importants, surtout en Am. Remplace partiellement Opx ? **Opx:** (2-15%, <0.1-6 mm) incolore à brun rosé \pm grisâtre, xénomorphe, grains ou plages polycristallines, grains irréguliers, souvent lobés (remplacement partiel par Cpx ?), paraît souvent interstitiel, altération brune et remplacement partiel en Am, Opa, Car, parfois extinction ondulante. **Spl:** (1%, 0.1-0.5 mm) vert brun (idem A22-1), petites inclusions arrondies, parfois fines et abondantes dans Px, aussi grains interstitiels irréguliers. **Am:** (1-8%, <3 mm) incolore ou verte \pm brunâtre, automorphe à xénomorphe. On peut reconnaître plusieurs types d'Am: une Am verte, assez grossière, en croissance épitaxiale sur le Cpx et dans des veinules, une Am hypidiomorphe dans des zones interstitielles avec Fel, Car, Bt, Sul, et une Am plus pâle, plus fine et qui semble plus tardive. **Phl:** (<1-2%, <2 mm) incolore à brun orangé (plus pâle que la Bt de la MNT), hypidiomorphe, inégalement répartie, dans zones interstitielles et dans veinules, partiellement remplacée par Am?. **Fel:** (<1%) Pl (+ Kfs?) xénomorphe, dans zones interstitielles et Car, et dans veinules. **Car:** (<1%) fin, zones interstitielles et veinules. **Tlc**?: (<1%) cryptocristallin. **Sul**: (<1%) Po, Py? interstitiels, souvent avec Am.

Les XNL9 regroupent les xénolites, surtout des clinopyroxénites, dont l'assemblage minéralogique et les textures sont typiques des roches calco-silicatées. Certaines CXN8 paraissent avoir des textures ou des assemblages minéralogiques intermédiaires entre les CXN8b et CXN9a (voir remarques).

XNL9a Roches calco-silicatées (Cpx ± Scp, Ttn, Fel, Qtz, Phl, Bt, Am, Ap, Car, Oxi, Sul, All)

CSL: A2-1, <u>A4-8</u>, A4-9, **A4-99**, A5-32-4, A5-43, <u>A7-1</u>, A12-2, A22-8, C15-1, C15-4, C49-1, <u>C45-22</u>, D5-6, D6-12-2, ?D6-13-1, D6-13-2, D6-13-3, D7-3.

PÉTROGRAPHIE. Petits xénolites (6-95 mm), surtout des clinopyroxénites, à grains fins, plus rarement moyens à grossiers, à textures granulaire, équigranulaire, hétérogranulaire, poeciloblastique, granoblastique, en mortier ou foliée. Souvent rubanés avec niveaux plus ou moins réguliers, riches en Cpx, Fel, Scp ou Otz. Zones interstitielles ou veinules à Fel, Car, Qtz, Ttn, Ap, Opa.

Particularités. A12-2 montre un Cpx vert limpide alors que A7-1 et D6-11-1 ont un Cpx incolore. Le Cpx vert foncé de C15-4a devient plus pâle à l'éponte d'une veinule d'Opa (rouille). D7-3 est très riche en Qtz (≈75%) et montre des zones bien délimitées à Cpx vert, Fel, Scp, Am, Car, Opa. C45-22 (A23-3) contient de l'All en petits grains hypidiomorphes apparaissant dans des zones interstitielles avec Scp ou Qtz. C15-1 et D5-6 sont à grains plus grossiers et semblent plus pauvres en Ttn et riches en Ap.

Cpx: (25-98%, 0.1-9 mm) vert pâle à vert foncé, plus rarement incolore, prend localement une teinte brune au contact de la Ttn, faiblement à fortement pléochroïque, hypidiomorphe, grains parfois arrondis, mâclés ou zonés, exsolutions (?) Opa, inclusions Qtz, Pl, Scp, Ttn, Car, généralement peu déformés, parfois extinction ondulante, partiellement remplacé par Am, Scp et plus rarement Grt. Texture poreuse en bordure xénolites. Scp: (0-68%, <0.1-4 mm) xénomorphe, contient localement de fines et abondantes inclusions noires; interstitielle, montre parfois un aspect ± fibreux, parfois extinction légèrement ondulante, parfois localement remplacé par Pl, par exemple à la bordure des xénolites. Fel: (1-23%, <0.1-1 mm) Pl ± Kfs, xénomorphe, parfois turbides, forme localement des chapelets de petits grains entre les Cpx, microperthitique (?), parfois extinction ondulante, scapolitisés ou carbonatisé. Qtz: (<1-20%, <3 mm) xénomorphe, inclusions aciculaires, forme souvent ruban avec cristaux plus ou moins allongés, extinction ondulante, parfois recristallisé. Ttn: (1-2%, <0.1-1.2 mm) brun pâle à brun rouge foncé, hypidiomorphe, cristaux isolés ou plages polycristallines, parfois mâclée ou mâcles de déformation, remplacement partiel par Ilm et Bt. Ap: (0-<1%, <0.1-3 mm) cristaux hypidiomorphes isolés contenant parfois de fines inclusions noires, aussi aiguilles dans zones interstitielles avec Fel. Car: (0-1%) xénomorphe, interstitiel, remplacement partiel Fel. Phl: (<1%, <1 mm) ou Bt, jaune pâle à brun orangé, parfois foncé, xénomorphe, interstitielle. Am: (<1%, <0.5 mm) vert jaune à vert olive, xénomorphe, parfois mâclée, remplacement partiel Cpx, souvent plus abondante en bordure xénolites, dans zones interstitielles où elle semble associée à Car. Oxi: (0-3%) Mag, petits grains automorphes dans zones interstitielles avec Fel et autres. Sul: (0-5%, <1 mm) Py, Ccp, petits grains xénomorphes à hypidiomorphe disséminés. All (0-<1%, <1 mm) rare, brun verdâtre, pléochroïque, hypidiomorphe, dans zones interstitielle avec Qtz ou Scp.

CHIMIE MINÉRALE. Le Cpx de A4-8 est un diopside (Wo_{51-52}) légèrement alumineux (Al^{total}: 0.17 cat.) relativement riches en Mn (0.011-0.014 cat.) avec un mg faible de 46-47. Le Cpx de A7-1 est un diopside (Wo_{50}) avec un mg de 85 et ressemble ainsi à ceux des CXN8.

GÉOCHIMIE. La composition des CSL9a analysées (A4-99, C15-4, C49-1) est variée, avec 48-52% SiO₂, 0.4-1.3% TiO₂, 5-14% Al₂O₃, 7-13% MgO (mg = 59-86), 18-22% CaO, 0.2-0.5% K₂O (K₂O/Na₂O = 0.1-0.2), 15-660 ppm Cr, 110-420 ppm Ba, 140-330 ppm Zr, 9-24 ppm La et un rapport La/Yb de 5-8. Les éléments U, Nb (Ta) sont sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif est relativement peu penté et montre des anomalies négatives en Nb-Ta, P, Ti, Sc ± Rb, Sr. Le patron de A4-99 et de C49-1 ressemblent à celui de certaines CXN8b (B0-1, B3-25), alors que celui de C15-4 montre des similarités avec celui de certains skarns du pluton de Kensington (k893).

REMARQUES. Certaines CXN ont des textures intermédiaires entre les CXN8b et les CXN9a. Par exemple, en dépit d'un Cpx généralement incolore et d'une texture granulaire similaire à celle que l'on observe dans la plupart des CXN8, A7-1 possède environ 1% de Ttn assez grossière (<1 mm) et un Cpx

localement vert pâle. C49-1 est inhomogène et montre une zone de contact (?) graduel (malheureusement en bordure du xénolite) entre 1) une CXN à grains fins, foliée, avec des zones lenticulaires de Fel (remplaçant Scp), et 2) une roche plus grossière, également foliée, à Cpx, Fel, Ttn et Qtz. Le Cpx passe graduellement d'incolore à vert pâle vers la bordure du xénolite (vers le contact) et la foliation est perpendiculaire au contact entre les deux assemblages. L'attribution de ces xénolites aux CXN8 ou CSL9 est dans certains cas incertaine.

XNL9b Roches calco-silicatées (CXN)

 $(Cpx \pm Fel, Ap, Am, Scp, Bt, Ttn, Car)$

CSL: C31-6, C22-8

PÉTROGRAPHIE. Xénolites (40 mm) à grains fins à grossiers, hétérogranulaires, texture en mortier, parfois rubané, foliation plus ou moins bien marquée par alignement préférentiel des Cpx allongés, zones interstitielles à $Am \pm Cpx2$, Scp, Fel, Car, Ttn.

Cpx: (75-99%, <0.1-25 mm) vert foncé à brunâtre, pléochroïque, grains xénomorphes irréguliers, contours engrenés, un grand cristal est recoupé par des "couloirs" recristallisés, à grains fins. Localement Cpx vert clair dans petites zones interstitielles avec Am, Scp, Fel, Scp. Fel: (<1-25%) Pl+Kfs? forme niveau de quelques mm dans C22-8. Am: (<1%) verte, xénomorphe. Scp: (<1%) xénomorphe, dans zones interstitielles. Ap (0-1%). Car: (<1%). Bt (<1%). Ttn (<1%).

XNL9c Roches calco-silicatées (CXN à Grt)

(Cpx, Grt, Scp, Ttn \pm Fel, Ep, Ap, Mag, Car)

CSL: <u>D15-3</u>, <u>C17-2</u>

PÉTROGRAPHIE. Petits xénolites (≈30 mm) de CXN à Grt à grains fins à moyens, montrant une texture granoblastique avec une foliation marquée par l'orientation préférentielle des cristaux allongés. Bien rubané avec niveaux plus riches en Cpx ou Grt. Bordure des xénolites plus riche en Fel, Am, Bt et/ou Scp.

Cpx: (25-50%, <1-4 mm) Vert pâle \pm jaunâtre à vert foncé \pm brunâtre, très pléochroïque, parfois zoné, cristaux xénomorphes pouvant être allongés selon la foliation, inclusions irrégulières de Ttn, Scp, Grt, Opa, montrent parfois une extinction ondulante, remplacements partiels par Ep, Opa, Am, ?Grt, **Grt**: (5-45%, 0.1-1.5 mm) brun pâle ou orangé, xénomorphe, altération brune ou remplacement partiel (?) par Scp en bordure xénolite. **Scp**: (3-54%, <2 mm) limpide ou fine et d'aspect sale, xénomorphe, interstitielle, plus abondante à la bordure xénolite. **Ep**: (<1-10%) incolore à jaune, hypidiomorphe, forme couronne autour Grt et Cpx, petits grains allongés séparant plages de Ms? et Scp. **Ttn**: (D15-3; 2%, <1 mm) gris brun très pâle, légèrement pléochroïque, xénomorphe, grains arrondis, parfois mâclés, couronne interne d'inclusions (?). **Pl**: (D15-3; <1%) interstitiel. **Ap**: (0-<1%) grains hypidiomorphes \pm arrondis, peu allongés. **Mag**: (C17-2; 1%) grains xénomorphes disséminés ou en inclusion dans Grt, Ep, Scp, Cpx. **Car**: (<1%).

CHIMIE MINÉRALE. Le Cpx de C17-2 est un diopside (Wo₅₇) alumineux (Al^{total}: 0.36-0.39 cat.) avec un *mg* de 39-44. La composition du Grt varie autour de Alm₁9And₃₈Gro₄₀Pyr₂ (% moléculaire). Le Cpx de D15-3 est un diopside (Wo₅₂) alumineux (Al^{total}: 0.17-0.19 cat.) avec un *mg* de 60-63. La composition du Grt varie autour de Alm₄And₂₀Gro₇₃Pyr₂.

REMARQUES. Malgré l'assemblage minéralogique riche en Cpx et Grt, les teneurs faibles en jadéite dans le Cpx et en pyrope dans le Grt ne permettent pas de considérer les XNL9b comme des éclogites.

XNL9d Roches calco-silicatées (Cpx, Qtz ± Fel, Sul, Opx, Am, Ttn, Bt, Ap, Zrn, Tlc?, Car)

CSL: A3-2, B7-2, B9-153, C13-10, D4-5, D6-7

PÉTROGRAPHIE. Xénolites (85-100 mm) de CSL à grains fins à moyens, hétérogènes, foliés, rubanés, localement granoblastiques ou en mortier, ± déformés. Bordure des xénolites résorbée.

Cpx: (10-45%, 0.1-2 mm) incolore à grisâtre, xénomorphe, grains isométriques ou allongés selon la foliation, plages polycristallines, remplacement partiel par Am ou minéraux fins et fibreux vert ou brun (Tlc?). **Qtz**: (20-75%, 0.1-6 mm) xénomorphe, forme rubans, extinction ondulante, sous-grains. **Fel**: (<1-30%, 0.1-5 mm) Kfs seulement? xénomorphe, non mâclé, extinction ondulante, peu altéré. **Sul**: (1-5%) Py (rare Ccp) grains xénomorphes disséminés, également répartis, occupe microfractures des minéraux (remobilisations?), veinules irrégulières. **Opx**: (0-10%; D4-5) gris brunâtre, non pléochroïque, xénomorphe. **Ttn**: (<1%) brun, parfois foncé, hypidiomorphe. **Ap**: (0-<1%) hypidiomorphe. **Am**: (0-5%) incolore à vert pâle, remplacement partiel Cpx. **Bt**: (<1%) ou Phl, couleurs variables, fine, plus abondante près de la bordure xénolite (MNT). **Zrn** (0-<1%, <0.1 mm) petites inclusions dans Fel ou Bt. **Tlc**? (<1%) fin, fibreux, vert ou brun, remplacement partiel Cpx. **Car**: (0-<1%).

Particularités. D5-4 montre un rubanement fin très bien développé et contient environ 10% d'Opx.

REMARQUES. Caractéristiques distinctives: Cpx d'aspect grisâtre (en lames minces), riche en Qtz et Sul, exempt de Scp (Car).

XNL9e Roche calco-silicatée (Cpx, Opx, Qtz, Phl, Fel ± Ap, Am, Sul)

CSL: <u>D6-6</u>

PÉTROGRAPHIE. Xénolite à grains fins à grossiers, hétérogène rubanement irrégulier avec présence de niveaux à Qtz grossier, Opx, ou Fel et Ap, localement texture polygonale, foliation (différente de rubanement ?) marquée par orientation préférentielle de Phl, Fel, Ap, \pm Px, presque partout présence de minéraux de remplacement: Phl, Am. Lien avec CSL9d?

Cpx: ($\approx 60\%$, <2 mm) incolore, xénomorphe, partiellement remplacé par Phl, Am. **Opx**: ($\approx 25\%$, <2 mm) incolore, xénomorphe, plus abondant dans une zone qui semble prolonger le niveau de Qtz. **Qtz**: ($\approx 5\%$, <6 mm) grossier, xénomorphe, extinction nette, dans niveau discontinu. **Phl**: ($\approx 5\%$, <0.5 mm) incolore à brun très pâle, prend une teinte un peu plus foncée à la bordure immédiate du xénolite, hypidiomorphe, interstitielle, localement plusieurs cristaux de Phl prennent la même couleur de birefringence. **Kfs**: (3%, <3 mm) xénomorphe, parfois extinction ondulante. **Ap**: (<1\%, <1 mm) cristaux ± allongés, avec Fel. **Am**: (1%) et/ou Ms? incolore, xénomorphe, généralement fine, parfois fibreuse?, interstitielle, remplacement partiel des Px. **Sul**: (<1%) interstitiels.

CHIMIE MINÉRALE. Le **Cpx** est un diopside (Wo_{46.5}En_{53.5}Fs_{0.1}) avec un mg de 98. L'**Opx** est une enstatite (Wo₁En₉₉Fs_{<0.1}) avec un mg de 98. La **Phl** contient 12.8% Al₂O₃, 2.1% TiO₂, avec un mg également de 98.

Les XNL10 regroupent les xénolites ultramafiques qui ne paraissent pas pouvoir être inclu dans les catégories précédentes.

XNL10a Webstérite (Cpx, Opx, Pl, Am, Sul ± Qtz, Bt)

WB: A3-7-2

PÉTROGRAPHIE. Xénolite (150 mm) à grains moyens. Bordure de réaction de 2-5 mm riche en Am et Bt. Le xénolite est partiellement inclu dans une microbrèche du gneiss encaissant.

Cpx: (54%, 0.2-1.5 mm) vert pâle, grains isométriques ou peu allongés ou arrondis, xénomorphes, présence exsolutions (?). **Opx**: (40%) vert pâle à brun rose pâle, exsolutions (? Rt). **Pl**: (2%) grains xénomorphes \pm arrondis, interstitiel. **Qtz**: (2%) grains xénomorphes \pm arrondis, interstitiel. **Am**: (<1%,

excluant la bordure de réaction) verte, xénomorphe, remplacement partiel Px, aux joints de grains. Bt: (<1%, excluant la bordure de réaction) plus abondante en bordure xénolite. Sul: (2%).

XNL10b Webstérite (Cpx, Opx, Am, Phl ± Ap, Opa)

WB: B7-82

PÉTROGRAPHIE. Xénolite (65 mm) de WB à grains moyens à grossiers, avec des remplacements partiels importants des Px en Am et Phl.

Cpx: (<5 mm) brun pâle, grains xénomorphes isométriques ou souvent irréguliers avec contours lobés, semble remplacer partiellement l'Opx, inclusions d'Opx, amphibolitisé. **Opx** (<6 mm) incolore, hypidiomorphe, partiellement remplacé par Cpx (?), Am, Phl, bastite, parfois extinction ondulante, kinks. **Am**: incolore, brunâtre ou verdâtre, (plusieurs générations ?), abondante, xénomorphe, parfois fibreuse, déformée (?), remplacement partiel des Px. **Phl**: (<5 mm) incolore à brune, localement verdâtre, hypidiomorphe, occupe veine discontinue. **Ap. Opa**: rouillés, dans veinule.

XNL10c Clinopyroxénites (Cpx, Ttn, Sul ± Am, Car, Ms?)

CXN: <u>C14-2</u>, A22-4

PÉTROGRAPHIE. Xénolite de CXN à grains fins, granoporphyroclastique et folié. Altération avec minéraux interstitiels plus ou moins opaques plus abondant près d'une fracture. Très petites zones interstitielles à Car, Am, Cpx2 (vert clair), Ms? Veinule de Car recoupant la foliation.

Cpx: (90%, <0.1-2 mm) brun pâle à brun rosé, pléochroïque, xénomorphe, environ 1% de porphyroclastes (?) <2 mm, montrant parfois des exsolutions (?), déformés. **Ttn**: (0-1%, <0.1-1.5 mm) brun jaune pâle, légèrement pléochroïque, zoné, mâclé, petits cristaux interstitiels ou inclus dans Cpx, quelques grains plus grands. Minéraux très fins, plus ou moins opaques (leucoxène ?) localement abondants aux joints de grains, plus abondants à proximité d'une fracture. **Sul**: (1%) Po, Ccp, Py, veinule de Py recoupant Po (associée à Car?). **Car**: (<1%, <0.1 mm) xénomorphe, interstitiel, aussi veinule recoupant le foliation. **Am**: (<1%, <0.1 mm) vert foncé, xénomorphe, interstitielle. **Ms**?: (<1%, <0.1 mm) très fine, interstitielle.

CHIMIE MINÉRALE. Le Cpx ($Wo_{55}En_{35}Fs_{10}$) est très alumineux (Al^{total}: 0.48-0.54 cat.) et relativement riche en Ti (0.05 cat.) avec un *mg* de 70.

GÉOCHIMIE. La roche contient 42.8% SiO₂, 2.6% TiO₂, 11.8% Al₂O₃, 9.4% MgO (mg = 66), 0.3% K₂O, 100 ppm Cr, 160 ppm Ba, 11 ppm Nb, 190 ppm Zr, 14 ppm La (La/Yb = 7). Le patron d'éléments traces normalisés au manteau primitif est peu penté (sauf pour les terres rares lourdes), en dents de scie, avec des anomalies négatives importantes en P et Sc, et mineures en Rb, K, Ta, Sr, Eu.

REMARQUES. Les teintes brunâtres très particulières du Cpx de C14-2 rappellent celles du Cpx de C45-4 (CXN8b).

Les XNL11 regroupent les métagabbros et métabasites d'affinité incertaine.

XNL11a Métabasites (Cpx, Pl, Oxi ± Grt, Opx, Am, Bt, Ap, Zrn)

MBS: A3-1, ?A3-14b, A4-12, A4-35, A4-102-2, A5-39-2, A6-8, ?A7-13-3, A12-1a-1, ?A13-2b-1, ?A13-3, B0-11, B4-1, B4-17, B7-53, B8-73, C14-4

PÉTROGRAPHIE. Xénolites (25-150 mm) à grains fins, plus rarement à grains moyens, généralement bien foliés et rubanés, avec niveaux discontinus plus riches en Pl ou Cpx, textures granoblastique ou plus rarement en mortier. Lien possible avec les GB5, MBS11b et/ou GNL6b.

Cpx: (20-65%, <1.5 mm) vert à vert foncé, xénomorphe; exsolutions (?) d'Opa qui donnent au Cpx un aspect sale ou strié, forme niveaux plus ou moins continus qui marquent le rubanement métamorphique; couronne Am, Opa, Qtz? Localement présence de Cpx2 vert clair. **Pl**: (25-75%, 0.1-5 mm) xénomorphe, localement riche en fines inclusions noires qui lui donne un aspect turbide, parfois zoné, extinction ondulante, mâcles de déformation, sous-grains. **Oxi**: (2-10%) Mag avec exsolutions lamellaires d'Ilm, xénomorphe, grains disséminés et produit de remplacement Grt, fines granules avec Am et Qtz? autour des grains de Px. **Grt**: (0-10%, <1.5 mm) xénomorphe, généralement intensément bastitisé. **Am**: (<1-10%, <0.5 mm) vert olive foncé, xénomorphe, couronne autour Px, veinule. **Bt**: (<1-3%) brun foncé, généralement fine, hypidiomorphe, souvent inégalement répartie, remplacement partiel Cpx, Opa. **Qtz**: (0-1%). **Ap**: (0-<1%). **Tlc**? (0-<1%). **Sul**: (0-<1%).

GÉOCHIMIE. B4-1, B7-53 et B8-73 ont 48-55% SiO₂, 0.6-1.1% TiO₂, 13-17% Al₂O₃, 3-12% MgO (mg = 36-73), 1.0-4.5% K₂O, 10-1400 ppm Cr, 300-650 ppm Ba, 85-170 ppm Zr, 10-25 ppm La (La/Yb = 5-6). Les éléments Pb, Nb, Ta sont parfois sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif est penté et montre des anomalies négatives en Th, Nb-Ta, Ti, Sc \pm P, La-Ce. A6-8 diffère par des teneurs plus faibles en SiO₂ (44.5%), K₂O (0.5%), et plus élevées en TiO₂ (3.6%), avec un rapport La/Yb de 2. Le patron d'éléments traces normalisés au manteau primitif) sauf pour des anomalies négatives en Th, Nb-Ta, Sc \pm Sr, Eu et une anomalie positive en Ba.

REMARQUES. A3-1, A4-12, A4-35, A4-102-2 ressemblent aux GB5 mais contiennent un peu de Grt fin; il pourrait y avoir une gradation, des GB5 (moins métamorphisés), aux MBS11a (plus métamorphisés). B8-73 montre des textures similaires à celles de A6-64 (GNL6b) excepté pour une granulométrie plus fine et une amphibolitisation plus intense et il pourrait également y avoir un lien avec les GNL6. Parce que leur assemblage minéralogique comprend Cpx, Opx et Grt, A3-1, A4-12, A4-35, A4-102-2 pourraient également être désignées comme des granulites mafiques; bien que l'Opx ne soit probablement pas d'origine métamorphique.

XNL11b Métabasites (Cpx, Pl ± Opa, Opx, Am, Bt, Grt, Qtz, Ap, Ttn, Zrn)

MBS: A5-32-3, A22-1-2, B1-5, B1-28, B3-5, B3-16, B3-17, C34-1, ?C43-5-2, D12-5.

PÉTROGRAPHIE. Xénolites (30-330 mm) à grains fins à moyens, textures granoblastique ou granulaire, parfois porphyroclastique et proto-mylonitique; généralement rubanés, avec niveaux fins plus riches en Pl ou Cpx, plus ou moins foliés, souvent hétérogènes. Joints de grains localement soulignés par Bt et/ou Opa fins, rares veinules de Car ou Am et Qtz. Lien possible avec les MBS11a et GB5. (ex-GNL)

Particularités. A22-1-2 contient de la Scp partiellement remplacée en Pl à partir de la bordure du xénolite. On observe également des couronnes de Ttn autour des Sul. B3-5 est bien rubané avec un niveau plus riches en Pl et un niveau plus riche en Ap. Ce xénolite à grains fins contient des porphyroblastes de Grt <2 mm. C31-10 est à grains fins à moyens, hétérogène et contient des reliques de Cpx brunâtre, zoné, montrant localement une texture poreuse. C34-1 et D12-5 montrent des textures proto-mylonitiques avec des rubans de Fel ou Qtz plus ou moins continus.

Cpx: (10-80%, <1-3 mm) vert foncé, souvent brunâtre, aspect sale, xénomorphe, localement textures poreuses, partiellement remplacé par Am, Opa. Présence locale de Cpx2, vert clair. **Pl**: (15-95%, <5 mm) + Kfs? xénomorphe, contient souvent de très fines inclusions noires; parfois extinction ondulante, sousgrains. **Grt** (0-8%, <0.1-2 mm) rare, xénomorphe, forme petits cristaux ou porphyroblastes, partiellement remplacés en Opa, Bt et minéraux cryptocristallins. **Am**: (<1-5%) généralement vert très foncé, xénomorphe, remplacement partiel Cpx. **Opx**: (0-1%) rare, très altéré, marque la foliation. **Bt**: (<1-3%) brun foncé, généralement fine, plus abondante dans certains niveaux, associée à MNT? **Oxi**: (<1-3%) Mag (+1Im?). **Ap**: (<1-1%) xénomorphe, peut former niveaux discontinus. **Qtz**: (<1%). **Ttn**: (<1%). **Sul**: (0-5%) rares (B3-5). **Zrn**: (0-<1%, <0.1 mm) rare. GÉOCHIMIE. Les xénolites analysés (B1-28 B3-5, B3-17) contiennent 46-49% SiO₂, 1.6-2.5% TiO₂, 9-16% Al₂O₃, 7-10% MgO (mg = 48-58), 0.6-1.3% K₂O, 40-490 ppm Cr, 110-450 ppm Ba, 85-160 ppm Zr, 4-14 ppm La (La/Yb = 2-4). Les éléments U, Nb (Pb, Th, Ta) sont sous le seuil de détection. Les patrons d'éléments traces normalisés au manteau primitif sont dissemblables, mais montrent des anomalies négatives en Th, Nb-Ta, Sc. B3-17 a une anomalie positive en Sr et P, alors que B3-5 montre une anomalie positive en Ba, Rb, K. Le patron d'éléments traces de B3-5 possède certaines similarités avec ceux de A2-18 et A2-29b (GB5).

XNL11c Métagabbros (Cpx, Pl, Am ± Bt, Opa, Qtz, Ap, Zrn, Ttn)

MGB: B2-68-2, B3-15, B9-41, B9-102

PÉTROGRAPHIE. Gros xénolites (300-480 mm) à grains fins à moyens, reliques de textures ignées (?) Cpx hypidiomorphe, peu déformés, textures ± polygonale ou localement en mortier, foliation mal définie (ignée ?), remplacements importants du Cpx par Am, Qtz, Bt.

Cpx: (5-20%, <1 mm) vert, grains isolés hypidiomorphes ou plages polycristallines, exsolutions (?) Opa, remplacements très importants, surtout en Am (+Qtz). **Pl** (45-80%, <3 mm) + Kfs?, xénomorphe, extinction ondulante. **Am**: (1-30%) vert foncé, xénomorphe, couronnes autour Cpx. Joints de grains (Pl) parfois soulignés par Am \pm Bt. **Bt**: (2-10%) brune, localement verte (plusieurs générations?), souvent associée à Opa. **Opa**: (<1-2%) surtout Oxi. **Qtz**: (<1%) xénomorphe, produit remplacement Cpx, avec Am. **Ap** (<1-1%, <0.5 mm) grains \pm arrondis. **Zrn** (<1%, <0.1 mm) petits grains arrondis. **Ttn** (0-<1%, <0.1 mm) grains isolés ou couronne autour Opa.

XNL11d Gabbro (Cpx, Opx, Pl ± Am, Bt, Qtz, Oxi, Ttn, Ap)

GB: D4-4 (A4-98-2?)

PÉTROGRAPHIE. Xénolite à grains fins à moyens, rubané avec niveaux plus riches en Opx, Pl ou Cpx, reliques de texture intergranulaire (?), localement texture en mortier ou polygonale. La bordure du xénolite est résorbée, surtout là où la MNT est en contact avec Opx ou Pl. A4-98-2 contient environ 70% de Sul (Po \pm Ccp) qui remplacent les Cpx et le Pl.

Cpx: (70%) gris vert pâle, xénomorphe, partiellement amphibolitisé au contact des zones à Pl. **Opx:** (9%) gris vert pâle à brun pâle, xénomorphe, extinction ondulante, kinks, sous-grains, partiellement amphibolitisé ou bastitisé. **Fel:** (18%) Pl (+ Kfs?) xénomorphe, extinction ondulante, kinks. **Am:** (1%) vert pâle, xénomorphe, remplacement partiel Cpx. **Bt:** (<1%) brune, surtout près de la bordure du xénolite. **Qtz:** (1%) petits grains interstitiels ou en inclusions dans Px. **Oxi:** (2%) intestitiels. **Ttn:** (<1%) brune, pléochroïque. **Ap:** (<1%). Sul (A4-98-2).

XNL11e Métagabbro? (Car, Ap, Am, Zrn)

CSL: A7-23

PÉTROGRAPHIE. Xénolite à grains fins surtout composé de Car et d'Ap dont la texture suggère qu'il pourrait s'agir d'un gabbro complètement métasomatisé.

XNL11f Anorthosites (Pl, Opx \pm Am, Ap, Bt)

ANO: ?A7-3-4, B7-30

PÉTROGRAPHIE. Xénolite (B7-30: 120x80 mm) à grains fins granoporphyroclastique dont la foliation est marquée par l'alignement et l'allongement des grains Opx, Ap ± Pl.

Pl: (95%, <0.1-2 mm) grains polygonaux (\approx 0.5 mm) et porphyroclastes (\approx 10%, <2 mm) montrant des textures en mortier et une extinction ondulante, finement séricitisé. **Opx**: (5%, <2 mm) totalement remplacé en bastite, Am ± Bt. Paraît avoir été déformé, allongé ou aligné selon la foliation. Ap: (<1%) grains isométriques ou peu allongés orientés selon la foliation. Am: (3%) verte, fine, fibreuse, forme couronne autour des Opx. **Bt**: (<1%) brun vert, fine, avec Am ou Opa.

Les XNL12 regroupent les roches ignées felsiques (Kfs+Pl+Qtz); on assume ici que les Fel non mâclés dont les plus grands cristaux montrent souvent des textures microperthitiques, sont des Kfs.

XNL 12a Syénites (Kfs ± Opx, Qtz, Pl)

SY: A0-5, C27-3, ?C29-4, D7-4, D15-5-2, ?B3-88, ?D4-6-1

PÉTROGRAPHIE. Xénolites (35-420 mm) à grains fins à grossiers, montrant des textures granoporphyroclastique ou hétérogranulaire et parfois une foliation mal définie, marquée par l'orientation préférentielle des grains allongés de Fel et Opx. Fines veinules recristallisées.

Particularités. C29-4 ne contient pas d'Opx. B3-88 contient environ 10% Qtz. D4-6-1 présente l'aspect d'une brèche.

Fel: (80-100%, <0.1-12 mm) Kfs surtout (très rarement mâclé), petits grains polygonaux ou irréguliers avec bordures dentelée, porphyroclastes (\approx 10%) montrant une texture en mortier et une extinction ondulante, parfois perthitiques. **Opx**: (<10%, >10 mm) gris vert à brun rose, xénomorphe, quelques grands cristaux déformés: kinks, extinction ondulante, allongement selon la foliation, exsolutions (? Rt). **Qtz**: (0?-10%). **Bt**: (<1%) brun foncé, fine, avec Am, Qtz ou Opa. Qtz: (<1%) xénomorphe, extinction ondulante. **Car**: (0-<1%) fin. **Oxi**: (<1%) avec Bt.

GÉOCHIMIE. D7-4 contient 57.5% SiO₂, 19.4% Al₂O₃, 21% MgO, 5.7% Na₂O et 1.5% K₂O, avec un mg de 58. Il faut noter que l'analyse montre un total des oxydes anormalement bas (94%) qui n'est pas expliqué par la présence de minéraux riches en volatils. La roche contient 17 ppm Cr, 558 ppm Ba, 388 ppm Sr 16 ppm La, 1.1 ppm Eu. Les éléments U, Nb, Ta sont sous le seuil de détection. Le patron d'éléments traces normalisés au manteau primitif est penté (La/Yb = 20) avec des anomalies positives en Sr et Eu et négatives en Th, Nb-Ta, P, Hf, Ti et Sc.

XNL12b Syénite (Kfs, Cpx ± Am, Bt, Ap, Zrn, Qtz, Sul, Opx?)

SY: B2-56

PÉTROGRAPHIE. Xénolite (120x75 mm) à grains fins à grossiers, hétérogène, texture en mortier et localement polygonale, foliation marquée par allongement ou alignement des Fel et Cpx.

Kfs: (80%, <12 mm) (non mâclé) petits grains et grands porphyroclastes xénomorphes montrant texture en mortier, extinction ondulante et microperthites. Cpx: (20%) vert, grands cristaux hypidiomorphes et plages polycristallines (texture polygonale), exsolutions (?) Opa, extinction ondulante, lamelles de déformation. Am: (1%) verte, hypidiomorphe, couronne autour Cpx, avec Qtz. Bt: (<1%) brune, généralement avec Am. Ap: (<1%, <1 mm) hypidiomorphe, cristaux disséminés ou plages polycristallines polygonales. Zrn: (B2-56: <1%, <0.2 mm) petits grains arrondis disséminés. Sul: (B2-56: <1%) Py et Po formant fines veinules. Opx: présent sur l'échantillon mais absent sur la lame mince.

XNL12c Granite D3-8-2, ?D6-9

XNL13 Biotitites (Bt ± Fel, Ttn, Ap, Sul, Tlc, Srp?)

BTT: <u>A6-19</u>, B6-76-1

PÉTROGRAPHIE. Petits xénolites (15-50 mm) à grains fins à moyens parfois foliés. Contient des zones à Bt verte, Am, Pl, Qtz et minéraux fins, ou Tlc et Srp, qui pourraient représenter les remplacements d'autres minéraux (Px?).

Phl: (90-95%, <5 mm) incolore à brun orangé, hypidiomorphe, inclusions de Ttn, Sul, déformée: kinks, extinction ondulante. **Ap**: (<3%) et Kfs?, cristaux hypidiomorphes peu allongés et \pm arrondis. **Pl**: (<5%) et Kfs?, xénomorphe, rarement mâclé, interstitiel, confondu avec Ap?. **Ttn**: (<2%, <0.1 mm) brun pâle, hypidiomorphe, en inclusion ou en marge Bt. **Tlc**: (<1%) et Srp? fine, remplacement d'un Px? **Sul**: (<5%) xénomorphe.

CHIMIE MINÉRALE. La Bt de A6-19 contient 13.5-14.1% Al_2O_3 , 4.3-4.7% TiO₂, 0.3-0.4% BaO, 1.2-1.4% F, avec un *mg* de 62. Elle est ainsi similaire à la Bt de la MNT.

REMARQUES. Certains de ces xénolites pourraient représenter des fragments de veines ou de niveaux riches en Phl comme on peut en observer dans certaines CXN8b; toutefois la Phl de la veine recoupant B3-89 est beaucoup plus magnésienne (mg \approx 82) que la Bt de A16-19.

XNL14 Sulfures (Po, Py, Ccp \pm Car)

Sul: A5-32-2

PÉTROGRAPHIE. Xénolite subarrondi (>25x10 mm) de Sul (90% Po, 5% Py, 5% Ccp) contenant des inclusions irrégulières ou des veinules de Car. La bordure du xénolite montre des signes de résorption et une couronne de Fel et/ou Bt, Am.

XNL15 Oxydes (Mag, Ilm ± Bt, Ap, Zrn?)

Oxi: A5-39-3, A5-40-1

PÉTROGRAPHIE. Xénolite subanguleux (18x10 mm) de Mag (≈95%) avec exsolutions lamellaires d'Ilm (≈5%), inclusions de Bt, Ap et Zrn? Le xénolite a un contour résorbé et une fine couronne de Bt.

XNL16a Gneiss quartzofeldspathiques

GS: A2-10, A3-4, A4-28, A4-32, A5-40-7, A7-8-2, B8-27, et autres.

PÉTROGRAPHIE. Xénolites (15-380 mm) à grains fins à grossiers, montrant des textures porphyroblastiques, porphyroclastiques, en mortier et granoblastiques, foliés et rubanés avec niveaux plus riches en Qtz, Fel, Cpx, Grt, etc.

Fel: (25-60%, <0.1-2 mm) Kfs et Pl (? rarement mâclé), xénomorphe, parfois aspect turbide, parfois textures perthitiques, extinction ondulante, mâcles de déformation. Qtz: (10-40%, 0.1-6 mm) xénomorphe, extinction ondulante, parfois sous-grains, forme localement des rubans >15 mm. Grt: (15-25%, 0.1-5 mm) rosé, porphyroblastes xénomorphes, poecilitiques, inclu Qtz, Opa, Pl, Bt, Sil?, Zrn, porphyroclastes parfois sigmoïdaux, remplacement partiel par Bt verte ou brune, Opa, Pl, Qtz, généralement plus altéré près de la bordure du xénolite. Bt: (3-15%, <2 mm) verte ou brune (2 générations?), hypidiomorphe, remplacement partiel du Grt, formant généralement couronne. Cpx: (1-5%, <2 mm) vert foncé, aspect sale ou strié

(Opa?), souvent très altérés en minéraux fins. **Opx**: (2%, <2 mm) vert pâle à rose brun, hypidiomorphe. **Oxi**: (1%, <1 mm) Mag, souvent associée à Bt. **Am**: (<1-1%, <1 mm) verte, hypidiomorphe. **Rt**: (<1%) très foncé, presqu'opaque. **Car**: (<1%) avec Bt brune. **Ms**: (<1%). **Ttn**: (<1%).

XNL16b Gneiss à sillimanite

GS: A4-6, A4-19-1, A5-4, B1-15-1, B2-18, B3-2, B5-5, B6-55, B6-77, C13-9, D4-2, D14-15

PÉTROGRAPHIE. Xénolites (40-560 mm) à grains moyens, montrant des textures porphyroblastiques (Grt) et granoblastiques (Fel) plus ou moins rubanés et foliés, la foliation est surtout marquée par l'orientation des grains allongés de sillimanite.

Fel: (40-50%, <0.1-3 mm) Pl et Kfs, xénomorphes, textures perthitiques, extinction ondulante, partiellement remplacés par Car fins, parfois aspect turbide en bordure des grains localement textures microperthitiques. Qtz: (3-33%, <0.1-4 mm) xénomorphe, extinction ondulante, forme parfois des rubans. Grt: (15-25%, <5 mm) incolore à brun rose pâle, grains poeciloblastiques hypidiomorphes, inclusions arrondies ou allongées de Pl, Sil, Spl, Qtz, Ilm, remplacement plus ou moins importants en Bt et Opa à la bordure ou le long de fractures, grains parfois allongés parallèlement à la foliation, les inclusions de Sil peuvent être ou non allongées parallèlement à la foliation. Bt: (4-10%) jaune brun à brun rouge, hypidiomorphe, surtout associée à Grt, pas orientée parallèlement à la foliation, peu déformée. Sil: (1-10%, <3 mm) cristaux automorphes allongés selon la foliation, parfois déformée: fractures, kinks, clivages courbes. Spl (<1%) vert foncé, inclusions xénomorphes dans Grt. Car: (<1%) xénomorphe, remplacement partiel des Fel. Zrn: (<1%). Oxi: (<1-1%) Mag, Ilm interstitielle ou en inclusions dans Grt, partiellement altérée en Rt?

Autres gneiss: A4-15-1, A4-29-2, A6-23-1, B3-13, B4-25, B7-72, B8-1, C15-5, C17-2, C31-5, C31-12, C45-4-2, D5-4, D6-8, D4-6-2, D14-20, D15-8, B7-52, B10-1, C34-1, B3-13, C6-5, B1-15-1, C21-6, C21-7, C43-2, C45-8.

REMARQUES. Le Grt de certains GS est en grande partie remplacé par la Bt (par exemple: B3-2, D5-4, D15-8). D4-6-2, D14-20, D15-8 ont une composition granitique. B7-52, B10-1, C34-1 sont à grains fins et montrent des textures proto-mylonitiques (?). B1-15-1, C21-6, C21-7 contiennent de la tourmaline, C45-8 contient de l'Opx, B6-77 est riche en Sul. C43-2 montre un patron d'altération du Grt différent des autres GS.

Les XNL17 regroupent les quartzites. Sur l'affleurement elles sont bleues, grisâtres ou brunâtres, mais ne sont pas distinguées ici.

XNL17 Quartzites (Qtz, Kfs ± Zrn, Ttn, Car)

QZ: A3-3, A3-9, D14-16, A5-36-1, B1-70

PÉTROGRAPHIE. Xénolites hétérogranulaires (grains fins à grossiers), plus ou moins foliés et rubanés, parfois texture polygonale.

Qtz: (70-95%, 0.1-15 mm) xénomorphe, contient du Zrn et de fines inclusions aciculaires (Rt?); forme des rubans; extinction ondulante, sous-grains, textures cataclastiques, fracturé. Kfs: (20%, 0.1-3 mm) Kfs seulement?, xénomorphe, contient de fines inclusions qui lui donne un aspect turbide, partiellement carbonatisé, sous-grains (mais extinction ondulante). Cpx: (0-10%, 0.1-2 mm) brun pâle, hypidiomorphe, grains plus ou moins allongés selon la foliation. Grt: (0-<1%). Zrn: (<1%, <0.6 mm) grains xénomorphes \pm arrondis. Ttn: (<1%, <0.3 mm) brune, légèrement pléochroïque, hypidiomorphe. Car: (<1%, <0.1 mm) altération Fel. Oxi: (0-1%, <2 mm) grains hypidiomorphes \pm allongés et orientés selon la foliation. Sul: (0-<1%, <2 mm).

Appendice D

D1 ANALYSES DE ROCHES TOTALES

Les éléments majeurs, mineurs et traces (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y) ont été analysés par fluorescence X sur des pastilles de verre ou de poudre de roche, alors que les autres éléments traces (Cr, Co, Sc, Ba, Cs, U, Th, Nb, Ta, Hf, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu) ont été analysés par activation neutronique, au Centre géoscientifique Québec (analyses par M. Greendale, J.-P. Ricbourg et R. Gosselin). L'erreur pour les éléments traces analysés par fluorescence X est inférieure à 7% à 10 fois la limite de détection; elle est inférieure à 5% à 10 fois la limite de détection pour les éléments analysés par activation neutronique. Les totaux incluent tous les éléments analysés par fluorescence X. Le fer total est mesuré sous la forme Fe₂O₃. La limite de détection pour les éléments traces sont indiquées entre parenthèses.

Pour que les échantillons de minette soient exempts de xénolites et de xénocristaux, les échantillons ont été coupés en tranches de 5 mm d'épaisseur et les xénolites visibles ont été enlevés. Les échantillons coupés ont été poncés au carbure de silicium et les poudres de roche ont été faite au broyeur à agathe. Pour éviter la contamination des roches ultramafiques, les échantillons les plus siliceux et ceux contenant des micas ont été broyés les derniers. La pulvérisation a été faite dans un boyeur en agathe (M. Greendale).

Outre la minette de Rivard et ses xénolites, un certain nombre de roches affleurant dans la réserve de Papineau-Labelle surtout, ont également été analysées. Il s'agit du gneiss encaissant la minette de Rivard (A0-5; échantillonné à 5 m du dyke), d'une ultramafite à phlogopite et amphibole (4118; localisée à 24 km au sud-ouest de la brèche), de la péridotite de Rolleau (1663; localisée à 5 km au nord-est de la brèche), et de la minette de Girard (4003d; située à 8 km au sud de la brèche de Rivard).

La composition en éléments majeurs de certains xénolites ultramafiques, calculée à partir de l'analyse modale et de la composition des minéraux, est présentée à l'appendice D2.

Éch.	A16-1	B6-76c	A13-2b	D25-2	A13-2a	C22-4	D14-5-1	D15-6	A5-13	A22-2
Roche	MNT	MNT	MNT	MNT	MNT	MNT	CXN1a	CXN1b	WB1c	CXN1c?
% poids										
SiO2	49.18	50.17	49.12	51.59	51.61	50.87	47.05	48.67	48.82	45.44
TiO2	1.49	1.40	1.38	1.30	1.37	1.29	1.00	1.01	0.95	1.87
AI2O3	12.43	13.63	13.14	13.09	13.98	14.75	9.93	8.50	8.58	10.11
Fe2O3	8.81	8.47	8.56	8.10	8.23	8.49	9.89	8.86	8.85	8.87
MnO	0.13	0.13	0.12	0.13	0.12	0.13	0.16	0.14	0.15	0.12
MgO	8.99	8.21	7.88	7.63	6.73	6.37	13.67	13.70	14.99	16.18
CaO	8.48	8.52	8.25	7.56	7.70	7.24	11.59	12.16	10.86	10.85
Na2O	2.15	2.06	2.18	2.15	2.37	2.47	1.39	1.34	1.11	0.65
K2O	4.77	4.54	4.87	4.75	4.92	4.96	2.75	2.03	2.62	3.83
P2O5	1.14	1.03	1.02	0.93	0.97	0.98	0.28	0.29	0.36	0.08
PAF	1.13	1.68	1.72	1.18	1.01	1.27	2.58	2.45	2.03	1.27
Total	99.47	100.55	98.97	99.10	99.69	99.50	100.82	99.59	99.93	100.04
mg	66.9	65.8	64.6	65.1	61.8	59.8	73.3	75.4	77.0	78.3
ppm										
Cr (4)	565	410	408	487	309	268	1397	1429	1714	1126
Co (1)	36	27	32	32	27	27	47	47	51	64
Cu (4)	58	72	46	83	41	39	27	31	44	52
Ni (3)	189	123	137	167	112	99	247	357	442	299
Sc (0.1)	18.7	16.7	16.3	16.2	14.9	14.5	34.9	27.4	26.8	31.3
Zn (5)	103	100	98	94	102	108	100	85	79	55
V (5)	204	183	179	169	170	171	253	183	184	321
Pb (5)	9	12	18	18	11	13	< 5	9	15	5
Ba (100)	3442	2978	3174	2959	2900	2856	2238	1664	2194	4265
Rb (3)	110	100	111	117	104	109	62	47	57	81
Sr (3)	1655	1757	1784	1662	1721	1921	597	514	715	293
Ga (2)	15	19	17	18	19	27	13	12	9	14
Cs (0.5)	1.39	1.21	1.65	1.52	1.15	0.97	0.50	0.63	0.56	< ,5
U (0.5)	1.38	0.84	1.95	1.36	1.13	1.78	< ,5	< ,5	0.96	< ,5
Th (0.2)	3.96	3.43	4.23	4.90	4.04	3.89	1.21	1.45	1.50	2, >
Nb (3)	3	7	8	7	4	8	< 3	5	6	< 3
Ta (0.3)	0.45	0.66	0.70	0.56	0.48	0.78	< ,3	3, >	< ,3	< ,3
Hf (0.2)	9.87	9.79	11.42	10.95	9.88	10.64	6.14	5.07	5.95	3.45
Zr (3)	418	436	502	477	453	473	210	173	230	92
Y (4)	21	24	24	25	25	26	19	21	19	11
La (0.5)	43.42	42.46	44.51	44.71	44.88	44.62	18.57	18.38	17.16	3.53
Ce (2)	95.63	90.24	96.65	97.70	97.78	98.06	42.66	41.81	39.41	9.21

53.29

9.65

2.47

1.06

2.30

0.35

19.5

55.12

9.76

2.40

1.05

2.42

0.34

18.4

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

53.22

9.84

2.30

1.02

2.03

0.30

21.9

53.19

9.50

2.26

0.94

1.96

0.28

22.8

14.31

3.05

0.90

0.44

0.90

0.11

3.9

30.33

6.39

1.59

0.80

1.67

0.24

11.0

33.25

6.42

1.68

0.78

1.80

0.26

10.3

29.07

5.75

1.44

0.68

1.37

0.22

12.5

Ce (2)

Nd (5)

Sm (0.05)

Eu (0.1)

Tb (0.1)

Yb (0.2)

Lu (0.05)

La/Yb

51.61

9.70

2.32

0.93

2.27

0.26

19.2

51.24

9.67

2.37

0.96

2.21

0.32

19.2

Éch.	A5-26-1	D12-1	D12-4	B6-39	A3-14a	A22-7	B1-3	B2-68-1	B11-16-6	A2-29a CXN5
Roche	UXIV28	UNN28	VV D20	UNNZA!	UNIVUA	CLDDa	0/144	uD4	14114	O/INO
% poias	40 52	10 60	50.22	19 13	45 56	44 51	52 48	49 42	52 50	49 92
5102	49.53	40.02	0.52	40.43	40.00	0 00	0.35	1.03	0.34	0.38
102	7.00	6 50	0.50 5.20	7.00	10.82	18.32	4 36	5.84	9.90	3 51
AI203	7.06	0.00	0.29 10.16	1.09	11 /3	12.10	14.83	9.04	12 09	14.63
Fe2O3	8.04	9.50	0.10	4.00	0.10	0.18	0.25	0.21	0.22	0.53
MnO	0.18	0.20	17.00	15.02	11 25	10.65	23.46	14.27	18.26	11 99
MgO Q-Q	14.00	10.44	10.00	10.93	14.10	0.00	20.40	16.54	5.28	17.33
	13.41	13.93	13.23	21.03	14.15	J./J 1 07	0.90	0.94	1 20	0.86
Na2O	1.12	0.76	0.82	0.52	0.95	0.54	0.35	0.04	0.51	0.00
K20	1.60	2.20	0.85	0.20	0.65	0.04	0.10	0.21	0.04	0.10
P205	0.51	0.30	0.23	1.20	2.24	1 20	0.00	0.03	0.04	0.01
	1.00	100.04	100 50	1.29	2.04	100.69	0.00	0.34	101 18	99.90
Iotal	99.27	100.84	100.58	99.97	99.22	100.09	99.00	33.37	101.10	33.00
mg	78.3	76.3	76.9	87.3	66.3	63.4	75.8	73.9	75.0	61.9
ppm	1000	1050	0476	2290	012	163	1394	1279	762	301
Or (4)	1802	1950	2470	2009	312	61	83	45	64	43
	43	40	50	20	20	31	75	59	04 71	61
CU (4)	54	74	015	129	70	189	390	246	229	60
NI (3)	230	200	210	24.2	20.6	25.0	31.0	61 7	28.7	98.6
SC (0.1)	37.8	40.0	34.3 115	102	154	120.0	131	71	122	178
Zn (5)	105	064	204	1/6	255	194	183	299	135	278
V (5)	247	204	204	7	200	~ 5	10	< 5	< 5	6
PD (5)	9	< 5	0	,	0		10		10	Ū
Ba (100)	883	1054	437	< 100	773	142	< 100	172	128	< 100
Rb (3)	61	104	32	7	31	10	5	4	9	4
Sr (3)	246	98	142	105	257	263	60	95	274	30
Ga (2)	11	7	12	9	15	17	5	11	8	13
Cs (0.5)	< ,5	0.80	< ,5	< ,5	0.73	< ,5	< ,5	5, >	< ,5	< ,5
U (0.5)	0.81	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5	- ,5	< ,5	< ,5
Th (0.2)	0.54	0.30	0.25	1.85	0.69	< ,2	0.28	0.27	0.50	2, >
Nb (3)	3	< 3	3	< 3	6	< 3	< 3	< 3	< 3	< 3
Ta (0.3)	< ,3	3, >	< ,3	< ,3	0.33	< ,3	< ,3	3, >	3, >	< ,3
Hf (0.2)	4.01	2.97	3.28	1.74	2.79	1.38	0.63	3.42	0.86	5.35
Zr (3)	130	86	124	73	119	53	32	98	42	134
Y (4)	18	13	18	16	32	18	10	41	10	123
La (0.5)	13.34	8.64	11.85	5.60	17.91	2.46	3.07	7.79	4.23	9.29
Ce (2)	33.75	20.49	28.64	16.47	56.70	7.38	5.64	24.35	9.35	43.99
Nd (5)	21.34	13.86	16.28	9.56	46.27	6.98	< 5	28.05	7.10	47.65
Sm (0.05)	4.90	3.34	3.62	2.57	9.37	2.29	0.94	7.42	1.35	19.75
Eu (0.1)	1.00	0.87	0.84	0.72	2.13	1.03	0.25	1.70	0.47	2.17
Tb (0.1)	0.63	0.44	0.50	0.49	0.99	0.48	0.14	1.25	0.22	3.45
Yb (0.2)	1.66	1.25	1.43	1.15	2.71	1.89	1.10	3.67	1.23	13.54
Lu (0.05)	0.18	0.15	0.22	0.20	0.39	0.26	0.17	0.53	0.18	2.12
		~ ~		4.0	6.6	1.0	00	0.1	31	07
La/YD	8.0	0.9	0.3	4.9	0.0	1.0	2.0	۲.۱	0.4	5.7

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses.

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

375

376	

Éch.	A5-145	B3-12	A2-18	A2-29b	A4-43	B2-7	C45-12a	B1-19	A4-104	A4-105
Roche	WB5	WB5	GB5	GB5	NR5?	GNL6c	DN7a	CXN7c	CXN8b	CXN8a
% poids										
SiO2	47.41	43.28	46.14	48.53	48.90	45.70	31.52	49.54	52.26	44.98
TiO2	1.05	1.72	1.86	1.80	1.56	2.19	0.05	0.39	0.25	0.74
AI2O3	2.69	8.11	13.82	13.04	17.04	16.40	11.77	3.48	3.48	12.35
Fe2O3	24 40	19.81	15 35	15.20	13.45	17.01	11.81	5.43	2.81	5.68
MnO	0.60	0.34	0.26	0.27	0.23	0.30	0.13	0.12	0.08	0.08
MaO	15.61	12.83	7.61	6.60	8 25	7.81	40.90	22.02	16.10	13.85
CaO	7 76	11.62	11.98	11.30	6.08	8.01	0.43	13.52	23.54	20.21
Na2O	0.37	1 35	2.46	3 10	1.65	0.54	0.07	0.39	0.40	0.41
K2O	0.07	0.42	0.53	0.76	1.85	2.36	0.02	1.52	0.05	0.31
R20	0.00	0.72	0.00	0.15	0.14	0.12	0.01	0.17	0.02	0.03
DAE	0.23	0.20	0.10	0.10	0.60	1.07	2.28	3.21	0.68	2.03
Tatal	0.00	0.00	100.96	101 42	0.00	101 74	99.03	99.96	99.72	100 79
rotai	99.50	99.94	100.00	101.44	99.09	101.74	33.00	00.00	00.72	100.70
	FF 0	56.0	40 G	46.0	54.0	47.6	873	88.0	91.9	82.9
mg	55.9	50.2	49.0	40.2	54.9	47.0	07.3	00.9	31.3	02.3
ppm On (1)	1050	000	007	00	106	226	105	17	17	800
Cr (4)	1058	303	207	90	190	230	125	11	17	25
	74	73	52	48	50	00	44	46	- 9	20
Cu (4)	387	63	6/	120	23	32	30	10	< 3	015
NI (3)	166	133	70	53	42	73	42	- 11 	5	210
Sc (0.1)	47.7	47.4	51.8	53.1	34.2	45.7	3.1	5.1	5.7	31.0
Zn (5)	388	286	138	146	176	145	152	93	79	190
V (5)	484	559	471	538	285	408	121	55	52	156
Pb (5)	16	7	10	9	7	7	< 5	< 5	< 5	14
Ba (100)	136	< 100	134	171	277	756	< 100	792	< 100	160
Rb (3)	5	< 3	7	5	36	41	< 3	49	< 3	16
Sr (3)	32	144	129	162	241	178	9	482	174	143
Ga (2)	20	12	19	24	24	28	22	6	3	17
Cs (0.5)	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5	0.86	< ,5	0.56
U (0.5)	< ,5	< ,5	< ,5	< ,5	0.84	< ,5	< ,5	< ,5	< ,5	< ,5
Th (0.2)	0.51	< ,2	< ,2	0.36	2.26	0.52	< ,2	0.93	0.31	0.88
Nb (3)	5	< 3	< 3	< 3	< 3	< 3	< 3	3	< 3	< 3
Ta (0.3)	< ,3	< ,3	3, >	< ,3	< ,3	0.37	< ,3	3, >	3, >	< ,3
Hf (0.2)	2.39	2.38	3.17	3.23	2.65	2.69	< ,2	1.73	2.33	6.22
Zr (3)	75	84	115	110	96	99	15	82	107	201
Y (4)	45	30	42	44	24	36	5	14	13	13
La (0.5)	10.94	7.35	6.05	7.63	7.45	6.00	< ,5	14.60	5.40	4.85
Ce (2)	32.52	21.16	15.78	21.62	19.35	14.04	< 2	36.43	16.50	16.78
Nd (5)	25.86	16.69	15.75	18.34	14.61	11.60	< 5	25.05	14.44	12.88
Sm (0.05)	7.87	5.02	4.80	5.58	4.26	4.20	0.11	4.67	3.12	3.77
Eu (0.1)	0.91	1.11	1.49	1.57	1.28	1.41	< ,1	1.11	0.70	0.82
Tb (0.1)	1.24	0.83	1.10	1.15	0.78	0.98	< ,1	0.50	0.40	0.43
Yb (0.2)	4.43	2.49	4.32	4.60	2.38	3.78	< ,2	1.34	0.97	0.94
Lu (0.05)	0.68	0.36	0.68	0.73	0.36	0.57	< ,05	0.21	0.16	0.13
(0.00)							·			
La/Yb	2.5	3.0	1.4	1.7	3.1	1.6		10.9	5.6	5.2

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses.

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

Éch.	A5-18	A21-1	B3-25	C24-7	C31-4	D14-6	B0-1	B3-6	B1-2	C25-1
Roche	CXN8b	CXN8b	CXN8b	CXN8a	CXN8b	CXN8b	CXN8b	CXN8b	CXN8c	CXN8a
% poids							17.01	40.05	40.00	44.50
SiO2	48.85	41.40	49.81	40.30	50.02	46.00	47.94	46.95	48.23	44.56
TiO2	0.69	1.52	0.52	0.29	0.59	0.60	1.08	0.90	0.48	1.42
AI2O3	8.50	11.97	7.63	18.43	8.06	9.03	12.34	9.77	6.87	14.54
Fe2O3	4.83	5.88	3.25	3.92	3.19	3.65	7.98	5.93	6.05	7.29
MnO	0.08	0.08	0.07	0.10	0.08	0.08	0.12	0.10	0.12	0.10
MgO	12.53	18.72	14.29	15.28	14.63	11.84	9.61	11.87	15.58	10.59
CaO	22.26	8.15	22.64	18.52	23.23	24.01	19.60	22.08	18.13	19.78
Na2O	0.65	0.51	0.95	0.51	0.63	0.82	1.27	1.01	0.82	1.15
K2O	0.13	5.45	0.08	0.35	0.08	0.40	0.24	0.18	0.31	0.72
P2O5	0.01	0.07	0.01	0.01	0.01	0.11	0.03	0.01	0.02	0.01
PAF	1.10	3.08	0.96	3.09	0.64	4.34	0.71	2.42	1.95	1.01
Total	99.69	97.08	100.26	100.85	101.21	101.03	101.01	101.30	98.96	101.27
mg	82.2	86.3	89.7	88.5	90.1	86.5	70.5	79.9	83.6	74.2
ppm										-
Cr (4)	880	102	13	9	74	42	22	393	4197	9
Co (1)	15	19	4	11	6	7	18	11	35	17
Cu (4)	5	26	7	5	5	5	13	8	28	4
Ni (3)	45	27	9	15	12	17	22	23	157	14
Sc (0.1)	23.3	16.8	4.7	17.5	10.3	8.3	13.3	24.7	40.2	16.7
Zn (5)	38	65	72	68	42	67	75	45	90	62
V (5)	125	144	61	92	78	70	167	156	166	138
Pb (5)	< 5	9	6	< 5	< 5	16	5	11	5	9
Ba (100)	< 100	1654	< 100	139	< 100	786	171	< 100	< 100	280
Rb (3)	8	150	< 3	7	3	17	7	7	6	18
Sr (3)	80	196	204	94	124	366	203	79	196	184
Ga (2)	7	14	10	18	6	12	22	17	< 3	16
Cs (0.5)	< ,5	0.77	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5
U (0.5)	< ,5	< ,5	< ,5	0.64	< ,5	< ,5	< ,5	< ,5	< ,5	< ,5
Th (0.2)	0.67	0.46	0.64	0.26	0.58	1.75	2.10	0.42	2.13	0.97
Nb (3)	< 3	29	< 3	< 3	< 3	< 3	< 3	< 3	< 3	4
Ta (0.3)	< ,3	< ,3	0.36	0.48	0.54	0.37	0.33	3, >	< ,3	0.41
Hf (0.2)	6.37	1.72	3.00	0.88	4.72	4.36	6.60	3.34	1.44	6.60
Zr (3)	298	82	143	86	176	170	275	127	68	285
Y (4)	18	10	16	12	18	13	32	15	17	27
La (0.5)	4.15	8.01	7.79	0.60	4.64	16.31	14.05	1.93	10.30	5.96
Ce (2)	12.88	19.82	22.91	< 2	16.02	30.89	47.21	5.27	23.97	24.52
Nd (5)	12.52	11.43	17.70	< 5	14.50	15.63	39.59	5.81	12.79	27.82
Sm (0.05)	3.15	2.51	3.97	0.29	3.76	2.87	8.77	1.67	3.38	6.20
Eu (0.1)	0.70	0.61	0.87	0.15	0.75	0.68	2.04	0.45	0.92	1.55
Tb (0.1)	0.43	0.29	0.50	0.15	0.52	0.34	1.04	0.36	0.48	0.79
Yb (0.2)	1.56	0.49	1.33	1.50	1.60	1.05	2.90	1.07	1.46	2.03
Lu (0.05)	0.24	0.09	0.22	0.24	0.24	0.15	0.43	0.18	0.22	0.31
1.0//5	0.7	16 4	E 0	0.4	20	15.5	48	18	7.1	2.9
∟a/ i D	2.1	10.4	0.0	J . T	2.0					

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses.

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

Éch.	C31-3	A4-4	A4-10	A5-3	A6-3	A23-10	A21-3	A4-99	C15-4	C49-1A
Roche	CXN8a	CXN8a	CXN8a	CXN8a	СХ№а	CXN8a	CXN8a?	CSL9a	CSL9a	CSL9a
% poilas	13.24	49.01	41 41	43.27	40 64	49 52	49 4 1	48 29	49 15	51.89
	1 26	0.45	1 14	0.59	0.77	0.28	0.37	1 29	0.62	0.40
102	12 76	7.74	1/ 06	15.40	18.09	6.73	3.35	13.69	5.16	6 77
Fe2O3	8 30	1.14	5 90	5 76	5.01	3.65	7 13	7 35	12.49	4.05
MnO	0.03	0.10	0.07	0.70	0.10	0.08	0.13	0.09	0.27	0.11
MaO	13.21	1/ 32	10.13	13.05	12.82	14.85	18 34	7 11	8.95	12.87
CaO	17 32	20.83	21.03	19.00	19.73	22 13	18.28	18 24	22.07	21.30
Na2O	0.87	0.81	0.94	0.89	0.61	0.66	0.52	2.03	0.73	1.40
K20	1.03	0.01	0.63	0.52	0.48	0.07	0.09	0.46	0.16	0.18
P205	0.02	0.03	0.00	0.01	0.01	0.02	0.01	0.03	0.14	0.03
PAF	1.00	1 59	3.63	1 64	2 90	1.03	1.94	1.28	0.63	1.80
Total	100.33	99.75	99.97	100.45	101.30	99.32	99.84	100.02	100.52	100.87
mg	75.7	86.8	77.3	81.8	83.5	89.0	83.6	65.7	58.7	86.3
ppm										10
Cr (4)	302	3122	33	130	15	3426	2688	15	658	46
Co (1)	47	20	28	17	14	22	58	20	34	13
Cu (4)	42	30	28	32	9	41	73	72	14	32
Ni (3)	55	132	31	23	24	131	151	30	106	25
Sc (0.1)	36.7	30.3	10.9	34.5	8.2	33.8	65.4	15.5	28.7	5.3
Zn (5)	99	97	48	435	283	84	37	128	155	70
V (5)	231	119	156	115	90	102	183	107	201	59
Pb (5)	11	< 5	14	6	< 5	6	9	10	9	12
Ba (100)	152	114	215	171	340	< 100	< 100	421	128	111
Rb (3)	16	9	15	16	15	3	4	6	4	< 3
Sr (3)	108	175	284	203	171	155	127	438	168	203
Ga (2)	21	7	19	17	25	14	5	21	9	9
Cs (0.5)	< ,5	< ,5	< ,5	< ,5	0.54	< ,5	< ,5	< ,5	< ,5	< ,5
U (0.5)	0.55	0.60	< ,5	< ,5	< ,5	< ,5	0.52	< ,5	0.76	< ,5
Th (0.2)	0.20	2.13	0.74	0.87	1.02	1.33	0.67	2.21	4.58	0.40
Nb (3)	< 3	< 3	< 3	4	< 3	< 3	< 3	< 3	< 3	< 3
Ta (0.3)	< ,3	< ,3	0.31	0.71	< ,3	3, >	3, >	0.45	3, >	0.36
Hf (0.2)	3.26	2.86	4.11	4.84	8.69	1.84	0.41	8.32	5.05	3.55
Zr (3)	114	106	204	247	418	100	26	334	172	137
Y (4)	21	19	22	28	24	18	14	41	34	19
La (0.5)	3.18	8.48	9.00	9.24	10.11	6.42	4.53	20.45	23.92	9.17
Ce (2)	11.55	26.33	26.14	28.93	26.93	19.37	12.53	50.00	56.24	23.89
Nd (5)	13.32	16.57	22.36	25.99	23.55	16.03	8.35	29.47	43.42	15.87
Sm (0.05)	3.49	4.08	5.16	5.14	5.61	3.44	1.87	7.55	9.23	3.20

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses.

1.32

0.76

1.88

0.28

5.4

0.84

0.47

1.56

0.22

4.1

0.69

0.36

0.66

0.10

6.8

1.72

1.24

4.40

0.69

4.7

1.26

1.32

2.93

0.44

8.2

0.64

0.49

1.68

0.28

5.4

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

1.34

0.66

1.62

0.25

5.6

1.20

0.81

3.21

0.47

2.9

1.02

0.60

1.59

0.23

5.3

Eu (0.1)

Tb (0.1)

Yb (0.2)

Lu (0.05)

La/Yb

1.00

0.56

1.54

0.19

2.1

Éch.	C14-2	B7-53	B1-28	B3-5	B3-17	A3-14b	A6-8	B4-1	B8-73	D7-4
Roche	CXN10c	MBS11a	MBS11b	MBS11b	MBS11b	GB11?	MBS11a	GB11a	MBS11a	SY12a
% poids										
SiO2	42.78	55.50	48.95	45.87	46.79	54.53	44.46	51.82	48.43	62.39
TiO2	2.60	1.06	2.11	1.57	2.50	0.83	3.62	0.91	0.64	0.10
AI2O3	11.82	17.27	9.13	15.51	15.65	16.18	13.16	17.28	12.95	19.70
Fe2O3	9.71	9.02	13.91	14.41	15.00	6.03	16.88	10.49	8.68	3.72
MnO	0.13	0.18	0.26	0.25	0.22	0.09	0.28	0.58	0.15	0.09
MaQ	9.41	3.30	9.67	6.77	6.45	3.39	6.82	3.00	11.69	2.14
CaO	21 74	6.34	12.72	10.63	8.62	9.34	11.11	7.38	10.94	3.72
Na2O	0.51	4 75	1.34	2.50	3.20	3.15	2.30	2.88	2.07	6.50
K20	0.26	1.86	1.31	0.85	0.56	4.10	0.50	4.47	1.03	1.88
P205	0.01	0.30	0.21	0.33	0 15	0.48	0.34	0.26	0.12	0.03
P205	1 30	0.53	0.00	1.51	0.72	2.31	0.17	1.06	2.57	1.15
Total	100.37	100 38	100.86	100.34	100.01	100.73	99.78	100.13	99.52	101.36
TOLA	100.37	100.56	100.00	100.04	100.01	100.10	00.10		00.02	
ma	65.8	42.0	57 9	48.2	46.0	52.7	44.5	36.2	72.7	53.3
nny	05.0	42.0	57.5	40.2	40.0	02.7		00.2		
Cr (A)	106	12	490	103	38	13	183	59	1405	17
$C_{0}(4)$	21	21	48	49	52	17	45	35	47	9
Cu (1)	46	20	18	40	63	51	44	0	27	13
Cu (4)	40	20	75	40	147	41	53	0	178	16
NI (3)	40	10.7	50.5	43.6	20.7	16.2	54.8	21.7	33.0	4.4
30 (0.1) 7n (5)	17.0	19.7	164	123	127	61	159	0	77	120
Zn (5)	101	100	591	120	201	97	664	õ	207	18
V (0)	131	102	- 5	400 Ω	11	9	11	ñ	< 5	16
PD (5)		0	< 0	0		J		Ũ		
De (100)	160	651	454	287	114	1212	293	571	304	558
Da (100)	103	17	4J4 01	13	6	60	8	0	21	20
HD (3)	070	400	220	215	637	1288	238	ů 0	380	388
Sr (3)	2/8	493	330	215	27	200	26	ů	11	21
Ga (2)	15	24	10	. 5	- 5	~ 5	- 5	~ 5	< 5	0.53
US (0.5)	< ,5	<,5	< ,5	<,5	<,0	< ,5	< 5	0.80	< 5	< 5
U (0.5)	0.62	1.01	c, >	<,5	< ,0	0.01	0.40	1 69	0.36	0.61
In (0.2)	1.59	1.30	0.94	0.23	< ,2 < 3	0.91 - 3	5	0	< 3	< 3
ND (3)	11	8	5	< 3	< J 0.24	~ 3	_ 3	~ 3	~ 3	~ 3
1a (0.3)	0.47	0.39	0.58	< ,3	0.34	2,5	< ,5 4 77	4 86	2 08	0.40
Hf (0.2)	5.10	4.87	5.09	2.24	2.00	2.70	4.77	4.00	2.00	30
Zr (3)	187	1/0	158	85	90	124	50	0	10	8
Y (4)	24	41	42	33	26	11	59	U	19	0
			44.00	0.00	4.00	16.97	10 70	21.01	0.08	16 13
La (0.5)	14.10	25.30	14.02	9.09	4.30	10.07	20.61	46.00	3.30	23 72
Ce (2)	38.06	58.21	39.86	24.12	11.33	37.04	10.45	40.05	10.64	6 17
Nd (5)	27.16	33.09	34.85	16.42	15.00	24.20	7.05	50.40	2.54	0.47
Sm (0.05)	5.84	7.47	8.85	5.50	5.43	4.08	7.25	0.00	1.00	0.90
Eu (0.1)	1.43	1.51	1.99	1.34	2.08	1.24	2.23	1.48	1.00	0.14
Tb (0.1)	0.73	1.10	1.37	1.01	1.02	0.47	1.01	1.03	1.00	0.14
Yb (0.2)	2.05	4.09	3.78	3.54	1.91	1.31	5.74	3.66	1.89	0.80
Lu (0.05)	0.29	0.62	0.55	0.46	0.26	0.19	0.88	0.57	0.27	0.14
										00.4
La/Yb	6.9	6.2	3.7	2.6	2.3	12.9	1.9	5.7	5.3	20.1

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses.

PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.

Éch.	A0-5	4118	4003d	1663
Roche	GS	CXN	MNT	PD
% poids				
SiO2	63.72	50.72	45.13	42.35
TiO2	0.66	0.51	1.42	0.51
AI2O3	16.80	5.42	17.68	5.12
Fe2O3	5.43	7.60	11.59	15.30
MnO	0.06	0.15	0.17	0.22
MgO	1.81	16.20	8.06	29.18
CaO	3.25	15.70	10.76	3.91
Na2O	4.95	0.80	1.23	0.86
K2O	2.51	0.86	2.12	0.92
P2O5	0.21	0.31	0.52	0.17
PAF	0.93	1.78	1.78	1.15
Total	100.47	100.30	100.87	100.20
mg	39.8	80.9	57.9	79.1
ppm				
Cr (4)	9	1504	177	2402
Co (1)	9	43	37	117
Cu (4)	18	34	36	146
Ni (3)	11	226	57	1300
Sc (0.1)	8.7	38.2	28.6	15.7
Zn (5)	45	73	111	116
V (5)	67	139	274	150
Pb (5)	7	< 5	< 5	5
Ba (100)	577	340	1097	232
Rb (3)	29	21	38	22
Sr (3)	270	250	1645	174
Ga (2)	17	5	26	8
Cs (0.5)	< ,5	0.50	< ,5	< ,5
U (0.5)	< ,5	0.92	< ,5	< ,5
Th (0.2)	1.10	4.59	0.37	0.66
Nb (3)	7	< 3	< 3	12
Ta (0.3)	< ,3	< ,3	3, >	< ,3
Hf (0.2)	7.74	2.59	5.28	2.55
Zr (3)	264	87	241	112
Y (4)	27	32	34	17
La (0.5)	16.64	40.25	32.03	10.50
Ce (2)	35.25	99.81	85.34	26.20
Nd (5)	17.35	75.54	58.49	13.80
Sm (0.05)	4.35	15.95	10.67	3.03
Eu (0.1)	1.18	3.45	2.60	0.71
Tb (0.1)	0.66	1.45	1.22	0.37
Yb (0.2)	2.26	2.05	3.80	1.27
Lu (0.05)	0.38	0.31	0.53	0.18

La/Yb

7.4

19.6

8.4

8.3

Le total inclu les éléments traces analysés par fluorescence X (Cu, Ni, Zn, V, Pb, Rb, Sr, Ga, Zr, Y). Les limites de détection sont indiquées entre parenthèses. PAF: perte au feu; mg = 100Mg/(Mg+Fe), où Fe est le fer total.
Appendice D2

COMPOSITION CALCULÉE

Composition en éléments majeurs de certains xénolites ultramafiques déterminée à l'aide de la composition modale (estimation visuelle) et de la composition des minéraux constituants (microsonde; appendice E).

XNL Roche	A5-38 DN	A4-19 <i>WL</i>	A6-24 WL	B6-39 <i>WB</i>	C21-1 <i>CXN</i>
Composi	ition modal	e, volume	% (estimati	ion visuelle,)
Ol	93	41	25	0	0
Spl	5	7	10	0	2
Opx	0	0	0	7	0
Срх	0	49	53	10	92
Phl	2	3	2	40	3
Am	0	0	0	43	1
Sul	0	0	10	0	2
Compos	ition estime	ée, % poids	5		
SiO ₂	39.10	43.47	38.18	43.71	47.7
TiO ₂	0.02	0.16	0.14	0.64	0.83
Al ₂ O ₃	3.66	7.81	8.99	12.08	6.75
Cr_2O_3	0.00	0.03	1.32	0.15	0.72
Fe ₂ O ₃	7.78	3.97	13.91	8.65	4.60
MnO	0.11	0.12	0.11	0.10	0.06
MgO	49.37	31.89	22.15	19.61	15.44
CaO	0.01	11.43	11.48	7.38	21.82
Na ₂ O	0.02	0.31	0.78	1.01	0.54
K ₂ O	0.19	0.32	0.19	4.44	0.34
Total	100.26	99.81	97.25	97.77	98.80
mg	92.6	94.1	75.9	81.8	86.9

 $mg = 100 \text{Mg/(Mg + }\Sigma\text{Fe}).$

Appendice D3

COMPARAISON DE LA COMPOSITION DU CLINOPYROXÈNE ET DE LA ROCHE TOTALE

Composition en éléments majeurs de la clinopyroxénite B3-25 déterminée par fluorescence X, comparée à la composition du clinopyroxène du même xénolite, déterminée par spectrométrie de dispersion de longueur d'ondes.

B3-25	CXN	Ср	X
	Fluorescence X	Micros	onde
	N=1	Moyenne (N=6)	Écart type
		-	
SiO ₂	49.81	49.56	0.11
TiO ₂	0.52	0.52	0.01
Al ₂ O ₃	7.63	7.75	0.13
Cr ₂ O ₃	0.002	0.01	0.02
FeO ^{total}	2.92	2.71	0.03
MnO	0.07	0.12	0.03
MgO	14.29	14.29	0.12
CaO	22.64	23.78	0.11
Na ₂ O	0.95	0.89	0.04
K₂O	0.08		
P ₂ O ₅	0.01		
PAF	0.96		
Total	99.88		

PAF, perte au feu.

Appendice E

ANALYSES DES MINÉRAUX

Les analyses de minéraux ont été réalisées par spectrométrie de dispersion de longueur d'onde (WDS) à l'aide de la microsonde Camebax SX50 de l'Université de Toronto. Le potentiel d'accélération était de 15 kV, le courant de faisceau de 30 nA (10 nA pour les feldspaths et la biotite), le diamètre de faisceau de 1 µm et le temps de comptage de 15 à 60 secondes (analyses faites par M. Tellier avec l'aide de C. Cermignani). D'autres analyses ont été réalisées sur la microsonde Camebax SX50 de la Commission géologique du Canada à Ottawa. Le potentiel d'accélération était de 15 kV, le courant de faisceau de 10 à 30 nA, le diamètre de faisceau de 4 µm et le temps de comptage de 10 à 40 secondes (analyses faites par l'auteur avec l'aide de J. Stirling). Des analyses supplémentaires ont été obtenues sur la microsonde ARL 121000 de l'Université Laval. Le potentiel d'accélération était de 20 kV, le courant de faisceau de 10 nA, le diamètre de faisceau de 10 µm et le temps de comptage de 10 à 30 secondes (analyses faites par J.-P. Tremblay). Des standards de métaux, d'oxydes et de silicates naturels ont été utilisés. Les analyses ont été corrigées pour le temps mort, le bruit de fond, l'absorption, la fluorescence et le numéro atomique, et convertis en oxydes à l'aide de la méthode PAP de Cameca (Pouchou et Pichoir 1985) ou de celui de Bence et Albee (1968) pour les analyses faites à l'aide de la microsonde ARL de l'Université Laval. La formule structurale des minéraux a été calculée à l'aide du programme de G. Pringle (1989).

Les analyses de minéraux sont présentées dans l'ordre suivant:

- E1) olivine
- E2) spinelle
- E3) clinopyroxène, orthopyroxène
- E4) phlogopite et biotite
- E5) amphibole
- E6) feldspath potassique et plagioclase
- E7) grenat

E8) autres minéraux: scapolite, titanite, muscovite, serpentine, talc, calcite, allanite

lame	A6-24a	A6-24a	A6-24a	A6-24a	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38
roche	WL	WL	WL	WL	DN	DN	DN	DN	DN	DN
analyse	OLla	OL2	OL3	OL4	OL1b	OL5	OL6	OL7	OL8	OL10
note		b	С	С		±c ->	c ->	c ->	<->	<->
SiO2	40.07	39.55	40.08	40.29	40.19	40.53	40.59	40.38	40.29	39.74
MgO	47.78	47.08	47.99	47.83	47.84	51.15	50.83	51.33	50.42	47.73
FeO	11.49	11.10	11.48	10.78	10.61	6.72	6.81	6.41	7.00	10.41
MnO	0.19	0.23	0.26	0.17	0.21	0.12	0.02	0.11	0.07	0.15
Ca0	0.13	0.01	0.01	0.03	0.06	0.00	0.00	0.03	0.04	0.02
NiO	0.00	0.02	0.05	0.01	0.00	0.00	0.05	0.01	0.00	0.02
total	99.66	97.99	99.87	99.11	98.91	98.52	98.30	98.27	97.82	98.07
formule	structu	rale cal	culée su	ır 4 oxy	gènes					
Si	0.994	0.996	0.992	1.001	1.000	0.994	0.998	0.992	0.997	0.997
Mg	1.766	1.768	1.771	1.770	1.774	1.871	1.863	1.880	1.859	1.784
Fe	0.238	0.234	0.238	0.224	0.221	0.138	0.140	0.132	0.145	0.218
Mn	0.004	0.005	0.005	0.004	0.004	0.002	0.000	0.002	0.001	0.003
Ca	0.003	0.000	0.000	0.001	0.002	0.000	0.000	0.001	0.001	0.001
Ni	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000
total	2.011	2.007	2.015	1.999	2.001	2.011	2.004	2.015	2.006	2.006
Fo	88.1	88.3	88.2	88.8	88.9	93.1	93.0	93.4	92.8	89.1
lame	A5-38	A5-38	A5-38	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19
roche	DN	DN	DN	WL	WL	WL	WL	WL	WL	WL
analyse	OL11	OL15	OL17	OL18	OL19	OL20	OL21	OL22	OL25	OL26
note	<- b			c ->	<- b		c ->	<- C	C ->	<->
SiO2	39.19	40.74	40.70	41.17	41.35	41.22	41.08	41.11	41.51	40.89
MgO	46.31	51.01	50.81	52.11	52.50	52.17	52.57	52.09	51.88	52.66
FeO	12.16	6.34	6.42	5.65	5.31	6.11	5.64	5.24	5.88	5.61
MnO	0.20	0.12	0.13	0.10	0.18	0.12	0.17	0.14	0.16	0.17
Ca0	0.02	0.04	0.03	0.05	0.01	0.02	0.04	0.03	0.02	0.00
NiO	0.01	0.00	0.05	0.10	0.00	0.00	0.00	0.00	0.05	0.00
total	97.89	98.25	98.14	99.18	99.35	99.64	99.50	98.61	99.50	99.33
formule	structu	rale cal	culée s	ur 4 oxy	gènes					
Si	0.994	1.000	1.001	0.998	0.999	0.997	0.993	1.000	1.003	0.991
Mg	1.750	1.866	1.862	1.883	1.891	1.880	1.895	1.889	1.869	1.902
Fe	0.258	0.130	0.132	0.115	0.107	0.124	0.114	0.107	0.119	0.114
Mn	0.004	0.002	0.003	0.002	0.004	0.002	0.003	0.003	0.003	0.003
Ca	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.000
Ni	0.000	0.000	0.001	0.002	0.000	0.000	0.000	0.000	0.001	0.000
total	2.013	1.999	1.999	2.003	2.002	2.007	2.013	2.000	1.993	2.019
Fo	87.2	93.5	93.4	94.2	94.6	93.8	94.3	94.6	94.0	94.3

lame	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A5-38
roche	WL	WL	WL	WL	WL	WL	WL	WL	WL	DN
analyse	OL27	OL28	OL29	OL31	OL32a	OL32b	OL32d	OL32c	OL32e	OL34
note	<- b		c ->	<- b	С					С
c: of	40 07	40 50	10 91	41 19	41 01	40 75	39 13	11 28	11 39	10 08
S102	40.97	40.50 E2 02	40.04	51 80	51 93	52 28	53 34	53 70	53 75	49.65
MgO RoO	5 22.33	5 12	5 47	5 25	5 43	5 43	5 47	5 32	5 47	8 21
MnO	0.16	0 15	0.08	0.08	0.15	0 14	0 14	0 14	0 11	0.13
CaO	0.10	0.15	0.00	0.00	0.02	0.02	0 00	0.02	0.00	0.04
Nio	0.02	0.01	0.00	0.00	0.02	0.09	0 00	0.01	0.00	0.02
total	0.00	97 90	0.00	98 11	98 54	98 71	98.08	100 47	100 72	98 13
LULAI	98.70	97.00	50.33	J0.44	J0.J4	50.71	20.00	100.17	100.72	JU.15
formule	structui	cale cal	culée su	r 4 oxy	gènes					
Si	0.996	0.994	0.996	1.004	1.000	0.993	0.963	0.988	0.988	0.995
Mq	1.897	1.903	1.894	1.881	1.887	1.899	1.958	1.915	1.912	1.836
Fe	0.106	0.105	0.112	0.107	0.111	0.111	0.113	0.106	0.109	0.170
Mn	0.003	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.002	0.003
Ca	0.001	0.000	0.001	0.002	0.001	0.001	0.000	0.001	0.000	0.001
Ni	0.000	0.000	0.000	0.001	0.000	0.002	0.000	0.000	0.000	0.000
total	2.007	2.011	2.009	1.993	2.002	2.016	2.074	2.025	2.023	2.010
Fo	94.7	94.8	94.4	94.6	94.4	94.5	94.5	94. 8	94.6	91.5
lame	A6-24a	A6-24a	A6-24a	A6-24a	A6-24a	A6-24a	A6-24a	A5-38	A5-38	A5-38
lame roche	A6-24a WL	A6-24a WL	A6-24a WL	A6-24a WL	A6-24a WL	A6-24a WL	A6-24a WL	A5-38 DN	A5-38 DN	A5-38 DN
lame roche analyse	A6-24a WL OL35	A6-24a WL OL36	A6-24a WL OL37	A6-24a WL OL38	A6-24a WL OL39	A6-24a WL OL40	A6-24a WL OL41	A5-38 DN OL301	A5-38 DN OL302	A5-38 DN OL303
lame roche analyse note	A6-24a WL OL35 c ->	A6-24a WL OL36 <- b	A6-24a WL OL37 c ->	A6-24a WL OL38 <- b	A6-24a WL OL39 c ->	A6-24a WL OL40 <- b	A6-24a WL OL41 C	A5-38 DN OL301 b ->	A5-38 DN OL302 <- ±b	A5-38 DN OL303 b ->
lame roche analyse note	A6-24a WL OL35 c ->	A6-24a WL OL36 <- b	A6-24a WL OL37 c ->	A6-24a WL OL38 <- b	A6-24a WL OL39 C ->	A6-24a WL OL40 <- b	A6-24a WL OL41 C	A5-38 DN OL301 b ->	A5-38 DN OL302 <- ±b	A5-38 DN OL303 b ->
lame roche analyse note SiO2	A6-24a WL OL35 C -> 40.06	A6-24a WL OL36 <- b 39.96	A6-24a WL OL37 c -> 39.78	A6-24a WL OL38 <- b 39.22	A6-24a WL OL39 c -> 39.92	A6-24a WL OL40 <- b 39.61	A6-24a WL OL41 C 39.31	A5-38 DN OL301 b -> 41.19	A5-38 DN OL302 <- ±b 41.42	A5-38 DN OL303 b -> 41.40
lame roche analyse note SiO2 MgO	A6-24a WL OL35 C -> 40.06 47.77	A6-24a WL OL36 <- b 39.96 47.42	A6-24a WL OL37 C -> 39.78 46.81	A6-24a WL OL38 <- b 39.22 47.33	A6-24a WL OL39 C -> 39.92 47.51	A6-24a WL OL40 <- b 39.61 47.30	A6-24a WL OL41 c 39.31 47.76	A5-38 DN OL301 b -> 41.19 51.11	A5-38 DN OL302 <- ±b 41.42 51.74	A5-38 DN OL303 b -> 41.40 51.72
lame roche analyse note SiO2 MgO FeO	A6-24a WL OL35 C -> 40.06 47.77 11.47	A6-24a WL OL36 <- b 39.96 47.42 10.79	A6-24a WL OL37 C -> 39.78 46.81 11.12	A6-24a WL OL38 <- b 39.22 47.33 11.48	A6-24a WL OL39 C -> 39.92 47.51 10.83	A6-24a WL OL40 <- b 39.61 47.30 11.17	A6-24a WL OL41 c 39.31 47.76 10.84	A5-38 DN OL301 b -> 41.19 51.11 7.28	A5-38 DN OL302 <- ±b 41.42 51.74 6.85	A5-38 DN OL303 b -> 41.40 51.72 6.81
lame roche analyse note SiO2 MgO FeO MnO	A6-24a WL OL35 c -> 40.06 47.77 11.47 0.24	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20	A6-24a WL OL37 c -> 39.78 46.81 11.12 0.19	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26	A6-24a WL OL39 c -> 39.92 47.51 10.83 0.22	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19	A6-24a WL OL41 C 39.31 47.76 10.84 0.20	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14
lame roche analyse note SiO2 MgO FeO MnO CaO	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01
lame roche analyse note SiO2 MgO FeO MnO CaO NiO	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11	A6-24a WL OL41 c 39.31 47.76 10.84 0.20 0.02 0.03	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45	A6-24a WL OL37 c -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structur	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée st	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 ar 4 oxy	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée su 1.001	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 ur 4 oxy 0.987	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 gènes 0.998	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43	A6-24a WL OL41 c 39.31 47.76 10.84 0.20 0.02 0.03 98.16	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée st 1.001	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 ur 4 oxy 0.987	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994 1.767	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée su 1.001 1.756	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 ur 4 oxy 0.987 1.776	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998 1.771	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.222	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.120	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994 1.767 0.238	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768 0.226	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 Culée su 1.001 1.756 0.234	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 11 4 oxy 0.987 1.776 0.242	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998 1.771 0.226	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770 0.234	A6-24a WL OL41 c 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.228	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849 0.148	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.138	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861 0.137
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994 1.767 0.238 0.005	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768 0.226 0.004	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée sv 1.001 1.756 0.234 0.004	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 11 4 oxy 0.987 1.776 0.242 0.006	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998 1.771 0.226 0.005	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770 0.234 0.004	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.228 0.004	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849 0.148 0.003 0.000	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.138 0.003 0.003	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861 0.137 0.003
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn Ca	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structur 0.994 1.767 0.238 0.005 0.001	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768 0.226 0.004 0.002	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 Culée su 1.001 1.756 0.234 0.004 0.002	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 11 4 oxy 0.987 1.776 0.242 0.006 0.001	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998 1.771 0.226 0.005 0.001 0.001	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770 0.234 0.004 0.001	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.228 0.004 0.001	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849 0.148 0.003 0.000	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.138 0.003 0.001	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861 0.137 0.003 0.000
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn Ca Ni	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994 1.767 0.238 0.005 0.001 0.000	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768 0.226 0.004 0.002 0.000	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée st 1.001 1.756 0.234 0.004 0.002 0.000	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 11 4 oxy 0.987 1.776 0.242 0.006 0.001 0.002	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 0.998 1.771 0.226 0.005 0.001 0.001	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770 0.234 0.004 0.001 0.002	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.228 0.004 0.001 0.001	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849 0.148 0.003 0.000 0.000	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.138 0.003 0.001 0.000 2.002	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861 0.137 0.003 0.000 0.000 0.000
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn Ca Ni total	A6-24a WL OL35 C -> 40.06 47.77 11.47 0.24 0.03 0.00 99.57 structu: 0.994 1.767 0.238 0.005 0.001 0.000 2.011	A6-24a WL OL36 <- b 39.96 47.42 10.79 0.20 0.07 0.01 98.45 rale cal 1.000 1.768 0.226 0.004 0.002 0.000 2.000	A6-24a WL OL37 C -> 39.78 46.81 11.12 0.19 0.09 0.00 97.99 culée sv 1.001 1.756 0.234 0.004 0.002 0.000 1.996	A6-24a WL OL38 <- b 39.22 47.33 11.48 0.26 0.03 0.08 98.40 11 4 oxy 0.987 1.776 0.242 0.006 0.001 0.002 2.027	A6-24a WL OL39 C -> 39.92 47.51 10.83 0.22 0.03 0.05 98.56 rgènes 0.998 1.771 0.226 0.005 0.001 0.001 2.004	A6-24a WL OL40 <- b 39.61 47.30 11.17 0.19 0.05 0.11 98.43 0.994 1.770 0.234 0.004 0.001 0.002 2.011	A6-24a WL OL41 C 39.31 47.76 10.84 0.20 0.02 0.03 98.16 0.988 1.790 0.228 0.004 0.001 0.001 2.024	A5-38 DN OL301 b -> 41.19 51.11 7.28 0.15 0.01 0.00 99.74 1.000 1.849 0.148 0.003 0.000 0.000 2.000	A5-38 DN OL302 <- ±b 41.42 51.74 6.85 0.12 0.03 0.01 100.17 0.999 1.860 0.138 0.003 0.001 0.000 2.002	A5-38 DN OL303 b -> 41.40 51.72 6.81 0.14 0.01 0.00 100.08 0.999 1.861 0.137 0.003 0.000 0.000 0.000 2.001

lame	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38	A5-38
roche	DN	DN	DN	DN	DN	DN	DN	DN	DN	DN
analyse	OL304	OL305	OL306	OL307	OL308	OL309	OL310	OL311	OL312	OL313
note	<- c	b ->	±c ->	b ->	<- b	С	b	с	С	С
SiO2	41.41	41.29	41.20	41.44	41.39	41.54	41.55	41.59	41.55	41.47
MgO	51.67	50.82	51.24	51.71	51.31	51.79	51.78	51.59	51.88	51.88
FeO	6.91	8.01	7.11	6.82	7.30	6.72	6.73	6.72	6.69	6.61
MnO	0.12	0.14	0.12	0.14	0.10	0.07	0.09	0.12	0.12	0.15
CaO	0.03	0.01	0.01	0.02	0.00	0.02	0.00	0.08	0.01	0.01
NiO	0.00	0.00	0.00	0.01	0.02	0.00	0.01	0.00	0.00	0.01
total	100.14	100.27	99.68	100.14	100.12	100.14	100.16	100.10	100.25	100.13
formule	structu	cale cal	culée su	ir 4 oxy	gènes					
Si	0.999	1.000	1.000	1.000	1.000	1.001	1.001	1.003	1.000	1.000
Ma	1.859	1.835	1.853	1.860	1.849	1.861	1.860	1.854	1.862	1.864
Fe	0.139	0.162	0.144	0.138	0.148	0.135	0.136	0.135	0.135	0.133
Mn	0.003	0.003	0.003	0.003	0.002	0.001	0.002	0.003	0.002	0.003
Ca	0 001	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
total	2 002	2 000	2.000	2.001	1.999	1.997	1.998	1.994	1.999	2.000
Fo	93 0	91 9	92.8	93 1	92.6	93.2	93.2	93.2	93.2	93.3
10	22.0	J1.J	52.0		,2.0		,			
lame	A5-38	A5-38	A5-38	A5-38	A6-24a	A6-24a	A6-24a	A4-19	A4-19	A4-19
roche	DN	NU	DN	DN	WL	WL	WL	WL	WL	WL
analyse	01.314	01.315	01.316	01317	01318	0L320	OL321	OL322	OL323	OL324
note	C ->	<- h	b ->	<- C	C	c	С			с
noce			5		0	0				
si02	41 55	41 63	41 77	41.60	40.48	40.43	40.26	41.51	41.27	41.38
MaO	51 87	52.13	51.99	51.98	47.43	47.81	47.59	52.12	51.92	52.20
FeO	6 63	6.61	6.55	6.62	12.16	11.78	11.87	6.09	6.06	5.78
MnO	0.03	0.014	0.33	0.13	0.25	0.17	0.17	0.14	0.16	0.11
CaO	0 01	0 00	0.01	0 00	0.03	0.03	0.21	0.01	0.02	0.01
NiO	0.01	0.00	0.01	0 01	0.03	0.00	0.04	0.00	0.00	0.00
total	100 21	100 52	100 44	100 34	100 38	100.22	100.14	99.87	99.43	99.48
cocar	100.21	100.52	100.11	100131	100.00					
formule	structu	rale cal	culée s	ir 4 oxv	aènes					
e:	1 001		1 003	1 000	0 999	0 997	0.995	1.001	1.000	1.000
0±	1.001	,	1.005	2.000					·	
Ma	1 860	1 865	1 860	1 863	1.744	1.758	1.754	1.873	1.874	1.880
Fe	0 134	0 133	0.132	0.133	0.251	0.243	0.246	0.123	0.123	0.117
Mn	0 003	0.003	0.002	0.003	0.005	0.004	0.003	0.003	0.003	0.002
Ca	0 000	0 000	0.000	0.000	0.001	0.001	0.005	0.000	0.000	0.000
Ni	0.000	0 000	0 000	0 000	0.001	0.000	0.001	0.000	0.000	0.000
total	1 999	2 001	1 99/	1 999	2.002	2.006	2,009	1.999	2.000	1.999
Fo	47 7 Y	92.201	93 4	93 3	87.4	87.9	87.7	93.8	93.8	94.1
1.0	د،در	10.0	JJ.4		07.3					

lame	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	C45-13	C45-13	C45-13	C45-13
roche	WL	WL	WL	WL	WL	WL	DN	DN	DN	DN
analyse	OL325	OL326	OL327	OL328	OL329	OL330	OL401	OL402	OL403	OL404
note	с		c ->	<- b	b ->	<- C	с	С		b ->
SiO2	41.48	41.47	41.31	41.52	41.61	41.49	40.72	41.20	41.15	41.13
MgO	52.24	52.23	52.33	52.43	52.52	52.53	50.03	50.11	49.98	49.99
FeO	5.82	5.69	5.67	5.68	5.61	5.64	8.39	8.57	8.67	8.68
MnO	0.16	0.10	0.12	0.15	0.14	0.15	0.20	0.17	0.17	0.18
Ca0	0.01	0.03	0.01	0.03	0.02	0.00	0.21	0.00	0.05	0.01
NiO	0.03	0.01	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.01
total	99.74	99.53	99.44	99.82	99.90	99.83	99.55	100.05	100.02	100.00
formule	structu	cale cal	culée su	ur 4 oxy	gènes					
Si	1.000	1.001	0.999	1.000	1.001	0.999	0.997	1.002	1.002	1.002
Mg	1.878	1.880	1.885	1.882	1.882	1.885	1.825	1.817	1.814	1.815
Fe	0.117	0.115	0.115	0.114	0.113	0.113	0.172	0.174	0.177	0.177
Mn	0.003	0.002	0.003	0.003	0.003	0.003	0.004	0.003	0.004	0.004
Ca	0.000	0.001	0.000	0.001	0.000	0.000	0.005	0.000	0.001	0.000
Ni	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
total	1.999	1.998	2.003	2.000	1.998	2.001	2.006	1.994	1.996	1.996
Fo	94.1	94.2	94.2	94.3	94.3	94.3	91.4	91.3	91.1	91.1
lame	C45-13	C45-13	C45-13	C45-13	C45-13	C45-13	B1-19	B1-19	B1-19	B1-19
lame roche	C45-13 DN	C45-13 DN	C45-13 DN	C45-13 DN	C45-13 DN	C45-13 DN	B1-19 WL	B1-19 WL	B1-19 WL	B1-19 WL
lame roche analyse	C45-13 DN OL405	C45-13 DN OL406	C45-13 DN OL407	C45-13 DN OL408	C45-13 DN OL409	C45-13 DN OL410	B1-19 WL OL411	B1-19 WL OL412	B1-19 WL OL413	B1-19 WL OL414
lame roche analyse note	C45-13 DN OL405 <- c	C45-13 DN OL406 b ->	C45-13 DN OL407 <- c	C45-13 DN OL408	C45-13 DN OL409	C45-13 DN OL410	B1-19 WL OL411 c ->	B1-19 WL OL412 <- b	B1-19 WL OL413 C	B1-19 WL OL414 ± b
lame roche analyse note	C45-13 DN OL405 <- C	C45-13 DN OL406 b ->	C45-13 DN OL407 <- C	C45-13 DN OL408	C45-13 DN OL409	C45-13 DN OL410	B1-19 WL OL411 c ->	B1-19 WL OL412 <- b	B1-19 WL OL413 C	B1-19 WL OL414 ± b
lame roche analyse note SiO2	C45-13 DN OL405 <- c 41.09	C45-13 DN OL406 b -> 41.15	C45-13 DN OL407 <- c 41.02	C45-13 DN OL408 41.09	C45-13 DN OL409 41.02	C45-13 DN OL410 41.10	B1-19 WL OL411 C -> 40.05	B1-19 WL OL412 <- b 40.06	B1-19 WL OL413 C 40.49	B1-19 WL OL414 ± b 40.51
lame roche analyse note SiO2 MgO	C45-13 DN OL405 <- c 41.09 49.97	C45-13 DN OL406 b -> 41.15 49.98	C45-13 DN OL407 <- c 41.02 49.38	C45-13 DN OL408 41.09 50.15	C45-13 DN OL409 41.02 49.91	C45-13 DN OL410 41.10 50.15	B1-19 WL OL411 c -> 40.05 46.41	<pre>B1-19 WL OL412 <- b 40.06 46.38</pre>	B1-19 WL OL413 C 40.49 47.83	B1-19 WL OL414 ± b 40.51 47.99
lame roche analyse note SiO2 MgO FeO	C45-13 DN OL405 <- c 41.09 49.97 8.71	C45-13 DN OL406 b -> 41.15 49.98 8.43	C45-13 DN OL407 <- c 41.02 49.38 8.71	C45-13 DN OL408 41.09 50.15 8.72	C45-13 DN OL409 41.02 49.91 8.63	C45-13 DN OL410 41.10 50.15 8.61	B1-19 WL OL411 c -> 40.05 46.41 13.73	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64</pre>	B1-19 WL OL413 c 40.49 47.83 11.75	B1-19 WL OL414 ± b 40.51 47.99 11.61
lame roche analyse note SiO2 MgO FeO MnO	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16	C45-13 DN OL408 41.09 50.15 8.72 0.18	C45-13 DN OL409 41.02 49.91 8.63 0.20	C45-13 DN OL410 41.10 50.15 8.61 0.18	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26
lame roche analyse note SiO2 MgO FeO MnO CaO	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00	B1-19 WL OL411 C -> 40.05 46.41 13.73 0.30 0.01	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01
lame roche analyse note SiO2 MgO FeO MnO CaO NiO	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01	<pre>B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01</pre>	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00</pre>	B1-19 WL OL413 c 40.49 47.83 11.75 0.25 0.00 0.00	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 Dr 4 oxy	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05	B1-19 WL OL411 C -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 .culée su 1.004	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 ur 4 oxy 1.000	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 rgènes 1.002	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 culée su 1.004	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 ur 4 oxy 1.000	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 rgènes 1.002	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32 0.996	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32 0.998	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 .culée su 1.004 1.802	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 ur 4 oxy 1.000 1.819	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 rgènes 1.002 1.817	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 100.32 0.996 1.719	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32 0.998 1.757	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816 0.177	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817 0.172	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 .culée su 1.004 1.802 0.178	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 Dr 4 oxy 1.000 1.819 0.177	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 rgènes 1.002 1.817 0.176	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820 0.175	B1-19 WL OL411 C -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718 0.285	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32 0.996 1.719 0.284	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32 0.998 1.757 0.242	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761 0.239
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816 0.177 0.004	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817 0.172 0.004	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 cculée su 1.004 1.802 0.178 0.003	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 DI 4 OXY 1.000 1.819 0.177 0.004	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 rgènes 1.002 1.817 0.176 0.004	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820 0.175 0.004	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718 0.285 0.006	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32 0.996 1.719 0.284 0.005 2.005</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32 0.998 1.757 0.242 0.005	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761 0.239 0.005
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn Ca	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816 0.177 0.004 0.000	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817 0.172 0.004 0.000	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 culée su 1.004 1.802 0.178 0.003 0.007	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 Hr 4 oxy 1.000 1.819 0.177 0.004 0.000	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 0.00 99.76 cgènes 1.002 1.817 0.176 0.004 0.000	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820 0.175 0.004 0.000	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718 0.285 0.006 0.000	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 0.00 100.32 0.996 1.719 0.284 0.005 0.000</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 0.00 100.32 0.998 1.757 0.242 0.005 0.000	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761 0.239 0.005 0.000
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Mg Fe Mn Ca Ni	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816 0.177 0.004 0.000 0.000	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817 0.172 0.004 0.000 0.000	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 .culée su 1.004 1.802 0.178 0.003 0.007 0.000	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 LIT 4 oxy 1.000 1.819 0.177 0.004 0.000 0.000	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 99.76 rgènes 1.002 1.817 0.176 0.004 0.000 0.000	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820 0.175 0.004 0.000 0.000	B1-19 WL OL411 c -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718 0.285 0.006 0.000 0.000	B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 100.32 0.996 1.719 0.284 0.005 0.000 0.000	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 100.32 0.998 1.757 0.242 0.005 0.000 0.000	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761 0.239 0.005 0.000 0.000
lame roche analyse note SiO2 MgO FeO MnO CaO NiO total formule Si Fe Mn Ca Ni total	C45-13 DN OL405 <- c 41.09 49.97 8.71 0.17 0.02 0.00 99.96 structu 1.001 1.816 0.177 0.004 0.000 0.000 1.997	C45-13 DN OL406 b -> 41.15 49.98 8.43 0.21 0.02 0.00 99.79 rale cal 1.003 1.817 0.172 0.004 0.000 0.000 1.993	C45-13 DN OL407 <- c 41.02 49.38 8.71 0.16 0.28 0.00 99.55 culée su 1.004 1.802 0.178 0.003 0.007 0.000 1.990	C45-13 DN OL408 41.09 50.15 8.72 0.18 0.00 0.01 100.15 100.15 1.000 1.819 0.177 0.004 0.000 2.000	C45-13 DN OL409 41.02 49.91 8.63 0.20 0.00 99.76 rgènes 1.002 1.817 0.176 0.004 0.000 1.997	C45-13 DN OL410 41.10 50.15 8.61 0.18 0.00 0.01 100.05 1.001 1.820 0.175 0.004 0.000 1.999	B1-19 WL OL411 C -> 40.05 46.41 13.73 0.30 0.01 0.01 100.51 0.995 1.718 0.285 0.006 0.000 2.009	<pre>B1-19 WL OL412 <- b 40.06 46.38 13.64 0.24 0.00 100.32 0.996 1.719 0.284 0.005 0.000 2.008</pre>	B1-19 WL OL413 C 40.49 47.83 11.75 0.25 0.00 100.32 0.998 1.757 0.242 0.005 0.000 0.000 2.004	B1-19 WL OL414 ± b 40.51 47.99 11.61 0.26 0.01 0.00 100.38 0.997 1.761 0.239 0.005 0.000 2.005

lamo	B1_19	B1-19	A4-19	∆4-19	A-19	A4-19	A4-19	A4-19
Tame	B1-19	DI-IJ	A4 17	N4 I)	A4 I)	A4 17	114 15	
roche	WL	WL	WL	WL	WL	WL	WL	WL
analyse	OL415	OL416	OL601	OL602	OL605	OL606	OL607	OL609
note	С	Ċ	С	С	±с	С	с	b
SiO2	40.53	40.69	41.61	41.55	41.42	41.36	41.51	42.52
MgO	48.41	48.53	52.43	52.37	52.11	52.09	51.97	53.36
FeO	11.11	10.81	5.57	5.56	5.57	5.71	5.85	5.60
MnO	0.23	0.23	0.15	0.12	0.16	0.10	0.16	0.14
Ca0	0.01	0.00	0.01	0.02	0.02	0.00	0.02	0.05
NiO	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01
total	100.29	100.26	99.78	99.62	99.28	99.26	99.52	101.68

formule structurale calculée sur 4 oxygènes

Si	0.996	0.999	1.002	1.002	1.002	1.001	1.003	1.004
Mg	1.774	1.776	1.881	1.882	1.879	1.880	1.872	1.878
Fe	0.228	0.222	0.112	0.112	0.113	0.116	0.118	0.111
Mn	0.005	0.005	0.003	0.002	0.003	0.002	0.003	0.003
Ca	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
total	2.007	2.003	1.996	1.997	1.996	1.998	1.993	1.993
Fo	88.6	88.9	94.4	94.4	94.3	94.2	94.1	94.4

lame	A2-7	A2-7	A2-7	A2-7	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19
roche	CXN	CXN	CXN	CXN	WL	WL	WL	WL	WL	WL
analyse	SP13a	SP13b	SP14a	SP14b	SP15b	SP16a	SP16b	SP17a	SP17c	SP19a
A1203	65.36	65.54	65.01	65.56	68.65	67.94	67.52	67.60	68.53	67.86
Cr 203	0.05	0.04	0.05	0.01	0.00	0.03	0.02	0.07	0.05	0.05
Fe203	2.28	2.20	1.05	2.33	1.21	0.66	1.41	0.53	1.38	0.46
v2 03	0.00	0.06	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00
TiO2	0.03	0.08	0.02	0.01	0.00	0.02	0.00	0.10	0.06	0.02
SiO2	0.05	0.08	0.06	0.03	0.03	0.06	0.07	0.06	0.08	0.08
FeO	11.91	11.32	12.05	11.27	4.86	5.49	4.59	5.53	4.75	5.69
MgO	19.70	19.93	19.21	19.80	24.45	24.01	24.18	23.92	24.58	23.86
MnO	0.20	0.15	0.14	0.14	0.01	0.07	0.10	0.06	0.06	0.04
ZnO	0.00	0.65	0.00	0.60	0.55	0.00	0.62	0.00	0.66	0.00
NiO	0.05	0.00	0.00	0.06	0.04	0.00	0.01	0.00	0.00	0.00
Ca0	0.01	0.00	0.04	0.03	0.00	0.00	0.04	0.00	0.00	0.01
total	99.64	100.05	97.63	99.84	99.80	98.28	98.65	97.87	100.15	98.07
formule	structu	rale cal	culée su	1r 32 ox	ygènes					
Al	15.614	15.592	15.799	15.629	15.812	15.868	15.748	15.856	15.744	15.886
Cr	0.008	0.006	0.008	0.002	0.000	0.005	0.003	0.011	0.008	0.008
Fe+3	0.347	0.334	0.162	0.355	0.178	0.099	0.210	0.080	0.202	0.069
v	0.000	0.010	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.000
Ті	0.005	0.012	0.003	0.002	0.000	0.003	0.000	0.015	0.009	0.003
Si	0.010	0.016	0.012	0.006	0.006	0.012	0.014	0.012	0.016	0.016
total	15.984	15.970	15.984	15.994	15.996	15.987	15.989	15.974	15.979	15.982
Fe+2	2.019	1.911	2.078	1.906	0.794	0.909	0.760	0.920	0.774	0.946
Mg	5.952	5.996	5.904	5.970	7.122	7.092	7.132	7.095	7.142	7.064
Mn	0.034	0.026	0.024	0.024	0.002	0.012	0.017	0.010	0.010	0.007
Zn	0.000	0.097	0.000	0.090	0.079	0.000	0.091	0.000	0.095	0.000
Ni	0.008	0.000	0.000	0.010	0.006	0.000	0.002	0.000	0.000	0.000
Ca	0.002	0.000	0.009	0.007	0.000	0.000	0.008	0.000	0.000	0.002
total	8.015	8.030	8.015	8.007	8.003	8.013	8.010	8.025	8.021	8.019
mg	74.7	75.8	74.0	75.8	90.0	88.6	90.4	88.5	90.2	88.2
al	97.8	97.9	98.9	97.8	98.9	99.3	98.7	99.4	98.7	99.5

mg = 100 (Mg/(Mg+Fe+2))

lame	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-31	A4-31	A4-31	A5-38
roche	WL	WL	WL	WL	WL	WL	CXN	CXN	CXN	DN
analyse	SP19b	SP20a	SP20b	SP21a	SP21b	SP21c	SP22	SP23	SP24	SP28
note							±c ->	<- ±b	b	С
A1203	68.19	67.63	67.43	67.58	67.44	68.59	64.45	65.19	64.36	66.69
Cr203	0.06	0.05	0.08	0.06	0.03	0.00	0.92	0.78	1.29	0.02
Fe203	1.59	0.57	0.81	0.44	0.99	0.34	1.41	1.88	1.71	1.79
V203	0.03	0.00	0.05	0.00	0.00	0.00	0.03	0.06	0.10	0.12
TiO2	0.00	0.10	0.01	0.05	0.00	0.03	0.01	0.01	0.01	0.03
SiO2	0.04	0.06	0.42	0.06	0.07	0.07	0.07	0.05	0.06	0.06
FeO	4.61	5.39	5.48	5.93	5.78	4.73	12.32	12.45	12.22	8.59
MgO	24.47	23.98	23.44	23.55	23.70	24.59	18.93	19.12	19.12	21.90
MnO	0.03	0.10	0.04	0.10	0.06	0.07	0.10	0.23	0.12	0.10
ZnO	0.72	0.00	0.64	0.00	0.00	0.00	0.46	0.49	0.57	0.35
NiO	0.00	0.00	0.07	0.00	0.05	0.00	0.10	0.11	0.05	0.00
CaO	0.01	0.01	0.82	0.04	0.02	0.05	0.00	0.01	0.00	0.00
total	99.75	97.89	99.29	97.81	98.14	98.47	98.80	100.38	99.61	99.65
formule	structu	rale cal	culée su	ır 32 ox	ygènes					
Al	15.736	15.855	15.689	15.887	15.818	15.914	15.598	15.556	15.482	15.679
Cr	0.009	0.008	0.012	0.009	0.005	0.000	0.149	0.125	0.208	0.003
Fe+3	0.234	0.085	0.120	0.067	0.149	0.051	0.218	0.287	0.263	0.268
v	0.005	0.000	0.008	0.000	0.000	0.000	0.005	0.010	0.016	0.019

Ti 0.000 0.015 0.001 0.008 0.000 0.004 0.002 0.002 0.002 0.005 0.008 0.012 0.083 0.012 0.014 0.014 0.014 0.010 0.012 0.012 Si total 15.992 15.975 15.913 15.983 15.986 15.983 15.986 15.990 15.983 15.986 2.086 Fe+2 0.755 0.896 0.905 0.989 0.963 0.779 2.116 2.108 7.030 7.215 5.794 5.770 5.817 7.142 7.110 6.897 7.002 Mg 0.010 0.012 0.017 0.039 0.021 0.005 0.017 0.007 0.017 Mn 0.000 0.000 0.070 0.073 0.104 0.000 0.093 0.000 0.086 Zn 0.000 0.017 0.018 0.008 Ni 0.000 0.000 0.011 0.000 0.008 0.002 0.002 0.173 0.009 0.004 0.011 0.000 0.002 0.000 Ca 8.008 8.025 8.086 8.017 8.015 8.017 8.014 8.010 8.018 total

87.6

99.5

88.0

99.0

90.3 73.2

99.7 97.7

73.2

97.4

73.6

97.0

1.433

6.511

0.017

0.052

0.000

0.000

8.013

82.0

98.3

mg = 100 (Mg/(Mg+Fe+2))

90.4

98.5

88.8

99.4

88.4

99.2

mg

al

lame	A5-38	A5-38	A5-38	A5-38	A5-3	A5-38	A5-38	A5-3	A5-3	A5-3
roche	DN	DN	DN	DN	CXN	DN	DN	CXN	CXN	CXN
analyse	SP29	SP30	SP31	SP32	SP33a	SP33b	SP34a	SP34b	SP35	SP36
note	С	b	c ->	<- b	С			b	С	С
A1203	65.72	65.25	66.44	66.44	67.99	64.46	67.84	64.41	64.67	65.00
Cr203	0.01	0.00	0.00	0.00	0.00	0.08	0.00	0.15	0.06	0.10
Fe203	2.47	1.93	1.80	1.60	1.44	1.97	1.02	1.92	1.71	2.21
V2O3	0.09	0.05	0.03	0.06	0.06	0.03	0.00	0.08	0.00	0.00
TiO2	0.00	0.00	0.00	0.00	0.01	0.04	0.05	0.02	0.04	0.01
SiO2	0.09	0.25	0.05	0.06	0.03	0.03	0.03	0.05	0.05	0.01
FeO	9.56	9.66	8.85	9.16	5.96	13.48	5.92	13.58	13.59	13.63
MgO	21.03	20.90	21.42	21.23	23.79	18.03	23.68	17.97	18.00	18.12
MnO	0.11	0.08	0.09	0.10	0.04	0.21	0.08	0.23	0.24	0.20
ZnO	0.47	0.44	0.72	0.60	0.33	0.73	0.27	0.68	0.72	0.82
NiO	0.05	0.11	0.00	0.06	0.00	0.01	0.00	0.07	0.02	0.01
Ca0	0.03	0.00	0.02	0.01	0.00	0.01	0.00	0.00	0.01	0.01
total	99.63	98.67	99.42	99.32	99.65	99.08	98.89	99.16	99.11	100.12
formule	structur	ale cal	culée su	ir 32 ox	ygènes					
Al	15.577	15.594	15.702	15.725	15.762	15.653	15.820	15.638	15.690	15.638
Cr	0.002	0.000	0.000	0.000	0.000	0.013	0.000	0.024	0.010	0.016
Fe+3	0.374	0.295	0.271	0.242	0.213	0.305	0.152	0.297	0.266	0.340
V	0.015	0.008	0.005	0.010	0.009	0.005	0.000	0.013	0.000	0.000
Ti	0.000	0.000	0.000	0.000	0.001	0.006	0.007	0.003	0.006	0.002
Si	0.018	0.051	0.010	0.012	0.006	0.006	0.006	0.010	0.010	0.002
total	15.986	15.948	15.988	15.989	15.991	15.988	15.985	15.985	15.982	15.998
						0.000	0 000	0.040	0 0 0 0	0 007
Fe+2	1.607	1.639	1.485	1.538	0.980	2.322	0.980	2.340	2.339	2.327
Mg	6.304	6.317	6.402	6.355	6.975	5.537	6.983	5.518	5.523	5.513
Mn	0.019	0.014	0.015	0.017	0.007	0.037	0.013	0.040	0.042	0.035
Zn	0.070	0.066	0.107	0.089	0.048	0.111	0.039	0.103	0.109	0.124
Ni	0.008	0.018	0.000	0.010	0.000	0.002	0.000	0.012	0.003	0.002
Ca	0.006	0.000	0.004	0.002	0.000	0.002	0.000	0.000	0.002	0.002
total	8.014	8.054	8.013	8.011	8.010	8.011	8.015	8.013	8.018	8.003
	70 5	70.4	01 0	90 F	07 7	70 F	07 7	70 2	70 2	70 3
mg	79.7	79.4	81.2	8U.5	00.7	00.0	07.7	00.2	98 2	97.8
a⊥	97.6	98.1	98.3	98.5	98.7	90.0	99.U	30.0	30.3	21.0

mg = 100 (Mg/(Mg+Fe+2))

al = 100 (Al / (Al + Cr + Fe + 3))

lam	е Аб	-24	A6-24	A6-24	A6-24	A6-24	A6-3	A6-3	A4-4	A5-38	A5-38
roc	he V	٧L	WL	WL	WL	WL	CXN	CXN	CXN	DN	DN
ana	lyse SI	238	SP39	SP40	SP41	SP42	SP43	SP44	SP45	SP301	SP302
not	e c	->	<- b	c ->	<- b		C	с	с	C>	<- b
A12	03 54	.10	53.99	54.70	54.14	51.49	63.97	63.53	56.65	66.99	66.71
Cr2	03 9	.22	9.33	9.18	9.29	9.88	0.02	0.09	7.28	0.03	0.02
Fe2	03 4	.01	3.70	3.59	3.86	5.22	1.82	2.04	1.45	1.88	1.96
v20	3 0	.02	0.03	0.00	0.11	0.00	0.00	0.02	0.08	na	na
TiO	2 0	.02	0.03	0.03	0.02	0.02	0.03	0.01	0.03	0.01	0.01
sio	2 0	.09	0.06	0.13	0.08	0.06	0.14	0.07	0.09	0.03	0.03
FeO	13	.98	14.09	13.86	13.60	16.59	15.83	15.64	16.23	5.43	5.40
MgO	16	.71	16.61	17.11	17.03	14.51	16.71	16.56	15.02	23.76	23.72
MnO	0	.15	0.19	0.15	0.17	0.19	0.18	0.19	0.29	0.07	0.05
ZnO	0	.64	0.45	0.43	0.48	0.92	0.51	0.57	1.10	0.24	0.30
NiO	0	.02	0.05	0.00	0.00	0.05	0.00	0.00	0.03	0.08	0.00
CaO	0	.00	0.00	0.00	0.03	0.01	0.02	0.04	0.01	0.00	0.00
tot	al 98	.96	98.53	99.18	98.81	98.94	99.23	98.76	98.26	98.52	98.20
for	mule str	uctura	le cal	culée su	r 32 ox	ygènes					
A1	13	.736	13.761	13.801	13.731	13.376	15.647	15.630	14.456	15.702	15.685
Cr	1.	570	1.595	1.554	1.581	1.722	0.003	0.015	1.246	0.005	0.003
Fe+	3 0.	649	0.602	0.579	0.626	0.866	0.284	0.321	0.236	0.281	0.295
v	0.	003	0.005	0.000	0.019	0.000	0.000	0.003	0.014		
Ti	0.	003	0.005	0.005	0.003	0.003	0.005	0.002	0.005	0.001	0.002
Si	0.	019	0.013	0.028	0.017	0.013	0.029	0.015	0.019	0.005	0.006
tot	al 15	.980	15.981	15.967	15.977	15.980	15.968	15.986	15.976	15.994	15.991
								0 504		0.004	0 001
Fe+	2 2.	518	2.548	2.481	2.448	3.059	2.748	2.731	2.939	0.904	0.901
Mg	5.	366	5.354	5.459	5.462	4.767	5.169	5.153	4.847	7.043	7.054
Mn	0.	027	0.035	0.027	0.031	0.035	0.032	0.034	0.053	0.011	0.009
Zn	0.	102	0.072	0.068	0.076	0.150	0.078	0.088	0.176	0.035	0.045
Ni	0.	003	0.009	0.000	0.000	0.009	0.000	0.000	0.005	0.013	0.000
Ca	0.	000	0.000	0.000	0.007	0.002	0.004	0.009	0.002	0.000	0.001
tot	al 8.	016	8.018	8.035	8.024	8.022	8.031	8.015	8.022	8.006	8.010
ma	6	8.1	67 8 [,]	68 8	69.1	60.9	65.3	65.4	62.3	88.6	88.7
يسي 1 ھ	Q Q	6 1	86.2	86.6	86.2	83.8	98.2	97.9	90.7	98.2	98.1
44	0	~ • ±	00.2		00.2						

mg = 100 (Mg/(Mg+Fe+2))

lame	A5-38	A6-24a	A6-24a							
roche	DN	WL	WL							
analyse	SP303	SP304	SP305	SP306	SP307	SP308	SP309	SP310	SP311	SP312
note	с	С	С	С	С	С	b ->	<- C	c ->	<- b
A1203	67.01	66.69	67.11	66.59	67.30	67.12	67.09	66.96	54.00	53.91
Cr203	0.03	0.01	0.02	0.01	0.01	0.00	0.03	0.02	9.59	9.36
Fe203	1.75	1.96	1.79	2.01	2.25	1.83	1.95	1.99	4.43	4.43
V2O3	na	na								
TiO2	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.02
SiO2	0.00	0.02	0.04	0.03	0.04	0.03	0.00	0.03	0.00	0.02
FeO	5.54	5.57	5.57	5.75	5.26	5.61	5.40	5.46	13.41	13.50
MgO	23.70	23.61	23.78	23.46	24.07	23.64	23.83	23.79	17.12	17.04
MnO	0.06	0.06	0.05	0.08	0.07	0.07	0.07	0.07	0.16	0.12
ZnO	0.23	0.27	0.25	0.26	0.27	0.36	0.24	0.22	0.51	0.57
NiO	0.00	0.00	0.00	0.00	0.06	0.04	0.05	0.05	0.03	0.00
Ca0	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
total	98.32	98.21	98.62	98.19	99.34	98.70	98.66	98.60	99.28	98.97

formule	structur	ale cal	culée su	ir 32 ox	ygènes					
Al	15.729	15.691	15.711	15.685	15.648	15.714	15.701	15.685	13.655	13.676
Cr	0.004	0.002	0.004	0.002	0.002	0.001	0.004	0.003	1.627	1.592
Fe+3	0.263	0.295	0.268	0.303	0.334	0.274	0.292	0.297	0.715	0.717
v										
ті	0.000	0.002	0.001	0.000	0.000	0.000	0.000	0.002	0.002	0.003
Si	0.001	0.004	0.008	0.006	0.008	0.007	0.000	0.005	0.001	0.004
total	15.997	15.994	15.992	15.996	15.992	15.996	15.997	15.992	16.000	15.992
Fe+2	0.923	0.929	0.925	0.961	0.868	0.932	0.897	0.907	2.406	2.430
Mg	7.036	7.026	7.039	6.990	7.077	7.001	7.053	7.049	5.474	5.466
Mn	0.009	0.010	0.008	0.014	0.012	0.011	0.011	0.012	0.030	0.021
Zn	0.035	0.040	0.036	0.039	0.039	0.053	0.035	0.032	0.081	0.090
Ni	0.000	0.000	0.000	0.000	0.009	0.007	0.008	0.008	0.006	0.000
Ca	0.000	0.000	0.000	0.001	0.002	0.001	0.000	0.000	0.004	0.000
total	8.003	8.005	8.008	8.005	8.007	8.005	8.004	8.008	8.001	8.007
mg	88.4	88.3	88.4	87.9	89.1	88.3	88.7	88.6	69.5	69.2
	00.0	0.9 1	983	98.1	97.9	98.3	98.1	98.1	85.4	85.6

lame	A6-24a	A6-24a	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19
roche	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL
analyse	SP313	SP314	SP315	SP316	SP317	SP318	SP319	SP320	SP321	SP322
note	C ->	<- b				с	b ->	<- c	С	С
A1203	54.46	53.95	67.50	67.35	67.94	67.75	68.31	68.05	67.78	68.07
Cr203	9.49	9.51	0.03	0.04	0.05	0.02	0.03	0.02	0.04	0.06
Fe203	4.22	4.29	1.70	1.76	1.47	1.34	1.30	1.47	1.29	1.42
V2O3	na	na	na	na	na	na	na	na	na	na
TiO2	0.02	0.04	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01
SiO2	0.02	0.07	0.02	0.03	0.05	0.03	0.06	0.03	0.02	0.06
FeO	12.94	13.26	6.14	5.98	5.86	4.42	4.56	4.42	4.64	4.63
MgO	17.61	17.33	23.37	23.45	23.68	24.37	24.54	24.51	24.25	24.41
MnO	0.17	0.15	0.09	0.10	0.09	0.07	0.07	0.07	0.05	0.06
ZnO	0.36	0.33	0.51	0.53	0.55	0.56	0.62	0.58	0.57	0.65
NiO	0.00	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.04	0.00
Ca0	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00
total	99.29	99.00	99.39	99.26	99.70	98.57	99.50	99.16	98.69	99.37
formule	structur	cale cal	culée su	ir 32 ox	ygènes					
A1	13.707	13.651	15.736	15.717	15.756	15.784	15.775	15.767	15.787	15.755
Cr	1.602	1.614	0.005	0.006	0.008	0.004	0.005	0.003	0.006	0.009
Fe+3	0.678	0.694	0.252	0.263	0.218	0.199	0.191	0.218	0.191	0.210
V										
Ti	0.004	0.006	0.002	0.001	0.002	0.001	0.001	0.000	0.001	0.002
Si	0.003	0.015	0.004	0.006	0.010	0.005	0.012	0.006	0.005	0.012
total	15.994	15.980	15.999	15.993	15.994	15.993	15.984	15.994	15.990	15.988
Fe+2	2.311	2.381	1.015	0.990	0.965	0.731	0.748	0.726	0.767	0.761
Mg	5.607	5.545	6.891	6.921	6.944	7.181	7.167	7.182	7.145	7.146
Mn	0.030	0.028	0.015	0.016	0.015	0.012	0.011	0.011	0.009	0.009
Zn	0.056	0.052	0.074	0.077	0.080	0.081	0.090	0.084	0.083	0.094
Ni	0.000	0.009	0.003	0.000	0.000	0.000	0.000	0.000	0.007	0.000
Ca	0.001	0.004	0.001	0.003	0.001	0.000	0.001	0.003	0.000	0.001
total	8.005	8.019	7.999	8.007	8.005	8.005	8.017	8.006	8.011	8.011
mg	70.8	70.0	87.2	87.5	87.8	90.8	90.5	90.8	90.3	90.4

mg = 100 (Mg/(Mg+Fe+2))

lame	C45-13	B1-2	B1-2	B1-2						
roche	DN	WL	WL	WL						
analyse	SP401	SP402	SP403	SP404	SP407	SP409	SP410	SP411	SP412	SP413
note	С	С	±c ->	<- b	с	С	С	С	С	С
A1203	66.24	65.95	66.60	66.33	66.15	66.30	66.41	48.19	45.24	44.15
Cr203	0.09	0.11	0.08	0.08	0.09	0.09	0.10	14.60	15.60	13.95
Fe203	1.81	1.85	1.25	1.24	1.50	1.30	1.21	3.70	6.23	1.57
V2O3	0.10	0.12	0.06	0.11	0.06	0.09	0.10	0.07	0.11	0.13
TiO2	0.15	0.02	0.05	0.01	0.04	0.02	0.00	0.04	0.04	3.19
SiO2	na	na	na	na						
Fe0	8.20	8.75	8.05	8.15	8.40	8.40	8.38	20.55	18.85	24.48
MgO	22.12	21.59	22.06	21.90	21.76	21.79	21.80	12.05	12.73	10.70
MnO	0.10	0.07	0.11	0.09	0.08	0.07	0.07	0.19	0.22	0.25
ZnO	0.10	0.11	0.14	0.12	0.14	0.09	0.14	0.39	0.35	0.35
NiO	0.04	0.03	0.03	0.01	0.02	0.03	0.02	0.11	0.10	0.09
Ca0	na	na	na	na						
total	98.95	98.60	98.43	98.04	98.24	98.18	98.23	99.89	99.47	98.86

formule structurale	calculée	sur 32	oxygènes
---------------------	----------	--------	----------

15.651	15.677	15.775	15.780	15.738	15.768	15.783	12.752	12.102	12.039
0.014	0.018	0.013	0.013	0.014	0.015	0.016	2.592	2.799	2.553
0.274	0.281	0.189	0.189	0.229	0.197	0.183	0.626	1.065	0.274
0.016	0.019	0.010	0.017	0.010	0.014	0.017	0.013	0.019	0.025
0.023	0.004	0.008	0.001	0.006	0.004	0.000	0.006	0.007	0.555
15.978	15.999	15.995	16.000	15.997	15.998	15.999	15.989	15.992	15.446
1.374	1.476	1.353	1.376	1.419	1.418	1.414	3.859	3.579	4.738
6.610	6.491	6.609	6.588	6.548	6.555	6.553	4.032	4.308	3.690
0.018	0.013	0.018	0.015	0.014	0.011	0.011	0.037	0.042	0.050
0.015	0.017	0.020	0.019	0.020	0.013	0.020	0.065	0.059	0.059
0.006	0.005	0.005	0.002	0.004	0.005	0.003	0.020	0.019	0.016
8.023	8.002	8.005	8.000	8.005	8.002	8.001	8.013	8.007	8.553
•									
82.8	81.5	83.0	82.7	82.2	82.2	82.3	51.1	54.6	43.8
98.2	98.1	98.7	98.7	98.5	98.7	98.8	79.8	75.8	81.0
	15.651 0.014 0.274 0.016 0.023 15.978 1.374 6.610 0.018 0.015 0.006 8.023 82.8 98.2	15.651 15.677 0.014 0.018 0.274 0.281 0.016 0.019 0.023 0.004 15.978 15.999 1.374 1.476 6.610 6.491 0.015 0.017 0.006 0.005 8.023 8.002 82.8 81.5 98.2 98.1	15.651 15.677 15.775 0.014 0.018 0.013 0.274 0.281 0.189 0.016 0.019 0.010 0.023 0.004 0.008 15.978 15.999 15.995 1.374 1.476 1.353 6.610 6.491 6.609 0.015 0.017 0.020 0.006 0.005 0.005 8.023 8.002 8.005 82.8 81.5 83.0 98.2 98.1 98.7	15.651 15.677 15.775 15.780 0.014 0.018 0.013 0.013 0.274 0.281 0.189 0.189 0.016 0.019 0.010 0.017 0.023 0.004 0.008 0.001 15.978 15.999 15.995 16.000 1.374 1.476 1.353 1.376 6.610 6.491 6.609 6.588 0.015 0.017 0.020 0.019 0.006 0.005 0.005 0.002 8.023 8.002 8.005 8.000 82.8 81.5 83.0 82.7 98.1 98.7 98.7	15.651 15.677 15.775 15.780 15.738 0.014 0.018 0.013 0.013 0.014 0.274 0.281 0.189 0.189 0.229 0.016 0.019 0.010 0.017 0.010 0.023 0.004 0.008 0.001 0.006 15.978 15.999 15.995 16.000 15.997 1.374 1.476 1.353 1.376 1.419 6.610 6.491 6.609 6.588 6.548 0.015 0.017 0.020 0.019 0.020 0.006 0.005 0.005 0.002 0.004 8.023 8.002 8.005 8.000 8.005 82.8 81.5 83.0 82.7 82.2 98.2 98.1 98.7 98.7 98.5	15.651 15.677 15.775 15.780 15.738 15.768 0.014 0.018 0.013 0.013 0.014 0.015 0.274 0.281 0.189 0.189 0.229 0.197 0.016 0.019 0.010 0.017 0.010 0.014 0.023 0.004 0.008 0.001 0.006 0.004 15.978 15.999 15.995 16.000 15.997 15.998 1.374 1.476 1.353 1.376 1.419 1.418 6.610 6.491 6.609 6.588 6.548 6.555 0.018 0.017 0.020 0.013 0.011 0.015 0.017 0.020 0.013 0.005 0.005 8.023 8.002 8.005 8.000 8.005 8.002 82.8 81.5 83.0 82.7 82.2 82.2 98.2 98.1 98.7 98.7 98.5 98.7	15.651 15.677 15.775 15.780 15.738 15.768 15.783 0.014 0.018 0.013 0.013 0.014 0.015 0.016 0.274 0.281 0.189 0.189 0.229 0.197 0.183 0.016 0.019 0.010 0.017 0.010 0.014 0.017 0.023 0.004 0.008 0.001 0.006 0.004 0.000 15.978 15.999 15.995 16.000 15.997 15.998 15.999 1.374 1.476 1.353 1.376 1.419 1.418 1.414 6.610 6.491 6.609 6.588 6.548 6.555 6.553 0.018 0.013 0.018 0.015 0.014 0.011 0.011 0.015 0.017 0.020 0.019 0.220 0.003 0.200 0.006 0.005 0.005 0.002 0.004 0.005 0.003 8.023 8.002 8.005 8.000 8.005 8.002 8.001 82.8	15.651 15.677 15.775 15.780 15.738 15.768 15.783 12.752 0.014 0.018 0.013 0.013 0.014 0.015 0.016 2.592 0.274 0.281 0.189 0.189 0.229 0.197 0.183 0.626 0.016 0.019 0.010 0.017 0.010 0.014 0.017 0.013 0.023 0.004 0.008 0.001 0.006 0.004 0.000 0.006 15.978 15.999 15.995 16.000 15.997 15.998 15.999 15.989 1.374 1.476 1.353 1.376 1.419 1.418 1.414 3.859 6.610 6.491 6.609 6.588 6.548 6.555 6.553 4.032 0.018 0.017 0.020 0.014 0.011 0.011 0.037 0.15 0.017 0.020 0.014 0.005 0.002 0.005 0.020 8.023 8.002 8.005 8.000 8.005 8.002 8.001 8.01	15.651 15.677 15.775 15.780 15.738 15.768 15.783 12.752 12.102 0.014 0.018 0.013 0.013 0.014 0.015 0.016 2.592 2.799 0.274 0.281 0.189 0.189 0.229 0.197 0.183 0.626 1.065 0.016 0.019 0.010 0.017 0.010 0.014 0.017 0.013 0.019 0.023 0.004 0.008 0.001 0.006 0.004 0.000 0.006 0.007 15.978 15.999 15.995 16.000 15.997 15.998 15.999 15.989 15.992 1.374 1.476 1.353 1.376 1.419 1.418 1.414 3.859 3.579 6.610 6.491 6.609 6.588 6.548 6.555 6.553 4.032 4.308 0.015 0.017 0.020 0.014 0.011 0.037 0.042 0.015 0.017 0.020 0.013 0.202 0.003 0.020 0.019

mg = 100 (Mg/(Mg+Fe+2))

lame	B1-2	A22-1	A22-1	A22-1	A6-2	A6-2	A6-2	A3-14	C31-2	C31-2
roche	WL	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	SP414	SP415	SP416	SP417	SP418	SP419	SP420	SP421	SP422	SP423
note	С	С	С	С	C ->	<- b	С	С	С	С
A1203	46.22	48.46	47.67	47.08	56.14	55.51	57.12	58.09	66.15	66.70
Cr203	15.45	13.05	13.35	14.30	8.59	8.56	8.63	1.89	0.19	0.16
Fe203	4.26	5.24	4.86	4.42	3.18	3.50	1.90	2.91	1.05	0.81
V203	0.09	0.07	0.12	0.08	0.09	0.05	0.05	0.06	0.07	0.05
TiO2	0.01	0.01	0.04	0.00	0.05	0.02	0.03	0.07	0.04	0.03
SiO2	na	na	na	na	na	na	na	na	na	na
Fe0	21.51	17.00	20.02	21.28	12.55	12.31	13.59	25.59	10.55	9.98
MgO	11.04	13.96	11.99	11.16	18.00	17.94	17.48	8.93	20.40	20.89
MnO	0.21	0.25	0.26	0.25	0.15	0.15	0.12	0.20	0.14	0.09
ZnO	0.40	0.58	0.58	0.57	0.40	0.40	0.35	1.70	0.19	0.15
NiO	0.10	0.10	0.03	0.03	0.04	0.01	0.07	0.06	0.06	0.05
Ca0	na	na	na	na	na	na	na	na	na	na
total	99.29	98.72	98.92	99.17	99.19	98.45	99.34	99.50	98.84	98.91
formule	structur	cale cal	culée su	ir 32 ox	ygènes					
Al	12.454	12.788	12.744	12.649	14.023	13.977	14.238	15.152	15.787	15.839
Cr	2.793	2.311	2.393	2.577	1.439	1.446	1.443	0.331	0.030	0.025
Fe+3	0.733	0.884	0.829	0.759	0.508	0.563	0.303	0.484	0.160	0.122
V	0.016	0.012	0.023	0.015	0.015	0.008	0.008	0.011	0.011	0.008
ті	0.002	0.001	0.006	0.000	0.008	0.003	0.005	0.011	0.006	0.005
Si										
total	15.998	15.996	15.995	16.000	15.993	15.997	15.997	15.989	15.994	15.999
Fe+2	4.112	3.184	3.797	4.058	2.224	2.199	2.405	4.737	1.787	1.681
Mg	3.763	4.660	4.054	3.792	5.687	5.712	5.511	2.947	6.158	6.273
Mn	0.040	0.047	0.050	0.048	0.027	0.027	0.022	0.038	0.023	0.015
Zn	0.068	0.097	0.096	0.095	0.062	0.064	0.055	0.278	0.028	0.023
Ni	0.018	0.018	0.006	0.005	0.006	0.002	0.012	0.011	0.010	0.009
Ca										
total	8.001	8.006	8.003	7.998	8.006	8.004	8.005	8.011	8.006	8.001
mg	47.8	59.4	51.6	48.3	71.9	72.2	69.6	38.4	77.5	78.9
al	77.9	80.0	79.8	79.1	87.8	87.4	89.1	94.9	98.8	99.1

mg = 100 (Mg/(Mg+Fe+2))

al = 100(A1/(A1+Cr+Fe+3))

SP415-SP417, SP420: fines inclusions dans Cpx.

lame	C31-2	C31-2	C21-1	A4-19						
roche	CXN	WL								
analyse	SP424	SP425	SP601	SP602	SP603	SP604	SP605	SP606	SP607	SP612
note	с	с	c ->	<- b	С	b ->	<- c	С	С	С
A1203	61.27	66.65	55.57	54.82	55.04	55.32	55.34	50.28	49.70	66.03
Cr203	0.18	0.14	10.07	10.28	10.57	9.97	9.89	15.63	13.09	0.03
Fe203	2.82	0.38	1.98	1.40	1.51	1.47	1.69	1.27	2.38	0.42
V203	0.08	0.06	0.04	0.04	0.02	0.05	0.04	0.01	0.03	0.00
TiO2	0.00	0.05	0.02	0.00	0.00	0.02	0.01	0.02	0.00	0.00
SiO2	na									
FeO	22.91	10.86	13.79	13.89	12.57	13.80	13.73	15.34	20.23	9.57
MgO	11.81	20.31	16.75	16.29	17.28	16.43	16.47	15.16	11.37	20.53
MnO	0.33	0.09	0.16	0.18	0.14	0.16	0.20	0.17	0.28	0.13
ZnO	0.29	0.19	1.18	1.11	1.05	1.28	1.27	0.98	1.72	0.49
NiO	0.02	0.00	0.05	0.05	0.03	0.02	0.05	0.01	0.01	0.00
Ca0	na									
total	99.71	98.73	99.61	98.06	98.21	98.52	98.69	98.87	98.81	97.20

formule structurale calculée sur 32 oxygènes 15.501 15.895 13.968 14.003 13.953 14.051 14.035 13.060 13.247 15.933 Al 0.022 1.698 1.762 1.797 1.682 2.724 2.340 0.004 0.030 1.698 Cr 0.239 0.274 0.210 0.405 0.064 0.318 0.229 0.244 0.059 Fe+3 0.455 0.010 0.007 0.007 0.004 0.009 0.007 0.003 0.006 0.000 0.014 v 0.000 0.008 0.003 0.000 0.000 0.003 0.001 0.004 0.000 0.000 ті Si 16.000 15.994 15.994 16.001 15.998 16.000 15.999 16.001 15.998 16.001 total 1.837 2.460 2.518 2.261 2.486 2.471 2.827 3.826 1.639 4.112 Fe+2 3.832 6.264 5.281 4.980 5.542 5.277 3.778 6.125 5.326 5.262 Mq 0.037 0.031 0.053 0.022 0.032 0.026 0.028 Mn 0.060 0.015 0.028 0.288 0.074 0.202 0.159 0.028 0.186 0.178 0.167 0.204 0.045 Zn 0.009 0.010 0.001 0.003 0.000 0.005 0.003 0.000 0.008 Ni 0.003 Ca 7.998 8.001 7.998 8.002 7.999 7.998 8.005 8.008 7.999 8.001 total 79.3 50 68.4 67.6 71 68 68.1 63.8 47.9 76.9 mg 99.6 87.9 87.8 81.7 82.8 87.4 87.6 87.2 97.0 99.5 al

mg = 100 (Mg/(Mg+Fe+2))

al = 100(Al/(Al+Cr+Fe+3))

SP603: petite inclusion Spl dans Cpx.

A4-19	A4-19	C31-2	C31-2	C31-2	C31-2	C31-2
WL	WL	CXN	CXN	CXN	CXN	CXN
SP613	SP614	SP615	SP616	SP617	SP618	SP619
c ->	<- b	C ->	<- b	С	С	С
66.63	67.56	64.07	63.91	66.02	60.44	65.58
0.03	0.03	0.18	0.18	0.14	0.14	0.18
0.54	0.76	1.03	0.72	0.35	3.06	0.64
0.01	0.02	0.04	0.04	0.01	0.01	0.03
0.02	0.00	0.07	0.06	0.00	0.00	0.01
na	na	na	na	na	na	na
7.01	6.73	15.49	15.42	11.06	22.87	10.83
22.19	22.76	16.82	16.68	19.88	11.56	19.86
0.05	0.10	0.21	0.23	0.10	0.30	0.14
0.72	0.66	0.20	0.19	0.15	0.29	0.20
0.01	0.01	0.00	0.02	0.03	0.00	0.03
na	na	na	na	na	na	na
97.21	98.63	98.11	97.45	97.74	98.67	97.50
	A4-19 WL SP613 C -> 66.63 0.03 0.54 0.01 0.02 na 7.01 22.19 0.05 0.72 0.01 na 97.21	A4-19 A4-19 WL WL SP613 SP614 c -> <- b	A4-19 A4-19 C31-2 WL WL CXN SP613 SP614 SP615 C -> <- b	A4-19 A4-19 C31-2 C31-2 WL WL CXN CXN SP613 SP614 SP615 SP616 C -> <-b	A4-19 A4-19 C31-2 C31-2 C31-2 WL WL CXN CXN CXN SP613 SP614 SP615 SP616 SP617 C -> <-b C -> <-b C -> <-b C 66.63 67.56 64.07 63.91 66.02 0.03 0.03 0.18 0.18 0.14 0.54 0.76 1.03 0.72 0.35 0.01 0.02 0.04 0.04 0.01 0.02 0.00 0.07 0.06 0.00 na na na na na 7.01 6.73 15.49 15.42 11.06 22.19 22.76 16.82 16.68 19.88 0.05 0.10 0.21 0.23 0.10 0.72 0.66 0.20 0.19 0.15 0.01 0.01 0.00 0.02 0.03 na na na na na 97.21 98.63 98.11 97.45 <	A4-19 A4-19 C31-2 C31-3 C31-2 C31-2 C31-3 C31-3 <th< td=""></th<>

formule structurale calculée sur 32 oxygènes

Al	15.902	15.875	15.778	15.830	15.921	15.474	15.868
Cr	0.005	0.004	0.029	0.030	0.023	0.025	0.029
Fe+3	0.083	0.114	0.162	0.114	0.053	0.500	0.099
v	0.002	0.004	0.007	0.007	0.002	0.001	0.004
Ti	0.004	0.001	0.011	0.010	0.000	0.000	0.002
Si							
total	15.996	15.998	15.987	15.991	15.999	16.000	16.002
Fe+2	1.188	1.123	2.707	2.710	1.893	4.154	1.859
Mg	6.698	6.764	5.239	5.224	6.063	3.745	6.078
Mn	0.008	0.016	0.036	0.042	0.018	0.056	0.023
Zn	0.108	0.097	0.030	0.030	0.023	0.046	0.031
Ni	0.002	0.001	0.000	0.004	0.005	0.000	0.006
Ca							
total	8.004	8.001	8.012	8.010	8.002	8.001	7.997
mg	84.9	85.8	65.9	65.8	76.2	47.4	76.6
al	99.4	99.3	98.8	99.1	99.5	96.7	99.2

mg = 100(Mg/(Mg+Fe+2))
al = 100(Al/(Al+Cr+Fe+3))

SP616: Spl vert foncé (altéré) SP615, SP616: Spl vert moyen SP617, SP619: Spl vert clair (non altéré)

lame	A7-9-6	A7-9	A7-9	A7-9	A7-9-1	A7-9-1	A7-9-1	A7-9	A7-9-2	A7-9-2
roche	MC4	XC	XC	XC	CXN	CXN	CXN	MNT	CXN	CXN
analyse	C01	C06	C07	C08	C011	C012	C013	C014	C016	C017
note		c ->	<->	<- b	Cpx2	Cpx2	Cpx2	b	c ->	<- b
SiO2	51.28	49.47	49.47	52.06	50.57	50.30	50.77	52.53	49.94	49.49
A1203	6.18	5.16	5.59	1.70	4.18	3.58	3.33	1.29	7.64	8.12
Fe203	2.64	5.31	4.80	4.49	4.81	5.97	5.34	4.73	2.82	3.37
TiO2	0.49	0.67	0.67	0.16	0.38	0.36	0.34	0.07	0.70	0.75
Cr203	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.08
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
MgO	16.95	11.85	11.52	12.67	13.07	13.29	13.13	13.83	14.14	14.07
FeO	3.77	5.35	5.31	5.06	4.31	3.17	3.80	3.28	4.69	4.39
MnO	0.15	0.30	0.32	0.39	0.41	0.45	0.41	0.39	0.27	0.27
Ca0	18.75	21.66	22.58	24.14	22.39	23.24	23.35	24.60	18.87	18.99
Na20	0.79	1.13	1.02	0.74	0.89	0.74	0.73	0.67	1.30	1.24
total	101.00	100.90	101.28	101.41	101.01	101.10	101.20	101.39	100.44	100.77

formule	structur	ale cal	culée su	r 6 oxy	gènes					
Si	1.847	1.835	1.829	1.923	1.863	1.855	1.871	1.928	1.823	1.802
Al	0.153	0.165	0.171	0.074	0.137	0.145	0.129	0.056	0.177	0.198
Fe+3	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.016	0.000	0.000
Al	0.109	0.061	0.073	0.000	0.045	0.011	0.016	0.000	0.152	0.150
Fe+3	0.072	0.148	0.133	0.122	0.133	0.166	0.148	0.115	0.077	0.092
Ti	0.013	0.019	0.019	0.004	0.011	0.010	0.009	0.002	0.019	0.021
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Mg	0.806	0.655	0.635	0.698	0.718	0.731	0.721	0.757	0.750	0.735
Fe+2	0.000	0.117	0.140	0.156	0.093	0.082	0.106	0.101	0.000	0.000
Mn	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.012	0.000	0.000
M1	1.000	1.000	1.000	0.992	1.000	1.000	1.000	0.987	1.000	1.000
Mg	0.104	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.029
Fe+2	0.114	0.049	0.024	0.000	0.040	0.016	0.011	0.000	0.143	0.134
Mn	0.005	0.009	0.010	0.000	0.013	0.014	0.013	0.000	0.008	0.008
Ca	0.724	0.861	0.894	0.955	0.884	0.918	0.922	0.967	0.738	0.741
Na	0.055	0.081	0.073	0.053	0.064	0.053	0.052	0.048	0.092	0.088
M2	1.002	1.000	1.001	1.008	1.001	1.001	0.998	1.015	1.000	1.000
mg	83.0	67.6	68.1	71.3	73.0	73.5	73.1	76.5	77.8	77.2

XC = xénocristal

C06-C08, C14: phénocristaux de la MNT C011-C013: Cpx vert clair dans CXN1a

399

1ame	A7-9-2	A7-9-3	A7-9-3	A7-9-3	A7-9	A7-9	A7-11-8	A7-11-8	A7-11-8	A7-11-8
roche	CXN	MC4	MC4	MC4	XC?	XC?	MC2	MC2	MC2	MC2
analyse	C018	C019	C021	C020	C022	C024	C033	C034	C035	C036
note	с	c ->	<->	<- b	С		C ->	<->	<->	<- b
SiO2	50.58	50.52	49.84	51.72	52.14	52.44	46.42	46.84	47.36	51.36
A1203	6.38	7.29	8.35	6.74	1.55	1.94	10.08	10.49	10.02	4.68
Fe203	2.61	2.74	2.07	0.88	2.65	7.69	4.24	4.18	3.55	2.07
TiO2	0.58	0.56	0.87	0.45	0.10	0.13	1.63	1.60	1.54	0.36
Cr203	0.24	0.03	0.04	0.01	0.00	0.00	0.00	0.00	0.00	1.02
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	14.75	15.29	13.32	15.43	11.61	13.18	9.55	9.85	9.95	17.09
FeO	5.08	4.88	6.46	6.24	8.64	1.34	4.72	4.65	5.16	3.87
MnO	0.32	0.30	0.32	0.03	0.41	0.46	0.19	0.19	0.19	0.37
CaO	18.88	18.84	18.66	18.76	23.35	21.83	21.64	21.89	22.08	18.61
Na20	1.13	0.95	1.29	0.96	0.59	2.03	1.58	1.50	1.43	0.67
total	100.55	101.40	101.22	101.22	101.04	101.04	100.05	101.19	101.28	100.10
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.846	1.824	1.813	1.866	1.947	1.922	1.73	1.724	1.742	1.871
Al	0.154	0.176	0.187	0.134	0.053	0.078	0.27	0.276	0.258	0.129
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.121	0.134	0.171	0.153	0.015	0.006	0.173	0.179	0.176	0.072
Fe+3	0.072	0.075	0.057	0.024	0.075	0.212	0.119	0.116	0.098	0.057
ті	0.016	0.015	0.024	0.012	0.003	0.004	0.046	0.044	0.043	0.010
Cr	0.007	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.029
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.784	0.775	0.722	0.811	0.646	0.720	0.531	0.541	0.546	0.832

formule	structur	cale cal	culée su	ır 6 oxy	gènes					
Si	1.846	1.824	1.813	1.866	1.947	1.922	1.73	1.724	1.742	1.871
Al	0.154	0.176	0.187	0.134	0.053	0.078	0.27	0.276	0.258	0.129
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.121	0.134	0.171	0.153	0.015	0.006	0.173	0.179	0.176	0.072
Fe+3	0.072	0.075	0.057	0.024	0.075	0.212	0.119	0.116	0.098	0.057
Ti	0.016	0.015	0.024	0.012	0.003	0.004	0.046	0.044	0.043	0.010
Cr	0.007	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.029
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.784	0.775	0.722	0.811	0.646	0.720	0.531	0.541	0.546	0.832
Fe+2	0.000	0.000	0.025	0.000	0.261	0.041	0.131	0.120	0.137	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	0.997	1.000	1.000	1.000	1.000
Mg	0.019	0.048	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.096
Fe+2	0.155	0.147	0.171	0.188	0.009	0.000	0.016	0.023	0.022	0.118
Mn	0.010	0.009	0.010	0.001	0.013	0.000	0.006	0.006	0.006	0.011
Ca	0.738	0.729	0.727	0.725	0.935	0.857	0.864	0.863	0.870	0.726
Na	0.080	0.067	0.091	0.067	0.043	0.144	0.114	0.107	0.102	0.047
м2	1.002	1.000	0.999	1.000	1.000	1.001	1.000	0.999	1.000	0.998

78.0 78.8 74.1 79.7 65.2 74.0 66.6 67.6 68.0

mg

84.1

lame	A7-11-3	A7-11-3	A7-11-3	A7-11-3	
roche	MC1	MC1	MC1	MC1	
analyse	C037	C038	C039	C040	
note	c ->	<->	<->	<- b	
SiO2	45.79	46.06	46.16	47.06	
A1203	11.01	11.19	10.53	6.60	
Fe203	4.97	4.35	5.08	5.20	
TiO2	1.20	1.22	1.22	0.91	
Cr203	0.00	0.00	0.00	0.26	
NiO	0.00	0.00	0.00	0.00	
MgO	10.74	10.57	10.99	12.48	
FeO	5.53	5.88	5.20	6.33	
MnO	0.28	0.31	0.37	0.43	
Ca0	18.84	18.99	18.97	18.53	
Na20	1.48	1.44	1.45	0.94	
total	99.84	100.01	99.97	98.74	
formule	structu	cale cal	culée su	ır 6 oxyg	ènes
Si	1.707	1.713	1.717	1.783	
Al	0.293	0.287	0.283	0.217	
Fe+3	0.000	0.000	0.000	0.000	
Al	0.191	0.204	0.179	0.078	
Fe+3	0.139	0.122	0.142	0.148	
Ti	0.034	0.034	0.034	0.026	
Cr	0.000	0.000	0.000	0.008	
Ni	0.000	0.000	0.000	0.000	
Mg	0.597	0.586	0.609	0.705	
Fe+2	0.039	0.054	0.036	0.035	
Mn	0.000	0.000	0.000	0.000	
M1	1.000	1.000	1.000	1.000	
Mg	0.000	0.000	0.000	0.000	
Fe+2	0.133	0.129	0.126	0.166	
Mn	0.009	0.010	0.012	0.014	
Ca	0.753	0.757	0.756	0.752	
Na	0.107	0.104	0.105	0.069	
M2	1.002	1.000	0.999	1.001	
mg	65.7	65.8	66.7	66.9	

lame	A6-24a	A6-24a	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-1
roche	WL	WL	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX1	CX2	CX3	CX4	CX5	CX6	CX7	CX8	CX9	CX10
note			c ->	c ->	<->	<->	<->	<- b		C ->
SiO2	51.31	52.12	54.87	54.84	54.88	54.64	54.84	54.54	54.70	54.42
A1203	6.18	5.00	0.70	0.71	0.42	0.60	0.61	0.66	0.49	0.69
Fe203	2.49	1.41	0.11	0.00	0.44	0.33	0.11	0.46	0.22	0.13
TiO2	0.22	0.21	0.10	0.10	0.08	0.12	0.06	0.09	0.12	0.05
Cr203	0.70	0.47	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.00
NiO	0.00	0.03	0.10	0.04	0.03	0.00	0.00	0.06	0.05	0.00
MgO	14.34	14.99	18.62	18.36	18.26	18.61	18.66	18.78	18.77	18.52
FeO	0.89	2.00	0.07	0.43	0.04	0.00	0.14	0.00	0.13	0.00
MnO	0.16	0.09	0.03	0.01	0.04	0.03	0.03	0.03	0.05	0.01
Ca0	20.99	20.87	24.95	24.75	25.71	25.22	25.07	24.89	24.75	25.21
Na2O	1.74	1.48	0.07	0.09	0.01	0.03	0.01	0.09	0,05	0.07
total	99.02	98.67	99.62	99.33	99.91	99.58	99.53	99.67	99.33	99.10
formule	structu	rale cal	culée s	ır 6 oxy	gènes					
Si	1.878	1.913	1.983	1.989	1.984	1.978	1.984	1.973	1.984	1.979
Al	0.122	0.087	0.017	0.011	0.016	0.022	0.016	0.027	0.016	0.021
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.144	0.129	0.013	0.019	0.002	0.004	0.010	0.001	0.005	0.009
Fe+3	0.069	0.039	0.003	0.000	0.012	0.009	0.003	0.013	0.006	0.004
Ti	0.006	0.006	0.003	0.003	0.002	0.003	0.002	0.003	0.003	0.001
Cr	0.020	0.014	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000
Ni	0.000	0.001	0.003	0.001	0.001	0.000	0.000	0.002	0.001	0.000
Mg	0.761	0.811	0.978	0.977	0.983	0.984	0.985	0.979	0.985	0.986
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.021	0.009	0.025	0.016	0.001	0.021	0.021	0.034	0.030	0.018
Fe+2	0.027	0.061	0.002	0.013	0.001	0.000	0.004	0.000	0.004	0.000
Mn	0.005	0.003	0.001	0.000	0.001	0.001	0.001	0.001	0.002	0.000
Ca	0.823	0.821	0.966	0.962	0.996	0.978	0.972	0.965	0.962	0.982
Na	0.123	0.106	0.005	0.006	0.001	0.002	0.001	0.006	0.003	0.005
м2	0.999	1.000	0.999	0.997	1.000	1.002	0.999	1.006	1.001	1.005
									00.0	00.5
mg	89.1	89.1	99.5	98.7	98.7	99.1	99.3	98.7	99.0	99.6

.

lame	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-1	A6-25-2	A6-25-2	A6-25-2	A6-25-2	A6-25-2
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX11	CX12	CX13	CX14	CX15	CX16	CX17	CX18	CX18	CX20
note	<->	<->	<->	<- b	С	C ->	<->	<- b		
SiO2	54.21	54.67	54.58	54.55	54.23	44.44	45.85	45.78	45.21	45.01
A1203	0.62	0.62	0.76	0.47	0.61	9.41	9.37	9.33	10.14	9.94
Fe203	0.34	0.00	0.41	0.00	0.43	7.11	6.10	7.43	5.96	7.41
TiO2	0.12	0.10	0.08	0.07	0.07	1.18	1.19	0.97	1.08	1.16
Cr203	0.09	0.00	0.00	0.03	0.00	0.03	0.00	0.01	0.00	0.03
NiO	0.00	0.00	0.08	0.00	0.01	0.05	0.07	0.07	0.03	0.03
MgO	18.81	18.51	18.67	16.46	16.48	11.30	11.81	12.85	11.53	12.75
FeO	0.00	0.18	0.00	3.06	2.39	3.87	4.67	3.36	4.12	2.92
MnO	0.05	0.00	0.00	0.21	0.05	0.25	0.31	0.17	0.26	0.26
CaO	25.20	24.94	24.74	24.72	24.87	19.65	19.47	17.66	19.62	17.89
Na20	0.04	0.04	0.09	0.20	0.27	1.05	1.04	1.37	1.06	1.31
total	99.48	99.06	99.41	99.77	99.41	98.34	99.88	99.00	99.01	98.71
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.968	1.987	1.978	1.996	1.988	1.690	1.712	1.713	1.700	1.689
A1	0.027	0.013	0.022	0.004	0.012	0.310	0.288	0.287	0.300	0.311
Fe+3	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.014	0.011	0.016	0.015	0.112	0.125	0.124	0.149	0.129
Fe+3	0.004	0.000	0.011	0.000	0.012	0.203	0.172	0.209	0.169	0.209
Ti	0.003	0.003	0.002	0.002	0.002	0.034	0.033	0.027	0.030	0.033
Cr	0.003	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.001
Ni	0.000	0.000	0.002	0.000	0.000	0.001	0.002	0.002	0.001	0.001
Mg	0.990	0.983	0.974	0.897	0.900	0.641	0.658	0.638	0.646	0.627
Fe+2	0.000	0.000	0.000	0.084	0.071	0.008	0.010	0.000	0.005	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.028	0.020	0.034	0.000	0.000	0.000	0.000	0.079	0.000	0.086
Fe+2	0.000	0.005	0.000	0.009	0.002	0.115	0.136	0.105	0.124	0.092
Mn	0.001	0.000	0.000	0.006	0.002	0.008	0.010	0.005	0.008	0.008
Ca	0.980	0.971	0.961	0.969	0.977	0.801	0.779	0.708	0.790	0.719
Na	0.003	0.003	0.007	0.014	0.019	0.077	0.075	0.100	0.077	0.095
M2	1.012	0.999	1.002	0.998	1.000	1.001	1.000	0.997	0.999	1.000
mg	99.1	99.5	98.9	90.6	91.4	66.3	67.4	69.5	68.4	70.3

CX15: petit Cpx <0.1 mm, près de CX14.

lame	A6-25-2	A2-7	A2-7	A2-7	A2-7	A2-7	A2-7	A2-7	A2-7	A2-7
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX21	CX22	CX23	CX24	CX25	CX27	CX28	CX29	CX30	CX31
note		C ->	<- b	С	Cpx2	С	±c ->	<- b	C ->	<- b
SiO2	45.08	47.01	47.06	47.25	45.58	46.76	47.28	46.41	46.62	46.60
A1203	8.51	11.57	11.50	11.27	5.57	11.25	11.25	10.96	11.22	11.27
Fe203	7.32	1.19	1.08	1.30	6.94	1.83	2.16	3.53	1.82	2.14
TiO2	1.16	1.24	1.18	1.23	0.10	1.14	0.76	0.94	1.14	1.19
Cr203	0.07	0.02	0.01	0.00	0.03	0.00	0.12	0.01	0.00	0.00
NiO	0.00	0.01	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.02
MgO	11.61	11.72	11.89	11.97	14.54	12.04	12.21	12.81	11.95	11.80
FeO	4.43	2.72	2.83	2.49	4.11	2.05	1.74	0.99	1.79	1.88
MnO	0.21	0.08	0.06	0.08	0.28	0.05	0.07	0.12	0.00	0.11
Ca0	18.93	22.98	22.96	23.04	18.09	22.96	23.24	22.38	23.21	23.09
Na2O	1.17	0.90	0.82	0.90	0.23	0.86	0.82	0.80	0.83	0.88
total	98.49	99.44	99.39	99.53	95.49	98.94	99.66	98.95	98.58	98.98
formule	structur	ale cal	culée su	r 6 oxy	gènes					
Si	1.713	1.730	1.732	1.736	1.776	1.728	1.734	1.715	1.728	1.724
Al	0.287	0.270	0.268	0.264	0.224	0.272	0.266	0.285	0.272	0.276
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.094	0.232	0.231	0.224	0.032	0.218	0.220	0.192	0.218	0.215
Fe+3	0.209	0.033	0.030	0.036	0.203	0.051	0.060	0.098	0.051	0.060
Ti	0.033	0.034	0.033	0.034	0.003	0.032	0.021	0.026	0.032	0.033
Cr	0.002	0.001	0.000	0.000	0.001	0.000	0.003	0.000	0.000	0.000
Ni	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001
Mg	0.658	0.643	0.653	0.656	0.760	0.663	0.668	0.684	0.660	0.651
Fe+2	0.004	0.057	0.053	0.050	0.000	0.036	0.028	0.000	0.039	0.040
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.085	0.000	0.000	0.022	0.000	0.000
Fe+2	0.137	0.027	0.034	0.026	0.134	0.027	0.025	0.030	0.016	0.018
Mn	0.007	0.002	0.002	0.003	0.009	0.002	0.002	0.004	0.000	0.004
Ca	0.771	0.906	0.906	0.907	0.755	0.909	0.913	0.886	0.922	0.915
Na	0.086	0.064	0.058	0.064	0.018	0.061	0.058	0.057	0.060	0.063
м2	1.001	0.999	1.000	1.000	1.001	0.999	0.998	0.999	0.998	1.000
mg	65.3	84.6	84.8	85.4	71.5	85.3	85.5	84.7	86.2	84.7

CX25: Cpx vert clair en bordure veinule Scp.

404

lame	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-31	A4-31
roche	WL	WL	WL	WL	WL	WL	WL	WL	CXN	CXN
analyse	CX32	CX33	CX36	CX37	CX40a	CX41a	CX41b	CX35	CX42	CX43
note	С	С	с					С	c ->	<->
SiO2	51.84	51.98	51.90	52.01	52.45	52.68	52.55	51.32	47.04	46.70
A1203	5.57	5.50	5.71	5.17	5.17	4.49	4.68	5.36	8.70	8.31
Fe203	0.44	0.44	0.55	0.88	0.22	0.00	0.00	1.20	2.77	3.54
TiO2	0.25	0.21	0.26	0.23	0.20	0.20	0.22	0.22	0.95	0.92
Cr203	0.08	0.00	0.03	0.00	0.00	0.09	0.03	0.07	0.08	0.07
NiO	0.11	0.03	0.02	0.00	0.04	0.02	0.00	0.00	0.00	0.04
MgO	16.00	16.02	16.02	16.35	16.19	16.53	16.69	16.34	13.49	13.48
FeO	1.07	0.88	0.87	0.56	1.32	1.37	1.36	0.26	0.86	0.00
MnO	0.08	0.00	0.11	0.07	0.09	0.09	0.15	0.11	0.10	0.05
Ca0	23.39	23.68	23.43	23.63	23.52	23.26	22.96	23.43	24.12	24.48
Na2O	0.55	0.55	0.59	0.53	0.53	0.46	0.49	0.45	0.26	0.29
total	99.38	99.29	99.49	99.43	99.73	99.19	99.13	98.76	98.37	97.88
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.885	1.890	1.883	1.889	1.900	1.916	1.911	1.877	1.752	1.749
Al	0.115	0.110	0.117	0.111	0.100	0.084	0.089	0.123	0.248	0.251
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.124	0.126	0.127	0.110	0.121	0.109	0.112	0.108	0.134	0.116
Fe+3	0.012	0.012	0.015	0.024	0.006	0.000	0.000	0.033	0.077	0.100
Ti	0.007	0.006	0.007	0.006	0.005	0.005	0.006	0.006	0.027	0.026
Cr	0.002	0.000	0.001	0.000	0.000	0.003	0.001	0.002	0.002	0.002
Ni	0.003	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.001
Mg	0.852	0.855	0.849	0.860	0.867	0.882	0.881	0.851	0.749	0.753
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.015	0.013	0.018	0.025	0.007	0.014	0.024	0.039	0.000	0.000
Fe+2	0.033	0.027	0.026	0.017	0.040	0.042	0.041	0.008	0.016	0.000
Mn	0.002	0.000	0.003	0.002	0.003	0.003	0.005	0.003	0.003	0.000
Ca	0.911	0.922	0.911	0.919	0.913	0.907	0.895	0.918	0.962	0.982
Na	0.039	0.039	0.042	0.037	0.037	0.032	0.035	0.032	0.019	0.021
M2	1.000	1.001	1.000	1.000	1.000	0.998	1.000	1.000	1.000	1.003
										0.5
mg	95.1	95.7	95.5	95.6	95.6	95.6	95.6	95.6	95.6	95.6

lame	A4-31	A4-31	A4-31	A4-31	A4-31	A4-31	A4-31	A7-1	A7-1	A7-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX44	CX45	CX46	CX47	CX48	CX50	CX51	CX53	CX54	CX55
note	<->	<->	<->	<->	<- b	±c ->	<- ±c			с
SiO2	47.62	47.27	47.42	47.65	47.37	47.41	47.65	53.21	52.86	53.61
A1203	8.50	8.36	8.42	8.37	8.26	8.64	8.76	2.14	1.91	1.53
Fe203	1.92	3.19	2.67	2.14	2.23	2.56	1.93	0.00	0.11	0.00
TiO2	0.95	0.94	1.03	1.02	1.03	1.04	0.99	0.29	0.32	0.23
Cr203	0.14	0.06	0.13	0.01	0.08	0.08	0.10	0.05	0.00	0.10
NiO	0.04	0.05	0.00	0.03	0.03	0.02	0.00	0.03	0.04	0.00
MgO	13.37	13.78	13.65	13.58	13.56	13.49	13.43	15.01	15.10	14.81
FeO	1.47	0.17	0.69	1.46	1.33	0.74	1.64	4.19	4.35	4.96
MnO	0.03	0.00	0.03	0.05	0.06	0.09	0.07	0.16	0.18	0.15
Ca0	24.32	24.27	24.32	24.10	23.96	24.12	23.76	24.49	24.38	24.43
Na20	0.28	0.32	0.28	0.26	0.29	0.39	0.37	0.20	0.16	0.30
total	98.64	98.41	98.64	98.67	98.20	98.58	98.70	99.77	99.41	100.12
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.768	1.757	1.759	1.769	1.767	1.760	1.767	1.957	1.954	1.971
Al	0.232	0.243	0.241	0.231	0.233	0.240	0.233	0.043	0.046	0.029
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.140	0.123	0.127	0.135	0.130	0.138	0.150	0.050	0.037	0.037
Fe+3	0.054	0.089	0.075	0.060	0.063	0.072	0.054	0.000	0.003	0.000
Ті	0.027	0.026	0.029	0.028	0.029	0.029	0.028	0.008	0.009	0.006
Cr	0.004	0.002	0.004	0.000	0.002	0.002	0.003	0.001	0.000	0.003
Ni	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.000
Mg	0.740	0.759	0.755	0.752	0.754	0.746	0.742	0.823	0.832	0.812
Fe+2	0.034	0.000	0.010	0.024	0.021	0.012	0.023	0.117	0.118	0.142
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.012	0.005	0.011	0.021	0.020	0.011	0.028	0.012	0.017	0.011
Mn	0.001	0.000	0.001	0.002	0.002	0.003	0.002	0.005	0.006	0.005
Ca	0.967	0.966	0.967	0.958	0.957	0.959	0.944	0.965	0.966	0.962
Na	0.020	0.023	0.020	0.019	0.021	0.028	0.026	0.014	0.011	0.021
M2	1.000	0.998	0.999	1.000	1.000	1.001	1.000	0.996	1.000	0.999
mg	95.6	95.6	95.6	87.7	87.9	88.7	87.6	86.4	85.8	84.1

lame	A5-9	A5-9	A5-9	A5-9	A5-9	A5-9	A5-9	A5-9	A5-8	A5-8
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX56	CX57	CX58	CX59	CX60	CX61	CX62	CX63a	CX63b	CX63c
note	b ->	<->	<- C	<- C	c ->	<- b				
SiO2	52.13	52.12	52.39	51.74	51.40	52.07	50.99	51.28	45.26	44.27
A1203	3.62	3.62	3.63	3.61	3.67	3.84	3.56	3.33	9.03	8.52
Fe203	0.98	0.54	0.76	1.08	0.86	1.09	2.42	2.25	5.40	6.33
TiO2	0.26	0.22	0.19	0.21	0.22	0.28	0.26	0.17	1.38	1.43
Cr203	0.07	0.00	0.03	0.00	0.03	0.00	0.08	0.01	0.15	0.16
NiO	0.00	0.03	0.00	0.00	0.00	0.03	0.02	0.00	0.00	0.00
MgO	15.90	15.91	16.07	15.94	15.87	15.73	15.99	16.08	11.50	11.66
FeO	1.21	1.87	1.53	1.27	1.35	1.58	0.00	0.03	2.42	2.38
MnO	0.08	0.01	0.06	0.10	0.03	0.07	0.03	0.03	0.26	0.21
Ca0	24.37	24.02	24.05	24.05	23.88	24.29	24.35	24.46	21.77	21.25
Na2O	0.36	0.30	0.40	0.32	0.31	0.35	0.32	0.32	0.91	0.74
total	98.98	98.64	99.11	98.32	97.62	99.33	98.02	97.96	98.08	96.95
formule	structur	rale cal	culée su	ar 6 oxy	gènes					
Si	1.913	1.919	1.919	1.912	1.912	1.907	1.891	1.902	1.714	1.701
Al	0.087	0.081	0.081	0.088	0.088	0.093	0.109	0.098	0.286	0.299
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.070	0.076	0.076	0.069	0.073	0.073	0.046	0.047	0.117	0.087
Fe+3	0.027	0.015	0.021	0.030	0.024	0.030	0.068	0.063	0.154	0.183
Ti	0.007	0.006	0.005	0.006	0.006	0.008	0.007	0.005	0.039	0.041
Cr	0.002	0.000	0.001	0.000	0.001	0.000	0.002	0.000	0.004	0.005
Ni	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000
Mg	0.870	0.873	0.878	0.878	0.880	0.859	0.876	0.885	0.649	0.668
Fe+2	0.024	0.029	0.019	0.017	0.016	0.029	0.000	0.000	0.037	0.016
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.004	0.000	0.000
Fe+2	0.013	0.029	0.028	0.022	0.026	0.020	0.000	0.001	0.040	0.061
Mn	0.002	0.000	0.002	0.003	0.001	0.002	0.001	0.001	0.008	0.007
Ca	0.959	0.948	0.944	0.952	0.952	0.953	0.968	0.972	0.883	0.875
Na	0.026	0.022	0.028	0.023	0.022	0.025	0.023	0.023	0.067	0.055
м2	1.000	0.999	1.002	1.000	1.001	1.000	1.000	1.001	0.998	0.998
mg	93.1	92.3	92.8	92.8	92.8	92.8	92.8	92.8	92.8	92.8

lame	A5-8	A5-8	A5-8	A5-8	A5-8	B3-12	B3-12	B3-12	В3-12	B3-12
roche	CXN	CXN	CXN	CXN	CXN	WB	WB	WB	WB	WB
analyse	CX63d	CX63e	CX63f	CX63g	CX63h	CX64	CX65	CX66	CX67	CX68
note						C ->	<->	<- b	C ->	<- b
SiO2	45.20	45.86	45.41	45.05	45.87	50.31	50.85	50.96	50.29	49.84
A1203	9.84	9.75	9.48	9.39	9.54	4.34	4.92	4.16	4.61	5.18
Fe203	2.37	3.25	3.52	3.93	2.61	4.74	2.66	1.38	4.14	1.90
TiO2	1.53	1.51	1.26	1.35	1.54	0.36	0.38	0.44	0.43	0.60
Cr203	0.19	0.15	0.17	0.21	0.17	0.05	0.03	0.00	0.06	0.02
NiO	0.01	0.00	0.03	0.00	0.00	0.06	0.01	0.00	0.04	0.03
MgO	10.70	11.15	10.70	10.95	10.80	12.44	12.76	14.19	12.88	13.99
Fe0	4.18	3.41	3.88	3.61	4.01	7.41	6.05	8.02	6.32	6.50
MnO	0.15	0.15	0.19	0.17	0.13	0.29	0.22	0.35	0.30	0.26
Ca0	21.04	21.62	21.72	21.69	21.89	18.42	19.81	18.63	19.73	18.67
Na2O	1.11	1.10	0.93	0.88	1.03	1.51	1.46	0.81	1.20	0.98
total	96.32	97.95	97.29	97.23	97.59	99.93	99.15	98.94	100.00	97.97
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.736	1.732	1.733	1.722	1.741	1.881	1.896	1.906	1.872	1.876
Al	0.264	0.268	0.267	0.278	0.259	0.119	0.104	0.094	0.128	0.124
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.181	0.166	0.159	0.145	0.168	0.072	0.112	0.089	0.074	0.106
Fe+3	0.069	0.092	0.101	0.113	0.075	0.133	0.075	0.039	0.116	0.054
Ti	0.044	0.043	0.036	0.039	0.044	0.010	0.011	0.012	0.012	0.017
Cr	0.006	0.005	0.005	0.006	0.005	0.001	0.001	0.000	0.002	0.001
Ni	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.001	0.001
Mg	0.613	0.628	0.609	0.624	0.611	0.693	0.709	0.791	0.715	0.785
Fe+2	0.087	0.066	0.089	0.073	0.097	0.089	0.092	0.069	0.080	0.036
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.047	0.042	0.035	0.042	0.030	0.143	0.097	0.182	0.117	0.169
Mn	0.005	0.005	0.006	0.006	0.004	0.009	0.007	0.011	0.010	0.008
Ca	0.866	0.875	0.888	0.888	0.890	0.738	0.791	0.747	0.787	0.753
Na	0.083	0.081	0.069	0.065	0.076	0.110	0.106	0.059	0.086	0.071
M2	1.001	1.003	0.998	1.001	1.000	1.000	1.001	0.999	1.000	1.001
										ac 0
mg	92.8	92.8	73.0	73.2	75.2	65.5	72.9	73.2	69.6	75.2

lame	В3-12	B3-12	B3-12	B3-12	B3-12	B3-12	A5-18	A5-18	A5-18	A5-18
roche	WB	WB	WB	WB	WB	WB	CXN	CXN	CXN	CXN
analyse	CX70	CX71	CX72	CX73	CX74	CX75a	CX75b	CX76	CX77	CX78
note	b	c ->	c ->	<->	<- b	С	c ->	<->	<>	<->
SiO2	50.84	50.23	50.31	49.76	50.85	51.00	49.41	48.50	48.41	47.56
A1203	4.32	4.93	5.14	4.46	4.45	4.65	7.95	8.08	8.56	8.65
Fe203	2.34	6.38	4.54	2.05	2.44	2.76	0.00	1.60	0.97	2.02
TiO2	0.34	0.40	0.47	0.38	0.38	0.40	0.61	0.60	0.75	0.68
Cr203	0.01	0.04	0.02	0.02	0.00	0.07	0.13	0.05	0.21	0.15
NiO	0.00	0.00	0.00	0.00	0.00	0.04	0.03	0.00	0.00	0.00
MgO	13.71	12.39	11.34	11.59	13.18	12.48	12.55	12.96	12.49	12.58
Fe0	9.99	5.77	5.14	7.86	7.62	7.55	4.31	3.13	3.68	2.59
MnO	0.43	0.24	0.23	0.30	0.32	0.22	0.04	0.05	0.10	0.07
CaO	16.96	19.01	20.13	17.27	18.75	19.12	23.56	23.22	23.48	23.35
Na2O	0.96	1.70	2.00	1.91	1.23	1.44	0.55	0.55	0.51	0.57
total	99.90	101.09	99.32	95.60	99.22	99.73	99.14	98.74	99.16	98.22
formule	structu	rale cal	culée su	ir 6 oxy	gènes					
Si	1.898	1.854	1.881	1.929	1.901	1.900	1.829	1.802	1.795	1.779
Al	0.102	0.146	0.119	0.071	0.099	0.100	0.171	0.198	0.205	0.221
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.088	0.069	0.108	0.133	0.097	0.104	0.176	0.156	0.169	0.160
Fe+3	0.066	0.177	0.128	0.060	0.069	0.077	0.000	0.045	0.027	0.057
Ti	0.010	0.011	0.013	0.011	0.011	0.011	0.017	0.017	0.021	0.019
Cr	0.000	0.001	0.001	0.001	0.000	0.002	0.004	0.001	0.006	0.004
Ni	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000
Mg	0.763	0.682	0.632	0.670	0.735	0.693	0.693	0.718	0.690	0.701
Fe+2	0.073	0.060	0.118	0.125	0.088	0.112	0.109	0.063	0.087	0.059
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.239	0.118	0.043	0.130	0.150	0.123	0.025	0.034	0.027	0.022
Mn	0.014	0.007	0.007	0.010	0.010	0.007	0.001	0.001	0.003	0.002
Ca	0.678	0.752	0.806	0.717	0.751	0.763	0.934	0.925	0.933	0.936
Na	0.070	0.122	0.145	0.144	0.089	0.104	0.039	0.040	0.036	0.041
M2	1.001	0.999	1.001	1.001	1.000	0.997	0.999	1.000	0.999	1.001
										0.5.5
mg	66.9	65.8	68.6	68.0	70.5	69.0	83.8	83.5	83.0	83.6

lame	A5-18	A5-18	A5-18	A5-18	A5-18	A5-18	A5-18	A5-1	A5-1	A5-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX79	CX80	CX81	CX82	CX83	CX84	CX85a	CX86	CX87	CX88
note	<->	<- b	± b	c ->	c ->	<->	<- b	±c ->	±b ->	<- b
SiO2	47.42	47.81	48.62	48.29	48.49	48.61	47.94	50.78	50.16	49.23
A1203	8.91	8.65	7.86	8.06	8.07	8.15	8.55	7.00	7.37	8.26
Fe203	3.09	2.02	1.39	1.82	1.50	1.61	2.24	0.00	0.33	0.71
ті02	0.73	0.73	0.68	0.68	0.62	0.63	0.68	0.77	0.65	0.58
Cr203	0.15	0.16	0.10	0.15	0.10	0.10	0.16	0.04	0.08	0.00
NiO	0.04	0.00	0.01	0.00	0.01	0.02	0.00	0.02	0.00	0.00
MgO	12.64	12.21	12.98	12.78	12.82	12.79	12.70	14.87	14.83	14.85
FeO	2.09	2.69	3.16	2.86	3.22	3.17	2.62	0.47	0.16	0.00
MnO	0.11	0.05	0.03	0.05	0.05	0.11	0.11	0.09	0.03	0.06
Ca0	23.02	23.24	23.23	23.66	23.53	23.38	23.16	25.04	24.92	24.78
Na2O	0.65	0.73	0.58	0.52	0.50	0.55	0.65	0.43	0.41	0.49
total	98.85	98.29	98.64	98.87	98.91	99.12	98.81	99.51	98.94	98.96
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.763	1.786	1.808	1.795	1.801	1.801	1.782	1.846	1.833	1.802
Al	0.237	0.214	0.192	0.205	0.199	0.199	0.218	0.154	0.167	0.198
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.154	0.167	0.152	0.148	0.154	0.157	0.157	0.146	0.150	0.158
Fe+3	0.086	0.057	0.039	0.051	0.042	0.045	0.063	0.000	0.009	0.020
Ti	0.020	0.021	0.019	0.019	0.017	0.018	0.019	0.021	0.018	0.016
Cr	0.004	0.005	0.003	0.004	0.003	0.003	0.005	0.001	0.002	0.000
Ni	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000
Mg	0.701	0.680	0.720	0.708	0.710	0.706	0.704	0.806	0.808	0.806
Fe+2	0.034	0.070	0.067	0.070	0.074	0.070	0.052	0.014	0.005	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.001	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.992	0.993	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
Fe+2	0.031	0.014	0.031	0.019	0.026	0.028	0.030	0.000	0.000	0.000
Mn	0.004	0.002	0.001	0.002	0.002	0.003	0.003	0.000	0.000	0.002
Ca	0.917	0.930	0.926	0.942	0.936	0.928	0.923	0.975	0.976	0.972
Na	0.047	0.053	0.042	0.038	0.036	0.040	0.047	0.030	0.029	0.035
М2	0.999	0.999	1.000	1.001	1.000	0.999	1.003	1.005	1.005	1.013
mg	82.3	82.8	84.0	83.5	83.3	83.2	82.9	98.3	98.3	97.6

.

lame	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX89	CX90	CX97b	CX97c	CX91	CX93	CX94	CX95	CX96	CX97a
note	c ->	<- b	Cpx2	Cpx2		Cpx2	c ->	<- b	c ->	<- b
SiO2	49.59	49.01	52.97	52.27	47.88	53.65	49.12	49.26	49.32	49.52
A1203	8.59	8.51	0.96	1.21	10.53	0.58	8.99	8.59	8.74	8.63
Fe203	0.83	0.92	2.04	2.77	0.49	1.73	0.23	0.87	0.64	0.64
TiO2	0.61	0.59	0.09	0.11	0.65	0.05	0.67	0.53	0.63	0.58
Cr203	0.00	0.07	0.05	0.00	0.06	0.01	0.03	0.00	0.00	0.10
NiO	0.01	0.03	0.00	0.05	0.03	0.03	0.00	0.00	0.00	0.01
MgO	14.75	14.64	14.84	14.47	13.71	15.98	14.21	14.76	14.60	14.80
FeO	0.00	0.00	3.95	3.53	0.00	2.11	0.00	0.00	0.00	0.00
MnO	0.11	0.05	0.24	0.14	0.01	0.10	0.04	0.01	0.03	0.07
Ca0	25.04	24.81	24.43	24.55	24.60	25.48	24.90	24.73	24.81	24.93
Na2O	0.39	0.41	0.30	0.36	0.59	0.20	0.47	0.41	0.41	0.49
total	99.92	99.04	9 9 .87	99.46	98.55	99.92	98.66	99.16	99.18	99.77
formule	structur	cale cal	c ulée su	ir 6 oxy	gènes					
Si	1.798	1.794	1.959	1.944	1.758	1.968	1.799	1.798	1.799	1.797
A1	0.202	0.206	0.041	0.053	0.242	0.025	0.201	0.202	0.201	0.203
Fe+3	0.000	0.000	0.000	0.003	0.000	0.007	0.000	0.000	0.000	0.000
Al	0.165	0.161	0.001	0.000	0.214	0.000	0.187	0.168	0.175	0.166
Fe+3	0.023	0.025	0.057	0.074	0.014	0.041	0.006	0.024	0.018	0.018
Ti	0.017	0.016	0.003	0.003	0.018	0.001	0.019	0.014	0.017	0.016
Cr	0.000	0.002	0.001	0.000	0.002	0.000	0.001	0.000	0.000	0.003
Ni	0.000	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.000
Mg	0.795	0.795	0.818	0.802	0.751	0.874	0.776	0.794	0.790	0.797
Fe+2	0.000	0.000	0.120	0.110	0.000	0.065	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.004	0.000	0.003	0.001	0.000	0.000	0.000
M1	1.000	1.000	1.000	0.994	1.000	0.985	0.990	1.000	1.000	1.000
Mg	0.002	0.004	0.000	0.000	0.000	0.000	0.000	0.009	0.004	0.004
Fe+2	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.003	0.001	0.008	0.000	0.000	0.000	0.000	0.000	0.001	0.002
Ca	0.973	0.973	0.968	0.978	0.968	1.002	0.977	0.967	0.969	0.970
Na	0.027	0.029	0.022	0.026	0.042	0.014	0.033	0.029	0.029	0.034
M2	1.005	1.007	1.000	1.004	1.010	1.016	1.010	1.005	1.003	1.010
					a.c			05.0	07.0	07.0
mg	97.2	97.0	82.0	81.1	98.2	88.6	99.2	97.1	97.8	97.8

CX97b, c, CX93: Cpx2 incolore.

411

lame	A5-1	A5-1	A5-1	A5-1	B3-12	A5-34	A5-34	A5-34	A5-34	A5-34
roche	CXN	CXN	CXN	CXN	WB	WB	WB	WB	WB	ŴВ
analyse	CX97d	CX97e	CX97f	CX97g	CX85c	CX98	CX101	CX102	CX103	CX104a
note	Cpx2	Cpx2	Cpx2	Cpx2?		c ->	<- b	C ->	<->	<- b
SiO2	51.44	53.04	49.08	50.92	49.09	53.12	53.52	52.36	52.55	52.55
A1203	3.79	2.49	9.49	4.47	2.44	2.15	2.08	2.33	2.24	2.18
Fe203	1.30	0.99	0.54	1.28	4.87	1.64	0.00	0.32	1.83	1.18
TiO2	0.68	0.44	0.55	0.94	0.51	0.31	0.33	0.32	0.26	0.23
Cr203	0.00	0.00	0.00	0.10	0.14	0.15	0.20	0.27	0.33	0.52
NiO	0.00	0.08	0.01	0.00	0.00	0.02	0.02	0.05	0.05	0.02
MgO	16.12	16.94	14.80	15.96	15.00	15.68	15.05	15.06	15.23	15.04
Fe0	0.00	0.49	0.00	0.00	0.00	3.99	4.27	3.91	3.20	3.99
MnO .	0.00	0.04	0.07	0.11	0.09	0.18	0.16	0.12	0.14	0.16
CaO	25.46	25.35	24.63	25.67	24.66	23.48	23.48	23.30	23.39	22.89
Na2O	0.23	0.14	0.49	0.18	0.17	0.33	0.40	0.46	0.56	0.60
total	99.02	100.00	99.66	99.63	96.97	101.05	99.51	98.50	99.78	99.36
formule	structu	rale cal	culée su	ir 6 oxy	gènes					
Si	1.886	1.925	1.781	1.860	1.865	1.933	1.968	1.948	1.934	1.943
A1	0.114	0.075	0.219	0.140	0.109	0.067	0.032	0.052	0.066	0.057
Fe+3	0.000	0.000	0.000	0.000	0.026	0.000	0.000	0.000	0.000	0.000
Al	0.050	0.032	0.187	0.052	0.000	0.025	0.058	0.050	0.031	0.038
Fe+3	0.036	0.027	0.015	0.035	0.113	0.045	0.000	0.009	0.051	0.033
Ti	0.019	0.012	0.015	0.026	0.015	0.009	0.009	0.009	0.007	0.007
Cr	0.000	0.000	0.000	0.003	0.004	0.004	0.006	0.008	0.010	0.015
Ni	0.000	0.002	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001
Mg	0.881	0.916	0.783	0.869	0.849	0.851	0.825	0.835	0.836	0.829
Fe+2	0.000	0.011	0.000	0.000	0.000	0.065	0.101	0.088	0.064	0.077
Mn	0.000	0.000	0.000	0.004	0.003	0.000	0.000	0.000	0.000	0.000
M1	0.986	1.000	1.000	0.989	0.984	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.000	0.004	0.000	0.000	0.000	0.056	0.030	0.034	0.035	0.046
Mn	0.000	0.001	0.002	0.000	0.000	0.006	0.005	0.004	0.004	0.005
Ca	1.001	0.986	0.958	1.005	1.004	0.916	0.925	0.929	0.922	0.907
Na	0.017	0.010	0.034	0.013	0.013	0.023	0.029	0.033	0.040	0.043
M2	1.018	1.001	1.011	1.018	1.017	1.001	0.989	1.000	1.001	1.001
mq	96.1	95.6	98.2	96.1	85.9	83.7	86.3	86.4	84.8	84.2

CX97d, e, f, g: Cpx formant symplectite (avec Scp ?).

lame	A4-30	A4-30	A4-30	A4-30	A5-41	A5-41	A5-41	A5-41	A5-41	A6-5
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX104b	CX104c	CX104d	CX104e	CX105	CX106	CX107	CX108	CX109	CX113
	c ->	<->	<- b		C ->	<->	<- b	C ->	<- b	b
SiO2	44.62	44.89	45.40	44.95	53.69	53.62	53.62	52.85	53.69	50.93
A1203	12.73	12.66	12.55	12.79	1.80	1.86	1.64	1.98	2.06	3.09
Fe203	3.48	2.64	1.59	3.07	1.20	0.22	0.98	1.08	0.00	2.22
TiO2	1.44	1.49	1.41	1.49	0.13	0.11	0.12	0.07	0.17	0.32
Cr203	0.01	0.05	0.07	0.02	0.01	0.01	0.02	0.00	0.04	0.03
NiO	0.04	0.00	0.00	0.02	0.03	0.00	0.01	0.01	0.00	0.03
MgO	9.53	9.56	9.74	9.69	17.92	17.49	17.77	17.48	17.26	13.28
FeO	3.34	4.18	4.62	3.38	0.43	1.43	0.76	0.49	1.73	7.03
MnO	0.14	0.06	0.16	0.13	0.07	0.07	0.11	0.10	0.05	0.42
Ca0	22.03	21.80	22.00	22.27	23.40	23.41	23.65	23.53	23.68	21.09
Na2O	1.25	1.25	1.13	1.24	0.39	0.35	0.29	0.31	0.30	0.66
total	98.61	98.58	98.67	99.05	99.07	98.57	98.97	97.90	98.98	99.10
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.675	1.685	1.700	1.678	1.956	1.965	1.958	1.950	1.962	1.914
Al	0.325	0.315	0.300	0.322	0.044	0.035	0.042	0.050	0.038	0.086
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.238	0.245	0.254	0.241	0.033	0.045	0.029	0.036	0.051	0.051
Fe+3	0.098	0.075	0.045	0.086	0.033	0.006	0.027	0.030	0.000	0.063
Ti	0.041	0.042	0.040	0.042	0.004	0.003	0.003	0.002	0.005	0.009
Cr	0.000	0.001	0.002	0.001	0.000	0.000	0.001	0.000	0.001	0.001
Ni	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.001
Mg	0.533	0.535	0.544	0.539	0.929	0.946	0.940	0.932	0.940	0.744
Fe+2	0.089	0.102	0.115	0.090	0.000	0.000	0.000	0.000	0.003	0.131
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.044	0.009	0.027	0.029	0.000	0.000
Fe+2	0.016	0.029	0.030	0.016	0.013	0.044	0.023	0.015	0.050	0.090
Mn	0.005	0.002	0.005	0.004	0.002	0.002	´0.003	0.003	0.002	0.013
Ca	0.886	0.877	0.883	0.891	0.913	0.920	0.925	0.931	0.927	0.849
Na	0.091	0.091	0.082	0.090	0.028	0.025	0.020	0.022	0.021	0.048
M2	0.998	0.999	1.000	1.001	1.000	1.000	0.998	1.000	1.000	1.000
mq	72.4	72.2	74.1	73.7	95.5	95.0	95.1	95.5	94.7	72.4

lame	A6-5	A6-5	A6-5	A5-3	A5-3	A5-3	A5-3	A5-3	A7-13	A7-13
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	MC4	MC4
analyse	CX117	CX118	CX120	CX122	CX123	CX124	CX125	CX126	CX127	CX128
note	c ->	<- b	b	c ->	<->	<- b	С	С	±b ->	<->
SiO2	50.13	50.02	50.85	46.91	47.19	47.06	47.98	47.63	49.92	50.12
A1203	4.01	3.67	3.21	10.68	10.59	10.71	10.13	10.46	7.42	7.18
Fe203	2.30	3.79	4.14	1.06	1.60	2.13	0.86	2.15	1.30	1.41
TiO2	0.31	0.33	0.29	0.56	0.61	0.61	0.61	0.61	0.72	0.76
Cr203	0.05	0.05	0.03	0.07	0.00	0.06	0.01	0.03	0.08	0.09
NiO	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.04	0.05
MgO	12.36	13.47	13.87	11.83	11.96	11.76	12.18	12.09	14.84	15.43
FeO	7.27	7.19	5.93	2.10	2.10	1.64	2.75	2.09	7.54	7.49
MnO	0.36	0.38	0.41	0.09	0.10	0.06	0.06	0.08	0.18	0.24
Ca0	20.70	20.10	20.77	22.82	22.93	22.94	22.74	22.89	16.62	16.41
Na20	0.86	0.59	0.73	0.87	0.89	1.02	0.93	0.94	1.04	0.92
total	98.39	99.59	100.23	96.99	97.97	97.99	98.25	99.04	99.70	100.10
formule	structur	ale cal	culée su	ır 6 oxy	gènes					
Si	1.900	1.877	1.890	1.763	1.760	1.754	1.782	1.759	1.837	1.836
Al	0.100	0.123	0.110	0.237	0.240	0.246	0.218	0.241	0.163	0.164
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.079	0.039	0.031	0.236	0.225	0.224	0.226	0.214	0.159	0.146
Fe+3	0.066	0.107	0.116	0.030	0.045	0.060	0.024	0.060	0.036	0.039
Ti	0.009	0.009	0.008	0.016	0.017	0.017	0.017	0.017	0.020	0.021
Cr	0.001	0.002	0.001	0.002	0.000	0.002	0.000	0.001	0.002	0.003
Ni	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.002
Mg	0.698	0.754	0.768	0.663	0.665	0.653	0.675	0.666	0.782	0.789
Fe+2	0.146	0.089	0.076	0.053	0.048	0.044	0.058	0.040	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
				0 000	0 000	0 000	0 000	0 000	0 022	0 054
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.052	0.034
Fe+2	0.084	0.137	0.108	0.013	0.017	0.007	0.020	0.025	0.252	0.250
Mn Ge	0.012	0.012	0.013	0.003	0.003	0.002	0.002	0.002	0.000	0.007
ca Na	0.840	0.808	0.827	0.919	0.910	0.910	0.905	0.500	0.000	0.044
ыла	0.003	1 000	1 000	0.000	1 000	0.074	1 002	1 000	0.074	1 000
1°1Z	0.999	1.000	T.000	0.990	T.000	0.222	T.002	1.000	0.775	1.000
mg	70.2	69.4	71.9	87.4	85.8	85.5	86.0	84.2	75.2	75.8
ž										

CX125, CX126: Cpx de la matrice de la MNT CX127, CX128: MC4

.

lame	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13
roche	MC4	MC4	MC4	MC4	MC4	MC4	MC1	MC1	MC1	MNT
analyse	CX129	CX130	CX131	CX132	CX133	CX134	CX135	CX136	CX137	CX139
note	c ->	<->	<->	<->	<->	<- b	c ->	<->	b ->	<- b
SiO2	50.13	49.70	48.30	48.32	48.13	47.97	47.34	47.19	46.80	53.51
A1203	7.21	7.33	8.97	8.21	7.64	7.60	8.12	7.91	7.63	0.81
Fe203	0.43	0.97	2.25	2.65	3.60	2.74	2.42	2.73	3.34	0.97
TiO2	0.71	0.73	1.02	1.05	0.95	1.13	1.35	1.49	1.58	0.07
Cr203	0.13	0.14	0.00	0.02	0.01	0.03	0.02	0.00	0.00	0.02
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
MgO	14.93	15.10	13.85	13.19	13.17	13.53	11.12	11.28	11.48	14.01
Fe0	8.04	7.79	7.59	6.01	5.52	6.64	7.40	6.92	6.82	6.50
MnO	0.21	0.19	0.18	0.16	0.25	0.12	0.22	0.21	0.18	0.30
Ca0	16.69	16.43	16.39	17.64	18.47	17.06	19.69	19.90	19.78	23.63
Na2O	0.93	0.89	1.09	1.39	1.20	1.24	1.09	1.07	0.98	0.40
total	99.41	99.27	99.64	98.64	98.94	98.06	98.77	98.70	98.59	100.26
formule	structu:	rale cal	culée su	ır 6 oxy	gènes					
Si	1.849	1.837	1.786	1.803	1.797	1.805	1.787	1,783	1.773	1.982
Al	0.151	0.163	0.214	0.197	0.203	0.195	0.213	0.217	0.227	0.018
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.162	0.156	0.177	0.164	0.133	0.142	0.148	0.135	0.114	0.017
Fe+3	0.012	0.027	0.063	0.075	0.101	0.077	0.069	0.077	0.095	0.027
Ti	0.020	0.020	0.028	0.029	0.027	0.032	0.038	0.042	0.045	0.002
Cr	0.004	0.004	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.001
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Mg	0.802	0.793	0.732	0.731	0.733	0.748	0.626	0.635	0.648	0.774
Fe+2	0.000	0.000	0.000	0.000	0.006	0.000	0.118	0.111	0.098	0.178
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.019	0.039	0.031	0.003	0.000	0.011	0.000	0.000	0.000	0.000
Fe+2	0.248	0.241	0.235	0.188	0.166	0.209	0.115	0.108	0.118	0.023
Mn	0.006	0.006	0.006	0.005	0.008	0.004	0.007	0.007	0.006	0.009
Ca	0.660	0.650	0.649	0.705	0.739	0.688	0.797	0.806	0.803	0.938
Na	0.067	0.064	0.078	0.101	0.087	0.090	0.080	0.078	0.072	0.029
M2	1.000	1.000	0.999	1.002	1.000	1.002	0.999	0.999	0.999	0.999
ma	75.9	75.6	71.9	73.6	72.9	72.6	67.5	68.2	67.6	77.2

CX129-CX134: MC4; CX130-CX134: zone altérée. CX139: bordure externe MC1 = Cpx matrice MNT.

lame	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13
roche	MC1	MC1	MC1	MC1	MC1	MC1	MC1	MNT	MNT	MNT
analyse	CX140	CX141	CX142	CX143	CX144	CX145	CX146	CX147	CX148	CX149
note	±c ->	<->	<->	<->	<->	<->	<- b	PC	PC	PC
SiO2	46.03	45.12	45.59	46.52	44.32	47.09	46.53	52.56	52.91	52.18
A1203	10.24	10.56	10.00	8.53	9.85	7.25	7.33	1.44	1.21	2.30
Fe203	1.98	3.13	3.97	3.55	5.95	4.28	5.29	1.27	0.64	1.17
TiO2	1.46	1.65	1.42	1.25	1.67	1.22	1.21	0.12	0.12	0.27
Cr203	0.00	0.04	0.00	0.00	0.00	0.03	0.00	0.00	0.17	0.02
NiO	0.06	0.02	0.00	0.05	0.00	0.01	0.04	0.01	0.00	0.00
MgO	9.13	9.36	9.67	11.10	10.97	12.15	12.04	12.76	12.52	12.48
FeO	8.31	7.38	7.34	6.76	5.80	5.44	5.12	7.50	8.73	7.75
MnO	0.12	0.17	0.18	0.19	0.10	0.16	0.23	0.24	0.28	0.33
Ca0	19.74	20.40	20.18	19.67	17.56	19.83	19.55	23.10	22.84	22.77
Na2O	1.33	1.07	1.10	1.00	1.42	1.02	1.01	0.62	0.59	0.65
total	98.40	98.90	99.45	98.62	97.64	98.48	98.35	99.62	100.01	99.92
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.751	1.712	1.722	1.762	1.696	1.780	1.765	1.969	1.980	1.950
Al	0.249	0.288	0.278	0.238	0.304	0.220	0.235	0.031	0.020	0.050
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.210	0.184	0.167	0.143	0.140	0.103	0.093	0.033	0.033	0.051
Fe+3	0.057	0.089	0.113	0.101	0.172	0.122	0.151	0.036	0.018	0.033
Ti	0.042	0.047	0.040	0.036	0.048	0.035	0.034	0.003	0.003	0.008
Cr	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.005	0.001
Ni	0.002	0.001	0.000	0.002	0.000	0.000	0.001	0.000	0.000	0.000
Mg	0.517	0.530	0.544	0.626	0.626	0.685	0.681	0.713	0.699	0.695
Fe+2	0.172	0.148	0.136	0.092	0.014	0.054	0.040	0.215	0.242	0.212
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.092	0.086	0.096	0.122	0.172	0.118	0.122	0.020	0.031	0.030
Mn	0.004	0.005	0.006	0.006	0.003	0.005	0.008	0.008	0.009	0.010
Ca	0.805	0.829	0.817	0.798	0.720	0.803	0.794	0.927	0.916	0.912
Na	0.098	0.079	0.080	0.073	0.105	0.075	0.074	0.045	0.043	0.047
м2	0.999	0.999	0.999	0.999	1.000	1.001	0.998	1.000	0.999	0.999
mg	61.7	62.1	61.2	66.5	63.6	70.0	68.5	72.5	70.6	71.6

CX140-CX146: MC1; CX142-CX145: zone altérée. CX147-CX149: PC = phénocristaux de la MNT
lame	A7-13	A7-13	A7-9	A7-9	A7-9	A7-9	A7-9-2	A7-9-2	A7-9-2	A7-9-2
roche	MNT	MNT	MC4	MC4	MC4	MC4	CXN	CXN	CXN	CXN
analyse	CX150	CX151	CX152	CX153	CX154	CX155	CX157	CX158	CX159	CX160
note	PC	PC	c ->	<->	<->	<- b	±c ->	<- b	c ->	<->
SiO2	52.76	52.87	49.41	48.63	47.65	50.00	50.99	48.30	49.08	48.99
A1203	1.46	1.34	6.72	6.26	6.56	3.94	4.80	6.93	6.34	7.15
Fe203	1.07	0.00	2.46	4.42	5.22	2.85	2.04	3.47	2.54	2.87
TiO2	0.12	0.12	0.61	0.56	0.81	0.66	0.46	0.76	0.64	0.70
Cr203	0.11	0.07	0.00	0.08	0.08	0.10	0.32	0.15	0.29	0.24
NiO	0.01	0.00	0.01	0.05	0.01	0.00	0.00	0.07	0.03	0.00
MgO	13.25	12.77	14.90	14.06	13.24	12.74	15.15	13.32	14.82	13.50
FeO	7.21	8.25	4.93	3.61	3.54	5.63	4.65	4.26	4.93	4.77
MnO	0.28	0.32	0.21	0.13	0.19	0.25	0.15	0.22	0.13	0.24
Ca0	22.98	22.95	18.69	19.25	19.78	2 2. 56	19.59	19.49	17.99	18.97
Na20	0.56	0.59	0.87	1.09	1.10	0.62	0.99	1.11	1.01	1.24
total	99.81	99.28	98.81	98.14	98.18	99.35	99.14	98.08	97.80	98.67
formule	structu	cale cal	culée su	ur 6 oxy	gènes					
Si	1.969	1.986	1.833	1.823	1.796	1.875	1.884	1.814	1.839	1.825
Al	0.031	0.014	0.167	0.177	0.204	0.125	0.116	0.186	0.161	0.175
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.033	0.045	0.127	0.100	0.087	0.049	0.093	0.121	0.119	0.139
Fe+3	0.030	0.000	0.069	0.125	0.148	0.080	0.057	0.098	0.072	0.080
Ti	0.003	0.003	0.017	0.016	0.023	0.019	0.013	0.021	0.018	0.020
Cr	0.003	0.002	0.000	0.003	0.002	0.003	0.009	0.005	0.009	0.007
Ni	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.002	0.001	0.000
Mg	0.737	0.715	0.787	0.754	0.740	0.712	0.828	0.746	0.781	0.750
Fe+2	0.194	0.235	0.000	0.000	0.000	0.137	0.000	0.007	0.000	0.004
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.037	0.032	0.004	0.000	0.006	0.000	0.046	0.000
Fe+2	0.031	0.024	0.153	0.113	0.112	0.040	0.144	0.127	0.154	0.145
Mn	0.009	0.010	0.007	0.004	0.006	0.008	0.005	0.007	0.004	0.008
Ca	0.919	0.923	0.743	0.773	0.799	0.907	0.776	0.784	0.722	0.757
Na	0.041	0.043	0.062	0.079	0.080	0.045	0.071	0.081	0.074	0.089
M2	1.000	1.000	1.002	1.001	1.001	1.000	1.002	0.999	1.000	0.999
mg	74.3	73.4	78.8	76.8	74.1	73.5	80.6	76.3	78.5	76.6

CX150, CX151: PC = phénocristaux de la MNT CX152-CX155: MC4

lame	A7-9-2	A7-9-2	A7-9-2	A7-9-2	A7-9-1	A7-9-1	A7-9-1	A7-9-1	A7-9-1	A7-9-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX161	CX162	CX163	CX164	CX165	CX166	CX167	CX168	CX169	CX170
note	<- b	C ->	<->	<- b	Cpx2	Cpx2	Cpx2	c ->	<->	<- b
SiO2	49.70	49.91	50.13	50.29	53.36	52.62	53.50	52.10	51.39	52.52
A1203	5.83	6.26	5.86	5.11	0.91	1.28	0.59	1.85	2.01	1.42
Fe203	1.28	2.14	1.38	2.56	0.21	1.28	0.21	4.05	2.10	1.49
TiO2	0.79	0.57	0.58	0.44	0.09	0.15	0.06	0.13	0.25	0.19
Cr203	0.20	0.25	0.26	0.31	0.06	0.10	0.09	0.00	0.02	0.00
NiO	0.00	0.00	0.06	0.03	0.00	0.00	0.00	0.04	0.01	0.03
MgO	13.70	15.15	13.78	14.20	13.97	13.46	14.32	12.07	12.09	12.38
FeO	5.89	5.01	5.77	3.90	6.43	6.18	5.66	6.95	7.40	7.76
MnO	0.16	0.24	0.26	0.17	0.25	0.27	0.20	0.40	0.42	0.37
Ca0	20.53	17.88	19.21	20.83	23.54	23.66	24.05	23.00	22.90	23.42
Na20	0.73	1.11	1.12	0.95	0.47	0.50	0.40	0.86	0.63	0.60
total	98.81	98.52	98.41	98.79	99.29	99.50	99.08	101.45	99.22	100.18
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.855	1.852	1.872	1.870	1.990	1.966	1.995	1.931	1.941	1.964
Al	0.145	0.148	0.128	0.130	0.010	0.034	0.005	0.069	0.059	0.036
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.111	0.126	0.130	0.094	0.030	0.023	0.021	0.012	0.031	0.027
Fe+3	0.036	0.060	0.039	0.072	0.006	0.036	0.006	0.113	0.060	0.042
Ti	0.022	0.016	0.016	0.012	0.002	0.004	0.002	0.004	0.007	0.005
Cr	0.006	0.007	0.008	0.009	0.002	0.003	0.003	0.000	0.001	0.000
Ni	0.000	0.000	0.002	0.001	0.000	0.000	0.000	0.001	0.000	0.001
Mg	0.762	0.791	0.767	0.787	0.777	0.750	0.796	0.667	0.681	0.690
Fe+2	0.063	0.000	0.038	0.025	0.183	0.184	0.172	0.203	0.220	0.235
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
					*					
Mg	0.000	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.121	0.155	0.142	0.096	0.018	0.009	0.005	0.012	0.014	0.008
Mn	0.005	0.007	0.008	0.005	0.008	0.008	0.006	0.013	0.013	0.012
Ca	0.821	0.711	0.769	0.830	0.941	0.947	0.961	0.913	0.927	0.938
Na	0.052	0.080	0.081	0.069	0.034	0.036	0.029	0.062	0.046	0.044
M2	0.999	1.000	1.000	1.000	1.001	1.000	1.001	1.000	1.000	1.002
						_				
mg	77.6	79.6	77.8	80.3	79.0	76.6	81.3	67.0	69.8	70.8

CX165-CX167: Cpx2 vert clair.

418

lame	A7-9-1	A7-9-1	A7-9-1	A7-9-1	A7-9-1	A7-9	A7-9	A7-9	A7-9	A7-9
roche	CXN	CXN	CXN	CXN	CXN	MNT	MNT	MNT	MNT	MNT
analyse	CX171	CX172	CX173	CX175	CX176	CX177	CX178	CX179	CX180	CX181
note		c? ->	<- b			c ->	<->	<- b	с	с
SiO2	51.72	51.08	50.75	50.84	48.07	52.40	51.92	52.30	49.93	51.63
A1203	2.40	3.33	2.99	2.45	1.69	1.37	1.16	1.36	3.87	1.36
Fe203	1.80	0.21	2.85	3.89	10.14	1.80	2.10	1.06	2.62	2.09
ті02	0.32	0.39	0.37	0.25	0.16	0.10	0.07	0.15	0.51	0.16
Cr203	0.00	0.05	0.00	0.00	0.05	0.04	0.00	0.18	0.45	0.00
NiO	0.09	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MgO	12.23	12.80	12.43	12.84	14.13	13.21	13.14	12.96	12.15	12.08
FeO	7.39	8.54	6.69	5.69	1.03	6.55	5.65	6.93	6.61	7.55
MnO	0.38	0.35	0.38	0.41	0.32	0.35	0.30	0.34	0.32	0.34
Ca0	22.92	20.79	22.46	22.36	22.93	23.25	23.63	23.41	21.27	22.93
Na2O	0.67	0.66	0.65	0.72	0.37	0.53	0.52	0.53	0.89	0.63
total	99.92	98.21	99.57	99.45	98.89	99.60	98.49	99.22	98.62	98.77
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.937	1.935	1.906	1.910	1.826	1.961	1.962	1.966	1.890	1.960
Al	0.063	0.065	0.094	0.090	0.076	0.039	0.038	0.034	0.110	0.040
Fe+3	0.000	0.000	0.000	0.000	0.098	0.000	0.000	0.000	0.000	0.000
Al	0.043	0.084	0.038	0.019	0.000	0.022	0.014	0.026	0.062	0.021
Fe+3	0.051	0.006	0.080	0.110	0.192	0.051	0.060	0.030	0.075	0.060
Ті	0.009	0.011	0.011	0.007	0.004	0.003	0.002	0.004	0.014	0.004
Cr	0.000	0.001	0.000	0.000	0.001	0.001 ,	0.000	0.005	0.014	0.000
Ni	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.683	0.723	0.696	0.719	0.800	0.737	0.740	0.726	0.686	0.684
Fe+2	0.211	0.175	0.175	0.145	0.003	0.186	0.179	0.209	0.149	0.231
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.020	0.095	0.035	0.034	0.030	0.019	0.000	0.009	0.060	0.009
Mn	0.012	0.011	0.012	0.013	0.010	0.011	0.005	0.011	0.010	0.011
Ca	0.920	0.844	0.904	0.900	0.933	0.932	0.957	0.943	0.863	0.933
Na	0.049	0.049	0.048	0.053	0.027	0.038	0.038	0.039	0.065	0.046
M2	1.001	0.999	0.999	1.000	1.000	1.000	1.000	1.002	0.998	0.999
mg	70.8	72.4	70.6	71.3	71.2	74.2	75.6	74.5	70.7	69.5

CX177-CX179: phénocristaux de la MNT CX180, CX181: Cpx de la matrice de la MNT

lame	A7-9	A7-9	A2-3	A2-3	A2-3	A2-3	A6-24a	A6-3	A6-3	A6-3
roche	MNT	MNT	WB	WB	WB	WB	WL	CXN	CXN	CXN
analyse	CX183	CX184	CX185b	CX185c	CX189	CX185f	CX191	CX192	CX193	CX194
note	PC	MX						C ->	<->	<- b
SiO2	52.13	52.77	52.29	51.01	50.80	51.17	51.37	44.83	45.00	45.49
A1203	1.60	0.90	5.28	5.68	5.30	5.31	6.01	13.44	13.52	11.72
Fe203	2.65	0.95	0.00	0.00	0.00	0.21	2.06	1.91	2.56	2.86
TiO2	0.11	0.12	0.50	0.64	0.45	0.57	0.23	0.86	0.84	0.98
Cr203	0.08	0.07	0.17	0.07	0.21	0.09	0.60	0.00	0.00	0.01
NiO	0.00	0.00	0.02	0.03	0.03	0.03	0.00	0.00	0.00	0.04
MgO	12.86	12.96	13.77	14.06	13.30	13.98	14.37	10.86	11.10	12.16
FeO	6.44	7.78	6.29	6.55	4.66	5.93	1.33	2.07	1.53	0.95
MnO	0.32	0.31	0.10	0.18	0.12	0.14	0.21	0.04	0.14	0.03
Ca0	23.24	22.88	19.45	18.60	18.43	19.09	21.02	23.39	23.49	23.04
Na2O	0.67	0.57	1.26	1.22	1.61	1.36	1.64	0.64	0.65	0.68
total	100.10	99.31	99.13	98.04	94.91	97.88	98.84	98.04	98.83	97.96
formule	structur	cale cal	culée su	ır 6 oxy	gènes					
Si	1.946	1.984	1.927	1.903	1.940	1.911	1.884	1.676	1.669	1.698
Al	0.054	0.016	0.073	0.097	0.060	0.089	0.116	0.324	0.331	0.302
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.017	0.024	0.156	0.153	0.179	0.145	0.144	0.268	0.260	0.214
Fe+3	0.075	0.027	0.000	0.000	0.000	0.006	0.057	0.054	0.072	0.080
Ti	0.003	0.003	0.014	0.018	0.013	0.016	0.006	0.024	0.023	0.028
Cr	0.002	0.002	0.005	0.002	0.006	0.003	0.017	0.000	0.000	0.000
Ni	0.000	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.001
Mg	0.716	0.726	0.756	0.782	0.758	0.778	0.776	0.605	0.613	0.677
Fe+2	0.187	0.218	0.068	0.044	0.043	0.051	0.000	0.049	0.032	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000
Fe+2	0.014	0.026	0.126	0.160	0.106	0.134	0.041	0.016	0.015	0.030
Mn	0.010	0.010	0.003	0.006	0.004	0.004	0.007	0.001	0.004	0.001
Ca	0.929	0.922	0.768	0.744	0.754	0.764	0.826	0.937	0.933	0.921
Na	0.049	0.042	0.090	0.088	0.119	0.098	0.117	0.047	0.047	0.049
М2	1.002	1.000	0.987	0.998	0.983	1.000	1.001	1.001	0.999	1.001
							00.0	02 (0,2 7	96.0
mg	72.2	72.8	79.6	79.3	83.6	80.3	88.9	83.6	83.1	80.0

CX183: PC = phénocristal MNT CX184: MX = matrice MNT

lame	A6-3	A4-17	A4-17	A4-17	A6-4	A6-4	A6-4	A6-4	A6-4	A6-4
roche	CXN	WB	WB	WB	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX195	CX198	CX202	CX205	CX207a	CX207c	CX207d	CX207e	CX207f	CX207g
note					C ->	<>	<- b	с	С	tb
SiO2	45.46	50.68	50.70	52.04	45.24	45.13	44.56	45.89	46.18	45.80
A1203	12.15	4.58	5.17	5.26	12.25	12.29	11.50	11.05	9.93	12.30
Fe203	3.09	0.43	1.61	0.54	2.21	4.87	4.15	2.74	3.89	1.59
TiO2	0.90	0.56	0.50	0.38	1.51	1.44	1.57	1.60	1.24	1.57
Cr203	0.06	0.33	0.40	0.37	0.04	0.04	0.03	0.01	0.00	0.00
NiO	0.00	0.10	0.04	0.01	0.02	0.00	0.00	0.00	0.09	0.00
MgO	11.78	15.29	15.01	15.01	9.39	9.74	10.15	10.14	10.74	9.75
FeO	0.82	6.82	5.06	5.80	4.62	2.72	3.11	4.63	3.56	4.61
MnO	0.05	0.22	0.10	0.17	0.20	0.13	0.09	0.10	0.16	0.07
Ca0	23.64	18.32	19.76	19.31	21.47	21.55	20.31	21.03	21.36	21.11
Na2O	0.63	0.67	0.82	1.11	1.36	1.61	1.59	1.45	1.30	1.52
total	98.58	98.00	99.17	100.00	98.31	99.52	97.06	98.64	98.45	98.32
formule	structu	rale cal	culée su	ur 6 oxy	gènes					
Si	1.688	1.898	1.875	1.902	1.704	1.679	1.696	1.723	1.737	1.717
Al	0.312	0.102	0.125	0.098	0.296	0.321	0.304	0.277	0.263	0.283
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.220	0.100	0.100	0.129	0.248	0.218	0.212	0.212	0.177	0.261
Fe+3	0.086	0.012	0.045	0.015	0.063	0.136	0.119	0.077	0.110	0.045
Ті	0.025	0.016	0.014	0.010	0.043	0.040	0.045	0.045	0.035	0.044
Cr	0.002	0.010	0.012	0.011	0.001	0.001	0.001	0.000	0.000	0.000
Ni	0.000	0.003	0.001	0.000	0.001	0.000	0.000	0.000	0.003	0.000
Mg	0.652	0.853	0.827	0.818	0.527	0.540	0.576	0.567	0.602	0.545
Fe+2	0.015	0.006	0.001	0.017	0.117	0.065	0.047	0.099	0.073	0.105
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
м1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.010	0.208	0.155	0.160	0.029	0.020	0.052	0.046	0.039	0.040
Mn	0.002	0.007	0.003	0.005	0.006	0.004	0.003	0.003	0.005	0.002
Ca	0.941	0.735	0.783	0.756	0.866	0.859	0.828	0.846	0.861	0.848
Na	0.045	0.049	0.059	0.079	0.099	0.117	0.117	0.106	0.095	0.111
M2	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.001	1.000	1.001
mg	85.5	79.1	80.4	81.0	71.6	71.0	72.5	71.9	73.1	74.1

CX207e, CX207f: petits Cpx.

lame	A6-4	A6-4	A5-7	A5-7	в3-89	В3-89	B3-89	A4-4	A4-4	A4-4
roche	CXN	CXN	GNL	GNL	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX207b	CX207h	CX234	CX237	CX239	CX240	CX241	CX244	CX245	CX246
note	Cpx2				c ->	<- b	с	c ->	<->	<- b
SiO2	52.56	44.93	48.25	48.49	45.33	45.61	45.01	50.01	49.77	50.38
A1203	1.36	12.51	4.28	3.64	11.62	11.74	11.72	6.70	7.00	6.50
Fe203	1.17	3.06	8.71	7.53	1.16	0.32	1.78	1.40	1.40	1.73
TiO2	0.15	1.54	0.44	0.38	0.99	0.95	0.93	0.36	0.41	0.34
Cr203	0.01	0.01	0.05	0.03	0.01	0.08	0.03	0.42	0.43	0.51
NiO	0.01	0.05	0.01	0.00	0.00	0.09	0.00	0.00	0.03	0.03
MgO	14.57	9.74	12.38	12.86	11.34	11.39	11.28	14.20	14.30	14.28
FeO	4.63	3.19	4.90	4.32	2.71	3.03	2.30	1.73	1.89	1.74
MnO	0.20	0.08	0.12	0.12	0.15	0.11	0.05	0.10	0.12	0.07
Ca0	24.42	21.71	19.37	20.04	23.62	23.39	23.62	22.60	22.26	22.73
Na2O	0.19	1.43	1.33	1.14	0.36	0.38	0.40	0.88	0.80	0.87
total	99.27	98.25	99.84	98.55	97.29	97.09	97.12	98.40	98.41	99.18
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.956	1.688	1.817	1.841	1.711	1.722	1.702	1.849	1.840	1.851
Al	0.044	0.312	0.183	0.159	0.289	0.278	0.298	0.151	0.160	0.149
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.016	0.242	0.007	0.004	0.228	0.244	0.224	0.141	0.145	0.132
Fe+3	0.033	0.086	0.247	0.215	0.033	0.009	0.051	0.039	0.039	0.048
Ti	0.004	0.044	0.013	0.011	0.028	0.027	0.026	0.010	0.011	0.010
Cr	0.000	0.000	0.002	0.001	0.000	0.002	0.001	0.012	0.013	0.015
Ni	0.000	0.001	0.000	0.000	0.000	0.003	0.000	0.000	0.001	0.001
Mg	0.808	0.546	0.695	0.728	0.638	0.641	0.636	0.783	0.788	0.782
Fe+2	0.139	0.081	0.036	0.041	0.073	0.074	0.062	0.015	0.003	0.012
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.005	0.019	0.118	0.096	0.012	0.022	0.011	0.039	0.055	0.041
Mn	0.006	0.003	0.004	0.004	0.005	0.004	0.002	0.003	0.004	0.002
Ca	0.974	0.874	0.782	0.816	0.955	0.946	0.957	0.896	0.882	0.895
Na	0.014	0.104	0.097	0.084	0.027	0.028	0.030	0.063	0.058	0.062
M2	0.999	1.000	1.001	1.000	0.999	1.000	1.000	1.001	0.999	1.000
										0.0.1
mg	82.0	74.6	63.4	67.4	84.4	85.9	83.7	89.4	89.0	88.6

lame	A4-4	A4-8	A4-8	A4-8	A4-8	A4-8	B0-4-1	в0-4-1	в0-4-1	B0-4-1
roche	CXN	CSL	CSL	CSL	CSL	CSL	MNT	MNT	MNT	MNT
analyse	CX247a	CX247b	CX248	CX249	CX250	CX251	CX253a	CX253b	CX254	CX255
note		c ->	<->	<->	<- b		±c ->	±c ->	±c ->	± b ->
SiO2	50.16	48.90	48.75	49.07	48.78	48.74	50.34	48.71	50.09	48.71
A1203	6.94	3.69	3.63	3.63	3.60	3.48	3.65	5.44	3.23	5.51
Fe203	0.32	3.05	3.45	3.16	3.66	3.55	3.49	2.51	3.04	1.56
TiO2	0.40	0.33	0.31	0.31	0.31	0.36	0.36	1.12	0.56	0.94
Cr203	0.47	0.03	0.03	0.00	0.03	0.01	0.00	0.00	0.03	0.01
NiO	0.10	0.09	0.00	0.03	0.00	0.00	0.04	0.01	0.00	0.01
MgO	13.91	7.57	7.49	7.46	7.46	7.58	11.97	10.84	11.48	11.19
FeO	3.31	12.21	12.13	12.59	11.97	11.95	6.37	6.69	7.09	8.37
MnO	0.11	0.34	0.38	0.37	0.41	0.43	0.42	0.31	0.54	0.43
Ca0	22.42	21.27	21.40	21.31	21.54	21.65	22.92	22.43	22.82	20.70
Na2O	0.74	1.14	1.14	1.15	1.15	1.07	0.66	0.93	0.64	0.83
total	98.88	98.62	98.71	99.08	98.91	98.82	100.22	98.99	99.52	98.26
formule	structu	rale cal	culée su	ir 6 oxy	gènes					
Si	1.852	1.905	1.899	1.905	1.898	1.898	1.883	1.844	1.893	1.857
Al	0.148	0.095	0.101	0.095	0.102	0.102	0.117	0.156	0.107	0.143
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.154	0.074	0.066	0.071	0.063	0.058	0.044	0.087	0.037	0.105
Fe+3	0.009	0.089	0.101	0.092	0.107	0.104	0.098	0.072	0.086	0.045
Ti	0.011	0.010	0.009	0.009	0.009	0.010	0.010	0.032	0.016	0.027
Cr	0.014	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.000
Ni	0.003	0.003	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000
Mg	0.765	0.439	0.435	0.432	0.433	0.440	0.668	0.612	0.647	0.636
Fe+2	0.044	0.384	0.388	0.395	0.387	0.388	0.179	0.197	0.213	0.187
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
									0 000	0 000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.058	0.014	0.007	0.014	0.002	0.001	0.020	0.015	0.017	0.000
Mn	0.003	0.011	0.013	0.012	0.014	0.014	0.010	0.010	0.01/	0.014
Ca	0.887	0.888	0.894	0.887	0.898	0.903	0.919	0.910	0.324	0.040
Na	0.053	0.086	0.086	0.087	1.000	0.081	1 000	1 002	0.04/	1 002
M2	1.001	0.999	1.000	1.000	1.000	0.999	1.000	1.003	0.333	1.002
	07)	A 7 A	16 7	16 3	46 F	47 2	69 2	68.3	67.6	67.1
шġ	81.3	4/.4	40./	40.3	40.0	11.2	07.2	00.0	00	0

CX253A-CX255: Phénocristaux de la minette

lame	B0-4-1	B0-4-1	B0-4-1	B0-4-1	B6-76	B6-76	B6-76	B6-76	B6-76	B6-76
roche	MNT	MNT	MNT	MNT	XC	XC	XC	XC?	XC?	XC?
analyse	CX256	CX257	CX258	CX259	CX260	CX261	CX262	CX263	CX264	CX265
note	±b ->	±b ->	± b		C ->	c ->	<- b		C ->	<->
SiO2	48.90	49.49	48.26	51.41	49.42	49.53	49.78	51.54	53.86	54.12
A1203	5.18	4.44	6.11	2.48	6.05	6.09	5.52	3.03	1.11	1.14
Fe203	1.88	1.15	1.77	3.40	2.65	2.23	1.91	1.60	0.00	0.11
TiO2	0.98	0.80	1.05	0.23	0.74	0.77	0.70	0.35	0.07	0.12
Cr203	0.00	0.07	0.04	0.16	0.09	0.09	0.00	0.35	0.05	0.00
NiO	0.00	0.00	0.10	0.00	0.00	0.03	0.01	0.00	0.01	0.00
MgO	11.15	10.85	10.65	12.20	10.22	10.27	10.44	13.03	15.37	16.20
FeO	7.32	9.17	8.52	7.69	7.59	8.07	8.37	7.14	4.59	3.47
MnO	0.46	0.48	0.50	0.60	0.16	0.18	0.21	0.34	0.23	0.19
CaO	21.86	21.56	20.49	22.25	22.12	22.12	22.37	22.10	23.92	24.30
Na2O	0.82	0.70	0.94	0.70	1.14	1.06	0.91	0.64	0.36	0.27
total	98.55	98.71	98.43	101.12	100.18	100.44	100.22	100.12	99.57	99.92
formule	structu	rale cal	culée s	ır 6 oxy	gènes					
Si	1.858	1.886	1.841	1.913	1.850	1.851	1.865	1.919	1.985	1.979
Al	0.142	0.114	0.159	0.087	0.150	0.149	0.135	0.081	0.015	0.021
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.090	0.086	0.116	0.022	0.117	0.119	0.109	0.052	0.033	0.028
Fe+3	0.054	0.033	0.051	0.095	0.075	0.063	0.054	0.045	0.000	0.003
Ti	0.028	0.023	0.030	0.006	0.021	0.022	0.020	0.010	0.002	0.003
Cr	0.000	0.002	0.001	0.005	0.003	0.003	0.000	0.010	0.001	0.000
Ni	0.000	0.000	0.003	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Mg	0.631	0.616	0.605	0.677	0.571	0.572	0.583	0.723	0.845	0.883
Fe+2	0.197	0.240	0.194	0.195	0.213	0.220	0.234	0.160	0.119	0.083
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.035	0.052	0.078	0.044	0.025	0.032	0.028	0.062	0.022	0.023
Mn	0.015	0.015	0.016	0.019	0.005	0.006	0.007	0.011	0.007	0.006
Ca	0.890	0.880	0.837	0.887	0.887	0.886	0.898	0.882	0.945	0.952
Na	0.060	0.052	0.069	0.051	0.083	0.077	0.066	0.046	0.026	0.019
M2	1.000	0.999	1.000	1.001	1.000	1.001	0.999	1.001	1.000	1.000
mg	68.8	65.5	65.2	67.0	64.6	64.5	64.8	73.0	85.7	89.0

CX256-CX258: phénocristaux de la MNT CX260-CX265: xénocristaux

lame	в6-76	в6-76	в6-76	B6-76	B6-76	в6-76	B6-76	в6-76	B6-76	B6-76
roche	XC?	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT
analyse	CX266	CX267	CX268a	CX268b	CX269	CX270	CX271	CX272	CX273	CX274
note	<- b	c ->	<- b	C ->	c ->	±b ->	<- b	с	С	С
SiO2	51.12	49.61	51.35	52.61	52.55	52.30	51.25	52.17	50.29	52.01
A1203	2.57	5.00	2.66	2.08	1.73	1.46	2.74	2.29	3.77	2.40
Fe203	2.01	2.75	0.95	0.21	1.17	1.16	1.91	1.50	2.22	0.00
TiO2	0.28	0.64	0.33	0.17	0.12	0.16	0.43	0.36	0.71	0.27
Cr203	0.24	0.05	0.03	0.21	0.12	0.05	0.15	0.20	0.27	0.52
NiO	0.06	0.02	0.00	0.05	0.03	0.01	0.03	0.02	0.00	0.05
MgO	13.43	12.43	13.30	12.82	13.19	12.12	13.33	13.56	12.77	13.03
FeO	6.07	6.11	6.73	7.75	7.07	8.98	6.45	6.43	7.04	7.12
MnO	0.20	0.31	0.29	0.30	0.32	0.40	0.29	0.38	0.30	0.25
Ca0	22.69	21.88	22.59	23.28	23.21	22.63	22.39	22.68	21.36	22.90
Na2O	0.44	0.69	0.48	0.51	0.48	0.57	0.52	0.55	0.71	0.46
total	99.11	99.49	98.71	99.99	99.99	99.84	99.49	100.14	99.44	99.01
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.919	1.858	1.933	1.961	1.958	1.967	1.918	1.937	1.887	1.952
A1	0.081	0.142	0.067	0.039	0.042	0.033	0.082	0.063	0.113	0.048
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.033	0.079	0.051	0.052	0.034	0.032	0.039	0.037	0.054	0.058
Fe+3	0.057	0.077	0.027	0.006	0.033	0.033	0.054	0.042	0.063	0.000
Ti	0.008	0.018	0.009	0.005	0.004	0.004	0.012	0.010	0.020	0.008
Cr	0.007	0.001	0.001	0.006	0.004	0.002	0.004	0.006	0.008	0.015
Ni	0.002	0.001	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.002
Mg	0.752	0.694	0.746	0.712	0.733	0.680	0.744	0.750	0.715	0.729
Fe+2	0.141	0.130	0.166	0.218	0.191	0.249	0.146	0.154	0.140	0.188
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.050	0.061	0.046	0.024	0.029	0.033	0.056	0.046	0.081	0.036
Mn	0.006	0.010	0.009	0.009	0.010	0.013	0.009	0.012	0.010	0.008
Ca	0.913	0.878	0.911	0.930	0.927	0.912	0.897	0.902	0.859	0.921
Na	0.032	0.050	0.035	0.037	0.034	0.042	0.038	0.040	0.051	0.034
M2	1.001	0.999	1.001	1.000	1.000	1.000	1.000	1.000	1.001	0.999
mg	75.2	72.1	75.7	74.2	74.3	68.3	74.4	75.6	71.6	76.5

CX266, CX272-CX274: xénocristaux CX267-CX271: phénocristaux de la MNT CX272-CX274: petits Cpx de la matrice.

lame	A5-7	A5-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL
analyse	CX278	CX279	CX280	CX281	CX285
note	C ->	b ->	<- b		
SiO2	49.24	50.63	50.29	50.45	51.39
A1203	6.09	2.73	3.29	4.27	2.61
Fe203	4.22	0.52	1.88	0.73	0.21
TiO2	0.65	0.35	0.38	0.49	0.32
Cr203	0.08	0.08	0.07	0.07	0.01
NiO	0.00	0.03	0.06	0.00	0.07
MgO	11.78	12.24	12.34	11.06	13.01
FeO	8.91	8.19	7.98	9.49	7.81
MnO	0.15	0.24	0.14	0.09	0.16
Ca0	17.43	21.63	20.91	19.22	21.58
Na2O	1.55	0.62	0.74	1.47	0.62
total	100.10	97.26	98.08	97.34	97.79

formule structurale calculée sur 6 oxygènes

Si	1.842	1.942	1.915	1.933	1.952
Al	0.158	0.058	0.085	0.067	0.048
Fe+3	0.000	0.000	0.000	0.000	0.000
A1	0.111	0.066	0.063	0.126	0.069
Fe+3	0.119	0.015	0.054	0.021	0.006
Ti	0.018	0.010	0.011	0.014	0.009
Cr	0.002	0.002	0.002	0.002	0.000
Ni	0.000	0.001	0.002	0.000	0.002
Mg	0.657	0.700	0.701	0.632	0.737
Fe+2	0.093	0.206	0.167	0.205	0.177
Mn	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000
Fe+2	0.186	0.057	0.087	0.099	0.071
Mn	0.005	0.008	0.005	0.003	0.005
Ca	0.699	0.889	0.853	0.789	0.878
Na	0.112	0.046	0.055	0.109	0.046
M2	1.002	1.000	1.000	1.000	1.000
mg	62.3	71.6	69.5	66.0	74.4

mg

lame	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19	A6-24	A6-24
roche	WL	WL	WL	WL	WL	WL	WL	WL	WL	WL
analyse	CX301	CX303	CX304	CX305	CX306	CX307	CX308	CX309	CX310	CX311
note	с		С	c ->	<- b	С	С	С	C	C ->
SiO2	51.56	51.20	51.49	51.08	51.84	51.66	51.48	51.69	50.85	51.07
A1203	5.84	5.77	5.51	5.97	5.10	5.02	5.38	5.08	6.40	6.13
Fe203	1.45	1.47	1.48	1.52	1.52	1.49	1.50	1.51	3.52	3.37
TiO2	0.17	0.21	0.21	0.21	0.21	0.18	0.20	0.22	0.22	0.21
Cr203	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.66	0.66
NiO	0.00	0.00	0.00	0.00	0.02	0.03	0.03	0.01	0.18	0.08
MgO	16.78	16.98	17.00	16.73	17.42	17.28	17.19	17.35	15.01	15.15
Fe0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12
MnO	0.11	0.08	0.05	0.07	0.04	0.06	0.08	0.07	0.15	0.05
Ca0	24.46	24.16	24.26	24.29	24.11	24.15	24.19	24.25	21.29	21.46
Na2O	0.54	0.52	0.53	0.53	0.51	0.53	0.53	0.51	1.55	1.43
total	100.91	100.39	100.54	100.40	100.78	100.41	100.59	100.69	99.83	99.73
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.850	1.847	1.854	1.843	1.862	1.863	1.854	1.859	1.849	1.857
Al	0.150	0.153	0.146	0.157	0.138	0.137	0.146	0.141	0.151	0.143
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.097	0.092	0.088	0.097	0.078	0.076	0.082	0.075	0.123	0.119
Fe+3	0.039	0.040	0.040	0.041	0.041	0.040	0.041	0.041	0.096	0.092
Ti	0.005	0.006	0.006	0.006	0.006	0.005	0.005	0.006	0.006	0.006
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.019	0.019
Ni	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.005	0.002
Mg	0.859	0.862	0.866	0.856	0.874	0.878	0.871	0.878	0.751	0.762
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.039	0.051	0.046	0.044	0.058	0.051	0.051	0.052	0.062	0.059
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
Mn	0.003	0.002	0.001	0.002	0.001	0.002	0.002	0.002	0.005	0.001
Ca	0.941	0.934	0.936	0.939	0.928	0.933	0.933	0.935	0.829	0.836
Na	0.038	0.036	0.037	0.037	0.035	0.037	0.037	0.036	0.110	0.101
M2	1.021	1.023	1.020	1.022	1.022	1.023	1.023	1.025	1.006	1.001
						.				00 5
mg	95.8	95.8	95.8	95.6	95.8	95.9	95.7	95.8	89.4	89.5

.

lame	A6-24	D3-6	D3-6	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7
roche	WL	XC	XC	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX312	CX313	CX314	CX316	CX318	CX319	CX320	CX321	CX323	CX324
note	<- b	c ->	<- ±b	С	С	С	С		С	С
SiO2	51.38	51.85	51.94	48.69	49.65	49.13	49.95	46.32	49.45	49.73
A1203	5.77	2.09	1.86	5.82	4.32	4.09	4.81	6.96	3.94	4.24
Fe203	3.48	4.42	3.65	3.67	5.04	5.76	3.83	8.15	5.15	5.30
TiO2	0.16	0.32	0.37	0.59	0.50	0.43	0.57	0.72	0.45	0.56
Cr203	0.57	0.00	0.00	0.08	0.04	0.04	0.05	0.05	0.08	0.02
NiO	0.00	0.02	0.00	0.17	0.00	0.00	0.00	0.00	0.00	0.09
MgO	15.50	15.51	15.31	13.20	12.20	13.75	14.29	12.46	13.02	13.37
FeO	0.00	1.64	2.39	7.55	6.41	4.64	4.75	4.28	5.10	3.07
MnO	0.14	0.20	0.18	0.13	0.15	0.14	0.11	0.16	0.16	0.07
Ca0	21.78	24.18	24.10	17.84	20.05	20.44	20.15	18.07	21.49	22.57
Na2O	1.32	0.42	0.40	0.97	1.27	0.80	0.88	1.35	0.76	0.85
total	100.10	100.65	100.20	98.71	99.63	99.22	99.39	98.52	99.60	99.87
formule	structur	cale cal	culée su	ır 6 oxy	gènes					
Si	1.861	1.898	1.912	1.836	1.864	1.844	1.856	1.756	1.854	1.848
Al	0.139	0.090	0.081	0.164	0.136	0.156	0.144	0.244	0.146	0.152
Fe+3	0.000	0.012	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.107	0.000	0.000	0.095	0.055	0.025	0.067	0.067	0.028	0.034
Fe+3	0.095	0.110	0.094	0.104	0.142	0.163	0.107	0.232	0.145	0.148
Ti	0.004	0.009	0.010	0.017	0.014	0.012	0.016	0.021	0.013	0.016
Cr	0.016	0.000	0.000	0.003	0.001	0.001	0.001	0.001	0.002	0.001
Ni	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.003
Mg	0.778	0.847	0.840	0.742	0.683	0.769	0.791	0.679	0.728	0.741
Fe+2	0.000	0.034	0.056	0.034	0.105	0.030	0.018	0.000	0.084	0.057
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.059	0.000	0.000	0.000	0.000	0.000	0.000	0.025	0.000	0.000
Fe+2	0.000	0.016	0.017	0.204	0.096	0.116	0.130	0.136	0.076	0.038
Mn	0.004	0.006	0.006	0.004	0.005	0.005	0.003	0.005	0.005	0.002
Ca	0.845	0.949	0.950	0.721	0.807	0.822	0.803	0.734	0.863	0.899
Na	0.093	0.030	0.028	0.071	0.093	0.058	0.063	0.100	0.055	0.061
M2	1.001	1.001	1.001	1.000	1.001	1.001	0.999	1.000	0.999	1.000
mg	89.8	83.1	82.8	68.5	66.6	71.3	75.6	65.7	70.5	75.3

CX313, CX314: xénocristal en bordure du xénolite CX324: inclusion dans Grt.

lame	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX325	CX326	CX327	CX329	CX330	CX331	CX332	CX333	CX334	CX335
note	C ->	<- b	c?	±c	с	С	±b ->	<- ±c	с	c ->
SiO2	50.15	50.21	50.30	51.20	50.08	50.16	50.52	50.54	50.33	50.33
A1203	3.01	2.29	1.73	2.03	2.57	2.25	2.19	1.89	2.10	2.05
Fe203	4.64	5.47	4.48	4.25	5.05	5.57	5.39	5.04	5.36	4.71
TiO2	0.40	0.25	0.15	0.25	0.40	0.30	0.26	0.24	0.23	0.24
Cr203	0.00	0.01	0.00	0.03	0.05	0.04	0.04	0.10	0.08	0.05
NiO	0.11	0.18	0.00	0.00	0.02	0.20	0.10	0.03	0.06	0.00
MgO	13.37	13.92	14.39	14.49	13.78	13.78	13.75	13.74	13.94	13.24
FeO	4.04	3.45	5.47	4.31	4.12	4.59	3.93	3.90	3.86	5.11
MnO	0.09	0.04	0.06	0.10	0.07	0.13	0.08	0.08	0.07	0.07
CaO	23.56	23.30	21.65	22.96	23.02	22.44	23.56	23.51	23.03	23.17
Na2O	0.47	0.45	0.32	0.40	0.41	0.41	0.39	0.42	0.41	0.39
total	99.84	99.57	98.55	100.02	99.57	99.87	100.21	99.49	99.47	99.36
formule	structu	rale cal	culée su	ır 6 oxyg	gènes					
Si	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+3	0.131	0.135	0.109	0.110	0.132	0.135	0.130	0.121	0.131	0.121
ті	0.011	0.007	0.004	0.007	0.011	0.008	0.007	0.007	0.007	0.007
Cr	0.000	0.000	0.000	0.001	0.002	0.001	0.001	0.003	0.002	0.002
Ni	0.003	0.005	0.000	0.000	0.001	0.006	0.003	0.001	0.002	0.000
Mg	0.744	0.777	0.812	0.803	0.769	0.769	0.764	0.768	0.779	0.743
Fe+2	0.106	0.076	0.075	0.079	0.085	0.081	0.095	0.100	0.079	0.127
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.020	0.032	0.098	0.055	0.044	0.063	0.028	0.022	0.042	0.034
Mn	0.003	0.001	0.002	0.003	0.002	0.004	0.002	0.002	0.002	0.002
Ca	0.943	0.935	0.878	0.914	0.924	0.900	0.941	0.945	0.925	0.935
Na	0.034	0.032	0.023	0.028	0.030	0.030	0.028	0.031	0.030	0.029
м2	1.000	1.000	1.001	1.000	1.000	0.997	0.999	1.000	0.999	1.000
							TD C			71 6
mg	74.3	74.8	73.0	76.0	73.9	71.9	73.6	74.4	74.1	71.6

lame	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	C31-11	C31-11	C31-11	C31-11
	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX336	CX337	CX338	CX339	CX340	CX341	CX343	CX344	CX346	CX348
note	<- b	с ->	<- b	С	с	С				С
SiO2	50.61	50.21	50.56	50.21	50.20	50.51	48.94	50.13	49.63	49.73
A1203	1.79	2.24	2.25	2.14	2.31	2.42	4.63	5.03	4.39	3.76
Fe203	4.83	4.83	4.96	4.29	5.16	4.11	5.05	2.55	4.85	5.39
TiO2	0.22	0.29	0.22	0.38	0.32	0.31	0.68	0.65	0.53	0.51
Cr203	0.04	0.11	0.05	0.00	0.03	0.08	0.03	0.07	0.09	0.07
NiO	0.15	0.00	0.00	0.00	0.04	0.00	0.00	0.06	0.00	0.00
MgO	13.49	13.23	14.03	13.05	14.39	13.27	12.58	12.11	12.87	13.74
FeO	5.03	4.61	3.37	5.88	9.17	5.09	4.38	6.49	5.61	7.04
MnO	0.12	0.09	0.07	0.16	0.16	0.10	0.22	0.15	0.26	0.24
Ca0	23.06	23.71	23.80	23.04	18.58	23.46	22.45	21.55	20.67	19.40
Na20	0.39	0.37	0.40	0.34	0.33	0.37	0.71	1.03	0.98	0.73
total	99.73	99.69	99.71	99.49	100.69	99.72	99.67	99.82	99.88	100.61
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.900	1.885	1.887	1.893	1.878	1.893	1.833	1.870	1.854	1.852
Al	0.079	0.099	0.099	0.095	0.102	0.107	0.167	0.130	0.146	0.148
Fe+3	0.021	0.016	0.014	0.012	0.020	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.037	0.091	0.047	0.017
Fe+3	0.115	0.120	0.125	0.110	0.125	0.116	0.142	0.072	0.136	0.151
Ti	0.006	0.008	0.006	0.011	0.009	0.009	0.019	0.018	0.015	0.014
Cr	0.001	0.003	0.001	0.000	0.001	0.002	0.001	0.002	0.003	0.002
Ni	0.005	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000
Mg	0.755	0.741	0.781	0.734	0.803	0.741	0.702	0.673	0./1/	0.763
Fe+2	0.118	0.128	0.087	0.145	0.061	0.132	0.099	0.142	0.082	0.053
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
				0 000	0 000	0 000	0 000	0 000	0 000	0.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.040	0.017	0.018	0.040	0.226	0.027	0.038	0.001	0.095	0.100
Mn	0.004	0.003	0.002	0.005	0.005	0.003	0.007	0.005	0.000	0.000
Ca	0.928	0.954	0.952	0.931	0.745	0.942	0.901	0.001	0.027	0.774
Na	0.029	0.027	0.029	0.025	0.024	0.027	0.052	1.002	0.071	1 001
M2	1.001	1.001	1.001	1.001	1.000	0.999	0.998	1.002	0.999	1.001
	70.0	70 F	76.0	70 5		70 0	71 G	71 0	69 7	67 3
ng	12.0	12.0	10.2	10.5	0.00	14.9	11.0	11.0		01.0

CX339: inclusion dans Grt.

lame	C31-11	C8-6	C8-6	C8-6	C8-6	C45-19	C45-19	B3-14	B3-14	B3-14
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX351	CX354	CX355	CX357	CX358	CX359	CX360	CX361	CX362	CX363
note	с	С	С	С	С	С	с	b ->	<->	<- C
SiO2	49.81	49.23	49.18	49.40	49.45	49.31	50.62	50.67	50.06	50.16
A1203	4.98	4.44	4.82	6.30	5.91	5.36	3.46	4.39	4.72	5.02
Fe203	4.76	5.06	5.17	1.58	3.84	4.97	4.77	4.28	4.93	4.06
TiO2	0.53	0.50	0.42	0.16	0.57	0.57	0.37	0.57	0.70	0.68
Cr203	0.06	0.02	0.00	0.04	0.02	0.05	0.03	0.00	0.03	0.09
NiO	0.00	0.11	0.00	0.00	0.00	0.12	0.00	0.00	0.09	0.00
MgO	12.60	13.48	13.39	12.48	14.35	14.59	14.42	13.72	14.12	13.79
FeO	5.68	3.85	4.03	9.42	3.45	4.22	4.46	4.60	3.63	4.25
MnO	0.18	0.13	0.15	0.21	0.07	0.16	0.12	0.19	0.11	0.10
Ca0	19.94	21.92	21.71	17.84	20.98	18.48	20.41	20.85	21.41	20.79
Na2O	1.31	0.67	0.72	0.97	0.80	1.15	0.96	1.11	0.83	1.07
total	99. 85	99.41	99.59	98.40	99.44	98.98	99.62	100.38	100.63	100.01
formule	structur	rale cal	culée su	ır 6 oxy	gènes					
Si	1.857	1.841	1.835	1.868	1.830	1.837	1.881	1.869	1.841	1.853
Al	0.143	0.159	0.165	0.132	0.170	0.163	0.119	0.131	0.159	0.147
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.076	0.037	0.047	0.149	0.088	0.072	0.032	0.060	0.045	0.072
Fe+3	0.134	0.142	0.145	0.045	0.107	0.139	0.134	0.119	0.136	0.113
Ті	0.015	0.014	0.012	0.004	0.016	0.016	0.010	0.016	0.019	0.019
Cr	0.002	0.001	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.003
Ni	0.000	0.003	0.000	0.000	0.000	0.004	0.000	0.000	0.003	0.000
Mg	0.700	0.752	0.745	0.703	0.789	0.768	0.799	0.754	0.774	0.759
Fe+2	0.073	0.051	0.051	0.098	0.000	0.000	0.024	0.051	0.022	0.034
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.002	0.042	0.000	0.000	0.000	0.000
Fe+2	0.104	0.069	0.075	0.200	0.107	0.132	0.115	0.091	0.090	0.097
Mn	0.006	0.004	0.005	0.007	0.002	0.005	0.004	0.006	0.004	0.003
Ca	0.796	0.878	0.868	0.723	0.832	0.738	0.813	0.824	0.844	0.823
Na	0.095	0.048	0.052	0.071	0.057	0.083	0.069	0.079	0.059	0.077
М2	1.001	0.999	1.000	1.001	1.000	1.000	1.001	1.000	0.997	1.000
mg	69.2	74.2	73.3	67.2	78.7	74.9	74.5	74.3	75.7	75.7

CX358: inclusion dans Grt.

lame	В3-14	B3-14	B3-14	B3-14	в3-14	В3-14	C21-3	C21-3	C45-7	C45-7
roche	CSL	CSL	CSL	CSL	CSL	CSL	GNL	GNL	GNL	GNL
analyse	CX366	CX367	CX369	CX370a	CX370b	CX371a	CX373	CX374	CX375	CX377
note	±b ->	<- C	С	С		b	С	С		
SiO2	50.17	50.01	50.63	49.72	50.16	50.48	51.19	51.31	49.71	50.27
A1203	4.17	4.97	4.29	5.41	5.43	4.41	2.99	3.32	4.11	3.61
Fe203	4.26	3.51	3.85	4.60	2.45	3.96	4.72	3.98	4.42	4.74
TiO2	0.55	0.55	0.48	0.64	0.64	0.61	0.27	0.37	0.55	0.47
Cr203	0.00	0.02	0.00	0.00	0.05	0.01	0.05	0.00	0.11	0.05
NiO	0.04	0.05	0.00	0.16	0.00	0.14	0.02	0.00	0.02	0.05
MgO	14.06	14.09	14.31	14.61	13.98	13.87	16.48	15.68	13.27	13.23
Fe0	4.75	5.23	4.70	2.94	6.30	3.66	3.13	1.91	6.71	6.39
MnO	0.15	0.09	0.07	0.10	0.11	0.13	0.15	0.14	0.16	0.18
Ca0	21.24	19.82	20.62	20.81	19.18	22.09	20.40	22.60	19.53	19.66
Na2O	0.70	0.92	0.94	0.88	1.03	0.87	0.57	0.62	0.91	1.15
total	100.09	99.26	99.89	99.87	99.33	100.23	99.97	99.93	99.50	99.80
formule	structur	cale cal	culée s	ır 6 oxy	gènes					
Si	1.860	1.861	1.872	1.833	1.864	1.862	1.882	1.884	1.864	1.880
Al	0.140	0.139	0.128	0.167	0.136	0.138	0.118	0.116	0.136	0.120
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.042	0.079	0.059	0.068	0.102	0.054	0.012	0.028	0.046	0.039
Fe+3	0.119	0.098	0.107	0.128	0.069	0.110	0.131	0.110	0.125	0.134
Ti	0.015	0.016	0.013	0.018	0.018	0.017	0.007	0.010	0.016	0.013
Cr	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.003	0.001
Ni	0.001	0.001	0.000	0.005	0.000	0.004	0.001	0.000	0.001	0.001
Mg	0.777	0.782	0.789	0.781	0.775	0.763	0.848	0.852	0.742	0.737
Fe+2	0.046	0.023	0.032	0.000	0.035	0.052	0.000	0.000	0.067	0.075
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.022	0.000	0.000	0.055	0.006	0.000	0.000
Fe+2	0.101	0.140	0.113	0.091	0.161	0.061	0.096	0.059	0.144	0.125
Mn	0.005	0.003	0.002	0.003	0.003	0.004	0.005	0.004	0.005	0.006
Ca	0.843	0.790	0.817	0.822	0.764	0.873	0.804	0.889	0.785	0.787
Na	0.051	0.066	0.067	0.063	0.074	0.062	0.041	0.044	0.066	0.084
м2	1.000	0.999	0.999	1.001	1.002	1.000	1.001	1.002	1.000	1.002
mg	74.5	75.0	75.8	78.6	74.5	77.4	79.9	83.5	68.8	68.8

lame	C45-7	C45-7	C45-7	C45-7	C45-7
roche	GNL	GNL	GNL	GNL	GNL
analyse	CX378	CX379	CX380	CX381	CX382
SiO2	50.39	50.37	50.10	50.37	50.28
A1203	3.54	3.96	3.16	3.54	3.31
Fe203	4.54	4.55	5.44	4.22	4.63
TiO2	0.34	0.41	0.36	0.40	0.46
Cr203	0.05	0.03	0.02	0.00	0.01
NiO	0.18	0.14	0.00	0.15	0.00
MgO	13.64	13.12	13.31	13.20	13.48
Fe0	6.99	7.17	7.25	7.13	7.73
MnO	0.12	0.15	0.18	0.26	0.20
Ca0	19.01	19.03	18.63	19.91	18.75
Na20	1.00	1.16	1.11	0.89	0.99
total	99.80	100.09	99.56	100.07	99.84
formule	structur	cale cal	culée su	ır 6 oxy	gènes
Si	1.884	1.879	1.884	1.882	1.884
A1	0.116	0.121	0.116	0.118	0.116
Fe+3	0.000	0.000	0.000	0.000	0.000
Al	0.040	0.053	0.024	0.038	0.030
Fe+3	0.128	0.128	0.154	0.119	0.131
Ti	0.010	0.012	0.010	0.011	0.013
Cr	0.001	0.001	0.001	0.000	0.000
Ni	0.005	0.004	0.000	0.005	0.000
Mg	0.760	0.730	0.746	0.735	0.753
Fe+2	0.056	0.072	0.065	0.092	0.073
Mn	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000
Fe+2	0.162	0.152	0.163	0.131	0.169
Mn	0.004	0.005	0.006	0.008	0.006
Ca	0.761	0.761	0.750	0.797	0.753
Na	0.072	0.084	0.081	0.064	0.072
м2	0.999	1.002	1.000	1.000	1.000

66.1 68.2

67.5

68.7

66.9

mg

lame	B1-19	B1-19	B1-19	B1-19	B1-19	B1-19	B1-19	B1-19	C45-13	C45-19
roche	WL	WL	WL	WL	WL	WL	WL	WL	DN	GNL
analyse	CX401	CX402	CX403	CX404	CX405	CX406	CX407	CX408	CX409	CX410
note	С	С	b ->	<- C	C ->	<- b	c ->	<- b	C	С
SiO2	54.42	54.79	54.55	54.72	54.47	54.60	54.47	54.73	52.10	52.07
A1203	0.96	0.93	0.94	0.95	0.90	0.93	0.96	0.93	4.95	3.65
Fe203	0.88	0.88	1.21	0.99	1.10	0.66	1.32	0.66	0.99	1.83
TiO2	0.14	0.15	0.15	0.11	0.13	0.12	0.14	0.11	0.56	0.34
Cr203	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.03
NiO	0.01	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.05
MgO	18.36	18.49	18.70	19.02	18.37	18.34	18.34	18.28	16.74	14.47
FeO	1.52	1.43	1.28	1.59	1.23	1.71	1.07	1.68	1.18	6.92
MnO	0.14	0.14	0.14	0.11	0.09	0.10	0.13	0.10	0.06	0.13
Ca0	22.75	23.02	22.69	22.26	22.90	22.81	22.99	23.00	23.52	19.47
Na2O	0.37	0.39	0.34	0.33	0.38	0.37	0.38	0.36	0.32	1.03
total	99.55	100.23	100.00	100.08	99.57	99.68	99.80	99.88	100.42	99.99
formule	structu	rale cal	culée su	ır 6 oxyg	gènes					
Si	1.976	1.976	1.971	1.974	1.977	1.980	1.973	1.981	1.878	1.922
Al	0.024	0.024	0.029	0.026	0.023	0.020	0.027	0.019	0.122	0.078
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.017	0.015	0.011	0.014	0.016	0.020	0.014	0.021	0.088	0.081
Fe+3	0.024	0.024	0.033	0.027	0.030	0.018	0.036	0.018	0.027	0.051
Ti	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.003	0.015	0.009
Cr	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.001
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Mg	0.955	0.957	0.952	0.956	0.951	0.958	0.946	0.957	0.870	0.796
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.061
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.039	0.037	0.055	0.066	0.042	0.033	0.044	0.029	0.030	0.000
Fe+2	0.046	0.043	0.039	0.048	0.037	0.052	0.033	0.051	0.036	0.153
Mn	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.003	0.002	0.004
Ca	0.885	0.889	0.878	0.860	0.890	0.886	0.892	0.892	0.909	0.770
Na	0.026	0.027	0.024	0.023	0.027	0.026	0.027	0.025	0.022	0.074
M2	1.000	1.000	1.000	1.000	0.999	1.000	1.000	1.000	0.999	1.001
			0.7 ÷	<u></u>			0.2 5	0.2 5	0.2 5	75 0
mg	93.4	93.7	93.3	93.2	93.7	93.4	93.5	93.5	93.5	15.0

CX409: Cpx en inclusion dans Ol; Cpx et Ol sont riches en fines inclusions de Spl.

lame	C45-19	C45-19	C45-19	C45-19	A5-14	A5-14	A5-14	A5-14	A5-14	A5-14
roche	GNL	GNL	GNL	GNL	WB	WB	WB	WB	WB	WB
analyse	CX412	CX414	CX416	CX417	CX432	CX433	CX434	CX435	CX436	CX437
note	С	С	С	с	c ->	<- b	С	С	С	С
SiO2	52.10	51.59	51.12	52.25	52.35	52.15	52.01	51.89	52.08	52.16
A1203	3.68	3.53	4.61	1.88	3.14	3.34	3.45	3.28	3.49	3.29
Fe203	1.18	0.21	0.32	1.59	1.51	1.72	1.72	1.82	1.72	1.61
TiO2	0.30	0.38	0.53	0.14	0.21	0.27	0.28	0.26	0.26	0.23
Cr203	0.02	0.04	0.04	0.02	0.41	0.42	0.43	0.44	0.41	0.39
NiO	0.00	0.00	0.00	0.00	0.03	0.03	0.02	0.07	0.01	0.04
MgO	14.49	12.71	14.00	14.12	14.99	14.79	14.72	14.83	14.54	14.80
Fe0	7.05	7.46	8.34	6.03	4.21	3.79	3.54	3.87	3.62	4.17
MnO	0.13	0.10	0.22	0.23	0.17	0.21	0.14	0.18	0.14	0.13
Ca0	19.46	22.10	18.76	22.30	21.26	21.64	21.81	21.65	22.03	21.45
Na2O	1.03	0.76	0.88	0.56	0.95	0.98	0.99	0.88	1.01	0.97
total	99.44	98.88	98.82	99.12	99.23	99.34	99.11	99.17	99.31	99.24
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.930	1.935	1.910	1.953	1.933	1.924	1.922	1.920	1.922	1.927
Al	0.070	0.065	0.090	0.047	0.067	0.076	0.078	0.080	0.078	0.073
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.091	0.091	0.113	0.036	0.070	0.069	0.072	0.063	0.074	0.070
Fe+3	0.033	0.006	0.009	0.045	0.042	0.048	0.048	0.051	0.048	0.045
Ti	0.008	0.011	0.015	0.004	0.006	0.008	0.008	0.007	0.007	0.006
Cr	0.001	0.001	0.001	0.001	0.012	0.012	0.012	0.013	0.012	0.011
Ni	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.002	0.000	0.001
Mg	0.800	0.711	0.779	0.786	0.825	0.813	0.811	0.818	0.800	0.815
Fe+2	0.067	0.180	0.083	0.128	0.044	0.049	0.049	0.046	0.059	0.052
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.151	0.054	0.178	0.060	0.086	0.068	0.060	0.074	0.053	0.077
Mn	0.004	0.003	0.007	0.007	0.005	0.006	0.004	0.006	0.004	0.004
Ca	0.772	0.888	0.751	0.893	0.841	0.855	0.864	0.858	0.871	0.849
Na	0.074	0.055	0.064	0.040	0.068	0.070	0.071	0.063	0.072	0.069
M2	1.001	1.000	1.000	1.000	1.000	0.999	0.999	1.001	1.000	0.999
mq	76.1	74.8	74.3	77.1	82.7	83.1	83.8	82.7	83.3	82.4

lame	A5-14	A5-14	D6-10	D6-10	D6-10	D6-10	D6-10	D6-10	D6-10	D6-10
roche	WB	WB	WB	WB	WB	WB	WB	WB	WB	WB
analyse	CX438	CX439	CX440	CX441	CX443	CX444	CX445	CX446	CX447	CX449
note	C ->	<- ±c	С	С	C ->	<- b	С			b
SiO2	50.79	50.63	50.85	50.86	52.23	51.17	50.02	50.95	50.37	5.54
A1203	5.14	5.46	4.95	5.06	2.88	5.06	5.53	5.05	5.64	0.06
Fe203	2.16	1.72	1.83	2.38	1.19	1.63	2.57	1.83	2.37	0.00
TiO2	0.33	0.36	0.32	0.30	0.20	0.33	0.41	0.33	0.39	0.00
Cr203	0.43	0.50	0.41	0.45	0.35	0.44	0.53	0.38	0.44	0.00
NiO	0.00	0.01	0.01	0.03	0.00	0.01	0.00	0.03	0.02	0.00
MgO	15.13	14.82	15.55	15.15	15.17	15.10	14.94	14.86	15.09	8.68
FeO	2.52	3.02	3.38	1.75	2.51	2.39	2.57	2.61	2.43	0.01
MnO	0.12	0.13	0.11	0.12	0.09	0.14	0.13	0.07	0.16	0.00
Ca0	22.02	21.93	21.09	22.77	24.22	22.77	21.57	22.36	21.71	5.72
Na2O	0.69	0.68	0.62	0.64	0.46	0.65	0.71	0.74	0.70	0.02
total	99.33	99.26	99.12	99.51	99.30	99.69	98.98	99.21	99.32	0.03
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.868	1.865	1.874	1.866	1.925	1.874	1.849	1.876	1.853	0.000
Al	0.132	0.135	0.126	0.134	0.075	0.126	0.151	0.124	0.147	0.000
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.091	0.102	0.089	0.085	0.050	0.092	0.090	0.095	0.098	0.003
Fe+3	0.060	0.048	0.051	0.066	0.033	0.045	0.072	0.051	0.066	0.000
Ti	0.009	0.010	0.009	0.008	0.006	0.009	0.011	0.009	0.011	0.000
Cr	0.013	0.015	0.012	0.013	0.010	0.013	0.015	0.011	0.013	0.000
Ni	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.000
Mg	0.827	0.814	0.839	0.827	0.833	0.824	0.812	0.816	0.811	0.997
Fe+2	0.000	0.011	0.000	0.000	0.068	0.017	0.000	0.017	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
										0.000
Mg	0.002	0.000	0.015	0.002	0.000	0.000	0.011	0.000	0.016	0.006
Fe+2	0.078	0.082	0.104	0.054	0.009	0.056	0.080	0.063	0.075	0.000
Mn	0.004	0.004	0.004	0.004	0.003	0.004	0.004	0.002	0.005	0.000
Ca	0.868	0.865	0.833	0.895	0.957	0.894	0.854	0.882	0.856	0.992
Na	0.049	0.049	0.044	0.046	0.033	0.046	0.051	0.053	0.050	0.002
M2	1.001	1.000	1.000	1.001	1.002	1.000	1.000	1.000	1.002	0.000
								06.0	05 4	0.0
mg	85.7	85.2	84.6	87.4	88.3	87.5	84.4	86.2	85.4	0.0

lame	D15-3	D15-3	D15-3	D15-3	D15-3	D15-3	C17-2	C17-2	C17-2	C17-2
roche	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL
analyse	CX450	CX451	CX452	CX453	CX454	CX455	CX456	CX457	CX458	CX459
note	с	с				С	C	C ->	<- b	С
SiO2	50.56	50.92	50.58	49.95	50.50	50.38	44.42	44.40	44.01	44.17
A1203	4.28	4.16	4.54	4.39	3.79	4.30	8.12	8.02	8.62	8.07
Fe203	1.46	1.15	1.15	1.56	0.63	1.04	7.18	6.97	6.77	7.35
TiO2	0.15	0.12	0.13	0.15	0.10	0.14	0.66	0.65	0.72	0.67
Cr203	0.00	0.01	0.00	0.03	0.02	0.01	0.02	0.01	0.00	0.00
NiO	0.00	0.01	0.00	0.01	0.01	0.03	0.00	0.02	0.01	0.00
MgO	9.67	9.85	9.55	9.28	9.66	9.35	6.84	6.89	6.67	6.22
FeO	9.23	9.38	9.36	9.81	10.54	10.28	8.97	9.28	9.49	9.93
MnO	0.07	0.08	0.13	0.10	0.09	0.15	0.48	0.17	0.38	0.36
Ca0	22.41	22.40	22.29	22.39	22.82	22.23	22.28	22.31	22.25	22.19
Na2O	1.16	1.14	1.20	1.03	0.72	1.03	0.72	0.71	0.66	0.78
total	98.99	99.22	98.93	98.70	98.88	98.94	99.69	99.43	99. 58	99.74
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.921	1.929	1.922	1.912	1.929	1.922	1.720	1.723	1.707	1.717
Al	0.079	0.071	0.078	0.088	0.071	0.078	0.280	0.277	0.293	0.283
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.113	0.115	0.125	0.110	0.100	0.115	0.090	0.090	0.101	0.087
Fe+3	0.042	0.033	0.033	0.045	0.018	0.030	0.209	0.204	0.198	0.215
Ti	0.004	0.003	0.004	0.004	0.003	0.004	0.019	0.019	0.021	0.019
Cr	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.000	0.000
Ni	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000
Mg	0.548	0.556	0.541	0.529	0.550	0.532	0.395	0.398	0.386	0.361
Fe+2	0.293	0.293	0.297	0.311	0.328	0.318	0.286	0.288	0.294	0.318
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.000	0.004	0.000	0.003	0.009	0.010	0.004	0.013	0.014	0.005
Mn	0.002	0.003	0.004	0.003	0.003	0.005	0.016	0.006	0.012	0.012
Ca	0.912	0.909	0.907	0.918	0.934	0.909	0.924	0.928	0.925	0.925
Na	0.086	0.084	0.088	0.076	0.053	0.076	0.054	0.053	0.050	0.059
M2	1.000	1.000	0.999	1.000	0.999	1.000	0.998	1.000	1.001	1.001
mq	62.1	62.8	62.1	59.6	60.8	59.8	44.2	44.1	43.3	40.2

lame	C17-2	A23-3	A23-3	A23-3	A23-3	A23-3	A23-3	A22-2	A22-2	A22-2
roche	CSL	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX460	CX461	CX462	CX463	CX464	CX465	CX466	CX467	CX468	CX469
note	С	С	C ->	<- b	C ->	<- b	c?	b ->	<->	<->
SiO2	44.11	53.43	53.36	52.01	53.30	51.29	53.18	50.87	50.75	50.93
A1203	7.78	2.74	2.27	1.53	0.89	1.83	2.34	5.70	5.40	4.78
Fe203	7.32	0.55	1.09	2.12	1.61	2.74	1.19	1.51	1.72	1.62
TiO2	0.66	0.15	0.17	0.08	0.05	0.11	0.14	0.33	0.37	0.29
Cr203	0.01	0.04	0.02	0.00	0.00	0.00	0.02	0.01	0.42	1.39
NiO	0.07	0.00	0.00	0.00	0.00	0.05	0.00	0.02	0.05	0.02
MgO	6.07	16.82	16.28	13.29	15.26	12.31	15.49	14.69	14.71	15.04
FeO	10.49	1.30	1.31	6.09	3.90	7.26	2.56	5.72	4.90	4.97
MnO	0.32	0.10	0.02	0.18	0.18	0.21	0.12	0.17	0.22	0.14
Ca0	21.93	24.32	24.72	23.97	24.36	23.66	24.30	19.99	20.37	19.72
Na20	0.74	0.36	0.39	0.34	0.25	0.35	0.47	0.75	0.78	0.82
total	99.50	99.81	99.63	99.61	99.80	99.81	99.81	99.76	99.69	9.72
formule	structur	rale cal	culée su	ir 6 oxy	nènes					
Si	1 723	1.940	1.947	1.946	1.967	1.931	1.947	1.872	1.869	1.877
Al	0.277	0.060	0.053	0.054	0.033	0.069	0.053	0.128	0.131	0.123
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.081	0.057	0.045	0.013	0.006	0.012	0.048	0.119	0.103	0.084
Fe+3	0.215	0.015	0.030	0.060	0.045	0.078	0.033	0.042	0.048	0.045
Ti	0.019	0.004	0.005	0.002	0.002	0.003	0.004	0.009	0.010	0.008
Cr	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.012	0.040
Ni	0.002	0.000	0.000	0.000	0.000	0.002	0.000	0.001	0.002	0.001
Mg	0.353	0.910	0.885	0.742	0.839	0.690	0.845	0.806	0.808	0.822
Fe+2	0.330	0.013	0.034	0.183	0.108	0.215	0.069	0.023	0.017	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
Fe+2	0.013	0.026	0.006	0.008	0.012	0.013	0.009	0.153	0.134	0.153
Mn	0.011	0.003	0.001	0.006	0.006	0.007	0.004	0.005	0.007	0.004
Ca	0.918	0.946	0.966	0.961	0.963	0.954	0.953	0.788	0.804	0.779
Na	0.056	0.025	0.028	0.025	0.018	0.025	0.033	0.053	0.056	0.058
M2	0.998	1.000	1.001	1.000	0.999	0.999	0.999	0.999	1.001	0.998
ma	38.7	94.4	92.7	74.7	83.6	69.3	88.4	78.7	80.2	80.7

CX462-CX465: Cpx2 vert clair, automorphe, en contact avec Scp.

lame	A22-2	A22-2	A22-2	A22-2	A22-2	A22-1	A22-1	A22-1	A22-1	C14-2
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX470	CX471	CX472	CX474	CX475	CX499	CX500	CX501	CX502	CX503
note	<- c ->	<>	<-b			С	C ->	<- b	С	С
SiO2	49.95	51.09	50.77	50.18	51.51	50.99	51.26	51.37	51.12	44.28
A1203	7.16	5.13	5.35	5.49	4.70	5.55	5.39	5.24	5.76	12.16
Fe203	2.05	1.84	1.83	1.71	0.97	2.05	2.06	2.27	1.41	2.85
TiO2	0.45	0.39	0.29	0.29	0.26	0.38	0.38	0.17	0.41	1.81
Cr203	0.06	0.50	0.10	0.34	0.41	0.63	0.63	0.69	0.67	0.01
NiO	0.02	0.08	0.03	0.01	0.00	0.00	0.03	0.00	0.02	0.00
MgO	13.99	15.25	14.80	14.95	16.72	14.79	14.74	14.78	14.73	9.95
FeO	4.99	5.08	5.07	5.82	6.48	2.40	2.20	2.55	2.60	5.10
MnO	0.24	0.14	0.23	0.16	0.23	0.07	0.06	0.08	0.08	0.11
Ca0	20.00	19.93	20.23	19.12	17.26	21.30	21.60	21.07	21.52	22.76
Na20	0.92	0.76	0.72	0.69	0.71	1.11	1.12	1.21	1.10	0.56
total	99.83	100.19	99.42	98.76	99.25	99.27	99.47	99.43	99.42	99.59
formule	structur	ale cal	culée su	ır 6 oxy	gènes					
Si	1.836	1.872	1.874	1.867	1.896	1.872	1.878	1.884	1.873	1.659
Al	0.164	0.128	0.126	0.133	0.104	0.128	0.122	0.116	0.127	0.341
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.146	0.093	0.107	0.108	0.100	0.112	0.110	0.111	0.122	0.196
Fe+3	0.057	0.051	0.051	0.048	0.027	0.057	0.057	0.063	0.039	0.080
Ti	0.012	0.011	0.008	0.008	0.007	0.011	0.010	0.005	0.011	0.051
Cr	0.002	0.014	0.003	0.010	0.012	0.018	0.018	0.020	0.019	0.000
Ni	0.001	0.002	0.001	0.000	0.000	0.000	0.001	0.000	0.001	0.000
Mg	0.767	0.829	0.815	0.826	0.854	0.802	0.804	0.801	0.804	0.556
Fe+2	0.015	0.000	0.015	0.000	0.000	0.000	0.000	0.000	0.004	0.117
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.004	0.000	0.003	0.063	0.007	0.001	0.007	0.000	0.000
Fe+2	0.138	0.156	0.142	0.181	0.199	0.074	0.067	0.078	0.076	0.043
Mn	0.008	0.004	0.007	0.005	0.007	0.002	0.002	0.002	0.002	0.003
Ca	0.788	0.782	0.800	0.762	0.681	0.838	0.848	0.828	0.845	0.914
Na	0.065	0.054	0.051	0.050	0.050	0.079	0.080	0.086	0.078	0.041
M2	0.999	1.000	1.000	1.001	1.000	1.000	0.998	1.001	1.001	1.001
mg	78.5	80.1	79.7	78.4	80.2	86.1	86.7	85.1	87.1	69.8

CX468, CX469, CX471 font partie d'une couronne interne distincte dans le Cpx.

439

lame	C14-2	C14-2	C14-2	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7
roche	CXN	CXN	CXN	CSL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX504	CX505	CX506	CX507	CX508	CX509	CX510	CX511	CX512	CX513
note	С	C ->	<- b	±c	С	С			С	С
SiO2	45.77	45.19	44.54	51.89	51.51	51.31	52.23	51.69	51.73	51.59
A1203	10.83	11.56	11.88	1.76	2.15	2.08	1.64	1.88	2.20	2.16
Fe203	2.44	2.77	2.96	1.38	2.23	1.91	2.13	2.01	1.38	1.80
TiO2	1.43	1.61	1.72	0.22	0.27	0.36	0.18	0.23	0.25	0.26
Cr203	0.05	0.05	0.01	0.10	0.10	0.01	0.02	0.03	0.04	0.06
NiO	0.04	0.00	0.02	0.02	0.01	0.00	0.02	0.02	0.00	0.01
MgO	10.52	10.31	9.92	13.92	14.01	13.50	13.86	13.57	13.22	13.01
FeO	5.50	5.32	5.25	8.74	7.52	12.96	6.95	7.03	8.16	7.39
MnO	0.08	0.04	0.08	0.14	0.03	0.25	0.14	0.14	0.11	0.10
Ca0	22.63	22.76	22.64	21.16	21.48	18.38	22.52	22.53	22.11	22.87
Na2O	0.57	0.56	0.59	0.33	0.39	0.22	0.41	0.38	0.41	0.39
total	99.86	100.17	99.61	99.66	99.70	100.98	100.10	99.51	99.61	99.64
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.707	1.682	1.669	1.945	1.926	1.923	1.944	1.937	1.939	1.934
Al	0.293	0.318	0.331	0.055	0.074	0.077	0.056	0.063	0.061	0.066
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.183	0.189	0.194	0.023	0.021	0.015	0.016	0.020	0.036	0.029
Fe+3	0.069	0.078	0.083	0.039	0.063	0.054	0.060	0.057	0.039	0.051
Ti	0.040	0.045	0.049	0.006	0.008	0.010	0.005	0.007	0.007	0.007
Cr	0.002	0.001	0.000	0.003	0.003	0.000	0.001	0.001	0.001	0.002
Ni	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.000	0.000
Mg	0.585	0.572	0.554	0.778	0.781	0.754	0.769	0.758	0.739	0.727
Fe+2	0.120	0.115	0.119	0.151	0.124	0.167	0.148	0.156	0.178	0.184
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
										0 000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.052	0.051	0.045	0.123	0.111	0.239	0.068	0.064	0.078	0.048
Mn	0.003	0.001	0.003	0.005	0.001	0.008	0.004	0.004	0.004	0.003
Ca	0.905	0.908	0.909	0.850	0.861	0.738	0.898	0.905	0.888	0.919
Na	0.041	0.041	0.043	0.024	0.028	0.016	0.030	0.027	0.029	0.028
M2	1.001	1.001	1.000	1.002	1.001	1.001	1.000	1.000	0.999	0.998
			<i></i>			~~ -		H 0 0	01 F	70.0
mg	70.8	70.1	69.2	71.3	72.4	62.1	73.6	73.2	71.5	72.0

CX509: petite inclusion dans Grt.

lame	A5-7	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-7	C45-7	C45-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX517	CX518	CX532	CX534	CX535	CX536	CX537	CX540	CX541	CX543
note			С	С	С	c ->	<- b	c ->	±c	
SiO2	50.72	51.71	51.39	51.29	51.97	51.91	51.38	51.89	51.81	51.13
A1203	4.58	3.68	3.85	4.41	3.37	3.72	4.06	2.27	2.53	3.86
Fe203	1.69	1.82	1.39	0.86	2.04	0.86	1.60	2.54	2.22	2.12
TiO2	0.54	0.49	0.45	0.48	0.32	0.40	0.42	0.29	0.25	0.45
Cr203	0.05	0.04	0.06	0.05	0.05	0.00	0.05	0.02	0.02	0.02
NiO	0.01	0.02	0.01	0.03	0.01	0.00	0.00	0.00	0.00	0.02
MgO	12.24	14.37	14.32	14.25	14.79	14.46	14.28	13.19	13.25	13.04
FeO	9.01	7.61	8.08	7.28	6.18	7.81	7.64	9.10	9.34	9.96
MnO	0.16	0.13	0.21	0.16	0.12	0.13	0.20	0.18	0.16	0.17
Ca0	18.75	19.01	18.81	19.50	20.17	19.01	19.07	18.94	18.80	17.73
Na2O	1.33	0.95	0.83	0.80	0.84	0.95	0.89	1.12	1.08	1.15
total	99.08	99.83	99.40	99.11	99.86	99.25	99.59	99.54	99.46	99.65
formule	structu	rale cal	culée s	ur 6 oxy	gènes					
Si	1.907	1.915	1.913	1.908	1.919	1.929	1.908	1.947	1.944	1.915
Al	0.093	0.085	0.087	0.092	0.081	0.071	0.092	0.053	0.056	0.085
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.110	0.076	0.082	0.101	0.066	0.092	0.086	0.047	0.056	0.085
Fe+3	0.048	0.051	0.039	0.024	0.057	0.024	0.045	0.072	0.063	0.060
Ti	0.015	0.014	0.013	0.014	0.009	0.011	0.012	0.008	0.007	0.013
Cr	0.002	0.001	0.002	0.002	0.001	0.000	0.001	0.001	0.001	0.001
Ni	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001
Mg	0.686	0.794	0.795	0.790	0.814	0.801	0.790	0.738	0.741	0.728
Fe+2	0.139	0.063	0.069	0.068	0.053	0.072	0.066	0.134	0.132	0.112
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.144	0.173	0.183	0.158	0.138	0.171	0.171	0.152	0.161	0.200
Mn	0.005	0.004	0.007	0.005	0.004	0.004	0.006	0.006	0.005	0.005
Ca	0.755	0.754	0.750	0.777	0.798	0.757	0.759	0.761	0.756	0.711
Na	0.097	0.068	0.060	0.058	0.060	0.069	0.064	0.081	0.079	0.083
M2	1.001	0.999	1.000	0.998	1.000	1.001	1.000	1.000	1.001	0.999
mg	67.5	73.5	73.2	76.0	76.6	75.0	73.7	67.3	67.5	66.2

lame	C45-7	C45-7	C45-7	C45-7	C45-7	A5-7	A5-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX544	CX545	CX546	CX547	CX548	CX549	CX551	CX552	CX553	CX554
note	b ->	<- C	C ->	c ->	<- b	С	С	С	С	С
SiO2	51.02	51.08	52.22	52.37	51.02	48.71	50.91	51.07	51.32	50.86
A1203	3.62	3.05	2.90	2.60	3.34	6.43	4.76	3.55	3.65	4.84
Fe203	2.54	2.53	0.00	0.11	2.42	2.73	1.91	2.44	1.06	1.39
TiO2	0.49	0.41	0.50	0.44	0.37	0.71	0.57	0.36	0.39	0.58
Cr203	0.02	0.04	0.03	0.05	0.09	0.07	0.08	0.03	0.05	0.02
NiO	0.05	0.00	0.01	0.02	0.02	0.00	0.01	0.00	0.00	0.02
MgO	13.06	13.14	12.52	12.76	12.99	12.54	12.20	13.21	13.01	13.16
FeO	10.15	8.44	10.37	10.87	10.48	9.14	8.51	6.70	8.32	6.86
MnO	0.21	0.15	0.12	0.09	0.19	0.19	0.08	0.16	0.17	0.14
Ca0	17.68	19.35	19.03	18.60	17.57	16.99	19.20	21.43	20.73	2.00
Na20	1.07	1.00	1.20	1.20	1.08	1.17	1.37	0.75	0.77	0.88
total	99.91	99.19	98.90	99.11	99.57	98.68	99.60	99.70	99.47	99.66
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.911	1.921	1.966	1.971	1.919	1.840	1.902	1.905	1.920	1.890
Al	0.089	0.079	0.034	0.029	0.081	0.160	0.098	0.095	0.080	0.110
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.071	0.056	0.095	0.086	0.067	0.126	0.112	0.061	0.081	0.102
Fe+3	0.072	0.072	0.000	0.003	0.069	0.078	0.054	0.069	0.030	0.039
ті	0.014	0.011	0.014	0.012	0.011	0.020	0.016	0.010	0.011	0.016
Cr	0.001	0.001	0.001	0.001	0.003	0.002	0.002	0.001	0.002	0.001
Ni	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.001
Mg	0.729	0.737	0.703	0.716	0.728	0.706	0.679	0.735	0.726	0.729
Fe+2	0.112	0.123	0.187	0.181	0.121	0.068	0.137	0.124	0.150	0.112
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.206	0.142	0.139	0.161	0.209	0.221	0.129	0.085	0.110	0.101
Mn	0.007	0.005	0.004	0.003	0.006	0.006	0.003	0.005	0.005	0.004
Ca	0.710	0.780	0.768	0.750	0.708	0.687	0.768	0.856	0.831	0.833
Na	0.078	0.073	0.087	0.087	0.079	0.086	0.099	0.054	0.056	0,063
M2	1.001	1.000	0.998	1.001	1.002	1.000	0.999	1.000	1.002	1.001
mg	65.1	68.6	68.3	67.5	64.6	65.8	68.0	72.6	71.5	74.3

CX551, CX554: inclusion dans Grt.

lame	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	C45-16	C45-16
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	WB	WB
analyse	CX557	CX559	CX561	CX562	CX563	CX565	CX568	CX569	CX571	CX572
note	С		±b	С	С	с	b ->	<- C		
SiO2	50.48	50.96	52.24	51.65	50.70	51.18	48.75	50.42	51.95	51.47
A1203	4.35	3.75	3.78	2.70	4.83	5.52	6.52	4.19	2.91	3.28
Fe203	2.01	2.45	0.00	2.24	0.96	0.22	3.05	2.54	2.80	2.58
TiO2	0.41	0.45	0.50	0.32	0.55	0.64	0,71	0.47	0.36	0.32
Cr203	0.05	0.03	0.01	0.06	0.04	0.01	0.01	0.00	0.13	0.12
NiO	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.00	0.06	0.00
MgO	12.94	14.17	13.48	13.23	13.35	13.65	12.37	12.80	14.86	16.55
Fe0	8.26	5.89	8.19	6.97	8.88	7.45	7.97	7.04	3.77	8.17
MnO	0.21	0.12	0.13	0.16	0.12	0.16	0.17	0.21	0.19	0.34
Ca0	19.69	21.01	20.71	22.08	18.90	19.42	18.35	21.01	22.79	16.96
Na2O	0.84	0.68	0.69	0.67	0.88	1.10	1.11	0.80	0.59	0.43
total	99.24	99.51	99.74	100.09	99.23	99.35	99.01	99.48	100.41	100.22
formule	structur	cale cal	culée su	ır 6 oxy	gènes					
Si	1.894	1.895	1.937	1.923	1.896	1.896	1.833	1.888	1.908	1.899
A1	0.106	0.105	0.063	0.077	0.104	0.104	0.167	0.112	0.092	0.101
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.086	0.059	0.102	0.042	0.109	0.137	0.122	0.073	0.034	0.042
Fe+3	0.057	0.069	0.000	0.063	0.027	0.006	0.086	0.072	0.078	0.072
ті	0.012	0.013	0.014	0.009	0.015	0.018	0.020	0.013	0.010	0.009
Cr	0.002	0.001	0.000	0.002	0.001	0.000	0.000	0.000	0.004	0.004
Ni	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002	0.000
Mg	0.724	0.785	0.745	0.734	0.744	0.754	0.694	0.714	0.814	0.873
Fe+2	0.119	0.073	0.139	0.150	0.103	0.085	0.078	0.128	0.058	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.037
Fe+2	0.140	0.110	0.115	0.067	0.175	0.146	0.173	0.092	0.058	0.252
Mn	0.007	0.004	0.004	0.005	0.004	0.005	0.006	0.007	0.006	0.011
Ca	0.792	0.837	0.823	0.881	0.757	0.771	0.739	0.843	0.896	0.670
Na	0.061	0.049	0.050	0.048	0.063	0.079	0.081	0.058	0.042	0.031
M2	1.000	1.000	0.992	1.001	0.999	1.001	0.999	1.000	1.002	1.001
mg	69.6	75.7	74.6	72.4	70.9	76.1	67.3	71.0	80.8	73.7

CX565: inclusion dans Grt

443

lame	A22-2	A22-2	A6-64	A6-64	A6-64	A6-64	A6-64	A6-64	A6-64	A6-64
roche	CXN	CXN	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX573a	CX573b	CX574	CX575	CX576	CX577	CX578	CX580	CX581	CX583
note			С	С	С	С	С	С	С	С
SiO2	50.18	51.12	50.83	52.47	51.27	50.68	52.05	51.35	51.68	51.07
A1203	5.24	5.60	5.19	4.26	4.75	4.74	5.81	3.68	3.75	4.59
Fe203	4.08	1.63	1.51	0.00	1.40	2.04	0.00	2.47	1.83	1.18
TiO2	0.32	0.30	0.48	0.40	0.40	0.58	0.60	0.43	0.45	0.50
Cr203	0.34	0.05	0.12	0.20	0.25	0.15	0.14	0.16	0.16	0.16
NiO	0.03	0.00	0.00	0.04	0.02	0.00	0.00	0.02	0.03	0.04
MgO	15.59	15.24	15.24	14.29	14.85	14.21	13.39	14.71	14.89	14.41
FeO	2.34	5.71	5.27	6.16	5.29	4.53	6.91	4.02	4.58	5.76
MnO	0.15	0.24	0.10	0.03	0.12	0.10	0.06	0.08	0.08	0.09
Ca0	20.50	19.48	19.61	20.36	19.89	21.72	19.09	22.01	21.84	20.65
Na20	0.77	0.68	0.80	0.76	0.93	0.74	0.84	0.68	0.65	0.76
total	99.54	100.05	99.15	98.97	99.17	99.49	98.89	99.61	99.94	99.21
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.845	1.874	1.878	1.939	1.896	1.876	1.922	1.897	1.902	1.894
Al	0.155	0.126	0.122	0.061	0.104	0.124	0.078	0.103	0.098	0.106
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.072	0.116	0.104	0.124	0.103	0.083	0.175	0.057	0.065	0.095
Fe+3	0.113	0.045	0.042	0.000	0.039	0.057	0.000	0.069	0.051	0.033
Ti	0.009	0.008	0.013	0.011	0.011	0.016	0.017	0.012	0.012	0.014
Cr	0.010	0.002	0.003	0.006	0.007	0.004	0.004	0.005	0.005	0.005
Ni	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.001
Mg	0.795	0.829	0.838	0.787	0.818	0.784	0.737	0.810	0.817	0.796
Fe+2	0.000	0.000	0.000	0.071	0.021	0.056	0.067	0.046	0.049	0.056
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.060	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.072	0.175	0.163	0.119	0.143	0.084	0.146	0.078	0.092	0.123
Mn	0.005	0.007	0.003	0.001	0.004	0.003	0.002	0.003	0.003	0.003
Ca	0.808	0.765	0.777	0.806	0.788	0.861	0.755	0.871	0.861	0.820
Na	0.055	0.048	0.057	0.054	0.067	0.053	0.060	0.049	0.046	0.054
M2	1.000	0.999	1.001	0.980	1.002	1.001	0.963	1.001	1.002	1.000
mg	82.2	79.1	80.4	80.6	80.1	79.9	77.6	80.8	81.0	79.0

lame	A6-64	A6-64	B1-2	в1-2	B1-2	B1-2	в1-2	B1-2	B1-2	A3-14A
roche	GNL	GNL	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX584	CX 585	CX586	CX587	CX588	CX589	CX590	CX591	CX592	CX594
note	с	С	b ->	<- C	С	±b	С	c ->	<- b	
SiO2	51.14	51.54	51.47	51.29	51.18	51.24	51.51	51.03	51.44	51.01
A1203	4.35	3.80	5.01	5.08	5.75	5.19	5.12	5.55	5.16	4.22
Fe203	1.72	1.40	1.74	2.07	1.97	1.74	2.07	1.30	0.98	1.60
TiO2	0.47	0.43	0.40	0.44	0.52	0.47	0.37	0.49	0.38	0.44
Cr203	0.17	0.08	0.55	0.56	0.44	0.38	0.38	0.42	0.42	0.14
NiO	0.00	0.03	0.00	0.00	0.01	0.04	0.03	0.02	0.00	0.00
MgO	14.74	14.74	15.83	15.85	15.62	15.52	15.92	15.31	15.48	14.24
Fe0	4.96	5.01	3.20	2.59	2.87	3.04	2.80	3.07	3.82	5.45
MnO	0.07	0.02	0.16	0.16	0.16	0.11	0.07	0.08	0.17	0.12
CaO	20.93	21.78	21.06	21.31	21.27	21.32	21.13	21.48	20.81	21.06
Na2O	0.75	0.61	0.74	0.75	0.77	0.78	0.75	0.76	0.78	0.75
total	99.30	99.44	100.16	100.10	100.56	99.83	100.15	99.51	99.44	99.03
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.892	1.906	1.875	1.868	1.857	1.873	1.874	1.869	1.886	1.898
Al	0.108	0.094	0.125	0.132	0.143	0.127	0.126	0.131	0.114	0.102
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.082	0.071	0.090	0.086	0.103	0.096	0.094	0.109	0.109	0.083
Fe+3	0.048	0.039	0.048	0.057	0.054	0.048	0.057	0.036	0.027	0.045
Ti	0.013	0.012	0.011	0.012	0.014	0.013	0.010	0.013	0.011	0.012
Cr	0.005	0.002	0.016	0.016	0.013	0.011	0.011	0.012	0.012	0.004
Ni	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
Mg	0.813	0.812	0.835	0.829	0.816	0.831	0.827	0.829	0.841	0.789
Fe+2	0.039	0.063	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.067
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
М1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.024	0.032	0.029	0.014	0.036	0.007	0.005	0.000
Fe+2	0.115	0.092	0.098	0.079	0.087	0.093	0.085	0.094	0.117	0.103
Mn	0.002	0.001	0.005	0.005	0.005	0.003	0.002	0.002	0.005	0.004
Ca	0.830	0.863	0.822	0.832	0.827	0.835	0.824	0.843	0.818	0.839
Na	0.054	0.044	0.052	0.053	0.054	0.055	0.053	0.054	0.056	0.054
M2	1.001	1.000	1.001	1.001	1.002	1.000	1.000	1.000	1.001	1.000
						05 5	05 0	96 5	05 5	70 (
mg	80.1	80.7	85.5	86.4	85.7	85.7	85.9	86.5	85.5	/8.6

CX586, CX588: Cpx formant lobe ou inclusion partielle dans Opx.

lame	A3-14A	A3-14A	A6-5	A6-5	A6-5	A6-5	A6-5	A6-5	C45-22	C45-22
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CSL	CSL
analyse	CX595	CX598	CX599	CX600	CX602	CX603	CX604	CX605	CX606	CX607
note	С	с	c ->	<- b	с	b ->	<- C	С	С	b ->
SiO2	50.67	51.10	50.24	50.07	50.32	50.31	50.04	50.06	51.60	51.52
A1203	4.25	4.10	4.34	3.80	4.15	3.55	4.34	3.87	2.04	2.02
Fe203	2.13	1.39	2.21	2.94	2.63	2.94	3.05	2.83	2.33	4.05
TiO2	0.45	0.44	0.26	0.41	0.30	0.27	0.29	0.32	0.06	0.07
Cr203	0.14	0.13	0.00	0.02	0.05	0.02	0.02	0.04	0.01	0.01
NiO	0.01	0.00	0.03	0.00	0.00	0.06	0.00	0.00	0.03	0.01
MgO	14.27	14.85	12.39	12.27	12.62	12.74	11.99	12.81	13.12	13.26
FeO	4.52	6.73	8.54	7.82	7.12	9.51	7.75	10.39	4.46	2.93
MnO	0.09	0.11	0.48	0.41	0.45	0.51	0.41	0.57	2.41	2.29
Ca0	21.69	20.12	19.70	20.96	20.57	19.00	20.71	18.09	23.14	24.41
Na2O	0.69	0.56	0.86	0.72	0.88	0.70	0.87	0.73	0.38	0.34
total	98.91	99.53	99.05	99.42	99.09	99.61	99.47	99.71	99.58	100.91
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.887	1.895	1.896	1.888	1.893	1.897	1.884	1.889	1.934	1.909
Al	0.113	0.105	0.104	0.112	0.107	0.103	0.116	0.111	0.066	0.088
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
Al	0.073	0.074	0.089	0.057	0.077	0.055	0.076	0.061	0.024	0.000
Fe+3	0.060	0.039	0.063	0.083	0.075	0.083	0.086	0.080	0.066	0.110
Ti	0.013	0.012	0.007	0.012	0.008	0.008	0.008	0.009	0.002	0.002
Cr	0.004	0.004	0.000	0.001	0.001	0.001	0.000	0.001	0.000	0.000
Ni	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.001	0.000
Mg	0.792	0.821	0.697	0.690	0.708	0.716	0.673	0.720	0.733	0.732
Fe+2	0.058	0.050	0.143	0.157	0.131	0.135	0.157	0.129	0.140	0.091
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.034	0.065
М1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.083	0.159	0.127	0.089	0.093	0.165	0.087	0.199	0.000	0.000
Mn	0.003	0.003	0.015	0.013	0.014	0.016	0.013	0.018	0.043	0.007
Ca	0.865	0.800	0.796	0.847	0.829	0.768	0.836	0.731	0.929	0.969
Na	0.050	0.040	0.063	0.053	0.064	0.051	0.064	0.053	0.028	0.024
M2	1.001	1.002	1.001	1.002	1.000	1.000	1.000	1.001	1.000	1.000
mg	79.8	76.8	67.7	67.7	70.3	65.2	67.1	63.8	78.1	78.2

lame	C45-22	C45-22	D6-6	D6-6	D6-6	D6-6	B6-39	B6-39	D3-2	D3-2
roche	CSL	CSL	CSL	CSL	CSL	CSL	WB	WB	CXN	CXN
analyse	CX608	CX609	CX610	CX611	CX612	CX613	CX614	CX615	CX616	CX617
note	<->	<- C	С	С	С	С	±c	С	±c ->	<->
SiO2	51.60	51.18	54.96	55.12	54.98	54.82	52.47	52.10	44.02	44.83
A1203	2.20	2.69	1.00	1.03	1.09	1.16	4.34	4.20	13.78	14.33
Fe203	1.80	2.01	0.68	0.55	0.62	0.65	0.00	1.61	4.42	2.99
TiO2	0.08	0.10	0.15	0.15	0.14	0.14	0.12	0.13	0.92	0.89
Cr203	0.00	0.00	0.00	0.01	0.02	0.03	0.24	0.34	0.00	0.00
NiO	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.06	0.00	0.00
MgO	13.12	12.89	19.23	19.11	19.27	19.38	15.32	14.87	9.31	9.67
FeO	4.80	4.86	0.00	0.07	0.00	0.00	5.53	4.40	2.55	4.30
MnO	2.33	2.34	0.00	0.07	0.03	0.06	0.12	0.14	0.11	0.11
CaO	23.56	23.34	23.24	23.20	23.37	23.01	19.87	19.87	22.37	21.62
Na2O	0.23	0.25	0.45	0.45	0.47	0.48	0.88	1.26	1.19	1.08
total	99.72	99.66	99.71	99.77	99.99	99.73	98.89	98.98	98.67	99.82
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.932	1.919	1.978	1.982	1.975	1.973	1.934	1.923	1.651	1.660
Al	0.068	0.081	0.022	0.018	0.025	0.027	0.066	0.077	0.349	0.340
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.029	0.038	0.020	0.026	0.021	0.022	0.123	0.106	0.260	0.286
Fe+3	0.051	0.057	0.018	0.015	0.017	0.018	0.000	0.045	0.125	0.083
Ti	0.002	0.003	0.004	0.004	0.004	0.004	0.003	0.004	0.026	0.025
Cr	0.000	0.000	0.000	0.000	0.001	0.001	0.007	0.010	0.000	0.000
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000
Mg	0.732	0.720	0.958	0.955	0.957	0.955	0.842	0.818	0.520	0.534
Fe+2	0.150	0.152	0.000	0.000	0.000	0.000	0.025	0.015	0.069	0.072
Mn	0.036	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.074	0.069	0.075	0.084	0.000	0.000	0.000	0.000
Fe+2	0.000	0.000	0.000	0.002	0.000	0.000	0.145	0.121	0.011	0.061
Mn	0.038	0.044	0.000	0.002	0.001	0.002	0.004	0.004	0.004	0.003
Ca	0.945	0.938	0.896	0.894	0.899	0.887	0.785	0.786	0.899	0.858
Na	0.017	0.018	0.031	0.032	0.032	0.034	0.063	0.090	0.087	0.078
M2	1.000	1.000	1.001	0.999	1.007	1.007	0.997	1.001	1.001	1.000
ma	78.5	77.5	98.3	98.4	98.4	98.3	83.2	81.9	71.7	71.2

lame	D3-2	D3-2	D3-2	B3-25	в3-25	B3-25	B3-25	в3-25	B3-25	B3-25
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX618	CX619	CX620	CX651	CX653	CX654	CX656	CX658	CX660*	CX663
note	<- ±b	Cpx2	Cpx2	b ->	<->	<->	<->	<->	<->	<->
SiO2	44.97	52.19	50.34	48.97	49.57	52.28	49.68	49.69	52.11	49.50
A1203	14.04	1.61	3.25	6.94	7.67	11.58	7.60	7.63	2.86	7.91
Fe203	2.14	2.13	3.06	3.85	3.01	0.00	3.01	2.99	2.73	2.98
TiO2	1.07	0.08	0.29	0.54	0.51	0.10	0.54	0.52	0.43	0.52
Cr203	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.04	0.05
NiO	0.00	0.01	0.00	0.03	0.00	0.00	0.01	0.06	0.00	0.02
MgO	9.61	13.80	12.54	13.22	14.42	11.56	14.23	14.42	16.20	14.09
FeO	4.43	5.63	6.06	1.79	0.00	1.89	0.00	0.00	0.00	0.00
MnO	0.08	0.26	0.27	0.19	0.15	0.05	0.09	0.14	0.06	0.09
Ca0	22.08	24.02	23.67	23.27	23.79	21.46	23.65	23.78	25.33	23.67
Na2O	1.06	0.29	0.32	0.79	0.86	1.33	0.93	0.85	0.31	0.93
total	99.49	100.02	99.80	99.59	99.98	100.25	99.76	100.08	100.07	99.76
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.670	1.942	1.888	1.809	1.805	1.863	1.811	1.807	1.899	1.805
Al	0.330	0.058	0.112	0.191	0.195	0.137	0.189	0.193	0.101	0.195
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.284	0.013	0.032	0.111	0.134	0.349	0.137	0.134	0.022	0.145
Fe+3	0.060	0.060	0.086	0.107	0.083	0.000	0.082	0.082	0.075	0.082
Ti	0.030	0.002	0.008	0.015	0.014	0.003	0.015	0.014	0.012	0.014
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Ni	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002	0.000	0.001
Mg	0.532	0.765	0.701	0.728	0.769	0.614	0.766	0.768	0.880	0.757
Fe+2	0.094	0.160	0.173	0.038	0.000	0.034	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.992	1.000
Mg	0.000	0.000	0.000	0.000	0.014	0.000	0.007	0.013	0.000	0.009
Fe+2	0.043	0.015	0.017	0.017	0.000	0.022	0.000	0.000	0.000	0.000
Mn	0.002	0.008	0.008	0.006	0.005	0.002	0.003	0.004	0.000	0.003
Ca	0.879	0.957	0.951	0.921	0.928	0.820	0.924	0.927	0.989	0.925
Na	0.076	0.021	0.023	0.056	0.061	0.092	0.066	0.060	0.022	0.066
M2	1.000	1.001	0.999	1.000	1.008	0.936	1.000	1.004	1.011	1.003
mg	73.0	76.5	71.8	81.8	90.4	91.6	90.4	90.5	92.1	90.3

CX651-CX693: analyses représentatives d'une traverse bordure -> centre du XNL

448

lame	в3-25	B3-25	B3-25	B3-25
roche	CXN	CXN	CXN	CXN
analyse	CX666	CX682	CX690	CX693
note	<->	<->	<->	<- ±c
SI02	49.42	52.65	52.28	49.49
AL203	7.85	3.17	2.11	7.84
FE2O3	3.00	2.40	3.40	3.07
TIO2	0.52	0.18	0.30	0.52
CR203	0.00	0.01	0.00	0.00
NIO	0.00	0.00	0.00	0.00
MGO	14.31	16.30	16.43	14.29
FEO	0.00	0.25	0.00	0.00
MNO	0.11	0.12	0.07	0.11
CAO	23.86	24.61	24.89	23.93
NA2O	0.86	0.46	0.41	0.89
TOTAL	99.93	0.15	99.89	100.14
SI	1.801	1.911	1.910	1.800
AL	0.199	0.089	0.090	0.200
FE+3	0.000	0.000	0.000	0.000
AL	0.138	0.047	0.001	0.136
FE+3	0.082	0.066	0.094	0.084
TI	0.014	0.005	0.008	0.014
CR	0.000	0.000	0.000	0.000
NI	0.000	0.000	0.000	0.000
MG	0.766	0.882	0.895	0.766
FE+2	0.000	0.000	0.000	0.000
MIN	0.000	0.000	0.002	0.000
	1.000	1.000	1.000	1.000
MG	0.011	0.000	0.000	0.008
FE+2	0.000	0.008	0.000	0.000
MN	0.003	0.004	0.000	0.003
CA	0.931	0.957	0.975	0.932
NA	0.061	0.033	0.029	0.063
	1.006	1.002	1.004	1.006
ma	90.5	92.3	90.5	90.2

lame	в3-6	B3-6	в3-6	B3-6	B3-6	В3-6	B3-6	B3-6	B3-6	в3-6
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX701	CX702	CX703	CX704	CX705	CX706	CX707	CX708	CX709	CX710
note	c ->	<- b	С	b ->	<- C	b	c ->	<- b	±c ->	<- b
SiO2	47.67	47.61	47.18	47.57	46.95	47.46	47.50	47.52	47.15	47.53
A1203	9.63	9.53	9.75	9.25	9.63	9.59	9.41	9.19	9.54	9.37
Fe203	3.22	3.11	3.31	3.53	4.04	3.10	3.10	3.52	3.62	3.10
TiO2	0.90	0.91	1.02	0.93	0.99	0.89	0.96	0.92	0.97	0.93
Cr203	0.09	0.06	0.08	0.03	0.07	0.04	0.05	0.01	0.05	0.00
NiO	0.01	0.00	0.01	0.00	0.01	0.04	0.06	0.05	0.01	0.00
MgO	12.02	12.21	11.65	12.11	11.38	11.94	12.01	12.26	11.93	12.15
FeO	2.21	2.38	2.39	1.90	2.30	2.19	2.20	1.76	1.95	2.32
MnO	0.07	0.12	0.06	0.09	0.09	0.09	0.06	0.10	0.13	0.08
Ca0	22.71	22.47	22.82	22.94	22.62	22.67	23.00	22.90	22.92	22.73
Na2O	1.07	1.02	1.04	1.02	1.16	1.06	0.93	0.96	0.99	0.98
total	99.60	99.42	99.31	99.37	99.24	99.07	99.28	99.19	99.26	99.19
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.759	1.759	1.749	1.760	1.745	1.760	1.759	1.760	1.748	1.761
Al	0.241	0.241	0.251	0.240	0.255	0.240	0.241	0.240	0.252	0.239
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.178	0.174	0.175	0.163	0.167	0.179	0.170	0.161	0.165	0.170
Fe+3	0.089	0.086	0.092	0.098	0.113	0.086	0.086	0.098	0.101	0.086
Ti	0.025	0.025	0.028	0.026	0.028	0.025	0.027	0.025	0.027	0.026
Cr	0.003	0.002	0.002	0.001	0.002	0.001	0.002	0.000	0.001	0.000
Ni	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.002	0.000	0.000
Mg	0.661	0.672	0.644	0.668	0.631	0.660	0.663	0.677	0.659	0.671
Fe+2	0.044	0.041	0.059	0.044	0.059	0.048	0.050	0.037	0.047	0.047
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.024	0.033	0.015	0.015	0.012	0.020	0.018	0.017	0.013	0.025
Mn	0.002	0.004	0.002	0.003	0.003	0.003	0.002	0.003	0.004	0.002
Ca	0.897	0.890	0.907	0.909	0.901	0.901	0.913	0.909	0.910	0.902
Na	0.076	0.073	0.074	0.073	0.083	0.076	0.066	0.069	0.071	0.071
M2	0.999	1.000	0.998	1.000	0.999	1.000	0.999	0.998	0.998	1.000
mg	80.8	80.8	79.5	81.0	77.4	81.1	81.2	81.7	80.4	80.9

lame	в3-6	D12-4	D12-4	D12-4	D12-4	D12-4	D12-4	D12-4	C21-1	C21-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX711	CX712	CX713	CX714	CX715	CX716	CX717	CX718	CX719	CX720
note	с	С	С	с	C ->	<- b	с	с	b ->	c ->
SiO2	46.77	50.35	50.55	50.56	50.42	50.82	50.22	50.68	50.17	50.28
A1203	10.12	3.55	3.53	3.42	3.80	3.78	3.05	3.57	5.45	5.72
Fe203	3.30	4.22	4.35	3.80	4.13	3.73	2.93	3.39	3.48	2.63
TiO2	1.09	0.24	0.31	0.26	0.33	0.32	0.16	0.30	0.34	0.42
Cr203	0.08	0.50	0.42	0.41	0.43	0.44	0.25	0.52	0.48	0.55
NiO	0.02	0.00	0.03	0.04	0.00	0.00	0.01	0.00	0.00	0.00
MgO	11.60	13.74	13.74	13.65	13.64	13.84	17.95	13.68	15.48	15.60
FeO	2.36	3.76	3.88	3.92	3.69	3.90	14.09	4.66	0.00	0.00
MnO	0.12	0.22	0.27	0.21	0.25	0.31	0.48	0.27	0.03	0.07
Ca0	22.72	21.46	21.49	21.85	21.69	21.53	9.15	21.13	23.53	24.22
Na2O	0.99	0.95	0.98	0.89	0.99	0.98	0.41	0.98	0.57	0.60
total	99.17	98.99	99.55	99.01	99.37	99.65	98.70	99.18	99.53	100.09
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.737	1.883	1.882	1.891	1.878	1.886	1.897	1.893	1.837	1.831
Al	0.263	0.117	0.118	0.109	0.122	0.114	0.103	0.107	0.163	0.169
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.180	0.040	0.037	0.042	0.045	0.051	0.033	0.050	0.072	0.076
Fe+3	0.092	0.119	0.122	0.107	0.116	0.104	0.083	0.095	0.096	0.072
Ti	0.030	0.007	0.009	0.007	0.009	0.009	0.005	0.008	0.009	0.011
Cr	0.002	0.015	0.012	0.012	0.013	0.013	0.007	0.016	0.014	0.016
Ni	0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.642	0.766	0.763	0.761	0.757	0.765	0.872	0.761	0.809	0.825
Fe+2	0.053	0.053	0.056	0.070	0.060	0.058	0.000	0.070	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.139	0.000	0.036	0.022
Fe+2	0.020	0.065	0.065	0.053	0.055	0.063	0.445	0.075	0.000	0.000
Mn	0.004	0.007	0.008	0.007	0.008	0.010	0.015	0.008	0.001	0.002
Ca	0.904	0.860	0.857	0.876	0.866	0.856	0.370	0.846	0.923	0.945
Na	0.071	0.069	0.071	0.064	0.071	0.071	0.030	0.071	0.040	0.042
M2	0.999	1.001	1.001	1.000	1.000	1.000	0.999	1.000	1.000	1.011
mg	79.6	76.4	75.8	76.8	76.6	77.3	65.7	76.0	89.8	92.2

lame	C21-1									
roche	CXN									
analyse	CX721	CX722	CX723	CX724	CX725	CX726	CX727	CX728	CX729	CX729a
note	<- b	С		С	С	С	±b ->	<- C	C	
SiO2	49.70	50.14	50.11	50.46	50.62	50.63	50.49	50.01	50.07	50.10
A1203	6.22	5.94	5.83	5.64	5.20	4.91	5.36	5.89	5.36	5.44
Fe203	2.90	3.14	3.35	2.75	3.20	3.09	2.87	2.62	2.75	2.69
TiO2	0.36	0.38	0.33	0.39	0.33	0.29	0.35	0.37	0.35	0.41
Cr203	0.58	0.52	0.50	0.47	0.54	0.48	0.47	0.45	0.68	0.75
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
MgO	16.15	15.45	15.29	15.67	15.73	15.94	15.84	15.52	15.96	15.79
FeO	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.09	0.06	0.07	0.05	0.06	0.10	0.10	0.11	0.04	0.08
Ca0	23.19	23.58	23.26	23.92	23.54	23.67	23.80	23.98	23.75	23.68
Na20	0.57	0.57	0.61	0.60	0.59	0.55	0.54	0.57	0.58	0.58
total	99.76	99.78	99.51	99.95	99.81	99.66	99.82	99.52	99.54	99.53
formule structurale calculée sur 6 oxygènes										
Si	1.813	1.830	1.834	1.838	1.847	1.850	1.842	1.830	1.833	1.834
Al	0.187	0.170	0.166	0.162	0.153	0.150	0.158	0.170	0.167	0.166
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.081	0.086	0.086	0.080	0.071	0.062	0.073	0.084	0.064	0.069
Fe+3	0.080	0.086	0.092	0.075	0.088	0.085	0.079	0.072	0.076	0.074
Ti	0.010	0.010	0.009	0.011	0.009	0.008	0.010	0.010	0.010	0.011
Cr	0.017	0.015	0.014	0.014	0.016	0.014	0.014	0.013	0.020	0.022
Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.812	0.803	0.799	0.820	0.816	0.831	0.824	0.821	0.830	0.824
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.066	0.037	0.035	0.031	0.039	0.037	0.037	0.025	0.041	0.038
Fe+2	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.003	0.002	0.002	0.001	0.002	0.003	0.003	0.003	0.001	0.003
Ca	0.906	0.922	0.912	0.933	0.920	0.927	0.930	0.940	0.932	0.929
Na	0.040	0.040	0.043	0.042	0.041	0.039	0.038	0.040	0.041	0.041
M2	1.015	1.001	0.997	1.007	1.002	1.006	1.008	1.008	1.015	1.011
mg	91.6	90.7	89.6	91.9	90.7	91.1	91.6	92.2	92.0	92.1

CX725: inclusion (relique) dans Phl.
lame	C21-1	C21-1	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	CXN	CXN	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	CX730	CX731	CX733	CX734	CX735	CX736	CX737	CX738	CX739	CX740
note	b	с	b ->	<->	<- c ->	<->	<- b	b ->	<->	<->
SiO2	50.11	49. 76	50.09	50.61	50.78	50.59	51.06	50.99	50.26	51.30
A1203	5.53	5.94	4.02	3.91	3.67	4.09	3.74	3.37	3.70	3.82
Fe203	3.25	2.96	4.33	3.28	2.97	1.80	0.00	1.48	4.34	0.85
TiO2	0.33	0.46	0.38	0.34	0.35	0.46	0.41	0.25	0.42	0.42
Cr203	0.55	0.49	0.04	0.05	0.02	0.02	0.05	0.04	0.07	0.02
NiO	0.01	0.01	0.02	0.04	0.02	0.00	0.00	0.00	0.00	0.00
MgO	15.45	15.53	14.54	14.50	14.49	14.25	13.10	13.73	14.33	13.90
FeO	0.00	0.00	5.19	4.25	5.37	6.23	8.20	6.95	5.55	7.78
MnO	0.14	0.07	0.09	0.07	0.14	0.10	0.19	0.19	0.12	0.16
Ca0	23.48	23.77	19.32	20.61	20.08	19.81	20.17	20.90	19.71	19.41
Na2O	0.63	0.52	0.91	0.89	0.86	0.84	0.76	0.62	0.89	0.92
total	99.48	99.51	98.93	98.55	98.75	98.19	97.68	98.52	99.39	98.58
formule	structu	rale cal	culée s	ır 6 oxy	rgènes					
Si	1.836	1.822	1.873	1.891	1.898	1.900	1.935	1.919	1.876	1.924
Al	0.164	0.178	0.127	0.109	0.102	0.100	0.065	0.081	0.124	0.076
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.075	0.079	0.050	0.063	0.060	0.081	0.102	0.069	0.039	0.093
Fe+3	0.090	0.082	0.122	0.092	0.083	0.051	0.000	0.042	0.122	0.024
Ti	0.009	0.013	0.011	0.009	0.010	0.013	0.012	0.007	0.012	0.012
Cr	0.016	0.014	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001
Ni	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.810	0.812	0.810	0.807	0.808	0.798	0.740	0.770	0.797	0.777
Fe+2	0.000	0.000	0.005	0.027	0.038	0.056	0.145	0.111	0.028	0.093
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.034	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.000	0.000	0.157	0.106	0.130	0.140	0.115	0.108	0.145	0.151
Mn	0.004	0.002	0.003	0.002	0.004	0.003	0.006	0.006	0.004	0.005
Ca	0.922	0.933	0.774	0.825	0.804	0.797	0.819	0.842	0.788	0.780
Na	0.045	0.037	0.066	0.064	0.062	0.061	0.056	0.045	0.065	0.067
М2	1.005	1.008	1.000	0.997	1.000	1.001	0.996	1.001	1.002	1.003
				_				a		
ma	90.4	91.2	74.0	78.2	76.3	76.4	74.0	74.7	73.0	/4.4

lame	C45-19	C45-19	C31-13	C31-13	C31-13	C31-13	C31-13	C31-13	C31-13	C31-13
roche	GNL	GNL	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX741	CX742	CX744	CX750	CX752	CX759	CX760	CX762	CX763	CX766
note	<->	<- C?	b ->	<->	<->	<->	<->	<->	<->	<-±c->
SiO2	50.44	50.28	49.65	49.60	49.45	49.50	49.70	49.78	49.77	49.65
A1203	3.46	3.62	6.19	6.42	6.31	6.26	6.16	6.09	5.93	6.22
Fe203	4.23	4.33	2.84	2.88	3.05	2.80	2.84	2.81	2.74	2.88
TiO2	0.39	0.42	0.41	0.41	0.43	0.41	0.36	0.33	0.37	0.42
Cr203	0.06	0.03	0.37	0.39	0.38	0.37	0.37	0.24	0.28	0.40
NiO	0.00	0.02	0.00	0.05	0.01	0.00	0.01	0.03	0.00	0.00
MgO	14.48	14.19	15.11	15.04	14.93	15.04	15.12	15.28	15.26	15.13
Fe0	5.54	5.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.16	0.27	0.05	0.03	0.08	0.12	0.04	0.10	0.09	0.10
CaO	19.66	19.97	23.95	23.99	24.04	24.07	24.19	24.16	24.05	23.88
Na20	0.86	0.83	0.62	0.64	0.65	0.61	0.59	0.59	0.58	0.65
total	99.28	99.40	99.19	99.45	99.33	99.18	99.38	99.41	99.07	99.33
formule	structu	rale cal	culée su	ur 6 oxy	gènes					
Si	1.884	1.878	1.824	1.818	1.817	1.820	1.823	1.826	1.830	1.822
Al	0.116	0.122	0.176	0.182	0.183	0.180	0.177	0.174	0.170	0.178
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
								•		
Al	0.036	0.037	0.092	0.096	0.090	0.091	0.089	0.089	0.087	0.091
Fe+3	0.119	0.122	0.078	0.079	0.084	0.077	0.079	0.078	0.076	0.080
Ti	0.011	0.012	0.011	0.011	0.012	0.011	0.010	0.009	0.010	0.012
Cr	0.002	0.001	0.011	0.011	0.011	0.011	0.011	0.007	0.008	0.012
Ni	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000
Mg	0.806	0.790	0.808	0.802	0.803	0.810	0.811	0.816	0.819	0.805
Fe+2	0.026	0.037	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.019	0.020	0.015	0.014	0.016	0.019	0.018	0.022
Fe+2	0.147	0.133	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.005	0.008	0.001	0.001	0.003	0.004	0.001	0.003	0.003	0.003
Ca	0.787	0.799	0.943	0.942	0.946	0.948	0.951	0.949	0.948	0.939
Na	0.062	0.060	0.044	0.045	0.046	0.044	0.042	0.042	0.042	0.047
М2	1.001	1.000	1.007	1.008	1.010	1.010	1.010	1.013	1.011	1.011
mg	73.4	73.0	91.4	91.2	90.7	91.5	91.3	91.5	91.7	91.2

CX744-CX801: analyses représentatives d'une traverse bordure -> bordure du XNL

Ì

lame	C31-13	C31-13	C31-13	C31-13	C31-13	C23-1	C23-1	C23-1	C23-1	C23-1
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX769	CX776	CX793	CX794	CX801	CX814	CX815	CX818	CX821	CX826
note	<->	<->	<->	<->	<- b	C ->	<->	<>	<->	<->
SI02	49.87	50.04	49.50	49. 80	50.60	48.02	47.94	48.22	47.83	47.76
AL203	5.90	5.75	6.03	6.14	1.90	7.26	6.90	6.80	7.25	7.58
FE203	2.80	2.81	2.81	2.86	4.72	4.70	5.13	4.92	4.90	4.48
TIO2	0.36	0.36	0.33	0.36	0.23	0.61	0.76	0.59	0.56	0.59
CR203	0.33	0.30	0.31	0.31	0.25	0.00	0.00	0.00	0.00	0.03
NIO	0.00	0.01	0.00	0.01	0.02	0.06	0.00	0.00	0.00	0.00
MGO	15.20	15.31	15.18	15.24	13.72	13.70	13.62	13.84	13.59	13.68
FEO	0.00	0.00	0.00	0.00	2.84	0.29	0.59	0.19	0.08	0.20
MINO	0.05	0.04	0.07	0.11	0.25	0.12	0.21	0.14	0.09	0.10
CAO	24.24	24.11	24.11	23.98	23.79	24.44	24.68	24.81	24.70	24.59
NA2O	0.60	0.62	0.62	0.61	0.58	0.35	0.27	0.31	0.33	0.31
TOTAL	99.35	99.35	98.96	99.42	98.90	99.55	100.10	99.82	99.33	99.32
formule	structu	rale cal	culée s	ur 6 oxy	gènes					
SI	1.830	1.835	1.824	1.825	1.902	1.774	1.768	1.778	1.771	1.767
AL	0.170	0.165	0.176	0.175	0.084	0.226	0.232	0.222	0.229	0.233
FE+3	0.000	0.000	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000
AL	0.085	0.083	0.086	0.090	0.000	0.090	0.068	0.074	0.087	0.097
FE+3	0.077	0.078	0.078	0.079	0.120	0.131	0.142	0.136	0.136	0.125
TI	0.010	0.010	0.009	0.010	0.006	0.017	0.021	0.016	0.016	0.016
CR	0.010	0.009	0.009	0.009	0.008	0.000	0.000	0.000	0.000	0.001
NI	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.000	0.000
MG	0.818	0.820	0.818	0.812	0.769	0.754	0.749	0.761	0.750	0.754
FE+2	0.000	0.000	0.000	0.000	0.089	0,006	0.018	0.006	0.003	0.006
MN	0.000	0.000	0.000	0.000	0.007	0.000	0.002	0.004	0.003	0.001
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.995	1.000
MG	0.014	0.017	0.016	0.021	0.000	0.000	0.000	0.000	0.000	0.000
FE+2	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000
MN	0.001	0.001	0.002	0.004	0.001	0.004	0.004	0.000	0.000	0.002
CA	0.953	0.947	0.952	0.942	0.958	0.967	0.975	0.980	0.980	0.975
NA	0.043	0.044	0.044	0.043	0.042	0.025	0.019	0.022	0.024	0.022
	1.011	1.009	1.014	1.010	1.001	0.999	0.998	1.002	1.004	0.999
mg	91.5	91.5	91.4	91.3	77.5	84.3	82.4	84.3	84.4	85.2

CX814-CX857: analyses représentatives d'une traverse centre -> bordure du XNL

lame	C23-1	C23-1	C23-1	C23-1	C31-2	C31-2	C31-2	C31-2	C31-2	C31-2
roche	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	CX827	CX829	CX832	CX857	CX862	CX863	CX864	CX865	CX866	CX867
note	<>	<->	<->	<- ±b		b ->	<- C	С		
SI02	51.77	52.28	46.40	51.50	47.76	46.98	47.37	47.94	47.18	47.13
AL203	1.56	1.01	21.28	3.93	9.83	10.10	10.15	9.41	10.04	10.37
FE203	4.06	4.08	0.00	1.29	2.07	2.91	2.06	2.39	2.38	2.28
TIO2	0.12	0.10	0.02	0.25	1.43	1.53	1.50	1.29	1.58	1.61
CR203	0.00	0.00	0.00	0.01	0.01	0.20	0.05	0.00	0.01	0.00
NIO	0.01	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01
MGO	15.72	15.99	7.43	14.37	13.80	13.55	13.68	13.95	13.43	13.42
FEO	0.82	0.68	2.47	3.40	0.62	0.00	0.52	0.26	0.45	0.22
MINO	0.15	0.16	0.07	0.13	0.04	0.04	0.08	0.04	0.06	0.02
CAO	25.17	25.29	21.04	24.25	23.84	23.70	23.83	23.96	23.93	24.03
NA2O	0.21	0.19	0.48	0.35	0.59	0.66	0.56	0.57	0.59	0.60
TOTAL	99.59	99.80	99.19	99.48	99.99	99.67	99.81	99.81	99.65	99.69
formule	structur	cale cal	culée su	ır 6 oxy	gènes					`
SI	1.912	1.925	1.670	1.902	1.741	1.720	1.730	1.749	1.728	1.723
AL	0.068	0.044	0.330	0.098	0.259	0.280	0.270	0.251	0.272	0.277
FE+3	0.020	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AL	0.000	0.000	0.573	0.073	0.163	0.156	0.167	0.154	0.161	0.170
FE+3	0.093	0.082	0.000	0.036	0.057	0.080	0.057	0.066	0.066	0.063
TI	0.003	0.003	0.001	0.007	0.039	0.042	0.041	0.035	0.044	0.044
CR	0.000	0.000	0.000	0.000	0.000	0.006	0.001	0.000	0.000	0.000
NI	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MG	0.865	0.878	0.399	0.791	0.741	0.716	0.734	0.745	0.729	0.723
FE+2	0.025	0.021	0.027	0.093	0.000	0.000	0.000	0.000	0.000	0.000
MN	0.005	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.991	0.990	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
MG	0.000	0.000	0.000	0.000	0.009	0.023	0.011	0.014	0.004	0.008
FE+2	0.000	0.000	0.047	0.012	0.019	0.000	0.016	0.008	0.014	0.007
MN	0.000	0.000	0.002	0.004	0.001	0.001	0.002	0.001	0.002	0.001
CA	0.996	0.998	0.812	0.960	0.931	0.930	0.932	0.937	0.939	0.941
NA	0.015	0.013	0.034	0.025	0.042	0.047	0.040	0.040	0.042	0.043
	1.011	1.011	0.895	1.001	1.002	1.001	1.001	1.000	1.001	1.000
ma	86.2	86.8	84.4	84.9	90.8	90.2	91.1	91.1	90.2	91.3

lame	B1-3	B1-3	B1-3	B1-3	A4-19	A4-19	A4-19	A4-19	A4-19	A4-19
roche	CXN	OXN	OXN	OXN	WL	WL	WL	WL	WL	WL
analyse	CX868	CX869	CX870	CX871	CX873	CX874	CX875	CX876	CX877	CX878
note		c ->	<- b	с	±c ->	<- b	С		с	С
SiO2	50.93	50.28	51.16	50.49	51.09	51.44	51.11	51.44	51.04	50.65
A1203	3.75	3.96	4.14	4.22	5.92	5.60	6.02	5.61	6.03	6.51
Fe203	2.57	2.34	3.26	3.32	1.49	1.50	1.55	1.49	1.48	1.45
TiO2	0.54	0.55	0.41	0.60	0.22	0.24	0.23	0.21	0.19	0.37
Cr203	0.30	0.40	0.57	0.44	0.00	0.00	0.02	0.02	0.01	0.01
NiO	0.06	0.00	0.04	0.02	0.00	0.00	0.00	0.03	0.01	0.00
MgO	14.78	15.64	18.08	15.20	16.40	16.62	16.41	16.56	16.20	15.94
Fe0	3.60	4.37	5.95	2.96	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.11	0.14	0.20	0.15	0.07	0.09	0.09	0.11	0.07	0.04
Ca0	22.33	20.16	16.53	21.62	23.99	24.01	23.90	23.78	24.09	24.22
Na20	0.60	0.54	0.44	0.63	0.56	0.53	0.58	0.55	0.50	0.58
total	99.57	98.38	100.78	99.65	99.74	100.03	99.91	99.80	99.62	99.77
formule	structu	cale cal	culée su	ur 6 oxy	gènes					
Si	1.884	1.877	1.862	1.862	1.853	1.860	1.851	1.864	1.853	1.838
Al	0.116	0.123	0.138	0.138	0.147	0.140	0.149	0.136	0.147	0.162
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	0.047	0.051	0.039	0.046	0.106	0.099	0.108	0.103	0.111	0,116
Fe+3	0.072	0.066	0.089	0.092	0.041	0.041	0.042	0.041	0.040	0.040
ті	0.015	0.015	0.011	0.017	0.006	0.007	0.006	0.006	0.005	0.010
Cr	0.009	0.012	0.017	0.013	0.000	0.000	0.000	0.000	0.000	0.000
Ni	0.002	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000
Mg	0.815	0.856	0.843	0.831	0.847	0.853	0.844	0.849	0.844	0.834
Fe+2	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.014	0.138	0.005	0.040	0.043	0.042	0.045	0.033	0.028
Fe+2	0.071	0.137	0.181	0.091	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.003	0.004	0.006	0.005	0.002	0.003	0.003	0.003	0.002	0.001
Ca	0.885	0.806	0.644	0.854	0.932	0.930	0.927	0.923	0.938	0.942
Na	0.043	0.039	0.031	0.045	0.039	0.037	0.041	0.038	0.036	0.041
М2	1.002	1.000	1.000	1.000	1.013	1.013	1.013	1.009	1.009	1.012
mg	81.7	81.1	78.4	82.0	95.6	95.6	95.5	95.6	95.6	95.6

lame	A4-19	A4-19	A4-19	BD-1	BD-1	BD-1	BD-1	BD-1	BD-1	BD-1
roche	WL	WL	WL	XC	XC	XC	XC	XC	XC	XC
analyse	CX879	CX880	CX881	CX882	CX883	CX884	CX885	CX886	CX887	CX888
note	С	С	С	C ->	<- b	C ->	<- b	±c ->	±c ->	<- ±b
SiO2	51.09	51.01	51.43	48.27	49.92	51.73	49.89	49.43	51.65	49.85
A1203	5.95	6.05	5.54	5.85	3.50	2.61	3.65	5.10	1.34	3.96
Fe203	1.48	1.48	1.53	4.29	3.36	1.59	3.67	3.07	3.49	3.48
TiO2	0.22	0.23	0.24	0.85	0.37	0.17	0.38	0.62	0.08	0.47
Cr203	0.01	0.00	0.04	0.02	0.09	0.01	0.04	0.17	0.11	0.21
NiO	0.00	0.01	0.00	0.00	0.03	0.03	0.00	0.00	0.04	0.00
MgO	16.31	16.39	16.68	13.48	14.09	12.58	13.16	14.28	13.64	14.43
FeO	0.00	0.00	0.00	5.30	5.62	8.15	6.61	5.15	4.86	4.43
MnO	0.05	0.06	0.10	0.26	0.26	0.38	0.26	0.27	0.39	0.31
Ca0	24.22	23.83	23.55	19.12	20.70	21.97	20.58	19.89	23.52	20.75
Na2O	0.51	0.56	0.50	0.96	0.51	0.62	0.71	0.74	0.49	0.64
total	99.84	99.62	99.61	98.40	98.45	99.84	98.95	98.72	99.61	98.53
formule	structu	rale cal	culée su	ar 6 oxy	gènes					
Si	1.852	1.852	1.865	1.819	1.883	1.937	1.882	1.850	1.933	1.870
A1	0.148	0.148	0.135	0.181	0.117	0.063	0.118	0.150	0.059	0.130
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000
Al	0.106	0.111	0.102	0.079	0.038	0.052	0.044	0.075	0.000	0.045
Fe+3	0.040	0.040	0.042	0.122	0.095	0.045	0.104	0.086	0.090	0.098
Ti	0.006	0.006	0.006	0.024	0.011	0.005	0.011	0.017	0.002	0.013
Cr	0.000	0.000	0.001	0.000	0.003	0.000	0.001	0.005	0.003	0.006
Ni	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.000
Mg	0.848	0.843	0.849	0.757	0.792	0.702	0.740	0.797	0.761	0.807
Fe+2	0.000	0.000	0.000	0.018	0.060	0.195	0.100	0.020	0.143	0.031
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
						0 000	0 000	0 000	0 000	0 000
Mg	0.033	0.044	0.053	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.000	0.000	0.000	0.149	0.117	0.060	0.109	0.141	0.009	0.100
Mn	0.001	0.002	0.003	0.008	0.008	0.012	0.008	0.009	0.012	0.010
Ca	0.941	0.927	0.915	0.772	0.836	0.882	0.832	0./9/	0.943	0.034
Na	0.036	0.040	0.035	0.070	0.038	0.045	1 001	1 001	1 000	0.047
M2	1.011	1.013	T.000	0.999	0.999	0.999	1.001	1.001	1.000	0.225
	95 7	95 7	95 E	70 A	71 1	70 1	703	76.3	75.3	77.3
1114	1.1	1.1.1	J.J. U	14.7	,					

lame	BD-1	BD-1	BD-1	BD-1	BD-1	BD-1
roche	XC	XC	XC	XC	XC	XC
analyse	CX889	CX890	CX891	CX892	CX893	CX895
note	c ->	<- b	±b ->	±c ->	<- ±b	b
SiO2	51.63	49.32	50.76	50.81	51.16	49.61
A1203	3.05	4.24	2.90	3.38	2.21	3.99
Fe203	2.70	3.99	3.82	3.08	3.71	3.68
TiO2	0.50	0.65	0.34	0.38	0.29	0.59
Cr203	0.03	0.29	0.09	0.05	0.08	0.22
NiO	0.01	0.00	0.02	0.07	0.00	0.00
MgO	15.80	13.86	14.28	14.74	14.43	13.47
FeO	0.49	4.20	2.98	3.97	3.46	4.89
MnO	0.11	0.32	0.22	0.18	0.31	0.26
Ca0	24.77	21.00	23.27	21.57	23.25	21.60
Na2O	0.36	0.73	0.52	0.60	0.46	0.64
total	99.45	98.60	99.20	98.83	99.36	98.95
formule	structur	ale cal	culée su	ar 6 oxy	gènes	
Si	1.896	1.854	1.892	1.895	1.907	1.863
Al	0.104	0.146	0.108	0.105	0.093	0.137
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.028	0.042	0.019	0.044	0.004	0.040
Fe+3	0.075	0.113	0.107	0.086	0.104	0.104
Ti	0.014	0.018	0.009	0.011	0.008	0.017
Cr	0.001	0.009	0.003	0.002	0.002	0.007
Ni	0.000	0.000	0.001	0.002	0.000	0.000
Mg	0.865	0.777	0.793	0.819	0.802	0.754
Fe+2	0.015	0.041	0.068	0.036	0.080	0.078
Mn	0.002	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.000	0.000	0.000	0.000	0.000	0.000
Fe+2	0.000	0.091	0.025	0.088	0.028	0.075
Mn	0.001	0.010	0.007	0.006	0.010	0.008
Ca	0.974	0.846	0. 9 29	0.862	0.928	0.869
Na	0.025	0.053	0.038	0.044	0.033	0.047
M2	1.000	1.000	0.999	1.000	0.999	0.999
ma	90.6	76.0	79.9	79.6	79.1	74.6

lame	A5-38	A5-38	B3-12	в3-12	в3-12	В3-12	в3-12	в3-12	B3-12	B3-12
roche	DN	DN	WB	WB	WB	WB	WB	WB	WB	WB
analyse	0X0a	OX0b	OX9	OX12	OX13	OX14	OX15	OX16	OX17	OX18
note			С	C ->	<->	<- b	С	c ->	<->	<- b
SiO2	55.06	53.78	51.58	51.16	50.71	50.71	51.27	52.03	51.49	51.12
A1203	0.26	0.25	2.56	2.44	2.48	2.63	2.66	2.56	2.47	2.47
Fe203	0.00	0.00	1.71	1.48	4.03	2.54	1.59	1.18	1.28	1.58
TiO2	0.02	0.02	0.15	0.09	0.13	0.14	0.08	0.12	0.12	0.06
Cr203	0.00	0.04	0.00	0.03	0.03	0.02	0.02	0.05	0.00	0.00
NiO	0.02	0.14	0.05	0.00	0.04	0.00	0.08	0.02	0.00	0.00
MgO	27.95	25.12	23.20	23.40	23.67	22.22	22.50	23.46	23.31	22.32
FeO	13.94	17.68	18.75	18.42	16.99	19.41	19.75	19.36	18.65	20.13
MnO	0.49	0.60	0.58	0.54	0.58	0.83	0.54	0.55	0.58	0.83
Ca0	0.11	0.16	0.82	0.54	0.63	0.64	0.58	0.44	0.66	0.25
Na2O	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
total	97.85	97.79	99.40	98.10	99.29	99.14	99.09	99.77	98.56	98.76
*										
formule	structui	cale cal	culée su	ır 6 oxy	gènes					
Si	2.008	2.003	1.916	1.921	1.886	1.903	1.918	1.924	1.925	1.922
Al	0.000	0.000	0.084	0.079	0.109	0.097	0.082	0.076	0.075	0.078
Fe+3	0.000	0.000	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000
Al	0.011	0.011	0.028	0.029	0.000	0.019	0.035	0.035	0.034	0.032
Fe+3	0.000	0.000	0.048	0.042	0.108	0.072	0.045	0.033	0.036	0.045
Ti	0.001	0.001	0.004	0.002	0.004	0.004	0.002	0.003	0.003	0.002
Cr	0.000	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.000
Ni	0.001	0.004	0.002	0.000	0.001	0.000	0.002	0.001	0.000	0.000
Mg	0.987	0.983	0.918	0.926	0.886	0.904	0.915	0.927	0.927	0.921
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
								0.000	0 0 0 0	0 220
Mg	0.533	0.412	0.367	0.383	0.426	0.339	0.339	0.366	0.372	0.330
Fe+2	0.425	0.551	0.583	0.578	0.529	0.609	0.618	0.599	0.583	0.033
Mn	0.015	0.019	0.018	0.017	0.018	0.026	0.017	0.017	0.018	0.027
Ca	0.004	0.006	0.032	0.022	0.025	0.026	0.023	0.018	0.027	0.010
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	1 000
м2	0.977	0.988	1.000	1.000	0.998	1.000	0.999	1.000	1.000	1.000
ma	78 1	71 7	67 1	67 9	67 1	64.6	65.4	67.2	67.7	64.9
*"."	,	, ,	07.1	0/12						

OXOa et OXOb: fine couronne de réaction d'Opx autour du xénolite

460

lame	B3-12	B3-12	B3-12	A5-34	A5-34	A5-34	A5-34	A5-34	A6-5	A6-5
roche	WB	WB	WB	WB	WB	WB	WB	WB	CXN	CXN
analyse	OX19	OX20	0X21a	0X21b	OX22	OX23	OX24	OX26	OX28	OX29
note	с	b		C ->	<->	<- b	C ->	<- b	C ->	<->
SiO2	51.62	51.43	51.33	53.46	52.27	53.23	53.97	53.38	50.17	49.86
A1203	2.52	2.68	2.56	1.53	1.54	1.31	1.41	1.49	2.58	2.91
Fe203	2.25	1.28	3.00	0.87	3.02	0.22	0.00	0.22	0.52	0.93
ті02	0.08	0.10	0.09	0.10	0.07	0.08	0.08	0.08	0.13	0.13
Cr203	0.02	0.02	0.00	0.19	0.25	0.17	0.09	0.16	0.01	0.00
NiO	0.10	0.10	0.05	0.14	0.07	0.14	0.12	0.00	0.00	0.00
MgO	23.72	23.17	23.61	26.78	26.73	26.24	26.85	26.03	19.53	19.25
Fe0	18.31	18.66	18.10	15.41	13.37	16.09	15.81	16.71	24.01	23.25
MnO	0.55	0.56	0.53	0.31	0.24	0.35	0.22	0.31	0.74	0.86
Ca0	0.42	0.67	0.59	0.46	0.95	0.29	0.46	0.41	0.45	1.03
Na20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
total	99.59	98.67	99.86	99.25	98.51	98.12	99.01	98.79	98.14	9 8.22
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.912	1.921	1.899	1.948	1.920	1.964	1.966	1.960	1.930	1.917
Al	0.088	0.079	0.101	0.052	0.067	0.036	0.034	0.040	0.070	0.083
Fe+3	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.000	0.000
Al	0.022	0.039	0.010	0.014	0.000	0.021	0.027	0.024	0.047	0.049
Fe+3	0.063	0.036	0.083	0.024	0.070	0.006	0.000	0.006	0.015	0.027
Ti	0.002	0.003	0.002	0.003	0.002	0.002	0.002	0.002	0.004	0.004
Cr	0.001	0.001	0.000	0.005	0.007	0.005	0.003	0.005	0.000	0.000
Ni	0.003	0.003	0.001	0.004	0.002	0.004	0.003	0.000	0.000	0.000
Mg	0.909	0.918	0.904	0.950	0.919	0.962	0.965	0.963	0.934	0.920
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.400	0.372	0.398	0.505	0.544	0.481	0.493	0.462	0.186	0.183
Fe+2	0.567	0.583	0.560	0.470	0.411	0.496	0.482	0.513	0.772	0.748
Mn	0.017	0.018	0.016	0.009	0.007	0.011	0.007	0.010	0.024	0.028
Ca	0.017	0.027	0.023	0.018	0.037	0.011	0.018	0.016	0.019	0.043
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
М2	1.001	1.000	0.997	1.002	0.999	0.999	1.000	1.001	1.001	1.002
						_				
mg	67.5	67.6	66.9	74.7	74.8	74.2	75.2	73.3	58.7	58.7

lame	A6-5	A6-5	A6-5	A6-5	A6-5	A2-3	A2-3	A2-3	A2-3	A4-17
roche	CXN	CXN	CXN	CXN	CXN	WB	WB	WB	WB	WB
analyse	OX30	OX31	OX32	OX33	0X34a	OX35c	OX35e	OX38	OX39	OX41
note	<- b	C ->	<- b	С	С				C	С
SiO2	48.97	49.85	49.75	50.07	49.99	52.02	52.39	50.23	52.10	51.97
A12O3	2.70	2.92	2.58	2.73	3.13	3.37	3.23	5.26	3.06	3.62
Fe203	3.29	1.77	0.93	1.25	1.25	0.00	0	0.53	0.97	1.42
TiO2	0.13	0.13	0.07	0.11	0.06	0.21	0.18	0.12	0.18	0.22
Cr203	0.10	0.00	0.09	0.05	0.06	0.13	0.07	0.05	0.09	0.17
NiO	0.09	0.05	0.00	0.04	0.04	0.01	0.07	0.03	0.00	0.08
MgO	18.70	19.31	18.32	20.01	19.23	24.33	24.28	23.22	25.15	24.28
FeO	22.49	23.22	25.42	22.59	23.94	17.65	17.35	17.97	16.35	15.68
MnO	1.11	0.81	1.00	0.84	1.03	0.37	0.34	0.33	0.24	0.31
Ca0	1.28	0.97	0.29	0.74	0.47	0.59	0.74	0.51	0.74	2.29
Na20	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
total	98.86	99.03	98.45	98.43	99.20	98.68	98.67	98.25	98.88	100.04
formule	structur	cale cal	culée su	ir 6 oxy	gènes					
Si	1.886	1.905	1.925	1.915	1.908	1.921	1.932	1.871	1.915	1.895
Al	0.114	0.095	0.075	0.085	0.092	0.079	0.068	0.129	0.085	0.105
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
										0 050
Al	0.009	0.037	0.043	0.038	0.049	0.068	0.072	0.102	0.048	0.050
Fe+3	0.095	0.051	0.027	0.036	0.036	0.000	0.000	0.015	0.027	0.039
Ti	0.004	0.004	0.002	0.003	0.002	0.006	0.005	0.003	0.005	0.006
Cr	0.003	0.000	0.003	0.002	0.002	0.004	0.002	0.001	0.003	0.005
Ni	0.003	0.001	0.000	0.001	0.001	0.000	0.002	0.001	0.000	0.002
Mg	0.886	0.907	0.925	0.920	0.910	0.922	0.919	0.878	0.917	0.898
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
м1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
							0 41 6	0 411	0 4 6 1	0 400
Mg	0.188	0.193	0.132	0.221	0.184	0.418	0.416	0.411	0.461	0.422
Fe+2	0.724	0.742	0.823	0.723	0.764	0.545	0.535	0.560	0.503	0.478
Mn	0.036	0.026	0.033	0.027	0.033	0.012	0.011	0.010	0.008	0.010
Ca	0.053	0.040	0.012	0.030	0.019	0.023	0.029	0.020	0.029	0.089
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000
M2	1.001	1.001	1.000	1.001	1.000	0.998	0.993	1.001	1.001	0.999
					- -			(0.0	70 0	71 0
mg	56.7	58.1	55.4	60.1	57.8	71.1	/1.4	69.2	12.2	11.9

lame	A4-17	A4-17	A4-17	A4-17	A4-17	A5-7	A5-7	A5-7	A5-7	A5-7
roche	WB	WB	WB	WB	WB	GNL	GNL	GNL	GNL	GNL
analyse	OX42	OX43	OX44	OX45	OX45c	OX301	OX302	OX303	OX304	OX305
note		b	C	±c		С	С	с	c ->	<- b
SiO2	52.03	51.36	51.07	51.35	50.06	50.44	50.16	50.33	50.62	50.18
A1203	3.84	3.81	3.72	3.99	5.16	2.02	2.20	1.94	2.18	2.32
Fe203	0.00	0.00	0.96	0.54	0.96	3.88	3.77	3.45	3.26	3.77
TiO2	0.19	0.13	0.14	0.14	0.10	0.11	0.10	0.16	0.10	0.10
Cr203	0.24	0.19	0.20	0.13	0.09	0.01	0.00	0.04	0.00	0.04
NiO	0.10	0.06	0.03	0.21	0.04	0.00	0.18	0.00	0.00	0.07
MgO	25.62	23.12	22.94	24.55	22.60	20.71	20.69	20.72	21.48	21.80
Fe0	14.73	17.49	17.66	15.95	18.06	20.62	21.22	21.30	20.96	19.87
MnO	0.15	0.42	0.45	0.24	0.36	0.30	0.40	0.40	0.36	0.28
Ca0	1.16	1.81	1.67	1.08	0.81	1.73	1.06	1.21	0.69	0.74
Na 20	0.00	0.00	0.00	0.00	0.00	0.11	0.01	0.04	0.02	0.02
total	98.06	98.39	98.84	98.18	98.24	99.93	99.79	99.59	99.67	99.19
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.911	1.910	1.898	1.900	1.871	1.899	1.895	1.903	1.904	1.892
Al	0.089	0.090	0.102	0.100	0.129	0.090	0.098	0.087	0.096	0.103
Fe+3	0.000	0.000	0.000	0.000	0.000	0.011	0.007	0.010	0.000	0.005
Al	0.077	0.077	0.061	0.074	0.098	0.000	0.000	0.000	0.001	0.000
Fe+3	0.000	0.000	0.027	0.015	0.027	0.099	0.100	0.088	0.092	0.102
Ti	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.005	0.003	0.003
Cr	0.007	0.005	0.006	0.004	0.003	0.000	0.000	0.001	0.000	0.001
Ni	0.003	0.002	0.001	0.006	0.001	0.000	0.005	0.000	0.000	0.002
Mg	0.908	0.912	0.901	0.897	0.868	0.898	0.892	0.906	0.904	0.892
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.495	0.370	0.370	0.457	0.391	0.264	0.273	0.262	0.300	0.333
Fe+2	0.453	0.544	0.549	0.494	0.564	0.649	0.670	0.674	0.659	0.627
Mn	0.005	0.013	0.014	0.008	0.011	0.010	0.013	0.013	0.012	0.009
Ca	0.046	0.072	0.067	0.043	0.033	0.070	0.043	0.049	0.028	0.030
Na	0.000	0.000	0.000	0.000	0.000	0.008	0.001	0.003	0.001	0.002
M2	0.999	0.999	1.000	1.002	0.999	1.001	1.000	1.001	1.000	1.001
r									<i></i>	<i></i>
mg	75.6	70.2	68.8	72.7	69.6	60.5	60.0	60.2	61.6	62.5

lame	A5-7	A5-7	A5-7	A5-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX306	OX307	OX308	OX309	OX310	OX311	0X312a	0X312b	OX313	OX314
note	b ->	<- ±c	b ->	<- C	С	с	С		C ->	<- b
SiO2	50.21	50.36	50.24	50.28	50.87	50.42	50.64	50.83	50.76	50.26
A1203	2.29	2.25	2.16	2.18	1.18	1.26	1.31	1.14	1.07	1.27
Fe203	4.41	3.78	3.76	3.99	2.71	4.16	3.44	2.92	2.91	3.63
TiO2	0.06	0.11	0.09	0.05	0.06	0.03	0.07	0.05	0.08	0.03
Cr203	0.03	0.03	0.01	0.02	0.01	0.00	0.02	0.03	0.07	0.05
NiO	0.09	0.00	0.04	0.04	0.00	0.26	0.07	0.00	0.00	0.03
MgO	21.90	21.50	20.76	21.56	21.09	20.72	21.36	21.21	20.76	20.76
FeO	19.66	20.20	20.60	20.75	22.17	21.78	21.28	21.92	22.37	22.15
MnO	0.32	0.35	0.38	,0.39	0.24	0.18	0.19	0.20	0.24	0.23
Ca0	0.68	0.95	1.41	0.50	0.60	0.86	0.71	0.65	0.90	0.65
Na2O	0.01	0.04	0.06	0.02	0.01	0.02	0.02	0.01	0.02	0.00
total	99.66	99.57	99.51	99.78	98.94	99.69	99.11	98.96	99.18	99.06
formule	structui	cale cal	culée su	ır 6 oxy	gènes					
Si	1.886	1.895	1.898	1.892	1.934	1.912	1.920	1.932	1.931	1.916
Al	0.102	0.100	0.096	0.097	0.053	0.056	0.059	0.051	0.048	0.057
Fe+3	0.012	0.005	0.006	0.011	0.013	0.032	0.021	0.017	0.021	0.027
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe+3	0.113	0.102	0.101	0.102	0.064	0.087	0.077	0.066	0.062	0.077
Ti	0.002	0.003	0.003	0.002	0.002	0.001	0.002	0.001	0.002	0.001
Cr	0.001	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.002	0.002
Ni	0.003	0.000	0.001	0.001	0.000	0.008	0.002	0.000	0.000	0.001
Mg	0.881	0.894	0.895	0.894	0.934	0.904	0.918	0.932	0.934	0.919
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.345	0.312	0.274	0.316	0.261	0.267	0.289	0.270	0.243	0.261
Fe+2	0.618	0.636	0.651	0.653	0.705	0.691	0.675	0.697	0.712	0.706
Mn	0.010	0.011	0.012	0.012	0.008	0.006	0.006	0.006	0.008	0.007
Ca	0.027	0.038	0.057	0.020	0.024	0.035	0.029	0.026	0.037	0.027
Na	0.001	0.003	0.005	0.001	0.001	0.001	0.002	0.001	0.001	0.000
м2	1.001	1.000	0.999	1.002	0.999	1.000	1.001	1.000	1.001	1.001
mg	62.3	61.9	60.7	61.2	60.4	59.1	61.0	60.6	59.7	59.3

lame	B2-7	B2-7	B2-7	в2-7	C8-6	C8-6	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX315	OX316	OX317	OX318	OX319	OX320	OX321	OX322	OX323	OX324
note	С	±b	С	С	С	С	±b	b ->	<- C	с
SiO2	50.86	50.43	50.68	50.94	47.21	47.21	51.17	52.33	51.73	50.34
A1203	1.16	1.21	0.95	1.28	9.78	10.15	3.09	2.58	2.62	2.58
Fe203	3.45	3.74	3.33	3.04	4.64	4.75	2.89	1.84	3.57	4.33
TiO2	0.07	0.02	0.08	0.07	0.04	0.06	0.27	0.12	0.09	0.17
Cr203	0.04	0.05	0.00	0.01	0.00	0.02	0.01	0.00	0.03	0.05
NiO	0.11	0.09	0.05	0.00	0.00	0.05	0.09	0.17	0.00	0.00
MgO	20.83	21.11	20.70	21.31	22.88	22.40	22.96	24.27	25.67	23.50
Fe0	22.07	21.59	22.26	21.72	13.94	11.89	15.56	17.05	14.96	16.64
MnO	0.23	0.28	0.37	0.28	0.21	0.24	0.23	0.22	0.21	0.33
Ca0	1.03	0.49	0.85	0.84	1.05	2.48	2.56	1.07	0.63	0.84
Na2O	0.04	0.03	0.01	0.01	0.01	0.23	0.29	0.14	0.03	0.09
total	99.89	99.04	99.28	99.50	9 9. 76	99.48	99.12	99.79	99.54	98.87
formule	structu	cale cal	culée su	ır 6 o xy	gènes					
Si	1.922	1.919	1.929	1.925	1.726	1.724	1.895	1.920	1.893	1.880
Al	0.052	0.054	0.043	0.057	0.274	0.276	0.105	0.080	0.107	0.113
Fe+3	0.026	0.027	0.028	0.018	0.000	0.000	0.000	0.000	0.000	0.007
Al	0.000	0.000	0.000	0.000	0.148	0.161	0.030	0.032	0.006	0.000
Fe+3	0.072	0.080	0.067	0.068	0.128	0.131	0.080	0.051	0.098	0.115
Ti	0.002	0.001	0.002	0.002	0.001	0.002	0.008	0.003	0.002	0.005
Cr	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.001
Ni	0.003	0.003	0.001	0.000	0.000	0.001	0.003	0.005	0.000	0.000
Mg	0.922	0.915	0.930	0.930	0.723	0.704	0.879	0.909	0.893	0.879
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.252	0.282	0.244	0.270	0.524	0.515	0.388	0.419	0.507	0.429
Fe+2	0.698	0.687	0.709	0.686	0.426	0.363	0.482	0.523	0.458	0.520
Mn	0.007	0.009	0.012	0.009	0.007	0.008	0.007	0.007	0.006	0.010
Ca	0.042	0.020	0.034	0.034	0.041	0.097	0.101	0.042	0.025	0.033
Na	0.003	0.002	0.001	0.001	0.001	0.017	0.021	0.010	0.002	0.006
M2	1.002	1.000	1.000	1.000	0.999	1.000	0.999	1.001	0.998	0.998
mg	59.6	60.1	59.4	60.9	69.2	71.2	69.3	69.8	71.6	67.1

OX317, OX319, OX320: petite inclusion dans Grt.

lame	C45-19	C45-19	C45-19	C45-19	B3-14	C21-3	C21-3	C45-7	C45-7	C45-7
roche	GNL	GNL	GNL	GNL	GNL	GS	GS	GNL	GNL	GNL
analyse	OX325	OX326	OX327	OX328	OX330	OX331	OX332	OX333	OX334	OX335
note	c ->	<- b	с	b	С		С			
SiO2	51.28	50.36	51.09	52.84	50.01	52.39	52.56	50.19	50.05	50.61
A1203	2.91	2.63	2.96	0.57	5.28	2.81	2.92	2.07	2.33	2.08
Fe203	4.53	3.91	3.54	2.90	4.12	3.17	3.41	3.24	3.45	3.47
TiO2	0.17	0.12	0.16	0.00	0.35	0.16	0.17	0.21	0.08	0.12
Cr203	0.01	0.02	0.00	0.03	0.00	0.05	0.01	0.03	0.04	0.00
NiO	0.00	0.09	0.00	0.00	0.02	0.00	0.07	0.07	0.00	0.00
MgO	24.98	22.40	23.95	24.45	23.32	26.33	27.31	20.61	20.72	21.61
FeO	14.74	18.45	17.02	18.72	15.17	14.11	12.49	21.58	21.86	20.51
MnO	0.24	0.40	0.25	0.40	0.40	0.19	0.23	0.29	0.41	0.26
Ca0	0.95	1.07	0.93	0.31	2.12	0.96	1.07	1.09	0.61	0.92
Na2O	0.15	0.02	0.03	0.02	0.03	0.07	0.05	0.03	0.01	0.04
total	99.96	99.47	99.93	100.24	100.82	100.24	100.29	99.41	99.56	99.62
formule	structu	rale cal	culée s	ur 6 oxy	gènes					
Si	1.876	1.884	1.883	1.948	1.823	1.894	1.888	1.902	1.895	1.902
Al	0.124	0.116	0.117	0.025	0.177	0.106	0.112	0.092	0.104	0.092
Fe+3	0.000	0.000	0.000	0.027	0.000	0.000	0.000	0.006	0.001	0.006
Al	0.001	0.000	0.012	0.000	0.050	0.014	0.011	0.000	0.000	0.000
Fe+3	0.125	0.110	0.098	0.053	0.113	0.086	0.092	0.086	0.097	0.092
Ti	0.005	0.003	0.004	0.000	0.010	0.004	0.005	0.006	0.002	0.003
Cr	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.001	0.000
Ni	0.000	0.003	0.000	0.000	0.001	0.000	0.002	0.002	0.000	0.000
Mg	0.869	0.883	0.886	0.946	0.826	0.895	0.890	0.905	0.900	0.905
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ml	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.493	0.366	0.430	0.397	0.441	0.524	0.573	0.260	0.270	0.306
Fe+2	0.451	0.577	0.524	0.577	0.462	0.427	0.375	0.684	0.692	0.645
Mn	0.007	0.013	0.008	0.012	0.012	0.006	0.007	0.009	0.013	0.008
Ca	0.037	0.043	0.037	0.012	0.083	0.037	0.041	0.044	0.025	0.037
Na	0.010	0.001	0.002	0.001	0.002	0.005	0.004	0.002	0.001	0.003
M2	0.998	1.000	1.001	0.999	1.000	0.999	1.000	0.999	1.001	0.999
									_	
mg	70.3	64.5	67.9	67.2	68.8	73.4	75.8	60.0	59.7	62.0

lame	C45-7	C45-7	A5-14	A5-14	A5-14	A5-14	D6-10	D6-10	D6-10	D6-10
roche	GNL	GNL	WB	WB	WB	WB	WB	WB	WB	WB
analyse	OX336	OX337	OX421	OX422	OX423	OX424	OX427	OX428	OX429	OX430
note			c ->	<- b	b ->	<- C	С	с	C ->	<- b
SiO2	50.58	50.72	52.94	52.91	53.71	53.01	52.69	53.17	52.46	52.49
A1203	1.73	1.84	2.16	2.30	1.97	1.84	3.03	2.62	3.66	3.78
Fe203	3.45	3.36	3.52	2.97	3.00	3.51	3.65	3.33	4.11	3.91
TiO2	0.10	0.09	0.06	0.05	0.07	0.05	0.09	0.14	0.13	0.37
Cr203	0.02	0.00	0.18	0.17	0.25	0.17	0.06	0.09	0.13	0.11
NiO	0.11	0.14	0.02	0.06	0.00	0.01	0.02	0.05	0.07	0.06
MgO	20.93	21.42	28.68	28.44	28.70	28.69	29.19	29.15	29.70	29.77
Fe0	21.56	21.05	10.84	11.46	11.79	10.97	9.47	9.80	8.41	8.64
MnO	0.37	0.24	0.35	0.35	0.38	0.36	0.26	0.27	0.22	0.18
Ca0	0.84	0.77	0.61	0.53	0.60	0.63	0.91	1.16	0.89	0.86
Na20	0.03	0.04	0.03	0.00	0.02	0.03	0.04	0.02	0.01	0.01
total	99.72	99.67	99. 39	99.24	100.49	99.27	99.41	99.80	99.79	100.18
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.910	1.910	1.904	1.908	1.915	1.911	1.885	1.896	1.864	1.858
Al	0.077	0.081	0.092	0.092	0.083	0.078	0.115	0.104	0.136	0.142
Fe+3	0.013	0.009	0.004	0.000	0.002	0.011	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.006	0.000	0.000	0.013	0.006	0.017	0.016
Fe+3	0.085	0.086	0.091	0.080	0.078	0.084	0.098	0.089	0.110	0.104
Ti	0.003	0.003	0.002	0.001	0.002	0.001	0.002	0.004	0.003	0.010
Cr	0.001	0.000	0.005	0.005	0.007	0.005	0.002	0.003	0.004	0.003
Ni	0.003	0.004	0.001	0.002	0.000	0.000	0.000	0.001	0.002	0.002
Mg	0.908	0.907	0.901	0.906	0.913	0.910	0.885	0.897	0.864	0.865
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.271	0.296	0.637	0.622	0.612	0.631	0.671	0.653	0.709	0.706
Fe+2	0.681	0.663	0.326	0.346	0.351	0.331	0.283	0.292	0.250	0.256
Mn	0.012	0.008	0.011	0.011	0.012	0.011	0.008	0.008	0.007	0.005
Ca	0.034	0.031	0.024	0.021	0.023	0.024	0.035	0.044	0.034	0.033
Na	0.002	0.003	0.002	0.000	0.002	0.002	0.003	0.001	0.001	0.001
м2	1.000	1.001	1.000	1.000	1.000	0.999	1.000	0.998	1.001	1.001
mg	60.2	61.3	78.5	78.2	78.0	78.3	80.3	80.3	81.4	81.4

lame	D6-10	D6-10	A22-2	C45-7	C45-7	C45-7	C45-7	A22-2
roche	WB	WB	CXN	GNL	GNL	GNL	GNL	CXN
analyse	OX431	OX432	OX433	OX434	OX435	OX436	OX437	OX438
note				С	±c	С	С	
SiO2	52.37	52.15	51.81	50.72	50.79	51.37	51.27	48.77
A1203	4.24	4.35	3.77	2.31	2.32	1.81	3.99	7.76
Fe203	3.91	4.01	2.95	3.06	3.60	3.19	3.48	4.90
TiO2	0.18	0.13	0.14	0.18	0.07	0.09	0.11	0.06
Cr203	0.17	0.17	0.02	0.05	0.00	0.02	0.01	0.00
NiO	0.03	0.07	0.05	0.04	0.00	0.03	0.01	0.00
MgO	29.74	29.25	25.29	20.68	21.36	21.54	24.67	23.65
FeO	8.39	8.92	14.96	21.28	21.20	21.43	15.92	16.01
MnO	0.21	0.29	0.36	0.32	0.33	0.26	0.46	0.16
Ca0	0.87	0.63	1.23	1.60	0.87	0.96	0.76	0.03
Na2O	0.02	0.05	0.03	0.05	0.02	0.05	0.02	0.00
total	100.13	100.02	100.61	100.29	100.56	100.75	100.70	101.34
formule	structu	rale cal	culée su	ır 6 oxy	gènes			
Si	1.852	1.851	1.875	1.902	1.897	1.914	1.864	1.766
Al	0.148	0.149	0.125	0.098	0.102	0.079	0.136	0.234
Fe+3	0.000	0.000	0.000	0.000	0.001	0.007	0.000	0.000
Al	0.029	0.033	0.036	0.004	0.000	0.000	0.035	0.097
Fe+3	0.104	0.107	0.080	0.086	0.100	0.082	0.095	0.133
Ti	0.005	0.003	0.004	0.005	0.002	0.002	0.003	0.002
Cr	0.005	0.005	0.000	0.002	0.000	0.001	0.000	0.000
Ni	0.001	0.002	0.001	0.001	0.000	0.001	0.000	0.000
Mg	0.856	0.850	0.879	0.902	0.898	0.914	0.867	0.768
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.712	0.698	0.486	0.254	0.291	0.282	0.470	0.509
Fe+2	0.248	0.265	0.453	0.667	0.662	0.668	0.484	0.485
Mn	0.006	0.009	0.011	0.010	0.011	0.008	0.014	0.005
Na	0.001	0.004	0.002	0.003	0.001	0.003	0.002	0.000
M2	1.000	1.000	1.000	0.998	1.000	0.999	1.000	1.000
mg	81.7	80.6	71.9	60.6	60.9	61.2	69.8	67.4

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX501	OX502	OX503	OX504	0X505	OX506	OX507	OX508	OX509	OX510
note		b	b	±c ->	<- ±c	С		C ->	<- b	
SiO2	51.71	51.18	51.24	52.26	52.18	52.80	51.50	52.35	51.20	52.82
A1203	1.12	1.34	0.83	2.54	2.69	2.57	0.91	2.86	3.00	0.69
Fe203	1.47	1.99	2.29	2.17	2.49	0.00	2.52	1.41	2.67	1.60
TiO2	0.04	0.02	0.02	0.16	0.12	0.64	0.00	0.14	0.21	0.01
Cr203	0.04	0.03	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00
NiO	0.00	0.01	0.05	0.00	0.00	0.00	0.02	0.03	0.00	0.03
MgO	20.75	21.01	20.96	25.64	25.45	24.22	21.86	24.71	23.06	23.15
FeO	23.65	22.27	22.14	15.54	15.30	17.58	21.71	16.99	17.17	21.27
MnO	0.82	0.94	0.92	0.16	0.18	0.19	0.44	0.20	0.31	0.24
Ca0	0.34	0.35	0.41	0.95	0.94	0.94	0.26	0.92	1.43	0.20
Na2O	0.01	0.02	0.03	0.03	0.07	0.10	0.01	0.04	0.20	0.00
total	99.95	99.16	98.91	99.45	99.44	99.04	99.23	99.65	99.25	100.01
formule	structur	rale cal	culée su	ır 6 oxy	gènes					
Si	1.952	1.941	1.950	1.911	1.908	1.941	1.945	1.917	1.899	1.963
Al	0.048	0.059	0.037	0.089	0.092	0.059	0.040	0.083	0.101	0.030
Fe+3	0.000	0.000	0.013	0.000	0.000	0.000	0.015	0.000	0.000	0.007
Al	0.002	0.001	0.000	0.020	0.024	0.053	0.000	0.040	0.030	0.000
Fe+3	0.042	0.057	0.053	0.060	0.069	0.000	0.057	0.039	0.075	0.038
Ti	0.001	0.001	0.001	0.004	0.003	0.018	0.000	0.004	0.006	0.000
Cr	0.001	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000
Ni	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.001	0.000	0.001
Mg	0.954	0.940	0.943	0.916	0.903	0.929	0.942	0.916	0.889	0.961
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.213	0.248	0.247	0.481	0.484	0.398	0.289	0.433	0.386	0.322
Fe+2	0.747	0.706	0.705	0.475	0.468	0.540	0.686	0.521	0.533	0.661
Mn	0.026	0.030	0.030	0.005	0.006	0.006	0.014	0.006	0.010	0.008
Ca	0.014	0.014	0.017	0.037	0.037	0.037	0.010	0.036	0.057	0.008
Na	0.001	0.001	0.002	0.002	0.005	0.007	0.001	0.003	0.015	0.000
M2	1.001	0.999	1.001	1.000	1.000	0.988	1.000	0.999	1.001	0.999
mg	59.7	60.9	60.7	72.3	72.1	71.1	61.9	70.7	67.7	64.5

OX507, OX510: petits Opx secondaires ?

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-7	C45-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX511	OX512	OX513	OX514	OX515	OX516	OX517	OX518	OX519	OX520
note	С				С			С	С	C ->
SiO2	52.83	51.14	52.29	51.57	52.43	51.25	50.69	50.92	50.75	51.04
A1203	0.48	1.41	0.57	0.82	2.98	1.91	1.73	2.18	1.92	2.21
Fe203	0.53	1.78	2.01	1.78	0.32	2.00	2.40	2.74	2.51	2.64
TiO2	0.00	0.02	0.00	0.01	0.14	0.12	0.12	0.09	0.12	0.08
Cr203	0.03	0.00	0.06	0.09	0.05	0.00	0.03	0.05	0.03	0.00
NiO	0.07	0.00	0.00	0.01	0.01	0.00	0.00	0.03	0.00	0.00
MgO	23.07	21.91	23.16	22.72	23.84	21.11	20.25	21.56	20.54	22.03
FeO	21.27	21.53	20.60	20.63	18.43	21.06	22.62	20.81	22.21	20.07
MnO	0.24	0.30	0.29	0.31	0.21	0.30	0.32	0.36	0.42	0.28
Ca0	0.23	0.18	0.23	0.22	0.86	1.47	1.19	0.87	0.99	0.86
Na2O	0.02	0.01	0.02	0.02	0.12	0.09	0.04	0.04	0.05	0.07
total	98.77	98.28	99.23	98.18	99.39	99.31	99.39	99.65	99.54	99.28
formule	structu	rale cal	culée s	ur 6 oxy	rgènes					
Si	1.983	1.943	1.959	1.954	1.931	1.930	1.924	1.912	1.920	1.915
Al	0.017	0.057	0.025	0.037	0.069	0.070	0.076	0.088	0.080	0.085
Fe+3	0.000	0.000	0.016	0.009	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.004	0.006	0.000	0.000	0.060	0.015	0.001	0.008	0.006	0.013
Fe+3	0.015	0.051	0.041	0.042	0.009	0.057	0.069	0.077	0.072	0.075
Ti	0.000	0.001	0.000	0.000	0.004	0.003	0.003	0.002	0.004	0.002
Cr	0.001	0.000	0.002	0.003	0.001	0.000	0.001	0.002	0.001	0.000
Ni	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Mg	0.978	0.942	0.957	0.955	0.926	0.925	0.926	0.910	0.917	0.910
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.313	0.299	0.336	0.328	0.383	0.260	0.220	0.297	0.241	0.322
Fe+2	0.668	0.684	0.645	0.654	0.568	0.663	0.718	0.653	0.703	0.630
Mn	0.008	0.010	0.009	0.010	0.007	0.010	0.010	0.011	0.013	0.009
Ca	0.009	0.007	0.009	0.009	0.034	0.059	0.048	0.035	0.040	0.034
Na	0.002	0.001	0.002	0.001	0.009	0.007	0.003	0.003	0.004	0.005
M2	1.000	1.001	1.001	1.002	1.001	0.999	0.999	0.999	1.001	1.000
										~~ ~
mg	65.4	62.8	64.8	64.5	69.4	62.2	59.3	62.3	59.9	63.6

OX514: petit Opx formant couronne en contact avec Qtz.

lame	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-145	A5-145	A5-145
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	WB	WB	WB
analyse	OX521	OX522	OX523	OX524	OX525	OX526	0X527	OX528	OX529	OX530
note	<- b	±b ->	<- C	С	c ->	<- b	С	C ->	C ->	<- b
SiO2	51.47	51.25	50.94	51.15	51.37	50.77	51.19	50.88	51.00	50.57
A1203	2.37	2.05	2.06	2.30	2.24	2.03	2.05	2.02	1.79	2.19
Fe203	2.34	2.43	2.63	2.65	2.44	2.83	1.80	3.16	2.95	2.62
TiO2	0.08	0.10	0.07	0.05	0.15	0.03	0.19	0.11	0.07	0.04
Cr203	0.02	0.01	0.02	0.08	0.05	0.03	0.03	0.07	0.00	0.05
NiO	0.02	0.09	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.11
MgO	22.54	21.53	21.37	22.24	20.26	21.05	20.97	20.93	21.66	20.84
Fe0	19.75	21.02	21.36	20.24	17.71	22.05	22.58	18.92	20.66	21.45
MnO	0.32	0.31	0.33	0.31	0.29	0.41	0.37	0.90	0.88	0.95
Ca0	0.79	0.94	0.68	0.66	4.83	0.41	0.78	2.30	0.46	0.66
Na2O	0.05	0.05	0.04	0.05	0.28	0.02	0.03	0.16	0.04	0.02
total	99.75	99.78	99.50	99.75	99.62	99.63	100.00	99.45	99.51	99.50
formule	structur	cale cal	culée su	ır 6 oxy	gènes					
Si	1.915	1.921	1.918	1.910	1.921	1.915	1.923	1.913	1.919	1.912
A1	0.085	0.079	0.082	0.090	0.079	0.085	0.077	0.087	0.080	0.088
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Al	0.019	0.011	0.009	0.011	0.020	0.005	0.014	0.003	0.000	0.009
Fe+3	0.066	0.069	0.075	0.075	0.069	0.080	0.051	0.089	0.082	0.075
Ti	0.002	0.003	0.002	0.001	0.004	0.001	0.005	0.003	0.002	0.001
Cr	0.001	0.000	0.001	0.002	0.001	0.001	0.001	0.002	0.000	0.001
Ni	0.001	0.003	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.003
Mg	0.911	0.914	0.913	0.910	0.906	0.913	0.929	0.903	0.916	0.911
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.340	0.289	0.286	0.328	0.224	0.271	0.246	0.270	0.299	0.264
Fe+2	0.615	0.659	0.673	0.632	0.554	0.696	0.710	0.595	0.650	0.678
Mn	0.010	0.010	0.010	0.010	0.009	0.013	0.012	0.029	0.028	0.030
Ca	0.031	0.038	0.028	0.026	0.194	0.016	0.031	0.093	0.019	0.027
Na	0.004	0.004	0.003	0.004	0.020	0.002	0.002	0.012	0.003	0.001
M2	1.000	1.000	1.000	1.000	1.001	0.998	1.001	0.999	.999	1.000
mg	64.8	62.3	61.6	63.7	64.5	60.4	60.7	63.2	62.4	60.9

lame	A5-145	C45-16	C45-16	C45-16	C45-16	A6-64	A6-64	A6-64	A6-64	A6-64
roche	WB	WB	WB	WB	WB	GNL	GNL	GNL	GNL	GNL
analyse	OX531	OX532	OX533	OX534	OX535	OX537	OX538	OX539	OX540	OX541
note	с	С.	c ->	<- C	С	C ->	<- C	С	С	с
SiO2	50.73	52.58	52.75	52.72	52.04	52.59	52.52	52.46	52.32	52.46
A1203	1.99	2.28	1.80	1.53	1.58	3.23	3.24	2.86	2.59	2.54
Fe203	2.51	2.72	2.06	2.49	2.48	2.42	1.97	2.73	2.61	1.74
TiO2	0.10	0.06	0.03	0.05	0.60	0.14	0.15	0.10	0.13	0.13
Cr203	0.02	0.13	0.05	0.09	0.10	0.05	0.10	0.07	0.01	0.03
NiO	0.03	0.01	0.01	0.06	0.08	0.05	0.03	0.06	0.09	0.01
MgO	21.14	25.58	25.29	25.28	24.29	26.79	26.24	26.13	25.13	25.07
FeO	20.45	16.40	17.19	16.62	18.38	13.53	14.40	14.79	15.79	26.54
MnO	0.88	0.38	0.41	0.35	0.50	0.13	0.09	0.12	0.18	0.13
Ca0	1.12	0.31	0.30	0.65	0.27	0.87	0.90	0.62	0.93	0.90
Na2O	0.05	0.03	0.02	0.02	0.01	0.08	0.10	0.11	0.10	0.09
total	99.02	100.48	99.91	99.86	100.33	99.88	99.74	100.05	99.88	99.64
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.919	1.911	1.931	1.931	1.915	1.897	1.902	1.902	1.910	1.920
Al	0.081	0.089	0.069	0.066	0.069	0.103	0.098	0.098	0.090	0.080
Fe+3	0.000	0.000	0.000	0.003	0.016	0.000	0.000	0.000	0.000	0.000
Al	0.008	0.009	0.009	0.000	0.000	0.034	0.040	0.024	0.022	0.029
Fe+3	0.072	0.075	0.057	0.066	0.053	0.066	0.054	0.075	0.072	0.048
Ті	0.003	0.002	0.001	0.001	0.017	Ò.004	0.004	0.003	0.003	0.003
Cr	0.001	0.004	0.002	0.003	0.003	0.002	0.003	0.002	0.000	0.001
Ni	0.001	0.000	0.000	0.002	0.002	0.001	0.001	0.002	0.003	0.000
Mg	0.915	0.910	0.931	0.928	0.925	0.893	0.898	0.894	0.900	0.919
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.277	0.476	0.449	0.453	0.407	0.548	0.519	0.518	0.468	0.448
Fe+2	0.647	0.499	0.526	0.509	0.566	0.408	0.436	0.448	0.482	0.506
Mn	0.028	0.012	0.013	0.011	0.016	0.004	0.003	0.004	0.005	0.004
Ca	0.045	0.012	0.012	0.025	0.011	0.033	0.035	0.024	0.036	0.035
Na	0.004	0.002	0.001	0.001	0.001	0.005	0.007	0.007	0.007	0.006
M2	1.001	1.001	1.001	0.999	1.001	0.998	1.000	1.001	0.998	0.999
mg	62.4	70.7	70.3	70.5	67.7	75.2	74.3	73.0	71.2	71.2

lame	A6-64	A6-64	A6-64	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX542	OX543	OX544	OX545	0X546	OX547	OX548	OX549	OX5 50	OX551
note	С	С	С	±c ->	<- C		с	С	±c ->	<- ±c
SiO2	52.58	51.73	52.03	51.39	51.55	51.29	51.54	51.96	51.83	51.40
A1203	2.54	2.59	3.15	1.48	1.19	1.36	1.03	1.13	1.06	1.23
Fe203	1.96	2.04	1.95	1.37	2.00	1.99	1.47	1.59	1.47	1.57
TiO2	0.12	0.12	0.16	0.12	0.09	0.06	0.07	0.07	0.05	0.13
Cr203	0.03	0.07	0.10	0.01	0.00	0.02	0.00	0.12	0.00	0.06
NiO	0.01	0.05	0.01	0.05	0.03	0.01	0.06	0.00	0.01	0.01
MgO	26.00	23.59	24.85	20.74	21.01	20.90	20.50	21.48	21.26	21.10
FeO	15.17	18.20	16.42	23.36	22.69	22.55	23.28	22.61	22.91	22.27
MnO	0.14	0.21	0.13	0.27	0.27	0.26	0.36	0.26	0.27	0.28
CaO	0.88	0.89	0.93	0.74	0.76	0.87	1.04	0.79	0.58	0.96
Na20	0.04	0.09	0.08	0.03	0.03	0.04	0.04	0.02	0.02	0.04
total	99.47	99.58	99.81	99.56	99.62	99.35	99.39	100.03	99.46	99.05
formule	structu	rale cal	culée su	ır 6 oxy	gènes					
Si	1.916	1.913	1.902	1.943	1.945	1.941	1.955	1.949	1.956	1.947
Al	0.084	0.087	0.098	0.057	0.053	0.059	0.045	0.050	0.044	0.053
Fe+3	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.001	0.000	0.000
Al	0.025	0.026	0.038	0.009	0.000	0.002	0.001	0.000	0.003	0.002
Fe+3	0.054	0.057	0.054	0.039	0.055	0.057	0.042	0.044	0.042	0.045
Tì	0.003	0.003	0.004	0.003	0.003	0.002	0.002	0.002	0.002	0.004
Cr	0.001	0.002	0.003	0.000	0.000	0.000	0.000	0.003	0.000	0.002
Ni	0.000	0.001	0.000	0.001	0.001	0.000	0.002	0.000	0.000	0.000
Mg	0.917	0.911	0.901	0.948	0.941	0.939	0.953	0.951	0.953	0.947
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.495	0.389	0.453	0.221	0.241	0.240	0.206	0.250	0.243	0.244
Fe+2	0.462	0.563	0.502	0.739	0.716	0.714	0.739	0.709	0.723	0.705
Mn	0.004	0.007	0.004	0.009	0.009	0.008	0.011	0.008	0.009	0.009
Ca	0.035	0.035	0.036	0.030	0.031	0.035	0.042	0.032	0.023	0.039
Na	0.003	0.006	0.006	0.002	0.002	0.003	0.003	0.002	0.001	0.003
M2	0.999	1.000	1.001	1.001	0.999	1.000	1.001	1.001	.999	1.000
mg	73.2	67.7	70.9	60.0	60.5	60.5	59.7	61.4	61.0	61.4

OX548: petite inclusion dans Grt.

lame	B2-7	B2-7	B2-7	B2~7	в2-7	A3-14A	A3-14A	A3-14A	A3-14A	A6-5
roche	GNL	GNL	GNL	GNL	GNL	CXN	CXN	CXN	CXN	CXN
analyse	0X552	OX553	OX554	0X555	0X556	OX557	OX558	OX559	OX560	OX561
note							С	С	C	±b
SiO2	53.44	53.49	53.24	53.44	52.31	52.01	52.20	51.83	52.05	49.98
A1203	4.57	4.50	4.50	4.47	2.77	3.23	3.27	2.76	3.04	2.98
Fe203	3.65	2.61	2.71	2.49	1.52	1.63	2.51	2.70	2.61	2.72
TiO2	0.16	0.17	0.14	0.09	0.16	0.18	0.16	0.14	0.17	0.07
Cr203	0.33	0.25	0.28	0.37	0.03	0.04	0.06	0.05	0.06	0.03
NiO	0.04	0.03	0.06	0.00	0.04	0.00	0.02	0.01	0.00	0.01
MgO	31.13	31.01	30.27	30.78	24.93	24.49	25.92	25.01	25.71	29.92
Fe0	6.80	7.42	8.19	7.75	16.80	16.99	14.98	16.03	15.07	22.26
MnO	0.21	0.21	0.23	0.22	0.21	0.29	0.20	0.29	0.23	1.02
Ca0	0.83	0.76	0.77	0.78	0.79	0.81	0.70	0.80	0.80	0.73
Na2O	0.09	0.06	0.05	0.04	0.07	0.10	0.04	0.04	0.05	0.03
total	101.25	100.51	100.44	100.43	99.63	99.77	100.06	99.66	99.79	99.75
formule	structu	cale cal	culée su	ır 6 oxy	gènes					
Si	1.854	1.867	1.867	1.868	1.915	1.905	1.893	1.900	1.895	1.893
Al	0.146	0.133	0.133	0.132	0.085	0.095	0.107	0.100	0.105	0.107
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.041	0.052	0.053	0.052	0.034	0.044	0.033	0.019	0.026	0.026
Fe+3	0.095	0.069	0.072	0.066	0.042	0.045	0.069	0.075	0.072	0.077
Ti	0.004	0.004	0.004	0.002	0.004	0.005	0.004	0.004	0.005	0.002
Cr	0.009	0.007	0.008	0.010	0.001	0.001	0.002	0.002	0.002	0.001
Ni	0.001	0.001	0.002	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Mg	0.850	0.867	0.861	0.870	0.918	0.905	0.891	0.900	0.895	0.894
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.760	0.746	0.721	0.734	0.443	0.432	0.510	0.466	0.500	0.230
Fe+2	0.197	0.216	0.240	0.227	0.515	0.520	0.454	0.491	0.459	0.705
Mn	0.006	0.006	0.007	0.007	0.006	0.009	0.006	0.009	0.007	0.033
Ca	0.031	0.029	0.029	0.029	0.031	0.032	0.027	0.031	0.031	0.030
Na	0.006	0.004	0.004	0.003	0.005	0.007	0.003	0.003	0.004	0.002
M2	1.000	1.001	1.001	1.000	1.000	1.000	1.000	1.000	1.001	1.000
mg	84.6	85.0	83.5	84.6	71.0	70.3	72.8	70.7	72.4	59.0

lame	A6-5	A6-5	A6-5	A6-5?	D6-6	D6-6	D6-6	B6-39	B6-39	B6-39
roche	CXN	CXN	CXN	CXN	CSL	CSL	CSL	WB	WB	WB
analyse	OX 562	OX563	OX564	OX565	OX566	OX567	OX568	OX569	OX570	0X571
note	±c ->	<- ±c	C ->	<- b	С	с	±c	С	b ->	<- C
SiO2	50.59	50.69	50.88	50.03	58.10	58.94	58.82	53.43	53.94	53.78
A1203	2.57	2.40	2.57	2.76	0.42	0.38	0.37	2.68	2.72	2.94
Fe203	2.31	1.78	1.69	2.50	1.84	1.78	1.81	1.77	1.22	2.01
TiO2	0.08	0.09	0.12	0.08	0.03	0.07	0.07	0.05	0.01	0.06
Cr203	0.01	0.02	0.02	0.02	0.00	0.02	0.02	0.13	0.10	0.12
NiO	0.04	0.02	0.03	0.05	0.00	0.00	0.00	0.08	0.14	0.11
MgO	20.42	20.55	20.80	19.79	39.10	38.88	39.07	27.39	28.10	28.01
FeO	21.51	21.48	21.37	22.39	0.00	0.06	0.00	13.48	13.02	21.98
MnO	0.86	0.90	0.83	0.96	0.03	0.09	0.06	0.31	0.28	0.22
Ca0	1.24	1.16	1.17	0.86	0.51	0.64	0.51	0.87	0.56	0.94
Na2O	0.05	0.04	0.03	0.03	0.03	0.04	0.05	0.07	0.06	0.17
total	99.68	99.13	99.51	99.47	100.06	100.90	100.78	100.26	100.15	100.34

formule :	structur	ale cale	culee su	r 6 oxyg	jenes					
Si	1.909	1.919	1.916	1.901	1.959	1.970	1.968	1.917	1. 9 27	1.915
Al	0.091	0.081	0.084	0.099	0.017	0.015	0.015	0.083	0.073	0.085
Fe+3	0.000	0.000	0.000	0.000	0.024	0.015	0.017	0.000	0.000	0.000
Al	0.023	0.026	0.030	0.025	0.000	0.000	0.000	0.030	0.042	0.038
Fe+3	0.066	0.051	0.048	0.072	0.023	0.030	0.028	0.048	0.033	0.054
Ті	0.002	0.002	0.004	0.002	0.001	0.002	0.002	0.001	0.000	0.002
Cr	0.000	0.001	0.001	0.001	0.000	0.001	0.000	0.004	0.003	0.003
Ni	0.001	0.001	0.001	0.002	0.000	0.000	0.000	0.002	0.004	0.003
Mg	0.908	0.919	0.916	0.898	0.976	0.967	0.970	0.915	0.918	0.900
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.240	0.241	0.252	0.223	0.989	0.970	0.979	0.550	0.578	0.587
Fe+2	0.679	0.680	0.673	0.711	0.000	0.002	0.000	0.404	0.389	0.357
Mn	0.027	0.029	0.027	0.031	0.001	0.002	0.002	0.009	0.009	0.007
Ca	0.050	0.047	0.047	0.035	0.018	0.023	0.018	0.033	0.021	0.036
Na	0.004	0.003	0.002	0.002	0.002	0.002	0.003	0.005	0.004	0.012
м2	1.000	1.000	1.001	1.002	1.010	0.999	1.002	1.001	1.001	0.999
ma	60.6	61.3	61.8	58.9	97.7	97.6	97.7	76.4	78.0	78.3

475

lame	D12-4	D12-4	D12-4	D12-4	D12-4	C45-19	C45-19	C45-19	C45-19	C45-19
roche	WB	WB	WB	WB	WB	GNL	GNL	GNL	GNL	GNL
analyse	OX601	OX602	OX603	OX604	OX605	OX606	OX607	OX608	OX609	OX610
note	с	b ->	<- C	С	С	b ->	<->	<->	<- C ->	<->
SiO2	51.92	51.71	52.10	51.69	51.81	50.66	51.30	51.35	51.44	50.71
A1203	2.30	2.26	2.34	2.26	2.42	2.72	3.20	2.88	2.98	2.80
Fe203	3.35	3.01	2.81	2.79	2.91	3.60	1.39	2.46	2.47	3.72
TiO2	0.06	0.10	0.06	0.05	0.05	0.10	0.25	0.18	0.22	0.17
Cr203	0.22	0.20	0.19	0.21	0.18	0.04	0.02	0.03	0.00	0.01
NiO	0.09	0.05	0.06	0.03	0.06	0.06	0.00	0.00	0.01	0.02
MgO	25.39	24.81	25.31	24.33	24.85	23.63	23.20	24.45	24.40	24.11
FeO	15.17	16.06	15.89	16.99	16.38	16.73	17.18	15.53	15.36	15.96
MnO	0.43	0.50	0.47	0.51	0.50	0.31	0.22	0.22	0.17	0.21 ′
Ca0	0.76	0.66	0.54	0.60	0.59	0.88	1.44	1.16	1.55	1.07
Na2O	0.03	0.01	0.02	0.03	0.01	0.05	0.19	0.15	0.16	0.06
total	99.72	99.37	99.79	99.49	99.76	98.78	98.39	98.41	98.76	98.84
formule	structu	cale cal	culée su	ar 6 oxy	gènes					
Si	1.901	1.906	1.907	1.909	1.903	1.889	1.911	1.903	1.900	1.884
Al	0.099	0.094	0.093	0.091	0.097	0.111	0.089	0.097	0.100	0.116
Fe+3	0.000	0.000	0.000.	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.004	0.008	0.007	0.008	0.009	0.051	0.029	0.030	0.006
Fe+3	0.092	0.083	0.077	0.077	0.080	0.101	0.039	0.069	0.069	0.104
Ti	0.002	0.003	0.002	0.002	0.001	0.003	0.007	0.005	0.006	0.005
Cr	0.007	0.006	0.005	0.006	0.005	0.001	0.001	0.001	0.000	0.000
Ni	0.003	0.002	0.002	0.001	0.002	0.002	0.000	0.000	0.000	0.000
Mg	0.896	0.902	0.906	0.907	0.904	0.884	0.902	0.896	0.895	0.885
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.490	0.461	0.475	0.433	0.457	0.429	0.386	0.455	0.448	0.450
Fe+2	0.464	0.495	0.486	0.525	0.503	0.522	0.535	0.481	0.474	0.496
Mn	0.013	0.016	0.015	0.016	0.015	0.010	0.007	0.007	0.005	0.007
Ca	0.030	0.026	0.021	0.024	0.023	0.035	0.058	0.046	0.062	0.043
Na	0.002	0.001	0.001	0.002	0.001	0.003	0.014	0.011	0.011	0.004
м2	0.999	0.999	0.998	1.000	0.999	0.999	1.000	1.000	1.000	1.000
mg	71.4	70.2	71.0	69.0	70.0	67.8	69.2	71.1	71.2	69.0

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	OX611	OX612	OX613	OX614	OX615	OX616	OX617	OX618	OX619	OX620
note	<- b	b ->	<->	<->	<- C ->	<- c ->	<->	<->	<- b	
SiO2	52.25	52.21	51.59	52.16	52.01	52.08	51.56	52.84	51.37	50.67
A1203	2.78	2.69	2.90	2.64	2.54	2.64	2.81	2.63	2.88	2.85
Fe203	0.86	1.30	2.69	1.73	2.27	3.04	3.23	0.00	3.44	3.61
TiO2	0.19	0.22	0.18	0.14	0.16	0.17	0.15	0.12	0.13	0.17
Cr203	0.03	0.01	0.07	0.01	0.03	0.00	0.01	0.00	0.01	0.03
NiO	0.00	0.00	0.02	0.01	0.01	0.00	0.04	0.01	0.00	0.01
MgO	24.55	24.73	24.81	25.08	25.39	25.35	25.11	24.46	24.93	22.85
FeO	16.73	16.42	14.92	16.11	16.04	15.23	15.37	17.71	15.59	17.87
MnO	0.15	0.20	0.20	0.19	0.13	0.16	0.16	0.19	0.17	0.33
Ca0	1.17	1.13	1.34	0.88	0.66	1.04	0.88	0.75	0.88	1.16
Na20	0.11	0.10	0.18	0.09	0.03	0.11	0.05	0.07	0.04	0.03
total	98.82	99.01	98.90	99.04	99.27	99.82	99.37	98.78	99.44	99.58
formule	structu	rale cal	culée su	ur 6 oxy	rgènes				·	
Si	1.926	1.921	1.899	1.918	1.909	1.901	1.893	1.947	1.888	1.885
Al	0.074	0.079	0.101	0.082	0.091	0.099	0.107	0.053	0.112	0.115
Fe+3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.047	0.038	0.025	0.032	0.019	0.015	0.015	0.061	0.013	0.010
Fe+3	0.024	0.036	0.075	0.048	0.063	0.083	0.089	0.000	0.095	0.101
Ti	0.005	0.006	0.005	0.004	0.005	0.005	0.004	0.003	0.004	0.005
Cr	0.001	0.000	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.001
Ni	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Mg	0.923	0.920	0.892	0.916	0.912	0.897	0.891	0.936	0.888	0.883
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.426	0.436	0.470	0.458	0.477	0.482	0.483	0.408	0.478	0.384
Fe+2	0.516	0.505	0.459	0.495	0.492	0.465	0.472	0.546	0.479	0.556
Mn	0.005	0.006	0.006	0.006	0.004	0.005	0.005	0.006	0.005	0.010
Ca	0.046	0.045	0.053	0.035	0.026	0.041	0.034	0.030	0.034	0.046
Na	0.008	0.007	0.013	0.006	0.002	0.008	0.004	0.005	0.003	0.002
M2	1.001	0.999	1.001	1.000	1.001	1.001	0.998	0.995	0.999	0.998
										65 Å
mg	71.4	71.5	71.8	71.7	71.5	71.6	71.0	71.1	70.4	65.9

lame	C45-19	C45-19	C45-19	B1-3	B1-3	B1-3	B1-3	B1-3
roche	GNL	GNL	GNL	CXN	CXN	CXN	CXN	CXN
analyse	OX625	OX626	OX627	OX628	OX629	OX630	OX631	OX632
note	b ->	С	<- b	C ->	c ->	<- b	С	±b
SiO2	50.03	49.84	49.73	52.25	52.60	53.38	52.64	52.88
A1203	2.07	2.15	2.16	3.93	3.93	2.55	3.13	3.12
Fe203	3.75	3.84	3.31	2.64	2.44	1.55	2.53	2.65
TiO2	0.18	0.15	0.12	0.07	0.06	0.04	0.05	0.04
Cr203	0.03	0.03	0.01	0.08	0.11	0.17	0.14	0.16
NiO	0.02	0.05	0.00	0.03	0.06	0.03	0.00	0.05
MgO	20.35	20.23	19.90	27.16	27.53	27.78	27.67	27.54
FeO	21.36	21.40	22.13	12.76	13.14	13.89	12.93	13.59
MnO	0.54	0.51	0.61	0.26	0.28	0.19	0.27	0.29
Ca0	1.03	1.10	1.05	0.70	0.29	0.24	0.30	0.21
Na2O	0.08	0.05	0.03	0.02	0.00	0.00	0.01	0.01
total	99.44	99.35	99.05	99.90	100.44	99.82	99.67	100.54
formule	structu	rale cal	culée su	ır 6 oxy	gènes			

rormare	Der do ca.	uro our	ouroo po		5			
Si	1.898	1.894	1.900	1.879	1.881	1.921	1.896	1.895
Al	0.092	0.096	0.097	0.121	0.119	0.079	0.104	0.105
Fe+3	0.010	0.010	0.003	0.000	0.000	0.000	0.000	0.000
A1	0.000	0.000	0.000	0.046	0.047	0.029	0.029	0.027
Fe+3	0.097	0.100	0.092	0.072	0.066	0.042	0.069	0.072
ті	0.005	0.004	0.003	0.002	0.002	0.001	0.001	0.001
Cr	0.001	0.001	0.000	0.002	0.003	0.005	0.004	0.004
Ni	0.001	0.002	0.000	0.001	0.002	0.001	0.000	0.001
Mg	0.896	0.893	0.905	0.877	0.880	0.922	0.897	0.895
Fe+2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
M1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg	0.255	0.253	0.228	0.579	0.588	0.568	0.589	0.576
Fe+2	0.678	0.680	0.707	0.384	0.393	0.418	0.390	0.407
Mn	0.017	0.017	0.020	0.008	0.009	0.006	0.008	0.009
Ca	0.042	0.045	0.043	0.027	0.011	0.009	0.012	0.008
Na	0.006	0.004	0.002	0.002	0.000	0.000	0.001	0.001
M2	0.998	0.999	1.000	1.000	1.001	1.001	1.000	1.001
mg	59.5	59.2	58.6	76.2	76.2	76.4	76.4	75.4

lame	A2-7	A5-38	A5-38	A5-38	A5-38	A5-38	A6-25-1	A6-25-1	A6-25-1	A6-25-1
roche	CXN	DN	DN	DN	DN	DN	CXN	CXN	CXN	CXN
analyse	BT01*	BT1a	BT1b	BT1c	BT2a	BT3a	BT4a	BT5a	BT6a	BT7a
SiO2	33.90	37.55	37.88	38.88	38.79	38.58	38.78	40.40	38.41	39.46
A1203	16.33	12.93	13.80	14.34	14.47	14.46	12.21	12.48	14.93	12.58
TiO2	2.13	0.00	0.01	0.87	0.84	1.01	1.04	0.87	1.38	0.83
Cr203	0.07	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.03	0.01
FeO	8.87	2.71	2.51	1.40	1.42	1.62	0.73	0.49	0.31	0.26
NiO	0.00	0.00	0.00	0.00	0.02	0.00	0.05	0.01	0.02	0.09
MnO	0.04	0.00	0.02	0.00	0.05	0.00	0.05	0.00	0.05	0.04
MgO	22.23	25.68	25.31	25.84	25.22	25.66	26.09	27.35	26.48	27.50
Ca0	0.14	0.02	0.00	0.00	0.01	0.00	0.07	0.03	0.00	0.00
BaO	0.14	0.06	0.04	0.25	0.06	0.23	0.18	0.09	0.26	0.18
Na20	0.06	0.29	0.30	0.76	0.78	0.72	0.07	0.00	0.17	0.14
к20	6.49	9.35	9.96	9.41	9.53	9.26	10.81	11.31	10.78	11.06
F	0.95	1.86	1.55	1.86	1.98	1.89	2.95	3.39	2.83	3.40
Cl	0.13	0.06	0.03	0.11	0.12	0.12	0.06	0.08	0.06	0.06
total	91.48	90.51	91.41	93.72	93.29	93.57	93.09	96.50	95.71	95.61
formule	structu	rale cal	culée su	ir 22 ox	ygènes					
Si	5.145	5.705	5.681	5.667	5.684	5.637	5.787	5.822	5.550	5.749
Al	2.855	2.295	2.319	2.333	2.316	2.363	2.149	2.120	2.450	2.160
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.064	0.058	0.000	0.091
Al	0.066	0.020	0.121	0.130	0.183	0.128	0.000	0.000	0.093	0.000
Ti	0.243	0.000	0.001	0.095	0.093	0.111	0.053	0.037	0.150	0.000
Cr	0.009	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.003	0.001
Fe2+	1.126	0.345	0.314	0.171	0.174	0.198	0.091	0.058	0.037	0.032
Ni	0.000	0.000	0.000	0.000	0.002	0.000	0.006	0.001	0.003	0.010
Mn	0.005	0.000	0.002	0.000	0.007	0.000	0.007	0.000	0.006	0.005
Mg	5.030	5.816	5.659	5.615	5.509	5.587	5.805	5.876	5.703	5.973
total	6.479	6.181	6.097	6.011	5.968	6.026	5.962	5.972	5.995	6.021
Ca	0.023	0.003	0.001	0.000	0.001	0.000	0.011	0.005	0.000	0.000
Ba	0.0 09	0.003	0.002	0.014	0.003	0.013	0.011	0.005	0.015	0.010
Na	0.018	0.087	0.086	0.214	0.220	0.205	0.019	0.000	0.049	0.038
K	1.256	1.811	1.906	1.750	1.781	1.727	2.059	2.079	1.987	2.057
total	1.306	1.904	1.995	1.978	2.005	1.945	2.100	2.089	2.051	2.105
F	0.456	0.892	0.736	0.859	0.916	0.874	1.393	1.545	1.294	1.567
C1	0.032	0.014	0.007	0.028	0.031	0.030	0.014	0.020	0.014	0.015
total	0.488	0.906	0.743	0.887	0.947	0.904	1.407	1.565	1.308	1.582
										o.c
mg	81.7	94.4	94.7	97.0	96.9	96.6	98.5	99.0	99.4	99.5

*Les "BT" dont le mg \geq 67 sont en fait des Phl (Deer et al. 1966). BT4a, BT5a, BT6a, BT7a: petites inclusions dans Cpx.

lame	A4-31	A5-1	A5-1	A5-1	A5-1	A4-19	A4-19	A4-19	A4-19	A4-19
roche	CXN	CXN	CXN	CXN	CXN	WL	WL	WL	WL	WL
analyse	BT4b	BT5b	BT6b	BT7b	BT8a	BT8b	BT9a	BT10a	BT11a	BT12a
SiO2	35.39	37.22	37.59	35.37	36.39	38.51	38.04	38.51	38.40	38.04
A1203	14.44	15.15	14.99	13.34	13.80	14.72	15.04	14.48	14.93	14.76
TiO2	2.61	2.16	1.72	2.73	2.40	1.43	1.47	1.37	1.50	1.28
Cr203	0.03	0.06	0.00	0.07	0.05	0.03	0.07	0.00	0.00	0.02
FeO	4.82	3.91	3.93	8.96	4.91	1.58	1.53	1.29	1.32	1.46
NiO	0.05	0.04	0.03	0.03	0.01	0.07	0.00	0.02	0.09	0.09
MnO	0.08	0.07	0.00	0.11	0.07	0.04	0.00	0.04	0.01	0.00
MgO	22.36	23.01	22.80	19.32	22.27	25.41	25.09	25.85	25.84	25.33
Ca0	0.00	0.06	0.00	0.05	0.08	0.00	0.00	0.00	0.00	0.03
BaO	0.52	0.03	0.07	0.10	0.11	0.30	0.25	0.27	0.35	0.29
Na2O	0.13	0.03	0.06	0.02	0.01	0.30	0.29	0.52	0.56	0.51
к20	10.66	10.77	10.63	10.22	10.36	10.41	10.54	9.96	10.02	9.84
F	4.54	2.67	2.94	2.38	2.69	3.44	3.46	3.72	3.95	3.58
Cl	0.16	0.12	0.03	0.12	0.12	0.18	0.16	0.11	0.14	0.11
total	95.79	95.30	94.79	92.82	93.27	96.42	95.94	96.14	97.11	95.34
formule	structu	cale cal	culée su	ir 22 ox	ygènes					
Si	5.374	5.489	5.571	5.496	5.522	5.589	5.551	5.600	5.550	5.576
Al	2.585	2.511	2.429	2.444	2.469	2.411	2.449	2.400	2.450	2.424
Ті	0.041	0.000	0.000	0.060	0.009	0.000	0.000	0.000	0.000	0.000
Al .	0.000	0.123	0.190	0.000	0.000	0.108	0.138	0.081	0.093	0.126
ті	0.257	0.239	0.192	0.259	0.265	0.156	0.162	0.149	0.163	0.141
Cr	0.004	0.007	0.000	0.009	0.006	0.004	0.008	0.000	0.000	0.002
Fe2+	0.612	0.483	0.487	1.165	0.624	0.192	0.186	0.156	0.159	0.178
Ni	0.006	0.005	0.004	0.003	0.002	0.008	0.000	0.003	0.010	0.010
Mn	0.010	0.008	0.000	0.015	0.008	0.004	0.000	0.005	0.002	0.000
Mg	5.063	5.058	5.038	4.476	5.038	5.498	5.459	5.602	5.567	5.534
total	5.952	5.923	5.911	5.927	5.943	5.970	5.953	5.996	5.994	5.991
Ca	0.000	0.009	0.000	0.009	0.013	0.000	0.000	0.001	0.000	0.005
Ba	0.031	0.002	0.004	0.006	0.006	0.017	0.014	0.016	0.020	0.016
Na	0.038	0.009	0.016	0.007	0.004	0.085	0.083	0.146	0.156	0.146
К	2.065	2.026	2.009	2.027	2.006	1.927	1.962	1.848	1.846	1.841
total	2.134	2.046	2.029	2.049	2.029	2.029	2.059	2.011	2.022	2.008
F	2.180	1.246	1.380	1.168	1.293	1.580	1.595	1.713	1.808	1.662
Cl	0.042	0.031	0.008	0.032	0.030	0.044	0.040	0.028	0.034	0.027
total	2.222	1.277	1.388	1.200	1.323	1.624	1.635	1.741	1.842	1.689
mg	89.2	91.3	91.2	79.3	89.0	96.6	96.7	97.3	97.2	96.9

lame	A4-19	A5-34	A5-34	A5-34	A4-30	A5-41	A5-41	A7-13	A7-13	A7-13
roche	WL	WB	WB	WB	CXN	CXN	CXN	MNT	MINT	MNT
analyse	BT13a	BT9b	BT10b	BT11b	BT12b	BT13b	BT14	BT15a	BT16a	BT16b
SiO2	37.99	39.94	37.74	36.37	34.33	38.59	38.64	35.81	35.04	34.82
A1203	14.82	9.64	13.87	13.87	14.10	13.91	13.75	13.22	13.51	13.46
TiO2	1.38	2.83	4.27	4.18	4.70	1.30	1.33	4.71	5.26	4.96
Cr203	0.00	0.44	0.65	0.49	0.00	0.03	0.00	0.08	0.00	0.06
FeO	1.32	9.63	8.58	8.16	15.86	3.05	2.85	15.22	16.36	15.95
NiO	0.02	0.12	0.19	0.19	0.00	0.00	0.00	0.06	0.00	na
MnO	0.10	0.00	0.00	0.11	0.14	0.05	0.00	0.12	0.03	0.02
MgO	25.58	19.20	19.14	18.51	13.41	24.30	24.26	14.55	13.63	13.82
Ca0	0.01	0.06	0.00	0.01	0.04	0.00	0.00	0.00	0.02	0.00
BaO	0.37	0.27	0.38	0.47	1.27	0.64	0.58	0.68	0.57	na
Na2O	0.50	0.18	0.20	0.12	0.04	0.08	0.08	0.04	0.13	0.02
к20	10.07	8.24	9.86	10.00	9.67	10.12	10.39	10.21	9.84	10.13
F	3.65	1.38	1.70	1.78	0.82	3.69	3.95	1.27	0.80	na
Cl	0.19	0.04	0.11	0.09	0.14	0.11	0.10	0.29	0.25	na
total	96.00	91.97	96.69	94.35	94.52	95.87	95.93	96.26	95.44	93.24
formule	structu	rale cal	culée su	ir 22 ox	ygènes					
Si	5.548	6.098	5.546	5.499	5.365	5.684	5.702	5.488	5.408	5.417
Al	2.452	1.735	2.402	2.473	2.598	2.316	2.298	2.388	2.457	2.468
Ti	0.000	0.167	0.052	0.028	0.037	0.000	0.000	0.124	0.135	0.115
Al	0.098	0.000	0.000	0.000	0.000	0.099	0.093	0.000	0.000	0.000
Ti	0.151	0.158	0.420	0.447	0.515	0.144	0.148	0.419	0.475	0.465
Cr	0.000	0.053	0.076	0.059	0.000	0.004	0.000	0.010	0.000	0.007
Fe2+	0.161	1.230	1.055	1.032	2.073	0.376	0.351	1.951	2.112	2.075
Ni	0.003	0.014	0.022	0.023	0.000	0.000	0.000	0.007	0.000	na
Mn	0.012	0.000	0.000	0.014	0.018	0.006	0.000	0.016	0.003	0.003
Mg	5.568	4.371	4.195	4.173	3.123	5.335	5.338	3.324	3.136	3.205
total	5.993	5.826	5.768	5.748	5.729	5.964	5.930	5.727	5.726	5.755
Ca	0.001	0.010	0.000	0.002	0.007	0.000	0.000	0.000	0.003	0.000
Ba	0.021	0.016	0.022	0.028	0.078	0.037	0.034	0.041	0.034	na
Na	0.143	0.053	0.056	0.036	0.013	0.022	0.024	0.011	0.039	0.006
к	1.876	1.605	1.850	1.930	1.928	1.902	1.956	1.997	1.938	2.011
total	2.041	1.684	1.928	1.996	2.026	1.961	2.014	2.049	2.014	2.017
F	1.684	0.664	0.792	0.852	0.404	1.718	1.844	0.616	0.389	na
Cl	0.046	0.011	0.027	0.023	0.038	0.027	0.026	0.076	0.064	na
total	1.730	0.675	0.819	0.875	0.442	1.745	1.870	0.692	0.453	
mg	97.2	78.0	79.9	80.2	60.1	93.4	93.8	63.0	59.8	60.7

BT16a, b: Bt d'une inclusion polycrist. dans une Ap incluse dans un MC Cpx. na: non analysé

lame	A2-3	A6-19	A6-19	A6-19	A4-17	A6-16	A6-16	A6-16	A6-16	B4-17
roche	WB	GLM	GLM	GLM	WB	Grt	Grt	Grt	Grt	MBS?
analyse	BT17	BT18	BT19a	BT19b	BT21a	BT21b	BT22	BT23	BT24	вт29
SiO2	36.99	35.20	35.26	35.44	34.51	35.06	35.59	33.95	34.38	32.33
A1203	13.73	14.10	13.58	13.52	14.43	17.13	17.27	15.99	16.34	12.84
TiO2	1.49	4.73	4.49	4.33	4.14	0.41	0.00	3.57	3.03	4.83
Cr203	0.19	0.00	0.00	0.03	0.00	0.08	0.10	0.03	0.07	0.07
FeO	10.52	15.20	15.31	15.54	11.31	12.34	13.05	14.77	14.73	16.22
NiO	0.11	0.03	0.05	0.07	0.07	0.02	0.01	0.00	0.04	0.00
MnO	0.00	0.11	0.17	0.00	0.04	0.04	0.05	0.01	0.04	0.17
MgO	18.81	14.20	14.10	14.37	16.59	16.83	17.14	14.41	14.27	12.11
CaO	0.04	0.05	0.00	0.03	0.01	0.01	0.01	0.00	0.00	0.00
BaO	0.03	0.36	0.37	0.27	1.89	0.09	0.14	0.24	0.09	1.80
Na20	0.09	0.05	0.01	0.04	0.09	0.10	0.09	0.07	0,08	0.00
к20	9.75	9.85	10.06	10.03	9.51	10.02	10.40	10.34	10.16	9.15
F	2.26	1.42	1.35	1.24	1.69	1.95	1.82	0.99	1.38	1.00
C1	0.45	0.10	0.19	0.10	0.34	0.19	0.10	0.12	0.10	0.55
total	94.46	95.40	94.94	95.01	94.62	94.27	95.77	94.49	94.71	91.07
formule	structu	rale cal	culée su	1r 22 ox	ygènes					
Si	5.651	5.416	5.468	5.476	5.350	5.390	5.395	5.254	5.306	5.347
Al	2.349	2.558	2.483	2.463	2.636	2.610	2.605	2.746	2.694	2.503
ті	0.000	0.026	0.049	0.061	0.014	0.000	0.000	0.000	0.000	0.150
Al	0.123	0.000	0.000	0.000	0.000	0.493	0.480	0.170	0.279	0.000
Ti	0.172	0.522	0.474	0.442	0.469	0.047	0.000	0.415	0,352	0.451
Cr	0.023	0.000	0.000	0.004	0.000	0.010	0.012	0.003	0.009	0.010
Fe2+	1.344	1.956	1.986	2.008	1.466	1.586	1.655	1.912	1.902	2.243
Ni	0.013	0.004	0.006	0.008	0.008	0.002	0.002	0.000	0.005	0.000
Mn	0.000	0.014	0.023	0.000	0.005	0.005	0.007	0.002	0.005	0.024
Mg	4.283	3.258	3.260	3.310	3.833	3.857	3.873	3.324	3.284	2.986
total	5.958	5.754	5.749	5.772	5.781	6.000	6.029	5.826	5.836	5.714
Ca	0.006	0.008	0.000	0.004	0.002	0.002	0.002	0.000	0.000	0.000
Ba	0.002	0.022	0.023	0.016	0.115	0.006	0.008	0.014	0.005	0.117
Na	0.025	0.014	0.004	0.011	0.026	0.030	0.026	0.022	0.024	0.000
К	1.901	1.935	1.989	1.976	1.881	1.965	2.011	2.041	2.001	1.931
total	1.934	1.979	2.016	2.007	2.024	2.003	2.047	2.077	2.030	2.048
F	1.093	0.691	0.662	0.607	0.827	0.946	0.875	0.483	0.673	0.526
Cl	0.118	0.026	0.051	0.026	0.091	0.050	0.026	0.033	0.027	0.153
total	1.211	0.717	0.713	0.633	0.918	0.996	0.901	0.516	0.700	0.679
mg	76.1	62.5	62.1	62.2	72.3	70.9	70.1	63.5	63.3	57.1

lame	B4-17	A6-24	B3-89	B3-89	в3-89	B3-89	A4-4	A4-4	B0-4-1	B0-4-1
roche	MBS?	WL	CXN	CXIN	CXN	CXN	CXN	CXN	MNT	MNT
analyse	BT30a	BT15b	BT32	BT33	BT34	BT35	BT36	вт37	BT38	BT39
SiO2	33.59	37.14	36.56	36.61	37.19	36.24	36.88	35.68	34.92	34.83
A1203	12.63	15.63	14.64	14.78	14.90	14.57	15.03	14.98	13.65	13.77
TiO2	3.80	1.23	2.12	2.24	2.31	2.65	2.82	2.83	4.88	5.11
Cr203	0.14	0.58	0.00	0.00	0.05	0.01	0.54	0.50	0.00	0.00
FeO	16.60	2.94	6.83	6.80	7.24	8.65	5.74	5.82	19.14	18.85
NiO	0.02	0.03	0.01	0.00	0.00	0.02	0.00	0.04	0.02	0.11
MnO	0.16	0.01	0.04	0.15	0.17	0.08	0.06	0.08	0.26	0.21
MgO	13.11	24.13	19.88	20.13	20.09	18.80	20.85	20.65	11.58	11.39
Ca0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
BaO	0.30	0.29	0.40	0.52	0.57	0.50	0.27	0.21	0.83	1.21
Na2O	0.00	0.68	0.00	0.00	0.00	0.00	0.15	0.09	0.00	0.00
к20	9.84	9.57	10.63	10.35	10.42	10.55	10.46	10.36	9.87	9.80
F	1.00	2.09	1.35	1.73	1.71	1.39	2.23	2.16	0.76	0.78
Cl	0.46	0.07	0.10	0.09	0.19	0.16	0.06	0.07	0.43	0.48
total	91.65	94.39	92.56	93.40	94.84	93.62	95.09	93.48	96.34	96.54
formule	structu	rale cal	culée su	ar 22 ox	ygènes					
Si	5.459	5.455	5.565	5.541	5.556	5.517	5.480	5.405	5.432	5.418
Al	2.419	2.545	2.435	2.459	2.444	2.483	2.520	2.595	2.502	2.525
Ti	0.122	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.066	0.057
Al	0.000	0.161	0.192	0.178	0.180	0.132	0.112	0.080	0.000	0.000
Ti	0.343	0.135	0.242	0.255	0.259	0.304	0.315	0.323	0.505	0.540
Cr	0.018	0.067	0.000	0.000	0.006	0.002	0.063	0.060	0.000	0.000
Fe2+	2.257	0.361	0.869	0.861	0.904	1.102	0.713	0.737	2.489	2.453
Ni	0.003	0.003	0.001	0.001	0.001	0.002	0.000	0.005	0.002	0.014
Mn	0.021	0.001	0.005	0.019	0.021	0.011	0.007	0.010	0.035	0.028
Mg	3.177	5.285	4.512	4.542	4.474	4.265	4.619	4.663	2.684	2.642
total	5.819	6.013	5.821	5.856	5.845	5.818	5.829	5.878	5.715	5.677
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.001
Ba	0.019	0.016	0.024	0.031	0.033	0.030	0.016	0.012	0.051	0.074
Na	0.000	0.192	0.000	0.000	0.000	0.000	0.044	0.025	0.001	0.000
К	2.041	1.794	2.065	1.999	1.986	2.049	1.983	2.003	1.959	1.946
total	2.060	2.002	2.089	2.030	2.019	2.079	2.043	2.042	2.011	2.021
F	0.512	0.972	0.650	0.830	0.808	0.672	1.046	1.037	0.376	0.382
Cl	0.128	0.016	0.027	0.024	0.047	0.041	0.016	0.017	0.114	0.127
total	0.640	0.988	0.677	0.854	0.855	0.713	1.062	1.054	0.490	0.509
mg	58.5	93.6	83.9	84.1	83.2	79.5	86.6	86.4	51.9	51.9

BT32-BT35, BT44: veine de Bt+Fel+Scp+Ttn recoupant le XNL. BT38, BT39: MNT felsique

lame	B0-4-1	в6-76	B6-76	в6-76	B3-89	B2-7	D6-6	в6-39	B1-19	B1-19
roche	MNT	MNT	MNT	MNT	CXN	GNL	NR?	WB	WL	WL
analyse	BT40	BT41	BT42	BT43	BT44	BT301	BT302	BT303	BT401	BT402
SiO2	34.74	34.39	35.29	34.43	38.21	46.53	42.60	40.81	40.20	40.67
A1203	13.73	13.56	13.47	13.79	15.13	36.91	12.75	14.48	13.41	13.72
TiO2	5.12	4.22	4.49	4.71	2.16	0.00	2.10	0.90	1.53	1.54
Cr203	0.00	0.09	0.01	0.00	0.00	0.01	0.00	0.13	0.00	0.03
FeO	19.27	15.80	15.36	15.65	7.01	0.45	0.86	6.73	2.47	2.56
NiO	0.00	0.00	0.05	0.01	0.03	na	na	na	na	na
MnO	0.20	0.14	0.10	0.13	0.05	0.16	0.00	0.05	0.04	0.00
MgO	11.34	13.48	14.05	13.56	19.72	0.51	27.23	23.25	25.73	26.08
Ca0	0.00	0.00	0.01	0.02	0.02	0.09	0.00	0.01	0.00	0.00
BaO	1.06	1.91	1.33	1.46	na	na	na	na	na	na
Na20	0.03	0.03	0.01	0.03	0.04	0.07	0.12	0.34	0.37	0.38
к20	9.75	9.58	9.97	9.74	10.55	11.33	10.16	9.86	9.77	9.75
F	0.79	1.26	1.37	1.20	na	na	na	na	na	na
Cl	0.41	0.27	0.28	0.35	na	na	na	na	na	na
total	96.44	94.73	95.79	95.08	92.92	96.06	95.82	96.56	93.52	94.73
formule	structur	rale cal	culée su	ir 22 ox	ygènes					
Si	5.408	5.423	5.468	5.388	5.660	6.131	5.902	5.767	5.763	5.752
Al	2.520	2.520	2.460	2.543	2.340	1.869	2.081	2.233	2.237	2.248
Ti	0.072	0.057	0.072	0.069	0.000	0.000	0.017	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.301	3.862	0.000	0.179	0.029	0.040
Ti	0.527	0.443	0.451	0.485	0.241	0.000	0.202	0.096	0.165	0.164
Cr	0.000	0.011	0.002	0.000	0.000	0.001	0.000	0.015	0.000	0.003
Fe2+	2.509	2.083	1.990	2.047	0.868	0.049	0.099	0.795	0.296	0.303
Ni	0.000	0.000	0.006	0.002	0.003	na	na	na	na	na
Mn	0.026	0.019	0.014	0.017	0.007	0.017	0.000	0.006	0.005	0.000
Mg	2.632	3.168	3.245	3.164	4.354	0.101	5.623	4.897	5.499	5.498
total	5.694	5.724	5.708	5.715	5.774	4.030	5.924	5.988	5.994	6.008
										0 000
Ca	0.000	0.000	0.002	0.004	0.003	0.012	0.000	0.002	0.000	0.000
Ba	0.064	0.118	0.081	0.089	na	na	na	na	na	na
Na	0.010	0.010	0.002	0.009	0.011	0.018	0.031	0.093	1 707	1 750
К	1.937	1.927	1.970	1.944	1.994	1.904	1.795	1.///	1.787	1.759
total	2.011	2.055	2.055	2.046	2.008	1.934	T.826	1.8/2	T.8AT	τ.003
F	0.388	0.629	0.672	0.594						
C1	0.109	0.073	0.074	0.093						
total	0.497	0.702	0.746	0.687						
	F1 0	<i>co</i> 0	<u> </u>	CO 7	0.2 4	677 3	00 3	86.0	g/ G	94 8
mg	51.2	60.3	62.0	60.7	83.4	01.3	20.3	00.0	24.2	24.0

BT40: MNT felsique; BT41-BT43: MNT mafique (injection principale) na: non analysé.

lame	A5-14	A22-2	A22-2	A22-2	A22-2	C21-1	C31-11	B1-2	C8-6
roche	WB?	PXN	PXN	PXN	PXN	CXN	GNL	CXN	GNL
analyse	BT404	BT405	BT406	BT407	BT408	BT410	BT411	BT412	BT413
SiO2	38.03	37.78	37.55	40.07	39.15	38.68	37.94	37.70	38.51
A1203	15.32	15.31	15.31	16.46	16.92	15.56	15.64	15.74	16.77
TiO2	4.83	4.46	4.47	2.86	2.11	1.47	2.61	2.31	0.34
Cr203	0.76	0.10	0.07	0.40	0.99	0.59	0.38	1.05	0.02
FeO	9.52	10.78	10.75	3.62	7.97	3.91	4.50	7.95	11.45
NiO	na	na	na	na	na	na	na	na	na
MnO	0.02	0.01	0.02	0.02	0.05	0.02	0.00	0.05	0.03
MgO	17.58	17.66	17.67	23.47	20.40	23.63	22.30	20.13	19.38
Ca0	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.00	0.02
BaO	na	na	na	na	na	na	na	na	na
Na2O	0.24	0.20	0.23	0.27	0.20	0.19	0.22	0.13	0.08
к20	9.75	9.37	9.46	10.01	9.84	10.24	9.95	9.79	9.96
total	96.05	95.68	95.53	97.21	97.63	94.29	93.54	94.85	96.56
formule	structu	rale cal	culée su	ir 22 ox	ygènes				
Si	5.507	5.505	5.486	5.555	5.516	5.562	5.511	5.493	5.569
Al	2.493	2.495	2.514	2.445	2.484	2.438	2.489	2.507	2.431
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.121	0.134	0.123	0.243	0.326	0.199	0.188	0.196	0.427
Ti	0.526	0.489	0.491	0.298	0.223	0.159	0.285	0.253	0.037
Cr	0.087	0.012	0.008	0.044	0.110	0.067	0.044	0.122	0.002
Fe2+	1.152	1.313	1.313	0.420	0.939	0.470	0.546	0.969	1.385
Mn	0.002	0.002	0.002	0.002	0.007	0.003	0.000	0.006	0.003
Mg	3.794	3.835	3.849	4.849	4.285	5.064	4.828	4.371	4.177
total	5.682	5.785	5.786	5.856	5.890	5.962	5.891	5.917	6.031
Ca	0.000	0.001	0.000	0.004	0.000	0.000	0.000	0.000	0.003
Ba	na	na	na	na	na	na	na	na	na
Na	0.067	0.057	0.065	0.071	0.055	0.054	0.061	0.036	0.023
К	1.800	1.741	1.764	1.771	1.768	1.879	1.844	1.820	1.837
total	1.867	1.799	1.829	1.846	1.823	1.933	1.905	1.856	1.863
mg	76.7	74.5	74.6	92.0	82.0	91.5	89.8	81.9	75.1

na: non analysé.

lame	A2-7	A2-7	A2-7	B3-12	B3-12	A5-18	A5-18	A5-18 CXN	A5-18 CXN	A5-34 WB
roche	CAN NMO			WD	ND DM4	Z MS	AM6a	AM6b	AM6c	AM9
analyse	AMU	AMI	AM2	AM3	AM4	AMO	Amoa	AMOD	AMOC	ANJ
SiO2	38.71	39.01	40.70	37.99	38.63	38.75	40.23	39.80	38.57	49.44
A1203	14.83	14.43	14.15	13.02	12.48	14.43	12.77	13.67	11.56	5.32
TiO2	1.08	0.89	1.15	2.10	2.19	1.59	1.16	1.51	2.76	0.52
Cr203	0.01	0.00	0.03	0.04	0.02	0.07	0.06	0.15	0.00	0.32
Fe203	2.48	5.16	3.61	4.33	0.00	2.54	3.88	3.22	7.17	4.79
FeO	6.10	3.67	5.61	10.51	13.69	6.68	5.50	6.57	8.23	2.11
NiO	0.07	0.05	0.00	0.00	0.03	0.07	0.01	0.01	na	0.10
MnO	0.08	0.13	0.16	0.28	0.20	0.09	0.10	0.00	0.20	0.04
MaO	14.14	14.98	14.56	10.89	11.28	13.72	14.38	13.70	11.18	18.85
CaO	12.47	12.49	12.40	11.67	14.68	12.51	12.29	12.39	10.52	12.14
BaO	0.01	0.02	0.11	0.00	0.01	0.03	0.04	0.07	na	0.05
Na20	1.95	1.92	1.91	2.17	2.31	1.92	1.66	1.88	2.20	1.02
к20	1.59	1.31	1.41	1.11	0.84	1.11	1.02	0.67	0.93	0.36
F	0.62	0.51	0.63	0.00	0.00	1.10	1.25	1.06	na	0.43
Cl	0.40	0.40	0.35	0.05	0.01	0.15	0.12	0.07	na	0.02
total	94.46	94.90	96.67	94.16	96.33	94.66	94.42	94.69	93.32	95.36
formule	structur	cale cal	culée su	1r 23 ox	ygènes					
Si	5.913	5.892	6.047	5.917	5.941	5.925	6.137	6.051	6.013	7.153
Al	2.087	2.108	1.953	2.083	2.059	2.075	1.863	1.949	1.987	0.847
Al	0.583	0.460	0.524	0.308	0.203	0.525	0.433	0.501	0.137	0.061
ті	0.125	0.102	0.128	0.246	0.253	0.183	0.133	0.172	0.324	0.057
Cr	0.001	0.000	0.004	0.005	0.002	0.009	0.007	0.018	0.000	0.036
Fe+3	0.285	0.587	0.403	0.507	0.000	0.292	0.445	0.369	0.841	0.521
Fe+2	0.779	0.463	0.697	1.369	1.761	0.854	0.701	0.836	1.073	0.255
Mn	0.010	0.016	0.020	0.037	0.026	0.012	0.013	0.000	0.026	0.005
Mg	3.218	3.372	3.225	2.528	2.587	3.126	3.269	3.103	2.598	4.065
total	5.001	5.000	5.001	5.000	4.832	5.001	5.001	4.999	4.999	5.000
Ca	2.041	2.021	1.974	1.947	2.418	2.050	2.009	2.018	1.757	1.881
Na	0.000	0.000	0.026	0.053	0.000	0.000	0.000	0.000	0.243	0.119
total	2.041	2.021	2.000	2.000	2.418	2.050	2.009	2.018	2.000	2.000
Na	0.577	0.561	0.523	0.602	0.688	0.569	0.492	0.553	0.422	0.168
K	0.310	0.253	0.267	0.221	0.164	0.216	0.198	0.129	0.185	0.067
total	0.887	0.814	0.790	0.823	0.852	0.785	0.690	0.682	0.607	0.235
F	0.298	0.243	0.297	0.000	0.000	0.533	0.603	0.509		0.199
Cl	0.104	0.103	0.088	0.014	0.003	0.039	0.031	0.019		0.006
total	0.402	0.346	0.385	0.014	0.003	0.572	0.634	0.528		0.205
mg	75.2	76.3	74.6	57.4	59.5	73.2	74.0	72.0	70.8	84.0
mg2+	80.5	87.9	82.2	64.8	59.5	78.8	78.5	82.3	70.8	94.1

Appendice E5 Amphibole

lame	A5-34	A5-34	A4-30	A7-13	A2-3	A2-3	A4-17	A6-4	B4-17	B2-7
roche	WB	WB	CXN	MNT	WB	WB	WB	CXN	MNT	GNL
analyse	AM10	AM11	AM12a	AM12b	AM14	AM17	AM21a	AM21b	AM22	AM28b
							-			
SiO2	50.99	50.62	41.39	37.50	43.15	45.26	49.53	41.18	38.60	46.61
A1203	4.31	5.05	11.21	12.74	11.42	8.89	5.04	11.85	10.36	4.42
TiO2	0.65	0.37	1.42	1.86	1.20	0.43	0.40	1.05	1.65	0.48
Cr203	0.34	0.16	0.00	0.00	0.08	0.10	0.36	0.07	0.00	0.00
Fe203	6.09	3.33	3.54	3.38	4.87	6.42	4.16	4.61	6.22	4.12
Fe0	0.87	2.69	10.75	13.21	4.30	3.79	3.25	7.55	10.77	6.02
NiO	0.06	0.05	0.01	0.03	0.15	0.09	0.06	0.01	0.02	0.00
MnO	0.12	0.09	0.14	0.12	0.13	0.16	0.00	0.08	0.48	0.05
MgO	19.48	18.94	11.84	9.71	15.34	15.87	18.38	13.52	10.14	15.85
Ca0	11.93	12.24	11.78	11.76	11.97	11.82	12.45	12.07	11.19	12.01
BaO	0.02	0.00	0.01	0.20	0.06	0.00	0.01	0.08	0.09	0.00
Na2O	0.87	0.78	1.48	1.54	1.73	1.25	0.58	2.52	1.31	0.54
к20	0.22	0.31	1.59	2.14	0.64	0.76	0.43	0.09	1.52	0.14
F	0.57	0.58	0.56	0.31	0.62	0.68	0.52	0.71	0.00	0.52
C1	0.00	0.02	0.27	0.31	0.02	0.41	0.00	0.05	0.61	0.08
total	96.44	95.18	95.97	94.58	95.47	95.84	95.10	95.35	92.85	90.84
formule	structu	rale cal	culée su	ir 23 ox	ygènes					
Si	7.262	7.309	6.324	5.939	6.387	6.691	7.210	6.225	6.174	7.214
Al	0.724	0.691	1.676	2.061	1.613	1.309	0.790	1.775	1.826	0.786
Al	0.000	0.169	0.343	0.318	0.380	0.240	0.075	0.336	0.128	0.020
Ті	0.069	0.040	0.163	0.221	0.134	0.047	0.044	0.119	0.198	0.056
Cr	0.039	0.018	0.000	0.000	0.009	0.012	0.041	0.008	0.000	0.000
Fe+3	0.652	0.362	0.407	0.403	0.542	0.714	0.455	0.525	0.748	0.480
Fe+2	0.104	0.324	1.374	1.750	0.533	0.469	0.396	0.954	1.441	0.780
Mn	0.014	0.011	0.018	0.016	0.017	0.021	0.000	0.010	0.066	0.006
Ma	4.136	4.077	2.696	2.292	3.385	3.498	3.988	3.047	2.418	3.657
total	5.014	5.001	5.001	5.000	5.000	5.001	4.999	4.999	4.999	4.999
Ca	1.821	1.893	1.928	1.996	1.898	1.873	1.942	1.955	1.919	1.992
Na	0.179	0.107	0.072	0.004	0.102	0.127	0.058	0.045	0.081	0.008
total	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Na	0.061	0.111	0.365	0.470	0.395	0.232	0.105	0.693	0.327	0.153
K	0.040	0.057	0.310	0.432	0.120	0.144	0.080	0.017	0.310	0.028
total	0.101	0.168	0.675	0.902	0.515	0.376	0.185	0.710	0.637	0.181
		-								
F	0.258	0.267	0.270	0.157	0.291	0.316	0.238	0.338	0.000	0.253
C1	0.000	0.006	0.069	0.084	0.006	0.102	0.000	0.014	0.165	0.020
total	0.258	0.273	0.339	0.241	0.297	0.418	0.238	0.352	0.165	0.273
00004				_						
ma	84.5	85.6	60.2	51.6	75.9	74.7	82.4	67.3	52.5	74.4
ς mα2+	97.5	92.6	66.2	56.7	86.4	88.2	91.0	76.1	62.7	80.4
		. =								

Appendice E5 Amphibole

lame	в2-7	A5-7	A5-7	B0-4-1	B0-4-1	B0-4-1	B6-76	в6-76	B6-76	A5-7
roche	GNL	GNL	GNL	MNT	MNT	MNT	MNT	MNT	MNT	GNL
analyse	AM29	AM3 0	AM31	AM32	AM33	AM34	AM35	AM36	AM37	AM38a
SiO2	47.36	44.40	44.95	38.09	39.71	38.55	44.68	44.67	42.14	48.08
A1203	5.50	6.82	8.52	12.27	11.45	12.15	8.38	8.75	10.19	6.36
TiO2	0.29	0.52	1.00	1.65	1.37	1.80	0.71	0.84	0.86	0.69
Cr203	0.08	0.06	0.07	0.00	0.02	0.00	0.10	0.05	0.02	0.02
Fe203	12.23	5.99	4.05	3.69	4.54	3.70	3.47	2.95	6.43	6.21
FeO	0.00	5.42	8.28	15.61	14.80	15.83	9.77	10.32	9.64	5.05
NiO	0.02	0.01	0.04	0.03	0.10	0.02	0.00	0.05	0.04	0.01
MnO	0.09	0.13	0.16	0.36	0.45	0.39	0.25	0.17	0.31	0.11
MgO	16.75	15.09	13.73	7.94	8.82	8.07	13.49	13.24	11.80	16.00
CaO	10.02	11.74	11.74	11.38	11.73	11.56	12.29	12.30	11.76	11.75
BaO	0.05	0.00	0.02	0.02	0.00	0.00	0.01	0.09	0.03	0.07
Na20	0.38	1.16	1.29	1.38	1.42	1.43	1.05	1.04	1.23	0.97
к20	0.10	0.33	0.51	2.22	1.77	2.06	1.07	1.07	1.30	0.30
F	0.49	0.71	0.56	0.32	0.35	0.20	0.45	0.49	0.49	0.72
Cl	0.07	0.04	0.03	0.75	0.60	0.62	0.15	0.22	0.42	0.00
total	93.36	92.41	94.89	95.66	97.03	96.36	95.86	96.11	96.59	96.26
formule	structu	cale cal	culée s	ur 23 ox	ygènes					
Si	7.028	6.830	6.765	6.056	6.178	6.066	6.733	6.723	6.402	7.027
Al	0.962	1.170	1.235	1.944	1.822	1.934	1.267	1.277	1.598	0.973
Al	0.000	0.066	0.277	0.356	0.278	0.319	0.222	0.275	0.226	0.123
Ti	0.032	0.060	0.113	0.197	0.160	0.213	0.081	0.095	0.098	0.076
Cr	0.009	0.007	0.009	0.000	0.002	0.000	0.011	0.006	0.003	0.002
Fe+3	1.366	0.694	0.459	0.442	0.532	0.438	0.393	0.334	0.735	0.683
Fe+2	0.000	0.697	1.042	2.076	1.925	2.084	1.232	1.299	1.225	0.617
Mn	0.012	0.017	0.021	0.048	0.059	0.052	0.032	0.022	0.040	0.013
Ma	3.705	3.460	3.080	1.881	2.045	1.894	3.030	2.970	2.671	3.486
total	5.124	5.001	5.001	5.000	5.001	5.000	5.001	5.001	4.998	5.000
Ca	1.593	1.935	1.893	1.939	1.956	1.950	1.984	1.983	1.915	1.840
Na	0.110	0.065	0.107	0.061	0.044	0.050	0.016	0.017	0.085	0.160
total	1.703	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Na	0.000	0.282	0.270	0.364	0.383	0.388	0.290	0.286	0.277	0.115
к	0.019	0.065	0.099	0.450	0.352	0.414	0.206	0.204	0.251	0.056
total	0.019	0.347	0.369	0.814	0.735	0.802	0.496	0.490	0.528	0.171
			'							
F	0.228	0.343	0.265	0.160	0.173	0.099	0.216	0.235	0.235	0.331
C1	0.017	0.011	0.008	0.202	0.159	0.166	0.038	0.057	0.107	0.000
total	0.245	0.354	0.273	0.362	0.332	0.265	0.254	0.292	0.342	0.331
mg	73.1	71.3	67.2	42.8	45.4	42.9	65.1	64.5	57.7	72.8
mg2+	100	83.2	74.7	47.5	51.5	47.6	71.1	69.6	68.6	85.0
lame	A5-7	A5-7	A5-7	B6-39	B6-39	D3-2	A22-2	A22-2	A22-2	B3-6
-------------	---------	----------	----------	----------	--------	--------	-------	-------	-------	--------------
roche	GNL	GNL	GNL	WB	WB	CXN	CXN	CXN	CXN	CXN
analyse	AM39a	AM38b	AM39b	AM301	AM302	AM303	AM304	AM305	AM306	AM307
_										
SiO2	44.45	41.17	50.59	42.44	53.11	41.96	50.42	53.92	49.95	40.67
A1203	9.17	12.13	3.85	13.45	4.12	12.21	5.22	3.72	6.29	14.35
TiO2	0,69	0.94	0.41	0.49	0.08	0.86	0.25	0.09	0.37	1.42
Cr203	0.11	0.06	0.02	0.26	0.20	0.00	0.09	0.18	0.29	0.09
Fe203	5.45	5.57	5.25	5.67	4.35	5.94	0.00	4.78	0.00	3.55
FeO	7.23	8.33	5.20	4.46	1.76	9.78	6.03	1.67	6.36	8.18
NiO	0 00	0 02	0.02	na	na	na	na	na	na	na
MnO	0 10	0.24	0.14	0.14	0.17	0.21	0.10	0.13	0.14	0.08
Ma	13.85	11 94	16 96	14 95	20.37	11.68	17.47	20.47	16.94	12.93
MgO CoO	11 76	11 37	11 90	12 11	12.79	11.91	16.07	12.75	16.82	12.53
CaU ReO	11.70	0.00	0.04	na	na	na	na	na	na	na
BaU N=20	1 40	1 95	0.04	1 87	0.77	1 22	0.86	0.63	1.05	1.94
Nazo	1.42	1.95	0.60	1 41	0.77	1 78	0.00	0.15	0 15	0.78
K20	0.45	0.72	0.14	1.41	0.20	1.70	22.0	na	n=	na
F	0.71	0.56	0.51	па	IId	iia	114	11a		na na
C1	0.02	0.06	0.01	na	na	na			11a	11a 06 50
total	95.41	95.04	95.58	97.25	97.92	97.55	96.74	98.49	98.30	90.02
formule	structu	rale cal	culée su	1r 23 ox	ygénes	c 0.50	a 050	7 446	7 100	C 037
Si	6.662	6.268	7.376	6.181	7.389	6.253	1.252	7.446	7.103	6.037
Al	1.338	1.732	0.624	1.819	0.611	1.747	0.748	0.554	0.897	1.963
									0 155	0 540
Al	0.282	0.444	0.038	0.489	0.065	0.398	0.137	0.052	0.15/	0.548
Ti	0.077	0.108	0.046	0.053	0.009	0.096	0.027	0.010	0.040	0.159
Cr	0.013	0.007	0.002	0.030	0.022	0.000	0.010	0.020	0.032	0.010
Fe+3	0.614	0.639	0.577	0.621	0.455	0.666	0.000	0.497	0.000	0.396
Fe+2	0.907	1.061	0.635	0.543	0.205	1.218	0.725	0.193	0.756	1.015
Mn	0.012	0.031	0.017	0.017	0.020	0.027	0.012	0.015	0.017	0.010
Mg	3.094	2.711	3.686	3.246	4.223	2.593	3.746	4.213	3.590	2.861
total	4.999	5.001	5.001	4.999	4.999	4.998	4.657	5.000	4.592	4.999
Ca	1.888	1.854	1.860	1.890	1.906	1.901	2.477	1.886	2.563	1.993
Na	0.112	0.146	0.140	0.110	0.094	0.099	0.000	0.114	0.000	0.007
total	2.000	2.000	2.000	2.000	2.000	2.000	2.477	2.000	2.563	2.000
Na	0.301	0.430	0.030	0.419	0.113	0.252	0.238	0.056	0.289	0.551
К	0.086	0.140	0.025	0.261	0.035	0.338	0.042	0.026	0.028	0.148
total	0.387	0.570	0.055	0.680	0.148	0.590	0.280	0.082	0.317	0.699
F	0.337	0.270	0.234							
C1	0.006	0.015	0.003							
total	0.343	0.285	0.237							
mg	67.0	61.5	75.3	73.6	86.5	57.9	83.8	85.9	82.6	67.0
mg2+	77.3	71.9	85.3	85.7	95.4	68.0	83.8	95.6	82.6	73.8

Appendice E5 Amphibole

lame	C21-1	C21-1	C21-1	B3-25	C31-13	BD-1	C45-19	A5-7	C31-11	C31-11
roche	CXN	CXN	CXN	CXN	CXN	MNT	GNL	GNL	GNL	GNL
analyse	AM308	AM309	AM310	AM311	AM312	AM313	AM314	AM315	AM316	AM317
SiO2	40.88	41.15	41.42	43.09	45.53	44.66	51.57	53.44	43.60	46.30
A1203	15.79	14.88	14.88	12.71	9.14	9.61	4.92	7.81	11.36	9.48
TiO2	1.05	1.16	1.19	0.74	0.87	1.04	0.57	0.88	1.03	0.73
Cr203	0.75	0.80	0.83	0.01	0.55	0.01	0.05	0.02	0.06	0.05
Fe203	1.38	1.61	2.03	5.98	0.00	3.61	5.78	0.00	6.13	5.79
FeO	3.27	3.22	2.37	1.43	5.56	9.98	3.25	10.97	7.86	6.06
MnO	0.04	0.07	0.00	0.11	0.14	0.22	0.06	0.16	0.10	0.07
MgO	16.50	16.78	17.17	16.98	16.41	13.13	18.16	10.35	13.12	15.14
Ca0	12.92	12.89	12.73	12.61	15.81	12.33	12.04	12.78	12.10	12.38
Na2O	1.03	1.21	1.26	1.58	1.31	1.08	0.69	1.23	1.32	1.12
к20	3.16	2.95	2.98	0.93	0.12	1.03	0.22	0.04	0.81	0.52
total	96.77	96.72	96.86	96.17	95.44	96.70	97.31	97.68	97.49	97.64
formule	structui	cale cal	culée su	ir 23 ox	ygènes					
Si	5.954	6.000	6.009	6.242	6.683	6.628	7.285	7.602	6.395	6.679
Al	2.046	2.000	1.991	1.758	1.317	1.372	0.715	0.398	1.605	1.321
Al	0.664	0.557	0.553	0.412	0.265	0.309	0.104	0.911	0.359	0.291
Ti	0.115	0.127	0.129	0.081	0.095	0.116	0.060	0.095	0.114	0.079
Cr	0.086	0.092	0.095	0.001	0.064	0.002	0.005	0.002	0.007	0.006
Fe+3	0.152	0.176	0.222	0.652	0.000	0.403	0.614	0.000	0.676	0.628
Fe+2	0.398	0.393	0.288	0.173	0.683	1.238	0.385	1.305	0.964	0.731
Mn	0.004	0.008	0.000	0.014	0.017	0.028	0.007	0.020	0.012	0.008
Mg	3.581	3.647	3.713	3.667	3.589	2.903	3.824	2.195	2.869	3.256
total	5.000	5.000	5.000	5.000	4.713	4.999	4.999	4.528	5.001	4.999
Ca	2.016	2.014	1.978	1.957	2.486	1.960	1.823	1.948	1.902	1.914
Na	0.000	0.000	0.022	0.043	0.000	0.040	0.177	0.052	0.098	0.086
total	2.016	2.014	2.000	2.000	2.486	2.000	2.000	2.000	2.000	2.000
Na	0.290	0.342	0.332	0.400	0.373	0.272	0.011	0.287	0.278	0.228
K	0.588	0.548	0.551	0.172	0.023	0.195	0.040	0.007	0.152	0.097
total	0.878	0.890	0.883	0.572	0.396	0.467	0.051	0.294	0.430	0.325
mg	86.7	86.5	87.9	81.6	84.0	63.9	79.3	62.7	63.6	70.6
mg2+	90.0	90.3	92.8	95.5	84.0	70.1	90.9	62.7	74.8	81.7

mg = Mg/(Mg + Fe total); mg2+ = Mg/(Mg + Fe2+)

AM308-AM310: grande pargasite vert jaune pâle, poecilitique, incluant Cpx.

lame	C8-6	A5-7	B2-7	A5-7	C31-11	B1-2	A5-7
roche	GNL	GNL	GNL	GNL	GNL	CXN	GNL
analyse	AM318	AM319	AM320	AM321	AM323	AM401	AM402
SiO2	48.40	47.98	53.63	47.98	44.49	51.27	46.30
A1203	7.81	6.84	1.79	6.84	10.75	5.70	9.36
TiO2	0.48	0.75	0.12	0.75	0.94	0.31	1.04
Cr203	0.02	0.00	0.01	0.01	0.03	0.29	0.02
Fe203	6.54	6.12	5.52	6.37	5.66	5.03	2.21
FeO	2.27	6.09	4.28	5.86	7.54	0.00	11.57
MnO	0.07	0.08	0.03	0.08	0.08	0.12	0.07
MgO	17.80	15.76	19.07	15.76	13.84	20.75	12.98
CaO	12.33	12.12	12.77	12.12	12.51	12.74	12.48
Na20	1.08	1.20	0.20	1.20	1.22	0.94	1.55
к20	0.34	0.12	0.05	0.00	0.52	0.18	0.05
total	97.14	97.06	97.47	96.97	97.58	97.33	97.63
formule	structur	ale cal	culée su	ır 23 ox	ygènes		
Si	6.884	6.942	7.578	6.941	6.487	7.155	6.773
Al	1.116	1.058	0.298	1.059	1.513	0.845	1.227
Al	0.193	0.108	0.000	0.107	0.334	0.092	0.388
Ті	0.051	0.082	0.012	0.082	0.103	0.032	0.115
Cr	0.003	0.001	0.001	0.001	0.003	0.032	0.002
Fe+3	0.700	0.666	0.587	0.694	0.621	0.529	0.243
Fe+2	0.270	0.737	0.506	0.709	0.919	0.000	1.416
Mn	0.009	0.009	0.003	0.010	0.010	0.014	0.008
Mg	3.774	3.398	4.015	3.398	3.008	4.316	2.830
total	5.000	5.001	5.124	5.001	4.998	5.015	5.002
Ca	1.880	1.879	1.933	1.879	1.954	1.905	1.957
Na	0.120	0.121	0.056	0.121	0.046	0.095	0.043
total	2.000	2.000	1.989	2.000	2.000	2.000	2.000
Na	0.179	0.215	0.000	0.216	0.299	0.159	0.396
К	0.061	0.023	0.010	0.000	0.097	0.032	0.009
total	0.240	0.238	0.010	0.216	0.396	0.191	0.405
mg	79.6	70.8	78.6	70.8	66.1	89.1	63.0
mg2+	93.3	82.2	88.8	82.7	76.6	100.0	66.7

lame	A7-1	в3-12	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1	A5-1
roche	CXN	WB	CXN	CXN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	FE1	FE2a	FE2c	FE3b	FE4	FE5	FE6	FE7	FE8	FE9
SiO2	59.14	58.38	64.05	63.04	63.49	63.48	63.13	63.72	62.62	61.47
A1203	23.97	24.48	18.38	18.02	17.81	17.96	18.04	18.12	17.77	17.70
Na2O	7.76	7.73	0.94	0.95	0.86	0.93	0.90	1.41	1.42	1.49
CaO	6.79	6.89	0.23	0.19	0.07	0.08	0.09	0.06	0.05	0.01
к20	0.27	0.10	15.91	15.85	16.00	15.97	15.93	15.25	15.15	14.97
BaO	0.11	0.00	0.11	0.00	0.30	0.32	0.75	0.46	0.22	0.27
Sr0	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01
FeO	0.04	0.16	0.04	0.00	0.05	0.04	0.05	0.02	0.00	0.05
total	98.10	97.74	99.66	98.06	98.58	98.78	98.89	99.04	97.23	95.97
formule	structu	rale cal	culée su	ır 32 ox	ygènes		*			
Si	10.771	10.668	11.918	11.925	11.968	11.945	11.910	11.936	11.939	11.893
Al	5.145	5.272	4.031	4.017	3.958	3.985	4.011	4.000	3.993	4.037
total	15.916	15.940	15.949	15.942	15.926	15.930	15.921	15.936	15.932	15.930
Na	2.739	2.739	0.339	0.348	0.315	0.339	0.328	0.514	0.526	0.559
Ca	1.325	1.349	0.047	0.038	0.014	0.016	0.018	0.012	0.010	0.001
К	0.063	0.023	3.776	3.825	3.849	3.835	3.833	3.646	3.686	3.696
Ва	0.008	0.000	0.008	0.000	0.022	0.024	0.056	0.034	0.016	0.020
Sr	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.002
total	4.137	4.111	4.170	4.212	4.200	4.214	4.235	4.206	4.238	4.278
Fe	0.006	0.025	0.007	0.000	0.009	0.007	0.009	0.003	0.000	0.009
% molécu	laire									
Ab	66.37	66.63	8.14	8.26	7.54	8.08	7.84	12.32	12.46	13.14
An	32.10	32.81	1.13	0.90	0.33	0.38	0.44	0.29	0.24	0.02
Or	1.52	0.56	90.72	90.84	92.13	91.53	91.72	87.39	87.30	86.84

lame	A5-1	A5-1	A5-1	A5-34	A5-34	A5-34	A5-34	A7-13	A7-13	A7-13
roche	CXN	CXN	CXN	WB	WB	WB	WB	MNT	MNT	MNT
analyse	FE10	FE11	FE12	FE13	FE14	FE15	FE16	FE17	FE18	FE19
SiO2	63.12	62.90	63.01	55.37	55.30	52.44	60.53	63.33	59.93	63.13
A1203	17.95	17.90	18.05	26.93	27.12	28.84	23.77	18.36	24.32	18.18
Na2O	1.25	1.50	0.70	6.29	6.00	5.04	8.64	1.56	8.12	1.73
Ca0	0.08	0.18	0.00	9.40	9.85	11.80	5.70	0.05	6.00	0.04
к20	15.49	14.97	16.35	0.05	0.07	0.05	0.08	14.84	0.13	14.37
BaO	0.27	0.00	0.00	0.32	0.00	0.35	0.11	1.19	0.05	0.83
Sr0	0.00	0.00	0.00	0.08	0.08	0.04	0.00	0.14	0.61	0.00
FeO	0.01	0.04	0.01	0.08	0.07	0.07	0.09	0.09	0.08	0.12
total	98.17	97.49	98.12	98.52	98.49	98.63	98.92	99.56	99.24	98.40
formule	structu	rale cal	culée su	ır 32 ox	ygènes					
Si	11.932	11.933	11.927	10.136	10.108	9.664	10.898	11.867	10.793	11.903
Al	4.001	4.003	4.028	5.812	5.843	6.264	5.044	4.055	5.162	4.041
total	15.933	15.936	15.955	15.948	15.951	15.928	15.942	15.922	15.955	15.944
Na	0.457	0.551	0.257	2.232	2.127	1.801	3.017	0.568	2.834	0.634
Ca	0.016	0.036	0.000	1.843	1.929	2.330	1.100	0.010	1.158	0.008
K	3.736	3.624	3.950	0.013	0.016	0.011	0.019	3.547	0.030	3.456
Ba	0.020	0.000	0.000	0.023	0.000	0.025	0.008	0.087	0.004	0.061
Sr	0.000	0.000	0.000	0.009	0.008	0.004	0.000	0.015	0.064	0.000
total	4.229	4.211	4.207	4.120	4.080	4.171	4.144	4.227	4.090	4.159
Fe	0.002	0.006	0.001	0.012	0.011	0.010	0.014	0.014	0.012	0.020
% molécu	laire									
Ab	10.86	13.08	6.11	54.60	52.23	43.48	72.95	13.77	70.47	15.47
An	0.38	0.85	0.00	45.08	47.37	56.25	26.59	0.25	28.79	0.19
Or	88.76	86.07	93.89	0.32	0.39	0.26	0.46	85.98	0.74	84.34

lame	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-13	A7-9	A7-9
roche	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT
analyse	FE20	FE21	FE22	FE23	FE24	FE25	FE27	FE28	FE29	FE30
SiO2	58.27	60.95	59.08	60.06	63.33	62.95	62.42	61.31	59.74	61.41
A1203	24.71	19.48	24.97	24.08	18.59	18.33	22.17	22.16	23.92	23.67
Na2O	7.76	3.41	7.41	8.28	1.30	1.53	7.04	7.08	8.28	8.71
CaO	6.61	1.27	6.94	5.74	0.00	0.02	3.43	3.61	5.34	5.02
к20	0.10	10.63	0.36	0.15	14.99	14.49	3.83	3.52	0.35	0.17
BaO	0.05	1.56	0.03	0.05	0.94	1.61	0.86	0.46	0.27	0.00
Sr0	0.45	0.27	0.30	0.56	0.14	0.11	0.58	0.52	0.55	0.50
FeO	0.07	0.25	0.21	0.12	0.03	0.05	0.13	0.16	0.17	0.07
total	98.02	97.82	99.30	99.04	99.32	99.09	100.46	98.82	98.62	99.55
formule	structu	rale cal	culée su	ır 32 ox	ygènes					
Si	10.640	11.558	10.650	10.832	11.864	11.864	11.237	11.185	10.843	10.981
Al	5.319	4.353	5.306	5.120	4.104	4.072	4.704	4.766	5.117	4.989
total	15.959	15.911	15.956	15.952	15.968	15.936	15.941	15.951	15.960	15.970
Na	2.747	1.253	2.590	2.896	0.474	0.559	2.456	2.506	2.915	3.020
Ca	1.294	0.258	1.340	1.110	0.000	0.003	0.662	0.705	1.038	0.962
К	0.023	2.571	0.083	0.034	3.583	3.484	0.880	0.818	0.080	0.040
Ba	0.004	0.116	0.002	0.004	0.069	0.119	0.060	0.033	0.019	0.000
Sr	0.048	0.030	0.032	0.058	0.015	0.012	0.060	0.055	0.058	0.052
total	4.116	4.228	4.047	4.102	4.141	4.177	4.118	4.117	4.110	4.074
Fe	0.010	0.040	0.032	0.018	0.005	0.008	0.020	0.025	0.025	0.010
% molécu	laire									
Ab	67.59	30.70	64.54	71.68	11.69	13.81	61.43	62.20	72.27	75.09
An	31.84	6.32	33.39	27.47	0.00	0.07	16.56	17.49	25.74	23.92
Or	0.57	62.98	2.07	0.84	88.31	86.11	22.01	20.30	1.99	0.99

lame	A7-9	A7-9	A7-9	A7-9	A7-9	A2-3	A2-3	A6-19	A6-19	A4-17
roche	MNT	MNT	MNT	MNT	MNT	WB	WB	GLM	GLM	ŴВ
analyse	FE31	FE32	FE33	FE34	FE35	FE36	FE37	FE38	FE39	FE40
SiO2	61.49	62.73	63.28	62.86	61.99	58.36	59.59	61.51	61.94	59.82
A1203	23.70	18.61	18.57	18.63	23.03	24.79	24.29	23.19	22.60	23.55
Na20	8.67	1.35	1.33	1.37	9.14	7.83	8.15	8.88	9.15	8.13
Ca0	5.25	0.01	0.00	0.00	4.32	6.86	6.30	4.96	4.51	5.49
K20	0.16	14.79	14.79	14.88	0.19	0.03	0.05	0.17	0.13	0.43
BaO	0.00	1.08	0.84	1.22	0.00	0.05	0.00	0.05	0.11	0.03
SrO	0.50	0.28	0.23	0.21	0.43	0.00	0.00	0.01	0.00	0.55
FeO	0.04	0.10	0.01	0.04	0.04	0.18	0.03	0.03	0.12	0.11
total	99.81	98.95	99.05	99.21	99.14	98.10	98.41	98.80	98.56	98.11
formule	structu	cale cal	culée su	ir 32 ox	ygènes					
Si	10.972	11.822	11.870	11.824	11.107	10.630	0.784	11.052	11.150	10.893
Al	4.984	4.135	4.106	4.131	4.864	5.323	5.181	4.911	4.796	5.054
total	15.956	15.957	15.976	15.955	15.971	15.953	15.965	15.963	15.946	15.947
Na	3.000	0.494	0.485	0.502	3.174	2.765	2.860	3.093	3.194	2.872
Ca	1.005	0.002	0.000	0.001	0.830	1.340	1.221	0.955	0.870	1.070
К	0.036	3.557	3.540	3.572	0.043	0.007	0.012	0.039	0.029	0.100
Ba	0.000	0.080	0.062	0.090	0.000	0.004	0.000	0.004	0.008	0.002
Sr	0.052	0.031	0.025	0.023	0.045	0.000	0.000	0.001	0.000	0.058
total	4.093	4.164	4.112	4.188	4.092	4.116	4.093	4.092	4.101	4.102
Fe	0.005	0.016	0.002	0.006	0.006	0.027	0.005	0.005	0.017	0.017
% molécu	laire									
Ab	74.24	12.19	12.05	12.32	78.43	67.24	69.88	75.68	78.04	71.05
An	24.87	0.05	0.00	0.02	20.51	32.59	29.83	23.37	21.25	26.47
Or	0.89	87.76	87.95	87.66	1.06	0.17	0.29	0.95	0.71	2.48

lame	A4-17	B4-17	B4-17	B4-17	B4-17	A5-7	B3-89	B3-89	B3-89	B3-89
roche	CXN	MNT	MNT	MNT	MNT	GNL	CXN	CXN	CXN	CXN
analyse	FE41	FE42	FE43	FE44	FE45	FE64	FE67	FE65	FE66	FE70
SiO2	60.10	57.50	57.43	57.48	61.58	54.88	59.76	61.44	61.19	60.22
A1203	23.57	23.83	23.95	24.36	18.48	27.43	18.06	18.33	18.21	17.96
Na2O	8.51	7.95	8.02	7.75	1.63	5.81	0.50	0.57	0.52	1.00
Ca0	5.39	6.40	6.31	6.78	0.03	9.90	0.00	0.00	0.00	0.04
K20	0.16	0.12	0.11	0.13	13.90	0.09	15.57	15.32	15.37	14.61
BaO	0.00	0.05	0.05	0.00	1.01	0.11	2.76	2.60	2.47	2.55
Sr0	0.38	0.44	0.34	0.46	0.61	0.01	0.17	0.07	0.00	0.08
FeO	0.08	0.08	0.06	0.07	0.09	0.11	0.07	0.06	0.09	0.02
total	98.19	96.37	96.27	97.03	97.33	98.34	96.89	98.39	97.85	96.48
formule	structu	cale cal	culée su	ir 32 ox	ygènes					
Si	10.909	10.691	10.679	10.620	11.789	10.053	11.725	11.794	11.801	11.780
Al	5.043	5.222	5.249	5.304	4.171	5.922	4.175	4.146	4.139	4.142
total	15.952	15.913	15.928	15.924	15.960	15.975	15.900	15.940	15.940	15.922
Na	2.997	2.866	2.893	2.777	0.605	2.064	0.190	0.211	0.196	0.379
Ca	1.048	1.274	1.258	1.342	0.007	1.943	0.000	0.000	0.000	0.008
к	0.038	0.028	0.027	0.030	3.395	0.022	3.898	3.751	3.781	3.645
Ba	0.000	0.004	0.004	0.000	0.075	0.008	0.212	0.196	0.187	0.195
Sr	0.040	0.048	0.037	0.049	0.068	0.001	0.019	0.008	0.000	0.009
total	4.123	4.220	4.219	4.198	4.150	4.038	4.319	4.166	4.164	4.236
Fe	0.012	0.012	0.010	0.011	0.014	0.017	0.011	0.009	0.015	0.004
% molécu	ılaire									
Ab	73.40	68.76	69.24	66.93	15.10	51.23	4.65	5.32	4.93	9.40
An	25.67	30.57	30.11	32.35	0.18	48.23	0.00	0.00	0.00	0.20
Or	0.93	0.67	0.65	0.72	84.72	0.54	95.35	94.68	95.07	90.40

lame	B0-4-1	B0-4-1	B0-4-1	в6-76	в6-76	B6-76	B6-76	B6-76	в6-76	B6-76
roche	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT	MNT
analyse	FE71	FE72	FE73a	FE73b	FE74	FE75	FE76	FE77a	FE77b	FE78
SiO2	63.68	61.07	62.68	59.64	59.62	60.29	59.20	59.94	59.81	59.27
A1203	18.38	24.01	18.48	24.15	24.27	24.09	24.80	24.66	24.59	24.97
Na2O	1.09	8.63	1.14	8.04	7.83	8.25	8.06	8.05	8.06	7.87
Ca0	0.02	5.64	0.01	3.80	5.91	5.91	6.50	6.60	6.35	6.82
к20	15.52	0.13	15.17	1.42	0.87	0.28	0.14	0.17	0.16	0.12
BaO	0.55	0.00	1.50	0.00	0.41	0.00	0.08	0.00	0.03	0.19
Sr0	0.18	0.33	0.25	0.25	0.56	0.44	0.50	0.51	0.48	0.54
FeO	0.04	0.00	0.04	0.50	0.12	0.05	0.09	0.13	0.14	0.11
total	99.46	99.81	99.27	97.80	99.59	99.31	99.37	100.06	99.62	99.89
formule	structu	rale cal	culée su	ır 32 ox	ygènes					
Si	11.905	10.901	11.827	10.887	10.765	10.839	10.671	10.724	10.739	10.644
Al	4.049	5.051	4.110	5.196	5.167	5.106	5.270	5.199	5.205	5.286
total	15.954	15.952	15.937	16.083	15.932	15.945	15.941	15.923	15.944	15.930
Na	0.393	2.985	0.415	2.845	2.742	2.877	2.817	2.794	2.806	2.742
Ca	0.005	1.079	0.002	0.743	1.143	1.139	1.256	1.265	1.221	1.312
К	3.701	0.030	3.652	0.330	0.200	0.065	0.033	0.039	0.036	0.028
Ba	0.040	0.000	0.111	0.000	0.029	0.000	0.006	0.000	0.002	0.013
Sr	0.019	0.034	0.027	0.026	0.059	0.046	0.052	0.053	0.050	0.057
total	4.158	4.128	4.207	3.944	4.173	4.127	4.164	4.151	4.115	4.152
Fe	0.006	0.000	0.006	0.076	0.018	0.007	0.014	0.019	0.020	0.016
% molécu	laire									
Ab	9.59	72.91	10.19	72.61	67.13	70.50	68.61	68.18	69.07	67.18
An	0.12	26.36	0.05	18.97	27.98	27.91	30.59	30.87	30.05	32.14
Or	90.29	0.74	89.75	8.43	4.89	1.59	0.80	0.95	0.88	0.68

lame	B6-76	A5-7	A5-7	A5-7	A5-7	A5-7	C45-19	C45-19	C45-19	C45-7
roche	MNT	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	FE79	FE80	FE81	FE82	FE83	FE84	FE301	FE302	FE303	FE304
SiO2	59.62	61.62	61.28	51.67	62.96	62.32	55.57	56.33	56.87	64.43
A1203	24.49	22.04	21.83	28.96	22.18	22.16	28.78	28.47	27.84	19.79
Na2O	8.08	9.37	9.32	4.59	9.63	9.44	5.63	5.78	6.17	2.57
Ca0	6.41	3.95	4.03	12.16	3.85	4.09	10.17	9.95	9.13	0.70
К2О	0.15	0.17	0.21	0.06	0.13	0.17	0.01	0.09	0.10	12.85
BaO	0.22	0.46	0.08	0.25	0.22	0.35	0.00	0.00	0.00	0.50
Sr0	0.57	0.03	0.00	0.00	0.00	0.00	na	na	na	na
FeO	0.07	0.10	0.13	0.55	0.10	0.04	0.06	0.05	0.19	0.03
total	99.61	97.74	96.88	98.24	99.07	98.57	100.22	100.67	100.30	100.87
formule	structur	ale cal	culée su	ar 32 ox	ygènes					
Si	10.730	11.209	11.220	9.578	11.265	11.226	9.966	10.051	10.169	11.747
Al	5.195	4.725	4.710	6.328	4.679	4.706	6.084	5.987	5.868	4.253
total	15.925	15.934	15.930	15.906	15.944	15.932	16.050	16.038	16.037	16.000
Na	2.819	3.306	3.307	1.652	3.339	3.296	1.956	2.000	2.140	0.909
Ca	1.236	0.771	0.792	2.416	0.738	0.790	1.955	1.901	1.750	0.136
К	0.035	0.038	0.050	0.015	0.030	0.040	0.003	0.021	0.023	2.989
Ba	0.015	0.033	0.006	0.018	0.015	0.025	0.000	0.000	0.000	0.036
Sr	0.059	0.004	0.000	0.000	0.000	0.000				
total	4.164	4.152	4.155	4.101	4.122	4.151	3.914	3.922	3.913	4.070
Fe	0.011	0.014	0.020	0.086	0.015	0.006	0.009	0.007	0.028	0.005
% molécu	laire									
Ab	68.93	80.33	79.71	40.46	81.30	79.89	49.97	50.99	54.69	22.53
An	30.22	18.74	19.09	59.17	17.97	19.15	49.95	48.47	44.72	3.37
Or	0.86	0.93	1.20	0.37	0.73	0.97	0.08	0.54	0.59	74.10

lame	C45-7	C45-7	C45-7	A5-7	A5-7	A5-7	A5-7	A5-7	A6-64	A6-64
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	FE305	FE306	FE307	FE308	FE309	FE310	FE311	FE312	FE313	FE314a
SiO2	63.86	57.44	58.42	63.88	57.33	64.09	57.49	63.39	61.83	60.71
A1203	19.98	27.82	26.60	23.51	27.95	23.12	27.88	23.19	24.44	25.34
Na2O	2.77	6.28	7.06	8.73	6.38	9.38	6.33	9.11	8.49	8.04
Ca0	0.92	8.97	7.66	4.61	8.92	3.71	8.86	4.06	5.44	6.25
к20	12.37	0.17	0.16	0.20	0.11	0.16	0.02	0.16	0.07	0.08
BaO	0.66	0.00	0.00	0.00	0.01	0.03	0.00	0.00	0.02	0.05
FeO	0.02	0.09	0.10	0.09	0.07	0.16	0.05	0.53	0.09	0.12
total	100.58	100.77	100.00	101.02	100.77	100.65	100.63	100.44	100.38	100.59
formule	structur	cale cal	culée su	ır 32 ox	ygènes					
Si	11.685	10.214	10.438	11.173	10.195	11.245	10.223	11.176	10.927	10.740
Al	4.309	5.832	5.602	4.848	5.858	4.782	5.844	4.820	5.091	5.285
total	15.994	16.046	16.040	16.021	16.053	16.027	16.067	15.996	16.018	16.025
Na	0.981	2.167	2.444	2.962	2.199	3.192	2.183	3.113	2.911	2.757
Ca	0.181	1.708	1.467	0.864	1.700	0.697	1.688	0.766	1.031	1.185
К	2.887	0.038	0.035	0.044	0.025	0.036	0.004	0.036	0.015	0.017
Ba	0.047	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.001	0.003
total	4.096	3.913	3.946	3.870	3.925	3.927	3.875	3,915	3.958	3.962
Fe	Ò.003	0.013	0.014	0.014	0.010	0.023	0.007	0.078	0.013	0.017
% molécu	laire									
Ab	24.23	55.38	61.93	76.53	56.04	81.32	56.34	79.51	73.56	69.64
An	4.47	43.65	37.18	22.33	43.32	17.76	43.56	19.57	26.06	29.93
Or	71.30	0.97	0.89	1.14	0.64	0.92	0.10	0.92	0.38	0.43

.

lame	A6-64	C45-16	B1-3	D15-7	D15-7	D15-7	D15-7	C49-4	C49-4	C49-4
roche	GNL	GNL	CXN	CSL	CSL	CSL	CSL	MNT	NNT	MNT
analyse	FE314b	FE315	FE316	FE317	FE318	FE319	FE320	FE322	FE323	FE324
SiO2	59.69	56.78	55.70	57.41	55.66	56.93	56.92	64.23	64.44	63.07
A1203	25.11	28.26	28.82	27.61	28.26	27.81	27.89	20.19	19.05	21.85
Na2O	8.05	6.07	5.82	6.44	5.49	6.11	6.16	3.79	1.50	5.76
Ca0	6.35	9.62	10.06	8.48	10.20	9.15	9.21	0.96	0.02	2.51
К2О	0.06	0.05	0.02	0.44	0.22	0.20	0.20	11.08	15.14	6.36
BaO	0.00	0.03	0.03	0.06	0.04	0.00	0.04	0.50	0.59	0.54
FeO	0.08	0.10	0.03	0.07	0.10	0.05	0.09	0.08	0.00	0.40
total	99.34	100.91	100.48	100.51	99.97	100.25	100.51	100.83	100.74	100.49
formule	structur	ale cal	culée su	ir 32 ox;	ygènes					
Si	10.701	10.103	9.968	10.245	10.019	10.182	10.164	11.665	11.857	11.361
Al	5.306	5.927	6.079	5.808	5.997	5.862	5.870	4.323	4.131	4.639
total	16.007	16.030	16.047	16.053	16.016	16.044	16.034	15.988	15.988	16.000
Na	2.798	2.094	2.018	2.229	1.914	2.117	2.132	1.334	0.534	2.013
Ca	1.221	1.833	1.928	1.621	1.967	1.753	1.762	0.186	0.003	0.485
K	0.013	0.011	0.005	0.100	0.051	0.046	0.045	2.568	3.554	1.462
Ba	0.000	0.002	0.002	0.004	0.003	0.000	0.003	0.035	0.043	0.038
total	4.032	3.940	3.953	3.954	3.935	3.916	3.942	4.123	4.134	3.998
Fe	0.011	0.016	0.004	0.01	0.014	0.008	0.013	0.012	0.001	0.061
% molécu	laire									
Ab	69.40	53.18	51.08	56.43	48.67	54.06	54.12	32.64	13.06	50.83
An	30.28	46.54	48.79	41.04	50.03	44.77	44.74	4.55	0.07	12.25
Or	0.32	0.28	0.13	2.53	1.30	1.17	1.14	62.81	86.87	36.92

FE322, FE323: Kfs à l'intérieur d'un globule de la minette. FE324: Fel avec textures microperthitiques dans un globule de la minette.

- and a ground and an ground

lame	C49-4	C49-4	C49-4	C49-4	C49-4	C49-4	в3-6	D12-4	D12-4
roche	MNT	MNT	MNT	MNT	MNT	MNT	CXN	WB	WB
analyse	FE325	FE326	FE327	FE328	FE329	FE330	FE331	FE332	FE333
SiO2	64.31	62.89	64.91	63.63	64.32	62.88	55.86	61.47	54.41
A12O3	19.01	23.08	18.94	20.97	19.71	23.80	27.32	23.38	28.03
Na2O	1.36	7.00	1.53	4.95	2.37	8.87	5.73	8.13	5.29
Ca0	0.03	3.83	0.01	1.95	0.68	4.32	9.45	4.57	10.11
к20	15.08	3.07	14.61	8.06	13.11	0.09	0.03	0.10	0.09
BaO	0.47	0.26	0.62	0.55	0.67	0.07	0.00	0.00	0.00
FeO	0.03	0.19	0.05	0.21	0.03	0.01	0.06	0.17	0.01
total	100.29	100.32	100.67	100.32	100.89	100.04	98.45	97.82	97.94
formule	structur	cale cal	culée su	ir 32 ox	ygènes				
Si	11.868	11.198	11.910	11.520	11.751	11.107	10.170	11.097	9.983
A1	4.134	4.845	4.096	4.474	4.244	4.956	5.862	4.975	6.062
total	16.002	16.043	16.006	15.994	15.995	16.063	16.032	16.072	16.045
Na	0.486	2.417	0.543	1.737	0.841	3.037	2.022	2.845	1.883
Ca	0.006	0.731	0.002	0.377	0.132	0.817	1.843	0.884	1.987
K	3.550	0.698	3.420	1.862	3.056	0.020	0.008	0.024	0.020
Ba	0.034	0.018	0.045	0.039	0.048	0.005	0.000	0.000	0.000
total	4.076	3.864	4.010	4.015	4.077	3.879	3.873	3.753	3.890
Fe	0.005	0.029	0.008	0.032	0.005	0.001	0.010	0.026	0.002
							•		
% molécu	laire								
Ab	12.02	62.85	13.69	43.68	20.87	78.39	52.20	75.81	48.41
An	0.15	19.01	0.05	9.48	3.28	21.09	47.59	23.55	51.08
Or	87.83	18.15	86.26	46.83	75.85	0.52	0.21	0.64	0.51

FE326: Fel en marge d'un globule (microperthite de la minette). FE327-329: Kfs à l'intérieur d'un globule de la minette. FE330: Pl à l'intérieur d'un globule de la minette.

.

lame	A16-1b	A16-1b	A16-1b	A16-1b	A16-1b	A16-1b	A16-1b	C45-14	C45-14	C45-14
roche	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF
analyse	FE401	FE402	FE403	FE404	FE405	FE406	FE407	FE408	FE409	FE410
note	b ->	C ->	<- b						b ->	<->
SiO2	62.55	63.35	62.28	62.34	60.97	62.46	60.76	62.95	59.08	62.46
A1203	19.83	19.87	19.83	19.58	24.38	19.28	23.57	19.48	25.15	19.66
Na20	2.07	2.89	2.50	1.78	8.13	1.70	8.35	1.50	7.57	2.00
Ca0	0.09	0.67	0.63	0.72	4.70	0.19	5.02	0.00	5.97	0.41
к20	13.23	11.87	12.42	13.56	0.16	13.80	0.42	14.53	0.36	13.44
BaO	1.19	1.27	1.19	1.27	0.00	1.27	0.00	1.35	0.00	1.51
Sr0	0.33	0.47	0.47	0.46	0.48	0.53	0.34	0.33	0.48	0.33
Fe0	0.13	0.24	0.12	0.00	0.02	0.00	0.06	0.00	0.08	0.22
MgO	0.11	0.12	0.11	0.14	0.14	0.11	0.12	0.09	0.13	0.11
total	99.56	100.73	99.54	99.84	98.97	99.34	98.95	100.23	98.23	100.14
formule	structu	rale cal	culée su	1r 32 ox	ygènes					
Si	11.660	11.646	11.611	11.759	10.926	11.714	10.962	11.717	10.673	11.637
Al	4.357	4.305	4.358	4.131	5.150	4.262	5.012	4.274	5.355	4.317
total	16.017	15.951	15.969	15.890	16.076	15.976	15.974	15.991	16.028	15.954
Na	0.748	1.030	0.904	0.651	2.825	0.618	2.921	0.541	2.652	0.722
Ca	0.018	0.132	0.126	0.146	0.902	0.038	0.970	0.000	1.156	0.082
К	3.146	2.784	2.954	3.263	0.037	3.302	0.097	3.450	0.083	3.194
Ba	0.087	0.091	0.087	0.094	0.000	0.093	0.000	0.098	0.000	0.110
Sr	0.036	0.050	0.051	0.050	0.050	0.058	0.036	0.036	0.050	0.036
total	4.035	4.087	4.122	4.204	3.814	4.109	4.024	4.125	3.941	4.144
Fe	0.025	0.037	0.019	0.000	0.003	0.000	0.009	0.000	0.012	0.034
Mg	0.031	0.033	0.032	0.039	0.037	0.030	0.034	0.026	0.035	0.030
total	0.056	0.070	0.051	0.039	0.040	0.030	0.043	0.026	0.047	0.064
% molécu	laire									
Ab	19.04	25.26	21.99	15.48	60.54	15.47	58.91	13.56	52.55	17.71
An	0.92	6.47	9.13	6.92	38.68	1.91	39.14	0.00	45.80	4.01
Or	80.05	68.27	71.88	77.60	0.78	82.62	1.95	86.44	1.64	78.28

Appendice E6 FELDSPATHS (mégacristaux)

lame	C45-14	C45-14	C45-14	C45-14	C44-8	C44-8	C44-8	C44-8	C44-8	C44-8
roche	MF	MF	MF	MF	MNT	MF	MF	MF	MF	MF
analyse	FE411	FE412	FE413	FE414	FE415	FE416	FE417	FE418	FE419	FE420
note	C>	<->	b1 ->	<- b2	MX	b ->	<->	C ->	<->	<- b
SiO2	62.50	62.25	62.24	62.23	63.23	62.26	62.29	62.78	62.26	61.87
A1203	19.41	19.76	19.74	19.84	19.80	19.93	19.84	19.76	19.84	19.80
Na20	2.03	2.05	2.07	2.09	2.42	1.93	1.94	2.01	2.00	2.22
Ca0	0.43	0.37	0.43	0.33	0.72	0.29	0.41	0.50	0.46	0.50
к20	13.20	13.29	12.95	12.89	12.72	13.05	13.02	12.97	12.98	12.68
BaO	1.51	1.59	1.74	1.59	0.32	2.14	1.82	1.82	1.74	1.74
SrO	0.33	0.33	0.53	0.47	0.33	0.47	0.53	0.46	0.47	0.53
FeO	0.14	0.14	0.18	0.02	0.06	0.06	0.08	0.10	0.14	0.10
MgO	0.11	0.11	0.11	0.13	0.12	0.13	0.11	0.11	0.11	0.11
total	99.66	99.87	99.99	99.58	99.72	100.24	100.06	100.52	99.99	99.64
formule	structur	cale cal	culée su	1r 32 ox	ygènes					
Si	11.680	11.622	11.619	11.629	11.679	11.609	11.620	11.647	11.614	11.582
Al	4.276	4.349	4.344	4.370	4.311	4.380	4.363	4.321	4.362	4.391
total	15.956	15.971	15.963	15.999	15.990	15.989	15.983	15.968	15.976	15.973
Na	0.736	0.742	0.749	0.757	0.867	0.698	0.702	0.723	0.723	0.806
Ca	0.086	0.074	0.086	0.066	0.143	0.058	0.082	0.099	0.092	0.100
K	3.147	3.166	3.084	3.073	2.997	3.104	3.099	3.070	3.089	3.028

0.133 0.132 0.127 0.128

0.012 0.016 0.022 0.016

0.032 0.030 0.030 0.030

0.046

0.057

4.073

0.044

4.067

0.009

0.035

0.044

0.049 0.051 0.058

4.073 4.082 4.120

0.052

0.046

Appendice E6 FELDSPATHS (mégacristaux)

Ab	18.14	18.30	18.71	19.11	20.89	17.81	17.70	18.11	18.10	19.72
An	4.25	3.65	4.30	3.34	6.87	2.96	4.14	4.98	4.60	4.97
Or	77.61	78.05	77.00	77.55	72.24	79.23	78.16	76.91	77.30	75.06

0.042

FE413: bordure interne d'un mégacristal de Kfs. FE414: bordure externe (limpide), immédiatement adjacente à FE413. FE415: MX = matrice de la MNT.

0.111 0.116 0.127 0.116 0.023 0.156

4.103 4.063 4.065

0.028 0.003 0.009

0.032 0.037 0.033

0.040

0.036 0.036 0.057 0.051 0.035 0.051

0.060

Вa

Sr

Fe

Mg

total

% moléculaire

total

4.116

0.022

0.032

0.054

4.134

0.022

0.030

0.052

lame	A6-25-2	A6-25-2	A6-25-2	A2-3	A2-3	A2-3	A6-3	A6-3	A6-16	A6-16
roche	CXN	CXN	CXN	WB	WB	WB	CXN	CXN	XC	XC
analyse	GT1	GT2	GT3	GT6	GT7	GT8a	GT9	GT10	GT12	GT13
note	C ->	<- b	С	C ->	<->	<- b	С	С	c ->	<- ±b
SiO2	38.73	38.61	38.52	40.33	40.20	38.62	39.70	39.92	39.04	38.91
TiO2	0.23	0.28	0.19	0.08	0.08	0.09	0.15	0.17	0.10	0.10
A1203	21.39	21.49	21.71	22.72	22.52	21.75	22.77	23.08	22.18	22.10
Cr203	0.01	0.00	0.01	0.11	0.17	0.07	0.01	0.00	0.03	0.00
Fe203	1.19	1.55	2.02	0.62	0.83	1.60	1.95	2.38	2.05	1.51
Fe0	16.04	15.54	15.56	14.56	14.25	21.94	8.23	7.94	20.89	20.88
MgO	7.56	7.90	7.82	14.73	14.83	9.39	12.57	13.25	11.68	11.59
MnO	0.68	0.65	0.83	0.43	0.42	1.34	0.42	0.29	0.36	0.33
Ca0	12.75	12.60	12.40	5.51	5.50	4.83	12.89	12.51	3.67	3.70
total	98.58	98.62	99.06	99.09	98.80	99.63	98.69	99.54	100.00	99.12
formule	structu	rale cal	culée su	r 24 ox	ygènes					
Si	5.963	5.932	5.901	5.968	5.965	5.927	5.885	5.856	5.896	5.921
Ti	0.026	0.032	0.022	0.08	0.009	0.011	0.017	0.018	0.012	0.11
total	5.989	5.964	5.923	5.976	5.974	5.938	5.902	5.874	5.908	5.932
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.882	3.892	3.920	3.963	3.938	3.934	3.978	3.990	3.948	3.964
Cr	0.001	0.000	0.001	0.013	0.200	0.008	0.001	0.000	0.003	0.000
Fe+3	0.138	0.179	0.233	0.069	0.093	0.185	0.218	0.263	0.233	0.173
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
total	4.021	4.071	4.154	4.045	4.051	4.127	4.197	4.253	4.184	4.137
Fe+2	2.065	1.997	1.994	1.802	1.769	2.816	1.020	0.975	2.638	2.657
Mg	1.735	1.809	1.785	3.250	3.279	2.149	2.778	2.897	2.631	2.628
Mn	0.089	0.084	0.108	0.054	0.053	0.174	0.053	0.036	0.046	0.043
Ca	2.102	2.075	2.036	0.873	0.875	0.794	2.048	1.966	0.593	0.603
total	5.991	5.965	5.923	5.979	5.976	5.933	5.899	5.874	5.908	5.931
% moléc	ulaire									
Alm	34.47	33.48	33.67	30.14	29.60	47.46	17.29	16.60	44.65	44.80
And	3.46	4.50	5.90	1.73	2.33	4.68	5.54	6.72	5.92	4.38
Gro	31.61	30.28	28.45	12.54	11.81	8.50	29.15	26.75	4.05	5.79
Pyr	28.96	30.33	30.14	54.36	54.87	36.22	47.09	49.32	44.53	44.31
Spe	1.49	1.41	1.82	0.90	0.89	2.93	0.90	0.61	0.78	0.73
Uva	0.03	0.00	0.03	0.33	0.50	0.20	0.03	0.00	0.08	0.00

GT12, GT13: XC = xénocristal de Grt.

504

lame	D15-3	D15-3	D15-3	D15-3	D15-3	D15-3	D15-3	C17-2	C17-2	C17-2
roche	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL	CSL
analyse	GT301	GT302	GT303	GT304	GT305	GT306	GT307	GT308	GT309	GT310
note	с	с		С	c ->	<- b	С	С	С	
SiO2	37.20	37.31	37.68	37.58	37.50	37.60	37.49	35.60	35.83	35.77
TiO2	0.86	0.89	0.69	0.92	0.95	0.68	0.92	0.44	0.51	0.42
A1203	18.75	18.45	19.08	18.62	18.66	19.55	18.67	16.33	15.65	16.43
Cr203	0.01	0.00	0.02	0.01	0.00	0.03	0.03	0.05	0.00	0.02
Fe203	7.80	7.66	6.88	7.16	7.08	6.30	7.18	11.49	11.51	11.38
FeO	1.05	1.46	1.41	1.69	1.62	1.32	1.32	8.84	9.29	9.41
MgO	0.50	0.55	0.55	0.54	0.56	0.50	0.47	0.81	0.83	0.73
MnO	0.20	0.21	0.19	0.18	0.21	0.17	0.21	0.72	0.71	0.78
CaO	33.45	33.15	33.45	33.23	33.23	33.57	33.57	24.15	24.47	24.53
Na2O	0.05	0.07	0.05	0.07	0.07	0.04	0.06	0.21	0.10	0.05
total	99.87	99.75	100.00	100.00	99.88	99.76	99.92	98.64	98.90	99.52
formule	structui	cale cal	culée su	ir 24 oxy	ygènes					
Si	5.749	5.777	5.799	5.797	5.789	5.787	5.786	5.733	5.770	5.722
Ti	0.100	0.103	0.080	0.106	0.110	0.078	0.107	0.053	0.062	0.050
total	5.849	5.880	5.879	5.903	5.899	5.865	5.893	5.786	5.832	5.772
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.414	3.366	3.460	3.385	3.396	3.546	3.395	3.099	2.971	3.098
Cr	0.001	0.000	0.002	0.001	0.000	0.003	0.003	0.006	0.000	0.002
Fe+3	0.907	0.892	0.797	0.831	0.823	0.730	0.834	1.392	1.395	1.370
total	4.322	4.258	4.259	4.217	4.219	4.279	4.232	4.497	4.366	4.470
Fe+2	0.136	0.189	0.182	0.218	0.210	0.171	0.170	1.190	1.251	1.259
Mg	0.115	0.126	0.125	0.125	0.129	0.116	0.108	0.195	0.200	0.174
Mn	0.026	0.027	0.024	0.023	0.028	0.022	0.027	0.098	0.096	0.106
Ca	5.537	5.498	5.515	5.492	5.497	5.536	5.551	4.167	4.223	4.205
Na	0.016	0.022	0.016	0.021	0.020	0.013	0.018	0.065	0.031	0.015
total	5.830	5.862	5.862	5.879	5.884	5.858	5.874	5.715	5.801	5.759
% molécu	laire									
Alm	2.34	3.24	3.11	3.72	3.58	2.93	2.90	21.06	21.68	21.92
And	23.40	22.91	20.45	21.28	21.05	18.73	21.36	36.96	36.27	35.78
Gro	71.81	71.23	73.84	72.45	72.69	75.90	73.35	36.64	36.92	37.38
Pyr	1.98	2.16	2.14	2.13	2.20	1.98	1.84	3.45	3.47	3.03
Spe	0.45	0.46	0.41	0.39	0.48	0.38	0.46	1.73	1.66	1.85
Uva	0.03	0.00	0.05	0.03	0.00	0.08	0.08	0.16	0.00	0.05

GT308, GT309: petites inclusions de Grt dans Cpx.

lame	C17-2	C17-2	A6-16	A6-16	A6-16	A5-31	A5-31	A5-31	A5-31	D3-6
roche	CSL	CSL	XC	XC	XC	XC	XC	XC	XC	Grt
analyse	GT311	GT312	GT313	GT314	GT315	GT316	GT317	GT318	GT319	GT320
note	С	С	b ->	С	<- b	b ->	C ->	<->	<- b	C ->
SiO2	35.82	35.81	39.47	39.45	38.77	38.43	38.64	38.97	38.47	39.51
TiO2	0.86	0.80	0.10	0.11	0.10	0.08	0.06	0.10	0.08	0.08
A1203	14.71	14.48	23.07	23.01	22.62	22.75	22.81	22.95	22.67	22.82
Cr203	0.03	0.05	0.02	0.01	0.03	0.02	0.02	0.05	0.03	0.00
Fe203	12.89	13.12	1.52	1.65	1.57	1.67	1.91	1.58	1.98	2.19
FeO	6.58	6.53	21.18	21.16	25.46	25.66	24.56	24.79	26.29	19.16
MgO	0.59	0.57	11.72	11.71	8.79	9.23	9.93	10.15	8.69	11.50
MnO	1.19	1.15	0.39	0.41	0.78	0.28	0.20	0.26	0.46	0.72
Ca0	27.06	27.04	3.68	3.68	3.46	2.74	2.79	2.65	2.95	5.30
Na20	0.02	0.04	0.02	0.03	0.02	0.02	0.03	0.03	0.02	0.03
total	99.75	99.59	101.17	101.22	101.60	100.88	100.95	101.53	101.64	101.31
formule	structu	rale cal	culée su	ur 24 ox	ygènes					
Si	5.734	5.746	5.880	5.878	5.879	5.855	5.854	5.865	5.846	5.874
Ti	0.104	0.097	0.012	0.012	0.011	0.009	0.006	0.011	0.009	0.009
total	5.838	5.843	5.892	5.890	5.890	5.864	5.860	5.876	5.855	5.883
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	2.775	2.738	4.050	4.040	4.043	4.086	4.073	4.071	4.061	3.998
Cr	0.004	0.006	0.002	0.001	0.004	0.002	0.003	0.006	0.004	0.000
Fe+3	1.553	1.584	0.170	0.185	0.179	0.191	0.218	0.179	0.227	0.245
total	4.332	4.328	4.222	4.226	4.226	4.279	4.294	4.256	4.292	4.243
Fe+2	0.880	0.877	2.639	2.636	3.229	3.270	3.112	3.120	3.341	2.382
Mg	0.141	0.137	2.603	2.600	1.987	2.097	2.243	2.278	1.968	2.549
Mn .	0.162	0.156	0.049	0.052	0.100	0.036	0.025	0.033	0.059	0.091
Ca	4.641	4.648	0.588	0.587	0.562	0.447	0.453	0.428	0.480	0.844
Na	0.007	0.012	0.007	0.010	0.006	0.007	0.010	0.008	0.006	0.007
total	5.831	5.830	5.886	5.885	5.884	5.857	5.843	5.867	5.854	5.873
% molécu	laire									
Alm	15.11	15.07	44.89	44.87	54.93	55.90	53.35	53.25	57.13	40.61
And	40.00	40.84	4.34	4.72	4.57	4.90	5.61	4.58	5.82	6.26
Gro	39.59	38.90	5.61	5.24	4.89	2.69	2.08	2.57	2.28	8.12
Pyr	2.42	2.35	44.28	44.26	33.80	35.85	38.45	38.88	33.65	43.45
Spe	2.78	2.68	0.83	0.89	1.70	0.62	0.43	0.56	1.01	1.55
Uva	0.10	0.15	0.05	0.03	0.10	0.05	0.08	0.15	0.10	0.00

lame	D3-6	D3-6	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	в2-7	B2-7
roche	Grt	Grt	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT321	GT322	GT323	GT324	GT325	GT326	GT327	GT328	GT329	GT330
note	<>	<- b	C	С	с	±b	±b ->	<- C	±b ->	<- C
SiO2	39.51	39.42	38.38	37.94	38.19	38.31	38.29	38.25	38.53	38.38
TiO2	0.06	0.12	0.06	0.25	0.05	0.06	0.03	0.07	0.04	0.05
A1203	22.94	22.69	22.38	22.22	22.41	22.31	22.17	22.43	22.30	22.43
Cr203	0.03	0.01	0.00	0.00	0.00	0.01	0.12	0.01	0.19	0.00
Fe203	2.35	2.34	1.09	1.26	1.63	1.50	1.57	1.66	1.25	1.63
Fe0	18.94	19.31	24.67	26.54	25.15	24.38	24.35	23.81	23.39	23.43
MgO	11.71	10.87	6.21	5.54	6.27	6.69	6.38	6.77	6.55	7.02
MnO	0.71	0.88	0.46	0.68	0.53	0.64	0.69	0.83	0.58	0.73
Ca0	5.23	5.90	7.55	6.62	6.84	6.88	7.27	6.98	8.10	7.19
Na2O	0.02	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02
total	101.50	101.56	100.81	101.06	101.09	100.80	100.89	100.83	100.95	100.88
formule	structur	rale cal	culée su	ır 24 ox	ygènes					
Si	5.857	5.868	5.904	5.871	5.872	5.888	5.891	5.871	5.901	5.878
Ti	0.007	0.013	0.007	0.029	0.005	0.007	0.003	0.008	0.005	0.005
total	5.864	5.881	5.911	5.900	5.877	5.895	5.894	5.879	5.906	5.883
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	4.009	3.981	4.057	4.052	4.061	4.042	4.019	4.059	4.025	4.048
Cr	0.004	0.002	0.000	0.000	0.000	0.001	0.015	0.001	0.023	0.000
Fe+3	0.263	0.263	0.126	0.147	0.188	0.173	0.182	0.191	0.144	0.188
total	4.276	4.246	4.183	4.199	4.249	4.216	4.216	4.251	4.192	4.236
Fe+2	2.349	2.404	3.174	3.435	3.234	3.134	3.132	3.057	2.997	3.000
Mg	2.588	2.411	1.424	1.277	1.437	1.533	1.463	1.549	1.496	1.602
Mn	0.089	0.111	0.060	0.089	0.070	0.083	0.090	0.108	0.075	0.094
Ca	0.831	0.940	1.244	1.098	1.127	1.133	1.198	1.149	1.329	1.180
Na	0.005	0.005	0.004	0.003	0.006	0.005	0.007	0.006	0.006	0.005
total	5.862	5.871	5.906	5.902	5.874	5.888	5.890	5.869	5.903	5.881
% molécu	laire									
Alm	40.11	40.98	53.78	58.23	55.11	53.27	53.24	52.14	50.82	51.06
And	6.74	6.73	3.20	3.74	4.81	4.41	4.64	4.89	3.66	4.80
Gro	7.35	9.25	17.88	14.88	14.40	14.82	15.34	14.69	18.29	15.28
Pyr	44.19	41.10	24.13	21.65	24.49	26.06	24.87	26.42	25.37	27.26
Spe	1.52	1.89	1.02	1.51	1.19	1.41	1.53	1.84	1.27	1.60
Uva	0.10	0.05	0.00	0.00	0.00	0.03	0.38	0.03	0.59	0.00

GT323-GT325: petits Grt formant couronne autour Cpx.

lame	B2-7	в2-7	в2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT331	GT332	GT333	GT334	GT335	GT336	GT337	GT338	GT339	GT340
note	С	c ->	<- b	C ->	<- b	c ->	<- b	b ->	<- c	c ->
SiO2	38.16	38.12	38.08	38.38	38.36	38.26	38.22	38.00	38.14	38.12
TiO2	0.06	0.04	0.05	0.07	0.10	0.06	0.06	0.02	0.04	0.00
A1203	22.31	22.24	22.20	22.25	22.14	22.24	22.16	22.08	22.37	22.43
Cr203	0.00	0.04	0.14	0.02	0.08	0.03	0.23	0.12	0.02	0.02
Fe203	1.55	1.78	1.57	1.66	1.58	1.63	1.47	2.34	1.96	1.39
FeO	25.40	25.53	25.55	24.79	24.63	25.53	25.49	24.73	24.57	25.50
MgO	5.78	5.80	5.17	6.42	6.37	5.80	5.87	5.71	6.25	5.83
MnO	0.63	1.01	1.22	0.98	0.86	1.04	0.82	0.96	0.96	0.99
CaO	7.18	6.75	7.44	6.75	7.05	6.85	6.92	7.39	6.93	6.76
Na2O	0.03	0.01	0.01	0.01	0.02	0.03	0.03	0.02	0.02	0.01
total	101.10	101.32	101.43	101.33	101.19	101.47	101.27	101.37	101.26	101.05
formule	structur	cale cal	culée su	ir 24 ox	ygènes					
Si	5.881	5.873	5.877	5.887	5.891	5.885	5.887	5.853	5.859	5.880
Ti	0.007	0.005	0.006	0.008	0.012	0.007	0.007	0.003	0.005	0.000
total	5.888	5.878	5.883	5.895	5.903	5.892	5.894	5.856	5.864	5.880
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	4.053	4.038	4.038	4.022	4.008	4.032	4.022	4.008	4.050	4.078
Cr	0.000	0.005	0.017	0.003	0.010	0.003	0.028	0.015	0.002	0.002
Fe+3	0.179	0.206	0.182	0.191	0.182	0.188	0.170	0.271	0.227	0.161
total	4.232	4.249	4.237	4.216	4.200	4.223	4.220	4.294	4.279	4.241
Fe+2	3.274	3.289	3.298	3.180	3.163	3.284	3.282	3.186	3.156	3.289
Mg	1.328	1.333	1.189	1.468	1.458	1.329	1.348	1.312	1.431	1.341
Mn	0.083	0.132	0.159	0.127	0.112	0.136	0.107	0.125	0.125	0.129
Ca	1.185	1.114	1.230	1.110	1.160	1.128	1.141	1.220	1.140	1.116
Na	0.008	0.004	0.004	0.004	0.005	0.008	0.008	0.006	0.005	0.003
total	5.878	5.872	5.880	5.889	5.898	5.885	5.886	5.849	5.857	5.878
% molécu	laire									
Alm	55.78	56.05	56.13	54.04	53.67	55.88	55.84	54.53	53.93	55.98
And	4.57	5.27	4.65	4.87	4.63	4.80	4.34	6.96	5.82	4.11
Gro	15.61	13.59	15.85	13.92	14.80	14.32	14.36	13.54	13.61	14.83
Pyr	22.62	22.72	20.23	24.94	24.74	22.61	22.93	22.45	24.45	22.83
Spe	1.41	2.25	2.71	2.16	1.90	2.31	1.82	2.14	2.14	2.20
Uva	0.00	0.13	0.43	0.08	0.25	0.08	0.71	0.39	0.05	0.05

lame	B2-7	B2-7	C31-11	C31-11	C31-11	C31-11	C31-11	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT341	GT342	GT343	GT344	GT345	GT346	GT347	GT361	GT362	GT363
note	<- b	b		С	с	c ->	<- b	±c ->	<->	<- b
SiO2	38.17	38.22	37.94	38.56	37.53	38.60	38.26	38.66	38.37	38.03
TiO2	0.02	0.03	0.12	0.12	0.15	0.21	0.19	0.13	0.11	0.11
A1203	22.48	22.35	22.29	22.45	21.76	22.64	22.10	21.68	21.52	21.45
Cr203	0.05	0.00	0.04	0.06	0.08	0.11	0.08	0.05	0.05	0.05
Fe203	1.68	1.68	1.72	1.93	1.75	1.41	1.57	2.34	2.06	1.73
FeO	24.86	25.89	24.88	23.92	26.70	22.23	24.27	21.25	22.75	25.71
MgO	6.12	6.05	6.41	7.97	4.90	8.40	6.31	8.94	7.78	6.28
MnO	0.87	0.77	1.13	0.68	2.01	0.58	1.26	0.72	0.80	1.38
CaO	6.83	6.49	6.24	5.61	5.78	6.52	6.88	6.53	6.67	5.61
Na2O	0.06	0.00	0.02	0.05	0.03	0.04	0.07	0.02	0.00	0.02
total	101.14	101.48	100.79	101.35	100.69	100.74	100.99	100.32	100.11	100.37
formule	structur	cale cal	culée su	ur 24 ox	ygènes					
Si	5.869	5.875	5.856	5.866	5.872	5.867	5.888	5.900	5.912	5.919
Ti	0.003	0.003	0.014	0.014	0.017	0.024	0.022	0.015	0.013	0.012
total	5.872	5.878	5.870	5.880	5.889	5.891	5.910	5.915	5.925	5.931
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	4.074	4.048	4.055	4.025	4.014	4.056	4.009	3.899	3.908	3.934
Cr	0.006	0.000	0.005	0.008	0.009	0.013	0.009	0.005	0.006	0.006
Fe+3	0.194	0.194	0.200	0.221	0.206	0.161	0.182	0.269	0.239	0.203
total	4.274	4.242	4.260	4.254	4.229	4.230	4.200	4.173	4.153	4.143
Fe+2	3.197	3.328	3.211	3.043	3.494	2.826	3.124	2.712	2.932	3.346
Mg	1.402	1.385	1.476	1.807	1.142	1.903	1.447	2.034	1.786	1.456
Mn	0.113	0.101	0.148	0.087	0.266	0.075	0.164	0.093	0.105	0.182
Ca	1.125	1.069	1.031	0.914	0.970	1.062	1.135	1.068	1.101	0.935
Na	0.018	0.000	0.005	0.015	0.011	0.012	0.020	0.005	0.001	0.007
total	5.855	5.883	5.871	5.866	5.883	5.878	5.890	5.912	5.925	5.926
% moléc≀	ılaire								40.40	F (F)
Alm	54.77	56.57	54.74	52.01	59.50	48.18	53.22	45.91	49.49	56.53
And	4.99	4.95	5.11	5.67	5.26	4.12	4.65	6.83	6.05	5.14
Gro	14.13	13.22	12.33	9.75	11.03	13.65	14.45	11.12	12.38	10.50
Pyr	24.02	23.54	25.16	30.88	19.45	32.44	24.65	34.43	30.15	24.00
Spe	1.94	1.72	2.52	1.49	4.53	1.28	2.79	1.57	1.//	3.U/ 0.15
Uva	0.15	0.00	0.13	0.21	0.23	0.33	0.23	0.13	0.15	0.15

lame	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	C8-6	C8-6	C8-6
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT364	GT365	GT366	GT367	GT368	GT369	GT370	GT371	GT372	GT373
note	c ->	<- b	C ->	<- b	С	±c ->	<- b	±b ->	c	<- b
SiO2	38.79	38.22	38.79	38.15	38.25	38.41	38.59	39.34	39.10	39.10
TiO2	0.09	0.09	0.17	0.09	0.12	0.13	0.08	0.10	0.13	0.16
A1203	21.72	21.33	21.76	21.44	21.55	21.72	21.65	21.87	22.09	21.90
Cr203	0.06	0.04	0.03	0.10	0.02	0.01	0.04	0.05	0.02	0.02
Fe203	2.26	2.00	2.37	2.13	1.95	2.35	2.15	2.29	2.64	2.36
FeO	21.19	24.31	21.14	24.18	24.33	21.20	22.19	17.72	16.67	18.57
MgO	9.07	7.16	9.13	7.21	7.53	8.78	8.54	11.46	10.90	10.05
MnO	0.70	1.17	0.75	1.28	0.84	0.72	0.78	0.71	0.69	0.66
CaO	6.47	5.88	6.44	5.69	5.66	6.56	6.20	6.32	7.86	7.58
Na2O	0.02	0.00	0.03	0.03	0.00	0.01	0.02	0.03	0.00	0.00
total	100.37	100.20	100.61	100.30	100.25	99.89	100.24	99.89	100.10	100.40
formule	structu	rale cal	culée su	ir 24 ox	ygènes					
Si	5.910	5.922	5.898	5.907	5.909	5.889	5.912	5.921	5.878	5.900
Ті	0.010	0.011	0.019	0.010	0.014	0.015	0.009	0.012	0.014	0.018
,total	5.920	5.933	5.917	5.917	5.923	5.904	5.921	5.933	5.892	5.918
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.900	3.896	3.899	3.911	3.923	3.925	3.909	3.881	3.914	3.894
Cr	0.007	0.004	0.003	0.012	0.003	0.002	0.005	0.006	0.003	0.002
Fe+3	0.260	0.233	0.271	0.248	0.227	0.271	0.248	0.260	0.298	0.269
total	4.167	4.133	4.173	4.171	4.153	4.198	4.162	4.147	4.215	4.165
Fe+2	2.700	3.151	2.688	3.130	3.143	2.718	2.843	2.231	2.095	2.344
Mg	2.060	1.653	2.068	1.664	1.734	2.006	1.950	2.572	2.443	2.261
Mn	0.091	0.153	0.097	0.168	0.110	0.094	0.101	0.090	0.087	0.084
Ca	1.056	0.977	1.049	0.943	0.937	1.078	1.018	1.019	1.267	1.226
Na	0.007	0.001	0.008	0.008	0.000	0.003	0.007	0.008	0.000	0.001
total	5.914	5.935	5.910	5.913	5.924	5.899	5.919	5.920	5.892	5.916
∛ molécι	ılaire									
Alm	45.71	53.10	45.54	53.01	53.06	46.10	48.09	37.74	35.56	39.63
And	6.60	5.89	6.89	6.30	5.75	6.89	6.29	6.60	7.59	6.82
Gro	11.10	10.47	10.81	9.36	9.99	11.34	10.80	10.49	13.84	13.85
Pyr	34.87	27.86	35.04	28.18	29.27	34.02	32.98	43.50	41.46	38.22
Spe	1.54	2.58	1.64	2.85	1.86	1.59	1.71	1.52	1.48	1.42
Uva	0.18	0.10	0.08	0.30	0.08	0.05	0.13	0.15	0.08	0.05

lame	C8-6	C8-6	C8-6	C8-6	C8-6	C8-6	C8-6	C8-6	C8-6	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT374	GT375	GT376	GT377	GT378	GT379	GT380	GT381	GT382	GT383
note	С	b ->	<- C	С	c ->	<- b	±c ->	С	<- ±b	C ->
SiO2	39.18	37.69	38.86	39.27	39.39	37.31	38.88	39.17	38.98	39.03
TiO2	0.16	0.11	0.11	0.13	0.18	0.17	0.09	0.07	0.10	0.13
A1203	21.96	21.12	21.89	22.03	22.11	20.95	21.77	22.20	22.20	22.17
Cr203	0.01	0.02	0.00	0.02	0.04	0.06	0.01	0.00	0.03	0.03
Fe203	2.61	1.69	2.67	2.83	2.41	1.57	1.87	2.56	2.39	2.39
Fe0	17.85	24.01	18.50	16.37	16.80	25.31	19.47	16.62	16.40	17.74
MgO	10.59	5.83	9.92	11.08	11.37	4.70	9.25	10.78	10.59	11.26
MnO	0.59	1.30	0.65	0.62	0.65	1.93	0.91	0.76	0.71	0.64
Ca0	7.50	7.30	7.59	7.94	7.44	6.98	7.50	7.99	8.33	6.44
Na2O	0.01	0.01	0.01	0.03	0.01	0.03	0.02	0.02	0.01	0.02
total	100.46	99.08	100.20	100.32	100.40	99.01	99.77	100.17	99.74	99.85
formule	structur	ale cal	culée su	1r 24 ox	ygènes					
Si	5.890	5.931	5.882	5.884	5.893	5 .92 8	5.927	5.884	5.879	5.882
Ti	0.018	0.013	0.013	0.015	0.020	0.020	0.010	0.008	0.012	0.015
total	5.908	5.944	5.895	5.899	5.913	5.948	5.937	5.892	5.891	5.897
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
A1	3.890	3.916	3.906	3.891	3.899	3.922	3.912	3.930	3.946	3.937
Cr	0.002	0.003	0.001	0.003	0.004	0.008	0.002	0.000	0.003	0.004
Fe+3	0.295	0.200	0.304	0.319	0.271	0.188	0.215	0.289	0.271	0.271
total	4.187	4.119	4.211	4.213	4.174	4.118	4.129	4.219	4.220	4.212
Fe+2	2.244	3.160	2.342	2.052	2.102	3.363	2.483	2.089	2.068	2.236
Mg	2.373	1.368	2.238	2.475	2.534	1.114	2.102	2.413	2.381	2.529
Mn	0.075	0.173	0.084	0.078	0.082	0.260	0.118	0.097	0.091	0.081
Ca	1.209	1.231	1.230	1.274	1.192	1.187	1.226	1.285	1.346	1.040
Na	0.004	0.004	0.003	0.009	0.002	0.010	0.005	0.005	0.004	0.006
total	5.905	5.936	5.897	5.888	5.912	5.934	5.934	5.889	5.890	5.892
% molécu	laire									
Alm	38.03	53.27	39.74	34.90	35.57	56.77	41.88	35.50	35.13	37,99
And	7.50	5.06	7.74	8.14	6.88	4.76	5.44	7.37	6.91	6.91
Gro	12.94	15.62	13.11	13.45	13.19	15.07	15.19	14.47	15.89	10.66
Pyr	40.21	23.06	37.97	42.10	42.88	18.80	35.45	41.01	40.45	42.97
Spe	1.27	2.92	1.43	1.33	1.39	4.39	1.99	1.65	1.55	1.38
Uva	0.05	0.08	0.03	0.08	0.10	0.20	0.05	0.00	0.08	0.10

lame	C45-19	C45-19	C45-19	C45-19	C45-19	В3-14	В3-14	B3-14	B3-14	В3-14
roche	GNL	GNL	GNL	GNL	GNL	CSL	CSL	CSL	CSL	CSL
analyse	GT384	GT385	GT386	GT387	GT389	GT391	GT392	GT393	GT394	GT395
note	<->	<- b	±c ->	<- b	b	c? ->	<- b	C; ->	<- b	±c ->
SiO2	39.09	38.04	39.17	38.30	36.88	39.31	39.08	39.42	38.69	39.28
TiO2	0.12	0.12	0.13	0.11	0.00	0.12	0.14	0.11	0.14	0.10
A1203	22.32	21.57	22.29	21.70	22.58	22.13	22.16	22.25	21.90	22.23
Cr203	0.07	0.04	0.07	0.08	0.03	0.02	0.09	0.02	0.01	0.03
Fe203	2.43	2.18	2.22	1.52	2.51	2.70	2.16	2.28	2.11	2.38
Fe0	17.67	22.26	18.01	21.52	25.87	18.33	19.40	18.36	21.45	18.29
MgO	11.12	6.79	11.33	7.15	7.34	11.65	10.48	11.63	9.04	11.32
MnO	0.60	1.15	0.56	0.87	1.23	0.59	0.65	0.55	0.82	0.53
Ca0	6.76	7.79	6.29	8.39	2.94	5.72	6.27	5.84	6.15	6.16
Na 20	0.01	0.02	0.03	0.00	0.03	0.01	0.02	0.02	0.02	0.03
total	100.19	99.96	100.10	99.64	99.41	100.58	100.45	100.48	100.33	100.35
formule	structu	cale cal	culée su	ır 24 ox	ygènes					
Si	5.873	5.891	5.886	5.918	5.772	5.884	5.891	5.900	5.899	5.893
Ti	0.013	0.014	0.015	0.012	0.000	0.013	0.015	0.012	0.016	0.012
total	5.886	5.905	5.901	5.930	5.772	5.897	5.906	5.912	5.915	5.905
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.952	3.937	3.947	3.953	4.166	3.905	3.937	3.924	3.935	3.931
Cr	0.008	0.005	0.008	0.010	0.004	0.002	0.011	0.002	0.001	0.003
Fe+3	0.274	0.254	0.251	0.176	0.295	0.304	0.245	0.257	0.242	0.269
total	4.234	4.196	4.206	4.139	4.465	4.211	4.193	4.183	4.178	4.203
Fe+2	2.221	2.883	2.264	2.781	3.386	2.295	2.446	2.298	2.735	2.295
Mg	2.490	1.567	2.537	1.647	1.712	2.599	2.354	2.595	2.055	2.531
Mn	0.076	0.150	0.071	0.113	0.163	0.075	0.083	0.069	0.106	0.067
Ca	1.088	1.293	1.012	1.388	0.493	0.917	1.012	0.937	1.004	0.990
Na	0.003	0.006	0.008	0.001	0.010	0.004	0.005	0.005	0.007	0.009
total	5.878	5.899	5.892	5.930	5.764	5.890	5.900	5.904	5.907	5.892
% molécu	laire									
Alm	37.80	48.92	38.48	46.90	58.85	38.99	41.49	38.96	46.36	39.01
And	7.00	6.47	6.40	4.45	7.69	7.75	6.23	6.53	6.15	6.86
Gro	11.32	15.35	10.60	18.70	0.77	7.78	10.65	9.30	10.84	9.89
Pyr	42.38	26.59	43.12	27.78	29.75	44.16	39.93	43.99	34.83	43.02
Spe	1.29	2.55	1.21	1.91	2.83	1.27	1.41	1.17	1.80	1.14
Uva	0.20	0.13	0.20	0.25	0.10	0.05	0.28	0.05	0.03	0.08

lame	B3-14	C21-3	C21-3	C21-3	C21-3	C21-3	C45-7	C45-7	C45-7	C45-7
roche	CSL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT396	GT397	GT398	GT399	GT400	GT401	GT402	GT403	GT404	GT405
note	<- b	С	С	с	С	с	±c? ->	<->	<- b	С
SiO2	38.79	37.69	38.03	37.78	37.82	38.66	38.72	38.76	37.68	37.33
TiO2	0.13	0.09	0.13	0.09	0.06	0.11	0.11	0.12	0.09	0.02
A1203	22.10	21.27	21.61	21.61	21.43	21.90	22.09	22.14	21.55	21.28
Cr203	0.02	0.04	0.01	0.00	0.04	0.02	0.04	0.00	0.02	0.00
Fe203	2.38	1.49	1.66	1.34	1.98	2.16	1.98	1.88	1.47	1.63
FeO	19.96	26.14	24.20	24.90	24.22	21.34	22.18	21.58	26.08	28.64
MgO	9.94	5.96	6.75	6.05	6.97	9.32	9.87	9.82	6.25	5.00
MnO	0.65	1.79	1.22	1.60	2.11	0.83	0.73	0.65	1.08	1.32
Ca0	6.31	5.04	6.20	6.12	5.04	5.80	4.47	5.09	5.25	4.47
Na20	0.01	0.03	0.03	0.03	0.01	0.02	0.04	0.04	0.02	0.00
total	100.29	99.54	99.84	99.52	99.68	100.16	100.23	100.08	99.49	99.69
formule	structur	cale cal	culée su	1r 24 ox	ygènes					
Si	5.878	5.930	5.913	5.919	5.904	5.898	5.895	5.899	5.912	5.914
Ti	0.014	0.011	0.015	0.010	0.007	0.013	0.012	0.013	0.011	0.003
total	5.892	5.941	5.928	5.929	5.911	5.911	5.907	5.912	5.923	5.917
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.947	3.944	3.961	3.991	3.943	3.936	3.964	3.972	3.985	3.974
Cr	0.003	0.005	0.002	0.000	0.005	0.002	0.005	0.000	0.003	0.000
Fe+3	0.271	0.176	0.194	0.158	0.233	0.248	0.227	0.215	0.173	0.194
total	4.221	4.125	4.157	4.149	4.181	4.186	4.196	4.187	4.161	4.168
Fe+2	2.529	3.441	3.147	3.263	3.161	2.723	2.824	2.747	3.422	3.796
Mg	2.244	1.397	1.563	1.412	1.621	2.119	2.239	2.228	1.462	1.182
Mn	0.083	0.238	0.161	0.213	0.280	0.107	0.095	0.084	0.143	0.177
Ca	1.025	0.850	1.033	1.027	0.844	0.948	0.729	0.830	0.882	0.759
Na	0.004	0.008	0.009	0.008	0.002	0.006	0.011	0.011	0.007	0.000
total	5.885	5.934	5.913	5.923	5.908	5.903	5.898	5.900	5.916	5.914
% molécu	laire									
Alm	43.00	58.07	53.30	55.16	53.52	46.18	47.97	46.65	57.91	64.19
And	6.91	4.45	4.93	4.01	5.92	6.31	5.78	5.48	4.39	4.92
Gro	10.44	9.76	12.52	13.36	8.25	9.72	6.47	8.62	10.46	7.91
Pyr	38.16	23.57	26.47	23.87	27.45	35.93	38.03	37.83	24.74	19.99
Spe	1.41	4.02	2.73	3.60	4.74	1.81	1.61	1.43	2.42	2.99
Uva	0.08	0.13	0.05	0.00	0.13	0.05	0.13	0.00	0.08	0.00

GT397-GT401: petites reliques de Grt.

GT405, GT406: petits Grt riches en inclusions noires.

lame	C45-7	C45-7	C45-7	A6-64	A6-64	A6-64	A6-64	A6-64	C31-12	C31-12
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GS	GS
analyse	GT406	GT407	GT408	GT409	GT410	GT411	GT412	GT413	GT414	GT415
note	С			±c ->	<- ±b	С	С	С	±b ->	<->
SiO2	39.28	37.44	36.99	39.28	38.13	38.13	38.41	38.73	38.04	38.05
TiO2	0.00	0.02	0.16	0.16	0.16	0.12	0.16	0.12	0.06	0.05
A1203	21.74	21.16	20.67	22.14	21.42	21.50	21.74	21.99	21.54	21.55
Cr203	0.00	0.01	0.01	0.14	0.17	0.17	0.09	0.05	0.00	0.01
Fe2O3	0.00	1.40	2.01	2.33	1.74	1.97	2.20	2.09	1.81	1.61
FeO	29.50	28.43	28.54	17.68	23.61	24.59	23.33	20.98	25.78	26.23
MgO	6.25	4.98	4.62	11.69	7.30	7.33	8.66	10.20	7.39	7.85
MnO	1.09	2.67	2.09	0.27	1.10	1.15	0.55	0.43	0.76	0.73
Ca0	3.87	3.66	4.19	6.46	6.26	5.24	5.26	5.31	4.47	3.53
Na2O	0.03	0.02	0.02	0.01	0.00	0.03	0.01	0.00	0.02	0.01
total	101.76	99.79	99.30	100.16	99.89	100.23	100.41	99.90	99.87	99.62
formule	structur	ale cal	culée su	ır 24 oxy	ygènes					
Si	6.041	5.938	5.915	5.889	5.912	5.904	5.886	5.893	5.915	5.924
Ti	0.000	0.003	0.020	0.018	0.019	0.014	0.019	0.013	0.007	0.006
total	6.041	5.941	5.935	5.907	5.931	5.918	5.905	5.906	5.922	5.930
ті	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.940	3.955	3.895	3.912	3.914	3.924	3.926	3.943	3.948	3.954
Cr	0.000	0.002	0.002	0.016	0.021	0.021	0.011	0.006	0.000	0.001
Fe+3	0.000	0.167	0.242	0.263	0.203	0.230	0.254	0.239	0.212	0.188
total	3.940	4.124	4.139	4.191	4.138	4.175	4.191	4.188	4.160	4.143
Fe+2	3.794	3.770	3.817	2.217	3.062	3.184	2.990	2.670	3.352	3.415
Mg	1.432	1.177	1.100	2.612	1.687	1.692	1.978	2.314	1.714	1.823
Mn	0.142	0.358	0.283	0.034	0.144	0.151	0.072	0.056	0.101	0.096
Ca	0.637	0.622	0.718	1.037	1.039	0.869	0.863	0.866	0.744	0.588
Na	0.009	0.007	0.007	0.002	0.000	0.010	0.002	0.001	0.007	0.004
total	6.014	5.934	5.925	5.902	5.932	5.906	5.905	5.907	5.918	5.926
% molécu	laire									
Alm	63.18	63.61	64.50	37.58	51.62	54.00	50.65	45.21	56.71	57.67
And	0.00	4.23	6.13	6.69	5.13	5.85	6.45	6.07	5.38	4.76
Gro	10.61	6.22	5.95	10.48	11.85	8.35	7.89	8.44	7.21	5.14
Pyr	23.85	19.86	18.59	44.27	28.44	28.70	33.51	39.18	29.00	30.78
Spe	2.36	6.04	4.78	0.58	2.43	2.56	1.22	0.95	1.71	1.62
Uva	0.00	0.05	0.05	0.41	0.53	0.53	0.28	0.15	0.00	0.03

.

lame	C31-12	C45-7	C45-7	C45-7	A6-64	A6-64	A6-64	A6-64	A6-64	B2-7
roche	GS	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT416	GT420	GT421	GT422	GT423	GT425	GT426	GT427	GT428	GT451
note	<- b	±b ->	<- ±c	С	С	С	C ->	<- b	С	±c ->
SiO2	37.56	39.44	38.68	38.74	38.75	39.19	39.72	38.13	40.34	38.67
TiO2	0.07	0.08	0.14	0.11	0.13	0.11	0.15	0.12	0.13	0.05
A1203	21.49	22.28	21.99	22.02	21.84	22.26	21.48	21.48	22.68	21.67
Cr203	0.00	0.05	0.02	0.00	0.02	0.00	0.17	0.11	0.13	0.05
Fe203	1.95	1.93	1.56	1.64	1.01	1.79	2.06	1.61	2.09	0.88
FeO	27.01	20.35	21.76	21.95	22.81	20.33	17.00	24.33	14.58	23.40
MgO	6.58	11.69	9.79	9.79	9.02	11.53	12.32	7.81	14.79	7.39
MnO	1.15	0.51	0.73	0.78	0.73	0.47	0.25	0.81	0.28	0.79
Ca0	3.88	4.28	4.78	4.70	5.19	4.26	6.50	5.16	5.53	6.93
Na2O	0.02	0.01	0.07	0.05	0.04	0.03	0.01	0.00	0.01	0.00
total	99.71	100.62	99.52	99.78	99.54	99.97	99.66	99.56	100.56	99.83
formule	structu	rale cal	culée su	ir 24 ox	ygènes					
Si	5.892	5.912	5.920	5.918	5.953	5.911	5.961	5.921	5.908	5.970
Ti	0.009	0.009	0.016	0.013	0.015	0.013	0.016	0.014	0.014	0.006
total	5.901	5.921	5.936	5.931	5.968	5.924	5.977	5.935	5.922	5.976
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.974	3.937	3.966	3.964	3.955	3.957	3.800	3.931	3.915	3.943
Cr	0.000	0.006	0.002	0.000	0.002	0.000	0.020	0.014	0.015	0.006
Fe+3	0.230	0.218	0.179	0.188	0.117	0.203	0.233	0.188	0.230	0.102
total	4.204	4.161	4.147	4.152	4.074	4.160	4.053	4.133	4.160	4.051
Fe+2	3.543	2.551	2.785	2.804	2.931	2.565	2.134	3.159	1.786	3.021
Mg	1.540	2.612	2.233	2.228	2.065	2.592	2.756	1.808	3.228	1.700
Mn	0.153	0.065	0.095	0.101	0.095	0.061	0.032	0.107	0.035	0.104
Ca	0.653	0.688	0.784	0.770	0.854	0.689	1.045	0.858	0.867	1.146
Na	0.005	0.002	0.020	0.014	0.012	0.008	0.003	0.000	0.003	0.001
total	5.894	5.918	5.917	5.917	5.957	5.915	5.970	5.932	5.919	5.972
% molécu	laire									
Alm	60.16	43.12	47.23	47.50	49.30	43.42	35.76	53.25	30.19	50.59
And	5.86	5.53	4.55	4.78	2.95	5.15	5.86	4.75	5.83	2.56
Gro	5.23	5.95	8.69	8.27	11.36	6.51	11.15	9.36	8.44	16.48
Pyr	26.15	44.15	37.87	37.74	34.74	43.88	46.19	30.48	54.56	28.47
Spe	2.60	1.10	1.61	1.71	1.60	1.03	0.54	1.80	0.59	1.74
Uva	0.00	0.15	0.05	0.00	0.05	0.00	0.50	0.35	0.38	0.15

lame	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	B2-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT452	GT453	GT454	GT455	GT456	GT457	GT458	GT459	GT460	GT461
note	<- b	b ->	<->	С	<->	<- b	±b	±c ->	<->	<- b
SiO2	38.21	38.26	38.12	38.01	38.13	38.24	38.02	38.77	39.13	38.29
TiO2	0.08	0.04	0.05	0.26	0.03	0.05	0.02	0.10	0.15	0.11
A1203	21.57	21.61	21.49	21.49	21.41	21.47	21.53	21.56	21.70	21.39
Cr203	0.09	0.06	0.07	0.02	0.06	0.08	0.08	0.00	0.04	0.05
Fe203	1.41	0.95	1.35	0.97	0.92	1.07	1.68	2.05	1.57	1.33
FeO	23.87	24.28	24.50	24.65	25.18	24.19	23.24	21.89	21.96	24.68
MgO	6.70	6.52	6.33	6.36	6.08	6.05	6.97	8,48	8.83	6.68
MnO	0.79	0.80	0.95	0.93	0.93	0.94	0.81	0.77	0.72	1.29
Ca0	7.13	7.08	6.89	6.85	6.72	7.63	7.00	6.73	6.48	6.18
Na2O	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.04	0.02
total	99.86	99.61	99.76	99.54	99.47	99.73	99.36	100.35	100.62	100.02
formule	structu	rale cal	culée su	nr 24 ox;	ygènes					
Si	5.931	5.955	5.940	5.934	5.966	5.957	5.920	5.929	5.952	5.950
ті	0.009	0.004	0.005	0.031	0.003	0.005	0.003	0.011	0.017	0.013
total	5.940	5.959	5.945	5.965	5.969	5.962	5.923	5.940	5.969	5,963
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.945	3.963	3.947	3.953	3.948	3.942	3.951	3.886	3.890	3.917
Cr	0011	0.007	0.008	0.003	0.008	0.010	0.010	0.000	0.005	0.006
Fe+3	0.164	0.111	0.158	0.114	0.108	0.126	0.197	0.236	0.179	0.156
total	4.120	4.081	4.113	4.070	4.064	4.078	4.158	4.122	4.074	4.079
Fe+2	3.098	3.160	3.192	3.218	3.295	3.152	3.026	2.799	2.794	3.207
Mg	1.550	1.512	1.470	1.479	1.419	1.405	1.616	1.932	2.003	1.547
Mn	0.104	0.106	0.125	0.123	0.123	0.125	0.107	0.100	0.093	0.170
Ca	1.185	1.181	1.149	1.145	1.127	1.274	1.168	1.103	1.056	1.028
Na	0.003	0.003	0.005	0.000	0.003	0.004	0.002	0.001	0.012	0.007
total	5.940	5.962	5.941	5.965	5.967	5.960	5.919	5.935	5.958	5.959
% molécu	laire									
Alm	52.18	53.03	53.77	53.95	55.25	52.92	51.14	47.17	46.99	53.88
And	4.14	2.79	3.99	2.87	2.72	3.17	4.99	5.97	4.52	3.93
Gro	15.54	16.85	15.16	16.25	15.98	17.97	14.49	12.62	13.12	13.19
Pyr	26.11	25.37	24.76	24.79	23.79	23.59	27.31	32.56	33.69	25.99
Spe	1.75	1.78	2.11	2.06	2.06	2.10	1.81	1.69	1.56	2.86
Ūva	0.28	0.18	0.20	0.08	0.20	0.25	0.25	0.00	0.13	0.15

GT453-GT458: Grt incluant CX509 et OX452.

516

lame	A5-7	A5-7	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT462	GT463	GT464	GT465	GT466	GT467	GT468	GT469	GT470	GT471
note	C ->	<- b	c	С	C ->	<->	<- b	b ->	<->	<- C
SiO2	38.67	38.87	39.38	39.21	39.95	39.81	38.86	39.11	39.38	39.56
TiO2	0.11	0.11	0.17	0.18	0.09	0.11	0.12	0.14	0.11	0.13
A1203	21.67	21.66	22.03	22.07	22.36	22.45	21.98	22.23	22.40	22.35
Cr203	0.02	0.05	0.03	0.03	0.01	0.03	0.04	0.08	0.05	0.03
Fe203	2.05	1.71	1.85	2.19	1.76	1.73	0.94	1.84	1.93	1.81
FeO	21.53	21.66	20.08	20.50	18.00	17.76	23.48	19.28	18.06	18.05
MgO	8.99	8.76	10.65	10.60	11.96	11.94	7.69	9.83	11.35	11.36
MnO	0.68	0.72	0.46	0.43	0.46	0.44	1.83	0.63	0.58	0.60
Ca0	6.23	6.52	5.91	5.56	6.21	6.28	5.85	7.35	6.38	6.58
Na2O	0.02	0.05	0.03	0.02	0.02	0.03	0.01	0.01	0.03	0.02
total	99.97	100.11	100.59	100.79	100.82	100.58	100.80	100.50	100.27	100.49
formule	structu	rale cal	culée su	ir 24 ox	ygènes					
Si	5.917	5.942	5.926	5.900	5.937	5.925	5.948	5.900	5.902	5.915
Ti	0.012	0.012	0.019	0.021	0.010	0.012	0.014	0.016	0.013	0.015
total	5.929	5.954	5.945	5.921	5.947	5.937	5.962	5.916	5.915	5.930
						0 000	0 000	0 000	0.000	0 000
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AL	3.909	3.903	3.907	3.914	3.916	3.939	3.965	3.953	0.007	0.004
Cr	0.003	0.006	0.004	0.003	0.001	0.004	0.005	0.009	0.007	0.004
Fe+3	0.236	0.197	0.209	0.248	0.197	0.194	0.108	0.209	0.218	0.203
total	4.148	4.106	4.120	4.165	4.114	4.157	4.078	4.1/1	4.104	4.145
Fot?	2 756	2 769	2 526	2 580	2 237	2.211	3.006	2.433	2,263	2.257
Ma	2.750	1 997	2.389	2.378	2.650	2.650	1.754	2.210	2.535	2.533
Mn	0 089	0 093	0.058	0.054	0.058	0.055	0.237	0.080	0.074	0.076
Ca	1.022	1.067	0.952	0.897	0.988	1.002	0.959	1.187	1.025	1.054
Na	0.006	0.014	0.008	0.006	0.007	0.008	0.003	0.004	0.008	0.005
total	5,923	5,940	5.933	5.915	5.940	5.926	5.959	5.914	5.905	5.925
* molécu	laire									
Alm	46.58	46.73	42.63	43.66	37.70	37.36	50.47	41.17	38.38	38.12
And	5.98	4.99	5.29	6.30	4.98	4.92	2.72	5.30	5.55	5.14
Gro	11.21	12.87	10.68	8.81	11.65	11.91	13.26	14.55	11.66	12.56
Pyr	34.65	33.70	40.32	40.24	44.67	44.78	29.45	37.39	42.99	42.79
Spe	1.50	1.57	0.98	0.91	0.98	0.93	3.98	1.35	1.25	1.28
Uva	0.08	0.15	0.10	0.08	0.03	0.10	0.13	0.23	0.18	0.10

lame	A6-64	A6-64	A6-64	A6-64	A6-64	A6-64	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT501	GT502	GT503	GT504	GT505	GT506	GT510	GT511	GT512	GT513
note	с	С	С	С	С	С	b	С	С	С
SiO2	38.97	38.19	39.08	39.21	40.28	38.62	37.53	37.18	37.71	37.99
TiO2	0.16	0.31	0.12	0.14	0.15	0.10	0.05	0.05	0.06	0.13
A1203	21.84	21.39	22.02	22.11	22.62	21.71	21.10	20.97	21.33	21.50
Cr203	0.16	0.15	0.05	0.10	0.11	0.11	0.03	0.01	0.01	0.00
Fe203	2.33	1.13	2.05	1.84	2.85	1.55	1.84	2.73	1.62	1.99
FeO	19.28	24.85	20.79	19.83	13.97	23.66	25.35	25.69	25.17	23.81
MgO	10.51	7.50	10.64	11.20	15.12	8.60	5.83	6.08	6.33	7.65
MnO	0.43	1.06	0.40	0.33	0.29	0.59	3.22	2.59	2.50	0.97
Ca0	6.42	5.16	5.20	5.38	5.44	5.19	4.61	4.16	4.80	5.55
Na20	0.02	0.01	0.01	0.00	0.02	0.01	0.00	0.01	0.00	0.00
total	100.12	99.75	100.36	100.14	100.85	100.14	99.56	99.47	99.53	99.59
formule	structur	ale cal	culée su	ar 24 ox	ygènes					
Si	5.895	5.933	5.907	5.909	5.879	5.929	5.922	5.877	5.923	5.901
Ti	0.018	0.036	0.014	0.016	0.016	0.012	0.005	0.006	0.007	0.015
total	5.913	5.969	5.921	5.925	5.895	5.941	5.927	5.883	5.930	5.916
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.893	3.916	3.922	3.927	3.891	3.928	3.924	3.908	3.949	3.936
Cr	0.020	0.018	0.006	0.011	0.013	0.013	0.003	0.001	0.001	0.000
Fe+3	0.266	0.132	0.233	0.209	0.313	0.179	0.218	0.325	0.191	0.233
total	4.179	4.066	4.161	4.147	4.217	4.120	4.145	4.234	4.141	4.169
Fe+2	2.439	3.228	2.627	2.499	1.706	3.037	3.345	3.396	3.306	3.093
Mg	2.370	1.736	2.396	2.516	3.290	1.967	1.372	1.434	1.482	1.770
Mn	0.055	0.140	0:052	0.042	0.036	0.077	0.430	0.347	0.332	0.127
Ca	1.040	0.859	0.841	0.869	0.850	0.854	0.780	0.704	0.808	0.924
Na	0.005	0.003	0.003	0.001	0.007	0.004	0.001	0.002	0.001	0.001
total	5.909	5.966	5.919	5.927	5.889	5.939	5.928	5.883	5.929	5.915
% molécu	ulaire									
Alm	41.31	54.13	44.40	42.17	29.00	51.17	56.44	57.75	55.77	52.30
And	6.76	3.32	5.91	5.29	7.98	4.52	5.52	8.29	4.83	5.91
Gro	10.35	10.63	8.16	9.10	6.14	9.54	7.57	3.66	8.77	9.71
Pyr	40.14	29.11	40.50	42.46	55.93	33.14	23.15	24.38	25.00	29.93
Spe	0.93	2.35	0.88	0.71	0.61	1.30	7.25	5.90	5.60	2.15
Uva	0.51	0.45	0.15	0.28	0.33	0.33	0.08	0.03	0.03	0.00

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT514	GT515	GT516	GT517	GT518	GT519	GT520	GT521	GT522	GT523
note	с	b	b	b	b	b	b ->	<- C	b	
SiO2	38.89	37.88	37.61	38.17	38.06	34.79	37.90	38.96	38.02	38.81
TiO2	0.16	0.03	0.00	0.01	0.00	0.03	0.18	0.17	0.03	0.13
A1203	21.96	21.44	21.62	21.82	21.68	24.36	21.41	22.00	21.58	22.03
Cr203	0.00	0.02	0.04	0.00	0.02	0.02	0.01	0.05	0.00	0.01
Fe203	1.85	1.24	1.72	1.54	1.30	5.18	1.78	2.07	1.43	1.54
FeO	20.38	26.96	26.83	26.31	26.21	22.99	24.04	19.65	26.64	22.09
MgO	10.49	7.67	7.38	8.28	8.10	7.52	7.38	10.74	7.74	10.10
MnO	0.49	1.10	1.31	0.98	1.15	1.11	1.01	0.38	1.37	0.70
Ca0	5.54	2.77	2.84	2.72	2.89	3.17	5.60	5.86	2.85	4.43
Na20	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01
total	99.76	99.11	99.35	99.84	99.41	99.18	99.32	99.89	99.67	99.85
formule	structu	rale cal	culée su	ır 24 ox	ygènes					
Si	5.909	5.942	5.899	5.918	5.931	5.444	5.910	5.898	5.930	5.918
Ti	0.018	0.003	0.000	0.001	0.000	0.004	0.021	0.020	0.003	0.015
total	5.927	5.945	5.899	5.919	5.931	5.448	5.931	5.918	5.933	5.933
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.932	3.963	3.997	3.988	3.982	4.494	3.934	3.925	3.967	3.959
Cr	0.000	0.002	0.005	0.000	0.003	0.003	0.002	0.006	0.000	0.001
Fe+3	0.212	0.147	0.203	0.179	0.153	0.610	0.209	0.236	0.167	0.176
total	4.144	4.112	4.205	4.167	4.138	5.107	4.145	4.167	4.134	4.136
Fe+2	2.590	3.537	3.519	3.412	3.416	3.009	3.135	2.487	3.475	2.817
Mg	2.376	1.793	1.725	1.915	1.881	1.754	1.716	2.424	1.799	2.296
Mn	0.063	0.146	0.174	0.129	0.152	0.148	0.133	0.048	0.180	0.091
Ca	0.902	0.465	0.478	0.452	0.482	0.531	0.935	0.951	0.477	0.724
Na	0.000	0.000	0.000	0.005	0.001	0.002	0.004	0.004	0.002	0.004
total	5.931	5.941	5.896	5.913	5.932	5.444	5.923	5.914	5.933	5.932
% molécu	ılaire									10 50
Alm	43.67	59.54	59.68	57.75	57.60	51.61	52.96	42.08	58.59	47.52
And	5.36	3.71	5.16	4.54	3.87	15.69	5.30	5.99	4.22	4.45
Gro	9.85	4.06	2.82	3.11	4.18	0.00	10.45	9.95	3.82	7.73
Pyr	40.06	30.18	29.26	32.41	31.71	30.08	28.99	41.02	30.33	38.73
Spe	1.06	2.46	2.95	2.18	2.56	2.54	2.25	0.81	3.03	1.54
Uva	0.00	0.05	0.13	0.00	0.08	0.08	0.05	0.15	0.00	0.03

GT515-GT519, GT522: Grt2 formant couronne autour Grt1 (GT520, GT521).

lame	C45-7	C45-7	C45-7	C45-7	C45-7	C45-7	C45-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT524	GT525	GT526	GT527	GT528	GT529	GT530	GT531	GT532	GT533
note	±c? ->	<->	b ->	<- ±b	с	c ->	<- b	b ->	±c ->	<- C
SiO2	38.85	38.74	38.14	37.56	38.89	38.61	37.98	37.85	38.45	38.68
TiO2	0.12	0.15	0.13	0.01	0.00	0.21	0.16	0.12	0.10	0.10
A1203	22.08	22.05	21.77	21.33	19.15	21.82	21.44	21.23	21.60	21.77
Cr203	0.00	0.00	0.01	0.01	0.00	0.00	0.02	0.05	0.03	0.02
Fe203	1.70	1.82	1.38	1.11	2.33	1.24	1.04	2.11	2.59	2.16
FeO	21.41	21.41	24.08	28.63	26.52	22.70	25.61	24.05	20.98	21.25
MgO	10.15	10.04	7.78	5.54	7.64	8.67	6.33	6.63	8.97	9.03
MnO	0.67	0.69	0.85	1.31	1.48	0.70	1.16	1.20	0.72	0.69
Ca0	4.80	4.92	5.25	3.95	3.71	5.76	5.65	6.43	6.49	6.40
Na20	0.05	0.04	0.04	0.01	0.02	0.03	0.05	0.00	0.01	0.01
total	99.83	99.86	99.43	99.46	99.74	99.74	99.44	99.67	99.94	100.11
formule	structur	cale cal	culée su	r 24 ox	ygènes					
Si	5.915	5.903	5.919	5.944	6.097	5.931	5.948	5.907	5.890	5.908
Ti	0.014	0.017	0.015	0.001	0.000	0.024	0.019	0.014	0.012	0.011
total	5.929	5.920	5.934	5.945	6.097	5.955	5.967	5.921	5.902	5.919
Ті	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.961	3.960	3.982	3.978	3.538	3.952	3.958	3.906	3.899	3.918
Cr .	0.000	0.000	0.001	0.002	0.000	0.000	0.002	0.007	0.004	0.003
Fe+3	0.194	0.209	0.161	0.132	0.274	0.144	0.123	0.248	0.298	0.248
total	4.155	4.169	4.144	4.112	3.812	4.096	4.083	4.161	4.201	4.169
Fe+2	2.726	2.728	3.125	3.789	3.478	2.917	3.354	3.140	2.688	2.714
Mg	2.305	2.280	1.800	1.306	1.786	1.986	1.479	1.542	2.047	2.056
Mn	0.087	0.089	0.111	0.176	0.196	0.091	0.154	0.158	0.094	0.090
Ca	0.783	0.802	0.873	0.671	0.624	0.948	0.948	1.075	1.065	1.047
Na	0.014	0.011	0.013	0.003	0.005	0.007	0.017	0.002	0.002	0.004
total	5.915	5.910	5.922	5.945	6.089	5.949	5.952	5.917	5.896	5.911
% molécu	laire									
Alm	46.20	46.25	52.89	63.77	57.17	49.09	56.51	53.09	45.61	45.95
And	4.93	5.31	4.09	3.33	6.76	3.64	3.11	6.29	7.58	6.30
Gro	8.34	8.28	10.66	7.91	3.50	12.32	12.81	11.71	10.38	11.35
Pyr	39.06	38.65	30.46	21.98	29.36	33.42	24.92	26.07	34.73	34.81
Spe	1.47	1.51	1.88	2.96	3.22	1.53	2.59	2.67	1.59	1.52
Uva	0.00	0.00	0.03	0.05	0.00	0.00	0.05	0.18	0.10	0.08

lame	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7	A5-7
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT534	GT535	GT536	GT537	GT538	GT539	GT540	GT541	GT542	GT543
note	b ->	C ->	C ->	<- b		±c ->	<- b	b ->	b ->	<->
SiO2	38.67	38.57	38.65	38.51	38.75	38.72	37.98	38.92	38.75	38.79
TiO2	0.15	0.13	0.10	0.08	0.12	0.11	0.10	0.14	0.13	0.12
A1203	21.59	21.75	21.54	21.56	21.44	21.69	21.17	21.78	21.67	21.67
Cr203	0.08	0.03	0.04	0.05	0.05	0.07	0.05	0.05	0.01	0.04
Fe203	1.89	2.33	2.31	2.07	2.18	2.26	1.75	1.72	2.29	1.79
FeO	22.09	21.11	21.06	21.85	21.31	21.07	24.51	21.19	20.84	21.47
MgO	8.86	8.93	8.91	8.74	9.06	9.15	6.63	9.29	9.12	9.09
MnO	0.80	0.74	0.80	0.72	0.78	0.70	1.12	0.76	0.74	0.80
Ca0	6.02	6.46	6.64	6.19	6.31	6.42	6.29	6.37	6.65	6.24
Na2O	0.00	0.03	0.01	0.01	0.03	0.02	0.00	0.00	0.01	0.00
total	100.15	100.08	100.06	99.78	100.03	100.21	99.60	100.22	100.21	100.01
formule	structu	rale cal	culée su	r 24 ox	ygènes					
Si	5.920	5.896	5.913	5.918	5.929	5.907	5.933	5.927	5.909	5.929
Ti	0.017	0.014	0.011	0.009	0.013	0.013	0.012	0.017	0.015	0.014
total	5.937	5.910	5.924	5.927	5.942	5.920	5.945	5.944	5.924	5.943
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.896	3.918	3.884	3.904	3.866	3.900	3.898	3.909	3.894	3.905
Cr	0.009	0.004	0.004	0.006	0.006	0.008	0.006	0.006	0.002	0.005
Fe+3	0.218	0.269	0.266	0.239	0.251	0.260	0.206	0.197	0.263	0.206
total	4.123	4.191	4.154	4.149	4.123	4.168	4.110	4.112	4.159	4.116
Fe+2	2.828	2.699	2.695	2.808	2.726	2.687	3.202	2.699	2.658	2.744
Mg	2.021	2.035	2.032	2.001	2.066	2.081	1.543	2.109	2.074	2.071
Mn	0.103	0.096	0.104	0.093	0.101	0.090	0.148	0.098	0.096	0.103
Ca	0.988	1.058	1.088	1.019	1.034	1.049	1.053	1.039	1.086	1.022
Na	0.000	0.010	0.004	0.003	0.008	0.006	0.001	0.000	0.003	0.000
total	5.940	5.898	5.923	5.924	5.935	5.913	5.947	5.945	5.917	5.940
% molécu	laire									
Alm	47.61	45.84	45.53	47.42	45.99	45.49	53.85	45.40	44.94	46.20
And	5.51	6.85	6.74	6.05	6.35	6.60	5.20	4.97	6.67	5.20
Gro	10.90	11.01	11.54	11.00	10.94	10.95	12.36	12.35	11.64	11.88
Pyr	34.02	34.56	34.33	33.79	34.86	35.23	25.95	35.48	35.07	34.87
Spe	1.73	1.63	1.76	1.57	1.70	1.52	2.49	1.65	1.62	1.73
Uva	0.23	0.10	0.10	0.15	0.15	0.20	0.15	0.15	0.05	0.13

lame	A5-7	A5-7	A5-7	A5-7	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT544	GT545	GT546	GT547	GT701	GT702	GT703	GT704	GT705	GT706
note	С	<->	<->	<- b	b ->	<->	<->	<->	±c ->	c ->
SiO2	38.70	38.71	38.82	38.50	36.94	38.42	38.80	39.19	39.21	39.40
TiO2	0.14	0.15	0.14	0.11	0.15	0.11	0.13	0.12	0.10	0.12
A1203	21.69	21.63	21.62	21.64	21.00	21.75	21.91	21.93	21.99	22.12
Cr203	0.07	0.03	0.06	0.07	0.07	0.04	0.05	0.01	0.02	0.00
Fe203	1.97	2.08	2.13	2.30	2.47	2.64	3.01	2.63	2.53	2.52
FeO	21.26	21.15	21.22	20.78	23.68	19.28	17.42	17.33	17.29	17.40
MgO	9.09	9.15	9.14	8.95	5.67	10.35	11.62	11.95	11.88	11.93
MnO	0.80	0.81	0.84	0.77	2.92	0.58	0.48	0.44	0.45	0.43
Ca0	6.22	6.29	6.31	6.69	5.85	6.01	6.13	6.13	6.26	6.23
Na2O	0.03	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.02
total	99.97	100.01	100.30	99.83	98.76	99.19	99.56	99.74	99.74	100.17
formule	structu	rale cal	culée su	r 24 ox	ygènes					
Si	5.918	5.916	5.919	5.899	5.867	5.874	5.861	5.894	5.896	5.898
Ti	0.016	0.017	0.016	0.012	0.017	0.013	0.015	0.014	0.012	0.014
total	5.934	5.933	5.935	5.911	5.884	5.887	5.876	5.908	5.908	5.912
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.909	3.897	3.885	3.907	3.932	3.919	3.902	3.888	3.898	3.903
Cr	0.008	0.004	0.008	0.009	0.008	0.004	0.006	0.001	0.003	0.000
Fe+3	0.227	0.239	0.245	0.266	0.295	0.304	0.343	0.298	0.286	0.283
total	4.144	4.140	4.138	4.182	4.235	4.227	4.251	4.187	4.187	4.186
Fe+2	2.719	2.704	2.706	2.662	3.146	2.465	2.200	2.180	2.174	2.179
Mg	2.072	2.084	2.076	2.044	1.342	2.359	2.617	2.678	2.663	2.662
Mn	0.103	0.104	0.109	0.100	0.393	0.075	0.062	0.056	0.058	0.055
Ca	1.018	1.031	1.030	1.098	0.996	0.985	0.991	0.987	1.008	0.999
Na	0.009	0.004	0.007	0.005	0.004	0.002	0.004	0.004	0.003	0.006
total	5.921	5.927	5.928	5.909	5.881	5.886	5.874	5.905	5.906	5.901
% molécu	laire									
Alm	45.99	45.65	45.70	45.09	53.53	41.89	37.48	36.94	36.83	36.96
And	5.76	6.05	6.21	6.76	7.53	7.75	8.76	7.57	7.27	7.20
Gro	11.26	11.25	10.99	11.61	9.21	8.89	7.96	9.13	9.73	9.75
Pyr	35.05	35.18	35.06	34.62	22.83	40.09	44.58	45.38	45.11	45.16
Spe	1.74	1.76	1.84	1.69	6.69	1.27	1.06	0.95	0.98	0.93
Uva	0.20	0.10	0.20	0.23	0.20	0.10	0.15	0.03	0.08	0.00

522

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT707	GT709	GT710	GT711	GT712	GT713	GT714	GT715	GT716	GT717
note	±c ->	<->	<->	<->	<- b					
SiO2	39.07	39.22	39.31	38.28	37.40	37.36	38.74	38.71	38.82	38.89
TiO2	0.14	0.10	0.13	0.09	0.13	0.12	0.10	0.10	0.15	0.13
A1203	22.09	21.97	22.06	21.55	21.05	21.26	21.93	21.96	22.01	21.89
Cr203	0.04	0.01	0.00	0.01	0.02	0.07	0.09	0.07	0.05	0.02
Fe203	3.06	2.98	2.56	3.07	1.96	2.52	3.12	2.93	3.10	2.94
Fe0	16.94	17.08	17.43	19.63	23.79	22.80	17.13	17.10	17.10	17.37
MgO	11.95	11.96	11.84	9.47	5.79	6.06	11.14	11.27	11.56	11.33
MnO	0.50	0.49	0.48	0.96	3.01	1.45	0.59	0.61	0.52	0.64
Ca0	6.26	6.27	6.31	6.26	5.96	7.50	6.86	6.64	6.42	6.44
Na20	0.02	0.01	0.01	0.07	0.01	0.03	0.01	0.01	0.02	0.04
total	100.07	100.09	100.13	99.39	99.12	99.17	99.71	99.40	99.75	99.69
formule	structu	cale cal	culée su	ır 24 ox	ygènes					
Si	5.859	5.880	5.893	5.873	5.908	5.868	5.854	5.861	5.851	5.874
Ti	0.016	0.011	0.015	0.010	0.015	0.015	0.012	0.011	0.017	0.015
total	5.875	5.891	5.908	5.883	5.923	5.883	5.866	5.872	5.868	5.889
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.905	3.882	3.897	3.898	3.919	3.935	3.906	3.919	3.911	3.896
Cr	0.005	0.002	0.000	0.001	0.002	0.008	0.010	0.008	0.006	0.002
Fe+3	0.346	0.337	0.289	0.354	0.233	0.298	0.354	0.334	0.351	0.334
total	4.256	4.221	4.186	4.253	4.154	4.241	4.270	4.261	4.268	4.232
Fe+2	2.124	2.142	2.185	2.519	3.144	2.995	2.165	2.165	2.155	2.193
Mg	2.671	2.674	2.645	2.167	1.364	1.418	2.509	2.543	2.598	2.551
Mn	0.064	0.062	0.060	0.125	0.403	0.193	0.075	0.078	0.066	0.081
Ca	1.006	1.007	1.014	1.030	1.010	1.261	1.111	1.076	1.037	1.041
Na	0.006	0.004	0.002	0.022	0.002	0.008	0.002	0.004	0.007	0.012
total	5.871	5.889	5.906	5.863	5.923	5.875	5.862	5.866	5.863	5.878
% moléc≀	ılaire									
Alm	36.21	36.40	37.01	43.13	53.10	51.05	36.95	36.93	36.80	37.38
And	8.85	8.59	7.34	9.09	5.90	7.62	9.06	8.55	8.99	8.54
Gro	8.18	8.47	9.83	8.52	11.10	13.67	9.64	9.60	8.56	9.15
Pyr	45.54	45.44	44.80	37.10	23.04	24.17	42.82	43.38	44.36	43.49
Spe	1.09	1.05	1.02	2.14	6.81	3.29	1.28	1.33	1.13	1.38
Uva	0.13	0.05	0.00	0.03	0.05	0.20	0.26	0.20	0.15	0.05

lame	C45-19	C45-19	C45-19							
roche	GNL	GNL	GNL	GNL						
analyse	GT718	GT719	GT720	GT721	GT722	GT723	GT724	GT725	GT726	GT727
SiO2	38.94	39.01	38.88	38.78	41.04	38.63	37.75	37.74	38.51	38.84
TiO2	0.11	0.11	0.12	0.09	0.25	0.11	0.14	0.36	0.10	0.10
A1203	22.00	21.77	21.93	22.09	22.15	21.89	21.38	21.32	21.71	22.00
Cr203	0.07	0.05	0.05	0.02	0.07	0.07	0.07	0.08	0.06	0.05
Fe203	2.84	3.52	2.94	3.01	1.07	2.87	2.29	3.91	2.96	3.10
FeO	17.27	16.14	17.05	17.04	17.49	17.88	22.12	20.75	18.45	17.18
MgO	11.44	11.75	11.29	11.18	10.46	10.20	6.78	7.63	9.98	11.39
MnO	0.60	0.55	0.59	0.59	0.51	0.58	1.11	1.15	0.66	0.52
CaO	6.49	6.54	6.83	6.86	7.03	7.45	7.71	7.63	7.11	6.59
Na2O	0.01	0.16	0.02	0.02	0.78	0.02	0.02	0.03	0.03	0.02
total	99.77	99.60	99.70	99.68	100.85	99.70	99.37	100.60	99.57	99.79
formule structurale calculée sur 24 oxygènes										
Si	5.870	5.876	5.869	5.855	6.086	5.864	5.883	5.802	5.869	5.858
Ti	0.013	0.012	0.013	0.010	0.000	0.013	0.017	0.042	0.012	0.011
total	5.883	5.888	5.882	5.865	6.086	5.877	5.900	5.844	5.881	5.869
Ті	0.000	0.000	0.000	0.000	0.027	0.000	0.000	0.000	0.000	0.000
Al	3.910	3.864	3.901	3.931	3.871	3.917	3.927	3.863	3.900	3.910
Cr	0.008	0.006	0.006	0.003	0.008	0.009	0.008	0.009	0.007	0.005
Fe+3	0.322	0.399	0.334	0.343	0.120	0.328	0.269	0.452	0.340	0.351
total	4.240	4.269	4.241	4.277	4.026	4.254	4.204	4.324	4.247	4.266
Fe+2	2.178	2.033	2.152	2.151	2.169	2.270	2.883	2.667	2.351	2.167
Mg	2.570	2.638	2.541	2.516	2.312	2.307	1.575	1.749	2.268	2.559
Mn	0.076	0.071	0.075	0.075	0.064	0.074	0.147	0.149	0.085	0.067
Ca	1.048	1.056	1.104	1.110	1.117	1.212	1.288	1.257	1.161	1.065
Na	0.004	0.048	0.005	0.006	0.225	0.006	0.005	0.009	0.008	0.006
total	5.876	5.846	5.877	5.858	5.887	5.869	5.898	5.831	5.873	5.864
% moléculaire										
Alm		35.06	36.65	36.76	38.31	38.72	48.92	45.81	40.09	36.99
And		10.32	8.53	8.79	3.18	8.39	6.85	11.65	8.70	8.99
Gro		7.74	10.12	10.10	16.34	12.05	14.81	9.71	10.92	9.06
Pyr		45.50	43.27	42.99	40.83	39.35	26.73	30.04	38.67	43.68
Spe		1.22	1.28	1.28	1.13	1.26	2.49	2.56	1.45	1.14
Uva		0.16	0.15	0.08	0.21	0.23	0.20	0.23	0.18	0.13
Appendice E7 GRENAT

lame	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19	C45-19
roche	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL	GNL
analyse	GT728	GT729	GT730	GT731	GT732	GT733	GT734	GT735	GT736
SiO2	38.88	38.72	38.79	38.84	38.96	38.85	38.72	39.00	38.48
TiO2	0.13	0.12	0.13	0.12	0.12	0.13	0.15	0.10	0.12
A1203	21.88	22.09	22.11	21.98	22.04	22.05	22.08	22.03	21.77
Cr203	0.05	0.06	0.06	0.04	0.02	0.05	0.03	0.04	0.05
Fe203	3.15	2.75	3.23	2.83	2.52	2.49	3.33	2.84	2.75
FeO	16.86	17.16	17.03	17.27	17.46	17.42	16.84	17.03	18.65
MgO	11.27	11.14	11.33	11.35	11.30	11.19	11.29	11.14	9.62
MņO	0.64	0.52	0.62	0.64	0.58	0.58	0.65	0.60	0.68
Ca0	6.91	6.83	6.66	6.54	6.55	6.65	6.82	7.07	7.53
Na2O	0.04	0.02	0.03	0.01	0.02	0.02	0.02	0.03	0.00
total	99.81	99.41	99.99	99.62	99.57	99.43	99.93	99.88	99.65
formule	structu	rale cal	culée su	ır 24 ox	ygènes				
Si	5.864	5.860	5.841	5.867	5.884	5.878	5.834	5.875	5.868
Ti	0.015	0.013	0.015	0.014	0.014	0.014	0.017	0.012	0.014
total	5.879	5.873	5.856	5.881	5.898	5.892	5.851	5.887	5.882
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	3.888	3.940	3.923	3.913	3.923	3.932	3.921	3.911	3.913
Cr	0.006	0.007	0.007	0.004	0.003	0.006	0.003	0.004	0.007
Fe+3	0.357	0.313	0.366	0.322	0.286	0.283	0.378	0.322	0.316
total	4.251	4.260	4.296	4.239	4.212	4.221	4.302	4.237	4.236
Fe+2	2.126	2.172	2.144	2.181	2.204	2.204	2.121	2.146	2.378
Mg	2.533	2.513	2.543	2.556	2.544	2.524	2.536	2.502	2.186
Mn	0.082	0.067	0.079	0.082	0.074	0.074	0.082	0.077	0.088
Ca	1.116	1.108	1.074	1.059	1.060	1.078	1.101	1.142	1.230
Na	0.013	0.006	0.008	0.003	0.006	0.006	0.006	0.010	0.001
total	5.870	5.866	5.848	5.881	5.888	5.886	5.846	5.877	5.883
% molécu	laire								
Alm	36.30	37.06	36.71	37.10	37.47	37.48	36.32	36.58	40.43
And	9.14	8.01	9.40	8.22	7.29	7.22	9.71	8.23	8.06
Gro	9.76	10.72	8.81	9.70	10.65	10.96	9.07	11.13	12.67
Pyr	43.25	42.88	43.54	43.48	43.25	42.93	43.42	42.65	37.16
Spe	1.40	1.14	1.35	1.40	1.26	1.26	1.40	1.31	1.50
Uva	0.15	0.18	0.18	0.10	0.08	0.15	0.08	0.10	0.18

Appendice E8 SCAPOLITE

minéral	Scp									
lame	A2-7	A2-7	A5-1	A5-1	A5-1	A5-1	B3-89	B3-89	B3-89	B3-89
roche	CXN									
analyse	SC1	SC2	SC4	SC5	SC6	SC7	SC8	SC9	SC10	SC11
SiO2	50.66	48.17	44.84	45.00	44.74	44.26	43.38	43.81	44.55	44.51
A1203	23.88	25.39	25.32	25.18	25.26	25.24	25.64	25.35	26.50	26.49
TiO2	0.00	0.05	0.05	0.00	0.01	0.01	0.10	0.00	0.03	0.01
Fe0	0.29	0.21	0.05	0.13	0.08	0.07	0.08	0.21	0.07	0.15
MnO	0.02	0.01	0.07	0.00	0.00	0.05	0.00	0.00	0.03	0.04
MgO	0.01	0.03	0.01	0.09	0.02	0.04	0.01	0.24	0.01	0.00
ZnO	0.13	0.02	0.03	0.00	0.08	0.05	0.22	0.00	0.08	0.00
Ca0	11.63	14.22	16.63	16.03	16.05	16.67	17.14	16.68	16.80	16.96
Sr0	0.10	0.11	0.03	0.05	0.01	0.01	0.23	0.26	0.21	0.21
BaO	0.00	0.00	0.03	0.01	0.00	0.00	0.05	0.09	0.04	0.04
Na2O	6.90	5.33	3.96	3.95	4.26	4.01	3.61	3.69	3.44	3.38
к20	0.60	0.46	0.61	0.90	0.43	0.33	0.31	0.26	0.69	0.60
F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cl	1.82	1.23	1.21	1.14	1.18	1.02	0.57	0.67	1.11	1.02
SO3	0.03	0.06	0.89	0.91	0.99	1.02	0.80	1.04	0.16	0.27
total	96.07	95.29	93.73	93.39	93.11	92.93	92.14	92.30	93.72	93.69

TITANITE

minéral	Ttn	Ttn	Ttn	Ttn	Ttn '	Ttn	Ttn	Ttn	Ttn	Ttn
lame	A5-18	в6-76	B3-89	A7-1	A7-1	D15-3	D15-3	C14-2	C14-2	C14-2
roche	CXN	MNT	CXN	CXN	CXN	CSL	CSL	CXN	CXN	CXN
analyse	TT1	TT3a	TT3b	TT6a	TT6b	28	30	34	35	36
SiO2	28.20	29.60	30.07	30.09	29.73	29.66	29.43	29.35	29.62	29.13
A1203	1.81	1.35	1.85	2.20	2.23	3.02	3.57	3.19	3.35	2.80
TiO2	38.36	37.02	36.12	36.70	36.75	36.05	34.86	35.55	35.24	35.98
Cr203	0.12	0.00	0.04	0.00	0.01	0.00	0.03	0.01	0.00	0.01
FeO	0.63	0.90	0.35	0.32	0.17	0.31	0.37	0.73	0.61	0.61
NiO	0.00	0.02	0.00	0.03	0.02	0.00	0.03	0.00	0.00	0.01
MnO	0.00	0.05	0.05	0.07	0.05	0.02	0.02	0.04	0.00	0.04
MgO	0.00	0.00	0.00	0.03	0.03	0.02	0.02	0.11	0.08	0.05
Ca0	28.17	28.14	28.14	28.80	28.31	29.55	29.35	28.86	29.01	28.75
Na20	0.00	0.00/	0.00	0.00	0.00	0.03	0.02	0.02	0.02	0.01
К2О	0.02	0.06	0.12	0.00	0.00	0.00	0.00	0.00	0.01	0.00
total	97.31	97.14	96.74	98.24	97.30	98.66	97.69	97.86	97.95	97.39

minéral	Ms	Ms	Ms	Ms	Ms	Ms?	Ms?	Srp?	Tlc?	Tlc
lame	A5-18	A5-18	A5-38	A5-38	в2-7	A4-43	A4-43	A4-19	A4-19	A4-19
roche	CXN	CXN	DN	DN	GRL	NR	NR	WL	WL	WL
analyse	TA6a	TA7	TA4	TA5	21	24	25	TA6b	?5	97
sio2	43.96	44.03	44.33	44.73	46.53	49.37	49.96	45.05	49.39	56.70
A1203	34.40	33.74	36.57	36.47	36.91	32.67	31.79	0.03	0.06	0.19
, TiO2	0.00	0.08	0.07	0.01	0.00	0.03	0.02	0.08	0.01	0.01
Cr203	0.08	0.00	0.00	0.00	0.01	na	na	0.00	0.02	0.00
FeO	0.69	0.40	1.27	0.92	0.50	1.61	1.50	10.16	9.05	5.17
NiO	0.01	0.00	0.02	0.00	0.00	na	na	0.00	0.03	0.11
MnO	0.06	0.01	0.04	0.03	0.16	na	na	0.04	0.58	0.08
MgO	0.74	0.88	0.96	0.68	0.51	na	na	28.91	26.73	28.47
Ca0	1.31	0.70	0.41	0.41	0.09	0.39	0.53	0.15	0.27	0.10
BaO	na	na	0.31	0.45	na	0.05	0.24	na	na	na
Na2O	0.00	0.04	0.11	0.14	0.07	1.22	1.45	0.00	0.02	0.03
к20	10.55	11.15	10.24	10.52	11.33	10.51	9.97	0.11	0.12	0.05
total	91.80	91.03	93.33	96.36	96.05	95.85	95.44	84.53	86.28	90.89

Appendice E8 MUSCOVITE SERPENTINE TALC

TALC CALCITE

minéral	Tlc	Tlc	Tlc	Tlc	Cal	Cal	Cal	Cal	Cal	Cal
lame	A4-19	A4-19	A5-38	A5-38	A7-1	A7-1	A5-1	A5-1	C23-1	в3-6
roche	WL	WL	DN	DN	CXN	CXN	CXN	CXN	CXN	CXN
analyse	98	12	FU1	TA2	CA1	CA2	CA3	CA4	124	4
SiO2	56.38	52.70	52.14	52.42	0.12	0.11	0.05	0.04	0.01	0.01
A1203	0.28	0.02	0.03	0.01	0.01	0.02	0.02	0.02	0.00	0.00
TiO2	0.02	0.00	0.04	0.01	0.01	0.04	0.02	0.00	0.01	0.03
Cr203	0.04	0.00	0.00	0.03	0.03	0.00	0.00	0.00	0.00	0.02
FeO	5.69	7.45	8.43	20.63	0.05	0.19	1.34	1.42	1.05	0.55
NiO	0.02	0.00	0.05	0.01	0.02	0.00	0.05	0.05	0.00	0.04
MnO	0.23	0.31	0.11	0.59	0.00	0.05	0.48	0.25	0.26	0.20
MqO	27.77	18.28	25.75	14.31	0.12	0.00	2.40	2.20	2.78	1.05
Ca0	0.21	0.33	0.11	0.97	55.77	56.62	58.90	57.20	57.41	59.96
Na2O	0.03	0.06	0.00	0.34	0.00	0.02	0.00	0.17	0.00	0.00
к20	0.02	0.16	0.09	0.49	0.01	0.00	0.00	0.07	0.00	0.01
total	90.67	79.30	86.75	89.82	56.02	57.05	63.26	61.42	61.51	61.86

Appendice E8 ALLANITE

minéral	A11*	A11*
lame	A23-3	A23-3
roche	CXN	CXN
analyse	8	9
SiO2	31.99	33.73
A1203	17.64	20.15
TiO2	0.31	0.23
Cr203	0.00	0.00
FeO	11.43	10.93
NiO	0.03	0.02
MnO	0.10	0.04
MgO	1.13	0.73
Ca0	14.99	17.48
Na2O	0.03	0.01
к20	0.01	0.00
total	77.64	83.32

* Le spectre obtenu par EDS montre des pics en La, Ce, Pr, Nd, Sm.

Appendice F

TABLE DE CONTINGENCE

-	1	2	3	4	5	6	7	8	9
	I/L	F (o)	M (o)	Total	F (t)	M (t)	Total	(o-t) ² /t (F)	(o-t) ² /t (M)
а	< 0.3	28	15	43	25.6	17.4	73	0.225	0.331
b	0.3-0.4	54	16	70	41.7	28.3	70	3.628	5.346
с	0.4-0.5	64	39	103	61.4	41.6	103	0.110	0.163
d	0.5-0.6	88	61	149	88.9	60.2	149	0.009	0.016
е	0.6-0.7	106	78	184	109.7	74.3	184	0.034	0.184
f	0.7-0.8	64	57	121	72.2	48.8	121	0.931	1.378
g	0.8-0.9	64	44	108	64.4	43.6	108	0.003	0.004
h	0.9-1.0	27	16	43	25.6	17.4	43	0.077	0.113
i	1.0	25	26	51	30.4	20.6	51	0.959	1.416
j	Total	520	352	872	520	352	872	5.976	8.945

F: xénolites foliés; l/L: largeur/longueur; M: xénolites massifs; o: nombre observé; t: nombre théorique.

(1)- Classes de rapport longueur/largeur.

- (2)- Nombre de xénolites foliés observés dans chaque classe.
- (3)- Nombre de xénolites massifs observés dans chaque classe.
- (4)- Nombre de xénolites dans chaque classe: (2) + (3).
- (5)- Nombre théorique de xénolites foliés dans chaque classe: (4) x j2 / j4.
- (6)- Nombre théorique de xénolites massifs dans chaque classe: (4) x j3 / j4.
- (7)- Nombre théorique de xénolites dans chaque classe: (5) + (6).
- (8)- Carré du nombre de xénolites foliés observés moins le nombre théorique de xénolites foliés divisé par le nombre théorique de xénolites foliés: $((2) (5))^2 / (5)$.
- (9)- Carré du nombre de xénolites massifs observés moins le nombre théorique de xénolites massifs divisé par le nombre théorique de xénolites foliés: ((3) (6))² / (6).

Résultat: 5.976 + 8.945 = 14.921. De la table de X², pour v = (9-1)(2-1) = 8, on obtient 15.5 (> 14.9), donc à 95% de confiance, les deux populations ne sont pas différentes (chapitre 2).

Appendice G

MODÉLISATION DE LA CRISTALLISATION FRACTIONNÉE

	1 Demont	2	3	4	5 Minéraux	6	7	8
Analyse: Note:	A16-1 MNT	Cpx1 CX177 PC	Cpx2 CX129 MC	Cpx3 théorique	Bt1 Bt15	Bt2 théorique	Ap DR50 KEN	Ol 101a KEN
gi 02	50 87	52 40	50 13	52 5	35.81	35.90	0.45	39.52
5102 TiO2	1.54	0.10	0.71	0.11	4.71	4.70	0.00	0.00
A1203	12.86	1.37	7.21	1.60	13.22	13.30	0.00	0.00
FeO*	8.2	8.17	8.43	6.00	15.22	12.00	0.15	19.38
MnO	0.13	0.35	0.21	0.25	0.12	0.12	0.06	0.17
MaO	9.3	13.21	14.93	15.00	14.55	18.50	0.00	40.55
CaO	8.77	23.25	16.69	23.30	0.00	0.04	54.59	0.00
Na2O	2.22	0.53	0.93	0.70	0.04	0.00	0.00	0.00
к20	4.96	0.02	0.00	0.00	10.21	10.50	0.00	0.00
P205	1.18	0.00	0.00	0.00	0.00	0.00	41.72	0.00

G1- Composition du parent et des minéraux utilisés dans les calculs

FeO*: fer total sous forme de FeO. Colonnes 4 et 6: composition hypothétique; colonnes 7 et 8: composition des minéraux du pluton de Kensington (KEN; Corriveau 1989). MNT: minette; PC: phénocristal de la minette; MC: mégacristal de clinopyroxène.

Modèles	1 15% Cpx1 11% Bt1 0.1% Ap	2 10% Cpx1 4% Bt1 5% Ol 0.9% Ap	3 14% Cpx1 11% Bt2 0.3% Ap	4 12% Cpx3 7% Bt2 3% Ol 0.6% Ap	5 21% Cpx2 8% Bt1 0.4% Ap	Dérivé C22-4 MNT
% poids						
SiO2	52.48	52.40	52.67	52.56	52.64	52.61
TiO2	1.31	1.66	1.30	1.50	1.41	1.33
A1203	15.00	15.03	14.86	14.93	14,42	15.25
FeO*	7.01	7.27	7.96	7.79	7.27	7.90
MnO	0.09	0.11	0.11	0.12	0.11	0.13
MaO	7.58	6.82	6.69	6.54	6.99	6.59
CaO	7.07	7.46	7.15	7.35	7.14	7.49
Na2O	2.89	2.67	2.86	2.74	2.85	2.55
к20	5.04	5.59	4.96	5.30	5.74	5.13
P205	1.52	1.00	1.44	1.17	1.43	1.01
R2	2.4	0.9	0.6	0.3	2.0	

G2- Modèles de cristallisation fractionnée: éléments majeurs

FeO*: fer total sous forme de FeO; R2: somme des carrés des oxydes résiduels. Les calculs ont été effectués à l'aide du programme "GPP" (Geist et al. 1985).

<u>Appendice G</u> (suite)

		1	2	2	٨	Б	
Modeles	Devent	159 Crost	4 109 Cmar	3 149 Crox	4 119 Cov	208 Cov	Dárivá
	Parent	108 DF	10% CPX	119 DF	79 D+	20% CPX	C22-4
	A16-1	TO& BC	48 DL			00 DL	22-4
	MNT	1% Ap	5% 01	1% Ap	38 01	1% Ap	MIN.1.
			0.8% Ap		0.7% Ap		
ppm							
La	43.4	50	47	46	47	51	44.6
Ce	95.6	109	103	101	103	112	98.1
Nd	51.6	58.5	55.4	54.3	55.4	59.6	55.1
Sm	9.7	10.8	10.3	10.1	10.3	10.9	9.76
Eu	2.32	2.56	2.45	2.39	2.45	2.6	2.40
тЪ	0.93	1.04	1.00	0.99	1.00	1.05	1.05
Yb	2.27	2.62	2.52	2.53	2.52	2.66	2.42
Y	21	24	23	23	23	24	26
Ba	3440	3838	3986	3790	3839	4164	2860
Rb	110	120	126	118	121	130	109
Sr	1655	2042	1935	1984	1932	2135	1921
Th	4.0	5.2	4.9	5.2	4.9	5.6	3.9
Та	0.5	0.7	0.6	0.65	0.6	0.7	0.8
Zr	418	531	507	529	505	562	473
Нf	9.9	12.4	11.9	12.4	11.8	12.9	10.6
Sc	19	13	15	13	15	12	15
Cr	565	300	386	300	356	284	268

G3- Modélisation de la cristallisation fractionnée: éléments traces

Les calculs ont été effectués à l'aide du programme "NEWPET" (Memorial University 1994) pour le fractionnement à l'équilibre. La proportion des minéraux est similaire à celle utilisée dans les calculs pour les éléments majeurs (appendice G2). Les concentrations modèles en Ba et Rb sont trop élevées, suggérant que la proportion de biotite devrait être augmentée ou que les coefficients de distributions ont des valeurs trop faibles. Les coefficients de distributions utilisés sont présentés à l'appendice G4. Ces calculs sont très sensibles aux coefficients de distribution utilisés et il est à noter que les coefficients déterminés pour les roches alcalines sont généralement plus élevés que ceux déterminés pour les roches moins alcalines, comme ceux utilisés ici (Villemant et al. 1981; Lemarchand et al. 1987; Villemant 1988; Francalanci 1989; Bédard 1994; Green 1994; Skulski et al. 1994).

<u>Appendice G</u> (suite)

G4- Coefficients de distribution

Min:	01	Spl	Орх	Срж	Phl	Am	P1	Kfs	Mag	Ap1	Ap2	Ttn
Réf:	1	1	1	1	2	1	1	- 5	1	3	4	4
Cr	0.6	200	1.9	3.8	6	0.34	0.02	0.6 (6)	20	0.048		
Ni	10 (2)	10	3.5	3	1.75	1.6	0.04	0.5 (6)	12	1.0		
Sc	0.25	0.048	1.4	3.9	1.5	1.6	0.02	0.06	1.3	0.04	0.01	4
Ba	0.0005	0.0005	0.0006	0.00068	1.5	0.71	0.3 (2)	3	0.001	0		
Rb	0.0005	0.0005	0.005	0.011	1.7	0.2	0.08	0.5	0.32	0		
Sr	0.016	0.0005	0.062	0.1283	0.044	0.64	2.5 (2)	4	0.4	5	3.9	
Th	0.02	0.001	0.0001	0.00026	0.0003	0.038	0.05	0.02	0.19	1.8	9.3	24
σ	0.03	0.001	0.0004	0.00036	0.0003	0.08	0.05	0.03	0.26		12	37
Nb	0.01	0.01	0.004	0.0077	0.14	0.1	0.001		0.7			
Та	0.02	0.0001	0.07	0.07	0.14	0.1	0.03	0.02	0.8			54
Zr	0.003	0.04	0.16	0.1234	0.13	0.37	0.09	0.2	0.2			
нf	0.024	0.08	0.248	0.256	0.13	0.38	0.04	0.025	0.2	0.12		3.2
Y	0.002	0.01	0.17	0.467	0.03	0.73	0.01		0.0039	7		
La	0.00044	0.0006	0.016	0.0536	0.003	0.17	0.042	0.04	0.029	15	8.3	14
Ce	0.0003	0.0006	0.04	0.0858	0.021	0.26	0.036	0.035	0.0217	15	10	22
Nđ	0.0002	0.0006	0.0037	0.1873	0.0063	0.44	0.029		0.0145	14	10	35
Sm	0.00018	0.0006	0.054	0.291	0.0059	0.76	0.022	0.03	0.0072	14	7.4	
Eu	0.0002	0.0006	0.063	0.3288	0.031	0.88	0.22	1.2	0.00635	14	6.1	35
ть	0.00048	0.0011	0.094	0.404	0.0171	0.83	0.013	0.03	0.0063	11	6.1	41
ΥЪ	0.00522	0.0045	0.2605	0.43	0.03	0.59	0.012	0.02	0.01923	7	4.7	35

Les abréviations des minéraux sont tirées de Kretz (1983) sauf Am: amphibole. Références: les coefficients de distribution (D = $C^{minéral}/C^{liquide}$) sont tirés de 1) la compilation de Bédard (1994), 2) Bédard et Williamson (1998), 3) Irving et Frey (1984); 4) Corriveau (1989), 5) Lemarchand et al. 1987, et 6) Villemant et al. 1981; les chiffres entre parenthèses correspondent au numéro de la référence.

Appendice H

<u>THERMOBAROMÉTRIE</u> <u>SUR LES MINÉRAUX DE LA MINETTE DE RIVARD</u>

1) Clinopyroxènes: géothermomètre de Lindsley (1983) et géobaromètre de Nimis (1995)

Lame	Срх	No analyse	T ^o C (10 kbar)	P ± 2 kbar	Lame	Срх	No a na lyse	T ^o ℃ (10 kbar)	P kbar
A7-11 A7-11	MC1 MC1	C37 (c) C39 (b)	1210 1220		A7-13 A7-9	PC PC	CX150 (b=m) CX177 (c)	550	-4.2 -4.3
A7-13	MC1	CX135 (c)	1100	8.3	A7-9	PC	CX179 (b)	490	
A7-13	MC1	CX137 (b)	1100		A7-9	PC	CX184 (m)	500	-10
A7-13	MC1	CX141 (c)		9.5	В6-76	PC	CX263 (m)	800	
A7-13	MC1	CX142 (i)	1120	8.8	B6-76	PC	CX268b (c)	610	
A7-13	MC1	CX144 (i)		9.5	B6-76	PC	CX271 (b)	800	
A7-13	MC1	CX145 (b)	1120	5.9	В6-76	PC	CX272 (m)	700	
A7-11	MC2	CX33 (c)*	990	9.0	B6-76	XC	CX260 (c)	800	
A7-11	MC2	CX34 (i)	1050		B6-76	XC	CX262 (b)	800	
A7-11	MC2	CX35 (i)	1000		B6-76	XC	CX264 (c)	550	
A7-11	MC2 (4)	CX36 (b)*	1280	8.6	B6-76	XC	CX266 (b)	750	
A7-9	MC4	C1 (b)	1280		BD-1	XC	CX889 (c?)	850	
A7-9	MC4	C19 (c)	1240		BD-1	XC	CX890 (b?)	1080	
A7-13	MC4	CX128 (c)		11.8	BD-1	XC	CX891 (c)	900	
A7-13	MC4	CX129 (c)	1250	12.3					
A7-13	MC4	CX133 (b)	1200	9.7		PXN KEN	C328-2		10.1
A7-9	MC4	CX152 (c)	1210			DR KEN	C50-9		3.3
A7-9	MC4	CX155 (b)	820	- 0.6		MZ KEN	C215-9		-1.5
A7-9	CXN1b	C16 (c)	1220						
A7-9	CXN1b	C17 (b)		11.6					
A7-9	CXN1b	C18 (c)	1200						
A7-9	CXN1b	CX159 (c)		6.2					
A7-9	CXN1b	CX160 (i)	1180						
A7-9	CXN1b	CX161 (b)		6.8					
A7-9	CXN1b	CX162 (c)	1250	10.4					
A7-9	CXN1b	CX164 (b)	1080	6.2					
A7-9	CXN1a	CX168	620						
A7-9	CXN1a	CX169	550						
A7-9	CXN1a	CX170	490						

*CX33, 34, 35 représentent la partie interne d'un mégacristal brunâtre montrant une épaisse couronne interne poreuse, sur laquelle cristallise un clinopyroxène incolore (en continuité optique): CX36, dont la composition ressemble aux MC4.

Le thermomètre de Lindsley (1983; et Lindsley et Anderson 1983) basé sur l'échange du Ca entre le Cpx et l'Opx, fournit une température minimum en l'absence d'Opx. Ce thermomètre est peu sensible à la pression et la composition corrigée en Wo, En et Fs a été projetée sur le diagramme Di-Hd-En-Fs calibré à 10 kbar (Lindsley 1983).

Le géobaromètre de Nimis (1995) est basé sur la modélisation de la structure des cristaux de clinopyroxène. Abréviations: CXN: clinopyroxénite, DR: diorite, KEN: pluton de Kensington, MC: mégacristal, MZ: monzonite, PC: phénocristaux, PXN: pyroxénite, XC: xénocristal; (b): bordure, (c): centre, (i): intermédiaire, (m): matrice de la minette.

Appendice H (suite)

Hammarstrom et Zen (1986) et Hollister et al. (1987), et géobaromètre de Righter et Carmichael (1996)							
	1	2	3	4	5		
	T _{RC96}	P _{RC96}	P _{S92}	P _{HZ86}	P_{H87}		

± 4 kbar

5.7

± 50℃

1050°

± 0.6 kbar

5.6

8.3

± 3 kbar

5.2

8.1

± 1 kbar

5.5

8.7

2) Biotite et amphibole, géothermomètres de Righter et Carmichael (1996), Schmidt (1992),
Hammarstrom et Zen (1986) et Hollister et al. (1987), et géobaromètre de Righter et Carmichael (1996)

 T_{RC96}: Température déterminée avec le thermomètre de Righter et Carmichael (1996) basé sur distribution de TiO₂ entre la biotite et le liquide (minette): lnD^{TIO2} Bt/Liq = a/T°K+b (a=17600, b 12.1). 	la)=-

- 2) PRC96: Pression déterminée avec le baromètre de Righter et Carmichael (1996) basé sur la distribution de BaO entre la biotite et le liquide (minette): $T^{\circ}_{K}(\ln BaO Bt/Liq-a-b/T^{\circ}_{K}-d(\ln a_{H2O}))$ (T°_{K} = 1322°K, a=-2.167, b=4553, c=-130.7, d=-0.388).
- 3) PS92: Pression déterminée avec le baromètre de Schmidt (1992) basé sur le contenu en Al de l'amphibole coexistant avec le quartz: $P = -3.01+4.76Al^{total}$.
- 4) PHZ86: Pression déterminée avec le baromètre de Hammarstrom et Zen (1986) basé sur le contenu en Al de l'amphibole coexistant avec le quartz: $P = -3.92+5.03Al^{total}$.
- 5) PH87: Pression déterminée avec le baromètre de Hollister et al. (1987) basé sur le contenu en Al de l'amphibole coexistant avec le quartz: $P = -4.76+5.64Al^{total}$.

a) Latte (0.8 mm) xénomorphe de biotite de la minette.

а

b

с

Lame

A7-13 MNT

B6-76 MNT

A7-13 MC1

Analyse

Bt15

Am37

Am12b

b) Amphibole xénomorphe de la matrice de la minette.

c) Amphibole dans une inclusion polycristalline (Fel+Bt+Am+Opa) ovoïde, présente dans une apatite automorphe incluse dans un mégacristal de clinopyroxène (MC1).

Appendice I

DIAGRAMMES DE TERRES RARES DES XÉNOLITES

Concentrations en terres rares des xénolites, normalisées aux chondrites; les valeurs de normalisation de sont tirées de McDonough et Sun (1995). Les xénolites sont généralement regroupés d'après la classification établie sur des critères texturaux (appendice C); ce regroupement correspond approximativement à celui de la figure 1.7. Les CX-II, CX-III, CX-IV traitées au chapitre 4 correspondent aux CXN8.

Appendice I: diagrammes de terres rares des xénolites

536

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Appendice I (suite)

537

Appendice I (suite)

538