Université du Québec INRS-Géoressources

CARACTÉRISATION ET MODÉLISATION NUMÉRIQUE DU COMPORTEMENT DES MATÉRIAUX ÉNERGÉTIQUES DANS LES SOLS ET L'EAU SOUTERRAINE D'UN SITE D'ENTRAÎNEMENT ANTI-CHAR

Par

Michel Mailloux

Mémoire présenté pour l'obtention du grade de Maître ès sciences (M.Sc.)

Jury d'évaluation

Président du jury et examinateur interne

Examinateur externe

Directeur de recherche

Codirecteur de recherche

René Therrien, ing., Ph.D. Université Laval

Daniel A. Walker, Ph.D. HYDROGEOPLUS INC

Richard Martel, ing., Ph.D. INRS-Géoressources

René Lefebvre, ing. jr., Ph.D. INRS-Géoressources

1 avril 2002

© droits réservés de Michel Mailloux, 2002

«La raison et la passion sont le gouvernail et les voiles de votre âme de marin »

Khalil Gibran

<u>RÉSUMÉ</u>

La base militaire de Valcartier opère le champ de tir antichar Arnhem depuis les années 1970. Le type de munitions utilisé pour l'entraînement est la roquette M72 dont la charge explosive est constituée de 300 g d'Octol, un mélange de 60% HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine), 30% TNT (2,4,6-Trinitrotoluene) et 10% RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Trinizine). Une problématique environnementale a été soulevée puisqu'une proportion non-négligeable des munitions n'explose pas à l'impact. Le contenu en matériaux énergétiques (ME) des roquettes non explosées se disperse à la surface du sol pour ensuite être dissous par l'eau de pluie et migrer vers la nappe phréatique.

Le Centre de recherche pour la défense Valcartier (CRDV) et l'INRS-Géoressources mènent une étude hydrogéologique depuis 1998 dont le but est la compréhension du comportement des matériaux énergétiques dans les sols et l'eau souterraine. La méthodologie utilisée pour ce projet de recherche comporte trois grands volets, soit les travaux de terrain, les essais en laboratoire et la modélisation.

Une des étapes principales de ce projet était d'instrumenter le champ de tir anti-char Arnhem de façon exhaustive afin d'avoir une quantité suffisante de données hydrogéologiques et physico-chimiques nécessaires pour comprendre le comportement des matériaux énergétiques. Les travaux de terrain ont montré que le contexte hydrogéologique est très complexe dans le secteur du champ de tir Arnhem. Ces complexités sont la présence d'une nappe perchée, un changement brusque de direction et de vitesse d'écoulement, une stratigraphie discontinue, une géométrie complexe de l'aquifère et un régime d'écoulement caractérisé par des effets transitoires majeurs. Les travaux de caractérisation ont également montré que le HMX est le principal ME observé dans les sols de surface près des cibles d'entraînement et dans l'eau souterraine alors que le RDX et le TNT y sont quasi-absent.

iv

A partir des résultats des travaux de caractérisation, un modèle conceptuel expliquant le comportement des matériaux énergétiques a été développé. Le HMX est dissous très lentement, est faiblement adsorbé et pourrait se biodégrader sous les conditions aérobies de l'aquifère. En mettant en relation la fluctuation du niveau de la nappe avec la concentration en HMX dans l'eau souterraine, il est possible d'observer qu'une impulsion de HMX est produite à chaque épisode de recharge de l'aquifère. Cette suite d'impulsions de HMX dissous génère un panache de contamination dans l'eau souterraine. En comparaison avec le HMX, le TNT est dissous plus rapidement, est plus adsorbé et se biodégrade en condition aérobie.

Parce qu'il est essentiel d'avoir une solide connaissance du régime d'écoulement de l'eau souterraine avant d'entreprendre une étude détaillée sur le transport des contaminants, des travaux de modélisation hydrogéologique 3-D en condition non-saturée/saturée ont été entrepris avec le programme FRAC3DVS. Les résultats montrent que les vitesses d'écoulement dans la partie supérieure de l'aquifère changent de façon significative selon les saisons sur le flanc de la montagne car cette zone devient saturée pendant la recharge printanière et se désature en période d'étiage. Les effets qu'ont ces phénomènes transitoires sur l'évolution du panache de HMX dissous dans l'eau souterraine ont été évalués avec une simulation du transport de masse en condition advective/dispersive. Les résultats montrent que le panache s'écoule rapidement à partir de la source pendant la recharge printanière mais ne se rend pas complètement au centre de la vallée avant que le flanc de la montagne ne s'assèche en période d'étiage.

Michel Mailloux, étudiant

Richard Martel Directeur de recherche

René Lefebvre Co-directeur de recherche

v

<u>ABSTRACT</u>

The Arnhem anti-tank range has been in operation since the 70's at BFC-Valcartier. The ammunition used for training at the range is the M72 rocket with an explosive charge made of 300 g of Octol (60% HMX, Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine, 30% TNT, 2,4,6-Trinitrotoluene and 10% RDX, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine). An environmental issue is related to the misfire of M72: the unexploded ammunitions at the soil surface (DUD) or into the ground (UXO) provoke the spreading of energetic materials (EM) in the sandy soil of the range, the infiltration of rain and water from snow melt dissolves EM and transports them to the water table.

In 1998, the Defence Research Establishment Valcartier (DREV) and the Institut national de la recherche scientifique (INRS) initiated a hydrogeological study to understand the behaviour of EM in the vadose zone and the water table aquifer underlying the range. The methodology used for this project consists of field characterization, laboratory tests and numerical modeling.

One of the main steps of this project was to characterize the site thoroughly in order to gather the information needed to understand the behavior of EM. Characterization work has shown that the hydrogeological setting is complex in the vicinity of the Arnhem range: presence of a perched aquifer, a sharp shift in the direction of groundwater flow, steep bedrock slope, discontinuous stratigraphy and transient effects on the groundwater flow regime. The characterization has also shown that HMX is the main EM observed in soil close to the training target and in groundwater, whereas RDX and TNT are present only in traces.

A conceptual model of EM behavior was defined based on the characterization. HMX is weakly adsorbed, could be biodegraded under aerobic condition and is slowly dissolved. The very low dissolution of HMX explains why the major mass of this EM is located in the soil surface, limiting its impact on groundwater. In comparison with HMX, TNT is more quickly dissolved and more strongly adsorbed.

Since it is essential to have an excellent knowledge of groundwater flow prior to performing a detailed contaminant transport study, such as what is required for natural attenuation assessment, a 3-D unsaturated/saturated groundwater flow modeling study was initiated using FRAC3DVS. Sharp seasonal groundwater flow velocity changes were predicted close to the source because this area becomes unsaturated during low-water periods but is saturated during spring recharge. The effects of such variations in the seasonal groundwater flow regime on dissolved HMX migration was clearly assessed with a simple advective/dispersive mass transport simulation. The results show that the dissolved EM quickly migrates away from the source during recharge events but does not entirely reach the center of the valley before the aquifer on the mountain side goes dry.

REMERCIEMENTS

Je tiens tout d'abord à remercier Richard Martel, mon directeur de recherche et professeur à l'INRS-Géoressources pour le temps qu'il m'a consacré à discuter et à répondre à mes questions malgré son horaire très chargé et pour la confiance qu'il a eu envers moi tout au long du projet. Je tiens également à remercier René Lefebvre, mon co-directeur de recherche et professeur à l'INRS-Géoressources, pour les nombreux conseils qu'il m'a prodigué tout au long du projet. Je désire aussi remercier René Therrien, professeur au département de géologie et de génie géologique de l'université Laval pour avoir pris le temps à m'initier à FRAC3DVS et d'avoir répondu à mes nombreuses questions reliées à l'utilisation de son modèle. Je tiens à remercier Sonia Thiboutot, Guy Amplement et Stéphane Jean du CRDV pour avoir financé une grande partie de mes travaux et pour leur support au projet. Je désire également souligner le travail fait par Annie Gagnon, André Marois et Pascal Dubé du CRDV pour les analyses des matériaux énergétiques dans les sols et l'eau souterraine. Je tiens à souligner la contribution de Yves Michaud et Michel Parent de la Commission géologique du Canada pour m'avoir aider à comprendre le contexte géologique du site Arnhem.

Je profite de l'occasion pour remercier Nathalie Roy, présentement responsable des sites contaminés au CRDV et qui a aussi travaillé comme professionnelle de recherche à l'INRS-Géoressources au début du projet Arnhem, pour sa précieuse contribution à la première phase de mes travaux de maîtrise. J'ai également apprécié l'aide fournie par les nombreux étudiants (Christine Goulet, Daniel Paradis, Marc-André Carrier, Nicolas Paradis, Thomas Robert, Alexandre Boutin et Nathalie Arel) qui sont venus m'épauler durant mes travaux de terrain au cours des trois dernières années. Je tiens à remercier Denis Millette, mon employeur actuel et président d'HYDROGEO PLUS, pour m'avoir accordé un long arrêt de travail pour terminer la rédaction de mon mémoire et pour avoir bien voulu consacrer quelques heures de son précieux temps pour reviser le manuscrit. Finalement, je dédie ce mémoire à Annick pour la patience et la compréhension dont elle a fait preuve pendant les innombrables soirées que j'ai passé à travailler devant mon

ordinateur et pour m'avoir supporté tout au long de mon projet, autant pendant les meilleurs que les pires moments.

TABLE DES MATIÈRES

<u>RÉSUMÉ</u>	iv
ABSTRACT	vi
REMERCIEMENTS	viii
TABLE DES MATIÈRES	X
LISTE DES FIGURES	xiii
LISTE DES TABLEAUX	XV
LISTE DES ANNEXES	xvi
CHAPITRE 1 - INTRODUCTION	1
1.1 Contexte du projet	1
1.2 Problématique	2
1.2.1 Au niveau scientifique	2
1.2.2 Au niveau environnemental	2
1.3 Objectifs	4
1.4 Méthodologie	5
1.4.1 Travaux de terrain	5
1.4.2 Essais en laboratoire	6
1.4.3 Modélisation numérique	6
1.5 Structure du mémoire	6
CHAPITRE 2 - PROPRIÉTÉS PHYSICO-CHIMIQUES DES PRINCIPAU ÉNERGÉTIQUES	UX MATÉRIAUX 9
2.1 Dissolution	9
2.2 Volatilisation	10
2.3 Sorption	10
2.4 Dégradation	
2.4.1 Processus abiotique	11
2.4.2 Processus biotique	
CHADITRE 2 DEHAVIOUR OF ENERCETIC MATERIALS IN CROU	
THE ARNHEM ANTI-TANK RANGE	NDWAILKAI
3.1 Introduction	17
3.2 Methodology	17
3.2.1 Borehole Drilling and Sediment Sampling	17
3.2.2 Ground-Penetrating Radar Survey	
3.2.3 Hydraulic lests	
3.2.5 Flowmeter Survey	

3.2 3.2	.6 Groundwater Sampling and Analysis.7 Soil Sampling in Arnhem Range	
3.2	.8 Laboratory Batch Tests for the Evaluation of Soil/Water Partition Coefficient	21
3	3.2.8.1 Soil: Water Ratio Identification	
3	3.2.8.2 Equilibrium 1 ime Identification	
2		
3.3	Geology	
3.3	.1 Geomorphology	
3.3	.2 Geological Settings	
3.4	Hydrogeology	25
3.4	.1 Hydrostratigraphy	25
3.4	.2 Groundwater Flow Condition	
3.4	.3 Hydrology	
3.5	Environmental Characterization Results	
3.5	.1 Soil and Sediments	
3.5	.2 Groundwater	
3.6	Conceptual Model of Dissolved EM Behavior In Soil and Groundwater	
3.6	.1 Ground Surface	
3.6	.2 Unsaturated Zone	
3.6	.3 Saturated Zone	
3.7	Conclusions	
AT AN	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	UALS 45
AT AN 4.1	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER	UALS 45 47
AT AN 4.1 4 2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description	UALS 45 47
AT AN 4.1 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	UALS 45 47 47
AT AN 4.1 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	UALS 45 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	BIALS 45 47 47 48 48
AT AN 4.1 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER N ANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries	BIALS 45 47 47 48 48 48 48
4.1 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER N ANTI-TANK RANGE	BIALS 45 45 47 47 48 48 48 48 48 48 48 48
AT AN 4.1 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	BIALS 45 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER N ANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary .3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage	UALS 45 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER N ANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions .4.2.2.1 Specified Heads .4.2.2.2 No-Flow Boundaries .4.2.2.3 Specified Flux Boundary .3 Material Properties .4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage .4.2.3.2 Capillary Parameters Estimation	IIALS 45 47 47 47 47 48 48 48 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	 RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description 1 Code Selection 2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary 3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation 4 Spatial Discretization 5 Timestep Definition for Transient Flow Simulations 	UALS 45 47 47 47 48 48 48 48 48 48 48 48 48
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	 RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE	IIALS 45 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary .3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. Model Calibration 1	IALS 45 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	 RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description Code Selection Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary 3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation 4 Spatial Discretization 5 Timestep Definition for Transient Flow Simulations. Model Calibration 1 Steady-State Calibration 2 Transient Calibration 	IIALS 45 47 48 48 48 48 48 48 48
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER Introduction Model Description .1 Code Selection .2 Boundary Conditions .4.2.2.1 Specified Heads .4.2.2.2 No-Flow Boundaries .4.2.2.3 Specified Flux Boundary .3 Material Properties .4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage .4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. .1 Steady-State Calibration .2 Transient Calibration	IIALS 45 45 47 47 47 48 48 48 50 56 56 56 56 59
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER I ANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary .3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. Model Calibration Interval .1 Steady-State Calibration .2 Transient Calibration .3 Transient Calibration	IIALS 45 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER VANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary .3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. Model Calibration Interval .1 Steady-State Calibration .2 Transient Calibration .1 Steady-State Calibration .2 Transient Calibration .1 Steady-State Calibration .2 Transient Calibration .1 Dispersivity Estimation of Dissolved EM Transport .1 Dispersivity Estimation	IIALS 45 45 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description .1 Code Selection .2 Boundary Conditions .4.2.2.1 Specified Heads .4.2.2.2 No-Flow Boundaries .4.2.2.3 Specified Flux Boundary .3 Material Properties .4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage .4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. .1 Steady-State Calibration .2 Transient Calibration .1 Steady-State Calibration .2 Transient Unsaturated/Saturated Groundwater Flow Results. Preliminary Simulation of Dissolved EM Transport .1 Dispersivity Estimation .2 Boundary Conditions	UALS 45 45 47
AT AN 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	RATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC MATER NANTI-TANK RANGE Introduction Model Description 1 Code Selection 2 Boundary Conditions 4.2.2.1 Specified Heads 4.2.2.2 No-Flow Boundaries 4.2.2.3 Specified Flux Boundary 3 Material Properties 4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage 4.2.3.2 Capillary Parameters Estimation .4 Spatial Discretization .5 Timestep Definition for Transient Flow Simulations. Model Calibration Intransient Calibration .1 Steady-State Calibration .2 Transient Calibration .1 Steady-State Calibration .2 Transient Calibration .1 Dispersivity Estimation .2 Transient Unsaturated/Saturated Groundwater Flow Results .1 Dispersivity Estimation .2 Boundary Conditions .3 Results	IALS 45 47

CHAPITE	RE 5 - CONCLUSION GÉNÉRALE	67
CHAPITE	RE 6 - RECOMMANDATIONS	71
6.1 G	Gestion du site Arnhem	71
6.2 P	our la poursuite de l'étude	
6.2.1	Étude hydrologique	
6.2.2	Étude en laboratoire	72
6.2.3	Modélisation numérique	
CHAPITF	RE 7 - RÉFÉRENCES	75

LISTE DES FIGURES

Figure 1.1	La roquette M72 de 66 mm
Figure 3.1	Location map of the Arnhem Range and Arnhem site
Figure 3.2	Surficial geology of the Arnhem range area
Figure 3.4	A-A' hydrostratigraphic section. Location of A-A' is shown on Figure 3.2.26
Figure 3.5	Piezometric map of the regional aquifer interpreted from hydraulic heads interpolation and flowmeter survey
Figure 3.6	Piezometric map of the regional aquifer interpreted from hydraulic heads interpolation only
Figure 3.7	Hydrograph of well A-3
Figure 3.8	E.M. distribution in soil of the training Area
Figure 3.9	Relationship between HMX concentration and water table fluctuation at well A-3
Figure 3.10	Dissolved E.M. plume in groundwater
Figure 3.11	Dissolution kinetics of octol at 10°C. Adapted from Thiboutot et al. (1998). 38
Figure 3.12	Conceptual representation of the dissolved EM infiltration function
Figure 3.13	Preliminary adsorption isotherm for TNT using the Feundlich model 40
Figure 3.14	Preliminary adsorption isotherm for HMX using the Feundlich model
Figure 3.15	Conceptual model of HMX behaviour
Figure 3.16	Conceptual model of TNT behaviour
Figure 4.1	Plan view of the conceptual model of groundwater flow
Figure 4.2	Cross-section of the conceptual model of groundwater flow
Figure 4.4	Relationship between the pressure head and the water content
Figure 4.5	Relationship between the pressure head and relative permeability
Figure 4.6	Three-dimensional finite element grid used for numerical simulation

Figure 4.7	Simulated vs observed hydraulic heads.	58
Figure 4.8	Comparison between the observed and the calculated well hydrograph	59
Figure 4.9	Saturation profile just after the spring recharge	60
Figure 4.10	Saturation profile during summer	60
Figure 4.11	Dissolution kinetics of HMX at 10°C. From Thiboutot et al. (1998)	62
Figure 4.12	Simulated EM plume evolution.	53

LISTE DES TABLEAUX

Tableau 1.1	Résultats des analyses chimiques faites sur des échantillons de sol de surface et d'eau souterraine à l'intérieur de la zone d'impact du site Arnhem en 1995 4
Tableau 2.1	Résumé des valeurs de solubilité à l'eau des principaux composés énergétiques. 9
Tableau 2.2	Pressions de vapeur des principaux composés énergétiques 10
Tableau 2.3	Valeurs des constantes de partition eau/sol (K _d) du TNT sur des sédiments standard et plage de valeurs pour le HMX et le RDX (selon Townsend et Myers, 1996)
Tableau 2.4	Corrélation entre le K _d et certains paramètres du sol 11
Tableau 4.1	Hydrologic mass balance for the studied area
Tableau 4.2	Saturated hydraulic conductivity and specific storage values
Tableau 4.3	Capillary parameters of hydrostratigraphic units, estimated from values in Carsel and Parrish (1988)
Tableau 4.4	Initial and calibrated values of annual infiltration, saturated hydraulic conductivity and van Genuchten's α and <i>n</i> parameters

LISTE DES ANNEXES

ANNEXE A:	Journaux de forages
ANNEXE B	Courbes granulométriques
ANNEXE C	Sommaire des analyses chimiques en matériaux énergétiques dans les sols.
ANNEXE D	Carbone organique total (COT) dans les sols.
ANNEXE E	Profils de géoradar. Sommaires des données piézométriques.
ANNEXE F	Sommaire des mesures prises avec le geoflo 40L.
ANNEXE G	Hydrostratigraphie et géologie des dépôts de surface du bassin nord de la rivière lacques - Cartier secteur Valcartier
ANNEXE H	Sommaire des analyses chimiques en matériaux énergétiques dans l'eau souterraine.
ANNEXE I	Qualité de l'eau souterraine (inorganiques-ph-oxygène dissous-alcalinité)
ANNEXE J	Sommaire des données piézométriques
ANNEXE K	Résultats détaillés des essais d'adsorption.
ANNEXE L	Données météorologiques.
ANNEXE M	Sommaire des valeurs de conductivité hydraulique.
ANNEXE N	Exemples de fichier d'entrées utilisé par FRAC3DVS

CHAPITRE 1 INTRODUCTION

1.1 Contexte du projet

Depuis 1991, le Centre de Recherches pour la Défense Valcartier (CRDV) a initié un programme de recherche et développement (R&D) dont les objectifs globaux sont d'étudier l'impact environnemental des matériaux énergétiques (ME) retrouvés sur les bases militaires du Canada et de développer des approches de gestion pratiques et économiques des sites qui pourraient être contaminés par ces explosifs. L'atténuation naturelle est une des méthodes envisagées pour la gestion des sites contaminés par des ME. Pour appliquer cette approche, il est essentiel d'avoir un modèle conceptuel du site qui explique le comportement des ME dans son contexte géologique et hydrogéologique ainsi qu'un modèle numérique adéquat pouvant simuler l'évolution de ces contaminants dans l'eau souterraine des zones saturée et non saturée.

Dans le cadre de ce programme de R&D, quelques études de caractérisation environnementale ont été entreprises sur différents sites de production (Hains, 2001), des terrains d'entraînement militaires comme sur des sites de démolition (Martel *et al.*, 1996 et Ampleman *et al.*, 1998) ou des champs de tir (Thiboutot *et al.*, 1998; Jenkins *et al.*, 1999 et Martel *et al.*, 2001). En 1998, l'INRS-Géoressources et le CRDV ont entrepris un projet de recherche au champ de tir anti-char Arnhem, situé sur la base militaire de Valcartier, afin de mieux comprendre le comportement des matériaux énergétiques autant en zone saturée que non saturée et d'évaluer si l'atténuation naturelle peut s'appliquer comme mode de gestion des sites du Ministère de la Défense (MDN).

1.2 Problématique

1.2.1 Au niveau scientifique

Depuis quelques années, plusieurs études en laboratoire ont été réalisées pour comprendre les processus qui régissent le comportement des matériaux énergétiques. Ces études portaient principalement sur le potentiel d'adsorption (Pennington et Patrick, 1990; Checkai *et al.*, 1993; Selim et Iskandar, 1994 et Townsend *et al.*, 1995) ou sur la dégradation des ME (Ampleman *et al.*, 1995; Spain, 1995; Ampleman *et al.*, 1999 et Hawari *et al.*, 2000). À part l'étude de Hains (2002), il y a peu d'études de terrain qui ont permis d'étudier le comportement des matériaux énergétiques en milieu naturel. Une telle approche permet de mettre en perspective l'évolution des ME et de développer un modèle qui explique le comportement des ME dans l'eau souterraine et dans les sols. Les modèles disponibles ont été essentiellement développés pour simuler le transport des ME dans les sols (Gillen, 1995; Voudrias et Assaf, 1995; Webb *et al.*, 1998; et Webb *et al.*, 1999) et aucun modèle, conceptuel que numérique, n'intègre l'ensemble des phénomènes physico-chimiques qui ont lieu à la fois en surface, en zone saturée et non saturée.

1.2.2 Au niveau environnemental

En général, la contamination des sites d'entraînements du Ministère de la Défense Nationale du Canada par des ME est relativement peu importante. Les concentrations en ME dans les sols varient entre 0 et 10 mg/kg avec quelques espaces restreints contaminés entre 80 et 100 mg/kg (Ampleman *et al.*, 2000). Ces résultats sont expliqués par le fait que la détonation des munitions utilisées s'effectue généralement bien. Il y a cependant une exception : les champs de tir anti-char. Au champ de tir anti-char Arnhem qui est situé sur la base militaire de Valcartier, le pourcentage de ratés de tir est important. La munitions utilisée, (roquette M72, Figure 1.1) dont la charge explosive est l'Octol (70% HMX, 30% TNT, le RDX sert d'amorce), a un taux de ratés de tir important. Au lieu d'exploser, la munitions se fissure, ce qui permet aux matériaux énergétiques sous forme cristalline contenu dans la roquette de s'étendre sur les sols de la zone d'impact pour ensuite être dissous par les précipitations. Cette eau chargée en matériaux énergétiques dissous s'infiltre dans le sol pour atteindre la nappe phréatique. Ces eaux contaminées peuvent avoir un impact sur les utilisateurs de l'eau souterraine car selon l'EPA (Environment Protection Agency), les ME sont potentiellement cancérigènes pour l'humain (McCormick *et al.*, 1981 et Rosenblatt *et al.*, 1989).

Figure 1.1 La roquette M72 de 66 mm

Une étude préliminaire a été réalisée par le CRDV au site Arnhem en 1995 (Thiboutot *et al.*, 1998 et Jenkins *et al.*, 1999) pour vérifier l'impact que les ratés de tir peuvent avoir sur l'environnement. Ainsi, les sols près des cibles d'entraînement ont été échantillonnés en mai et en octobre 1995. Ces échantillons ont été analysés afin de déterminer les types de matériaux énergétiques présents ainsi que leurs concentrations respectives. Un puits d'observation (W-1) a été installé à l'intérieur du champ de tir pour vérifier si les ME mis en solution migrent jusqu'à la zone saturée.

Des concentrations importantes en matériaux énergétiques ont été détectées dans les sols près des cibles d'entraînement en mai et octobre 1995 (Tableau 1.1). Ceci confirme que les ratés de tir de la roquette M72 génèrent une contamination en matériaux énergétiques dans les sols de surface. Le HMX est le principal ME présent en surface, le RDX ainsi que le TNT sont présents mais en concentration plus faible.

Tableau 1.1Résultats des analyses chimiques faites sur des échantillons de sol desurface et d'eau souterraine à l'intérieur de la zone d'impact du site Arnhem en 1995(selon Thiboutot et al., 1998)

	HMX (mg/kg)	RDX (mg/kg)	TNT (mg/kg)
Sol, mai 1995 (concentration maximale)	1868	11.1	37.0
Sol, octobre 1995 (concentration maximale)	825	6.94	5.5
Eau souterraine	HMX (yg/L)	RDX (ųg/L)	TNT (ųg/L)
	295	46	3.1

Des ME (HMX, RDX et TNT) ont été détectés dans le puits d'observation installé à l'intérieur du champ de tir, ce qui indique que les explosifs dissous provenant de la surface peuvent atteindre la nappe phréatique sous-jacente à la zone d'impact.

1.3 Objectifs

4

Ce mémoire a été réalisé dans le cadre d'un programme de recherche et développement mené par le CRDV et l'INRS-Géoressources qui est la suite de l'étude de Thiboutot *et al.* (1998). Les objectifs spécifiques de ce mémoire sont les suivants :

- Définir les contextes hydrostratigraphiques et hydrogéologiques du site Arnhem;
- Évaluer l'étendue de la contamination en ME dans les sols et dans l'eau souterraine;
- Évaluer les propriétés physico-chimiques des principaux matériaux énergétiques présents au site Arnhem;
- Définir un modèle conceptuel pouvant expliquer le comportement des matériaux énergétiques en milieu naturel ;
- Intégrer le modèle conceptuel dans un modèle numérique et simuler l'écoulement de l'eau souterraine et le transport de matériaux énergétiques dissous.

Pour atteindre ces objectifs, la méthodologie décrite à la section suivante a été suivie

1.4 Méthodologie

La méthodologie utilisée pour ce projet de recherche comporte trois grands volets, soit les travaux de caractérisation sur le terrain, les essais en laboratoire et la modélisation numérique.

1.4.1 Travaux de terrain

Il a été convenu d'instrumenter de façon exhaustive le champ de tir anti-char Arnhem afin que celui-ci serve d'exemple-type pour la compréhension du comportement des matériaux énergétiques. Ainsi, une caractérisation hydrogéologique et environnementale complète en trois phases fut réalisée : La première phase (été 1998) avait comme objectif de définir les conditions d'écoulements, l'hydrostratigraphie du site et d'avoir un premier aperçu de la position du panache en M.E. dissous. La deuxième phase (été 1999) avait comme objectif de raffiner la compréhension du contexte hydrogéologique et de délimiter avec plus de précision le panache de ME dissous détecté l'année précédente. La troisième phase (septembre 2000) se voulait comme étant complémentaire à la deuxième phase.

Ainsi, 25 puits d'observation ont été installés sur le site, des essais hydrauliques ont été réalisés dans chacun de ces puits afin d'évaluer les propriétés hydrogéologiques des sédiments. L'eau souterraine a été échantillonnée à 9 reprises entre l'été 1998 et l'automne 2000 alors que les sols à l'intérieur de la zone d'impact du champ de tir Arnhem ont été échantillonnés en octobre 1999. Enfin, des levés de géoradar ont été réalisés par la Commission géologique du Canada pour définir la forme et la position des différentes unités géologiques.

1.4.2 Essais en laboratoire

En parallèle avec les travaux de terrain, des essais en laboratoire ont été réalisés afin d'évaluer les propriétés physico-chimiques des ME. Des essais d'adsorption en lot *(batch tests)* ont été faits pour calculer le coefficient de partage sol-eau (K_d) du HMX et du TNT. La cinétique de dissolution du HMX et du TNT a également été obtenue par des essais en laboratoire. L'INRS-Géoressources était responsable de la réalisation des essais d'adsorption alors que le CRDV avait la responsabilité d'évaluer la cinétique de dissolution du HMX et du TNT et de réaliser les analyses chimiques sur les sols et l'eau souterraine.

1.4.3 Modélisation numérique

L'ensemble des données recueillies durant les trois phases de caractérisation hydrogéologique et en laboratoire ont été synthétisées dans un modèle conceptuel représentant, de façon schématique, le comportement des matériaux énergétiques. Cela a permis de mettre en perspective l'ensemble des processus, autant ceux de surface que de sous-surface, affectant le devenir des ME. Un modèle numérique tridimensionnel simulant l'écoulement de l'eau souterraine à saturation variable et le transport des contaminants en phase dissoute a ensuite été utilisé pour valider le modèle conceptuel et pour parfaire la compréhension de l'hydrogéologie du site et du devenir des ME. Un tel modèle permet l'intégration de la majorité des processus affectant le comportement des ME, autant en surface qu'en zones non saturée et saturée. Dans le cadre de ce mémoire, le transport de contaminant a été simulé seulement en condition advective-dispersive car il n'y avait pas suffisamment de données pour intégrer les processus réactifs dans le modèle.

1.5 Structure du mémoire

À part l'introduction, le présent mémoire se divise en 5 chapitres. Le chapitre 2 présente une brève revue des processus physico-chimiques affectant le comportement des matériaux énergétiques. Les chapitres 3 et 4 contiennent chacun un article qui ont été publié dans des comptes-rendu de conférences (Mailloux *et al.*, 2000 et Mailloux *et al.*, 2001). L'auteur du présent mémoire était la principale personne à avoir fait les travaux décrits dans ces articles. Les autres auteurs ont fourni un encadrement soit au niveau de l'hydrogéologie des contaminants, de la modélisation numérique ou en chimie analytique. À part qu'ils ont été adaptés au format du mémoire, ces articles sont demeurés semblables à ceux publiés.

Le premier de ces articles (chapitre 3) traite des résultats de la caractérisation hydrogéologique et environnementale ainsi que des essais en laboratoires. Un modèle conceptuel expliquant le comportement des matériaux énergétiques est présenté à la fin de ce chapitre. Le second article (chapitre 4) porte sur la modélisation tridimensionnelle à saturation variable de l'écoulement de l'eau souterraine et du transport advectif/dispersif des ME dissous. Les conclusions générales et les recommandations pour la suite de l'étude sont présentées aux chapitres 5 et 6 respectivement. Plusieurs informations pertinentes au projet comme les procédures pour l'échantillonnage de l'eau souterraines ne sont pas présentés en détail dans les articles. Ces informations complémentaires sont documentées à la fin du mémoire sous forme d'annexe . Chaque annexe contient généralement un court texte explicatif et ainsi que les résultats bruts sous forme de cartes, de graphiques ou de tableaux.

CHAPITRE 2

<u>PROPRIÉTÉS PHYSICO-CHIMIQUES</u> <u>DES PRINCIPAUX MATÉRIAUX ÉNERGÉTIQUES</u>

Cette section présente une brève revue des principaux paramètres affectant le devenir des trois principaux composés énergétiques présent sur le site Arnhem, soit le TNT (2,4,6-Trinitritoluène), le HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) et le RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine). Un résumé complet concernant l'ensemble des processus pouvant affecter le comportement des matériaux énergétiques est disponible dans McGrath (1995).

2.1 Dissolution

CD 1 1

Les explosifs se retrouvent généralement sous forme cristalline en surface. Les cristaux agissent comme «réservoir» libérant des ME en phase dissoute à chaque épisode d'infiltration. La solubilité des principaux matériaux énergétiques est différente pour le HMX, le TNT et le RDX mais demeure cependant faible (Tableau 2.1).

			A			
			énergétique	s.		
]	ableau 2.1	Resume des	s valeurs de solubili	ite a l'eau des	s principaux	composes

1 1 111. / 3 15

Composé	Solubilité à l'eau à 10 ⁰ C(mg/l)	Solubilité à l'eau à 20 ⁰ C(mg/l)
TNT ^a	110	130
RDX ^b	28.9	42.3
HMX ^c	3.07	4.6

(selon a: Urbanski (1964), b: Sikka et al., (1980) et c: Thiboutot et al., (1998))

La volatisation est un phénomène ayant un effet négligeable sur le comportement des matériaux énergétiques parce que la constante de Henry (K_h) des molécules énergétiques est faible (Tableau 2.2).

Composés	Constante de Henry (K _h) (atm·m ³ /mol)
TNT	1.1x10 ⁻⁸
RDX	2.0x10 ⁻¹¹
НМХ	2.6x10 ⁻¹⁵

 Tableau 2.2
 Pressions de vapeur des principaux composés énergétiques

(selon Rosenblatt et al., 1989)

2.3 Sorption

Le processus de sorption a pour effet de ralentir la progression des matériaux énergétiques dissous. En général, ce processus est contrôlé par les caractéristiques chimiques du sol comme la fraction en carbone organique totale (COT) et les propriétés du soluté comme la température et le pH.

Les constantes de partition eau/sol (K_d) pour les ME obtenues dans la littérature varient beaucoup selon le type de sédiment et les conditions de l'essai (Tableau 2.3). Le coefficient de retard du TNT, HMX et RDX pour un site spécifique est très difficile à estimer à partir de ces valeurs.

	TNT	НМХ	RDX
	Sable d'Ottawa = 1.5 L/kg		
Valeur de K _d	Silt = 4.5 L/kg	0.1 à 13.26 L/kg	0.2 à 4.2 L/kg
	Argile = 10 L/kg		

Tableau 2.3 Valeurs des constantes de partition eau/sol (K_d) du TNT sur des sédiments standard et plage de valeurs pour le HMX et le RDX (selon Townsend et Myers, 1996)

Selon les essais en éprouvette de Pennington et Patrick (1990), l'adsorption du TNT montre une bonne corrélation avec le fer et la capacité d'échange cationique (CEC) (Tableau 2.4). Contrairement à la majorité des contaminants organiques, le K_d du TNT a une corrélation faible avec la fraction de carbone organique (f_{oc}). Le fait qu'il y ait une corrélation élevée entre la valeur de K_d et la capacité d'échange cationique est lié à la polarité relativement élevée (1,47 Debye) de la molécule de TNT (Pennington et Patrick, 1990).

Tableau 2.4Corrélation entre le K_d et certains paramètres du sol.
(selon Pennington et Patrick, 1990)

Paramètre	Coefficient de corrélation	Paramètre	Coefficient de corrélation
Fe	0.89	% silt	0.17
CEC	0.87	pH	0.17
% d'argile	0.70	Mn	0.041
COT.	0.40	Ec	-0.40
Ca	0.35	% de sable	-0.55
Al	0.18		

2.4 Dégradation

2.4.1 Processus abiotique

Une des premières transformations qui affecte le devenir des explosifs est la photolyse, c'est-à-dire l'altération chimique d'un composé par effet direct ou indirect de la lumière. Il s'agit d'un processus de dégradation ayant un potentiel autant pour le TNT, le RDX que pour le HMX (Sikka et al., 1980 et Spanggord et al., 1981), mais qui se déroule seulement en surface ou dans les premiers centimètres sous la surface du sol.

2.4.2 Processus biotique

La dégradation du TNT a lieu autant en milieu aérobie qu'anaérobie. Dans les deux cas, il y a une réduction des groupes nitro de la molécule de TNT en groupes amino. Le nombre de groupes nitro réduit dépend du potentiel réducteur du système. Kaplan et Kaplan (1982) ont étudié la transformation du TNT et ont développé un parcours de dégradation. Ainsworth *et al.*, (1993) ont analysé la dégradation du TNT dans plusieurs sols stérilisés et ont trouvé dans chaque sol des produits de dégradation du TNT. Le plus courant était le 2A-DNT, suivi par le 4A-DNT et le 2,4-DANT. Ils indiquent aussi que le TNT adsorbé est préférentiellement dégradé. Également, ces auteurs ont remarqué un potentiel de dégradation particulièrement élevé dans le silt, suivi par l'argile et le sable.

Price et Brannon (1995) ont examiné l'effet du potentiel d'oxydo-réduction et du pH sur la dégradation du TNT à l'aide d'essais en éprouvette. Ils ont déterminé que la dégradation est particulièrement active en présence d'un potentiel réducteur élevé et est indépendante du pH. En parallèle, les auteurs ont essayé d'évaluer l'influence de la présence de Fe²⁺ sur la dégradation. Les auteurs ont remarqué que le TNT disparait plus rapidement en présence de Fe²⁺, ce qui indique que ce cation est une composante majeure pour la dégradation du TNT car en conditions réductrices, le Fe²⁺ fournit les électrons nécessaires à la réduction des groupes nitro. Malgré que le TNT a une forte propension à la biotransformation, ce composé demeure difficile à minéraliser (Hains, 2001; Hawari *et al.*, 2000)

La biodégradation du RDX et du HMX se fait autant en milieu anaérobie qu'aérobie mais à un taux plus faible que le TNT. Hawari *et al.* (2000) ont démontré que le RDX et le HMX peuvent être minéralisés en conditions anaérobie et aérobie.

L'INRS ne détient pas les droits pour diffuser cette version de l'article. Vous pouvez le consulter à l'adresse suivante :

Martel, R., Mailloux, M., Gabriel, U., Lefebvre, R., Thiboutot, S. et Ampleman, G. (2009). Behavior of energetic materials in ground water at an anti-tank range. *J. Environ. Qual.* 38(75-92.

http://dx.doi.org/doi:10.2134/jeq2007.0606

CHAPITRE 4

<u>NUMERICAL MODELING OF THREE-DIMENSIONAL VARIABLY-</u> <u>SATURATED FLOW AND TRANSPORT OF DISSOLVED ENERGETIC</u> <u>MATERIALS AT AN ANTI-TANK RANGE</u>

ABSTRACT

A previous characterization study at an anti-tank range has allowed the development of a conceptual model for HMX and TNT transport. HMX was the main EM found in groundwater at this site. Because it is essential to have an excellent understanding of the groundwater flow conditions prior to performing a detailed contaminant transport study, a 3-D unsaturated-saturated groundwater flow modeling study was initiated. Sharp seasonal groundwater flow velocity changes were observed close to the source because this area becomes unsaturated during low-water periods and saturated during spring recharge. The effects of such seasonal groundwater flow regime variations on dissolved HMX migration was clearly assessed with a simple advective/dispersive mass transport simulation. The results show that the dissolved EM plume quickly flows away from the source during recharge events but does not entirely reach the center of the valley before the mountain side goes dry during low-water periods.

RÉSUMÉ

Un modèle conceptuel expliquant les différents processus régissant le transport du HMX et du TNT a été défini à partir d'une étude de caractérisation hydrogéologique et environnementale effectuée au site Arnhem. Le HMX était le principal ME détecté dans l'eau souterraine. Parce qu'il est essentiel d'avoir une solide connaissance du régime d'écoulement de l'eau souterraine avant d'entreprendre une étude détaillée sur le transport des contaminants, des travaux de modélisation hydrogéologique 3-D en condition non-saturée/saturée ont été entrepris. Les résultats montrent que les vitesses d'écoulements changent de façon significative selon les saisons sur le flanc de la montagne car cette zone devient saturée pendant la recharge printanière et se désature en période d'étiage. Les effets qu'ont ces phénomènes transitoires sur l'évolution du panache de HMX dissous dans l'eau souterraine ont été évalués avec une simulation du transport de masse en condition advective/dispersive. Les résultats montrent que le panache s'écoule rapidement à partir de la source pendant la recharge printanière mais ne se rend pas complètement au centre de la vallée avant que le flanc de la montagne ne s'assèche en période d'étiage.
Results of previously-presented characterization wok have shown that the hydrogeological setting is complex in the vicinity of the Arnhem range. These complexities are related to the presence of a perched aquifer, a sharp shift in the direction of groundwater flow, steep bedrock slope, discontinuous stratigraphy and transient nature of the groundwater flow regime. Because it is essential to have an excellent knowledge of groundwater flow prior to performing a detailed contaminant transport study, which in turn is essential for a natural attenuation assessment, a simulation of 3-D unsaturated/saturated groundwater flow was performed. In addition, a preliminary transport simulation was completed. This chapter presents results of this modeling study, which contributes to an understanding of the fate of EM at the site.

4.2 Model Description

4.2.1 Code Selection

The flow and transport numerical modeling of the study area was performed with FRAC3DVS (Therrien and Sudicky, 1996), which represents three-dimensional, saturated-unsaturated groundwater flow and solute transport in porous or discretely-fractured porous formations. The variably-saturated flow equation is discretized using a control volume finite-element technique which ensures fluid conservation both locally and globally. Pre- and post-processing of the model was done with the Groundwater Modeling System (GMS, BYU 2000) and input/output files were exchanged between GMS and FRAC3DVS.

For this study, 3-D saturated-unsaturated flow was simulated in porous media under both steady state and transient conditions. A fully 3-D solution and a finite element discretization were needed because of the highly irregular aquifer geometry. A variably-saturated transient solution was needed to simulate the seasonal aquifer desaturation close to the training area and the transport of dissolved EM in the unsaturated and saturated zones.

4.2.2 Boundary Conditions

The model domain is shown in Figures 4.1 and 4.2. Refer to section 3.4 and the Appendices G and J for the data from which the domain and boundary conditions are derived.

4.2.2.1 Specified Heads

The eastern limit of the model is a specified head boundary of 173.5 m in the saturated section of the regional aquifer, based on the piezometric map defined by Mailloux *et al.* (2000). A specified head boundary of 183.5 m were assigned in the perched aquifer along the swamp and the creek located south of the domain.

4.2.2.2 No-Flow Boundaries

No-flow boundaries corresponding to groundwater flow pathlines were assigned to the southern and north-eastern limits of the model (Figure 4.1). A no-flow boundary corresponding to a water-divide line, defined by the regional hydrogeological mapping study of Michaud *et al.* (1999) was assigned at the western limit of the model (Figure 4.1). Finally, the bedrock was assumed to be a no-flow condition boundary.

Figure 4.2 Cross-section of the conceptual model of groundwater flow. Location of A-A' shown on Figure 4.1

4.2.2.3 Specified Flux Boundary

A specified flux boundary was assigned at the soil surface to represent water infiltration. Annual infiltration was estimated by Fagnan (1998) from a hydrologic water balance with meteorological data obtained from the Duchesnay station (Appendix M), located about 20 km west of the Arnhem range. Potential evapotranspiration (PET) was evaluated with the Thornthwaite method (Thornthwaite and Holzman, 1939). The runoff coefficient was estimated at 0.43. The annual infiltration rate, which is used for steadystate simulation, was estimated at 359 mm/yr. Details of the hydrologic balance are presented in Table 4.1.

Component	Water	Proportion	
	(mm/year)	(%)	
Total Precipitation	1311	100 %	
Runoff	566	43%	
Potential PET	560		
Actual PET	391	30 %	
Infiltration	359	27 %	

Table 4.1Hydrologic mass balance for the studied area.

During winter, most of the precipitation consists of snow that accumulates on the frozen ground. In spring, all the snow melts within one month. This event represents almost all of the annual infiltration (Figure 4.3). A small recharge event also occurs during fall because evapotranspiration is low during that period. Thus, the infiltration was varied according to four events or stress periods during the transient flow simulation (Figure 4.3). It is assumed that the spring recharge occurs in April at a uniform rate of 8.3 mm/day. The infiltration flux corresponds to the water volume that was supposed to be infiltrated during winter. Fall infiltration was simulated with different values for September, October and November. Infiltration was assumed to be negligible during summer and winter.

Figure 4.3 Infiltration events or stress periods assigned for transient flow simulation.

4.2.3 Material Properties

Three different materials were considered in the model: the ice-contact sediments (Gx), the intertidal silt (Mi) and the deltaic silty sand (Md). The physical properties of these units are presented below. Refer to Section 3.4.1 and Appendix G for more information about the hydrostratigraphy of the Arnhem Range area.

4.2.3.1 Saturated Hydraulic Conductivity and Specific Storage

A summary of the saturated hydraulic conductivity and specific storage value for each hydrostratigraphic unit is presented in Table 4.2. The saturated hydraulic conductivity (K_{sat}) was measured *in situ* by slug tests using the Bower and Rice (1976) and Hvorslev (1951) methods. For the silt unit, K_{sat} was estimated from grain size distribution, using Slichter's method (Vukovic and Soro 1992). It is assumed that all hydrostratigraphic units are isotropic ($K_h=K_v$). The specific storage (S_s) was estimated from values given in Freeze and Cherry (1979) for similar materials.

Unit Name	Saturated Conductivi	l Hydraulic ty (K _{sat}) (m/s)	Specific Storage (S _s) (1/m)	
	Range	Mean		
Ice-contact sediments (Gx)	1.3x10 ⁻⁵ to 2.4x10 ⁻⁴	1.0x10 ⁻⁴	1.7x10 ⁻⁴	
Sandy silt (Md)	2.8×10^{-5} to 1.4×10^{-4}	5.9x10 ⁻⁵	1.7x10 ⁻⁴	
Silt (Mi)	1.0×10^{-10} to 3.5×10^{-8}	1.0x10 ⁻⁸	2.0x10 ⁻³	

 Table 4.2
 Saturated hydraulic conductivity and specific storage values.

4.2.3.2 Capillary Parameters Estimation

The van Genuchten (1980) model was selected to represent the relationship between the pressure head (p) and the water content (θ) for each hydrostratigraphic unit described in section 3.4.1. The capillary parameters, such as saturated water content (θ_s), residual water content (θ_r), and the van Genuchten n and α parameters were estimated on the basis of values for textural classes in a compilation made by Carsell and Parrish (1988). These parameters are presented in Table 4.3. The relationship between pressure head and water content are presented in Figure 4.4.

Relationship between the pressure head and the water content.

Figure 4.5 Relationship between the pressure head and relative permeability

Table 4.3Capillary parameters of hydrostratigraphic units, estimated from values in
Carsel and Parrish (1988).

Unit Name	θ_r	θ_{s}	α (1/cm)	n
Ice-contact sediments (Gx)	0.045	0.43	0.145	2.68
Deltaic sandy- silt (Md)	0.065	0.41	0.075	1.89
Intertidal silt (Mi)	0.034	0.46	0.016	1.37

The relative permeability was calculated using the Mualem model (1976). The relationship between pressure head and relative permeability is shown in Figure 4.5. Sharp changes in relative permeability occur in the present model, especially for the ice-contact sediments (Gx), where this parameter can change over more than 5 orders of magnitude when the water content is close to its residual value. Such a variation caused convergence problems for the model and it was deemed necessary to impose a lower limit on the relative permeability to retain a stable numerical solution. This limit was then included in an adaptation of Mualem's relationship defined by Beckers and Frind (2000) to evaluate the relative permeability:

(4.1) $k_{\rm r} = \max(k_{\rm r}({\rm p}), k_{\rm min})$

 k_{\min} should be set at the lowest value that maintains a stable numerical solution. k_{\min} was assigned a value of 9×10^{-4} .

4.2.4 Spatial Discretization

The three-dimensional domain was discretized with 33980 nodes and 67960 triangular prisms (Figure 4.6). It was divided in 20 layers with a maximum vertical spacing of 1.33 m. A fine vertical discretization was necessary for the numerical solution of the unsaturated-saturated equation. Each layer was made of 1899 nodes and 3258 triangular elements. The sides of the triangular elements were 40 meters long for most of the domain, but the mesh was refined with 5-meter elements close to the training area where the hydraulic gradient is steep.

Figure 4.6 Three-dimensional finite element grid used for numerical simulation.

4.2.5 Timestep Definition for Transient Flow Simulations

For every recharge event or stress period defined in section 4.3.2.3, a variable timestepping procedure similar to the one outlined by Forsyth and Sammon (1986) was applied. Thus, the model modifies the timestep values following the transient flow solution behavior according to the following relation:

(4.2)
$$\Delta t^{L+1} = \frac{p}{\max\left|p^{L+1} - p^L\right|} \Delta t^L$$

where p^* is the maximum change in pressure head allowed during a single time step. p^* was assigned at 2 m. The initial timestep was set to 0.01 day for each stress period.

4.3 Model Calibration

Calibration is accomplished by finding a set of parameters, boundary conditions, and stresses that produce simulated heads that match field-measured values within a pre-

established range of error (Anderson and Woessner, 1992). The present groundwater flow model was initially calibrated under steady-state mode and then in transient mode. Only the regional aquifer parameters were modified during calibration.

4.3.1 Steady-State Calibration

The model was calibrated by trial-and error under steady-state flow conditions using water table elevations measured in 16 observation wells. Four parameters were calibrated under steady-state conditions: the annual infiltration, the saturated hydraulic conductivity of Gx unit and van Genuchten's α and *n* parameters. Annual recharge was calibrated by adjusting the runoff coefficient. The van Genuchten's α and *n* parameters of the Gx unit were adjusted to calibrate the area where the saturated thickness is very thin. The calibrated parameters for the Gx unit that give the best fit between observed and simulated hydraulic heads are presented in Table 4.4. The relationship between the observed and simulated head is presented in Figure 4.7. It is assumed that the model is calibrated if the root mean square error (RMS) is within 5% of the total head variation over the domain (Anderson and Woessner, 1992). The target RMS value was fixed at 1.375 (total variation of 27.5 m).

Table 4.4

Initial and calibrated values of annual infiltration, saturated hydraulic conductivity and van Genuchten's α and *n* parameters.

	K _{sat} (m/s)	Annual recharge (mm/yr)	α (1/cm)	п
Initial Value	1x10 ⁻⁴	359 runoff coefficient = 0.43	0.145	2.68
Calibrated Value	9x10 ⁻⁵	352 runoff coefficient = 0.44	0.185	3.7

4.3.2 Transient Calibration

Because transient phenomena such as seasonal aquifer desaturation of the side of Mount Triquet were observed, a steady-state analysis was not sufficient to understand the groundwater flow dynamics and its effects on dissolved energetic materials transport in the subsurface. Thus, transient variably-saturated flow modeling became necessary to obtain a reliable representation of groundwater flow at the Arnhem range.

Transient calibration was performed by comparing the simulated hydraulic head variation with the hydrograph of well A-3 where the hydraulic head has been measured twice a day since August 1999. The infiltration intensity of every recharge event was adjusted to get the best fit between the simulated and observed hydrograph. As a result, the annual recharge remains the same but its yearly distribution was calibrated or adjusted. The saturated water content (θ_s) was also calibrated. The other capillary parameters and the saturated hydraulic conductivity (K_{sat}) of Gx unit remained unchanged. Specified storage (S_s) was not calibrated because previous simulations have shown that this parameter has much less effect on the transient flow solution than the saturated water content. The steady-state flow solution was assumed to be the initial condition for the transient runs.

The best fit between the observed and simulated hydrograph of well A-3 was obtained with the same recharge distribution as presented in Figure 4.3 and with a saturated water content of 0.46. The observed and simulated hydrograph are presented on Figure 4.8. The transient effect on groundwater flow is discussed in the following section.

Figure 4.8 Comparison between the observed and the calculated well hydrograph.

4.4 Transient Unsaturated/Saturated Groundwater Flow Results

Figures 4.9 and 4.10 show groundwater flow just after the spring recharge and at lowwater conditions (summer/winter) along a north-south cross-section through the range. During spring recharge, the area under the training area becomes saturated and thus, groundwater flow velocity is high (up to 1200 m/yr) because the relative permeability of the Gx is equal or close to 1. Dissolved EM will migrate quickly towards the center of the valley where simulated groundwater flow velocities are lower (between 100 and 300 m/yr). However, the sediments under the range area remain unsaturated during lowwater periods such as summer and winter. The groundwater flow velocity is three orders of magnitude lower compared to spring recharge conditions because the relative permeability of the Gx unit is then equal to k_{min} (9x10⁻⁴). Compared to the mountain side area, yearly water table fluctuations have much less effect on groundwater flow velocity in the center of the valley.

Figure 4.9

Saturation profile just after the spring recharge

Figure 4.10 Saturation profile during summer

4.5 Preliminary Simulation of Dissolved EM Transport

An advective-dispersive mass transport simulation was performed with transient groundwater flow conditions similar to those presented in the preceding section. The objective of this simulation is only to give a qualitative overview of the effect of seasonal variations of groundwater flow on dissolved EM migration, using conservative assumptions. This work is not meant to rigorously quantify the spatial and temporal evolution of contaminants concentration in groundwater. Additional data such as degradation rates or dissolved EM infiltration rate would be required to do so. For the purpose of the present paper, it is assumed that the plume was not affected by degradation nor retarded by sorption. It is also assumed that all of constituents of the EM present in the plume have the same transport properties. The transport simulations shown here correspond to the evolution of the EM plume for the months following the beginning of training activities.

4.5.1 Dispersivity Estimation

The longitudinal dispersivity (α_L) was estimated from the Xu and Eckstein (1995) relationship, expressed in equation 4.3:

$$(4.3) \ \underline{q_0 c_0}{n} = vc - D_n \frac{\partial c}{\partial n}$$

The longitudinal dispersivity parameter is affected mainly by the scale factor, usually the distance between the source and the receptor, that was set at 500 meters for this simulation. The longitudinal dispersivity (α_L) was evaluated at 9 m. The transverse dispersivity was estimated at $0.01x(\alpha_L)$.

4.5.2 Boundary Conditions

To represent the EM source, a third-type boundary condition (equation 4.4) were assigned at the ground surface close to the training targets.

$$\frac{(4.4)}{n}\frac{q_0c_0}{n} = vc - D_n \frac{\partial c}{\partial n}$$

It is assumed that the source concentration (c_0) is variable with time, following the dissolution kinetics curve of HMX defined by Thiboutot *et al.* (1998) (Figure 4.11). The flux (q_0) is equal to the infiltration rate defined in section 4.3.2.3. D_n is the dispersion coefficient in the direction normal to the boundary and v is the advective flux. It is important to note that the dissolution kinetic curve was evaluated considering that HMX was still in contact with water, which is not the case in the field. Thus, the simulated source concentration (dissolved phase) is higher than that expected to be observed in the field.

Figure 4.11 Dissolution kinetics of HMX at 10°C. From Thiboutot *et al.* (1998).

4.5.3 Results

The simulation results are presented in Figure 4.12. The simulation is for a one-year period, and begins at the end of winter and beginning of spring recharge. Figure 4.12a shows the dissolved EM plume position at the end of the spring recharge (30 days after starting the simulation). As predicted in section 4.4, the plume quickly migrates because the sand aquifer overlying the sloping bedrock becomes saturated.

Figure 4.12b and 4.12c show the plume position during summer (120 days) and at the end of winter (365 days), respectively. The plume migration is much slower than for the preceding stress period because the aquifer has become unsaturated on the mountain side. It is important to note that some of the contaminant mass released during spring seems to be "stored" in the unsaturated zone. This may have an effect on dissolved EM fate because these contaminants could be biodegraded under aerobic conditions (Hawari *et al.*, 2000).

Figure 4.12d shows the plume position after another spring recharge (395 days). Concentrations at the source have increased because a new dissolved EM slug has been generated by snowmelt. The spring recharge has rewetted the mountain side. The stored EM from the previous spring are now remobilized and quickly flow towards the valley center.

Figure 4.12 Simulated EM plume evolution. Doted line indicates the limit of saturated conditions

4.6 Conclusions

Transient groundwater flow has been adequately simulated with a 3-D unsaturatedsaturated model. Sharp seasonal groundwater flow velocity changes were observed close to the source because this area becomes unsaturated during low-water periods but is saturated during spring recharge. The effects of such variations in the seasonal groundwater flow regime on dissolved HMX migration was clearly assessed with a simple advective/dispersive mass transport simulation. The results show that the dissolved EM quickly migrates from the source during recharge events but does not entirely reach the center of the valley before the aquifer on the mountain side goes dry. Some of the EM released during the spring recharge remained "stored" in the unsaturated sand of the mountain side during low-water periods. This may have an effect on dissolved EM fate because these contaminants could be biodegraded under aerobic conditions (Hawari et al., 2000). The stored EM slug from the previous spring is remobilized and then quickly flows again towards the center of the valley at the following spring recharge. Once in the center of the valley, dissolved EM flows away from the Arnhem site at a velocity that spatially varies between 100 and 300 m/yr, assuming that retardation factor is 1. However, more advanced reactive contaminant transport modeling work is needed to rigorously quantify the dissolved EM migration in the saturated and unsaturated zone. Data from ongoing studies, such as the in situ evaluation of dissolved EM infiltration rate from a lysimeter box and the biodegradation potential of EM, should be integrated in this model.

CHAPITRE 5 CONCLUSION GÉNÉRALE

Ce travail de recherche s'inscrivait dans le cadre d'un projet de R&D mené conjointement par l'INRS-Géoressources et le CRDV dont l'objectif global est de mieux comprendre le comportement des matériaux énergétiques dans les sols et l'eau souterraine afin d'évaluer si l'atténuation naturelle peut s'appliquer comme mode de gestion des sites du Ministère de la Défense Nationale (MDN). Une des étapes principales de ce projet était d'instrumenter le champ de tir anti-char Arnhem de façon exhaustive afin d'avoir une quantité suffisante de données hydrogéologiques et physico-chimiques nécessaires à l'atteinte des objectifs globaux.

Les travaux de terrain ont montré que le contexte hydrogéologique est très complexe dans le secteur du champ de tir Arnhem. Ces complexités sont la présence d'une nappe perchée, un changement brusque de direction et de vitesse d'écoulement, une stratigraphie discontinue, une géométrie complexe de l'aquifère et des effets transitoires majeurs sur le régime d'écoulement. Les travaux de caractérisation ont également montré que le HMX est le principal ME observé dans les sols de surface près des cibles d'entraînement et dans l'eau souterraine alors que le RDX et le TNT y sont quasi-absent. L'évolution dans le temps et dans l'espace de la contamination en matériaux énergétiques dissous dans l'eau souterraine a été bien définie grâce à des travaux exhaustifs d'échantillonnage et d'analyses chimiques.

À partir des données hydrogéologiques obtenues sur le terrain et des propriétés physicochimiques gouvernant le devenir des matériaux énergétiques, il a été possible de définir un modèle conceptuel expliquant le comportement des ME au champ de tir Arnhem. Ce

modèle montre que la faible cinétique de dissolution du HMX fait en sorte que l'essentiel de sa masse demeure en surface, limitant ainsi son impact sur l'eau souterraine. Le modèle conceptuel montre également que les ME s'infiltrent en sous-surface de façon épisodique mais à un taux inconnu. En zone saturée et non-saturée, le HMX est faiblement adsorbée et pourrait être biodégradé en condition aérobie. Le comportement du TNT est légèrement différent de celui du HMX : il est dissout plus rapidement, il est plus adsorbé que le HMX et est affectée par des processus de biodégradation aérobie. Cependant, l'atténuation naturelle du TNT et du HMX n'a pu être démontrée avec les données disponibles.

Les travaux de modélisation numérique ont permis de faire la synthèse du contexte hydrogéologique et de mettre en évidence l'effet des phénomènes transitoires sur le régime d'écoulement de l'eau souterraine. L'effet des variations saisonnières des conditions d'écoulement sur le transport des matériaux énergétiques dissous a clairement été démontré avec une simulation préliminaire du transport de masse en condition advective/dispersive. Les résultats de cette simulation montrent qu'une grande proportion des matériaux énergétiques dissous durant la recharge printanière demeure emmagasinée en zone non-saturée en période d'étiage pour ensuite être remobilisée au printemps suivant.

Le modèle FRAC3DVS s'est avéré un outil de modélisation efficace pour la modélisation 3-D de l'écoulement de l'eau souterraine au site Arnhem. L'avantage majeur relié à l'utilisation d'un modèle à saturation variable est qu'il permet de simuler l'évolution des matériaux énergétiques en phase dissoutes autant en zone saturée que non-saturée, permettant ainsi de suivre la migration des ME à partir de la source jusqu'à un milieu récepteur avec un seul modèle.

CHAPITRE 6 RECOMMANDATIONS

6.1 Gestion du site Arnhem

La recommandation la plus évidente à formuler pour la gestion du site est d'améliorer le mécanisme de détonation de la roquette M72 afin de limiter la dispersion d'octol à la surface du sol suite au ratés de tir. Il est également recommandé d'évaluer le risque écotoxicologique relié à la présence d'une quantité non-négligeable de HMX dans les sols à l'intérieur de la zone d'impact. Une décision concernant la nécessité d'un traitement des sols contaminés pourra alors être prise suite à cette étude.

6.2 Pour la poursuite de l'étude

Certains aspects affectant le comportement des matériaux énergétiques comme les processus de biodégradation dans l'eau souterraine et les divers phénomènes se produisant en surface et en zone non-saturée n'ont pu être étudiés dans le cadre de ce projet de maîtrise. La connaissance de ces processus est nécessaire pour améliorer la précision du modèle numérique ainsi que pour pouvoir modéliser adéquatement le transport réactif des matériaux énergétiques en phase dissoute et ainsi vérifier si l'atténuation naturelle peut être appliquée comme mode de gestion.

6.2.1 Étude hydrologique

Les paramètres hydrologiques comme le ruissellement, l'évapo-transpiration et l'infiltration ont été estimés à partir d'un bilan fait avec les données météorologiques d'une station qui est située à plus de 20 km du site Arnhem. Il serait intéressant de refaire ce bilan avec les données météorologiques obtenues avec la station qui a été installé à l'automne 2000 sur le site du champ de tir Arnhem. L'infiltration peut être dérivée facilement avec les volumes d'eau recueillis par les casiers lysimétriques qui ont également été installé à l'automne 2000. La quantité d'eau infiltrée ainsi obtenue sera nettement plus précise et la validation du modèle d'écoulement sera renforcée.

Présentement, il n'est pas possible de quantifier précisément la masse d'octol dissout qui entre en sous-surface à chaque année. Il serait intéressant d'obtenir une valeur *in situ* du taux d'infiltration des matériaux énergétiques dissous selon la période de l'année en mesurant la masse d'octol interceptée par les casiers lysimétriques. Le flux de masse ainsi obtenu sera nettement plus représentatif des conditions qui prévalent sur le terrain car contrairement à l'expérience faite par Thiboutot *et al.* (1998), le temps de contact entre l'eau de pluie ou de fonte des neiges et les ME est pris en compte. Le taux d'infiltration en ME dissout pourra être intégré dans le modèle numérique comme une condition limite de flux de masse (deuxième type).

6.2.2 Étude en laboratoire

Un des paramètres importants à évaluer lors d'une étude sur l'atténuation naturelle d'un contaminant est de savoir si celui-ci peut se biodégrader selon les conditions présentes sur le terrain. Il est donc nécessaire d'évaluer si le HMX peut se biodégrader et à quel taux. Pour le TNT, les résultats présentés dans le présent mémoire ont montré que ce composé se biotransforme mais il n'est pas possible d'évaluer le taux de biodégradation. Des essais en microcosmes peuvent être réalisés pour vérifier le potentiel de biodégradation des ME présents sur le site Arnhem.

De plus, les isothermes d'adsorption n'ont pas été quantifiés avec rigueur à partir des résultats d'essais en lot (*batch test*) car les points formant la courbe isotherme sont tous situés dans la même région. Il est donc recommandé d'effectuer soit un essai en colonne ou en lot pour mieux quantifier les coefficients d'adsorption du TNT et du HMX.

6.2.3 Modélisation numérique

Il est recommandé d'intégrer les nouvelles informations obtenues sur le terrain et en laboratoire dans le modèle utilisé pour ce mémoire. En plus de valider le modèle, cette intégration permettrait de synthétiser l'ensemble des données obtenues durant l'étude et également d'évaluer s'il y a atténuation naturelle des matériaux énergétiques au site Arnhem.

CHAPITRE 7

<u>RÉFÉRENCES</u>

AINSWORTH, C.C., Harvey, S.D., Szecsody, J.E., Simmons, M.A., Cullinan, V.I., Resch, C.T. et Mong, G.H. 1993. <u>Relationship between the leachability characteristics</u> of unique energetic compounds and soil properties. Final Report, Pacific NW Laboratory, Richland WA.

AMPLEMAN, G., Thiboutot, S., Dubé, P., Dubois, C., Jean, S., Hawari, J., Martel, R. et Lefebvre, R. 2000. "Évaluation de la contamination par les explosifs des sites du Ministère de la Défense Nationale." <u>Sommaire exécutif des conférences du Salon des technologies environnementales du Québec</u>, p. 414-419.

AMPLEMAN, G., Marois, A., Thiboutot, S., Hawari, J., Greer, C.W., Godbout, J., Sunahara, G.I., Shen, C.F. et Guiot, S.R. 1999. "Synthesis of ¹⁴C-Labelled Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX) for use in Microcosm Experiments." J.Label.Comp. Radiopharm", Vol 42, p. 1251-1264.

AMPLEMAN, G., Thiboutot, S., Gagnon, A., Marois, A., Martel, R. et Lefebvre, R. 1998. <u>Study of the Impacts of OB/OD Activity on Soils and Groundwater at the Destruction Area in CFAD Dundurn</u>. Rapport CRDV R-9827.

AMPLEMAN, G., Thiboutot, S., Lavigne, J., Marois, A., Hawari, J., Jones, A.M. et Rho, D. 1995. "Synthesis of ¹⁴C-labelled Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX), 2,4,6-Trinitrotoluène (TNT), Nitrocellulose (NC) and Glycidyl Azide Polymer (GAP) for Use in Assessing Biodegradation Potential of these Energetic Compounds." J.Label.Comp.Radiopharm., Vol 36, No 6, p. 559.

ANDERSON, M.P., et Woessner, W.W. 1992. <u>Applied groundwater modeling:</u> <u>Simulation of flow and advective transport</u>. Academic Press, 381 p.

BECKERS, J., et Frind, E.O. 2000. "Simulating groundwater flow and runoff for the Oro Moraine. Part I: Model formulation and conceptual analysis." <u>Journal of Hydrology</u>, No 229, p. 265-280.

BOWER, H. et Rice, R.C. 1976. "A slug test for determining hydraulic conductivity of unconfined aquifers with partially penetrating wells". <u>Water Resources</u>, vol. 12, p. 423-428.

BRIGHAM YOUNG UNIVERSITY (BYU), 2000. <u>GMS, Version 3.1</u>. Salt Lake City, Utah.

CARSEL, R.F., et Parrish, R.S. 1988. "Developing joint probability distributions of soil water retention characteristics." <u>Water Resources Research</u>, Vol. 24, No. 5, pp 755-769

CHEKAI, R.T., Major, M.A., Nwanguma, R.O. et Amos, J.C. 1993. <u>Transport and Fate of Nitroaromatic and Nitramine Explosives in Soils from Open Burning/Open Detonation</u> <u>Operations : Radford Army Ammunition Plant</u> Technical Report # 0704-0188, U.S. Army Chemical Research, Development and Engineering Center, 160 p.

DUBOIS, C., Salt, C., Dubé, P, Nadeau, G., Greer, C. et Godbout, J. 1999. <u>A First</u> <u>Field-Scale Bioremediation of Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine (HMX)</u> <u>Contaminated Soils at CFB-Valcartier Arnhem Anti-Tank Range.</u> Technical Report # DREV – TM – 99, Defense Research Establishment Valcartier.

EPA. 1992. <u>Batch-Type Procedures for Estimating Soil Adsorption of Chemicals</u>. Office of Solid Waste and Emergency Response, Washington DC, 86 p.

FAGNAN, N. 1998. <u>Cartographie Hydrogéologique régionale et vulnérabilité des</u> aquifères de la MRC de Portneuf. Mémoire de maîtrise, INRS-Géoressources, 215 p.

FORSYTH, P.A., et Sammon, P.H. 1986 "Practical considerations for adaptive implicit methods in reservoir simulation". Journal of computational physic, vol. 62, p. 265-281.

FREEZE, R.A. et Cherry, J.A. 1979. Groundwater. Prentice-Hall inc, 604 p.

GILLEN, J.C. 1995. <u>Modeling the Fate and Transport of TNT in Soils.</u> M.Sc Thesis, South-Dakota State University. 121 p.

HAINS, S. 2002. <u>Identification des propriétés environnementales du TNT dans les sols</u> <u>et les eaux souterraines en relation avec la demonstration de l'atténuation naturelle à un</u> <u>site de production d'explosifs</u>. Mémoire de maîtrise, INRS-Géoressources, 170 p.

HAWARI, J., Beaudet, A., Halasz, A., Thiboutot, S. et Ampleman, G. 2000. "Microbial degradation of explosives: biotransformation versus mineralization." <u>Applied Microbial</u> <u>Biotechnologi</u>e, No 54. p. 605-618.

HVORSLEV, M.J. 1951. <u>Time lag and soil permeability in groundwater observations</u>. U.S. Army Corps of Engineers, Waterway Experiment Station, Vicksburg, MS, 50 p. JENKINS, T.F., Grant, C.L., Walsh, ME, Thorne, P.G., Thiboutot, S., Ampleman, G. et Ranney, T.A. 1999. "Coping with Spatial Heterogeneity Effects on Sampling and Analysis at an HMX – Contaminated Antitank Firing Range." <u>Field Analytical Chemistry and Technology</u>, Vol 3., No 7, p. 19-28.

JOL, H.M. 1995. "Ground penetrating radar antennae and transmitter powers compared for penetration depth, resolution and reflection continuity". <u>Geophysical Prospecting</u>, v.43, p. 693-709.

KAPLAN, D.L. et Kaplan, A.M. 1982. <u>2,4,6-trinitrotoluène-surfactant complexes</u>, <u>biodegradability</u>, <u>mutagenicity and soil leching studies</u>. Technical Report NATICK/TR-82/006.

MAILLOUX, M., Martel, R., Lefebvre, R., Thiboutot, S et Ampleman, G. 2000. "Energetic materials behavior in groundwater at the Arnhem anti-tank range of BFC-Valcartier, Québec, Canada." <u>Proceedings of the 1st Joint IAH-CSG Conferences</u>, 8 p.

MAILLOUX, M., Martel, R., Therrien, R., Lefebvre, R., Thiboutot, S et Ampleman, G. 2001. "Numerical modeling of three-dimensional variably-saturated flow and transport of dissolved energetic materials at an anti-tank range." <u>Proceedings of the 2st Joint IAH-CSG Conferences</u>, 8 p.

MARTEL, R., Lefebvre, R., Martel, K.E. et Roy, N., 1996. <u>Preliminary Soil and</u> <u>Groundwater Characterization Study at the Dundurn Explosives Facility (Saskatchewan)</u>. Rapport interne INRS-Géoressources, 17 p.

MARTEL, R., Mailloux, M., Lefebvre, R., Ampleman, G., Thiboutot, S., Jean, S. et Roy, N. 1999. "Energetic materials behavior in groundwater at the Arnhem anti-tank range of BFC-Valcartier, Québec, Canada." <u>Life Cycles of Energetic Materials</u>, Orlando, FL. Sept 26-29, 10 p.

MARTEL, R., Thiboutot, S., Ampleman, G., Paradis, D. et Lefebvre, R. 2001. "Soil and groundwater characterisation of CFB-Shilo ranges, manitoba, Canada" <u>Proceedings of the 2nd Joint IAH-CSG Conferences</u>, 8 p.

McCORMICK, P.L., Cornell, J.H. and Kaplan, A.M. 1981. "Biodegradation of hexahydro-1,3,5-trinitro-triazine (RDX)." <u>Applied and Environmental Microbiology</u>, 42(5), p. 817-850.

McGRATH, C.J. 1995. <u>Review of Formulations for Processes Affecting the Subsurface</u> <u>Transport of Explosives</u>. Technical Report IRRP-95-2, U.S. Army Corps of Engineers Waterway Experiment Station, Vicksburg, MS, 260 p.

MICHAUD, Y., Parent, M., Mailloux, M., Boisvert, É., Lefebvre, R., Martel, R., Boivin, R., Roy, N. et Hains, S. 1999. <u>Cartographie des formations superficielles et cartographie</u> hydrogéologique de la base des forces canadiennes de Valcartier. Document cartographique produit par la Commission géologique du Canada.

MUALEM, Y. 1976. "A new model for predicting the hydraulic conductivity of unsaturated porous media". <u>Water Resources Research</u>, Vol 12, No 3. p. 513-522.

PARENT, M., Michaud, Y., Boisvert, É., Bolduc, A., Fagnan, N., Fortier, R., Coultier, M. et Doiron, A. 1998. <u>Cartographie hydrogéologique régionale du piémont Laurentien dans la MRC de Portneuf: Géologie et stratigraphie des formations superficielles</u>. Document cartographique produit par la Commission géologique du Canada., projet 3664a.

PENNINGTON, J.C. et Patrick, W.H., 1990. "Adsorption and Desorption of 2,4,6-Trinitrotoluene by soils." Journal of Environmental Quality, vol 19., p. 559-567.

PRICE, C.B. et Brannon, J.M. 1995. <u>Transformation of 2,4,6-trnitrotoluène under controlled Eh/pH conditions</u> Technical Report IRRP-95-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

ROSENBLATT, D.H., Burrows, E.P., Mitchell, W.R. et Parmer, D.L. 1989. "Organic explosives and related compound"s <u>The handbook of environmental chemistry</u>. O. Hutzinger, ed. 3, Part G, p. 195-234.

SELIM, H.M., et Iskandar, I.K. 1994. <u>Sorption-desoprtion and Transport of TNT and RDX in soils</u>. CRREL Technical Report 94-7, U.S. Army Cold Regions Research and Enginnering Laboratory, Hanover, NH.

SHEPARD, R. 1968. "A two dimensional interpolation function for irregulary spaced data". <u>Proceedings of the 23rd National Conference of the ACM</u>, P. 517-523

SIKKA, H.C., Banerjee, S., Pack, E.J. etd Apleton, H.T. 1980. <u>Environmental fate of RDX and TNT</u>. Technical Report 81538, U.S. Army Medical Research and Development Command, Ft. Detrick, Frederick, MD

SPAIN, J.C. 1995. <u>Biodegradation of Nitroaromatic Compounds</u>. Environmental Science Research, vol. 49, 232 p.

SPANGGORD, R.J., Mabey, R.W., Mill, T., Chow, T.W., Smith, J.H. et Lee, S. 1981 Environmental fate studies of HMX, screening studies, final report, phase I –Laboratory studies. Report AD-A133987, SRI International, Menlo Park, CA.

THERRIEN, R., et Sudicky, E.A. 1996. "Three-Dimensional Analysis of Variably-Saturated Flow and Solute Transport in Discretely-Fractures Porous Media". J. Contam Hydrol, 23, p. 1-44.

THIBOUTOT, S., Ampleman, G., Gagnon, A., Marois, A., Jenkins, T.F., Walsh, ME, Thorne, P.G., et Ranney, T.A. 1998. <u>Characterization of AntiTank Firing Ranges at</u> CFB Valcartier, WATC Wainwright and CFAD Dundurn. Rapport CRDV R-9809.

THORNTHWAITE, C.W., et Holzman, B. 1939 "The determination of evaporation from land and water surfaces". <u>Monthly Weather Review</u>, vol. 67.

TOWNSEND, D.M., Myers, T.E, et Adrian, D.D 1995. <u>2,4,6-trinitrotoluene (TNT)</u> <u>transformation/sorption in thin disk soil column</u>. Technical Report IRRP-95-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg 26 p.

TOWNSEND, D.M. et Myers, T.E. 1996. <u>Recent Developments in Formulating Model</u> <u>Descriptors for Subsurface Transformation of TNT, RDX and HMX.</u> Technical Report IRRP-96-1, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, 21 p.

URBANSKI, T. 1964. <u>Chemistry and technology of explosives</u>. Macmillan Co., New-York, Vol. 1.

VAN GENUCHTEN, M. Th. 1980. "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." <u>Soil Sciences Society Journal</u>, vol. 44, p. 892-898.

VOUDRIAS, E.A. et Assaf, K.S. 1995 "Theoretical Evaluation of Dissolution and Biochemical Reduction of TNT for Phytoremediation of Contaminated Sediments." Journal of Contaminant Hydrology, Vol. 23, p. 245-261.

VUKOVIC, M., et Andlejko, S. 1992. <u>Determination of hydraulic conductivity of</u> porous media from grain-size composition. Water Resources Publications, 83 p.

WEBB, S.W., Finsterle, S.A., Pruess, K. et Phelan, J.M. 1998. "Prediction of the TNT Signature from Buried Landmines". <u>Proceedings of the Tough Workshop'98, Berkeley, CA, May 4-6 1998.</u>

WEBB, S.W., Pruess, K., Phelan, J.M., and Finsterle, S.A. 1999 "Development of a Mechanistic Model for the Movement of Chemical Signatures from Buried Landmines/UXO." Proceedings of International Symposium on Aerospace/Defense Sensing. Simulation. And Controls, Conference on Detection and Remediation Technologies for Mines and Minelike Objects (Orlando, FL, April 5-8 1999)

Xu, M.J. and Eckstein, Y. 1995. "Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale". <u>Groundwater</u>, Volume 34.

ANNEXE A

JOURNAUX DE FORAGES
Un total de 25 puits d'observations ont été installés depuis 1998 au champ de tir Arnhem. 22 de ces 25 puits d'observations ont été installés à partir d'une tarière à tige creuse. Le personnel de l'INRS-Géoressources a supervisé les travaux exécutés par la compagnie Forages Montréal Inc. Le diamètre extérieur est de 184 mm (7¼''). Pendant les opérations de forage, les sédiments ont été échantillonnés à quelques reprises à l'aide d'une cuillère fendue de 51 mm (2'') de diamètre et de 610 mm (2') de longueur. D'autres échantillons ont été recueillis sur les ailettes des tarières lors de leur remontée. Dus aux risques de contamination de ces derniers échantillons par contact avec les parois du forage, seuls ceux prélevés avec la cuillère fendue ont été soumis aux analyses chimiques pour les ME. Des analyses granulométriques ont été réalisées sur douze échantillons de sédiments, les courbes sont présentées à l'Annexe B. Le forage au diamant (calibre HQ) a été utilisé à une reprise pour carotter le roc au puits A-1.

Les puits sont constitués d'un tubage et d'une crépine en PVC de 51 mm (2'') de diamètre. La crépine, dont les ouvertures sont de 0,254 mm (0,01''), a une longueur de 1,52 m (5'). Les matériaux utilisés pour le remplissage de l'espace annulaire sont le sable filtrant #0, la bentonite en pastilles, le coulis de bentonite et le ciment expansif.

Trois forages ont été faits avec une tarière à tige pleine de 51 mm (2'') de diamètre. Ces forages ont permis l'installation de trois pointes filtrantes en PVC de 38 mm de diamètre afin d'instrumenter les endroits où le niveau de la nappe est près de la surface. Deux forages manuels sans installation ont été réalisés près du ruisseau afin de vérifier si cette nappe est reliée hydrauliquement avec ce cours d'eau.

Entre chaque forage, les tarières et les équipements d'échantillonnage des sédiments (cuillère fendue) ont été brossés et ensuite nettoyés successivement avec de l'acétone, du méthanol et de l'eau distillée pour prévenir une contamination entre les sites de forage (*cross-contamination*).

Les journaux de forage sont présentés dans les pages suivantes et illustrent toutes les informations recueillies durant les forages ainsi que l'aménagement des puits d'observation.

83

LÉGENDE

ł ÷

Tube Shelby

Excavation

PAGE: 1 de 2

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 8 juin 1998

DESCRIPTION PAR: Michel Mailloux

ÉLÉVATION SOMMET TUBULURE: 211.434 m

LOCALISATION (UTM NAD 83, ZONE 19): 305347.910; 5200447.707

ÉCHANTILLONS ANALYSES CHIMIQUES PUITS D'OBSERVATION PROFIL STRATIGRAPHIQUE Ê Récupération(%) £ Profondeur (m) Altitude/Prof. HMX (µg/kg) RDX (µg/kg) Stratigraphie TNT (µg/kg) % Prof. infras. Remarques Description Numéro C.O.T. (Schéma Type 0 210.659 Surface du terrain 0 Éch. mis en réserve 100 1-A ----Éch. 1R, COT: 4.45% 1 2 1.83 Sable moyen Traces de silt et de gravier; quelques 3 3 blocs sur le premier mètre 2.74 4-4.57 206.089 5 -_ Sable moyen 6 6.31 204.349 Blocs 7-7.32 203.339 8 9 10

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

MÉTHODE DE FORAGE: tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

LONGUEUR TOTALE TUBULURE + CRÉPINE: 17.44 m

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 8 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305347.910; 5200447.707

PUITS D'OBSERVATION PROFIL STRATIGRAPHIQUE ÉCHANTILLONS ANALYSES CHIMIQUES Ê Récupération(%) Profondeur (m) £ Stratigraphie Altitude/Prof. HMX (µg/kg) infras. TNT (µg/kg) RDX (µg/kg) C.O.T. (%) Description Remarques Schéma Numéro Prof. i Type 11 12 Sable remonte avec les tarières (approx.12 m) Sable fin à moyen 13 Traces de gravier et de silt 14 -14.12 1 14.33 Pastilles de bentonite ., prises sur les tarières 15 15.19 15.84 194.819 1-B 16 . 0.15 --Blocs 16.62 16.53 N.S.:194.124 m (01-09-98) 194.039 16.91 17 -Injection d'eau lors du Roc carottage et pour Intrusif intermédiaire, RQD 100% 17.53 dégager la crépine 17.53 193.129 Fin du forage 18 19 20

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 17.44 m

DIAMÈTRE DU FORAGE: 200 mm

MÉTHODE DE FORAGE: tarière évidée

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

PAGE: 1 de 2

ÉLÉVATION SOMMET TUBULURE: 211.434 m

PAGE: 1 de 2

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE:

DESCRIPTION PAR: Michel Mailloux

ÉLÉVATION SOMMET TUBULURE: 210.455

LOCALISATION (UTM NAD 83, ZONE 19): 305360.708; 5200319.399

D'	PUITS	TION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	AN	ALYSES C	CHIMIQUE	s	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	(бҳ/bл) XMH	RDX (µg/kg)	С.О.Т. (%)	Remarques
0				Surface du terrain	0			100		1			
				Matière organique	200.401	3-A		100	-	-	•	-	Ech. mis en réserve
1	1.83			Sable moyen Traces de silt et de gravier, brun.	22								
3-			<u></u>		206.257	Ì							
4										-			
6													
7- 8-													
9- 10-													
11 -												-	
13-				Sable fin									
14 15 16				Beige, traces de silt; présence de calilloux vers 24.45 m.									

COMPAGNIE DE FORAGE: Forages Montréal

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 30.47 m

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE:

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305360.708; 5200319.399

PUITS D'OBSERVATION PROFIL STRATIGRAPHIQUE ÉCHANTILLONS ANALYSES CHIMIQUES Altitude/Prof. (m) Récupération(%) Ê Profondeur (m) Stratigraphie TNT (µg/kg) HMX (µg/kg) RDX (µg/kg) Prof. infras. C.O.T. (%) Description Remarques Schéma Numéro Type 17 18 19 11 20 21 22 _ 23 24 25 -25 *** *** 184.457 25.61 blocs ou cailloux 183.847 Sable de la formation de 26 28.81 m jusqu'au fond 27 Sables et graviers 28 Sable moyen, beige, un peu de gravier (10%), traces de silt 28.40 ,v N.S.:180.815 m (01-09-98) 28.64 28.95 29 Éch. pour granulo + C.O.T. 3-B -0.11 -. 30 30 47 30.79 REFUS SUR ROC 30.79 178.667 31 Fin du forage 32

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 30.47 m

DIAMÈTRE DU FORAGE: 200 mm

MÉTHODE DE FORAGE: Tarière évidée

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

PAGE: 1 de 2

ÉLÉVATION SOMMET TUBULURE: 210.455

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE:

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305424.797; 5200317.688

PAGE: 1 de 3

ÉLÉVATION SOMMET TUBULURE: 210.725 m

D'I	PUITS	TION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	AN	ALYSES		S	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
0				Surface du terrain	0 209.83								±
-	1			Matière organique	100.00	5-A		100	-	-	-	-	Ech, mis en réserve
1-	1.83			Sable moyen Traces de silt, brun	1.83								
2	1.00				208								
3-													
4-				Sable fin/moyen Beige, 10% de gravier									
5-										-			
	-				6.1								
6-					203.73								
8	╖┥╸												
9													
10				<u> </u>									

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 25.80 m

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 m

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE:

Profondeur (m)

11

12

13

14

15

16

17

18

19

20

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305424.797; 5200317.688

D'	PUITS OBSERVA	NON		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	AN	ALYSES	CHIMIQU	ES	· · ·
	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	С.О.Т. (%)	Remarques
2													
5													

COMPAGNIE DE FORAGE: Forages Montréal

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

Sable fin Traces de silt et de gravier, beige

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 25.80 m

PAGE: 1 de 3

ÉLÉVATION SOMMET TUBULURE: 210.725 m

OUVERTURE CRÉPINE: 0.254 m

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE:

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305424.797; 5200317.688

PAGE: 1 de 3

ÉLÉVATION SOMMET TUBULURE: 210.725 m

D'O	PUITS DBSERVA1	NON		PRO	OFIL STRATIGRAP	HIQUE		ÉCHA	NTILLO	NS	AN	ALYSES	CHIMIQUI	ES	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie		Description		Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	С.О.Т. (%)	Remarques
21															
23	22.26 23.11 23.39	J Z Z							5						N.S.:186.725 m (01-09-98)
24 -	24.91				Fin du forage		24.91 184.92	5-C,D	\$	-	-	-	-	0.13	Éch. pour granulo (C et D) et C.O.T. (C) REFUS SUR ROC
26 27 28 28															
30 -															

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

MÉTHODE DE FORAGE: Tarière évidée

LONGUEUR TOTALE TUBULURE + CRÉPINE: 25.80 m

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 m

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 9 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305379.375; 5200194.875

PAGE: 2 de 2

ÉLÉVATION SOMMET TUBULURE: 191.781 m

0'	PUITS DBSERVA	TION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	AN	ALYSES	CHIMIQUE	s	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
0				Surface du terrain	0								_
1				Sable fin silteux	190.022	7-A		100	-	-	-	-	Éch. mis en réserve
2	1.83			Jaune-beige, présence de matière organique sur les 30 premiers cm; brun ensuite.									
3-													
	1		·····	· · · · · · · · · · · · · · · · · · ·	3.35								
4				Silt sableux Brun foncé, matériel cohérent	4.42	7-B	}	-	-	-	-	-	Éch. pour granulo.
5- 6- 7-				Sable fin silteux	186.402								
8 - 9 -				Silt sableux	8.08 182.742 8.54 182.282								
10				Sable fin silteux Quelques blocs vers 10.37 m									

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

MÉTHODE DE FORAGE: Tarière évidée

LONGUEUR TOTALE TUBULURE + CRÉPINE: 13.74 m

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 9 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305379.375; 5200194.875

PAGE: 2 de 2

ÉLÉVATION SOMMET TUBULURE: 191.781 m

סיס	PUITS BSERVAT	ION		PROFIL STRATIGRAPHIC	NE	ĖCHA	NTILLO	NS	AN	ALYSES	CHIMIQUE	is .	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Attitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
	10.57				10.67								
11 -	10.93 11.26	z		Sable moyen gravel	eux	7-C	}	-	-	-	-	-	N.S.:179.891 m (01-09-98) Éch. pour granulo.
12			•		12.19 178.632								Remontée de sable jusqu'à 12.1 m
13 -	12.78			Sable moyen/gross Traces de gravier et de	silt	7-D	}	-	-	-	-	0.18	Éch. pour granulo + C.O.T.
14	13.72			Fin du forage	177.102								
15													Injection d'eau durant le forage
16-													
17 -													
18 -													
19 -													
20													

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 13.74 m

OUVERTURE CREPINE: 0.234

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

,

DATE DU FORAGE: 11 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305457.108; 5200219.653

PAGE: 2 de 2

ÉLÉVATION SOMMET TUBULURE: 195.086 m

D.C	PUITS	ATION	۱		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	A	ALYSES	CHIMIQU	ES	
Profondeur (m)	Prof. infras. (m)		Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
0_		Г			Surface du terrain	0								
Ĭ					Sahle grossier	194.252								
					Traces de silt et de gravier	0.61								
1 1					Sable moyen silteux	193.642								
					Traces de gravier, brun; présence de blocs vers 0.92 m	1.83								
2	1.83				· · · · · · · · · · · · · · · · · · ·	192.422								
3 3					Silt sableux Brun, matériel cohérent		-	- - -						
					· · · · · · · · · · · · · · · · · · ·	3.35								
						190.902								
4-1					Blocs									
					-	4.27								
						189.982								
				· · · · ·										
5-														
-														
-														
6				\sim	Sable moyen/grossier									
					Un peu de silt		1	1			1		-	5.2
111														
1														
111						7.62						ļ		
111						186.632	1							
8-														
111														
9													1	
							- -							
-														
10 —						1							1	

COMPAGNIE DE FORAGE: Forages Montréal

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 17.53 m

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 11 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305457.108; 5200219.653

ÉLÉVATION SOMMET TUBULURE: 195.086 m

PAGE: 2 de 2

D'O	PUITS	ION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	vs	AN	ALYSES (HIMIQUE	s	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
11 12 13				Sable moyen/grossier Traces de silt et de gravier	14.63								
15	14,60 14.88 15.18	Σ.		Sable moyen/fin Traces de gravier et de silt. Quelques horizons de cailloux	179.622	9-B,C		100	nd	nd	nd	0.09	Éch. pour granulo + C.O.T. + nitroaromatiques
17 18 19- 20	16.70			Fin du forage	16.77 177.482								N.S.:179.376 m (01-09-98) nd: non détecté

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 17.53 m

MÉTHODE DE FORAGE: Tarière évidée

DIAMÈTRE DU FORAGE: 200 mm

OUVERTURE CRÉPINE: 0.254 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 10 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305443.434; 5199978.191

PAGE: 1 de 1

ÉLÉVATION SOMMET TUBULURE: 188.210 m

D'	PUITS	TION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	MS .	AN	ALYSES	CHIMIQU	ES	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
0 -				Surface du terrain	0								
1 1 1	0.85			Sable fin silteux		10-A		100		-	-	-	Éch. mis en réserve
					1.37								
2	1.42 1.96 2.09	Z Z		Silt sableux Brun, matériel cohérent	1 <u>1.68</u> 3 185.52								N.S.:185.53 m (01-09-98)
3 3				Sable fin silteux Quelques horizons rouges (oxydation?)		40.0						0.00	<u> </u>
	3 66				3.66	10-В	Ш	50	nd	nd	nd	0.32	+ nitroaromatiques
4	0.00			Fin du forage	183.54								
4 1 1 1 1 1 1						-				-			
. 11													
6					· · · ·								
7													
8													
9													
10			-	·							-		nd: non détecté

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

LONGUEUR TOTALE TUBULURE + CRÉPINE: 4.50 m

DIAMÈTRE DU FORAGE: 200 mm

MÉTHODE DE FORAGE: Tarière évidée

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 15 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305233.406; 5200161.632

PAGE: 1 de 1

ÉLÉVATION SOMMET TUBULURE: 190.651 m

D'O	PUITS	TION		PROFIL STRATIGRAPHIQUE		ÉCHA	NTILLO	NS	AN	IALYSES	CHIMIQU	ES	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (hg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
0-				Surface du terrain	0 189.902		11-			i.			
			· · · · · · · ·	Noire		11-A		100	-	- 1	-		Éch. mis en réserve
111111				Sable moyen silteux Le silt forme des boules cohérentes. Couleur brune.	1.83								
2	1.83			Sable fin	188.072								
111			·····	Couleur beige	2.44								
3-													
4													
5				Silt sableux									
				Brun, saturé en eau à partir de 3.05 m; Présence de cailloux vers 6.40 m.									
6													
7-													
					7.62	4							
8-					102.202								Remontée de sable
	1			Sable fin		-							sur environ 2 m
				Beige	0.15								
9-	9.10				180.752	1							N.S.:180.521 m (01-09-98)
	9.30		:				┤╼╼		_				
10 -						11-B,C		100	nd	nd	nd	0.10	Éch. pour granulo (C) +
				Sable fin à moyen			┤┛┛	1	-				C.O.T.+ nitroaromatiques (B)
44				Haces de sit					_				
	11.25		:		11 50	11-D		-	-	-	-	-	Éch. pour granulo.
	11.59		:	Ein du forage	178.312	-]				
12				T in du lorage									nd: non détecté
	СОМРА	GNIE DE	FORA	GE: Forages Montréal		C	DIAMÈ	TRE TI	JBULU	RE: 51	mm		· · · · · · · · · · · · · · · · · · ·

MÉTHODE DE FORAGE: tarière évidée

LONGUEUR TOTALE TUBULURE + CRÉPINE: 12.00 m

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 18 juin 1998

P D'OBS

Profondeur (m)

0 -

-

3

4

6

7

8

9

10

9.76

5

1.

DESCRIPTION PAR: Michel Mailloux

ON /UTM NAD 83 7ONE 101- 305250 250- 5200225 121 LOC

AL	ISATIO	N (UTN	NAD 83, ZONE 19): 305250.250; 5	5200225.12	21					1	PAGE:	2 de 2
JITS RVA			PROFIL STRATIGRAPHIQUE		ÉCH	ANTILLO	ONS	A	ALYSES	CHIMIQU	ES	
Prot. Initas. (m)	Schéma	Stratigraphie	Description	Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
			Surface du terrain	0								
			Matière organique	0.31	12-A		100	-	-	-	-	Éch. mis en réserve
			Sable fin-moyen silteux Boule de silt cohérente	189.815 0.92								
83			Silt sableux Cohérent, brun				a a					
				2.9			ļ					
			Sable fin silteux Beige-dorée. Silt en boule cohérente.	187.225								
				3.96								
			Silt sableux	184.2755								
			Brun, cohérent Sable fin-moyen silteux Beine doré Silt en boule cohérente	185,855 4.88								
			Silt sableux Brun, cohérent	185.245		- - 						
				5.79	• •							
			Sable fin silteux Beige-doré. Boule de silt cohérente	6.4								
			Silt sableux	183.725								
			Brun. cohérent	7.01								
				183.115						-		

9.6

180.265

189.8625 12-D.1

ÉLÉVATION SOMMET TUBULURE: 191.010 m

COMPAGNIE DE FORAGE: Forages Montréal

DIAMÈTRE TUBULURE: 51 mm

-

LONGUEUR TOTALE TUBULURE + CRÉPINE: 12.99 m

.

-

N.S.:180.400 m (01-09-98)

Éch. pour granulo.

DIAMÈTRE DU FORAGE: 200 mm

MÉTHODE DE FORAGE: Tarière évidée

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

Silt sableux à argileux Plus humide; quelques cailloux; présence de blocs vers 9.50 m

Silt sableux à argileux

Gris, très fluide

OUVERTURE CRÉPINE: 0.254 mm

centre géescientifique de québec 09 27227 In the second second

PROJET: Champ de tir Arnhem

RÉGION: Base militaire de Valcartier

DATE DU FORAGE: 18 juin 1998

DESCRIPTION PAR: Michel Mailloux

LOCALISATION (UTM NAD 83, ZONE 19): 305250.250; 5200225.121

PAGE: 2 de 2

ÉLÉVATION SOMMET TUBULURE: 191.010 m

D'O	PUITS	TION		PRO	FIL STRATIGR	APHIQUE		ÉCHA	NTILLO	NS	AN	IALYSES	CHIMIQU	ES	
Profondeur (m)	Prof. infras. (m)	Schéma	Stratigraphie		Description		Altitude/Prof. (m)	Numéro	Type	Récupération(%)	TNT (µg/kg)	HMX (µg/kg)	RDX (µg/kg)	C.O.T. (%)	Remarques
								12-B,C		100	nd	nd	nd	0.16	Éch. pour granulo (B) + C.O.T.+ nitroaromatiques (C)
11	10.59			Sab Un peu de Contient c	e gravier, trac des cailloux e boules de silf	à fin xes de silt. t quelques t	12.18	12-D	}	-	-	-	-	-	Éch. pour granulo.
-	12.10				Fin du forage	e	177.945								
13-															
14 -															-
15-															
						*									
16-															
				-											
17 -							1								
18															•
										2	ļ				
19															
20													_		* Analyse non complétée
	COMPA			GE: Forages	Montréal				DIAMÈ	TRE T	UBULL	JRE: 51	mm		

MÉTHODE DE FORAGE: Tarière évidée

LONGUEUR TOTALE TUBULURE + CRÉPINE: 12.99 m

DIAMÈTRE DU FORAGE: 200 mm

TYPE D'ÉCHANTILLONNAGE: Cuillère fendue et tarière

OUVERTURE CRÉPINE: 0.254 mm

BOREHOLE REPORT NO : A-16											ntre scientifique vébec
	PROJE	CT:Ch	amp de	e tir Arnhem							
	REGION	I:Base	militai	re de Valcartier				1	91.4	15	
	DRILLIN	IG DAT	E: 10 j	uin 1999							
	DESCR	PTION	BY : N	lichel Mailloux						PAGE : 2 de 2	
		SATIO	N: 305	300;5200140							
	Borehhole		Stratigraphic profile				Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Descript	ion	Depth (m)	Number	Type	Recuperation (%	Note	
13	12.90					177				sur 2 mètres	
14	13.72			End of bor	ehole						
								-			
15-											
16											
17 -											
18-											
19-											
20-											
	11										
21											
22											
23											
24											
								:p · 5'	1 mm		
	DRILLI		PANY :	Forages Montréal			14 63 m				
	BOREHOLE DIAMETER : 200 mm 0 254 mm										

SAMPLING TECHNIC :

0.254 mm

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 10 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

	Borehhole			Stratigraphic profile		Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0-				Ground surface	0				
1	1.83			Sable fin Brun. Contient des traces de silt.					
3-				Ochie Serieller	-3.05				
				Brun	-3.67				
4 5 6				Silt Brun, Humide.	-6.1				
7 8 9				Sable moyen Brun. Contient des traces de Gravier	-9.15				
10				Sable fin Traces de silt et de gravier	-10.7				
11 12-	10.87			Sable fin à moyen	-12.2				
[]									
	DRILLIN	G COMP	ANY : F	orages Montréal		TUBING DIAME (ER	.: 51	THUL	
	DRILLIN	G TECHN	NIC : Ta	arière évidée					
	BOREHO	: 200 mm		0.254 mm					
	SAMPLING TECHNIC : tarière								

BOREHOLE	REPORT	NO : A-17
----------	--------	-----------

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 10 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

PAGE:1

	Borehhole		Stratigraphic profile			Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type Recuperation (%)	Note		
13	13.57 13.72			Sable moyen humide End of borehole	-13.7	A-17-A	}	3 m de remontée de sable		
15 16										
17 -										
19 20							•			
21 -										
23 -							: 51 mm			
	DRILLIN DRILLIN	G COMI G TECH	PANY : INIC : 1	Forages Montréal						
	BOREHOLE DIAMETER : 200 mm									

SAMPLING TECHNIC : tarière

0.254 mm

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 14 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305485 ; 5200162

195.451

PAGE: 1 de 2

	Borehhol	•		Stratigraphic profile		Samples			· ·
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0-		2 2 2		Ground surface	195				
1 1 2	1.83								
3				Sable fin traces de silt					
5-									
6					190	A-18-a,b		90	Éch. (a) provient du sable moyen Éch. (b) provient du silt
					-	A-18-c		100	a man (b) providit du bit
7	-			Silt		A-18-d,e		100	Éch. pour granulo (d) Éch. pour chimie (e)
				Queiques horizons oxydés et de sable fin. Massif.		A-16-f,g		100	Éch. pour granulo (f) Éch. pour chimie (g)
8					187	A-18-h,i		100	Éch. pour granulo (h) Éch. pour chimie (i)
9_				Sable et gravier	186	A-18-j,k		100	Éch. pour granulo (i) Éch. pour chimie (k)
				5% de caliloux	-	A-18-l,m	Î	100	Éch. pour granulo (l) Éch. pour chimie (m)
10-				Sable grossier 5% de cailloux		A-18-n,o		100	Éch. pour granulo (n) Éch. pour chimie (o)
			<u>.</u>	· · · · · · · · · · · · · · · · · · ·	185		80		-
11-		-				A-18-u,v		100	
12 -						A-18-r,s		100	Éch. pour granulo (r) Éch. pour chimie (s)
<u> </u>	L			l	1	L	<u> </u>	<u> </u>	

DRILLING COMPANY : Forages Montréal DRILLING TECHNIC : Tarière évidée BOREHOLE DIAMETER : 200 mm TUBING DIAMETER : 51 mm

18.78

0.254 mm

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 14 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305485 ; 5200162

195.451

PAGE: 1 de 2

	Borehhole			Stratigraphic profile		Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
13 14 15 16 17 18 19 20 21 22 22 22 23 24	14.94 16.64 18.14 18.29			Sable fin Beige, très sec. Sable moyen 10% de cailloux. Humide à partir de 15.85 Gravier Sable et gravier Présence de cailloux End of borehole	180 180 179 177	A-18-w,x A-18-y,z A-18-aa A-18-ab		100 100 20	Éch. pour granulo (w) Éch. pour chimie (x) Éch. pour granulo (y) Éch. pour chimie (z) Éch. pour granulo (ab) Éch. pour chimie (ac)
	DRILLIN		PANY :	Forages Montréal		TUBING DIAMETE	R : 5′	i mm	
	BOREH		METER	21816 6Videe R : 200 mm		0.254 mm			
1	SAMPLI	NG TEC	HNIC :	Cuillère fendue					

PROJECT : Champ de tir Arnhem

REGION : Base militaire de VAlcartier

DRILLING DATE: 9 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

	Borehhol	8		Stratigraphic profile		Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0-				Ground surface	0				
1 1 2	1.83			Sable moyen 10% gravier, 5% cailloux (2 cm de diamètre)	3.05				Ralentissement (cailloux)
3-				· · ·	-3.05				
4 5 6				Sable moyen Bien trié. Quelques cailloux, traces de gravier.					
7					-7.62				Ralentissement (cailloux)
			•			A-19-A		20%	
9 1 1 1 1 1			•						
9 10 11 12				Sable et gravier Quelques cailloux					
DRILLING COMPANY : Forages Montréal TUBING						TUBING DIAMETER	1:51	mm	
	DRILLING TECHNIC : Tarière évidée					23.75			
	BOREHOLE DIAMETER : 200 mm SAMPLING TECHNIC : Cuillère fendue					0.254			

PROJECT : Champ de tir Arnhem

REGION : Base militaire de VAlcartier

DRILLING DATE: 9 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

	Borehhole			Stratigraphic profile		Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note	
13 14 15 16 17 18 19 20 21 22 22 22	20.12 20.5 21.20 22.72 22.87			Gravier Diamètre des particules: 0.5 à 0.8 cm Gravier sableux Taille des graviers: 0.5 à 0.8 cm	-15.2 -18.3 -22.9				Sable de la formation de 20.58 jusqu'au fond	
24 -										
	DRILLING COMPANY : Forages Montréal TUBING DIAMETER : 51 mm									
	DRILLIN	G TECH	NIC : T	arière évidée		23.75				
	BOREHO		METER	: 200 mm		0.254				
	SAMPLING TECHNIC : Cuillère fendue									

BOREHOLE	REPORT	NO : A-20

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 11 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

	Borehhole			Stratigraphic profile		Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note	
0-				Ground surface	0					
1 2 2	1.83			<i>Silt</i> Brun						
3-										
4 4					-3.96					
				Sable fin à silteux	-4.57					
6										
7										
8										
9										
10				Sable fin Beige. Traces de silt					- -	
12										
	DRILLIN	IG COMP	ANY : I	Forages Montréal	-		R : 51	mm		
1	DRILLIN	IG TECH	NIC : T	arière évidée		21.49				
	BOREH	OLE DIAI	METER	: 200 mm		0.254				
	SAMPLING TECHNIC : Cuillère fendue									

PROJECT : Champ de tir Arnhem

DRILLING DATE: 11 juin 1999

DESCRIPTION BY : Michel Mailioux

LOCALISATION :

Borehhole			Stratigraphic profile		Samples					
Depth (m) Infras. depth (m)	lilustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note		
13										
14										
								Ralentissement (Cailloux)		
	•			-16.8		11				
17	_				A-20-a		10	Ralentissement (Cailloux)		
			Sable fin à moyen Beige, Traces de silt,		A-20-b,c		100	Éch. pour granulo. (b) Éch. pour chim ie (c)		
19										
20 20.28				-20.4	4					
21-			End of borehole							
22										
23 -						•				
24-										
DRILLING COMPANY : Forages Montréal TUBING DIAMETER : 51 mm										
DRILLING T	ECHN	IIC : Ta	arière évidée		21.49					
BOREHOLE SAMPLING	BOREHOLE DIAMETER : 200 mm 0.254 SAMPLING TECHNIC : Cuillère fendue 0.254									

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 7 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

	Borehhol	e		Stratigraphic profile		Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0 -				Ground surface	0				
11111111111111111111111111111111111111				Sable moyen à grossier Brun. Quelque cailloux (2 cm de diamètre).	1.52				Ralentissement (Cailloux)
2-									y
8									
4	,								
5,111									Ralentissement (Cailloux)
6									
7									
8				Sable moven à grossier					
9				20% de gravier					
10 - 1									
11 11									
12									
	DRILLING			orages Montréal		TUBING DIAMETER	: 51	mm	
	DRILLING	S TECHN	IC : Ta	rière évidée		22.26 m			
	BOREHO SAMPLIN	LE DIAM G TECHI	ETER : NIC : Ta	200 mm arière		0.254 mm			

PROJECT : Champ de tir Arnhem

Iq centre géoscientifique to québes

REGION : Base militaire de Valcartier

DRILLING DATE: 7 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

Borehhole			Stratigraphic profile			Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
13 14 15 16 17 18 19 20 21 22 21 22 23 24	19.71 19.81 20.59 22.11 22.26			Sable fin à moyen 5% de cailloux End of borehole	-15.2	A-21-A A-21-B			Éch. pour granulo. Éch. pour granulo.
	DRILLIN	G COMP	ANY : I	Forages Montréal			र : 51	mm	
	DRILLIN	G TECH	NIC : T	arière évidée		22.26 m			
	BOREHO		METER	: 200 mm		0.254 mm			
	SAMPLIN	IG TECH							

PROJECT : Champ de tir arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 1 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305477 ; 5199913

187.305

PAGE: 2 de 2

Borehhole			Stratigraphic profile			Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0 -				Ground surface	186				
				Sable moyen et gravier Diamètre des graviers: 4 mm	186	A-22-1		100	
1-				Sable fin silteux Oxydé	185	A-22-2	ļ	100	
TIT				Sable moyen		A-22-3		100	
2	1.83			Sable fin Traces de silt et de gravier. Début d'une naone perchée à 1.42 m	184	A-22-4		100	
3				Sable moyen	183	A-22-5		100	
						A-22-6		75	Horizons oxydés
4						A-22-7		100	
11111				Sable fin Traces de silt et de gravier. Quelques lit de		A-22-8		85	
5				matière organique.		A-22-9		100	
6-					180	A-22-10		100	-
				Silt		A-22-11		40	
7				Sable et gravier Présence de cailloux de 3 cm de diamètres.	179	A-22-12	İ	60	
	7,96	y		Sable fin Un peu de gravier		A-22-13		40	4
	1.00				178		┼┰┎		-
						A-22-14		100	4
9						A-22-15		100	
10-									
11									
12-	-		•						
	DRILLIN	IG COMP	PANY : F	Forages Montréal		TUBING DIAMETER	R : 54	mm	

DRILLING TECHNIC : Tarière évidée

BOREHOLE DIAMETER : 200 mm

SAMPLING TECHNIC : Cuillère fendue

18.70 m

0.254 mm

Sable et gravier Beige. Quleques horizons caillouteux

End of borehole

DRILLING COMPANY : Forages Montréal DRILLING TECHNIC : Tarière évidée BOREHOLE DIAMETER : 200 mm **SAMPLING TECHNIC : Cuillère fendue**

13

111 14

15

16

17

18

19

20

21

22

23

24

18.98

19.13

14.41

TUBING DIAMETER : 54 mm

Ralentissement (Blocs)

Ralentissement (blocs)

Refus (roc possible)

167

0.254 mm

18.70 m

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 4 juin 1999

SAMPLING TECHNIC :

DESCRIPTION BY : Michel Mailloux

LOCALISATION: 305463; 5199913

	Borehhol	e	Stratigraphic profile			Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note	
0-				Ground surface	188					
1 2 3	1.83									
4 5 6				Voir la description du forage A-22 pour obtenir l'information stratigraphique de ce forage.						
8 9 9	7.62 7.72 8.39	V V								
10	9.91 10.06			End of borehole	178					
12										
	<u> </u>	 	<u> </u>			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
	DRILLI	NG COM	IPANY	: Forages Montréal		TUBING DIAMETI	ER : t	52 m	m	
	DRILLI	NG TEC	HNIC :	Tarière évidée		10.73 m				
	BOREH	IOLE DI	AMETE	R : 200 mm		0.254 mm				

186.994

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 3 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

PAGE: 1

Borehhole			Stratigraphic profile			Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note	
0-				Ground surface	0					
1 2 3	1.83			Sable moyen à grossier Beige. 5% de gravier et 5% de cailloux de 2 cm de diamètrre.					Ralentissement (cailloux)	
Ē										
4-					-4.3					
5 6				Sable moyen Brun à beige. Quelques cailloux.	-6.4					
7-				Sable moyen Brun à beige. 10% de gravier, 20% de cailloux de 5 cm de diamètre.	-8.53				Ralentissement (cailloux)	
9-				Sable moyen Brun à beige. 5% de gravier et 10% de cailloux de 5 cm de diamètre.	-10.7					
11						A-23-a,b		100	Ech, pour chimie (A) + Ech, pour granulo. (B)	
12				Sable fin à moven						
	DRILLING COMPANY : Forages Montréal TUBING DIAMETER : 51 mm DRILLING TECHNIC : Tarière évidée 19.00 m									

19.00 m

0.254 mm

BOREHOLE DIAMETER : 200 mm

SAMPLING TECHNIC : Cuillère fendue

CGQQ testin to subsc

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 3 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION :

Borehhole			Stratigraphic profile			Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
13 ¹¹¹¹¹¹¹				Sable fin à moyen Bege. Présence de lit noir. Granoclassé.	-13.7				
14 15				Sable moyen	×.				Éch pour chimie (C) +
16	15.55 15.70	, 2		Beige et uniforme		A-23-c,d		100	Ech. pour granulo. (b)
17 17	16.62				-16.8	A-23-e,f		100	Éch. pour chimie (E) + Éch. pour granulo. (F)
18 1	18.14			Sable moyen à grossier Beige. 5% de gravier	-18.3				
1111	18.29			End of borehole					
19 11 1									
20			*						
21							-		
22									
23								ļ	
24									
DBILLING COMPANY - Forages Montréal TUBING DIAMETER : 51 mm									
	DRILLIN	G TECHI	NIC : Ta	arière évidée		19.00 m			
	BOREHO SAMPLIN	IE DIAN	NIC : C	: 200 mm Cuillère fendue	0.254 mm				

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 11 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION: 305437; 5200042

192.963

PAGE: 1 de 2

Borehhole			Stratigraphic profile			Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0 -				Ground surface	192				
1	1.83			Sable fin à silteux Beige	190				
111									
3				Silt	189				
4 5 6 7				Sable moyen Beige	184	A-24-a,b		100	Nappe perchée Niveau d'eau à 7.4 m Éch. pour granulo. (silt) Éch. pour chimie
9				Silt	182				
·	DRILLIN		PANY :	Forages Montréal		TUBING DIAMETE	R : 5 1	mm	
	DRILLI	NG TECH	INIC : T	arière évidée		15.84			
	BOREH	OLE DIA	METER	: 200 mm		0 254 mm			
	SAMPL	NG TEC	HNIC : (Cuilère fendue et sur les tarières		U.207 (11(1)			
				· · · · · · · · · · · · · · · · · · ·		· · · · ·			

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 11 juin 1999

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305437 ; 5200042

192.963

PAGE: 1 de 2

Borehhole			Stratigraphic profile			Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
13	12.52 12.7 13.57	X M		Sable fin à moven					Ralentissement (Cailloux)
14 14 15	15.05 15.24				177	A-24-c			Éch. pour granulo
16				End of borehole					
18									
19 17 20									
21		-							
23									
24	DRILLING	G TECHI	ANY : F	Forages Montréal arière évidée	TUBING DIAMETER : 51 mm 15.84				
	BOREHO SAMPLIN	IG TECH	NIC : C	: 200 mm Cuilère fendue et sur les tarières	0.254 mm				
BOREHOLE REPORT NO : CRDV-P-13

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE:

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305229.053; 5200158.125

191.011 m

PAGE: 1 de 1

Borehhole		Stratigraphic profile		Samples					
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0				Ground surface	190				
11111				Sable moyen Brun-roux	189				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.90 2.00			Sable fin silteux Beige, silt en boule					N.S.: À sec (01-09-98)
					187				Remontée du silt
3									jusqu'à 2 m de profondeur
4	3.66			Silt sableux Brun					Installation d'une pointe où le silt de la formation remplace le sable filtrant conventionnel
	4.42				185				
	4.57			End of borehole		-			
5-			Ì.						
6-									
7			1						
				· · · · · · · · · · · · · · · · · · ·					
111									
8-					1				
								Ì	
			1						
10									
11	1								
12									
	DRILLIN	IG COMF	PANY : (CGQ			R : 38	mm	
	DRILLIN	IG TECH	NIC : T	arière pleine du MEF		5.82 m			
	BOREH	OLE DIA	METER	: 51 mm		0 254 mm			
	SAMPLI	NG TECI		Farière					

BOREHOLE REPORT NO : CRDV-P-14

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 21 juillet 1998

DESCRIPTION BY : Christine Goulet

LOCALISATION : 305128.152; 5200355.734

188.170 m

PAGE: 1 de 1

Borehhole		,	Stratigraphic profile		Samples				
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0				Ground surface	188				
1 1 2 1	0.30 0.55 1.31			Sable Brun foncé, avec matière organique.	185				Installation d'une pointe. Sable filtrant autour de la crépine. N.S.: 186.550 m (01-09-98)
3 3 4	4 57			Sable fin silteux Brun foncé, avec matière organique; remonte en surface sous forme de boue liquide.	183				
	4.57			End of borehole					
6									•
9-									
11									
[<u></u>	
ļ	DRILLIN DRILLIN	G COMP	ANY : $($ NIC : Ta	CGQ arière pleine du MEF		1.71 m	r: 38	m	
l	BOREH		METER	: 51 mm		0.254 mm			
1	SAMPI	NG TECH		arière		0.204 11111			
1									

BOREHOLE REPORT NO : CRDV-P-15

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 25 juillet 1998

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305058.506; 5200187.988

184.842 m (joint)

PAGE: 1 de 1

	Borehhole	•		Stratigraphic profile Samples					
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0				Ground surface	185				
	0.6			Sable moyen	184				Installation d'une pointe sans sable filtrant
2 2	1.06 1.23 1.54 1.84			Sable fin silteux Brun foncé, sous forme de boue liquide. Matériel semblable à celui de P-14.	183				Remontée de sable jusqu'à 1.26 m
				End of borehole					
3 1111 4									
5 5 6									
Ĭ									
7									
9							-		
10									
12									
		7					ર : 19	mm	
1			ANY : (JGQ arière manuelle		2 13 m (inint)			
	PODEL					∠. 15 m (joint)			
	SAMPLI	NG TECH	INIC : 1	Farière		0.254 mm			

BOREHOLE REPORT NO : CRDV-T-1

PROJECT : Champ de tir Arnhem

REGION : Base militaire de Valcartier

DRILLING DATE: 20 juillet 1998

DESCRIPTION BY : Michel Mailloux

LOCALISATION : 305216.239 5200064.625

PAGE: 1 de 1

	Borehhole			Stratigraphic profile		Samples			
Depth (m)	Infras. depth (m)	Illustration	Stratigraphy	Description	Depth (m)	Number	Type	Recuperation (%)	Note
0				Ground surface	185				
				Matière organique	184				
. 1				Sable fin silteux					
1-	-			Traces de gravier	184				N.S.: 183.84 m (20-07-98) Refus sur bloc
				End of borehole					
2									
3-									
111									
4-									
1111									
5							· ·		
6									
7							.		· · ·
8									
								1	
					ĺ				
10									
								1	
11-			1						
12-									
[]									
	DRILLING	G COMP	ANY : C	CGQ		TUBING DIAMETER	t:au	cun	
	DRILLING	G TECHI	NIC : M	anuelle		aucun			
	BOREHO		NETER	: 2 po					
	SAMPLIN	IG TECH	INIC :	·		aucun			
L									· · · · · · · · · · · · · · · · · · ·

PROJET: 981-7510

PROFONDEUR METRES

•1

.

.

z

3

4

\$

6

7

.

1

10

11

12

13

14

15

16

17

16 11

20

21

22

23

24

25

ĸ ę

27 ğ g

JOURNAL DE SONDAGE **PO-16**

PAGE 1 DE 1

DATE DU FORAGE: 98-10-15 DATUM: LOCALISATION: VOIR PLAN MARTEAU D'ECHANTILLONNAGE, 63.5kg COURSE, 760 mm PLONGEE: -90 ECHANTILLONS ο STRATIGRAPHIE OOEURS ä CONCENTRATION EN COV AMENAGEMENT (S) DE PUITS D'OBSERVATION ET NIVEAU (X) D'EAU SOUTERRAINE FORA D'HYDROCARBURES imqq COUPS/0.3m % RECUPERA. ESSAI LABO. M ٨ F NUMERO **VETHODE DE** . maximum ELEV. STRATI. ž HYDROCARBURES **DESCRIPTION** 1 0 PROF. VISIBLES (m) 100 1000 . £ м . 1 10 SABLE SURFACE BETON SABLE, traces de silt et un peu Æ 0.00 0 13 . : . 1 CF de gravier, brun. 0.61 0 BENTONITE 2 CF 25 13 . . SABLE moyen, traces de silt et SABLE DE REMBL . . . oravier, brun. : 3 07 R SABLE fin à moyen, traces de 1.63 4 CF 19 66 sit, brun. 2. 5 CF 16 63 :: :: 6 CF 21 66 Tuyau de CPV Cécule 40 Diamète: 52 mm :: :: 7 CF 22 11 SABLE Im & moyen, traces de sit et gravier, brun. 4.57 8 CF 24 400 . : 6.06 . CF SABLE fin à moyen, traces de . .. 0 21 83 sit, brun. 2. 2.2 :: :: O 10 CF 21 :: :: 9.13 11 CF SABLE hn, traces silt, brun. Humide. 26 10 . : : ::: POREVOSE SUR CHENILLE :: Ê 12 CF 18 IARRIERE (200 | :: . : : ο BENTONITE 13 CF 15 100 ::: . . . E . . . :: O ::: 14 CF 37 100 ::

::

: :.

1. :

::

:.

. . .

777

:.

:. :: :.

:: :

19.81

20.32

22.86

15 CF 47

100

ECHELLE VERTICALE

M:Moyenne P:Prononce

SABLE moyen, traces de

silt, brun.

devenant saturé.

FIN DU SONDAGE

OBSERVATION VISUELLES ET OLFACTIVES A:Absente f:Faible

140

0

Cripine de CPV Diamètre: \$2 mm Longueur: 9.15 m

SABLE DE SILICE

20.13 m - 🔽 (27-10-96)

<u>didididididi</u>

ANNEXE B

COURBES GRANULOMÉTRIQUES

Parametre	Resultat
Moyenne graphique (Phi)	1,0193
Mediane (phi)	1,0824
Ecart type graphique (phi)	0,9878
Ecart ty. gr. inclusif (phi)	1,1493
Argile < 2 um	0,00 %
Silt 2 - 63um	1,66 %
Sable 63 um - 2 mm	93,93 %
Cond. hydr.(m/s) Hazen	4,1302E-004

Parametre	Resultat
Moyenne graphique (Phi)	0,8337
Mediane (phi)	0,9618
Ecart type graphique (phi)	0,7697
Ecart ty. gr. inclusif (phi)	0,8209
Argile < 2 um	-0,46 %
Silt 2 - 63um	3,18 %
Sable 63 um - 2 mm	88,07 %
Cond. hydr.(m/s) Hazen	1,9533E-004

Parametre	Resultat
Moyenne graphique (Phi)	3,2744
Mediane (phi)	3,0597
Ecart type graphique (phi)	3,3818
Ecart ty. gr. inclusif (phi)	4,5164
Argile < 2 um	1,43 %
Silt 2 - 63um	25,36 %
Sable 63 um - 2 mm	73,22 %
Cond. hydr.(m/s) Hazen	8,5766E-006

Parametre	Resultat
Moyenne graphique (Phi)	3,0222
Mediane (phi)	2,9532
Ecart type graphique (phi)	3,0567
Ecart ty. gr. inclusif (phi)	4,1139
Argile < 2 um	0,71 %
Silt 2 - 63um	21,07 %
Sable 63 um - 2 mm	78,14 %
Cond. hydr.(m/s) Hazen	1,6594E-005

Parametre	Resultat
Moyenne graphique (Phi)	5,0500
Mediane (phi)	5,1374
Ecart type graphique (phi)	5,0063
Ecart ty. gr. inclusif (phi)	6,7267
Argile < 2 um	6,99 %
Silt 2 - 63um	70,43 %
Sable 63 um - 2 mm	22,59 %
Cond. hydr.(m/s) Hazen	1,6659E-007

Parametre	Resultat
Moyenne graphique (Phi)	0,3982
Mediane (phi)	0,8068
Ecart type graphique (phi)	0,1939
Ecart ty. gr. inclusif (phi)	0,3885
Argile < 2 um	0,58 %
Silt 2 - 63um	7,65 %
Sable 63 um - 2 mm	69,48 %
Cond. hydr.(m/s) Hazen	9,2012E-005

Parametre	Resultat
Moyenne graphique (Phi)	1,1938
Mediane (phi)	0,8132
Ecart type graphique (phi)	1,3842
Ecart ty. gr. inclusif (phi)	1,7762
Argile < 2 um	0,75 %
Silt 2 - 63um	10,93 %
Sable 63 um - 2 mm	81,81 %
Cond. hydr.(m/s) Hazen	4,0827E-005

Parametre	Resultat
Moyenne graphique (Phi)	0,9974
Mediane (phi)	1,0293
Ecart type graphique (phi)	0,9814
Ecart ty. gr. inclusif (phi)	1,1101
Argile < 2 um	0,00 %
Silt 2 - 63um	2,06 %
Sable 63 um - 2 mm	92,70 %
Cond. hydr.(m/s) Hazen	3,5194E-004

Parametre	Resultat
Moyenne graphique (Phi)	3,6305
Mediane (phi)	3,2472
Ecart type graphique (phi)	3,8222
Ecart ty. gr. inclusif (phi)	5,1614
Argile < 2 um	2,12 %
Silt 2 - 63um	33,68 %
Sable 63 um - 2 mm	64,10 %
Cond. hydr.(m/s) Hazen	3,5026E-006

Parametre	Resultat
Moyenne graphique (Phi)	2,0138
Mediane (phi)	2,0082
Ecart type graphique (phi)	2,0166
Ecart ty. gr. inclusif (phi)	2,6500
Argile < 2 um	0,00 %
Silt 2 - 63um	2,62 %
Sable 63 um - 2 mm	97,36 %
Cond. hydr.(m/s) Hazen	1,6381E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,9792
Mediane (phi)	1,9494
Ecart type graphique (phi)	1,9940
Ecart ty. gr. inclusif (phi)	2,6273
Argile < 2 um	0,00 %
Silt 2 - 63um	3,10 %
Sable 63 um - 2 mm	96,90 %
Cond. hydr.(m/s) Hazen	1,5433E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,1093
Mediane (phi)	1,4507
Ecart type graphique (phi)	0,9386
Ecart ty. gr. inclusif (phi)	0,8076
Argile < 2 um	0,22 %
Silt 2 - 63um	2,80 %
Sable 63 um - 2 mm	84,70 %
Cond. hydr.(m/s) Hazen	1,9270E-004

Parametre	Resultat
Moyenne graphique (Phi)	5,5062
Mediane (phi)	6,1006
Ecart type graphique (phi)	5,2090
Ecart ty. gr. inclusif (phi)	6,8249
Argile < 2 um	14,66 %
Silt 2 - 63um	53,00 %
Sable 63 um - 2 mm	32,33 %
Cond. hydr.(m/s) Hazen	3,6392E-008

Parametre	Resultat
Moyenne graphique (Phi)	1,5040
Mediane (phi)	1,6385
Ecart type graphique (phi)	1,4367
Ecart ty. gr. inclusif (phi)	1,7872
Argile < 2 um	0,07 %
Silt 2 - 63um	10,41 %
Sable 63 um - 2 mm	87,73 %
Cond. hydr.(m/s) Hazen	1,3524E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,3974
Mediane (phi)	1,0660
Ecart type graphique (phi)	1,5630
Ecart ty. gr. inclusif (phi)	2,3521
Argile < 2 um	0,99 %
Silt 2 - 63um	14,05 %
Sable 63 um - 2 mm	84,88 %
Cond. hydr.(m/s) Hazen	5,0110E-005

Parametre	Resultat
Moyenne graphique (Phi)	-1,5781
Mediane (phi)	-1,7318
Ecart type graphique (phi)	-1,5013
Ecart ty. gr. inclusif (phi)	-1,7748
Argile < 2 um	0,30 %
Silt 2 - 63um	7,41 %
Sable 63 um - 2 mm	45,42 %
Cond. hydr.(m/s) Hazen	2,5178E-004

Resultat
-1,3083
-1,6044
-1,1602
-1,3235
0,13 %
6,25 %
48,37 %
3,7767E-004

Parametre	Resultat
Moyenne graphique (Phi)	6,9822
Mediane (phi)	6,9157
Ecart type graphique (phi)	7,0155
Ecart ty. gr. inclusif (phi)	9,0064
Argile < 2 um	16,75 %
Silt 2 - 63um	72,05 %
Sable 63 um - 2 mm	11,18 %
Cond. hydr.(m/s) Hazen	1,9738E-008

Parametre	Resultat
Moyenne graphique (Phi)	1,1132
Mediane (phi)	1,1569
Ecart type graphique (phi)	1,0914
Ecart ty. gr. inclusif (phi)	1,5093
Argile < 2 um	0,35 %
Silt 2 - 63um	7,16 %
Sable 63 um - 2 mm	88,58 %
Cond. hydr.(m/s) Hazen	2,1877E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,8884
Mediane (phi)	2,0398
Ecart type graphique (phi)	1,8127
Ecart ty. gr. inclusif (phi)	2,3871
Argile < 2 um	0,03 %
Silt 2 - 63um	13,55 %
Sable 63 um - 2 mm	86,42 %
Cond. hydr.(m/s) Hazen	1,0025E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,9046
Mediane (phi)	1,9999
Ecart type graphique (phi)	1,8570
Ecart ty. gr. inclusif (phi)	2,4113
Argile < 2 um	0,33 %
Silt 2 - 63um	18,30 %
Sable 63 um - 2 mm	79,27 %
Cond. hydr.(m/s) Hazen	6,0028E-005

Parametre	Resultat
Moyenne graphique (Phi)	2,4575
Mediane (phi)	2,4622
Ecart type graphique (phi)	2,4552
Ecart ty. gr. inclusif (phi)	3,2123
Argile < 2 um	0,20 %
Silt 2 - 63um	22,68 %
Sable 63 um - 2 mm	77,11 %
Cond. hydr.(m/s) Hazen	6,0317E-005

Parametre	Resultat
Moyenne graphique (Phi)	1,3365
Mediane (phi)	1,3968
Ecart type graphique (phi)	1,3064
Ecart ty. gr. inclusif (phi)	1,6941
Argile < 2 um	0,11 %
Silt 2 - 63um	4,23 %
Sable 63 um - 2 mm	94,55 %
Cond. hydr.(m/s) Hazen	2,6367E-004

Parametre	Resultat
Moyenne graphique (Phi)	1,5530
Mediane (phi)	1,5341
Ecart type graphique (phi)	1,5624
Ecart ty. gr. inclusif (phi)	2,0533
Argile < 2 um	0,25 %
Silt 2 - 63um	7,86 %
Sable 63 um - 2 mm	89,76 %
Cond. hydr.(m/s) Hazen	1,7628E-004

Parametre	Resultat
Moyenne graphique (Phi)	4,6684
Mediane (phi)	4,8233
Ecart type graphique (phi)	4,5909
Ecart ty. gr. inclusif (phi)	6,1480
Argile < 2 um	4,73 %
Silt 2 - 63um	76,05 %
Sable 63 um - 2 mm	19,13 %
Cond. hydr.(m/s) Hazen	3,5304E-007

Parametre	Resultat
Moyenne graphique (Phi)	3,4789
Mediane (phi)	3,3819
Ecart type graphique (phi)	3,5274
Ecart ty. gr. inclusif (phi)	4,5942
Argile < 2 um	1,10 %
Silt 2 - 63um	61,37 %
Sable 63 um - 2 mm	37,53 %
Cond. hydr.(m/s) Hazen	8,3087E-006

Parametre	Resultat
Movenne graphique (Phi)	2,4015
Mediane (phi)	2,4346
Ecart type graphique (phi)	2,3850
Ecart ty, gr, inclusif (phi)	3,1438
Argile < 2 um	0,08 %
Silt 2 - 63um	17,80 %
Sable 63 um - 2 mm	82,12 %
Cond. hydr.(m/s) Hazen	7,4374E-005

Parametre	Resultat
Moyenne graphique (Phi)	2,9960
Mediane (phi)	2,9260
Ecart type graphique (phi)	3,0309
Ecart ty. gr. inclusif (phi)	4,0777
Argile < 2 um	0,44 %
Silt 2 - 63um	43,96 %
Sable 63 um - 2 mm	55,61 %
Cond. hydr.(m/s) Hazen	4,0526E-005

Parametre	Resultat
Moyenne graphique (Phi)	2,3840
Mediane (phi)	2,4204
Ecart type graphique (phi)	2,3658
Ecart ty. gr. inclusif (phi)	3,1156
Argile < 2 um	0,12 %
Silt 2 - 63um	18,61 %
Sable 63 um - 2 mm	79,34 %
Cond. hydr.(m/s) Hazen	7,0231E-005

Parametre	Resultat
Moyenne graphique (Phi)	2,8861
Mediane (phi)	2,8133
Ecart type graphique (phi)	2,9224
Ecart ty. gr. inclusif (phi)	3,7813
Argile < 2 um	0,15 %
Silt 2 - 63um	38,25 %
Sable 63 um - 2 mm	61,60 %
Cond. hydr.(m/s) Hazen	4,8235E-005

Parametre	Resultat
Moyenne graphique (Phi)	-0,1518
Mediane (phi)	1,6285
Ecart type graphique (phi)	-1,0419
Ecart ty. gr. inclusif (phi)	-1,5441
Argile < 2 um	3,88 %
Silt 2 - 63um	26,10 %
Sable 63 um - 2 mm	37,44 %
Cond. hydr.(m/s) Hazen	5,9834E-007

Parametre	Resultat
Moyenne graphique (Phi)	1,2813
Mediane (phi)	1,2527
Ecart type graphique (phi)	1,2956
Ecart ty. gr. inclusif (phi)	1,7948
Argile < 2 um	0,16 %
Silt 2 - 63um	7,61 %
Sable 63 um - 2 mm	92,23 %
Cond. hydr.(m/s) Hazen	1,9753E-004

Parametre	Resultat
Moyenne graphique (Phi)	0,9338
Mediane (phi)	0,8411
Ecart type graphique (phi)	0,9802
Ecart ty. gr. inclusif (phi)	1,3888
Argile < 2 um	0,16 %
Silt 2 - 63um	6,99 %
Sable 63 um - 2 mm	91,80 %
Cond. hydr.(m/s) Hazen	2,4373E-004

Parametre	Resultat
Moyenne graphique (Phi)	2,2798
Mediane (phi)	1,9117
Ecart type graphique (phi)	2,4638
Ecart ty. gr. inclusif (phi)	3,3349
Argile < 2 um	1,38 %
Silt 2 - 63um	28,72 %
Sable 63 um - 2 mm	67,91 %
Cond. hydr.(m/s) Hazen	7,2016E-006

ANNEXE C

SOMMAIRE DES ANALYSES CHIMIQUES EN MATÉRIAUX ÉNERGÉTIQUES DANS LES SOLS

En juin 1996 et en octobre 1999, des échantillons de sol composites de surface ont été prélevés autour des cibles d'entraînement. La méthode d'échantillonnage des sols est celle de la roue qui a été mise au point par (Jenkins *et al.*, 1999) et modifiée par le CRDV. Cette procédure consiste à creuser un anneau de 20 cm de large sur une profondeur de 6 cm entre 67 et 87 cm de distance par rapport au centre du cercle (Figure C.1). Le sol excavé est déposé au centre du cercle pour ensuite être mélangé. L'échantillon de sol est ensuite prélevé dans le centre dans un sac en plastique et immédiatement entreposé dans une glaciaire. L'échantillon est représentatif d'une surface de 3 mètres par 3 mètres. Cette méthode a été mise au point en considérant le caractère spécifique des matériaux énergétiques qui sont distribués dans le sol de façon hétérogène. La grille d'échantillonnage utilisée en 1996 est illustrée à la Figure C.2 alors que celle d'octobre 1999 est présentée à la Figure C.3. Les résultats analytiques sont présentés aux tableaux C.1 et C.2.

		Surface -	Juii 1770		
ID	HMX (mg/kKg)	TNT (mg/kg)	RDX (mg/kg)	2-4 DNT (mg/kg)	TNB+DNB (mg/kg)
D8-A	800	21	0	5.3	0
C7-D	490.0	16.0	0.0	1.9	0.0
C4-B	970.0	16,0	0.0	5.2	0.0
C6-B	835.0	15.0	0.0	2.9	0.0
C4-D	1900.0	10,0	13	7.4	0.6
C7-A	350.0	10.0	0	1.0	0.0
	1250	0,0	<u> </u>		0
C1.0	1600.0	80	00	4.2	0.0
	910.0	6,0	0,0	22	0.0
C0-C	800.0	5.0	0,0	2,2	0,0
C0-A	090,0	5,0	0,0	4,0	0,0
	955,0	4,8	0,0	2,5	0,0
<u> </u>	114,0	4,8	0,0	1,3	
02-0	380	3,8	0	3,0	
<u> </u>	950,0	3,6	0,0	3,5	0,0
<u>C8-A</u>	65,0	3,4	0,0	0,9	0,0
<u>C7-B</u>	500,0	3,0	0,0	3,0	0,0
D7-B	1000	1,8	0	13	0
D7-C	835	1,7	0	8	0
D8-C	135	1,3	0	1,3	0
D4-A	595	1,3	0	7,1	0
D8-B	350	1,1	0	2,4	0
D2-B	445	1	0	2,5	0
D7-A	375	1	0	6	0
D8-D	165	0,9	0	0,9	0
C8-B	130,0	0,8	0,0	1,0	0,0
C5-C	114,0	0,8	0,0	0,9	0,0
D2-D	70	0.8	0	0,9	0
D4-B	280	0.7	1.8	0	0
D1-8	134	0.6	0	1.2	0
D4-D	575	0.6	0	4	0
D1-C	43	0.4	0	0.6	ů.
D9-B	100	0.4	n n	0.8	0
D1-D	84	0.3	i õ	0	0
C8-D	71	0,0	0.0	00	00
<u>C9-A</u>		0,0	0,0	23	0,0
C0-D	1.4	0,0	0,0	2,0	0,0
C7-C	265.0	0,0	0,0	1.0	0,0
<u> </u>	200,0	0,0	0,0		0,0
	20,0	0,0	0,0	0,0	0,0
<u> </u>	3,0	0,0	0,0	0,0	0,0
<u> </u>	545.0	0,0	0,0	0,0	0,0
C5-A	540,0	0,0	0,0	0,8	0,0
	560,0	0,0	73,0	0,0	0,0
C10-A	10,0	0,0	0,0	0,5	0,0
	1,8	0,0	0,0	0,0	0,0
	39,0	0,0	0,0	0,8	0,0
	2,0	0,0	0,0	0,0	0,0
02-A	455,0	0,0	0,0	2,1	0,0
U1-A	180	0	0	11	0
<u>D9-A</u>	13	0	0	0	0
Q9-D	18	0	0	0,4	0
D10-A	5,8	0	0	0	0
D10-D	18	0	0	0	0
D11-A	1,5	0	0	0	0
D11-D	2,1	0	0	0	0
D9-C	236	0	0	• 0	0
D10-B	4,4	0	0	0	0
D10-C	2,1	0	0	0	0
D11-B	3.6	0	0	0	0
D11-C	4,9	0	0	0	0
D4-C	105	0	0.6	1	<u> </u>
D5-A	94	0	0	07	<u> </u>
D5-D	12	0	0	0	<u> </u>
D5-B	19	0	t õ	<u> </u>	i i
05.0	20	i - č	<u> </u>		t

Tableau C.1: Sommaire des résultats d'analyse chimique faites sur les sols en surface - juin 1996

Tableau C2:	Sommaire des résultats d'analyse	
chimique faite	s sur les sols en surface - juin 1996	

ID	HMX (mg/kg)
D8-A	240,0
C11	380
C4-A	160
C4-B	47
C5-A	51
C5-B	30
C6-A	440
C6-B	86
C7-A	64
С7-В	78
C8-A	120
C8-B	110
C9-A	43
C9-B	46
D10-A	1,8
D10-B	7,4
D11-A	12
D11-B	0
D1-A	26
D1-8	19
D2-A	14
D2-B	120
D4-A	0
D4-B	89
D5-A	120
D7-A	330
D7-B	520
D8-B	160
D9-A	120
D9-B	120
4g	14,35
9g	32,89
14g	0
5a	300,49

Références

Jenkins, T.F., Grant, C.L., Walsh, ME, Thorne, P.G., Thiboutot, S., Ampleman, G. and Ranney, T.A, 1999 "Coping with Spatial Heterogeneity Effects on Sampling and Analysis at an HMX – Contaminated Antitank Firing Range"; <u>Field Analytical</u> <u>Chemistry and Technology</u>, Vol 3., No 7, pp 19-28

ANNEXE D

CARBONE ORGANIQUE TOTAL (COT) DANS LES SOLS

Fluvio-Glaciaire (Gx)		
Nom	% COT	
A-22-14	0,12	
A-22-13	0,08	
A-18-AB	0,06	
A-23-F	0,05	
A-24-B	0,06	
A-22-15	0,07	
A-23-C	0,05	
A-18-AA	0,05	
A-20-C	0,04	
A-1-B	0,15	
A-3-B	0,11	
A-5-C	0,13	
A-7-D	0,18	
A-9-B	0,09	
A-11-B	0,1	
A-12-C	0,16	
Moyenne	0,09	

Tableau D.1 Résultats des analyses en carbone organique				
total dans les sols				

Silt intertidal (Mi)		
Nom	% COT	
A-18B-C	0,45	
Sable fin (Md)		
A-18-A	0,15	
A-10-B	0,32	
Moyenne	0,23	
Sol de surface, zone végétée		
A-1-R	4,45	

ANNEXE E

PROFILS DE GÉORADAR

,

Le géoradar est un outil d'investigation géophysique de haute résolution capable de fournir, dans des conditions optimales, des profils détaillés sur une profondeur maximale d'une trentaine de mètres. Son principe de fonctionnement est basé sur la propagation dans le sol d'une onde électromagnétique à haute fréquence. Quand cette onde entre en contact avec des matériaux de constantes diélectriques différentes, comme les contacts stratigraphiques et le niveau de la nappe phréatique, celle-ci est réfléchie. Les lectures ont été prises à un intervalle régulier de 1 m avec un espacement constant de 1 m entre les antennes émettrice et réceptrice Les profils de géoradar sont généralement constitués d'une série de traces verticales. Chaque trace représente l'enregistrement d'une onde électromagnétique. Les réflecteurs correspondant à un changement de propriété diélectrique des matériaux se présentent sur les profils comme des échos dont l'inclinaison dépend du pendage du réflecteur.

Les sondages ont été réalisés et interprétés par Yves Michaud de la CGC-Québec à l'aide d'un appareil PulseEKKO 100, fabriqué par Sensors and Software Inc, muni d'un émetteur de 400 volts et d'antennes de 50 MHz.). Les lectures ont été prises à un intervalle régulier de 1 m avec un espacement constant de 1 m entre les antennes émettrice et réceptrice.

Au total, neuf lignes ont été réalisées au site Arnhem. Les profils sont illustrés par les Figures E.2 à E.11 alors que la localisation des lignes est présenté à la Figure E.1.

Figure E.5 Ligne BFCV-3

Figure E.10 Ligne BFCV-8

ANNEXE F

SOMMAIRE DES MESURES PRISES AVEC LE GEOFLO 40L

Des mesures de direction et de vitesse d'écoulement des eaux souterraines ont été prises dans tous les puits d'observation du site Arnhem. Le nombre de mesures varie pour chaque puits selon les conditions et les contraintes rencontrées lors des travaux. En général, deux ou trois mesures ont été prises à différentes profondeurs au niveau de la crépine afin de s'assurer de la justesse et de la précision de la mesure. Les résultats obtenus sont présentés au tableau F.1. Ces mesures ont été prises à l'aide du Geoflo 40L®, développé par la compagnie K-V Associates Inc. Le principe de fonctionnement de l'appareil, décrit en détails par Kerfoot (1983) est résumé ici.

Cet appareil fournit des informations *in situ* sur l'écoulement des eaux souterraines à l'aide d'une sonde descendu au niveau de la crépine du puits par l'intermédiaire de tiges en aluminium. La sonde est munie de huit thermistances disposées en cercle autour d'une source de chaleur (Figure F.1). Pendant un court moment (~ 25 sec.), un courant de 2 ampères traverse la source produisant ainsi une "impulsion" de chaleur qui se propage selon la direction d'écoulement de l'eau souterraine. Pour chaque "impulsion", l'appareil fournit quatre lectures. Une lecture correspond à un vecteur dont la grandeur est la différence de température (en réalité une différence de voltage) mesurée par une paire de thermistances diamétralement opposées et dont l'orientation est donnée par l'orientation de la paire de thermistances mesurée par rapport au Nord géographique à l'aide d'une boussole fixée aux tiges en aluminium. La direction d'écoulement s'obtient en calculant l'orientation du vecteur résultant des quatre vecteurs représentant les lectures. Quant à la différence de température, elle est proportionnelle à la vitesse de l'eau souterraine, i.e. que plus le vecteur est grand, plus la vitesse est élevée.

Afin de trouver la relation de proportionnalité entre la vitesse et la lecture, l'appareil doit être calibré en fonction des conditions reliées au site étudié (type de sol, type de crépine, ordre de grandeur des vitesses mesurées, ...). Les travaux d'étalonnage ont été réalisée par Lachance *et al.*, (2000) et ont nécessité l'utilisation d'une chambre cylindrique et d'une pompe à débit connu afin de simuler l'écoulement de l'eau souterraine. Pour les essais, une crépine # 10, du même type que celle des puits d'observation, a été insérée dans la chambre préalablement remplie de sable provenant de la nappe régionale (sablière près du champ de tir antichar

Arnhem). Mentionnons que la porosité de ce sol a été estimée à 0,35 en utilisant la relation $n=V_v/V$ où V est le volume de la chambre et V_v est le volume des vides obtenu par différence de masse. Puisque les vitesses rencontrées lors des travaux de terrain couvraient un grand intervalle, deux essais ont été réalisés afin de produire une courbe d'étalonnage pour des vitesses de 0 à 110 m/an (sensibilité de l'appareil 8x) et une courbe d'étalonnage pour des vitesses de 110 à 1100 m/an (sensibilité de l'appareil 4x). La courbe d'étalonage est présentée à la Figure F.2 alors qu'un sommaire des lectures prises avec le Géoflo 40L® est présentée au Tableau F.1.

Figure F.1: Vue schématique en coupe de la sonde thermique du Geoflo 40L®

Figure F.2 : Courbe d'étalonage du Geoflo 40L® avec les sédiments fluvio-glaciaires du site Arnhem (Selon Lachance *et al.*, 2000)

Tableau	Tableau F.1; Sommaire des mesures prises avec le							
A-2	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)			
1 pied 2 pieds	11,2 125	40,5 37	282	11,9 19,2	3,3 11,0			
3 pieds	74,4	15,3	85	11,7	14,6			
Moyenne E.T.	103,5	30,9	207	26,1	13,7			

ableau F 1	Sommaire des mesures	prises avec l	e Geoflo 40L®
autoau rais	Sommane des mesares	p11000 @100 I	

A-3	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pied 2 pieds	222,9 182,7	37,0 35,4	254 242	22,2 6,7	22,6 3,1
Moyenne E.T.	182,7	35,4	242		

A-5	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pied	262,5	175,1	1334	8,3	11,5
2 pieds	291,5	81,7	604	34,2	17,5
Moyenne	262,5	175,1	1334		
E.T.					

A-7	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1⁄2 pi	120,0	50,0	356	2,13	0,86
1½ pieds	100,0	60,0	434	5,00	5,00
2½ pieds	95,0	55,0	395	3,00	3,00
Moyenne	105,0	55,0	395		
E.T.	13,2	5,0	39,1		

A-9	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pied	170,5	220,8	1691	22,0	41,6
2 pieds	114,0	63,1	458	4,0	0,8
3 pieds	112,8	87,5	649	8,3	76,5
Moyenne	113,4	75,3	554		
É.T.	0,8	17,3	134,9		

A-11	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi 2 pieds 3 <i>pieds</i>	359,5 34,5 58,8	19,2 13,9 29,9	115 74 199	13,2 10,3 38,6	1,4 4,1 13,9
Moyenne E.T.	17,3 24,8	16,5 3,7	95 29,1		

A-12	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi 6 po	115,0	34,4	234	5,1	3,7
	115,0	34,4	234	<u> </u>	

Po-16	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pied	8,3	262,4	2015	26,0	48,6
2 pieds	37,3	258,4	1985	6,3	7,2
3 pieds	46,4	332,2	2561	7,7	21,4
Moyenne	41,9	295,3	2273		
E.T.	6,4	52,2	407,6		

A-17	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi 6 po	121,6	37,2	256	11,1	5,5
Moyenne E.T.	121,6	37,2	256	-	

A-16	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)#
14 pi	93.3	44.9	316	2,13	0,86
1¼ nieds	104.4	51.3	366	1,90	0,38
2½ pieds	25,3	50,0	356	2,74	7,82
Movenne	98.9	48,1	341		
É.T.	7.9	4.5	35,5		

A-18B	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi	70,5	76,0	559	3,8	23,3
2 pieds	67,3	86,6	642	0,1	8,8
3 pieds	68,5	22,6	142	1,1	2,5
Moyenne	67,9	54,6	392		
E.T.	0,8	45,2	353,2		

A-19	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi	34,1	145,3	1101	1,0	49,7
2 pieds	20,4	162	1230	6,1	6,1
3 pieds	68,7	77,6	571	4,6	3,5
Moyenne	44,6	119,7	901		
É.T.	34,1	59,6	465,8		

A-20	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1½ pi	98,1	66,1	482	4,2	20,6
21/2 pieds	81,2	166,6	1267	0,8	15,3
31/2 pieds	89,4	111,9	839	1,9	15,3
Moyenne	85,3	139,3	1053	,	
E.T.	5,8	38,7	302,6		

A-21	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pied	64,9	85,0	629	0,64	0,24
2 pieds	66,4	58,6	424	2,09	0,75
Moyenne	65,6	71,8	526		
E.T.	1,1	18,6	145,4		-

A-23	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi	20,2	72,7	533	2,4	3,4
2 pieds	47,6	121,0	911	0,5	5,0
3 pieds	28,9	53,2	381	3,2	4,5
Moyenne	48,4	123,4	930		
E.T.	14,0	34,9	272,7		1

A-22b	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1½ pi	-	-			
2½ pieds	-	-			
3½ pieds	58,8	182,4	1391	20,50	39,03
Moyenne E.T.	76,6	182,4	1391		-

A-25	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1 pi	27,4	18,0	106		
Moyenne E.T.	27,4	18,0	106		· · · · ·

A-24	Direction	Lecture	Vitesse (m/an)	E.T. (Dir)	E.T. (Lec)
1½ pi 2½ pieds 3½ pieds	111,8 58,3 -	490,2 73,0	3795 536	2,2 4,5	22,8 50,0
Moyenne E.T.	111,8	490,2	3795	· · · · · · · · · · · · · · · · · · ·	<u> </u>

Les données en italique ont rejetées pour le calcul de la moyenne du puits. Une lecture est rejetée s l'écart-type est plus grand que 15 degrés

E.T. = Écart-type

Réféfrences

- Kerfoot, W.B. et Skinner, S.M. 1983 <u>Brevet américain (#4,391,137) du Groundwater</u> <u>flowmeter.</u> 9 p.
- Lachance, L., Martel, R et Mailloux, M. 2000 <u>Utilisation d'un tachymètre en hydrogéologie :</u> <u>Facteurs inlfuents et applications pratiques</u>. Rapport de projet de fin d'études, département de Géologie et de génie Géologiques, Université Laval. 24 p.
ANNEXE G

HYDROSTRATIGRAPHIE ET GÉOLOGIE DES DÉPÔTS DE SURFACE DU BASSIN NORD DE LA RIVIÈRE JACQUES –CARTIER, SECTEUR VALCARTIER

Definition of hydrostratigraphic units

The hydrostratigraphic units of the region containing the study area are shown on Figures G.1 and G.2. Simply stated, hydrostratigraphic units comprise geologic units of similar hydrogeologic properties (Anderson and Woessner, 1992). Each pertinent geologic unit defined by Michaud *et al.*, 1999 in the Arnhem area was characterized in order to know its thickness, stratigraphic position and hydraulic conductivity. The hydraulic conductivity was measured *in situ* with slug tests or estimated from grain size distribution. The Hazen formula (1910) was used for sand and Slichter method (Vukovic and Soro, 1992) was applied to fine sediments. Hydraulic conductivity results are detailed at Appendix M.

G.1 Permeable units

G.1.1 Ice-Contact Sediments (Gx)

The Gx unit is an heterogeneous unit composed of fine to coarse sand with boulders. This unit forms a kame-and-kettle network and was found at surface in the Arnhem Range Area and near the Woodlock and Griffin Lakes (Figure G.1). Stratigraphically, it overlies the bedrock and underlies deltaic and intertidal sediments which filled the kettles (Figure G.2). It is found between 130 and 220 m elevation. This unit forms the unconfined regional aquifer in most of the area. Locally, it forms a confined aquifer.

Hydraulic conductivity of Gx unit varies between 1.3×10^{-5} and 2.4×10^{-4} m/s, with an average value of 1.7×10^{-4} m/s. Its thickness varies between 5 and 30 meters.

G.1.2 Marine Deltaic Sediments (Md)

Md unit is a well-sorted and stratified unit composed of fine to medium sand occurring southeast of the Arnhem Range (Figure G.1). Stratigraphically, it overlies the marine prodeltaic sediments (Mdp) or Gx unit, and underlies the fluvial terrace alluvium (At). It occurs between 160 and 190 m elevation. A silt bed cuts this unit between 180 and 190 m near Mount Triquet at the DREV-Experimentation Area, creating a perched aquifer (Figure G.2). This unit, together with Gx Unit, forms the regional aquifer. Hydraulic conductivity varies between 2.8×10^{-5} and 1.4×10^{-4} m/s, with an average value of 5.9×10^{-5} m/s. Thickness varies between 5 and 40 meters.

G.1.3 Fluvial terrace alluvium (At)

'At' unit is a thin (0,5 to 5 m) unit composed of fine to coarse sand. Its stratigraphic position is above Md unit, between 160 and 170 m of elevation. This unit occurs near the Jacques Cartier River and forms, with the Md unit, an unconfined aquifer.

Hydraulic conductivity varies between 9.0×10^{-5} and 1.7×10^{-4} m/s, with an average value 1.7×10^{-4} m/s. Thickness varies between 5 and 40 meters.

G.2 Impermeable units

G.2.1 Intertidal (Mi) and prodeltaïc sediments (mdp)

Mi and Mdp units are composed of silt or silty-sand and deposited before the transgression of the delta (Reading, 1996). The prodeltaic sediments (Mdp) is an average depth sea facies, usually encountered at the base of the deltaic sequence (between 150 and 170 m of elevation). In the study area, the thickness and hydraulic conductivity of this unit was not well defined. However, these sediments were very well characterized at DREV-North (6 km at east of the Arnhem Range) by GSC and INRS-Géoressources and were interpreted to be deposited at the same time as those under the area of interest. The intertidal sediments (Mi) are a shallow water facies deposited on the margin of the sedimentary system. In the Arnhem Range vicinity, these sediments backfilled the kettles in the ice-contact sediments. Mi and Mdp units are usually encountered between 180 and 200 m of elevation.

The hydraulic conductivity of these sediments varies between 1.0×10^{-10} and 3.5×10^{-8} m/s, with

an average value of 1.9×10^{-9} m/s. Thickness varies between 3 and 10 meters.

G.2.2 The bedrock

The bedrock is a granitic gneiss with few fractures and with an irregular surface, outcropping at some locations and covered by more than 30 meters of sediments at some place. Hydraulic conductivity was assumed to be at 1×10^{-12} m/s (Freeze and Cherry, 1979).

Références

Anderson, M.P., and Woessner, W.W., 1992 <u>Applied groundwatter modeling: Simulation of</u> flow and advective transport, Academic Press, 381 p.

Freeze, R.A. And Cherry, J.A., 1979 Groundwater. Prentice-Hall inc. 604 p

- Hazen, A. 1910. Dams on sand foundations. <u>Trans-American Society of Civil Engineer</u>. Vol. 73, 199 P
- Michaud, Y., Parent, M., Mailloux, M., Boisvert, É., Lefebvre, R., Martel, R., Boivin, R., Roy, N. et Hains, S. 1999 "Cartographie des formations superficielles et cartographie hydrogéologique de la base des forces canadiennes de Valcartier". Geological Survey of Canada (GSC)
- Reading. H.G., 1996 <u>Sedimentary environments: Processes, Facies and Stratigraphy</u> Blackwell Sciences, 688 p.
- Vukovic, M., and Andlejko, S. 1992 <u>Determination of hydraulic conductivity of porous media</u> from grain-size composition, Water Resources Publications, 83 P.

,

- Marine Intertidal Sediments: Massive silt with silty-sand interbeds. Deposed in shallow water
- $\frac{1}{2}$, \mathbf{R}_{+}^{+} Precambign Bedrock: Unfractured granitic gneiss

Figure G.2 B-B' Hydrostratigraphic Cross-section See Figure G.1 for location of B-B'

Till

ANNEXE H

SOMMAIRE DES ANALYSES CHIMIQUES EN MATÉRIAUX ÉNERGÉTIQUES DANS L'EAU SOUTERRAINE

	W-1	A-2	A-3	A-4	A-5	A-7	A-9	A-10	A-11	A-12	P-13	P-14	P-15	Po-16	A-16	A-17	A-18b	A-19	A-20	A-21	A-22	A-22b	A-23	A-24	A-25
mai-95	295		1																						
juil-98			53.0		67.0	6.0	34.0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.												
nov-98			68.0		47.3	8.9	26.6																		
26-mars-99			74.9		71.1	10.9	41.6																		
15-avr-99			97.0		137.1	15.0	46.3																		
04-mai-99			124.6		114.0	9.9	31.5																		
20-mai-99			122.0		130.2	5.3	44.9																		
02-juin-99	5.5		56.0		116.2	2.9	17.2														n.d.	n.d.			
14-juin-99																			b.b.			b.b.			
29-juin-99			175		150.2		b.b.		b.b.									b.b.		b.b.			b.b.	b.b	
14-juil-99						3.2	b.b.		n.d.	n.d.				b.b.	n.d.	61.6	21.3								
25-oct-99	230		12		2.4	3.4	16									7.8	15	3.2	n.d.	n.d.			n.d.	n.d.	
12-mai-00			140		113	17.5	40									105	39	34							
20-sept-00	175		36.0	7.0	n.a.	n.d.	b.b.									21.0	13.0	9.0							17.0

Tableau H.1.	Sommaire des	résultats de	s analyses en	HMX dans	l'equi soluter	raine (΄uσ/T `
I GOIVGG II.I.		Tooulialo uu	s analyses on	i i nivizi uana	I CAU SOULCI		118/17

Les valeurs en italique provienne du laboratoire Philip, limite de détection de 1 ppb

Limite de détection de 0.05 ppb pour les analyses faites par le CRDV

n.d: Non-détecté

b.b: bouteille brisée

:non-analysé

TNT

Tableau H.2: Sommaire des résultats des analyses en RDX dans l'eau souterraine (μ g/L)

Tableau H.3: Sommaire des résultats des analyses en TNT et ses métabolites dans l'eau souterraine (μ g/L)

	W-1	A-3	A-5	A-7	A-9	A-17	A-18	A-19
mai-95	46							
juil-98		2	1	1	1			
nov-98		n.d.	n.d.	n.d.	n.d.			
26-mars-99		n.d.	n.d.	n.d.	n.d.			
15-avr-99		n.d.	n.d.	n.d.	n.d.			
04-mai-99		n.d.	n.d.	n.d.	n.d.			
20-mai-99		n.d.	n.d.	n.d.	n.d.			
02-juin-99	n.d.	1.1	n.d.	n.d.	n.d.			
14-juin-99						[
29-juin-99		n.d.	n.d.	n.d.	n.d.			
14-juil-99		n.d.	n.d.	n.d.	n.d.			
25-oct-99	5.8	n.d.	n.d.	n.d.	n.d.			
12-mai-00		n.d.	n.d.	n.d.	n.d.	2	1.6	1.1
20-sept-00		n.d.						

12-mai-00	A-3	A-5	A-7	A-9	A-17	A-18	A-19	W-1
TNT	1.35	1.80	0.30	3.25	0.55	0.25	0.15	n.a.
2-ADNT	1.35	0.95	0.30	1.15	0.75	0.35	0.15	n.a.
4-ADNT	0.75	0.85	0.30	1.70	0.35	0.20	0.15	n.a.
2,6-DANT	0.5	0.25	0.25	0.25	0.1	0.15	0.1	n.a.
2,4-DANT	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.a.
TOTAL	3.95	3.85	1.15	6.35	1.75	0.95	0.55	n.a.
Total metabo	2.60	2.05	0.85	3.10	1.20	0.70	0.40	n.a.
TNT/TOTAL	0.34	0.47	0.26	0.51	0.31	0.26	0.27	n.a.
mai-95	W1	* Le TNT et ses métabolites n'ont pas été dé						

3.1

Le TNT et ses métabolites n'ont pas été détectés durant les

campagnes d'échantillonages précédentes car les méthodes

analytiques utilisées à l'époque ne permettait pas de détecter les composés nitro-aromatiques à des concentrations aussi faible. Le TNT et ses métabolites n'ont pas été détectés en septembre 2000

ANNEXE I

QUALITÉ DE L'EAU SOUTERRAINE (INORGANIQUES-PH-OXYGÈNE DISSOUS-ALCALINITÉ)

Limite de détection Normes eau potable pH 2,00 6.5-8.5 Conductivité spéc. (μ S/cm) 0,001 - Sulfates (mg/L de SO ₄) 1,0 500 Nitrates + nitrites (mg/L de NO ₃ + NO ₂) 0,10 10 Fluorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH ₄) 0,02 - Calcium (mg/L de Ca) 0,10 150 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de SiO ₂) 0,1 - Potassium (mg/L de Al) 0,05 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cr) 0,01 - Plomb (mg/L de Ni) 0,01 - Plomb (mg/L de Cr) 0,01 0,05 Calciunté (mg/L de Cr) 0,01 - Chrome (mg/L de Cr) 0,01 - Baryum (mg/L de Cr) 0,01 - Nickel (mg/L de Cr)	A-3 24-juil 4,93 0,035 4,8 0,84 <0,10 <1,0 <1,0 <0,02 2,9 0,46 1,80 <0,02 2,9 0,46 1,80 <0,02 7,4	A=3 16-juil 4,89 0,029 5,0 0,67 <0,10 <1,0 <1,0 <0,02 2,3 0,30 0,54 0,54 0,12 4,5	21-juil 5,69 0,030 4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	21-juil duplicata 4,8 0,28 <0,10 1,0 <0,02 4,0 1,00 1,80	22-juil 5,52 0,040 3,9 0,77 <0,10 <1,0 <0,02 3,3 0,61	23-juil 4,89 0,050 3,2 <0,10 <0,10 <1,0 0,37 3,5	20-juil 5,73 0,031 3,9 0,26 <0,10 1,2 <0,02 7,0	21-juil 5,97 0,035 4,1 1,10 <0,10 <1,0 <0,02	21-juil huplicata 3,4 1,20 <0,10 <1,0	27-juil 27 5,32 0,011 4,9 0,34 <0,10 <1,0	-août 2	<pre>0-juil A-11 </pre> <0,1 <0,1 <0,10 <0,10
Paramètres détection potable pH 2,00 6.5-8.5 Conductivité spéc. $(\mu$ S/cm) 0,001 - Sulfates (mg/L de SO ₄) 1,0 500 Nitrates + nitrites (mg/L de NO ₃ + NO ₂) 0,10 10 Fluorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH ₄) 0,02 - Calcium (mg/L de Ca) 0,10 150 Sodium (mg/L de NA) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO ₂) 0,1 - Potassium (mg/L de Al) 0,05 - Aluminium (mg/L de Al) 0,05 - Aluminium (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 - Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinit	24-juil 4,93 0,035 4,8 0,84 <0,10 <1,0 <0,02 2,9 0,46 1,80 <0,02 7,4 0,60	4,89 0,029 5,0 0,67 <0,10	5,69 0,030 4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	4,8 4,8 0,28 <0,10 1,0 <0,02 4,0 1,00 1,80	5,52 0,040 3,9 0,77 <0,10 <1,0 <0,02 3,3 0,61	4,89 0,050 3,2 <0,10 <0,10 <1,0 0,37 3,5	5,73 0,031 3,9 0,26 <0,10 1,2 <0,02 7,0	5,97 0,035 4,1 1,10 <0,10 <1,0 <0,02	3,4 1,20 <0,10	5,32 0,011 4,9 0,34 <0,10 <1,0		A-11 <0,1 <0,10 <0,10
Paramètres 2,00 6.5-8.5 Conductivité spéc. (μ S/cm) 0,001 - Sulfates (mg/L de SO ₄) 1,0 500 Nitrates + nitrites (mg/L de NO ₃ + NO ₂) 0,10 10 Fluorures (mg/L de F) 0,10 1,5 Chlorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH ₄) 0,02 - Calcium (mg/L de Ca) 0,11 200 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de SiO ₂) 0,1 - Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 - Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de CaCO ₃) 0,1 30	4,93 0,035 4,8 0,84 <0,10 <1,0 <1,0 <0,02 2,9 0,46 1,80 <0,02 7,4	4,89 0,029 5,0 0,67 <0,10 <1,0 <0,02 2,3 0,30 0,54 0,12 4,5	5,69 0,030 4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	4,8 0,28 <0,10 1,0 <0,02 4,0 1,00 1,80	5,52 0,040 3,9 0,77 <0,10 <1,0 <0,02 3,3 0,61	4,89 0,050 3,2 <0,10 <0,10 <1,0 0,37 3,5	5,73 0,031 3,9 0,26 <0,10 1,2 <0,02 <0,02	5,97 0,035 4,1 1,10 <0,10 <1,0 <0,02	3,4 1,20 <0,10 <1,0	5,32 0,011 4,9 0,34 <0,10 <1,0		<0,1 <0,10 <0,10
pH 2,00 6.5-8.3 Conductivité spéc. (μ S/cm) 0,001 - Sulfates (mg/L de SO ₄) 1,0 500 Nitrates + nitrites (mg/L de NO ₃ + NO ₂) 0,10 10 Fluorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de Cl) 1,0 250 Ammonium (mg/L de Cl) 1,0 250 Ammonium (mg/L de Ca) 0,10 150 Sodium (mg/L de Ca) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de SiO ₂) 0,1 - Potassium (mg/L de SiO ₂) 0,1 - Potassium (mg/L de Cr) 0,01 0,05 Chrome (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cu) 0,01 - Plomb (mg/L de Cr) 0,01 0,05 Nickel (mg/L de Cr) 0,01 - Plomb (mg/L de Sr) 0,01 -	4,53 0,035 4,8 0,84 <0,10 <1,0 <1,0 2,9 0,46 1,80 <0,02 7,4 0,60		2,03 0,030 4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	4,8 0,28 <0,10 1,0 <0,02 4,0 1,00 1,80	0,040 3,9 0,77 <0,10 <1,0 <0,02 3,3 0,61	0,050 3,2 <0,10 <0,10 <1,0 0,37 3,5	0,031 3,9 0,26 <0,10 1,2 <0,02	0,035 4,1 1,10 <0,10 <1,0 <0,02	3,4 1,20 <0,10 <1,0	0,011 4,9 0,34 <0,10 <1,0		<0,1 <0,10 <0,10
Conductivité spéc. $(\mu S/cm)$ 0,001 - Sulfates $(mg/L de SO_4)$ 1,0 500 Nitrates + nitrites $(mg/L de NO_3 + NO_2)$ 0,10 10 Fluorures $(mg/L de Cl)$ 1,0 250 Ammonium $(mg/L de Cl)$ 1,0 250 Ammonium $(mg/L de Cl)$ 1,0 250 Ammonium $(mg/L de Cl)$ 0,10 1,5 Calcium $(mg/L de Ca)$ 0,1 200 Magnésium $(mg/L de Mg)$ 0,10 150 Sodium $(mg/L de Na)$ 0,05 270 Fer $(mg/L de Fe)$ 0,02 0,3 Silice $(mg/L de SiO_2)$ 0,1 - Potassium $(mg/L de K)$ 0,10 - Aluminium $(mg/L de Al)$ 0,05 - Baryum $(mg/L de Cr)$ 0,01 1,0 Chrome $(mg/L de Cu)$ 0,01 1,0 Manganèse $(mg/L de Ni)$ 0,01 - Plomb $(mg/L de Ca)$ 0,01 - Plomb $(mg/L de Ni)$ 0,01 - Plomb $(mg/L de Ni)$ 0,01 -	0,033 4,8 0,84 <0,10	0,023 5,0 0,67 <0,010	4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	4,8 0,28 <0,10 1,0 <0,02 4,0 1,00 1,80	3,9 0,77 <0,10 <1,0 <0,02 3,3	3,2 <0,10 <0,10 <1,0 0,37 3,5	3,9 0,26 <0,10 1,2 <0,02	4,1 1,10 <0,10 <1,0 <0,02	3,4 1,20 <0,10 <1,0	4,9 0,34 <0,10 <1,0		<0,1 <0,10 <0,10
Sulfates $(mg/L de SO_4)$ 1,0 500 Nitrates + nitrites $(mg/L de NO_3 + NO_2)$ 0,10 10 Fluorures $(mg/L de F)$ 0,10 1,5 Chlorures $(mg/L de Cl)$ 1,0 250 Ammonium $(mg/L de Cl)$ 1,0 250 Ammonium $(mg/L de Cl)$ 0,10 1,5 Calcium $(mg/L de Ca)$ 0,1 200 Magnésium $(mg/L de Mg)$ 0,10 150 Sodium $(mg/L de Mg)$ 0,10 150 Sodium $(mg/L de Na)$ 0,05 270 Fer $(mg/L de Fe)$ 0,02 0,3 Silice $(mg/L de SiO_2)$ 0,1 - Potassium $(mg/L de Al)$ 0,05 - Baryum $(mg/L de Cr)$ 0,01 1,0 Chrome $(mg/L de Cu)$ 0,01 1,0 Manganèse $(mg/L de Ni)$ 0,01 - Plomb $(mg/L de Ni)$ 0,01 - Plomb $(mg/L de Zn)$ 0,01 - Alcalinité $(mg/L de CaCO_3)$ 0,1 30 Alcalinité $(mg/L de CaCO_3)$ 0,1 30	4,8 0,84 <0,10 <1,0 2,9 0,46 1,80 <0,02 7,4 0,60	5,0 0,67 <0,10 <1,0 2,3 0,30 0,54 0,12 4,5	4,3 0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	4,8 0,28 <0,10 1,0 <0,02 4,0 1,00	3,9 0,77 <0,10 <1,0 <0,02 3,3 0,61	3,2 <0,10 <0,10 <1,0 0,37 3,5	3,9 0,26 <0,10 1,2 <0,02	4,1 1,10 <0,10 <1,0 <0,02	3,4 1,20 <0,10 <1,0	4,9 0,34 <0,10 <1,0		<0,10 <0,10
Sinitates (mg/L de NO3 + NO2) 0,10 10 Fluorures (mg/L de F) 0,10 1,5 Chlorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH4) 0,02 - Calcium (mg/L de Ca) 0,1 200 Magnésium (mg/L de NH4) 0,02 - Calcium (mg/L de Ca) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO2) 0,1 - Potassium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 0,05 Chirome (mg/L de Cr) 0,01 1,0 Charganèse (mg/L de Ni) 0,01 - Plomb (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de CaCO3) 0,1 - Strontium (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de CaCO3)	0,84 <0,10 <1,0 <0,02 2,9 0,46 1,80 <0,02 7,4 0,60	0,67 <0,10 <1,0 2,3 0,30 0,54 0,12 4,5	0,28 <0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	0,28 <0,10 1,0 <0,02 4,0 1,00	0,77 <0,10 <1,0 <0,02 3,3 0,61	<0,10 <0,10 <1,0 0,37 3,5	0,26 <0,10 1,2 <0,02	1,10 <0,10 <1,0 <0,02	<pre>1,20 <0,10 <1,0 </pre>	<0,34 <0,10 <1,0		<0,10
Human Human (mg/L de F) 0,10 1,5 Fluorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH4) 0,02 - Calcium (mg/L de Ca) 0,1 200 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Mg) 0,10 150 Sodium (mg/L de Mg) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO2) 0,1 - Potassium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 0,05 Chiorme (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 - Plomb (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de HCO3) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<pre><0,10 <1,0 <20,02 2,9 0,46 1,80 <0,02 7,4 0,60</pre>	<0,10 <1,0 2,3 0,30 0,54 0,12 4,5	<0,10 <1,0 <0,02 4,0 1,00 1,70 <0,02	<0,10 1,0 <0,02 4,0 1,00	<0,10 <1,0 <0,02 3,3 0,61	<0,10 <1,0 0,37 3,5	<0,10 1,2 <0,02	<0,10 <1,0 <0,02	<0,10	<0,10		
Pritorities (mg/L de Cl) 1,0 250 Chlorures (mg/L de Cl) 1,0 250 Ammonium (mg/L de NH4) 0,02 - Calcium (mg/L de Ca) 0,1 200 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO2) 0,1 - Potassium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 0,05 Chiorne (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 - Plomb (mg/L de Sr) 0,01 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de HCO3) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<1,0 <0,02 2,9 0,46 1,80 <0,02 7,4 0,60	<1,0 <0,02 2,3 0,30 0,54 0,12 4,5	<1,0 <0,02 4,0 1,00 1,70 <0,02	1,0 <0,02 4,0 1,00	<1,0 <0,02 3,3	<1,0 0,37 3,5	1,2 <0,02	<1,0 <0,02	<1,0	<1,0		1 5
Chloridres (Ing/L de Cl) No Ammonium (mg/L de NH4) 0,02 - Calcium (mg/L de Ca) 0,1 200 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Mg) 0,05 270 Fer (mg/L de Na) 0,05 270 Fer (mg/L de SiO2) 0,1 - Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 0,05 Chivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 - Plomb (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO3) 0,1 30 Alcalinité (mg/L de HCO3) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,02 2,9 0,46 1,80 <0,02 7,4 0,60	<0,02 2,3 0,30 0,54 0,12 4,5	<0,02 4,0 1,00 1,70 <0,02	<0,02 4,0 1,00	<0,02 3,3	0,37 3,5	<0,02	<0,02	<0.02			
Ammonium (mg/L de NH4) $0,02$ - Calcium (mg/L de Ca) $0,1$ 200 Magnésium (mg/L de Mg) $0,10$ 150 Sodium (mg/L de Mg) $0,05$ 270 Fer (mg/L de Na) $0,05$ 270 Fer (mg/L de SiO ₂) $0,11$ - Potassium (mg/L de K) $0,10$ - Aluminium (mg/L de Al) $0,05$ - Baryum (mg/L de Cr) $0,01$ $0,05$ Cuivre (mg/L de Cu) $0,01$ $1,0$ Manganèse (mg/L de Mn) $0,01$ $0,05$ Nickel (mg/L de Ni) $0,01$ $-$ Plomb (mg/L de Sr) $0,07$ $-$ Zinc (mg/L de Zn) $0,01$ $5,0$ Alcalinité (mg/L de CaCO ₃) $0,1$ 30 Alcalinité (mg/L de HCO ₃) $ -$ Température (°C) $-5,00$ 15 Salinité (ppt)* $0,01$ $-$	<0,02 2,9 0,46 1,80 <0,02 7,4 0,60	2,3 0,30 0,54 0,12 4,5	4,0 1,00 1,70 <0,02	4,0	3,3	3,5	7.0		<0,02	<0,02		<0,02
Calcium (mg/L de Ca) 0,1 200 Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Mg) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO ₂) 0,1 - Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cr) 0,01 1,0 Chrome (mg/L de Cu) 0,01 1,0 Magnaèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	2,9 0,46 1,80 <0,02 7,4 0,60	2,3 0,30 0,54 0,12 4,5	4,0 1,00 1,70 <0,02	1,00	0.61		. 7.01	3.6	3,7	1,7		<0,1
Magnésium (mg/L de Mg) 0,10 150 Sodium (mg/L de Na) 0,05 270 Fer (mg/L de Fe) 0,02 0,3 Silice (mg/L de SiO ₂) 0,1 - Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Ba) 0,1 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	0,46 1,80 <0,02 7,4 0,60	0,54 0,12 4,5	1,70	1,00		0.52	0,50	1,10	1,20	0,34		<0,10
Sodium (mg/L de Na) $0,05$ 270 Fer (mg/L de Fe) $0,02$ $0,3$ Silice (mg/L de SiO ₂) $0,1$ - Potassium (mg/L de K) $0,10$ - Aluminium (mg/L de Al) $0,05$ - Baryum (mg/L de Ba) $0,11$ $1,0$ Chrome (mg/L de Cr) $0,01$ $0,05$ Cuivre (mg/L de Cu) $0,01$ $1,0$ Manganèse (mg/L de Mn) $0,01$ $0,05$ Nickel (mg/L de Ni) $0,01$ $-$ Plomb (mg/L de Sr) $0,07$ $-$ Zinc (mg/L de Zn) $0,01$ 30 Alcalinité (mg/L de CaCO ₃) $0,1$ 30 Alcalinité (mg/L de HCO ₃) $ -$ Température (°C) $-5,00$ 15 Salinité (ppt)* $0,01$ $-$	1,80 <0,02 7,4 0,60	0,54 0,12 4,5	<0,02		1 00	1.90	0.97	1,60	1,70	0,61		<0,05
Fer (mg/L de Fe) $0,02$ $0,3$ Silice (mg/L de SiO ₂) $0,1$ - Potassium (mg/L de K) $0,10$ - Aluminium (mg/L de Al) $0,05$ - Baryum (mg/L de Ba) $0,11$ 1,0 Chrome (mg/L de Cr) $0,01$ $0,05$ Cuivre (mg/L de Cr) $0,01$ $0,05$ Cuivre (mg/L de Cu) $0,01$ $1,0$ Manganèse (mg/L de Mn) $0,01$ $0,05$ Nickel (mg/L de Ni) $0,01$ $-$ Plomb (mg/L de Sr) $0,07$ - Zinc (mg/L de Zn) $0,01$ 30 Alcalinité (mg/L de CaCO ₃) $0,1$ 30 Alcalinité (mg/L de HCO ₃) $ -$ Température (°C) $-5,00$ 15 Salinité (ppt)* $0,01$ $-$	<0,02 7,4 0,60	4,5	0,021	<0.02	<0.02	12.40	< 0.02	<0.02	<0,02	<0,02		<0,02
Silice (mg/L de SiO ₂) 0,1 - Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Ba) 0,1 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,01 0,05 Strontium (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	0,60	4,5	14.2	12.0	77	8.8	8.0	17.0	17,1	3,5		<0,1
Potassium (mg/L de K) 0,10 - Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Ba) 0,1 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Sr) 0,01 0,05 Strontium (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	0,60		14,2	13,9	0.60	0.49	0.68	0.71	0.72	0,69		<0,10
Aluminium (mg/L de Al) 0,05 - Baryum (mg/L de Ba) 0,1 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -		0,63	0,59	0,00	0,00	<0.05	<0.05	<0.05	< 0.05	0,06		<0,05
Baryum (mg/L de Ba) 0,1 1,0 Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cr) 0,01 1,0 Manganèse (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	0,14	<0,05	<0,05	<0,05	<0,05	<0.1	< 0.1	<0,1	<0,1		<0,1
Chrome (mg/L de Cr) 0,01 0,05 Cuivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Ni) 0,01 - Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,1	<0,1	<0,1	<0,1	<0,1	<0.01	<0.01	< 0.01	<0.01	<0,01		<0,01
Cuivre (mg/L de Cu) 0,01 1,0 Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0]	<0,01	<0,01	<0,01	<0,01	<0.01	<0.01	<0,01	<0,01	<0,01		<0,01
Manganèse (mg/L de Mn) 0,01 0,05 Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	<0,01	<0,01	<0,01	<0,01	0.13	<0.01	<0,01	<0,01	0,25		<0,01
Nickel (mg/L de Ni) 0,01 - Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	0,0	0,05	<0,01	<0,01	<0,01	<0.01	< 0.01	<0,01	<0,01	<0,01		<0,01
Plomb (mg/L de Pb) 0,01 0,05 Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	0,10	<0,01	<0.01	<0.01	<0.01	< 0.01	<0,01	<0,01	<0,01		<0,01
Strontium (mg/L de Sr) 0,07 - Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	1 <0,01	<0.01	<0.01	<0.07	<0.07	<0.07	<0,07	<0,07	<0,07		<0,07
Zinc (mg/L de Zn) 0,01 5,0 Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	/ <0,0/		<0,07	<0.01	< 0.01	<0.01	<0,01	<0,01	0,02		<0,01
Alcalinité (mg/L de CaCO ₃) 0,1 30 Alcalinité (mg/L de HCO ₃) - - Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	<0,0	1 0,04	0,01	~0,01					1	21		
Alcalinité (mg/L de CaCO3) 0,1 0,1 Alcalinité (mg/L de HCO3) - - - Température (°C) -5,00 15 - - Salinité (ppt)* 0,01 - - -	0,	3 <0,1	10,5	5	1,5	16,4	18,2	10,5		2,1		
Alcalinité (mg/L de HCO3) Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	0.	4	12,8	3	1,8	20,0	22,2	12,8		2,6		
Température (°C) -5,00 15 Salinité (ppt)* 0,01 -	7.4	6 6.89	7,18	3	8,94	12,24	6,99	7,36		13,50		
Salinité (ppt)* 0,01 0,500	0.0	2 0.0	1		0,02	0,02			· · · · · · · · · · · · · · · · · · ·			
	0.02	3 0.019	b		0,026	0,031					0.000	0.002
Solides dissous totaux (g/L) 0,001 0,000	0.01	9 0.014	4 0,039	0,027	0,020	0,051	0,045	0,042	0,029	0,015	0,000	0,002
Solides dissous totaux (g/L)*** 0,500	114	7 11.8	3 11,40)	11,43	6,02	12,53	12,08	31	10,82		
Oxygène dissous (mg/L) 0,01					<0.05	<0.05	<0.05	<0.05	5	<0,05	<0,05	
TNT (μg/L) 0,05 μg/L 2,0 ^a /5,0 ^b /	<0,0	5 <0,0	5 <0,0:	<u> </u>	<0,05	~0,05	<0.05	<0.05		<0.05	<0.05	
DDX (μg/L) 0,05 μg/L 0,3°	1	0 2,0	0 <0,0	5	1,00	<0,05	<0,05	<0,03	<u>.</u>	< 0.05	<0,05	
$U_{M}(\mu g/L) = 0.05 \mu g/L -$	2,0	67,0	0 6,00		34,00	<0,05	<0,05	titre indi	catif seule	ment.	,	
t Velue en parties par millier (ppt: parts per thousand) calculée par la sonde YSI avec la conductivité et la température. Considerer à une mulcan seatement												

...

** Valeur calculée par la sonde YSI avec la conductivité et la température. Considérer à titre indicatif seulement.

*** Calcul de la somme des ions.

P-14: Mesures prises hors du tubage (dans un contenant car tubage trop étroit pour la sonde YSI).

and been a survey and

^{a)} IRIS data bank, 1993; ^{b)} Environment Ontario, 1989 (Emergency limit for long-term consumption); ^{c)} Mc Lellan et al., 1992.

y:\natroy\valcart\Géochim.xls

A. Mert

cr av

ANNEXE J

SOMMAIRE DES DONNÉES PIÉZOMÉTRIQUES

Les puits, les pointes filtrantes ainsi que la surface des cours d'eau ont été nivelés avec une station totale alors que le positionnement s'est fait avec un GPS. La précision du GPS est de +- 0.5 mètre alors que celle de la station totale est de l'ordre du millimètre. Pour chaque puits d'observation et pointe filtrante, des mesures d'altitude ont été faites au sommet du tubage en PVC pour calculer précisément l'altitude du niveau d'eau mesuré. Le repère altimétrique servant de point de référence est le B.M. 339N situé en face du CRDV-Nord et qui a été relié avec le site Arnhem durant la campagne de nivellement fait par la CGC-Québec dans le cadre d'une étude hydrogéologique régionale couvrant l'ensemble du territoire de la base militaire de Valcartier et du CRDV. Les coordonnées planimétriques sont en UTM-NAD 83 tandis que l'altitude est exprimée par rapport au niveau de la mer.

u observation, t	ies pointes i	miantes et de	s cours a cau		
puits	Easting	Northing	Élévation (m)		
A-1	305293,4	5200380,4	211,43		
A-10	305439,2	5199922,3	190,73		
A-11	305206,9	5200078,6	190,65		
A-12	305215,6	5200143,1	191,01		
A-16	305278,2	5200127,2	191,42		
A-17	305384,5	5200138,9	192,14		
A-18b	305491,5	5200160,3	196,28		
A-19	305542,3	5200146,9	200,355		
A-20	305881,4	5199935,5	192,75		
A-21	305616,6	5199999,3	198,27		
A-22	305464,1	5199911,1	187,31		
A-22b	305456,8	5199911,9	186,99		
A-23	305552,9	5199968,8	194,57		
A-24	305441,5	5200062,7	192,96		
A-3	305318,5	5200254,6	210,46		
A-5	305382,6	5200259,0	210,73		
A-7	305347,7	5200129,4	191,78		
A-9	305423,3	5200163,4	195,09		
Po-16	305694,2	5200002,9	196,969		
P-13	3052109,1	5200075	191,011		
P-14	305128,2	5200355,7	188,17		
P-15	305058,5	5200188,9	184,842		
Ruisseau R-1	305427,3	5199972,8	186,168		
Ruisseau R-2	305208,8	52000054,7	184,386		
Ruisseau R-3	305012,6	5200207,2	183,388		
TF-9-1	306331	5199216	191,38		
E1-1*	308423	5200847	195,863		
E2-2*	308699	5200394	169,657		
E2-3*	308815	5200371	171,088		
E3-1*	308243	5199612	170,335		
E4-1*	E4-1* 307967		191,481		
E5-1*	E5-1* 307201		192,345		
E7-1*	308676	5200293	170,041		

Tableau J.1: Résultats de l'Arpentage des puits

*: Puits d'observations situé au CRDV-secteur essai

Points	20-juii-98	20-juil-98	01-sept-98	01-sept-98	29-nov-98	29-nov-98	17-juil-99	17-juil-99
de contrôle	Profondeur (m)	Élévation (m)						
A-1	17,03	194,40	17,31	194,12	17,11	194,32	17,29	194,14
A-3	29,47	180,99	29,64	179,81	29,44	181,01	29,00	181,46
A-5	24,40	186,32	24,00	186,72	23,79	186,93	23,89	186,84
A-7	11,76	180,03	11,89	179,80	11,77	180,02	11,33	180,45
A-9	15,58	179,51	15,71	179,38	15,57	179,52	15,14	179,946
A-11	9,96	180,69	10,13	180,53	9,97	180,69	9,50	181,15
A-12	10,48	180,57	10,61	180,40	10,46	180,55	10,00	181,01
Po-14	pas mesuré	pas mesuré	pas mesuré	pas mesuré	19,98	177,00	19,38	177,59
A-16	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	10,67	180,75
A-17	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	11,98	180,16
A-18b	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	16,75	179,529
A-19	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	21,43	178,93
A-20	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	18,50	174,25
A-21	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	20,83	177,44
A-22	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	8,86	178,45
A-22b	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	8,21	178,78
A-23	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	16,66	177,91
A-24	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	pas mesuré	13,34	179,62

Tableau J.2: Données piézométriques pour la nappe régionale secteur Arnhem

 Tableau J.3: Données piézométriques pour

 la nanne régionale - CRDV-Secteur Essai

Points de contrôle	17-juil-99 Profondeur (m)	17-juil-99 Élévation (m)
TF-9-1	180,20	11,18
E2-2	165,207	4,45
E2-3	163,758	7,33
E3-1	163,715	6,62
E4-1	168,731	22,75
E5-1	173,955	18,39
Ē7-1	165,551	4,49

Points de contrôle	20-juil-98 Profondeur (m)	20-juil-98 Élévation (m)	01-sept-98 Profondeur (m)	01-sept-98 Élévation (m)
A-10	2,68	185,53	2,85	185,36
P-13	5,80	184,40	5,82	185,19
P-14	1,09	187,08	1,62	186,55
P-15	1,57	183,27	1,83	183,01
T-1	1,19	183,84	0,78	183,06
T-2	0,47	184,34	0,77	183,57
R-1	eau de surface	pas mesurée	eau de surface	185,39
R-2	eau de surface	pas mesurée	eau de surface	183,61
R-3	eau de surface	pas mesurée	eau de surface	182,61
R-4	eau de surface	pas mesurée	eau de surface	186,16

Tableau J.4: Données piézométriques pour la nappe perchée

Tableau J.5 : Sommaire des données du suivi de nappe au puits A-3

jour	Profondeur	élévation	jour	Profondeur	elevation	jour	Protondeur	elevation
	(m)	(m)		(m)	(m)		(m)	(m)
26-mars-99	29.98	180,48	17-févr-00	29,792	180,668	19-oct-00	29,865	180,595
18-avr-99	29,67	180,79	22-févr-00	29,846	180,614	24-oct-00	29,881	180,579
06-mai-99	28,75	181,71	27-févr-00	29,895	180,565	29-oct-00	29,889	180,571
23-mai-99	28.63	181,83	03-mars-00	29,943	180,517	03-nov-00	29,919	180,541
11-août-99	29,207	181,253	08-mars-00	29,986	180,474	08-nov-00	29,948	180,512
16-août-99	29,256	181,204	13-mars-00	30,016	180,444	13-nov-00	29,982	180,478
17-août-99	29,262	181,198	18-mars-00	30,031	180,429	18-nov-00	30,016	180,444
17-août-99	29,262	181,198	23-mars-00	30,031	180,429	23-nov-00	30,035	180,425
18-août-99	29,276	181,184	28-mars-00	30,049	180,411	28-nov-00	30,051	180,409
18-août-99	29,28	181,18	02-avr-00	29,982	180,478	03-déc-00	30,075	180,385
19-août-99	29,29	181,17	07-avr-00	29,812	180,648	08-déc-00	30,085	180,375
19-août-99	29,29	181,17	12-avr-00	29,636	180,824	13-déc-00	30,124	180,336
20-août-99	29,3	181,16	17-avr-00	29,403	181,057	18-déc-00	30,114	180,346
20-août-99	29,306	181,154	22-avr-00	29,183	181,277	23-déc-00	30,134	180,326
21-août-99	29,31	181,15	27-avr-00	29,053	181,407	28-déc-00	30,118	180,342
26-ao0t-99	29,353	181,107	02-mai-00	28,95	181,51	02-janv-01	30,114	180,346
31-août-99	29,403	181,057	07-mai-00	28,979	181,481	07-janv-01	30,089	180,371
05-sept-99	29,452	181,008	12-mai-00	28,887	181,573	12-janv-01	30,089	180,371
10-sept-99	29,5	180,96	17-mai-00	28,843	181,617	17-janv-01	30,089	180,371
15-sept-99	29,559	180,901	22-mai-00	28,823	181,637	22-janv-01	30,114	180,346
20-sept-99	29,607	180,853	27-mai-00	28,799	181,661	27-janv-01	30,128	180,332
25-sept-99	29,616	180,844	01-juin-00	28,809	181,651	01-févr-01	30,148	180,312
30-sept-99	29,559	180,901	06-juin-00	28,823	181,637	06-févr-01	30,168	180,292
05-oct-99	29,563	180,897	11-juin-00	28,847	181,613	11-févr-01	30,207	180,253
10-oct-99	29,573	180,887	16-juin-00	28,873	181,587	16-févr-01	30,221	180,239
15-oct-99	29,583	180,877	21-juin-00	28,926	181,534	21-févr-01	30,235	180,225
20-oct-99	29,533	180,927	26-juin-00	28,979	181,481	26-févr-01	30,251	180,209
25-oct-99	29,486	180,974	01-juil-00	29,009	181,451	26-févr-01	30,255	180,205
30-oct-99	29,417	181,043	06-juil-00	29,023	181,437	03-mars-01	30,274	180,186
04-nov-99	29,349	181,111	11-juil-00	29,053	181,407	08-mars-01	30,294	180,166
09-nov-99	29,32	181,14	16-juil-00	29,106	181,354	13-mars-01	30,314	180,146
19-nov-99	29,296	181,164	21-juil-00	29,15	181,31	18-mars-01	30,328	180,132
24-nov-99	29,29	181,17	26-juil-00	29,199	181,261	23-mars-01	30,338	180,122
29-nov-99	29,32	181,14	31-juil-00	29,237	181,223	28-mars-01	30,357	180,103
04-déc-99	29,29	181,17	05-août-00	29,286	181,174	02-avr-01	30,371	180,089
09-déc-99	29,306	181,154	10-août-00	29,33	181,13	07-avr-01		180,079
14-déc-99	29,296	181,164	15-août-00	29,393	181,067	12-avr-01	30,391	180,069
19-déc-99	29,306	181,154	20-août-00	29,442	181,018	17-avr-01	30,343	180,117
24-déc-99	29,31	181,15	25-août-00	29,5	180,96	22-avr-01	30,191	180,269
29-déc-99	29,33	181,13	30-août-00	29,559	180,901	27-avr-01	30,035	180,425
02-janv-00	29,379	181,081	04-sept-00	29,598	180,862	02-mai-01	29,87 <u>1</u>	180,589
08-janv-00	29,417	181,043	09-sept-00	29,642	180,818	07-mai-01	29,739	180,721
13-janv-00	29,466	180,994	14-sept-00	29,695	180,765	12-mai-01	29,661	180,799
18-janv-00	29,515	180,945	19-sept-00	29,744	180,716	17-mai-01	29,652	180,808
23-janv-00	29,559	180,901	24-sept-00	29,739	180,721	22-mai-01	29,652	180,808
28-janv-00	29,597	180,863	29-sept-00	29,744	180,716	25-mai-01	29,671	180,789
02-févr-00	29,646	180,814	04-oct-00	29,772	180,688		ļ	
07-févr-00	29,699	180,761	09-oct-00	29,808	180,652			ļ
12-févr-00	1 29.743	180.717	14-oct-00	29846	1 180 614	1	1	1 .

ANNEXE K

RÉSULTATS DÉTAILLÉS DES ESSAIS D'ADSORPTION

Conce	ntration dilu	ée*	Concer	trations rée	lle	Concentrations réelle moyenne				
rapport	HMX	TNT	rapport	HMX	TNT	rapport	HMX	TNT		
sol/eau	mg/L	mg/L	sol/eau	mg/L	mg/L	sol/eau	mg/L	mg/L		
Со	0,9915	0,4838	Со	1,9830	0,9676	Co	1,9830	0,9676		
Blanc	0,9124	0,4738	Blanc	1,8248	0,9476	Blanc	1,8248	0,9476		
3:1	0,7568	0,3289	3:1	1,5136	0,6578	3:1	1,5136	0,6578		
2:1	0,813	0,3657	2:1	1,6260	0,7314	2:1	1,6260	0,7314		
1:1b	0,8454	0,4	1:1b	1,6908	0,8000	1:1	1,705683	0,798		
1:1	0,8393	0,398	1:1	1,7206	0,7960	1:4	1,7714	0,9113		
1:4b	0,8927	0,4451	1:4b	1,7854	0,8902	1:10	1,7722	0,9445		
1:4	0,8787	0,4662	1:4	1,7574	0,9324	1:20	1,8324	0,9200		
1:10	0,8711	0,4641	1:10	1,7422	0,9282	1:40	1,7318	0,9404		
1:10b	0,9011	0,4804	1:10b	1,8022	0,9608	1:60	1,9186	0,9614		
1:20	0,9162	0,4600	1:20	1,8324	0,9200	1:100	1,8494	0,9800		
1:40b	0,8322	0,4702	1:40b	1,6644	0,9404	1:200	1,8358	0,9404		
1:40	0,8996	0,4702	1:40	1,7992	0,9404					
1:60	0,9593	0,4807	1:60	1,9186	0,9614					
1:100	0,9247	0,4900	1:100	1,8494	0,9800					
1:200	0,9179	0,4704	1:200	1,8358	0,9408	1				

Tableau K.1: Résultats des analyses chimiques réalisées pour évaluer le rapport sol/eau lors des essais d'adsorption. Mars 2000

*De l'acétonitrile a été ajouté à chaque échantillon à titre de préservatif

Pourcentage de la masse initiale adsorbée								
rapport sol/eau	HMX	TNT						
3:1	25,7%	32,0%						
2:1	19,6%	24,4%						
1:1	6,5%	17,5%						
1:4	2,9%	5,8%						
1:10	2,9%	2,4%						
1:20	0,0%	4,9%						
1:40	5,1%	2,8%						
1:60	0,0%	0,6%						
1:100	0,0%	0,0%						
1:200	0,0%	2,8%						

Tableau K.1 : Évaluation du rapport sol/eau pour les essais d'adsoprtion

Tableau K.2 Résultats des analyse	s chimiques faites pour l'évaluation du temps d'équilibre.
Le rapport sol :eau est de 2 :1	·

Concentration diluée*		Concentration réelle			Concentration réelle moyenne			
Temps	HMX	TNT	Temps	HMX	TNT	Temps	HMX	TNT
(heures)	mg/L	mg/L	(heures)	mg/L	mg/L	(heures)	mg/L	mg/L
Blanc	0,6316	0,2899	Blanc	1,263	0,580	В	1,263	0,580
0	0,6101	0,2753	0	1,220	0,551	0	1,220	0,551
1	0,3986	0,2104	1	1,017	0,537	1	1,017	0,537
6	0,4691	0,2399	6	0,943	0,482	6	0,943	0,482
12	0,4574	0,2418	12	0,915	0,484	12	0,9265	0,487
12b	0,4691	0,2447	12b	0,938	0,489	16	0,918	0,488
16	0,4592	0,2442	16	0,918	0,488	24	0,924	0,477
24	0,4619	0,2385	24	0,924	0,477	36	0,8534	0,4119
36b	0,4357	0,2094	36b -	0,871	0,419	72	0,864	0,423
36	0,4177	0,2025	36	0,835	0,405			
72	0,432	0,2113	72	0,864	0,423			

*De l'acétonitrile a été ajouté à chaque échantillon à titre de préservatif

ANNEXE L

DONNÉES MÉTÉOROLOGIQUES
Mois	Pré	cipitation	(P)	Évapotra	Inspiration	Ruisellement		Infiltration
	Neige (cm)	Pluie (mm)	Total (mm)	Évapo-Trans pot. (Etp) (mm)	Évapo-Trans réelle (Etr) (mm)	R (mm)	(P-R) (mm)	l-Etr (mm)
Janv	76	24	100	0	0	44	56	56
Fev	65	16	82	0	0	36	46	46
Mars	45	44	91	0	0	40	51	51
Avril	17	64	81	20	20	36	45	25
Mai	1	111	113	106	63	50	63	0
Juin	0	118	118	126	66	52	66	0
Juillet	0	127	127	107	71	56	71	0
Août	0	127	127	107	71	56	71	0
Septembre	0	133	133	65	65	58	74	9
Octobre	3	108	111	30	30	49	62	33
Novembre	40	70	111	0	0	49	62	62
Décembre	87	35	125	0	0	55	70	70
Total	334	977	1317	560	386	580	738	352

Tableau L.1 : Bilan hydrologique moyen (entre 1964 et 1993) de la station météorologique de Dushesnay. Adaptée de Fagnan (1998)

Références

Fagnan, N., 1998. <u>Cartographie Hydrogéologique régionale et vulnérabilité des aquifères de la MRC de Portneuf</u>. Mémoire de maîtrise, INRS-Géoressources, 215 p.

ANNEXE M

SOMMAIRE DES VALEURS DE CONDUCTIVITÉ HYDRAULIQUE

Des essais de conductivité hydrauliques (*slug test*) ont été réalisés dans tous les puits d'observation, sauf le A-1. L'objectif de ces essais est d'évaluer la conductivité hydraulique (K) *in situ* de l'aquifère au niveau d'un puits d'observation. Le principe consiste à provoquer un changement brusque du niveau d'eau dans le puits d'observation par ajout ou retrait d'un volume connu d'eau et de mesurer à un intervalle approprié les fluctuations du niveau d'eau avec un capteur de pression jusqu'à ce que le niveau de départ soit rétabli.

La méthode par ajout d'eau n'est généralement pas recommandée car il y a risque d'introduire de la contamination externe dans l'eau du puits modifiant ainsi sa composition chimique. Comme il était difficile d'opérer l'échantillonneur à clapet (*bailer*) dans le puits d'observation sans déplacer le capteur de pression, la méthode par ajout d'eau a été appliquée. Pour éviter de contaminer l'eau du puits d'observation, un volume d'eau était recueilli à l'avance dans le puits à l'aide d'un échantillonneur à clapet. Après le rétablissement du niveau d'eau à sa valeur initiale, l'essai pouvait être initié par l'injection de l'eau contenue dans l'échantillonneur à clapet.

Les mesures du niveau d'eau tout au long de l'essai étaient prises à l'aide d'un capteur de pression *Stevens* maintenu au fond du puits d'observation, relié à un enregistreur de donnée convertissant les pressions en hauteurs d'eau.

Les résultats ont été analysés selon la méthode de Bower et Rice (1976) et de Hvorslev (1951) avec le logiciel *Aquifer Test* (Version 2.53). Un résumé des valeurs de conductivité hydraulique obtenu pour chacune des unités hydrostratigraphiques est présenté au tableau M.1.

Puits	K (Hazen)	K (m/s)
	(m/s)	(Slug Test)
A-1	4,1x10 ⁻⁰⁴	n/a
A-11	1,6x10 ⁻⁰⁴	7,9x10 ⁻⁰⁵
A-12	1,9x10 ⁻⁰⁴	1,2x10 ⁻⁰⁴
A-16	n/a	6,0x10 ⁻⁰⁵
A-17	n/a	1,1 x10 ⁻⁰⁴
A-18b	n/a	2,0 x10 ⁻⁰⁴
A-20	n/a	6,3 x10 ⁻⁰⁵
A-21	n/a	1,8 x10 ⁻⁰⁴
A-22b	n/a	3,1 x10 ⁻⁰⁵
A-23	n/a	2,4 x10 ⁻⁰⁴
A-24	n/a	2,7 x10 ⁻⁰⁴
A-3	2,0 x10 ⁻⁰⁴	2,0 x10 ⁻⁰⁴
A-5	1,0 x10 ⁻⁰⁵	1,4 x10 ⁻⁰⁵
A-7	7,0 x10 ⁻⁰⁵	2,3 x10 ⁻⁰⁴
A-9	3,5 x10 ⁻⁰⁴	9,7 x10 ⁻⁰⁵
Po-16	n/a	5,3 x10 ⁻⁰⁵
Moyenne	1,3 x10 ⁻⁰⁴	9,9 x10 ⁻⁰⁵
Minimum	1,0 x10 ⁻⁰⁵	1,4 x10 ⁻⁰⁵
Maximum	3,5 x10 ⁻⁰⁴	2,4 x10-04
N	6	15

Gx, Sédiments fluvio-glaciaires

Tableau M.1 : Résumé des valeurs de conductivité hydrauliques

Md, sédiments marin deltaïque

Puits	K (Hazen) (m/s)	K (m/s) (Slug Test)
TF-9-1	n/a	3,8 x10 ⁻⁰⁵
E7-1	n/a	2,8 x10 ⁻⁰⁵
E2-4B	n/a	1,4 x10 ⁻⁰⁴
E2-4A	n/a	8,0 x10 ⁻⁰⁵
Moyenne	n/a	5,9 x10 ⁻⁰⁵
Minimum	n/a	2,8 x10 ⁻⁰⁵
Maximum	n/a	1,4 x10 ⁻⁰⁴
N	0	4

At, Alluvion des terraces fluviales

Puits	K (Hazen) (m/s)	K (m/s) (Slug Test)
E2-2a	n/a	9,0 x10 ⁻⁰⁵
38-PO-36	n/a	1,7 x10 ⁻⁰⁴
Moyenne	n/a	1,2 x10 ⁻⁰⁴
Minimum	n/a	9,0 x10 ⁻⁰⁵
Maximum	n/a	1,7 x10 ⁻⁰⁴
N	0	2

Mi et Mdp, Sédiments intertidaux et deltaïques

Puits	K (m/s) (Schlichter)	K (m/s) (Slug Test)
A-7	3,5 x10 ⁻⁰⁸	n/a
A-12	1,0 x10 ⁻¹⁰	n/a
Moyenne	1,9 x10 ⁻⁰⁹	n/a
Minimum	1,0 x10 ⁻¹⁰	n/a
Maximum	3,5 x10 ⁻⁰⁸	n/a
N	2	0

Ap Alluvion

rÁ	aant	

Puits	K (Hazen) (m/s)	K (m/s) (Slug Test)
A-10	3,5 x10 ⁻⁰⁶	2,8 x10 ⁻⁰⁵

Références

Bower, H. and Rice, R.C. 1976. "A slug test for determining hydraulic conductivity of unconfined aquifers with partially penetrating wells". <u>Water Resources</u>, vol. 12. p. 423-428

Hvorslev, M.J. 1951. <u>Time lag and soil permeability in groundwater observations</u>, U.S. Army Corps of Engineers, Waterway Experiment Station, Vicksburg, MS, 50 p.

ANNEXE N

EXEMPLE DE FICHIER D'ENTRÉE UTILISÉ PAR FRAC3DVS

Arnhem-Steady-state

read slice top.2dm

generate layers from slice ! xy slice .true. ! zone by layer .true. ! constant base .false. roc.prn ! nlayers 3

! layer name fluvio ! nsublayers 17 ! constant top .false. silt.prn

! layer name silt ! nsublayer 1 ! constant top .false. sable.prn

! layer name sable_fi ! nsublayers 1 ! constant top .false. topo.prn

:

.

.

tetrahedra

done grid definition

remove negative coefficients

! assignation des matériaux clear chosen elements choose elements all clear chosen elements choose elements all zone chosen elements 1

clear chosen zones clear chosen elements choose elements list mi_silt.prn zone chosen elements 2

clear chosen zones clear chosen elements choose elements list mi_sable.prn zone chosen elements 3

units: kilogram-metre-second

! conditions limites read gms flow boundary conditions arn_run_side.3bc

I fichiers sorties echo flow boundary conditions echo to output

Isolver parameter Flow solver detail 2 Flow solver convergence criteria 0.0005 Newton absolute convergence criteria 0.001 Newton residual convergence criteria 0.0001 underrelaxation factor 0.8 Newton maximum iterations 200000

I condition initiale restart file for heads

pressure head input pressure head output unsaturated

set kwrith 1

! point d<observation

!A-1

make observation point 3.052930000000000d+005 5.200381000000000d+006 1.940400054931641d+002

! point d<observation

!A-11

make observation point

3.05207000000000d+005 5.20007900000000d+006 1.794100036621094d+002

!A-12

make observation point 3.05216000000000d+005 5.20014300000000d+006 1.787400054931641d+002

!A-16

make observation point 3.05278000000000d+005 5.20012700000000d+006 1.771300048828125d+002

IA-17

make observation point 3.05385000000000d+005 5.20013900000000d+006 1.783200073242188d+002

IA-18

make observation point 3.05491000000000d+005 5.20016000000000d+006 1.780599975585938d+002

IA-19

make observation point 3.05542000000000d+005 5.20014700000000d+006 1.773999938964844d+002

!A-20

make observation point 3.05881000000000d+005 5.19993500000000d+006 1.722299957275391d+002

!A-3

make observation point

3.05318000000000d+005 5.20025500000000d+006 1.7975000000000d+002

IA-5

make observation point 3.05383000000000d+005 5.20025900000000d+006 1.861399993896484d+002

!A-7

make observation point 3.05348000000000d+005 5.20012900000000d+006 1.788000030517578d+002

!A-9

make observation point 3.05423000000000d+005 5.20016300000000d+006 1.783099975585938d+002

1A-24

make observation point 3.05442000000000d+005 5.20006300000000d+006 1.778370056152344d+002

!A-23

make observation point 3.05553000000000d+005 5.19996900000000d+006 1.791900024414063d+002

!A-21

make observation point 3.05617000000000d+005 5.19999900000000d+006 1.758999938964844d+002

Page 3

ц.

宇皇

1 -

1 Po-16 make observation point 3.05694000000000d+005 5.2000030000000d+006 1.760800018310547d+002

Arnhem-Transport-Avril

read slice top.2dm generate layers from slice I xy slice .true. ! zone by layer .true. ! constant base .false. roc.prn ! nlayers 3 ! layer name fluvio ! nsublayers 17 ! constant top .false. silt.prn ! layer name silt ! nsublayer 1 ! constant top .false. sable.prn ! layer name sable_fi ! nsublayers 1 ! constant top .false. topo.prn

tetrahedra

done grid definition

remove negative coefficients ! assignation des matériaux clear chosen elements choose elements all clear chosen elements choose elements all zone chosen elements 1

clear chosen zones clear chosen elements choose elements list mi_silt.prn zone chosen elements 77

÷

4.4

1

- 3

غ ہ

. .

clear chosen zones clear chosen elements choose elements list mi_sable.prn zone chosen elements 3

clear chosen zones clear chosen elements choose elements block 305317, 305551 5200143, 5200206 170, 210 zone chosen elements 1

units: kilogram-metre-second

! conditions limites read gms flow boundary conditions arn_run_side.3bc

! fichiers sorties echo flow boundary conditions echo to output

Isolver parameter Flow solver detail 2 Flow solver convergence criteria 0.0005 Newton absolute convergence criteria 0.001 Newton residual convergence criteria 0.0001 underrelaxation factor 0.8 Newton maximum iterations 200000

! condition initiale restart file for heads

pressure head input pressure head output unsaturated

set kwrith 1

! le temps transient flow initial time

÷ Ą

¢ ð

. .

 $\theta_{i} < \varepsilon_{i}$

s.g

٤,

-

€02,03**₽**

ξ.

à

output times 1 2557000 ! point d<observation

!A-3

make observation point 3.05318000000000d+005 5.20025500000000d+006 1.7975000000000d+002

do transport solute end solute

clear chosen faces choose faces block 305350, 305420 5200369, 5200409 209, 213

read gms transport boundary conditions arn_run_trans2.3bc

specified third-type concentration .false. 9.56D-8 14 0, 3600, 0.1989 3600, 25200, 0.2523 25200, 82800, 0.3947 0.4659 82800, 111600, 0.6083 169200, 111600, 0.6706 194400, 169200, 255600, 0.8219 194400, 277200, 0.8753 255600, 1.4627 277200, 514800, 514800, 1.6763 601200, 1.8899 687600, 601200, 2.1035 774000, 687600, 860400, 2.3171 774000, 2.9579 1119600000000000 860400,

echo transport boundary conditions

set kwrithc 1

peclet number 0.5

courant number 1

transport time weighting 1

transport solver convergence criteria 1d-5 read slice top.2dm

generate layers from slice ! xy slice .true. ! zone by layer .true. ! constant base .false. roc.prn ! nlayers 3

! layer name fluvio ! nsublayers 17 ! constant top .false. silt.prn

! layer name silt ! nsublayer 1 ! constant top .false. sable.prn

! layer name sable_fi ! nsublayers 1 ! constant top .false. topo.pm

tetrahedra

done grid definition

remove negative coefficients ! assignation des matériaux clear chosen elements choose elements all clear chosen elements choose elements all zone chosen elements 1

clear chosen zones clear chosen elements choose elements list mi_silt.prn zone chosen elements 2 100 million (100 million)

 $(\mathcal{M})^{*}$

ž

į

...

1. 1

clear chosen zones clear chosen elements choose elements list mi_sable.prn zone chosen elements 3

clear chosen zones clear chosen elements choose elements block 305317, 305551 5200143, 5200206 170, 210 zone chosen elements 1

units: kilogram-metre-second

! conditions limites read gms flow boundary conditions am_run_side.3bc

! fichiers sorties echo flow boundary conditions echo to output

Isolver parameter Flow solver detail 2 Flow solver convergence criteria 0.0005 Newton absolute convergence criteria 0.001 Newton residual convergence criteria 0.0001 underrelaxation factor 0.8 Newton maximum iterations 200000

! condition initiale restart file for heads

pressure head input pressure head output unsaturated

set kwrith 1 ! le temps transient flow

initial time 2642468

target times 124				
2642508 2642568 2642682				
2642960 2643129 2643322				
2643541 2643791 2644077 2644402				
2644772 2645195 2645677				
2646226 2646852 2647566 2648380				
2649307 2650365 2651570 2652945				
2654512 2656298 2658334 2660655				
2663301 2666318 2669757				
2673677 2678147 2683242 2689050				
2695672 2703220 2711825 2721625				
2721635 2732819 2745568 2760102				
2776671 2795559 2817092 2841639	•			
2869623 2901524 2937892 2979352				
3026616 3080496 3141920				
3211943 3291770				

(our all

. .

 \overline{z}

> > - 1

- -

A 14 - 18

ې د د

-

:

output times 2 5230000

10384497 ! point d<observation

!A-3

make observation point 3.0531800000000d+005 5.20025500000000d+006 1.7975000000000d+002 !A-9 make observation point 3.05423000000000d+005 5.2001630000000d+006 1.783099975585938d+002

do transport solute end solute

restart file for concentrations

read gms transport boundary conditions arn_run_trans2.3bc

echo transport boundary conditions

set kwrithc

peclet number 0.5

courant number

transport time weighting 1

transport solver convergence criteria 1D-5 ÷

-

同語

Ç

<u></u>

5.2

10

22

<u>æ</u>.

÷.

 \mathbb{T}^{2}

. -

()					
TIUVIO					
1.0d-4	! KX				
1.0d-4	! ky				
1 0d-4	! kz				
0.00017	7 I spec	cific storage			
0.00011	1 norosity	/			
0.43	: porosity	r ata fallours if	trup (pressi	ion vs satu	ration)
.true.	! tabular of	ata tonows ii	liue (piece		,
99					
-35	0.08				
1 061	0.09				
-1.001	-0.00				
-0.7023	50.10				
-0.551/	/0.11				
-0.4645	50.12				
-0.4064	40.133				
-0 364	20.14				
0.004	00.15				
-0.331	90.15				
-0.306	20.16				
-0.285	10.17				
-0.267	30.185116	279069767			
-0 252	10.204162	790697674			
0.202	0 213209	302325581			
-0.239	0.210200	813053488			
-0.227	50.22225				
-0.217	20.2312/5	1069707442			
-0.208	10.240232	2558139535			
-0.199	90.249302	2325581395			
_0 102	40 258372	2093023256			
0.102	E 0 26744	1860465116			
-0.100	00.20144	1607006077			
-0.175	20.27051	1027300377			
-0.173	340.28558	139534003/			
-0.168	3 0.29465	1162790698			
-0.163	3 0.30372	0930232558			
-0 15	R30.31279	0697674419			
0.10	200 32162	7906976744			
-0.15	000 02060	7674418605			
-0.14	980.33009	7074410000			
-0.14	590.33970	7441000400			
-0.14	220.34883	1209302320			
-0.13	870.35790	6976744186	i e e		
-0.13	540.36697	76744186047			
-0.13	220 37604	46511627907	,		
-0.10	020 28511	6279069767	,		
-0.12		6046511628	2		
-0.12	630.39410		, . ,		
-0.12	360.40302	2325561395	t 4		
-0.12	21 0.41209	93023255814	+		
-0.11	840.4211	627906 97 674	4		
-0.11	6 0.4302	325581 395 3	5		
-0.11	360 4393	0232558139	5		
-0.11	120 4483	7209302325	6		
-0.1	1130.4403	4106046511	е С		
-0.10	J920.4574	4100040011	7		
-0.10	0710.4665	1162/9069/	-		
-0.10	049 0.47 55	8139534883	(
-0.10	03 0.4844	1860465116	3		
-0.1	0110.4934	8837209302	3		
0.1	0020 5025	5813953488	4		
-0.0	0726	0 5116279	06976744		
-0.0	9/30	0.5110275	74418605		
-0.0	9563	0.5200970	41060465		
-0.0	9391	0.529/6/4	41800400		
-0.0	9218	0.5388372	09302326		
-0.0	9051	0.5479069	76744186		
-0.0 ^ ^	8894	0.5567441	86046512		
-0.0	0004	0 5658139	53488372		
-0.0	10/30	0.5050133	20030233		
-0.0	18281	0.5740037	20000200		

Mary Service

₽.

1000 A

ALC: N

A. A.

teres and

á.

-0.08425	0.583953488372093
-0.0828 0.59302	23255813954
-0.08136	0.602093023255814
-0.07993	0.611162790697674
-0.07850.62023	32558139535
-0.07706	0.629302325581395
-0.07573	0.638139534883721
-0.0744 0.6472	09302325581
-0.07307	0.656279069767442
-0.07174	0.665348837209302
-0.07041	0.674418604651163
-0.06912	0.683488372093023
-0.06786	0.692558139534884
-0.06660.7016	27906976744
-0.06534	0.710697674418605
-0.06408	0.71953488372093
-0.06282	0.728604651162791
-0.06159	0.737674418604651
-0.06036	0.746744186046512
-0.05913	0.755813953488372
-0.05790.7648	83720930233
-0.05667	0.773953488372093
-0.05544	0.783023255813953
-0.05419	0.792093023255814
-0.05295	0.80093023255814
-0.05170.81	
-0.05046	0.819069767441861
-0.04921	0.828139534883721
-0.04790.8372	09302325581
-0.04657	0.846279069767442
-0.04525	0.855348837209302
-0.04392	0.864418604651163
-0.04259	0.873488372093023
-0.04117	0.882325581395349
-0.03966	0.891395348837209
-0.03815	0.90046511627907
-0.03664	0.90953488372093
-0.03513	0.918604651162791
-0.03329	0.927674418604651
-0.03142	0.936744186046512
-0.02955	0.945813953488372
-0.02756	0.954883720930233
-0.02496	0.963720930232558
-0.02235	0.972790697674419
-0.01893	0.981860465116279
-0.000000000	00005798 1

26,	! # of saturation - relative k values
0.08 0.0009	
0.156083	0.00971442
0.19804	0.0212517
0.247626	0.0270204
0.289584	0.050095
0.342984	0.067401
0.388756	0.0904756
0.449785	0.125087

	0 1 5 0 5 0 0
0.491742	0.129099
0.556586	0.20008
0.636686	0.275072
0.671015	0.303916
0.697715	0.315453
0.724416	0.338528
0.75493	0.361602
0.78163	0.384677
0 808331	0.419289
0 827402	0.448132
0 842659	0.494281
0.861731	0.546199
0.884617	0.603886
0.915131	0.661572
0.934203	0.730796
0 953275	0.788483
0.080.0.8	35
4 4	
1 1	

9 ! lor 0.09 0.0 ! 0.1 1.8 ! t	ngitudinal dispersivity ! transverse dispersivity transverse vertical dispersivity ! tortuosity pulk density
0.0	
eilt	
0 0016d-4 !k	K · · ·
0.0016d-4 ! ky	, ·
0.0016d-4 ! kz	
0.002 ! spe	cific storage
0.46 ! poros	sity
.true. ! tabular	data follows if true
61,	! # of saturation - relative k values
-25 0.40392	23913043478
-12 0.41304	134782608/
-6.585529	0.45/339130434765
-4.878293	0.50014347828087
-4.0246749	0.5295
-3.597866	0.54/20/39/304340
-3.171057	0.567819505217551
-2.744248	0.591991304347620
-2.530844	0.605793476200005
-2.317439	0.620995652175915
-2.104035	0.6376566505652174
-1.997332	0.647008095052114
-1.89063	0.65609782608696
-1.783928	0.600904702000000
-1.677226	0.6779304347826087
-1.570524	0.003004047020007
-1.463821	0.715469565217391
-1.35/119	0.729863043478261
-1.250417	0.737473913043478
-1.19/000	0 745382608695652
-1,143/13	0.7 10002000000000000000000000000000000000

ì

÷,

ः ह

1. A.

\$5 _____

<u>.</u>

÷

-1.0903635	0.753608695652174
-1.0370123	0.762171739130435
-0.983661	0.771086956521739
-0.93031	0.780380434782609
-0.876959	0.790071739130435
-0.823608	0.800182608695652
-0.770257	0.810736956521739
-0.716906	0.821758695652174
-0.663555	0.833265217391304
-0.610203	0.845280434782609
-0.583528	0.851480434782609
-0.543515	0.861030434782609
-0.516839	0.867560869565217
-0.463488	0.881017391304348
-0.410137	0.894984782608696
-0.356786	0.909419565217391
-0.15005	0.967460869565217
-0.123374	0.974636956521739
-0.110037	0.978115217391304
-0.0966989	0.981502173913043
-0.0833611	0.984776086956522
-0.0766922	0.986363043478261
-0.0700233	0.987913043478261
-0.0633545	0.989421739130435
-0.0566856	0.990882608695652
-0.0500167	0.992291304347826
-0.0433478	0.993641304347826
-0.0400133	0.994291304347826
-0.0366789	0.994926086956522
-0.0333444	0.995539130434783
-0.03001	0.996132608695652
-0.0266756	0.996704347826087
-0.0233411	0.997252173913043
-0.0200067	0.997771739130435
-0.0166722	0.998263043478261
-0.0133378	0.998717391304348
-0.0100033	0.999134782608696
-0.00666889	0.999502173913043
-0.00333444	0.999808695652174
0 1	

2	,		

60,	
0.403923913043478	0.000912507
0.41304347826087	0.00740785
0.457339130434783	0.0153053
0.50014347826087	0.0203319
0.5295 0.027765	
0.547267391304348	0.0328407
0.567819565217391	0.0392056
0.591991304347826	0.0430003
0.605793478260869	0.0472923
0.620995652173913	0.0521657
0.637858695652174	0.0577224
0.647008695652174	0.0640871
0.656697826086956	0.0676193
0.666984782608696	0.071414
0.677930434782609	0.0754966
0 689604347826087	0.0798954

0 702086956521739	0.0846425
0 715469565217391	0.0897743
0.729863043478261	0.095332
0 737473913043478	0.101363
0 745382608695652	0.10792
0.753608695652174	0.115068
0.762171739130435	0.118885
0.771086956521739	0.122877
0 780380434782609	0.127056
0 790071739130435	0.131433
0 800182608695652	0.136022
0.810736956521739	0.140836
0.821758695652174	0.145891
0 833265217391304	0.151205
0 845280434782609	0.156795
0.851480434782609	0.162683
0.861030434782609	0.168891
0.867560869565217	0.175445
0.881017391304348	0.182373
0.894984782608696	0.189707
0.909419565217391	0.197483
0.967460869565217	0.205741
0.974636956521739	0.214528
0.978115217391304	0.223896
0.981502173913043	0.233907
0.984776086956522	0.244631
0.986363043478261	0.256154
0.987913043478261	0.268574
0.989421739130435	0.282011
0.990882608695652	0.296611
0.992291304347826	0.312554
0.993641304347826	0.33007
0.994291304347826	0.349452
0.994926086956522	0.371091
0.995539130434783	0.395526

0.995539130434783

0.997252173913043

0.997771739130435

0.998263043478261

0.998717391304348

0.999134782608696 0.999502173913043

0.999808695652174

.true.

0.996132608695652 0.996704347826087

! longitudinal dispersivity 14 ! transverse dispersivity 0.14 ! transverse vertical dispersivity 0.0 ! tortuosity 0.1 ! bulk density 1.4 0.0 0.0 sable_fi ! kx .9d-5 .9d-5 ! ky .9d-5 ! kz ! specific storage 0.00017 ! porosity 0.41 ! tabular data follows if true

0.423528

0.456272 0.495697

0.545426

0.576366

0.613809

0.661945

0.732325

1

79.**X**

5**7** 27

Sector Sector

100 Cal

AP-24

2

к

;

61.	# of pressure - relative k values
0 17657	3902439024
-23 0.17037	7004070040
-5 0.18048	7804878049
-2.0940313	0.230886097560976
1 453818	0 258392682926829
-1.400010	0.000040700407005
-1.027009	0.293948780487805
-0 813605	0.324253658536585
0.010000	0 345492682926829
-0.700902	0.040402002020020
-0.653551	0.35840243902439
-0 6002 0.37330)487804878
0 546940	0 39070243902439
-0.540045	0.00070240002100
-0.493498	0.411265853658537
-0 466822	0.423009756097561
0 440147	0 435917073170732
-0.440147	0.450100075600756
-0.4134/1	0.450160975609756
-0.386796	0.465953658536585
0 272458	0 474507317073171
-0.373450	0,47,400701707011
-0.36012	0.483543902439024
-0.346782	0.493104878048781
0.222444	0 503231707317073
-0.333444	0.540075600756008
-0.320107	0.513975009750090
-0.306769	0.525382926829268
0.202421	0 537514634146341
-0.293431	0.550401707017072
-0.280093	0.550431707317073
-0.266756	0.5642
0.253418	0 57889512195122
-0.255410	0.07000012100122
-0.24008	0.594587804676049
-0.233411	0.602836585365854
0.006742	0.611365853658537
-0.220742	0.00107004979040
-0.220073	0.62018/8046/8049
-0.213404	0.629312195121951
0.006726	0 638748780487805
-0.200730	0.0007407007561
-0.200067	0.648509756097561
-0.193398	0.658604878048781
0 186729	0 669041463414634
-0.100723	0.00001110011100
-0.18006	0.679831707317073
-0.173391	0.690980487804878
0 166722	0 702492682926829
-0.100722	0.714975600756098
-0.160053	0.714375009750090
-0.153384	0.726629268292683
0 146716	0 739251219512195
-0.140710	0.765575600756008
-0.133378	0.765575005750050
-0.12004	0.793241463414634
-0.0666889	0.910431707317073
0.0000000	0.024410512105122
-0.06002	0.924419512195122
-0.0533511	0.937814634146342
-0.0500167	0.944236585365854
0.00000101	0.050//1/63/14634
-0.0400022	0.950441405414004
-0.0433478	0.95640487804878
-0.0400133	0.96210243902439
0.0100100	0.067500756097561
-0.0300/09	0.007050510105100
-0.0333444	0.97259512195122
-0.03001	0.977339024390244
0.00000	0 981709756097561
-0.0200/30	0.001100100001001
-0.0233411	0.985080487804878
-0.0200067	0.989226829268293
0.0166722	0 992324390243903
-0.0100722	0.004020024200244
-0.0133378	0.994939024390244
-0.0100033	0.997051219512195
-0.00666889	0.998624390243903

0.999629268292683 -0.00333444 0 1

e∩ !#ofsa	turation - relative k values
0 176573902439024	0.0009
0.100487804878049	0.00148879
0.18048780487804878	0 00336022
0.2308880097500970	0.00456326
0.258392682926629	0.0043032659
0.293948780487805	0.00032039
0.324253658536585	0.0075129
0.345492682926829	0.00897617
0.35840243902439	0.0107936
0.37330487804878	0.0118657
0.39070243902439	0.0130671
0.411265853658537	0.0144156
0 423009756097561	0.0159324
0 435917073170732	0.0176416
0.450160975609756	0.0195715
0.465953658536585	0.0206292
0.40595505050505050	0.0217547
0.474507517075171	0.022953
0.483543902439024	0.022000
0.493104878048781	0.0242233
0.503231707317073	0.0255696
0.513975609756098	0.0270403
0.525382926829268	0.0285876
0.537514634146341	0.030239
0.550431707317073	0.0320025
0.5642 0.0338864	
0.57889512195122	0.0359001
0 594587804878049	0.0380534
0.0340070010100	0.0403572
0.002030303050505050	0.042823
0.011303030303030000	0.0454635
0.620167604676045	0.0482922
0.629312195121951	0.0402022
0.638748780487805	0.0515241
0.648509756097561	0.0545745
0.658604878048781	0.0580619
0.669041463414634	0.0618037
0.679831707317073	0.0658205
0.690980487804878	0.070134
0.702492682926829	0.0747677
0.714375609756098	0.0797468
0 726629268292683	0.0850986
0 739251219512195	0.0908526
0 765575609756098	0.0970404
0.703241463414634	0.103696
0.795241400414004	0 110856
0.910431707317073	0 118559
0.924419512195122	0 126847
0.937814634146342	0.125766
0.944236585365854	0.135700
0.950441463414634	0.145302
0.95640487804878	0.15568/
0.96210243902439	0.166796
0.967509756097561	0.178744
0.97259512195122	0.191594
0.977339024390244	0.205408
0 981709756097561	0.236204
0 985680487804878	0.271707
0.0000000000000000000000000000000000000	

defaulT.mprOPS

0.989226829268293	0.312543
0.992324390243903	0.359375
0 994939024390244	0.473863
0 997051219512195	0.621215
0.998624390243903	0.809649
1 1	

14	! Iongitudinal dispersivity
0.14	! transverse dispersivity
0.0	! transverse vertical dispersivity
0.1	! tortuosity
1.8	! bulk density
0.0	
0.0	