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Résumé

Ce travail présente un cadre bayésien pour l’estimation adaptative en ligne des filtres de
Kalman appliqués aux modèles linéaires dans le traitement du signal. La dynamique des
paramètres est modélisée par un processus vectoriel autorégressif affecté d’un bruit gaussien,
et différentes structures de covariance (standard, scalaire et à variance fixe) sont étudiées et
comparées pour analyser leur impact sur la performance du filtre. L’analyse comparative de
ces différentes structures de filtre repose sur des simulations appliquées à l’identification de
la réponse impulsionnelle acoustique.
Un accent particulier est mis sur plusieurs approches adaptatives d’estimation en ligne des
hyper-paramètres, telles que le lissage temporel et l’estimation du maximum de vraisemblance
(MLE). Les résultats obtenus montrent que ce cadre bayésien généralise avantageusement les
méthodes classiques, en illustrant une robustesse et une adaptabilité supérieures, aussi bien
dans des conditions expérimentales variées, des environnements bruités, que dans une grande
diversité de scénarios d’application.
Mots-clés Filtre de Kalman, Modèles linéaires, Identification des systèmes, Filtrage bayésien,
Traitement du signal, Estimation adaptative.
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Abstract

This work introduces a Bayesian framework for online adaptive estimation of Kalman
filters applied to linear models in signal processing. The parameter dynamics are modeled by
a vector autoregressive process driven by Gaussian noise, and different covariance structures
(standard, scalar, and fixed-variance) are studied and compared to assess their impact on
filter performance. The comparative analysis of these various filter structures is based on
simulations targeting the identification of acoustic impulse responses.
Several online adaptive methods for hyperparameter estimation are specifically explored, in-
cluding both temporal smoothing and maximum likelihood approaches. The results confirm
that the Bayesian framework not only generalizes existing methods but also demonstrates
superior robustness and adaptability across diverse experimental settings, noisy contexts,
and a broad spectrum of practical applications.
Keywords: Kalman Filter, Bayesian Filtering, Linear Models, System Identification, Signal
Processing, Adaptive Estimation.
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Chapitre 1

Introduction et motivation

Le filtre de Kalman s’appuie sur la dynamique du système étudié, c’est-à-dire son évolution au

cours du temps, afin d’améliorer la qualité des estimations en réduisant l’impact du bruit affectant

les mesures. Le développement de méthodes visant à reconstituer l’état réel du système à partir de

mesures bruitées représente ainsi un enjeu fondamental pour de nombreuses applications, ce qui a

conduit à une production scientifique particulièrement abondante dans le domaine du traitement

du signal [1, 2].

Ce travail ne s’inscrit pas dans la perspective d’une question de recherche empirique au sens strict,

mais dans celle d’un problème d’estimation d’états au sein de systèmes dynamiques. La probléma-

tique centrale peut être formulée ainsi : à partir des mesures disponibles et des connaissances, des

hypothèses portant sur la dynamique du système, comment élaborer un schéma d’estimation capa-

ble de fournir la meilleure approximation possible de l’état ou du signal recherché ? Dans le cadre

de ce mémoire, cette interrogation se décline à travers la conception et l’analyse de versions simpli-

fiées du filtre de Kalman, visant à concilier précision des estimations et réduction de la complexité

algorithmique.

Une avancée majeure dans ce domaine a été réalisée en 1960, lorsque R.E. Kalman a publié

son article fondateur intitulé “A New Approach to Linear Filtering and Prediction Problems” [3].

Le filtre de Kalman qu’il propose est une méthode mathématique permettant d’estimer de manière

optimale l’état d’un système, y compris lorsque la modélisation ou les mesures comportent une

part d’incertitude. [1, 2]. Cette approche repose sur l’utilisation de l’état précédent, des comman-

des appliquées et des observations bruitées pour produire une estimation actualisée. Par ailleurs,
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le filtre de Kalman présente une propriété récursive remarquable: il ne nécessite pas l’historique

complet des données passées pour calculer l’estimation courante [1,4]. Cette caractéristique le rend

particulièrement adapté aux applications en temps réel, dans des environnements où la rapidité de

traitement et l’adaptabilité sont essentielles.

Initialement développé pour la navigation aérospatiale [3, 4], le filtre de Kalman est aujourd’hui

largement utilisé pour le suivi et la prédiction de systèmes dynamiques dans des domaines variés,

notamment la finance [5], la robotique [6], et les télécommunications [7, 8].

Ce mémoire examine comment simplifier et adapter les filtres de Kalman pour améliorer leur

efficacité dans le traitement des signaux à partir de modèles linéaires, avec un accent particulier sur

l’amélioration de la précision des estimations et la vitesse de convergence dans des environnements

dynamiques.

Les méthodes de filtrage classiques supposent souvent que les paramètres du système, tels que

les variances du bruit de processus et du bruit d’observation, sont fixés ou connus à l’avance.

Cependant, dans de nombreuses applications réelles, ces paramètres sont incertains et peuvent

évoluer au cours du temps. Pour répondre à cette problématique, les filtres de Kalman adaptatifs

permettent d’ajuster dynamiquement ces paramètres en fonction des données observées. Cette

étude explore différentes formulations du filtre de Kalman, notamment les variantes simplifiées et

à variance fixe, et compare leur performance avec des approches d’optimisation alternatives telles

que la descente de gradient stochastique (SGD), dont les propriétés de convergence et les variantes

pratiques ont été largement étudiées dans la littérature [9].

L’objectif principal de cette recherche est d’évaluer l’efficacité du filtrage de Kalman adaptatif

dans les tâches d’identification des systèmes [10], en particulier pour l’estimation de la réponse im-

pulsionnelle dans les modèles linéaires. En analysant différentes stratégies d’estimation des hyper-

paramètres et leur impact sur la convergence et la précision, cette étude vise à fournir des recom-

mandations sur le choix optimal des techniques de filtrage pour les applications en temps réel.

1.1 Objectifs et problématique

L’estimation dynamique de paramètres dans les modèles linéaires demeure un défi central dans

de nombreux domaines scientifiques et techniques, en particulier lorsque ces paramètres évoluent
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au cours du temps ou sont soumis à des incertitudes importantes. Parmi les approches les plus

efficaces, le filtre de Kalman et ses variantes offrent un cadre probabiliste optimal pour la mise à

jour récursive des estimations en présence de bruit gaussien [3, 11, 12]. Néanmoins, la performance

de ces méthodes dépend fortement du choix et de l’ajustement des hyper-paramètres, tels que les

variances des bruits de processus et d’observation.

Dans ce contexte, ce mémoire vise à répondre aux questions suivantes :

• Comment différentes variantes du filtre de Kalman (standard, scalaire et scalaire à vari-

ance fixe) se comportent-elles en termes de convergence, de robustesse et de précision pour

l’estimation dynamique des paramètres d’un modèle linéaire?

• Comment comparer les performances du filtre de Kalman à celles d’approches classiques

d’optimisation, telles que la descente de gradient stochastique (SGD)?

• Quelles stratégies d’estimation bayésienne et d’ajustement adaptatif des hyper-paramètres

peuvent être mises en œuvre pour améliorer la performance du filtrage en temps réel?

La problématique de ce travail se situe donc à l’interface entre modélisation probabiliste, estima-

tion des hyper-parameters et optimisation adaptative [13, 14]. L’objectif principal est de proposer

une méthodologie rigoureuse pour l’estimation adaptative des paramètres d’un modèle linéaire, en

évaluant l’impact du choix des variantes du filtre de Kalman et des stratégies d’ajustement des

hyper-paramètres sur la performance globale du modèle. Pour ce faire, nous combinons analy-

ses théoriques et expérimentations numériques, en nous appuyant sur des simulations appliquées à

l’identification de la réponse impulsionnelle acoustique, permettant ainsi d’illustrer concrètement

les avantages et les limites de chaque approche.

Plus spécifiquement, ce travail cherche à :

• Proposer une formulation probabiliste unifiée du filtres de Kalamn permettant d’incorporer

l’évolution dynamique des paramètres dans un modèle linéaire à l’aide de différentes structures

de covariance (matricielle, vectorielle, scalaire et scalaire a variance fixe) [13,15].

• Mettre en œuvre et comparer plusieurs variantes du filtre de Kalman: le filtre standard (KF),

le filtre simplifié (SKF), et le filtre simplifié à variance fixe (fSKF), en les comparant à une

méthode d’optimisation classique, soit la descente de gradient stochastique (SGD) [16,17].
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• Valider expérimentalement l’efficacité des différentes méthodes proposées à travers des simu-

lations appliquées à l’identification de la réponse impulsionnelle acoustique.

• Étudier l’impact du choix et de l’adaptation des hyper-paramètres sur la convergence, la

robustesse et la précision de l’estimation dynamique.

• Développer et analyser des approches d’estimation adaptative en ligne des hyper-paramètres,

fondées sur des principes bayésiens (Lissage temporelle [18], estimation du maximum de

vraisemblance [14]).

Ce mémoire apporte ainsi une contribution à la problématique de l’adaptation dynamique des

filtres de Kalman en proposant une méthodologie robuste pour ajuster les hyper-paramètres en

fonction des propriétés du modèle. L’étude vise à démontrer que l’introduction d’un mécanisme

adaptatif permet d’améliorer la qualité des estimations et la stabilité du filtre.

1.2 Contributions

Ce mémoire propose une approche pour l’optimisation des filtres de Kalman appliqués aux mod-

èles linéaires, en mettant un accent particulier sur l’estimation dynamique des hyper-paramètres.

Les principales contributions de cette étude s’articulent autour de plusieurs axes :

• Analyse approfondie du filtre de Kalman et de ses variantes

Ce travail propose une approche générique permettant d’intégrer différentes variantes du filtre

de Kalman (standard, vectorielle, scalaire, à variance fixe) dans un cadre probabiliste unique

[13, 15]. Cette formulation facilite la comparaison théorique et empirique des performances

selon la structure de la covariance et le choix des paramètres, , mettant en évidence les

conditions dans lesquelles chaque méthode offre une convergence optimale.

• Comparaison avec des méthodes d’optimisation alternatives

Afin d’évaluer la pertinence des variantes du filtre de Kalman, une comparaison a été effectuée

avec l’algorithme de descente de gradient stochastique (SGD) [19].

• Validation expérimentale sur des données simulées

La méthodologie est appliquée à l’identification de la réponse impulsionnelle dans un contexte
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acoustique, illustrant la capacité des différentes variantes à s’adapter à divers scénarios et

niveaux de bruit.

• Introduction de stratégies adaptatives pour l’estimation des hyper-paramètres

Développement et évaluation de méthodes adaptatives en ligne pour l’estimation des hyper-

paramètres. Plusieurs approches d’optimisation sont étudiées, telles que le lissage temporel

[18] et l’estimation par maximum de vraisemblance (MLE) [14], afin d’identifier les hyper-

paramètres optimaux et d’améliorer à la fois la robustesse et la convergence du filtre.

• Modélisation dynamique des paramètres Les paramètres du filtre de Kalman sont

considérés comme variables dans le temps, ce qui permet de mieux représenter les systèmes

réels dont les caractéristiques évoluent.

• Analyse de l’impact des bruits d’observation et de transition

Le travail étudie l’effet des différents niveaux de bruit sur la performance du filtre, montrant

comment la variance du bruit d’observation et celle du processus influencent la précision et la

stabilité du filtrage.

• Comparaison entre scénarios statiques et dynamiques

Le mémoire compare la performance du filtre entre des situations où les paramètres restent

constants et d’autres où ils évoluent, et montre que les méthodes classiques ne suffisent pas

toujours en contexte dynamique.

Les résultats obtenus dans cette étude démontrent que l’intégration d’un mécanisme adaptatif

au sein des filtres de Kalman permet d’améliorer la précision des estimations et la robustesse des

algorithmes face aux variations des conditions expérimentales. Ces contributions ouvrent la voie à

de futures recherches sur l’optimisation des filtres de Kalman dans des applications où la dynamique

du système est sujette à des changements non stationnaires.

1.3 Positionnement par rapport à la littérature

Depuis l’article fondateur de Kalman [3], le filtre de Kalman et ses variantes ont fait l’objet

d’un développement théorique et d’applications multiples, couvrant des domaines tels que la naviga-

tion [4], la robotique [6], la finance [5] ou encore les télécommunications [7,8]. Plusieurs travaux [1,2,
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11,12] ont établi le cadre probabiliste optimal du filtrage linéaire gaussien, tandis que des recherches

plus récentes [14,18] se sont concentrées sur l’adaptation dynamique des hyper-paramètres, notam-

ment via le maximum de vraisemblance ou des techniques de lissage temporel.

Cependant, la littérature présente certaines limites :

• Les études comparent rarement de manière systématique les différentes structures de covari-

ance (matricielle, vectorielle, scalaire, scalaire à variance fixe) dans un cadre unifié.

• Les validations expérimentales portent souvent sur des cas spécifiques et ne mesurent pas

explicitement l’impact des choix de covariance et de stratégie adaptative sur la convergence

et la précision dans des scénarios dynamiques.

Ce travail se distingue de la littérature existante par les contributions suivantes :

• Une formulation unifiée permettant d’intégrer plusieurs variantes du filtre de Kalman dans un

même cadre probabiliste, afin de faciliter leur comparaison théorique et numérique.

• Une analyse expérimentale comparative entre ces variantes et la descente de gradient stochas-

tique sur un problème d’identification de réponse impulsionnelle acoustique.

• Le développement et l’évaluation de stratégies adaptatives en ligne pour l’estimation des

hyper-paramètres, avec une étude approfondie de leur impact sur la précision, la robustesse

et la vitesse de convergence.

Ce positionnement permet de distinguer clairement notre contribution par rapport aux travaux

existants, en offrant une vision comparative et intégrée des méthodes de filtrage et d’optimisation

dans un contexte d’estimation adaptative.

1.4 Structure du document

Ce mémoire est structuré en quatre chapitres principaux, chacun abordant un aspect spécifique

du problème étudié. Il suit une progression logique allant de la présentation du contexte et des

concepts fondamentaux à l’analyse des résultats obtenus et à la conclusion.
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• Chapitre 1 : Introduction

Ce premier chapitre introduit le contexte général du travail de recherche. Il expose la problé-

matique et les motivations qui sous-tendent l’étude, ainsi que les objectifs poursuivis. Enfin,

il présente un aperçu des contributions de ce travail et de la méthodologie employée.

• Chapitre 2 : Principe du filtre de Kalman

Ce chapitre présente la formulation générale du filtre de Kalman appliquée à l’identification

des systèmes linéaires [15]. Il détaille les principales variantes du filtre, en soulignant leurs

propriétés, leurs limites, ainsi que leur capacité d’adaptation à différents contextes et niveaux

de bruit. Une attention particulière est portée au choix des paramètres et à leur influence sur

la qualité des estimations.

• Chapitre 3 : Estimation des hyper-paramètres du modèle

Ce chapitre traite des méthodes d’estimation dynamique des hyper-paramètres du filtre de

Kalman, notamment la variance du bruit de processus et celle du bruit d’observation [14,18].

Il explore plusieurs approches adaptatives visant à améliorer la stabilité et la performance du

filtre. L’évaluation de ces méthodes est réalisée à travers des simulations numériques.

• Chapitre 4 : Conclusion et perspectives

Le dernier chapitre synthétise les principaux résultats obtenus et met en perspective les con-

tributions du travail. Il propose également des pistes de recherche future visant à améliorer les

méthodes présentées et à explorer de nouvelles applications du filtre de Kalman dans d’autres

contextes.

L’ensemble de ce document vise à démontrer l’importance d’une estimation adaptative des hyper-

paramètres du filtre de Kalman et son impact sur la précision des estimations dans des modèles

linéaires sous bruit gaussien dans le traitement du signal.





Chapitre 2

Principe du filtre de Kalman

Ce chapitre présente le cadre théorique du filtre de Kalman pour l’identification des systèmes

linéaires bruités. Après avoir exposé la formulation générale et les hypothèses probabilistes associées,

il décrit les principales variantes de l’algorithme et analyse leurs propriétés, avantages et limites.

Une attention particulière est portée à l’influence des paramètres sur la précision des estimations,

ainsi qu’aux liens avec certaines méthodes d’optimisation stochastique. L’application à l’estimation

d’une réponse impulsionnelle acoustique illustre enfin la performance comparative de ces approches.

2.1 Formulation générique du filtre de Kalman

Dans les modèles linéaires en identification des systèmes, l’évolution des poids au cours du temps

est souvent représentée par un processus auto-régressif vectoriel. Ce processus permet de capturer

les relations temporelles entre les poids en fonction de leurs valeurs passées. Lorsqu’il est appliqué

avec le filtre de Kalman, il offre une estimation optimale des états du système, en présence de bruit

gaussien [20]. Cette approche permet donc de suivre et d’ajuster les paramètres en fonction des

données observées, tout en minimisant l’erreur de prédiction:

wt = wt−1 + ut
√

εt, (2.1)

yt = x⊺
t wt + ηt, (2.2)
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où wt ∈ RM désigne le vecteur des poids (ou paramètres) du système à l’instant t et ut est un

vecteur de variables aléatoires gaussiennes indépendantes, de moyenne nulle et de variance unitaire.

Ainsi, εt décrit la variance de la fluctuation aléatoire des poids entre les instants t − 1 et t. De

plus, yt ∈ R désigne l’observation réalisée au temps t, c’est-à-dire la valeur mesurée à cet instant et

définie par l’équation (2.2) comme la somme du produit scalaire x⊺
t wt et du bruit d’observation ηt.

Ce bruit ηt modélise l’incertitude ou les erreurs de mesure affectant yt, et il est supposé suivre une

loi normale centrée, ηt ∼ N (0, v∗
η), où v∗

η désigne la variance du bruit d’observation.

La relation (2.1) peut être présentée comme suit :

f(wt|wt−1) = N (wt; wt−1, Iεt), (2.3)

La notation N (wt; wt− 1, Iεt) désigne une loi normale multivariée, présentée en détail dans la

section 2.1. Sa densité s’écrit :

N (wt; µ, Σ) = 1√
(2π)M |Σ|

exp
(
−1

2(wt − µ)⊺Σ−1(wt − µ)
)

, (2.4)

où, dans ce contexte, µ = wt−1 et Σ = Iεt, avec I la matrice identité. Cette écriture met en évi-

dence que la dynamique des poids suit une loi normale multivariée conditionnelle, centrée sur wt−1

et caractérisée par une covariance isotrope. Comme l’indique [1], souligne que dans les modèles

linéaires adaptatifs, la matrice de covariance du bruit est fréquemment considérée comme une iden-

tité multipliée par un scalaire. Cette hypothèse traduit une variation indépendante et identiquement

distribuée dans toutes les directions. 1.

Afin de formaliser cette représentation. et d’en faciliter la manipulation dans les développements

ultérieurs, il est utile de rappeler la définition générale de la distribution gaussienne multivariée.

Distribution gaussienne multivariée

En théorie des probabilités, la distribution gaussienne multivariée (ou normale multivariée) con-

stitue un outil fondamental dans la modélisation des incertitudes. Elle est définie comme suit :

1 Dans de nombreux cas, la covariance du bruit du processus est supposée isotrope, c’est-à-dire proportionnelle à
la matrice identité, afin de simplifier les calculs et de refléter une incertitude uniforme dans toutes les dimensions. [11]
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Définition 2.1 (Distribution gaussienne multivariée [21, Sec. 8.4]). La fonction de densité de prob-

abilité d’une loi normale multivariée de moyenne µ ∈ RM et de matrice de covariance V ∈ RM×M ,

notée N (w; µ, V ), est donnée par :

N (w; µ, V ) = 1√
(2π)M det(V )

exp
(
−1

2(w − µ)⊺V −1(w − µ)
)

. (2.5)

Cette distribution est centrée autour du vecteur moyen µ, et la matrice de covariance V régit

la dispersion des probabilités autour de ce centre.

Figure 2.1: Distribution gaussienne multivariée bidimensionnelle.

Source: [22]

Comme illustré à la figure 2.1, la courbe est symétrique et sa forme (ellipsoïdale ou sphérique)

dépend de la structure de V . Une augmentation de la variance entraîne un aplatissement de la dis-

tribution sur les axes correspondants, alors qu’une faible variance concentre la masse de probabilité

autour de µ. Dans tous les cas, l’intégrale de la densité sur RM est égale à 1.

Cette loi est omniprésente dans les modèles linéaires dynamiques. Par exemple, dans les modèles

d’état utilisés en filtrage de Kalman, on suppose généralement que :
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• La distribution a priori inconditionnelle de l’état initial w0 : f(w0) = N (µ0, V 0).

• Le bruit de prédiction est modélisé par ut ∼ N (0, εtI).

• Le bruit d’observation est une variable aléatoire gaussienne : ηt ∼ N (0, v∗
η).

où v∗
η représente la variance du bruit d’observation, c’est-à-dire l’intensité moyenne des erreurs

de mesure affectant yt. Ces hypothèses permettent des mises à jour récursives optimales des états

via les équations du filtre de Kalman, tout en maintenant une forme analytique fermée pour les

densités de probabilité à chaque instant t.

Les équations (2.1)-(2.2) sont couramment utilisées dans le domaine du traitement du signal,

car il est fréquent de supposer que les entrées observées du système, xt, influencent la sortie yt par

une combinaison linéaire avec les variables d’état wt.

2.2 Approches variationnelles bayésiennes

En approche bayésienne, on vise à déterminer la distribution des poids wt conditionnée aux sor-

ties yt, en prenant en compte la dynamique temporelle des variables d’état modélisée par l’équation

auto-régressive (2.1). L’objectif final est de calculer la distribution a posteriori de wt en fonction de

toutes les observations disponibles jusqu’à l’instant t, soit {yt} = [y1, . . . yt−2, yt−1, yt] [20, Ch. 12]

f(wt|{yt}) = f(wt|{yt−1}, yt), (2.6)

∝ Pr{yt|wt}
∫

f(wt, wt−1|{yt−1}) dwt−1, (2.7)

= Pr{yt|wt}
∫

f(wt|wt−1)f(wt−1|{yt−1}) dwt−1. (2.8)

Nous avons exploité la propriété markovienne du modèle [23], selon laquelle la connaissance de

wt−1 suffit à caractériser la distribution de wt. La relation (2.8) permet ainsi de mettre à jour

récursivement la distribution f(wt|{yt}) à partir de f(wt−1|{yt−1}). Ce mécanisme constitue le

fondement même de l’estimation des paramètres: à chaque nouvelle observation, la distribution des

paramètres est réajustée en s’appuyant sur les résultats des étapes précédentes. C’est précisément
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sur ce principe de mise à jour récursive de la distribution a posteriori 2 que repose le filtrage de

Kalman.

Pour t = 1, la récurrence (2.8) nécessite une distribution a priori, que nous supposons gaussienne.

f(w0|{y0}) = f(w0) = N (w0; 0, v0I), (2.9)

où v0, la variance a priori doit être ajustée aux données.

Afin de traiter (2.8), nous nous appuyons sur une représentation paramétrique gaussienne de

f(wt|{yt}), c’est-à-dire f̃(wt|{yt}) = N (wt; µt, V t), ce qui nous permet de mettre en œuvre une

approximation définie comme suit 3 :

f̃(wt|{yt−1}) =
∫

f(wt|wt−1) f̃(wt−1|{yt−1}) dwt−1, (2.10)

f̂(wt|{yt}) ∝ Pr{yt|wt} f̃(wt|{yt−1}), (2.11)

f̃(wt|{yt}) = P
[
f̂(wt|{yt})

]
, (2.12)

où P[f(w)] est l’opérateur de projection f(w) sur l’espace des distributions gaussiennes, parmi

lesquelles nous considérons les formes possibles suivantes avec différents degrés de simplification :

f̃(wt|{yt}) =


N (wt, µt, V t) Modèle à covariance matricielle

N (wt, µt, diagmat(vt)) Modèle à covariance vectorielle,

N (wt, µt, vtI) Modèle à covariance scalaire

(2.13)

Où diagmat(v) est la matrice diagonale dont les éléments diagonaux sont rassemblés dans le vecteur

v.

La projection dans (2.12) consistera à trouver f̃(wt|{yt}) qui minimise la divergence de Kullback-

Leibler (KL) [25] par rapport à l’argument de projection f̂(wt|{yt}) ; ceci est réalisé en utilisant ce

qui suit.

2L’estimation récursive présentée en (2.8) est dérivée sans formuler d’hypothèses particulières sur la nature des
fonctions de densité de probabilité (PDF). Cette approche, bien reconnue dans la littérature( [20],Sec. 12.6), conduit
au filtre de Kalman linéaire dans le cas où les relations entre les variables aléatoires sont linéaires et que l’ensemble
des distributions considérées sont gaussiennes ( [20], Sec. 13.2)

3Nous utilisons la relation N (w; µ1, V 1)N (w; µ2, V 2) = N (w; µ3, V 3)N (µ1; µ2, V 1 + V 2), [24, Ch. 8.4].
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Proposition 1. La distribution f̃(wt | {yt}), définie dans (2.13), est la plus proche de f̂(wt |

{yt}) au sens de la divergence de [KL] [25], lorsque ses paramètres sont définis comme suit :

µt = E[wt | {yt}], (2.14)

V t = E[(wt − µt)(wt − µt)⊺ | {yt}], (2.15)

vt = diagext(V t), (2.16)

vt = Tr(V t)
M

= 1
M

1⊺vt, (2.17)

où diagext(V ) représente la diagonale de la matrice V , et vt dans (2.17) correspond à la moyenne

arithmétique des éléments de vt, M désigne la dimension du vecteur d’état et Tr(·) représente la

trace de la matrice.

Preuve : voir [13, Annexe A].

La récurrence approximative définie dans (2.10)–(2.12) s’explique par le fait que f̃(wt | {yt})

est une loi gaussienne, telle que définie dans (2.13). En introduisant une variable gaussienne sup-

plémentaire, comme indiqué dans l’équation (2.1), on obtient alors :

f(wt | {yt−1}) = N (wt; µt,t−1, V t,t−1). (2.18)

Où

µt,t−1 = µt−1, (2.19)

V t,t−1 = V t−1 + εtI. (2.20)

Dans notre cas d’étude, tout le développement sera réalisé dans le domaine logarithmique, où

les distributions gaussiennes sont représentées par des formes quadratiques de l’argument :

− logN (wt; µt,t−1, V t,t−1) ∝ 1
2(wt − µt,t−1)⊺V −1

t,t−1(wt − µt,t−1). (2.21)

Ainsi, nous procédons en deux étapes : (i) nous approchons ln f̂(wt|{yt}) en utilisant une forme

quadratique, dans laquelle (ii) nous identifions ensuite les termes correspondant à la moyenne et à

la covariance.
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Les étapes de l’approximation sont effectuées comme suit :

Q(w) = − ln f̂(wt | {yt}), (2.22)

= ℓ(x⊺
t w; yt)− ln f̃(wt | {yt−1}), (2.23)

∝ ℓ(x⊺
t w; yt) + 1

2(wt − µt,t−1)⊺V −1
t,t−1(wt − µt,t−1), (2.24)

≈ ℓ̃(x⊺
t w; yt) + 1

2(wt − µt,t−1)⊺V −1
t,t−1(wt − µt,t−1), (2.25)

∝ − ln f̃(wt|{yt}). (2.26)

Cette approximation est obtenue en développant ℓ(x⊺
t w; yt) en une série de Taylor tronquée autour

de µt,t−1 (en se basant sur {yt − 1} [21, 24], on obtient l’estimation MAP 4 de w)

ℓ̃(x⊺
t w; yt) = ℓ(x⊺

t µt,t−1; yt) + gtx
⊺
t (w − µt,t−1) + ht(w − µt,t−1)⊺xtx

⊺
t (w − µt,t−1), (2.27)

où gt et ht sont respectivement les premières et deuxièmes dérivées de ℓ(z; yt) par rapport à z ou

z = x⊺
t µt,t−1;

gt = g(z; yt) = d

dz
ℓ(z; yt). (2.28)

ht = h(z; yt) = d2

dz2 ℓ(z; yt). (2.29)

La convexité de ℓ(z; yt) en z est assurée par le fait que ht > 0.

À partir de cette approximation quadratique, nous identifions les paramètres de la distribution

approchée en déterminant le mode et la matrice de covariance associée.

Le mode de la distribution a posteriori est obtenu en minimisant la fonction Q(w), définie comme

l’opposée du logarithme de la densité. Ce mode est donné par :

µt = arg min
w

Q(w), (2.30)

tandis que la matrice de covariance V t est obtenue en prenant l’inverse de la Hessienne de Q(w),

évaluée au point µt :

V t =
[
∇2

wQ(w)
]−1

∣∣∣∣
w=µt

. (2.31)

4Le MAP (Maximum A Posteriori) est une méthode d’estimation qui maximise la probabilité a posteriori basée
sur les données observées et les connaissances a priori [21, 24].
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Ainsi, la densité approchée f̂(wt|yt) peut être projetée sur la famille des distributions normales

N sous la forme :

P[f̂(wt|yt)] = N (wt; µt, V t). (2.32)

En remplaçant ℓ(·; yt) par ℓ̃(·; yt) dans Q(w), le mode µt est obtenu en annulant le gradient :

∇wQ(w)
∣∣
w=µt

. = gtxt + htxtx
⊤
t (µt −w0) + V −1

t (µt − βtµt−1) = 0. (2.33)

L’équation est résolue par :

µt = V t

[
xt

(
g(x⊤

t w0; yt) + h(x⊤
t w0; yt) x⊤

t w0
)

+ V −1
t,t−1µt−1

]
, (2.34)

où :

V t =
[
h(x⊤

t w0; yt)xtx
⊤
t + V −1

t,t−1

]−1
, (2.35)

ce qui, en utilisant le lemme d’inversion de matrice [20, Sec. 4.11], donne :

V t = V t,t−1 − V t,t−1xtx
⊤
t V t,t−1

h(x⊤
t w0; yt)

1 + h(x⊤
t w0; yt)ωt

. (2.36)

En combinant (2.34) avec (2.36), on obtient :

µt = µt−1 − V t,t−1xt
gt + htx

⊤
t (w0 − µt−1)

1 + h(x⊤
t w0; yt)ωt

. (2.37)

Une amélioration supplémentaire peut être envisagée en alternant l’équation (2.37) avec la réinitial-

isation w0 ← µt. Néanmoins, une seule itération avec w0 = µt−1 permet d’obtenir une mise à jour

explicite de la moyenne et de la covariance des paramètres, constituant ainsi l’estimateur du filtre

de Kalman. Donc, les mises à jour de la moyenne µt et de la covariance V t s’écrivent :

µt = µt,t−1 − V t,t−1xt
gt

1 + htωt
, (2.38)

V t = V t,t−1 − V t,t−1xtx
⊤
t V t,t−1

ht

1 + htωt
, (2.39)
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où ωt = x⊤
t V t,t−1xt.

Étant donné w et xt, la vraisemblance d’observer yt sous l’hypothèse d’un bruit gaussien est :

p(yt | w, xt) = N (yt | w⊺xt, v∗
η), (2.40)

où la distribution normale N est définie par :

p(yt | w, xt) = 1√
2πvη

exp
(
−(yt −w⊺xt)2

2vη

)
. (2.41)

En prenant le logarithme de la fonction de likelihood (2.41) et en utilisant la forme standard de la

distribution gaussienne uni-variée, la fonction de perte ℓ(z, yt) est alors donnée par :

ℓ(z, yt) = (w⊺xt − yt)2

2vη
, (2.42)

où yt représente les cibles (sorties), xt sont les données d’entrée, et w sont les poids du modèle

linéaire.

• Première dérivée de la fonction scalaire ℓ(z, yt)

gt = ∂

∂zt
(ℓ(z, yt)) = (zt − yt)

vη
= −et

vη
, (2.43)

où l’erreur de prédiction définie par et = yt − xtwt−1.

• Deuxième dérivée de la fonction scalaire ℓ(z, yt)

ht = ∂2

∂z2
t

(ℓ(z, yt)) = 1
vη

. (2.44)
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Algorithme 2.1. Filtre de Kalman : Modèle à covariance matricielle (KF)
1: Initialisation: µ0 = 0, V 0 ← V0I
2: for t = 1 à T do
3: V t,t−1 ← V t−1 + εtI (Mise à jour de la covariance de transition)
4: ωt ← x⊺

t V t,t−1xt (Mise à jour de oméga ωt)
5: µt ← µt−1 + V t,t−1xtet

vη+ωt
(Mise à jour de la moyenne)

6: V t ← V t,t−1 −
V t,t−1xtx⊺

t V t,t−1
vη+ωt

(Mise à jour de la covariance)
7: end for
8: return µ

2.3 Différentes variantes du filtre de Kalman

2.3.1 Filtre de Kalman : modèle à covariance vectorielle

Les lignes 2 à 7 de l’algorithme de Kalman à covariance matricielle peuvent être reformulées

sous l’hypothèse que la matrice de covariance V t est diagonale. Cette simplification consiste à

représenter la covariance non plus comme une matrice pleine, mais comme un vecteur contenant

uniquement les éléments diagonaux.

Cette hypothèse de diagonalité permet de remplacer toutes les opérations matricielles coûteuses

(produits, inversions, etc.) par des opérations élément par élément (Hadamard), réduisant ainsi

considérablement la complexité algorithmique et la charge de calcul. Pour rappel :

• vt = diagext(V t), où vt ∈ RM regroupe les variances de chaque composante de wt ;

• diagmat(vt) désigne la matrice diagonale formée à partir du vecteur vt.

Le tableau ci-dessous présente les équations clés du modèle vectoriel (l’Algorithme 2.2) obtenues à

partir du modèle matriciel (l’Algorithme 2.1).
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Formule vectorielle Passage matriciel

vt,t−1 = vt−1 + εt1 diagmat(vt−1 + εt1) = diagmat(vt−1) + εtI

ωt = v⊤
t,t−1(x2

t ) x⊤
t · diagmat(vt,t−1) · xt =

∑
j v

(j)
t,t−1x

(j)2

t

µt = µt−1 + vt,t−1 ⊙ xt · et

vη + ωt
diagmat(vt,t−1) · xt = vt,t−1 ⊙ xt

vt = vt,t−1 ⊙
(

1− vt,t−1 ⊙ x2
t

vη + ωt

) [
diagmat(vt,t−1)− diagmat(vt,t−1)xtx

⊤
t diagmat(vt,t−1)

vη + ωt

]
jj

= v
(j)
t,t−1

1−
v

(j)
t,t−1x

(j)2

t

vη + ωt


Note : ⊙ désigne le produit élément par élément (Hadamard), x2

t le vecteur des carrés des composantes de

xt, v
(j)
t,t−1 le j-ième élément de vt,t−1.

Table 2.1: Passage du modèle matriciel au modèle vectoriel diagonal.

L’initialisation s’effectue selon : v0 ← v0 · 1.

Algorithme 2.2. filtre de Kalman : modèle à covariance vectorielle (vKF)
1: Initialisation: v0 ← v0 · 1 ; ε← ε · 1 ; µ0 ← 0
2: for t = 1 à T do
3: vt,t−1 ← vt−1 + εt1 (Mise à jour de la covariance de transition)
4: ωt ← v⊺

t,t−1(x2
t ) (Mise à jour de oméga ω)

5: µt ← µt−1 + vt,t−1 ⊙ xt · et
vη+ωt

(Mise à jour de la moyenne)
6: vt ← vt,t−1 ⊙

(
1− vt,t−1⊙|xt|

vη+ωt

)
(Mise à jour de la covariance)

7: end for
8: return µ

En remplaçant la matrice V t par un vecteur vt, on obtient une version simplifiée du filtre de Kalman,

qui :

• réduit la complexité de O(M2) à O(M),

• facilite l’implémentation numérique.

• permet une interprétation élément par élément de la mise à jour des incertitudes.
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L’algorithme vectoriel ainsi obtenu (voir Algo 2.2) offre un compromis efficace entre précision de

l’estimation et coût computationnel, tout en conservant l’essentiel des propriétés du filtre matriciel.

Cet algorithme est exactement équivalent à celui proposé dans [18].

2.3.2 Filtre de Kalman : modèle à covariance scalaire

Nous passons d’un modèle à covariance vectorielle vt = diagext(V t) à un modèle scalaire en

supposant que toutes les composantes de la variance sont identiques et égales à une moyenne vt.

Celle-ci est définie comme la moyenne des éléments diagonaux de la matrice V t :

vt = Tr(V t)
M

= 1
M

1⊺vt. (2.45)

On suppose que la covariance diagonale est homogène, c’est-à-dire que chaque composante de vt

est identique :

v
(j)
t = vt pour tout j = 1, . . . , M (2.46)

Alors, la moyenne des composantes de vt est :

1
M

M∑
j=1

v
(j)
t = 1

M

M∑
j=1

vt = 1
M
·M · vt = vt. (2.47)

Ce résultat justifie la supposition :

vt = 1
M

1⊤vt, (2.48)

où 1 est un vecteur de M uns. Cette moyenne permet de remplacer le vecteur vt par le scalaire vt

dans les équations du filtre.

Ainsi, dans les équations du filtre de Kalman à covariance vectorielle, on remplace chaque vecteur

de variances vt,t−1 par un vecteur homogène vt,t−1 · 1, en supposant que toutes les composantes de

la variance sont égales. Cette simplification permet de dériver les équations du modèle à covariance

scalaire à partir de la version vectorielle.

Le tableau suivant résume les principales étapes de cette transition, en détaillant les équivalences

formelles entre les deux modèles :
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Formule scalaire Passage depuis le modèle vectoriel

vt = 1
M

1⊤vt On approxime vt = diagext(V t) par une

moyenne : vt = 1
M Tr(V t) [13]

vt,t−1 = vt,t−1 · 1 Supposition d’homogénéité de la variance

sur toutes les dimensions

ωt = vt,t−1 · ∥xt∥2 v⊤
t,t−1x2

t = vt,t−1 ·
∑

j x
(j)2

t

µt = µt−1 + vt,t−1xt · et
vη+ωt

vt,t−1 ⊙ xt = vt,t−1 · xt

vt = vt,t−1
(
1− 1

M ·
ωt

vη+ωt

)
Moyenne des v

(j)
t si tous égaux à vt :

1
M

∑
j

v
(j)
t = vt

Table 2.2: Justification de la transition vers le modèle à covariance scalaire.

En appliquant ces équations, on obtient l’algorithme du filtre de Kalman à covariance scalaire

suivant, qui repose uniquement sur une mise à jour scalaire de la variance commune à toutes les

dimensions :

Algorithme 2.3. filtre de Kalman : modèle à covariance scalaire (SKF)
1: Initialisation : µ← 0, vt,t−1 ← v0
2: for t = 1 à T do
3: vt,t−1 ← vt−1 + ε (Mise à jour de la covariance de transition)
4: ωt = ∥xt∥2vt,t−1 (Mise à jour de oméga ω)
5: µt ← µt−1 + vt,t−1xt · et

vη+ωt
(Mise à jour de la moyenne)

6: vt ← vt,t−1
(
1− 1

M ·
ωt

vη+ωt

)
(Mise à jour de la covariance)

7: end for
8: return µ

2.3.3 Filtre de kalman simplifié à variance fixe

Une autre simplification est obtenue si l’on suppose que la variance vt,t−1 est constante dans le

temps t, c’est-à-dire vt,t−1 ≡ v̄. Nous obtenons alors l’algorithme du filtre de Kalman simplifié à
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variance fixe (fSKF) :

µt = µt−1 + v̄ xt ·
et

vη + ω̄t
, (2.49)

Où l’initialisation nécessite de définir v̄.

Algorithme 2.4. Filtre de Kalman Simplifié à Variance Fixe (fSKF)
1: Initialisation : µ← 0 , v̄ = cte
2: for t = 1 à T do
3: ω̄t ← ∥x∥2v̄ (Calcul de oméga ω̄)
4: µt ← µt−1 + v̄ xt · et

vη+ω̄t
(Mise à jour de la moyenne)

5: end for
6: return µ

2.3.4 Descente de gradient stochastique

Enfin, en supposant que ht ≡ 0, (2.49) puisse être réécrit comme

µt ← µt−1 − v̄xtgt. (2.50)

ce qui est équivalent à l’algorithme de gradient stochastique (SGD)5 avec un pas d’adaptation égal

à la variance a posteriori v̄.

Algorithme 2.5. Stochastic Gradient Descent (SGD)
1: Initialisation : Pas d’adaptation v̄
2: for t = 1 à T do
3: µt ← µt−1 + v̄ xt · et

vη
(Mise à jour de la moyenne)

4: end for
5: return µ (Estimation finale du paramètre)

5Dans l’approche du gradient stochastique (SGD), le gradient de ℓ(µ⊺
t−1xt; yt) est calculé, multiplié par l’étape

d’adaptation et soustrait de la solution disponible actuellement µt−1 ( [24] Ch. 3.1.); c’est ce qui est fait dans 2.50.
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2.4 Expériences numériques

2.4.1 Identification de la réponse impulsionnelle

Dans ce mémoire, nous nous intéressons à la problématique du filtrage linéaire appliqué à

l’identification des systèmes acoustiques [10]. Contrairement aux méthodes traditionnelles qui visent

sur la reconstruction directe du signal de sortie yt ∈ R, notre approche se concentre sur l’estimation

de la réponse impulsionnelle du système h. Cette réponse constitue une description fondamen-

tale du système, puisqu’elle encode la manière dont celui-ci réagit à un signal d’entrée xt ∈ RM à

travers un vecteur de paramètres optimaux w ∈ RM . Autrement dit, elle permet de caractériser

dynamiquement le système en modélisant la relation linéaire entre les entrées et les sorties dans un

cadre bruité.

Cette estimation repose sur des méthodes adaptatives permettant de suivre l’évolution temporelle

des paramètres du système. En effet, dans un contexte acoustique, les propriétés du canal peuvent

varier au cours du temps. L’identification de la réponse impulsionnelle s’inscrit alors dans une ap-

proche paramétrique, où les poids w sont ajustés en temps réel à partir des observations disponibles,

tout en tenant compte du bruit présent dans les données. Cette stratégie permet d’optimiser la pré-

cision des estimations et de mieux comprendre le comportement du système dans un environnement

réel. Cette approche s’inspire de travaux classiques en filtrage adaptatif [16] [15] et en estimation

bayésienne appliquée à l’identification acoustique [26], tout en intégrant des formulations récentes

basées sur le filtre de Kalman [13] [15].

Plus précisément, nous considérons le problème de l’identification de la réponse impulsionnelle

acoustique, visant à caractériser la réponse d’un système acoustique. Dans ce contexte, le signal

d’entrée xt est généré selon le processus auto-régressif suivant :

xt = αxt−1 + ut, (2.51)

où α est le coefficient d’atténuation, fixé à 0.9, et ut représente un bruit blanc gaussien de moyenne

nulle et de variance unitaire.

La réponse impulsionnelle h = [h0, h1 . . . , hM−1]⊺ avec une longueur M = 600, montrée dans la

Fig 2.2, est calculée à l’aide du logiciel "audiolabs/rir-generator" [27] pour une pièce de dimensions
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(5, 4, 6) m, la source étant en position (2, 3.5, 2) m, le récepteur en position (2, 1.5, 1) m, avec

une fréquence d’échantillonnage de 8 kHz et un temps de réverbération de 225 ms [28]. La sortie

désirée est obtenue comme

yt = h⊺xt + ηt, (2.52)

où ηt est un bruit gaussien de moyenne nulle avec une variance v∗
η, et

xt =
[
xt, xt−1, . . . , xt−M+1

]⊺
.

Nous définissons le rapport signal sur bruit (SNR) comme

SNR = 10 log10

(
E
[
|h⊺xt|2

]
v∗

η

)
[dB], (2.53)

où E[·] désigne l’espérance prise par rapport à la distribution de xt. Dès lors, pour une valeur donnée

du SNR et de l’espérance E[|h⊺xt|2], il est possible de déterminer v∗
η en inversant l’équation (2.53)

Notre objectif est d’identifier la réponse impulsionnelle h.Comme l’équation d’observation (2.2)

correspond exactement au modèle (2.52), nous interprétons le résultat du filtrage adaptatif wt

comme une estimation de h, sous l’hypothèse que les dimensions de h et de w sont identiques.

La qualité de cette estimation est mesurée par une erreur quadratique moyenne :

mt = ∥wt − h∥2

∥h∥2
, (2.54)

ou par sa moyenne :

mt = E[mt], (2.55)

où, en pratique, l’espérance est calculée en moyennant mt sur N réalisations indépendantes du bruit

ηt et du signal d’entrée xt ; et ∥ · ∥2 désigne la norme euclidienne au carré

Comme indiqué dans l’équation (2.1), l’ensemble des algorithmes étudiés vise à estimer l’évolution

temporelle de l’état wt. Dans notre contexte, la réponse impulsionnelle h est supposée constante,

c’est-à-dire invariante dans le temps, de sorte que ht = h pour tout t. Ainsi, pour des choix de

paramètres appropriés, l’erreur quadratique moyenne converge vers une valeur faible, notée m∞.
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Le choix des paramètres des algorithmes implique un compromis entre la rapidité de convergence

et la valeur limite de l’erreur quadratique moyenne, m∞. Afin de comparer objectivement les dif-

férentes méthodes, la convergence est évaluée en fixant un seuil cible pour l’erreur quadratique

moyenne. Plus précisément, nous réalisons des simulations sur une grille de paramètres et sélec-

tionnons ceux permettant d’atteindre la cible fixée, m∞ = −15 dB.

Enfin, si l’on considère wt comme une estimation de h, on a alors E[wt] = h

Figure 2.2: Signal d’entrée, réponse impulsionnelle, signal bruité et signal convolué.
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2.4.2 Méthodologie et résultats

Dans cette étude, nous avons appliqué les différentes variantes du filtre de Kalman pour estimer

la réponse impulsionnelle dans un modèle linéaire avec un bruit gaussien.

L’efficacité du filtre a été évaluée dans un premier temps en fonction des paramètres principaux

propres à chaque algorithme, du coefficient d’atténuation α défini à l’équation (2.50), de l’erreur

quadratique moyenne, du rapport signal sur bruit (SNR) et du nombre d’échantillons (T ). Les sim-

ulations sont réalisées initialement avec un rapport signal sur bruit (SNR) fixé à 5 dB, un coefficient

d’atténuation α = 0.9 et une erreur quadratique moyenne cible m∞ = −15 dB. Chaque méthode

est étudiée sous différents scénarios en variant systématiquement ses paramètres spécifiques.

1. Filtre de Kalman (KF)

Dans cette analyse, nous évaluons l’impact de la variation des paramètres ε et v0 (vari-

ance initiale) sur la performance d’un filtre de Kalman appliqué à l’estimation de la réponse

impulsionnelle dans un modèle linéaire.

0 20000 40000 60000 80000 100000
T [échantillons]

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

m
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dB
]

 KF: v0 = 10 6, = 10 11

 KF: v0 = 10 6, = 2.9 10 11

 KF: v0 = 10 6, = 5.0 10 11

 KF: v0 = 10 6, = 10 10

Cible m = 15 [dB]

Figure 2.3: Erreur quadratique moyenne mt en fonction des hyperparamètres ε et v0 du filtre de
Kalman (KF, Algorithme 2.1), pour m∞ = −15 dB, SNR = 5 dB, α = 0.9 et N = 1 réalisation.
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2. Filtre de Kalman Simplifié (SKF)

Ensuite, nous analysons l’effet des variations des paramètres et v0 (variance initiale)

sur les performances d’un filtre de Kalman simplifié utilisé pour l’estimation de la réponse

impulsionnelle dans un modèle linéaire.

0 20000 40000 60000 80000 100000
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SKF: v0 = 8.0 10 6, = 5.0 10 10

SKF: v0 = 8.0 10 6, = 2.4 10 10

SKF: v0 = 8.0 10 6, = 10 10

Cible m = 15 [dB]

Figure 2.4: erreur quadratique moyenne mt du filtre de Kalman simplifié SKF ( Algorithme 2.3) pour
différents réglages de et v0, avec m∞ = −15 dB, SNR = 5 dB, α = 0.9 et N = 1 réalisation..

3. Filtre de Kalman Simplifié à Variance Fixe (fSKF)

Nous analysons ensuite l’effet des variations du paramètre v (variance fixe) sur les perfor-

mances d’un filtre de Kalman simplifié à variance fixe utilisé pour l’estimation de la réponse

impulsionnelle dans un modèle linéaire.
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Figure 2.5: Performance du filtre de Kalman simplifié à variance fixe fSKF ( Algorithme 2.4) en termes
d’erreur quadratique moyenne mt, mesurée pour plusieurs combinaisons de et v0, dans un scénario
défini par m∞ = −15 dB, SNR = 5 dB, α = 0.9 et N = 1 réalisation.

4. Descente de Gradient Stochastique (SGD)

Cette section évalue l’impact des variations du paramètre v ≡ µ sur l’efficacité de la

descente de gradient stochastique appliquée à l’estimation de la réponse impulsionnelle pour

un modèle linéaire.
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Figure 2.6: Erreur quadratique moyenne mt obtenue avec la descente de gradient stochastique, SGD
( Algorithme 2.5) pour différentes valeurs de µ, avec m∞ = −15 dB, SNR = 5 dB, α = 0.9 et N = 1
réalisation.

Les résultats pour les différents algorithmes sont illustrés dans la Fig. 2.7. Ainsi que, les

paramètres utilisés pour obtenir ces courbes sont indiqués dans le Tableau 2.3 à des fins de re-

productibilité.

Algorithmes Paramètres

SGD µ = 2.5 · 10−7

KF ε = 2.9 · 10−11 v0 = 1.10−6

SKF ε = 2.4 · 10−10 v0 = 1.10−6

fSKF v = 4 · 10−7

Table 2.3: Paramètres des algorithme que nous avons utilisé pour obtenir les résultats présentés dans
la figure 2.7.
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La figure 2.7 illustre la convergence des différents algorithmes en fonction de l’évolution de

l’erreur quadratique moyenne mt.
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Figure 2.7: Convergence des algorithmes : KF, SKF, fSKF et SGD pour un (SNR) = 5 dB, α = 0.9
et erreur quadratique moyenne cible m∞ = −15 dB pour 25 réalisations dans la moyenne.

Les analyses sont réalisées avec un nombre d’échantillons fixé à T = 100 000 pour l’ensemble des

méthodes, et une réponse impulsionnelle de taille M = 600, où T désigne le nombre d’échantillons

et M la longueur mémoire du système. Le rapport signal sur bruit (SNR) est fixé à 5 dB, avec un

coefficient d’atténuation α = 0.9, et une erreur quadratique moyenne cible de m∞ = −15 dB. Les

résultats présentés correspondent à une moyenne calculée sur N = 25 réalisations indépendantes.

2.4.3 Analyse comparative des scénarios simulés

À la suite des expérimentations initiales, nous avons réalisé une série supplémentaire de simula-

tions afin d’analyser rigoureusement l’effet de la variation de certains paramètres environnementaux

clés sur les performances des algorithmes étudiés. Ces paramètres incluent notamment le coefficient

d’atténuation α, signal sur bruit (SNR) et l’erreur quadratique moyenne cible m∞. L’objectif prin-

cipal de ces simulations est d’évaluer l’impact de ces variations sur les métriques de performance
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considérées.

Les simulations initiales, précédemment définies dans la section 2.4.2, avaient été effectuées en util-

isant les valeurs suivantes : un coefficient d’atténuation α = 0.9, signal sur bruit (SNR) de 5 dB et

une erreur quadratique moyenne cible de −15 dB. Dans cette nouvelle phase, notre étude se focalise

sur la manière dont la modification de ces paramètres influence le comportement global du système.

Afin d’approfondir notre compréhension des réactions des différents algorithmes sous des con-

ditions variées, nous proposons une analyse comparative structurée autour de trois scénarios spéci-

fiques :

• Le premier scénario étudie les effets induits par la variation du coefficient d’atténuation α.

• Le deuxième scénario se concentre sur l’analyse des impacts du rapport signal sur bruit (SNR)

sur les performances globales des algorithmes.

• Le troisième scénario examine l’influence d’une modification de la cible d’erreur quadratique

moyenne m∞ sur les résultats obtenus.

Cette méthodologie comparative permettra d’obtenir une vision complète et détaillée de l’influence

de ces paramètres sur les performances des algorithmes étudiés.

2.4.3.1 Impact de la variation du coefficient α

En faisant varier le coefficient, initialement fixé à 0.9 dans l’équation (2.51), nous procédons

à une nouvelle série de simulations pour ajuster les paramètres de chaque algorithme. La valeur

testée dans cette étude est de 0.99, afin d’observer précisément son influence sur la convergence et

la stabilité des algorithmes.

Nous suivons le processus méthodologique décrit dans la section précédente, qui consiste à déter-

miner les ensembles de paramètres permettant aux algorithmes d’atteindre l’erreur quadratique

moyenne cible de -15 dB avec un SNR fixé à 5 dB. Une fois ces paramètres identifiés, nous com-

parons la vitesse de convergence afin d’évaluer les performances respectives des algorithmes.

Lors du lancement des simulations utilisant l’algorithme SGD, nous n’avons pas réussi à atteindre

l’erreur quadratique moyenne cible de −15 dB. Cette dynamique est illustrée dans la figure 2.8.
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Figure 2.8: Analyse de la sensibilité de l’erreur quadratique moyenne mt de la descente de Gradient
Stochastique aux variations de pas adaptation µ, pour un cas d’étude où m∞ = −15 dB, SNR = 5 dB,
et α = 0.99.

Nous observons que la convergence est atteinte pour une erreur instantanée avoisinant -25 dB.

Cependant, il n’a pas été possible d’obtenir une convergence pour des erreurs plus faibles ( m∞ =

−15 dB). Cela est dû au fait qu’en augmentant le pas d’adaptation (step size µ), l’algorithme

devient instable et diverge, comme le montre la courbe verte. Ce comportement met en évidence

un compromis entre la rapidité de convergence et la stabilité de l’algorithme utilisé.

Les résultats pour les différents algorithmes sont illustrés dans la Fig. 2.9. Les paramètres

optimaux identifiés sont regroupés dans le tableau 2.4, assurant ainsi la reproductibilité de nos

résultats.
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Algorithmes Paramètres

KF ε = 1.5 · 10−11 v0 = 1.10−6

SKF ε = 3 · 10−9 v0 = 8.10−6

fSKF v = 1.4 · 10−6

Table 2.4: Paramètres des algorithme que nous avons utilisé pour obtenir les résultats présentés dans
la figure 2.9.

Figure 2.9: Convergence moyenne des algorithmes KF, SKF et SGD sur 25 trajectoires, pour un SNR
de 5 dB, un coefficient α = 0.99 et une erreur cible de m∞ = −15 dB.

La figure 2.9 présente la convergence des différents algorithmes à travers l’évolution de mt. Pour

garantir la stabilité des résultats, les simulations ont été effectuées sur T = 300000 échantillons, en

considérant une réponse impulsionnelle de longueur M = 600. Le rapport signal sur bruit (SNR)

est fixé à 5 dB, avec un coefficient d’atténuation α = 0.99 et une cible d’erreur quadratique moyenne

m∞ = −15 dB. Les résultats sont moyennés sur N = 25 réalisations indépendantes.
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2.4.3.2 Impact du changement de SNR

Dans cette série de simulations, nous examinons l’effet d’une augmentation du rapport signal

sur bruit (SNR) de 5 dB à 10 dB sur les performances des différents algorithmes étudiés. L’objectif

principal est d’évaluer comment cette amélioration du SNR influence la précision et la convergence

vers une erreur quadratique moyenne cible de -15 dB.

Afin de garantir la cohérence des résultats, nous conservons les paramètres environnementaux

précédemment définis dans la section 2.4.2, initialement calibrés pour un rapport signal sur bruit

(SNR) de 5 dB, α = 0.9 et m∞ = −15 dB.

Les résultats obtenus sont présentés à la figure 2.10, tandis que les paramètres utilisés pour chaque

algorithme figurent dans le tableau 2.5.

Algorithmes Paramètres

SGD µ = 1.8 · 10−7

KF ε = 1.1 · 10−10 v0 = 1.10−6

SKF ε = 1.68 · 10−9 v0 = 8.10−6

fSKF v = 1 · 10−6

Table 2.5: Paramètres des algorithmes que nous avons utilisé pour obtenir les résultats présentés dans
la figure 2.10.

La figure 2.10 illustre la convergence des différents algorithmes en fonction de l’évolution de mt,

pour un rapport signal sur bruit (SNR) fixé à 10 dB et un coefficient d’autocorrélation α = 0.9.

L’erreur quadratique moyenne cible est de m∞ = −15 dB, moyennée sur N = 25 réalisations

indépendantes. Pour garantir la convergence tout en limitant le coût computationnel, le nombre

d’échantillons a été restreint à T = 60000.
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Figure 2.10: Comparaison de la convergence des filtres KF, SKF, fSKF et SGD dans un cadre expéri-
mental où SNR = 10 dB, m∞ = −15 dB et α = 0.9, avec des résultats moyens sur 25 simulations.

L’amélioration observée s’explique par le fait qu’une augmentation du rapport signal sur bruit (SNR)

réduit l’incertitude des mesures, ce qui accélère la convergence du filtre vers l’erreur quadratique

moyenne cible. Cette rapidité de convergence est particulièrement manifeste pour SNR = 10 dB, où

les filtres atteignent le même niveau d’erreur quadratique moyenne en un nombre d’itérations plus

faible. Cela illustre clairement l’influence bénéfique d’un environnement moins bruité sur la vitesse

d’adaptation des filtres.

2.4.3.3 Impact du changement de l’erreur quadratique moyenne

Cette série d’expériences vise à analyser l’impact d’un renforcement des exigences de perfor-

mance, en abaissant la cible d’erreur quadratique moyenne de −15 dB à −25 dB. L’objectif est

d’évaluer la capacité des différents algorithmes à converger vers un seuil de précision plus strict,

sans modification des paramètres d’apprentissage environnementaux précédemment identifiés dans

la section 2.4.2, à savoir un SNR de 15 dB, un coefficient d’atténuation α = 0.9 et une erreur

quadratique moyenne cible de −15 dB. . Pour assurer la comparabilité des résultats, les simula-
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tions ont été réalisées en conservant les paramètres α = 0.9 et un rapport signal sur bruit (SNR)

de 5 dB, initialement calibrés pour une erreur cible m∞ = −15 dB..

Les performances obtenues sont présentées dans la figure 2.11, tandis que les valeurs des paramètres

utilisés figurent dans le tableau 2.6.

Algorithmes Paramètres

SGD µ = 3.3 · 10−8

KF ε = 2.7 · 10−13 v0 = 1 · 10−6

SKF ε = 3 · 10−12 v0 = 8 · 10−6

fSKF v = 3.5 · 10−8

Table 2.6: Paramètres utilisés pour la simulation avec une cible d’erreur m∞ = −25 dB.

La figure 2.11 illustre la convergence des différents algorithmes en fonction de l’évolution de mt.
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Figure 2.11: Convergence moyenne de mt pour KF, SKF, fSKF et SGD, avec SNR = 5 dB, α = 0.9, et
cible m∞ = −25 dB sur 25 trajectoires.
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L’interprétation de cette amélioration réside dans l’ajustement des paramètres d’apprentissage

afin de répondre à une exigence de précision plus stricte. En particulier, l’utilisation de valeurs

d’varepsilon (ε) plus faibles permet de réduire l’intensité du bruit de processus. En addition,

l’augmentation du nombre d’échantillons T sur lesquels la moyenne est effectuée améliore la ro-

bustesse des estimations instantanées. Ces ajustements favorisent ainsi une convergence plus pro-

gressive mais plus fiable vers une erreur moyenne cible de −25 dB. Ils illustrent la nécessité de

configurations paramétriques adaptées pour maintenir la stabilité et la performance dans des con-

ditions d’exigence accrues.

2.5 Conclusion

Ce chapitre a posé les fondements théoriques du filtre de Kalman appliqué aux modèles linéaires

à bruit gaussien, en détaillant sa formulation probabiliste, son interprétation bayésienne, et ses dif-

férentes variantes selon la structure de la matrice de covariance [13]. À partir d’une modélisation

autorégressive des poids, nous avons vu comment le filtre permet une estimation récursive et opti-

male de ces derniers, tout en intégrant l’information issue des observations successives.

L’approche a posteriori adoptée repose sur une représentation gaussienne paramétrique, projetée

à chaque instant dans l’espace des distributions normales via la minimisation de la divergence de

Kullback-Leibler [25]. Cette projection donne lieu à différentes implémentations du filtre, du modèle

complet à covariance matricielle jusqu’aux versions simplifiées vectorielles et scalaires, voire fixes.

En parallèle, nous avons montré comment le filtre de Kalman s’apparente à la descente de gradient

stochastique (SGD), avec une interprétation bayésienne du pas d’apprentissage.

Les formulations introduites ici fournissent un cadre rigoureux et modulaire pour l’estimation

en ligne dans des environnements bruités. Le chapitre suivant s’attarde sur l’estimation des hyper-

paramètres du modèle. qui constituent des leviers essentiels pour optimiser la qualité des prédictions

et assurer la robustesse du filtrage dans des environnements dynamiques.





Chapitre 3

Estimation des hyper-paramètres du

modèle

À la suite de la présentation théorique du filtre de Kalman et de ses fondements probabilistes, ce

chapitre s’attache à l’étude empirique de ses performances dans un contexte applicatif d’identification

de réponse impulsionnelle acoustique. En particulier, l’accent est mis sur l’estimation des hyper-

paramètres du modèle, notamment la variance du bruit de processus εt et celle du bruit de mesure vη

qui conditionnent fortement la qualité des prédictions. Plusieurs stratégies d’estimation sont ainsi

comparées afin d’évaluer leur impact sur la convergence, la précision des estimations et la robustesse

face aux variations dynamiques. Ces investigations visent à déterminer les configurations optimales

pour un suivi adaptatif précis, tout en mettant en évidence les limites des approches classiques à

paramètres fixes.

Afin de guider cette analyse, il est essentiel de comprendre le rôle structurel de ces hyper-paramètres

au sein des équations du filtre de Kalman. Leur estimation conditionne directement la qualité du

processus de prédiction et de mise à jour, qui constitue le cœur du filtrage bayésien séquentiel.

Dans le cadre des filtres de Kalman, l’estimation des hyper-paramètres, à savoir la variance du

bruit de processus εt et celle du bruit de mesure vη, joue un rôle crucial dans la performance du

modèle. Une estimation incorrecte de ces paramètres peut nuire à la convergence et à la précision

du modèle. Ces hyper-paramètres régulent les deux étapes fondamentales des modèles de Kalman :

(i) la prédiction de l’état du système basée sur son évolution dynamique (2.1) et (ii) la mise à jour
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de cet état en fonction des observations bruitées (2.2).

L’équation (2.1) modélise la dynamique du système, en supposant que l’état actuel wt dépend de

l’état précédent wt−1 avec une perturbation aléatoire contrôlée par εt. En parallèle, l’équation (2.2)

relie les observations yt aux entrées xt via une combinaison linéaire avec l’état wt, et est perturbée

par le bruit d’observation ηt.

3.1 Principe général de l’estimation par Maximum Likelihood

Cette section expose le principe fondamental de l’estimation par maximum de vraisemblance

(MLE) dans le cadre spécifique du filtre de Kalman adaptatif. L’objectif central consiste à déter-

miner les valeurs optimales des paramètres de variance de transition ε et du bruit d’observation vη

en maximisant la vraisemblance associée aux observations y1:T , compte tenu du modèle dynamique

considéré [14].

3.1.1 Formulation du problème

Le problème d’estimation consiste à identifier les valeurs de ε et vη qui maximisent la vraisem-

blance des données observées. Formellement, cela revient à minimiser la log-vraisemblance négative

définie comme suit :

ε̂, v̂η = arg max
ε,vη

p(y1:T |ε, vη) (3.1)

= arg min
ε,vη

T∑
t=1

ℓt. (3.2)

ℓt = − log p(yt|y1:t−1, ε, vη), (3.3)

où p(yt|y1:t−1, ε, vη) désigne la densité prédictive de l’observation yt, conditionnée aux observations

précédentes et aux paramètres ε et vη.
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3.1.2 Calcul récursif de la densité prédictive

Afin d’obtenir une formulation opérationnelle, il est nécessaire d’établir explicitement la densité

prédictive. Celle-ci se calcule récursivement selon :

p(yt|y1:t−1) =
∫

p(yt|wt)p(wt|y1:t−1)dwt, (3.4)

=
∫
N (yt; x⊤

t wt, vη)N (wt; µt−1, (vt−1 + εt)I)dwt, (3.5)

=
∫
N (yt; zt, vη)N (zt; x⊤

t µt−1, ωt)dzt, (3.6)

= N (yt; x⊤
t µt−1, ωt + vη), (3.7)

où ωt = ∥xt∥2(vt−1 + εt).

Cette expression permet ainsi d’expliciter la log-vraisemblance négative instantanée :

ℓt = − log p(yt|y1:t−1) = e2
t

2(ωt + vη) + 1
2 log(ωt + vη) + Const, (3.8)

où l’erreur de prédiction et est définie par et = yt − x⊤
t µt−1 et Const = 1

2 log(2π) désigne un terme

constant indépendant de t, issu de la normalisation de la densité gaussienne..

3.1.3 Motivation pour l’adoption du modèle dynamique

Dans de nombreuses applications pratiques, il est irréaliste de supposer que les paramètres du

modèle restent constants au cours du temps. Des phénomènes tels que les changements structurels,

l’évolution du système ou la présence de dynamiques non observées exigent une approche plus flexi-

ble. Ainsi, bien que le modèle statique présenté précédemment parte du principe que les coefficients

demeurent fixes durant toute la période d’observation, cette hypothèse peut s’avérer trop restrictive

face à des données réelles, dont les relations statistiques évoluent dans le temps.

Cependant, cette hypothèse empêche le modèle de s’ajuster à de nouveaux schémas et limite sa

capacité à saisir les vraies variations du système. En se basant sur ces constats, il est naturel

de généraliser le problème en considérant un cadre plus large où les paramètres du filtre évoluent

dynamiquement, comme cela sera exposé dans ce qui suit.
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3.1.4 Dynamique stochastique des paramètres du filtre

Dans ce modèle, les coefficients du filtre (ht) sont autorisés à évoluer au cours du temps selon un

processus de marche aléatoire. Plus précisément, à chaque instant t, le vecteur des poids ht ∈ RM

est mis à jour selon la relation suivante :

ht = βht−1 + ut

√
ε∗, (3.9)

où ut est un vecteur de variables aléatoires gaussiennes indépendantes, de moyenne nulle et de

variance unitaire, ε∗ représente la variance du bruit de processus qui contrôle l’ampleur des fluc-

tuations aléatoires des coefficients entre deux instants successifs. Et, 0 < β ≤ 1 est un paramètre

d’auto-régression qui module la mémoire du système:

• lorsque β = 1, le modèle correspond à une marche aléatoire classique, sans perte d’information,

comme souvent supposé dans la littérature [15];

• en revanche, pour β < 1, le modèle introduit une décroissance progressive des coefficients,

reflétant une éventuelle perte ou évolution des parameters au fil du temps [29].

Cette formulation permet de modéliser les variations des paramètres du système dues à des dy-

namiques ou à des incertitudes de modélisation.

L’observation associée à chaque instant t, notée yt ∈ R, est alors donnée par :

yt = x⊤
t ht + ηt, (3.10)

où xt ∈ RM désigne le vecteur d’entrée à l’instant t, et ηt correspond à un bruit d’observation

gaussien, de moyenne nulle et de variance v∗
η. Cette variance est déterminée en fonction du rapport

signal-sur-bruit (SNR).

Cette équation traduit la mesure bruitée de la sortie du système à partir de l’état courant des

coefficients du filtre.

Ce cadre évolutif permet au filtre de suivre et d’ajuster continuellement les paramètres au fur

et à mesure de l’arrivée de nouvelles données, ce qui s’avère particulièrement pertinent dans un

environnement dynamique.
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Intérêt du modèle dynamique

Le recours au modèle dynamique présente plusieurs avantages majeurs :

• Adaptation aux changements : Il permet au filtre de s’ajuster en temps réel à des données

dont les propriétés évoluent, ce qui est fondamental pour garantir des prédictions fiables dans

un environnement non stationnaire.

• Généralisation : Le modèle dynamique englobe le modèle statique comme cas particulier

(ε∗ = 0 et β = 1), tout en offrant une plus grande flexibilité de modélisation.

Ce choix est particulièrement pertinent dès lors que l’on cherche à estimer de manière optimale

la variance du bruit de processus ε̂ ainsi que celle du bruit d’observation v̂η par maximisation de la

vraisemblance des données observées.

3.1.5 Analyse préliminaire et sensibilité aux paramètres

Avant d’aborder l’optimisation des paramètres, il est pertinent d’examiner la sensibilité du mod-

èle à différents choix de ε et vη. Une première étape consiste à analyser la moyenne glissante de la

log-vraisemblance, définie par :

ℓt = 1
L

L−1∑
l=0

ℓt−l. (3.11)

Cette exploration préliminaire permet d’appréhender qualitativement l’impact de ε et vη sur la per-

formance prédictive du modèle, et de mieux comprendre leur rôle avant l’introduction de stratégies

adaptatives.

Afin de compléter cette étude, nous menons une série de simulations visant à évaluer l’influence

de ces paramètres sur l’erreur quadratique moyen m̄t et sur la log-vraisemblance moyenne ℓt. Notons

que le cas du modèle statique (ε∗=0) s’inscrit naturellement comme une situation particulière de ce

cadre dynamique, et fera l’objet d’une comparaison dédiée en fin de section.
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3.1.5.1 Performance du filtre selon différents scénarios de paramétrisation

Pour illustrer et approfondir ces analyses, nous présentons ci-après des visualisations graphiques

des principales métriques de performance du filtre. Ces représentations permettent de saisir la dy-

namique d’apprentissage et la capacité d’adaptation de ce dernier face aux variations des paramètres

du système.

Les figures suivantes synthétisent ces résultats et apportent un éclairage visuel sur le comporte-

ment du filtre selon les différents scénarios étudiés:

1. Effet de la variation de vη (bruit d’observation)

Ces deux figures examinent l’influence de différents niveaux de bruit d’observation sur la

performance du filtre :
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Figure 3.1: Courbe d’évolution de la moyenne glissante de la log-vraisemblance ℓt obtenue pour dif-
férentes valeurs du bruit d’observation vη dans le cadre du SKF, avec des paramètres initiaux du filtre
fixés à ε0 = 10−10 et v0 = 8 · 10−6. L’évaluation temporelle de ht est réalisée en considérant ε∗ = 10−10,
v∗

η = 2.1 · 10−3 et β = 1.
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La figure 3.1 montre que la perte atteint son minimum lorsque vη est fixé à 10−3, valeur proche

de v∗
η = 2.1× 10−3. Un écart important entre la valeur initiale et la valeur réelle dégrade les

performances, confirmant l’intérêt de choisir vη initial au plus près de v∗
η.
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Figure 3.2: Évolution temporelle de l’erreur quadratique moyenne m̄t pour différentes valeurs du
bruit d’observation vη dans le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−10

et v0 = 8 · 10−6. L’évaluation temporelle de ht est réalisée en considérant ε∗ = 10−10, v∗
η = 2.1 · 10−3 et

β = 1.



46

0 20000 40000 60000 80000 100000
T [échantillons]

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065
e2 t

v = 10 1

v = 10 2

v = 10 3

v = 10 4

v = 10 5

v = 10 6

v = 10 7

Figure 3.3: Évolution de l’erreur de prédiction au carré e2
t au cours du temps pour différents vη dans

le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−10 et v0 = 8 · 10−6. L’évaluation
temporelle de ht est réalisée en considérant ε∗ = 10−10, v∗

η = 2.1 · 10−3 et β = 1.

2. Effet de la variation de ε (variance de transition) :

Les deux figures suivantes mettent en évidence l’effet de la variance de transition ε sur la

dynamique d’apprentissage du filtre.
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Figure 3.4: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs de la
variance de transition ε, lors de l’évaluation temporelle de ht avec ε∗ = 10−10, v∗

η = 2.1 · 10−3 et β = 1,
dans le cadre de l’application du filtre SKF.
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Figure 3.5: Évolution de l’erreur quadratique moyenne m̄t pour différentes valeurs de la variance de
transition ε, illustrant l’impact de ce paramètre sur la performance du filtre SKF, lors de l’évaluation
temporelle de ht avec ε∗ = 10−10, v∗

η = 2.1 · 10−3 et β = 1.
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Figure 3.6: Évolution de l’erreur de prédiction au carré e2
t au cours du temps pour différentes valeurs

de ε, lors de l’évaluation temporelle de ht avec ε∗ = 10−10, v∗
η = 2.1 · 10−3 et β = 1, dans le cadre de

l’application du filtre SKF.

L’analyse des résultats montre que lorsque la valeur estimée de ε est proche de la valeur réelle

ε∗ = 10−10 (courbe verte), la log-vraisemblance moyenne ℓt atteint un minimum plus prononcé

que pour les autres valeurs testées. Ce résultat souligne la sensibilité de cette métrique à un

réglage précis et réaliste de ε. En revanche, les deux autres métriques considérées, à savoir

l’erreur quadratique moyenne mt et l’erreur instantanée e2
t , ne révèlent pas de différences

significatives permettant de discriminer clairement les valeurs de ε dans ce contexte.

3.1.5.2 Performance du filtre pour ε∗ = 1 · 10−12 et β = 1

Afin de compléter l’étude, nous considérons un nouveau scénario où l’ensemble des simulations

est exécuté en fixant la variance de transition à ε∗ = 1 · 10−12 (au lieu de ε∗ = 1 · 10−10 dans les

analyses précédentes). Ce choix permet d’évaluer la robustesse et la sensibilité du filtre face à une

variance de transition très faible. Les indicateurs de performance sont présentés et comparés à ceux

obtenus précédemment en analysant les deux scénarios suivants :
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1. Effet de la variation de vη (bruit d’observation)
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Figure 3.7: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs du
bruit d’observation vη dans le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−12

et v0 = 8 · 10−6. L’évaluation temporelle de ht est réalisée en considérant ε∗ = 10−12, v∗
η = 2.1 · 10−3 et

β = 1.
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Figure 3.8: Évolution temporelle de l’erreur quadratique moyenne m̄t pour différentes valeurs du
bruit d’observation vη dans le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−12

et v0 = 8 · 10−6. L’évaluation temporelle de ht est réalisée en considérant ε∗ = 10−12, v∗
η = 2.1 · 10−3 et

β = 1.
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Figure 3.9: Évolution de l’erreur de prédiction au carré e2
t au cours du temps pour différents vη dans

le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−12 et v0 = 8 · 10−6. L’évaluation
temporelle de ht est réalisée en considérant ε∗ = 10−12, v∗

η = 2.1 · 10−3 et β = 1.
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2. Effet de la variation de ε (variance de transition)
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Figure 3.10: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs de
la variance de transition ε, lors de l’évaluation temporelle de ht avec ε∗ = 1 · 10−12, v∗

η = 2.1 · 10−3 et
β = 1, dans le cadre de l’application du filtre SKF.
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Figure 3.11: Effet de la variance de transition ε sur m̄t lors de l’estimation temporelle de ht (ε∗ = 10−12,
v∗

η = 2.1 · 10−3 et β = 1), dans le contexte d’utilisation du filtre SKF.
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Figure 3.12: Évolution de l’erreur de prédiction au carré e2
t au cours du temps pour différents ε, lors

de l’évaluation temporelle de ht avec ε∗ = 10−12, v∗
η = 2.1 · 10−3 et β = 1, dans le cadre de l’application

du filtre SKF.
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Ces résultats sont comparés au cas statique, présenté dans la section suivante, où ε∗ = 0,

correspondant à une réponse impulsionnelle constante.

3.1.5.3 Performance du filtre avec le modèle statique (ε∗ = 0 et β = 1)

Dans cette section, nous examinons le comportement du filtre dans un contexte statique, où la

variance de transition est fixée à zéro (ε∗ = 0). En reprenant la même méthodologie de simulation

et de comparaison présente précédemment.
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Figure 3.13: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différents vη dans le
cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−10 et v0 = 8 · 10−6, avec des données
issues d’un modèle statique (ε∗ = 0 et β = 1).
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Figure 3.14: Évolution temporelle de l’erreur quadratique moyenne m̄t pour différentes valeurs du
bruit d’observation vη dans le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−10

et v0 = 8 · 10−6, avec des données issues d’un modèle statique (ε∗ = 0 et β = 1).
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Figure 3.15: Évolution de l’erreur de prédiction au carré e2
t au cours du temps pour différents vη dans

le cadre du SKF, avec des paramètres initiaux du filtre fixés à ε0 = 10−10 et v0 = 8 · 10−6, avec des
données issues d’un modèle statique (ε∗ = 0 et β = 1).
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Cette comparaison montre que les paramètres optimaux selon cette approche ne correspondent

pas nécessairement à la solution la plus rapide en termes de convergence de l’erreur quadratique

moyenne. Autrement dit, si cette analyse permet une adaptation optimale au sens de la vraisem-

blance, elle n’assure pas toujours la stabilité ou la rapidité de convergence du filtre.

Les résultats numériques illustrent clairement cette distinction: une optimisation fondée unique-

ment sur la vraisemblance n’est pas toujours suffisante pour garantir la performance du filtre. Cela

souligne la nécessité d’évaluer le filtre selon plusieurs critères complémentaires, au-delà du seul cadre

statistique.

L’ensemble des figures présentées dans cette section montre que la perte est minimale lorsque

vη est fixé à 10−3, valeur proche de la référence v∗
η = 2.1× 10−3. Dans tous les cas étudiés, un écart

important entre la valeur initiale et la valeur réelle de vη entraîne une diminution notable de la

perte et de l’erreur quadratique moyenne, confirmant l’intérêt de choisir une valeur initiale au plus

près de v∗
η. On constate également que l’erreur quadratique moyenne reste systématiquement plus

faible pour la configuration où vη est proche de v∗
η, illustrée par la courbe verte dans l’ensemble des

figures.

3.1.6 Optimisation de la variance de transition par descente de gradient

Dans cette section, nous présentons une méthode d’optimisation de la variance de transition

ε par descente de gradient, appliquée à la minimisation de la log-vraisemblance négative. Cette

approche est fondée sur le calcul explicite du gradient de la fonction de coût par rapport à ε. La

démarche se structure comme suit :

1. Expression du gradient de la log-vraisemblance négative.

La fonction de coût (log-vraisemblance négative) au temps t est notée ℓt. Le gradient de ℓt

par rapport à ε s’écrit :

∂ℓt

∂ε
= − et

ωt + vη
x⊤

t

∂µt−1
∂ε

− e2
t

2(ωt + vη)2
∂ωt

∂ε
+ 1

2(ωt + vη)
∂ωt

∂ε
, (3.12)

= 1
ωt + vη

[
etx

⊤
t

∂µt−1
∂ε

+ ∥xt∥2(ωt + vη − e2
t )

(ωt + vη)2 (∂vt−1
∂ε

+ 1)
]

, (3.13)

où et = yt − x⊤
t µt−1 désigne l’erreur de prédiction.
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2. Calcul des dérivées récursives.

Les dérivées nécessaires à la mise à jour du gradient s’obtiennent par récurrence:

∂µt−1
∂ε

=
∂µt−2

∂ε
+ xt−1

[ ∂vt−1,t−2
∂ε et−1 + vt−1,t−2

∂et−1
∂ε

ωt−1 + vη
− vt−1,t−2et−1

(ωt−1 + vη)2
∂ωt−1

∂ε

]
, (3.14)

=
∂µt−2

∂ε
+ xt−1

et−1(∂vt−2
∂ε + 1)− vt−1,t−2x⊤

t−1
∂µt−2

∂ε

ωt−1 + vη
− vt−1,t−2et−1

(ωt−1 + vη)2 ∥xt−1∥2
(

∂vt−2
∂ε

+ 1
) ,

(3.15)

=
∂µt−2

∂ε
+ xt−1

−vt−1,t−2x⊤
t−1

∂µt−2
∂ε

ωt−1 + vη
+ et−1vη

(ωt−1 + vη)2

(
∂vt−2

∂ε
+ 1

) , (3.16)

et

∂vt

∂ε
= (∂vt−1

∂ε
+ 1)

(
1− 1

M

ωt

ωt + vη

)
− vt,t−1

M

vη

ωt + vη

∂ωt

∂ε
, (3.17)

= (∂vt−1
∂ε

+ 1)
(
1− 1

M

ωt

ωt + vη

)
− vt,t−1

M

vη

ωt + vη
∥xt∥2

(
∂vt−1

∂ε
+ 1

)
, (3.18)

= (∂vt−1
∂ε

+ 1)
(

1− 1
M

ωt(1 + vη)
ωt + vη

)
, (3.19)

avec les dérivées intermédiaires :

∂vt,t−1
∂ε

= ∂vt−1
∂ε

+ 1. (3.20)

∂ωt

∂ε
= ∥xt∥2

(∂vt−1
∂ε

+ 1
)
. (3.21)

3. Algorithme d’estimation MLE

• Initialiser ε0 > 0 et les paramètres du filtre.

• Pour chaque t = 1, . . . , T :

(a) Calculer µt et vt via le filtre de Kalman.

(b) Calculer le gradient :

∂ℓt

∂ε
|ε=εt−1 = 1

ωt + vη

(
etx

⊤
t

∂µt−1
∂ε

+ ∥xt∥2(ωt + vη − e2
t )

(ωt + vη)2

(
∂vt−1

∂ε
+ 1

))
. (3.22)
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(c) Mettre à jour :

εt = εt−1 − µε
∂ℓt

∂ε
|ε=εt−1 . (3.23)

4. Reparamétrisation exponentielle Afin de garantir que εt > 0 à chaque instant, nous

introduisons une reparamétrisation exponentielle. On pose :

εt = exp(ξt) ⇒ ∂εt

∂ξt
= exp(ξt) = εt, (3.24)

où ξt ∈ R, cette transformation permet d’effectuer la mise à jour dans un espace non contraint

(R), tout en s’assurant que εt reste strictement positif

Ainsi, la dérivée de la log-vraisemblance par rapport à ξt est donnée par la règle de chaîne :

∂ℓ

∂ξt
= ∂ℓ

∂εt
· ∂εt

∂ξt
= εt ·

∂ℓ

∂εt
. (3.25)

5. Mise à jour de ξt. L’estimation adaptative suit une descente de gradient classique:

ξt+1 = ξt − µξ · εt ·
∂ℓt

∂ε
|ε=εt−1 . (3.26)

6. Résumé final.

ξt+1 = ξt − µξ · εt ·
[

1
ωt + vη

(
etx

⊤
t

∂µt−1
∂ε

+ ∥xt∥2(ωt + vη − e2
t )

(ωt + vη)2

(
∂vt−1

∂ε
+ 1

))]
. (3.27)

où µξ > 0 est le pas d’adaptation dans l’espace log-transformé. Cette approche permet

une estimation positive de la variance de transition au fil du temps. Cette stratégie est

particulièrement utile pour assurer la stabilité numérique lors de la mise à jour adaptative [12,

21].

Nous procédons ainsi à une série d’expérimentations numériques pour analyser, d’une part, le com-

portement de l’erreur quadratique moyenne m̄t, log-vraisemblance ℓt et d’autre part, l’évolution

temporelle de εt selon différentes valeurs de µξ. Cette analyse permet d’évaluer à la fois l’impact

du pas d’adaptation sur la précision du filtre et sur la stabilité dynamique du paramètre εt, en

s’appuyant sur l’équation (3.27).
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3.1.6.1 Expérimentation numérique

Cette section présente les résultats obtenus à partir de simulations numériques réalisées avec

diverses valeurs du paramètre d’adaptation µξ. L’objectif est d’évaluer la capacité du filtre SKF à

estimer dynamiquement la variance de transition εt, et de mettre en évidence l’effet de l’initialisation

de l’état sur la stabilité et la convergence du filtre.

Ces simulations ont été effectuées à partir d’un modèle dynamique en fixant la variance de transition

à ε∗ = 1·10−10. Dans le but d’examiner l’influence de l’initialisation sur la trajectoire de convergence

et la robustesse du filtre SKF, trois valeurs initiales pour ε0 ont été considérées, avec v0 constant à

8 · 10−6, où chaque style de ligne représente un scénario d’initialisation distinct, ce qui permet de

comparer directement la sensibilité du filtre au choix des paramètres initiaux et au pas d’adaptation

µξ.
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Figure 3.16: Erreur quadratique moyenne m̄t pour différentes valeurs de µξ lors de l’évaluation tem-
porelle de ht avec ε∗ = 10−10 et β = 1, selon trois scénarios initiaux ε0 ∈ {10−9, 10−10, 10−11} et v0 = 8·10−6,
dans le cadre de l’application du filtre SKF.
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Figure 3.17: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs de
µξ lors de l’évaluation temporelle de ht avec ε∗ = 10−10, selon deux scénarios initiaux ε0 ∈ {10−9, 10−11}
et v0 = 8 · 10−6.
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Figure 3.18: Évolution temporelle de εt pour différentes valeurs de µξ lors de l’évaluation temporelle
de ht avec ε∗ = 10−10, selon trois scénarios initiaux ε0 ∈ {10−9, 10−10, 10−11} et v0 = 8 · 10−6.
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Figure 3.19: Évolution temporelle de εt pour différentes valeurs de µξ lors de l’évaluation temporelle
de ht avec ε∗ = 10−10, selon trois scénarios initiaux ε0 ∈ {10−9, 10−10, 3 · 10−11} et v0 = 8 · 10−6.

L’analyse des Figures présentes dans cette section met en évidence que l’algorithme d’estimation

adaptative de la variance de transition (Eq. 3.27) guide systématiquement εt vers la valeur cible

ε⋆ = 10−10, et ce pour des jeux d’initialisation (ε0) avec v0 fixé. On observe en parallèle une baisse

de la log-vraisemblance négative et une stabilisation de m̄t. Le pas d’adaptation µξ module le com-

promis vitesse/stabilité : des valeurs plus élevées accélèrent la convergence mais peuvent induire

des oscillations transitoires, tandis que des valeurs plus faibles accroissent la stabilité au prix d’une

convergence plus lente. Globalement, ces résultats attestent de la capacité du schéma adaptatif à

identifier la variance de transition et à améliorer la performance du filtre.
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3.2 Estimation adaptative des hyper-paramètres par lissage tem-

porel.

Dans cette étude, nous avons commencé par estimer le paramètre ε à chaque itération en utilisant

l’équation (3.28) qui permet d’adapter dynamiquement ε en fonction des variations instantanées

entre les états successifs.

La variance du bruit de processus εt, qui reflète les changements dynamiques des états, est

calculée comme suit :

ε̂t = 1
M
∥µt − µt−1∥2, (3.28)

où M est la taille de la réponse impulsionnelle et la dimension du vecteur d’état, et ∥ · ∥2 désigne

la norme euclidienne au carré. Cette formulation permet de quantifier les fluctuations des états

estimés entre deux instants consécutifs, comme détaillé dans [18, Sec. VIII].

Le hyper-paramètre ε̂t doit être ajusté pour équilibrer une précision de suivi optimale et une minimi-

sation de l’erreur quadratique moyenne. Les variations du système dynamique rendent l’utilisation

de valeurs constantes pour ces paramètres ne permettent pas de garantir un compromis satisfaisant.

Sur la base de cette motivation, l’estimation donnée par l’équation (3.28) est conçue pour atteindre

cet objectif. Lorsque l’algorithme commence à converger ou lorsqu’il y a un changement brusque

dans le système, la différence entre µt et µt−1 devient significative. Dans ce cas, le paramètre

ε̂t prend des valeurs élevées, permettant ainsi une convergence rapide et un suivi efficace. En re-

vanche, lorsque l’algorithme commence à atteindre son régime permanent, la différence entre µt et

µt−1 diminue, ce qui entraîne de faibles valeurs de ε̂t et, par conséquent, une faible erreur quadra-

tique moyenne.

Ces hyper-paramètres doivent être ajustés finement pour garantir des estimations cohérentes et

minimiser l’erreur globale.

Cette relation permet de mettre à jour dynamiquement l’hyper-paramètre εt améliorant ainsi

l’efficacité et la robustesse des prédictions du filtre de Kalman simplifié (SKF). Cette approche

a été comparée à des algorithmes où ε est maintenu constant pour différentes valeurs fixes.
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Figure 3.20: Erreur quadratique moyenne m̄t, en comparant SKF avec différentes valeurs ε fixe et SKF
avec ε estimée temporellement (SKF_temp) suivant l’équation (3.28), lors de l’évaluation temporelle
de ht avec ε∗ = 10−10 et β = 1
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Figure 3.21: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs de ε
fixe et SKF avec ε estimée temporellement (SKF_temp) suivant l’équation (3.28), lors de l’évaluation
temporelle de ht avec ε∗ = 10−10 et β = 1
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Afin d’améliorer la robustesse de l’estimation de ε, nous proposons une autre stratégie basée

sur le lissage temporel. En suivant [18], nous reprenons l’estimateur instantané de la variance de

transition, Eq.(3.28) . Par extension, nous proposons une version lissée sur une fenêtre temporelle,

donnée par

ε̂t = 1
MJ

J−1∑
j=1
∥µt−j − µt−1−j∥2, (3.29)

où J correspond à la taille de la fenêtre de moyennage. Cette méthode vise à réduire l’impact des

variations locales tout en conservant les tendances globales.

Les résultats obtenus en appliquant cette méthode de lissage temporel sont présentés dans les

figures ci-dessous, où une comparaison entre l’approche classique avec ε constant et celle avec ε

estimé temporellement est effectuée. Ces figures mettent en évidence les différences de performances

en termes de rapidité de convergence de l’erreur quadratique moyenne m̄t,
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Figure 3.22: Erreur quadratique moyenne m̄t obtenue en comparant le SKF avec ε constant à une
version où ε est estimé par lissage temporel (SKF_temp : équation (3.29), fenêtre J = 10), lors de
l’évaluation temporelle de ht avec ε∗ = 10−10 et β = 1
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Figure 3.23: Erreur quadratique moyenne m̄t, en comparant le SKF avec ε constant à une version
de SKF avec ε estimé par lissage temporel (SKF_temp) selon l’équation (3.29), avec une fenêtre de
lissage de taille J = 100, dans le cadre du modèle dynamique (ε∗ = 10−10 et β = 1).

Ces comparaisons permettent d’évaluer l’impact de la stratégie de lissage temporel sur les per-

formances du filtre dans différentes réalisations, en variant la taille de la fenêtre de moyennage

J . Cette analyse met en lumière comment cette approche influence la capacité de la méthode à

réduire les fluctuations locales tout en préservant les tendances globales. Les mêmes simulations

seront reprises dans la section suivante pour le modèle statistique où ε∗ = 0, afin de comparer les

performances obtenues dans ce cadre particulier.

3.2.1 Analyse comparative avec le modèle statique (ε∗ = 0 et β = 1)

Dans cette section, nous examinons le comportement du filtre dans un contexte statique, où la

variance de transition est fixée à zéro (ε∗ = 0). En reprenant la même méthodologie de simulation

et de comparaison présentée précédemment. Cette analyse vise à déterminer si les avantages ob-

servés avec le lissage temporel se maintiennent également lorsque les paramètres du système restent

constants.
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Figure 3.24: Erreur quadratique moyenne m̄t, en comparant SKF avec différentes valeurs ε fixe et SKF
avec ε estimée temporellement (SKF_temp) suivant l’équation (3.28). avec des données issues d’un
modèle statique (ε∗ = 0 et β = 1)
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Figure 3.26: Erreur quadratique moyenne m̄t obtenue en comparant SKF avec ε constant à une version
où ε est estimé par lissage temporel (SKF_temp : équation (3.29), fenêtre J = 10), avec des données
issues d’un modèle statique (ε∗ = 0 et β = 1).
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Figure 3.25: Évolution de la moyenne glissante de la log-vraisemblance ℓt pour différentes valeurs de
ε fixe et SKF avec ε estimée temporellement (SKF_temp) suivant l’équation (3.28), avec des données
issues d’un modèle statique (ε∗ = 0 et β = 1 )
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Figure 3.27: Erreur quadratique moyenne m̄t comparant le SKF à ε constant et une estimation par
lissage temporel SKF_temp (J = 100) selon (3.29), pour un modèle statique (ε∗ = 0 et β = 1).
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Les résultats illustrés par les figures montrent que, contrairement à l’hypothèse initiale, l’estimation

adaptative de εt selon les équations (3.28) et (3.29) n’assure pas systématiquement une convergence

plus rapide que l’estimation fixe. On observe que l’estimation temporelle (représentée par la courbe

violette avec marqueurs) atteint un niveau de perte minimal plus bas et une erreur quadratique

moyenne plus faible en moyenne.

3.3 Observations

Dans ce chapitre, nous avons examiné deux approches adaptatives d’estimation en ligne des

hyper-paramètres du filtre de Kalman. Ces approches jouent un rôle crucial pour améliorer la

précision et l’efficacité des estimations fournies par le filtre.

À partir des résultats présentés, plusieurs observations peuvent être faites :

1. La log-vraisemblance a posteriori constitue un critère robuste pour déterminer les hyper-

paramètres optimaux du modèle. Comme montré explicitement dans la Section 3.1.5, cette

métrique fournit une indication fiable et facilite l’identification des hyper-paramètres(ε et vη).

2. Cependant, il est important de noter que la log-vraisemblance n’est pas directement aux deux

autres métriques telles que l’erreur de prédiction et ou l’erreur quadratique moyenne mt. En

conséquence, la maximisation directe de cette log-vraisemblance ne permet pas nécessairement

d’accélérer la convergence du filtre. Cette limitation est mise en évidence dans la Section 3.1.6,

où les méthodes heuristiques d’adaptation dynamique l’hyper-paramètre (ε), fondées sur des

critères empiriques, surpassent les approches bayésiennes en termes de vitesse et de perfor-

mance de convergence.

3. L’analyse révèle également une sensibilité importante des méthodes d’adaptation en ligne

à l’initialisation des hyper-paramètres. Ces méthodes est fortement affectée par le choix

initial des valeurs de ces paramètres. Cette étude, bien qu’instructive, n’est pas entièrement

conclusive à ce stade et nécessiterait des recherches supplémentaires afin d’approfondir la

compréhension des résultats obtenus.

En résumé, ces approches adaptatives d’estimation en ligne étudiées ici démontrent leur capac-

ité à s’ajuster efficacement aux variations dynamiques du système analysé. Elles permettent une
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réduction significative de l’erreur quadratique moyenne m̄t et de la log-vraisemblance moyenne ℓt

ainsi que de l’erreur de prédiction et. En comparaison avec les approches statiques traditionnelles,

ces méthodes offrent une alternative robuste et prometteuse, à condition d’un réglage attentif et

adapté des hyper-paramètres.

3.4 Conclusion

Ce chapitre a présenté deux approches pour l’estimation des hyper-paramètres du Kalman via (i)

une MLE avec descente de gradient (positivité assurée) et (ii) une estimation en ligne lissée de εt

fondée sur les écarts d’états. Les expériences, en régimes statique et dynamique, montrent que

l’adaptation de εt améliore le suivi mais reste sensible au pas µξ et à l’initialisation.
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Conclusion

Dans ce mémoire, nous avons proposé et analysé une approche unifiée pour l’estimation dy-

namique dans les modèles linéaires, en nous appuyant sur le filtre de Kalman et ses variantes.

Nous avons d’abord rappelé les fondements théoriques du filtrage de Kalman dans un cadre bayésien.

Cette section a détaillé la formulation probabiliste du filtre, son implémentation récursive, ainsi

que différentes simplifications possibles : covariance matricielle, vectorielle, scalaire et à variance

fixe [13]. Nous avons également mis en évidence l’équivalence, sous certaines hypothèses, entre la

mise à jour bayésienne du filtre et des méthodes classiques comme la descente de gradient stochas-

tique (SGD) [19].

Les simulations menées pour l’identification de la réponse impulsionnelle dans un contexte acous-

tique ont validé l’efficacité des méthodes proposées. Les différents scénarios ont mis en évidence les

compromis entre vitesse de convergence, précision asymptotique et robustesse au bruit.

Et puis, nous avons proposé et analysé différentes stratégies pour l’estimation des hyper-paramètres

du filtre de Kalman appliqué à l’identification dynamique de la réponse impulsionnelle acoustique.

Nous avons porté une attention particulière à l’analyse comparative des principales stratégies

d’estimation des hyper-paramètres, à savoir:

• l’optimisation par maximisation de la vraisemblance (MLE) [14];

• l’estimation adaptative basée sur l’évolution temporelle des états;
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• l’introduction d’un lissage temporel afin d’atténuer les fluctuations locales des paramètres

estimés [18].

Ces résultats mettent en évidence plusieurs axes d’amélioration et de recherche, tant sur l’optimisation

des hyper-paramètres que sur l’extension du cadre méthodologique. Ainsi, plusieurs pistes d’amélioration

et d’exploration peuvent être envisagées pour les travaux futurs :

1. Optimisation avancée des hyper-paramètres

• Étudier des méthodes d’apprentissage automatique (ex. Bayesian Optimization) pour

sélectionner dynamiquement les valeurs optimales des hyper-parameteres du modele.

[30].

• Explorer des techniques de régularisation adaptative pour stabiliser encore plus l’estimation

des poids [16,31].

2. Généralisation aux modèles non linéaires

• Étendre la méthodologie à des modèles de Kalman non linéaires, comme le filtre de

Kalman étendu (EKF) ou le filtre de Kalman unscented (UKF) [4, 32].

• Intégrer des méthodes à base de filtre particulaire pour les cas fortement non linéaires

ou non gaussiens [23].

3. Comparaison avec des méthodes d’apprentissage profond

• Comparer le filtre de Kalman adaptatif aux approches récentes, telles que les RNN et

transformers pour séries temporelles [24,33].

• Explorer des approches hybrides combinant filtre de Kalman et réseaux neuronaux, no-

tamment par la fusion bayésienne des prédictions afin de tirer parti des forces respectives

de chaque méthode.

En conclusion, cette étude met en évidence le potentiel du filtrage de Kalman adaptatif pour

l’estimation dynamique des paramètres. Cependant, plusieurs défis restent à relever, notamment

l’optimisation des hyper-paramètres et l’adaptation du modèle à des contextes plus complexes.

Les perspectives identifiées permettront d’améliorer davantage ces techniques et d’en élargir les

applications à des domaines variés.
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