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Résumé

Ce travail présente un cadre bayésien pour 'estimation adaptative en ligne des filtres de
Kalman appliqués aux modeles linéaires dans le traitement du signal. La dynamique des
parametres est modélisée par un processus vectoriel autorégressif affecté d’un bruit gaussien,
et différentes structures de covariance (standard, scalaire et a variance fixe) sont étudiées et
comparées pour analyser leur impact sur la performance du filtre. I’analyse comparative de
ces différentes structures de filtre repose sur des simulations appliquées a l'identification de
la réponse impulsionnelle acoustique.

Un accent particulier est mis sur plusieurs approches adaptatives d’estimation en ligne des
hyper-parametres, telles que le lissage temporel et ’estimation du maximum de vraisemblance
(MLE). Les résultats obtenus montrent que ce cadre bayésien généralise avantageusement les
méthodes classiques, en illustrant une robustesse et une adaptabilité supérieures, aussi bien
dans des conditions expérimentales variées, des environnements bruités, que dans une grande
diversité de scénarios d’application.

Mots-clés Filtre de Kalman, Modeéles linéaires, Identification des systemes, Filtrage bayésien,

Traitement du signal, Estimation adaptative.






Abstract

This work introduces a Bayesian framework for online adaptive estimation of Kalman
filters applied to linear models in signal processing. The parameter dynamics are modeled by
a vector autoregressive process driven by Gaussian noise, and different covariance structures
(standard, scalar, and fixed-variance) are studied and compared to assess their impact on
filter performance. The comparative analysis of these various filter structures is based on
simulations targeting the identification of acoustic impulse responses.

Several online adaptive methods for hyperparameter estimation are specifically explored, in-
cluding both temporal smoothing and maximum likelihood approaches. The results confirm
that the Bayesian framework not only generalizes existing methods but also demonstrates
superior robustness and adaptability across diverse experimental settings, noisy contexts,
and a broad spectrum of practical applications.

Keywords: Kalman Filter, Bayesian Filtering, Linear Models, System Identification, Signal

Processing, Adaptive Estimation.
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Chapitre 1

Introduction et motivation

Le filtre de Kalman s’appuie sur la dynamique du systeme étudié, c’est-a-dire son évolution au
cours du temps, afin d’améliorer la qualité des estimations en réduisant I'impact du bruit affectant
les mesures. Le développement de méthodes visant a reconstituer 1’état réel du systeme & partir de
mesures bruitées représente ainsi un enjeu fondamental pour de nombreuses applications, ce qui a
conduit & une production scientifique particulierement abondante dans le domaine du traitement
du signal [1,2].

Ce travail ne s’inscrit pas dans la perspective d’'une question de recherche empirique au sens strict,
mais dans celle d’un probleme d’estimation d’états au sein de systémes dynamiques. La probléma-
tique centrale peut étre formulée ainsi : a partir des mesures disponibles et des connaissances, des
hypotheses portant sur la dynamique du systéme, comment élaborer un schéma d’estimation capa-
ble de fournir la meilleure approximation possible de I’état ou du signal recherché ? Dans le cadre
de ce mémoire, cette interrogation se décline a travers la conception et I’analyse de versions simpli-
fiées du filtre de Kalman, visant & concilier précision des estimations et réduction de la complexité

algorithmique.

Une avancée majeure dans ce domaine a été réalisée en 1960, lorsque R.E. Kalman a publié
son article fondateur intitulé “A New Approach to Linear Filtering and Prediction Problems” [3].
Le filtre de Kalman qu’il propose est une méthode mathématique permettant d’estimer de maniere
optimale ’état d’'un systéme, y compris lorsque la modélisation ou les mesures comportent une
part d’incertitude. [1,[2]. Cette approche repose sur l'utilisation de 1’état précédent, des comman-

des appliquées et des observations bruitées pour produire une estimation actualisée. Par ailleurs,



le filtre de Kalman présente une propriété récursive remarquable: il ne nécessite pas I’historique
complet des données passées pour calculer 'estimation courante [1,/4]. Cette caractéristique le rend
particulierement adapté aux applications en temps réel, dans des environnements ot la rapidité de
traitement et I’adaptabilité sont essentielles.

Initialement développé pour la navigation aérospatiale [3,|4], le filtre de Kalman est aujourd’hui
largement utilisé pour le suivi et la prédiction de systémes dynamiques dans des domaines variés,

notamment la finance [5], la robotique [6], et les télécommunications |7},8].

Ce mémoire examine comment simplifier et adapter les filtres de Kalman pour améliorer leur
efficacité dans le traitement des signaux a partir de modeles linéaires, avec un accent particulier sur
I’amélioration de la précision des estimations et la vitesse de convergence dans des environnements
dynamiques.

Les méthodes de filtrage classiques supposent souvent que les parametres du systéme, tels que
les variances du bruit de processus et du bruit d’observation, sont fixés ou connus & l'avance.
Cependant, dans de nombreuses applications réelles, ces parametres sont incertains et peuvent
évoluer au cours du temps. Pour répondre a cette problématique, les filtres de Kalman adaptatifs
permettent d’ajuster dynamiquement ces parameétres en fonction des données observées. Cette
étude explore différentes formulations du filtre de Kalman, notamment les variantes simplifiées et
a variance fixe, et compare leur performance avec des approches d’optimisation alternatives telles
que la descente de gradient stochastique (SGD), dont les propriétés de convergence et les variantes

pratiques ont été largement étudiées dans la littérature [9)].

L’objectif principal de cette recherche est d’évaluer l'efficacité du filtrage de Kalman adaptatif
dans les tdches d’identification des systémes [10], en particulier pour Iestimation de la réponse im-
pulsionnelle dans les modeéles linéaires. En analysant différentes stratégies d’estimation des hyper-
parametres et leur impact sur la convergence et la précision, cette étude vise a fournir des recom-

mandations sur le choix optimal des techniques de filtrage pour les applications en temps réel.

1.1 Objectifs et problématique

L’estimation dynamique de parametres dans les modeles linéaires demeure un défi central dans

de nombreux domaines scientifiques et techniques, en particulier lorsque ces parametres évoluent



Chapitre 1. Introduction et motivation 3

au cours du temps ou sont soumis a des incertitudes importantes. Parmi les approches les plus
efficaces, le filtre de Kalman et ses variantes offrent un cadre probabiliste optimal pour la mise &
jour récursive des estimations en présence de bruit gaussien [3}/11,12]. Néanmoins, la performance
de ces méthodes dépend fortement du choix et de I'ajustement des hyper-parametres, tels que les

variances des bruits de processus et d’observation.

Dans ce contexte, ce mémoire vise a répondre aux questions suivantes :

o Comment différentes variantes du filtre de Kalman (standard, scalaire et scalaire a vari-
ance fixe) se comportent-elles en termes de convergence, de robustesse et de précision pour

Iestimation dynamique des parametres d’un modele linéaire?

e Comment comparer les performances du filtre de Kalman a celles d’approches classiques

d’optimisation, telles que la descente de gradient stochastique (SGD)?

e Quelles stratégies d’estimation bayésienne et d’ajustement adaptatif des hyper-parametres

peuvent étre mises en ceuvre pour améliorer la performance du filtrage en temps réel?

La problématique de ce travail se situe donc a l'interface entre modélisation probabiliste, estima-
tion des hyper-parameters et optimisation adaptative [13,|14]. L’objectif principal est de proposer
une méthodologie rigoureuse pour 'estimation adaptative des parameétres d’un modele linéaire, en
évaluant 'impact du choix des variantes du filtre de Kalman et des stratégies d’ajustement des
hyper-parameétres sur la performance globale du modele. Pour ce faire, nous combinons analy-
ses théoriques et expérimentations numériques, en nous appuyant sur des simulations appliquées a
I'identification de la réponse impulsionnelle acoustique, permettant ainsi d’illustrer concretement

les avantages et les limites de chaque approche.

Plus spécifiquement, ce travail cherche a :

e Proposer une formulation probabiliste unifiée du filtres de Kalamn permettant d’incorporer
I’évolution dynamique des parametres dans un modele linéaire a I’aide de différentes structures

de covariance (matricielle, vectorielle, scalaire et scalaire a variance fixe) [13}/15].

o Mettre en ceuvre et comparer plusieurs variantes du filtre de Kalman: le filtre standard (KF),
le filtre simplifié¢ (SKF), et le filtre simplifié & variance fixe (fSKF), en les comparant & une

méthode d’optimisation classique, soit la descente de gradient stochastique (SGD) |164/17].



e Valider expérimentalement 'efficacité des différentes méthodes proposées a travers des simu-

lations appliquées a l'identification de la réponse impulsionnelle acoustique.

o Etudier 'impact du choix et de I'adaptation des hyper-paramétres sur la convergence, la

robustesse et la précision de l'estimation dynamique.

o Développer et analyser des approches d’estimation adaptative en ligne des hyper-parameétres,
fondées sur des principes bayésiens (Lissage temporelle [18], estimation du maximum de

vraisemblance [14]).

Ce mémoire apporte ainsi une contribution a la problématique de ’adaptation dynamique des
filtres de Kalman en proposant une méthodologie robuste pour ajuster les hyper-parameétres en
fonction des propriétés du modele. L’étude vise a démontrer que l'introduction d’un mécanisme

adaptatif permet d’améliorer la qualité des estimations et la stabilité du filtre.

1.2 Contributions

Ce mémoire propose une approche pour I'optimisation des filtres de Kalman appliqués aux mod-
eles linéaires, en mettant un accent particulier sur ’estimation dynamique des hyper-parametres.

Les principales contributions de cette étude s’articulent autour de plusieurs axes :

e Analyse approfondie du filtre de Kalman et de ses variantes
Ce travail propose une approche générique permettant d’intégrer différentes variantes du filtre
de Kalman (standard, vectorielle, scalaire, a variance fixe) dans un cadre probabiliste unique
[13,/15]. Cette formulation facilite la comparaison théorique et empirique des performances
selon la structure de la covariance et le choix des parameétres, , mettant en évidence les

conditions dans lesquelles chaque méthode offre une convergence optimale.

e Comparaison avec des méthodes d’optimisation alternatives
Afin d’évaluer la pertinence des variantes du filtre de Kalman, une comparaison a été effectuée

avec 'algorithme de descente de gradient stochastique (SGD) [19].

¢ Validation expérimentale sur des données simulées

La méthodologie est appliquée a I’identification de la réponse impulsionnelle dans un contexte
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acoustique, illustrant la capacité des différentes variantes a s’adapter a divers scénarios et

niveaux de bruit.

¢ Introduction de stratégies adaptatives pour I’estimation des hyper-parameétres
Développement et évaluation de méthodes adaptatives en ligne pour I'estimation des hyper-
parametres. Plusieurs approches d’optimisation sont étudiées, telles que le lissage temporel
[18] et 'estimation par maximum de vraisemblance (MLE) [14], afin d’identifier les hyper-

parameétres optimaux et d’améliorer a la fois la robustesse et la convergence du filtre.

e Modélisation dynamique des parameétres Les parametres du filtre de Kalman sont
considérés comme variables dans le temps, ce qui permet de mieux représenter les systemes

réels dont les caractéristiques évoluent.

e Analyse de I'impact des bruits d’observation et de transition
Le travail étudie 'effet des différents niveaux de bruit sur la performance du filtre, montrant
comment la variance du bruit d’observation et celle du processus influencent la précision et la

stabilité du filtrage.

« Comparaison entre scénarios statiques et dynamiques
Le mémoire compare la performance du filtre entre des situations ou les parametres restent
constants et d’autres ou ils évoluent, et montre que les méthodes classiques ne suffisent pas

toujours en contexte dynamique.

Les résultats obtenus dans cette étude démontrent que 'intégration d’un mécanisme adaptatif
au sein des filtres de Kalman permet d’améliorer la précision des estimations et la robustesse des
algorithmes face aux variations des conditions expérimentales. Ces contributions ouvrent la voie a
de futures recherches sur 'optimisation des filtres de Kalman dans des applications ou la dynamique

du systéme est sujette a des changements non stationnaires.

1.3 Positionnement par rapport a la littérature

Depuis l'article fondateur de Kalman [3], le filtre de Kalman et ses variantes ont fait I’objet
d’un développement théorique et d’applications multiples, couvrant des domaines tels que la naviga-

tion [4], la robotique [6], la finance 5] ou encore les télécommunications |7,8]. Plusieurs travaux |12,



11,{12] ont établi le cadre probabiliste optimal du filtrage linéaire gaussien, tandis que des recherches
plus récentes |14L|18] se sont concentrées sur 'adaptation dynamique des hyper-paramétres, notam-

ment via le maximum de vraisemblance ou des techniques de lissage temporel.

Cependant, la littérature présente certaines limites :

e Les études comparent rarement de maniere systématique les différentes structures de covari-

ance (matricielle, vectorielle, scalaire, scalaire & variance fixe) dans un cadre unifié.

e Les validations expérimentales portent souvent sur des cas spécifiques et ne mesurent pas
explicitement I'impact des choix de covariance et de stratégie adaptative sur la convergence

et la précision dans des scénarios dynamiques.

Ce travail se distingue de la littérature existante par les contributions suivantes :

e Une formulation unifiée permettant d’intégrer plusieurs variantes du filtre de Kalman dans un

méme cadre probabiliste, afin de faciliter leur comparaison théorique et numérique.

e Une analyse expérimentale comparative entre ces variantes et la descente de gradient stochas-

tique sur un probleme d’identification de réponse impulsionnelle acoustique.

o Le développement et I’évaluation de stratégies adaptatives en ligne pour l’estimation des
hyper-parametres, avec une étude approfondie de leur impact sur la précision, la robustesse

et la vitesse de convergence.

Ce positionnement permet de distinguer clairement notre contribution par rapport aux travaux
existants, en offrant une vision comparative et intégrée des méthodes de filtrage et d’optimisation

dans un contexte d’estimation adaptative.

1.4 Structure du document

Ce mémoire est structuré en quatre chapitres principaux, chacun abordant un aspect spécifique
du probleme étudié. Il suit une progression logique allant de la présentation du contexte et des

concepts fondamentaux a ’analyse des résultats obtenus et a la conclusion.
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¢ Chapitre 1 : Introduction
Ce premier chapitre introduit le contexte général du travail de recherche. Il expose la problé-
matique et les motivations qui sous-tendent ’étude, ainsi que les objectifs poursuivis. Enfin,

il présente un apercu des contributions de ce travail et de la méthodologie employée.

e Chapitre 2 : Principe du filtre de Kalman
Ce chapitre présente la formulation générale du filtre de Kalman appliquée a I’identification
des systémes linéaires [15]. Il détaille les principales variantes du filtre, en soulignant leurs
propriétés, leurs limites, ainsi que leur capacité d’adaptation a différents contextes et niveaux
de bruit. Une attention particuliére est portée au choix des parametres et a leur influence sur

la qualité des estimations.

e Chapitre 3 : Estimation des hyper-paramétres du modele
Ce chapitre traite des méthodes d’estimation dynamique des hyper-parameétres du filtre de
Kalman, notamment la variance du bruit de processus et celle du bruit d’observation [14}18].
Il explore plusieurs approches adaptatives visant & améliorer la stabilité et la performance du

filtre. L’évaluation de ces méthodes est réalisée a travers des simulations numériques.

e Chapitre 4 : Conclusion et perspectives
Le dernier chapitre synthétise les principaux résultats obtenus et met en perspective les con-
tributions du travail. Il propose également des pistes de recherche future visant a améliorer les
méthodes présentées et a explorer de nouvelles applications du filtre de Kalman dans d’autres

contextes.

L’ensemble de ce document vise a démontrer I'importance d’une estimation adaptative des hyper-
parametres du filtre de Kalman et son impact sur la précision des estimations dans des modeéles

linéaires sous bruit gaussien dans le traitement du signal.






Chapitre 2

Principe du filtre de Kalman

Ce chapitre présente le cadre théorique du filtre de Kalman pour l'identification des systemes
linéaires bruités. Apres avoir exposé la formulation générale et les hypotheses probabilistes associées,
il décrit les principales variantes de I’algorithme et analyse leurs propriétés, avantages et limites.
Une attention particuliere est portée a I'influence des parametres sur la précision des estimations,
ainsi qu’aux liens avec certaines méthodes d’optimisation stochastique. L’application & ’estimation

d’une réponse impulsionnelle acoustique illustre enfin la performance comparative de ces approches.

2.1 Formulation générique du filtre de Kalman

Dans les modeles linéaires en identification des systeémes, I’évolution des poids au cours du temps
est souvent représentée par un processus auto-régressif vectoriel. Ce processus permet de capturer
les relations temporelles entre les poids en fonction de leurs valeurs passées. Lorsqu’il est appliqué
avec le filtre de Kalman, il offre une estimation optimale des états du systéme, en présence de bruit
gaussien [20]. Cette approche permet donc de suivre et d’ajuster les parametres en fonction des

données observées, tout en minimisant ’erreur de prédiction:
Wi = Wi—1 + Ugr\/Et, (21)

Y = a:tT'wt + e, (22)
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oit w; € RM désigne le vecteur des poids (ou parametres) du systéme & l'instant ¢ et u; est un
vecteur de variables aléatoires gaussiennes indépendantes, de moyenne nulle et de variance unitaire.
Ainsi, e; décrit la variance de la fluctuation aléatoire des poids entre les instants t — 1 et . De
plus, y: € R désigne I'observation réalisée au temps t, c’est-a-dire la valeur mesurée a cet instant et
définie par ’équation comme la somme du produit scalaire &]w; et du bruit d’observation 7.

Ce bruit 7 modélise I'incertitude ou les erreurs de mesure affectant y;, et il est supposé suivre une

loi normale centrée, n; ~ N (0, v:;), ou vy, désigne la variance du bruit d’observation.

La relation ([2.1)) peut étre présentée comme suit :
fwilwi—1) = N(wi; wi—1, Iey), (2.3)

La notation N (wt;wt — 1,1e;) désigne une loi normale multivariée, présentée en détail dans la

section 2.1l Sa densité s’écrit :

N(wy; ) = gl S ). (2.4)

exp (
(2m) M| x|
ol, dans ce contexte, p = ws_1 et 3 = Igy, avec I la matrice identité. Cette écriture met en évi-
dence que la dynamique des poids suit une loi normale multivariée conditionnelle, centrée sur w;_1
et caractérisée par une covariance isotrope. Comme l'indique [1], souligne que dans les modéles
linéaires adaptatifs, la matrice de covariance du bruit est fréquemment considérée comme une iden-
tité multipliée par un scalaire. Cette hypothese traduit une variation indépendante et identiquement

distribuée dans toutes les directions. [0

Afin de formaliser cette représentation. et d’en faciliter la manipulation dans les développements

ultérieurs, il est utile de rappeler la définition générale de la distribution gaussienne multivariée.

Distribution gaussienne multivariée

En théorie des probabilités, la distribution gaussienne multivariée (ou normale multivariée) con-

stitue un outil fondamental dans la modélisation des incertitudes. Elle est définie comme suit :

! Dans de nombreux cas, la covariance du bruit du processus est supposée isotrope, c¢’est-a-dire proportionnelle &
la matrice identité, afin de simplifier les calculs et de refléter une incertitude uniforme dans toutes les dimensions. [11]
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Définition 2.1 (Distribution gaussienne multivariée Sec. 8.4]). La fonction de densité de prob-

abilité d’une loi normale multivariée de moyenne g € RM et de matrice de covariance V' €

notée N (w; u, V'), est donnée par :

Cette distribution est centrée autour du vecteur moyen p, et la matrice de covariance V' régit

N(w;p, V) =

1
(2m)M det

la dispersion des probabilités autour de ce centre.

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

Comme illustré a la figure la courbe est symétrique et sa forme (ellipsoidale ou sphérique)
dépend de la structure de V. Une augmentation de la variance entraine un aplatissement de la dis-

tribution sur les axes correspondants, alors qu’une faible variance concentre la masse de probabilité

Multivariate Normal Distribution

Figure 2.1: Distribution gaussienne multivariée bidimensionnelle.

Source: |22]

autour de p. Dans tous les cas, 'intégrale de la densité sur RM est égale a 1.

Cette loi est omniprésente dans les modeles linéaires dynamiques. Par exemple, dans les modeles

d’état utilisés en filtrage de Kalman, on suppose généralement que :

> exp (—;(w — )TV (w— u)) :

0.0012
0.001

0.0008
0.0006
0.0004
0.0002

M x M
R ;
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o La distribution a priori inconditionnelle de 1’état initial wq : f(wo) = N (g, Vo).
o Le bruit de prédiction est modélisé par u; ~ N (0,&.I).

o Le bruit d’observation est une variable aléatoire gaussienne : 1; ~ N (0, vy).

ou vy représente la variance du bruit d’observation, c’est-a-dire l'intensité moyenne des erreurs
de mesure affectant g;. Ces hypotheéses permettent des mises a jour récursives optimales des états
via les équations du filtre de Kalman, tout en maintenant une forme analytique fermée pour les

densités de probabilité a chaque instant ¢.

Les équations (2.1)-(2.2) sont couramment utilisées dans le domaine du traitement du signal,
car il est fréquent de supposer que les entrées observées du systeme, x;, influencent la sortie y; par

une combinaison linéaire avec les variables d’état w;.

2.2 Approches variationnelles bayésiennes

En approche bayésienne, on vise a déterminer la distribution des poids w; conditionnée aux sor-
ties y¢, en prenant en compte la dynamique temporelle des variables d’état modélisée par I’équation
auto-régressive ([2.1]). L’objectif final est de calculer la distribution a posteriori de w; en fonction de

toutes les observations disponibles jusqu’a l'instant ¢, soit {y;} = [y1, ... yi—2, ye—1, 9] [20, Ch. 12]

fwil{ye}) = flwil{ye—1}, ve), (2.6)
x Pr{yfwi) [ fwewel{y1}) dwis, (2.7)
= Pr{y:|w;} / flwiwi—1) flwi—1|{ye—1}) dwe_y. (2.8)

Nous avons exploité la propriété markovienne du modele [23], selon laquelle la connaissance de
w;_1 suffit & caractériser la distribution de w;. La relation permet ainsi de mettre a jour
récursivement la distribution f(w|{y:}) & partir de f(wi—1|{yi—1}). Ce mécanisme constitue le
fondement méme de I'estimation des parametres: a chaque nouvelle observation, la distribution des

parametres est réajustée en s’appuyant sur les résultats des étapes précédentes. C’est précisément
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sur ce principe de mise a jour récursive de la distribution a posteriori E| que repose le filtrage de

Kalman.

Pour ¢t = 1, la récurrence ([2.8)) nécessite une distribution a priori, que nous supposons gaussienne.

fwol{yo}) = f(wo) = N(wo; 0, vol), (2.9)

ou vy, la variance a priori doit étre ajustée aux données.

Afin de traiter (2.8), nous nous appuyons sur une représentation paramétrique gaussienne de
fwil{y:}), cest-a-dire f(wi|{y:}) = N(wy; py, Vi), ce qui nous permet de mettre en ceuvre une

approximation définie comme suit E| :

Fwnl{y-a}) = [ Fwufwr) Fwia| (1)) dwio, (210)

Flwil{ye}) o< Priyewi} fwil{g-1}), (2.11)
Flwi{y}) =P | Fwil{ye)] (2.12)

ou P[f(w)] est Popérateur de projection f(w) sur 'espace des distributions gaussiennes, parmi

lesquelles nous considérons les formes possibles suivantes avec différents degrés de simplification :

N(wy, py, Vi) Modele a covariance matricielle
flwel{ye}) = N(wy, py, diag, . (ve)) Modele a covariance vectorielle, (2.13)
N (wy, py, v,X) Modele a covariance scalaire

Ou diag,,,;(v) est la matrice diagonale dont les éléments diagonaux sont rassemblés dans le vecteur

v.

La projection dans ([2.12)) consistera a trouver f(wy|{y;}) qui minimise la divergence de Kullback-
Leibler (KL) [25] par rapport & I'argument de projection f(w|{y;}) ; ceci est réalisé en utilisant ce

qui suit.

2I’estimation récursive présentée en est dérivée sans formuler d’hypotheses particulieres sur la nature des
fonctions de densité de probabilité (PDF). Cette approche, bien reconnue dans la littérature( [20],Sec. 12.6), conduit
au filtre de Kalman linéaire dans le cas ou les relations entre les variables aléatoires sont linéaires et que ’ensemble
des distributions considérées sont gaussiennes ( [20], Sec. 13.2)

3Nous utilisons la relation N (w; gy, V1N (w; pry, V2) = N(w; prg, V)N (0 1o, Vi + Vo), [24L Ch. 8.4].
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Proposition 1. La distribution f(w, | {y;}), définie dans (2.13)), est la plus proche de f(wy |

{y:}) au sens de la divergence de [KL] [25], lorsque ses parameétres sont définis comme suit :

pe = Elw | {w:}], (2.14)

Vi =E[(w; — py)(we — p)7 | {we}], (2.15)

vy = diage (Vi) (2.16)
_ TI'(Vt) o 1 T

v= = 1T, (2.17)

ou diag., (V') représente la diagonale de la matrice V', et v; dans (2.17)) correspond & la moyenne
arithmétique des éléments de vy, M désigne la dimension du vecteur d’état et Tr(-) représente la
trace de la matrice.

Preuve : voir [15, Annexe A].

La récurrence approximative définie dans (2.10)(2.12) s’explique par le fait que f(w; | {y:})

est une loi gaussienne, telle que définie dans (2.13)). En introduisant une variable gaussienne sup-

plémentaire, comme indiqué dans I’équation ([2.1)), on obtient alors :

f(wt ‘ {yt—l}) = N(wt; Hii—1s Vt,t—l)- (2-18)

Oou
Hei—1 = K15 (2.19)
Vt,t—l =V, 1+ el (2.20)

Dans notre cas d’étude, tout le développement sera réalisé dans le domaine logarithmique, ou

les distributions gaussiennes sont représentées par des formes quadratiques de 'argument :

1 _
—log NV (wy; Hit—1, Vii-1) x §(wt — My tfl)TVt,tl—l(wt - V’t,tfl)‘ (2.21)

Ainsi, nous procédons en deux étapes : (i) nous approchons In f(w;|{y;}) en utilisant une forme
quadratique, dans laquelle (ii) nous identifions ensuite les termes correspondant a la moyenne et a

la covariance.
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Les étapes de 'approximation sont effectuées comme suit :

Q(w) = ~In f(awy | {ui}) (222)
= t(efwsy) o flw | {y1), (223
o U Fwsy) + g wn— pig )TV (o — i), (224)
~ B ye) + 5w — )TVl (w0 — i) (225)
o o flawn ) (226)

Cette approximation est obtenue en développant £(x]w;y;) en une série de Taylor tronquée autour

de p; ;¢ (en se basant sur {y; — 1} [21,24], on obtient I'estimation MAP E| de w)

E(mgw; Yt) = g(mgﬂt,tﬂ; yt) + gtac}(’w - /J't,tfl) + hy(w — Ut,tfl)Tmth(w - “t,tfl)a (2.27)

ou g; et hy sont respectivement les premieéres et deuxiémes dérivées de £(z;y;) par rapport a z ou

— T .
2 =T Kt y—15

d

g =9(zy) = @K(Z;yt). (2.28)
d2

he = h(z;y) = @ﬁ(za Yt)- (2.29)

La convexité de ¢(z;y¢) en z est assurée par le fait que hy > 0.
A partir de cette approximation quadratique, nous identifions les paramétres de la distribution

approchée en déterminant le mode et la matrice de covariance associée.

Le mode de la distribution a posteriori est obtenu en minimisant la fonction Q(w), définie comme

I'opposée du logarithme de la densité. Ce mode est donné par :

py = argmin Q(w), (2.30)

tandis que la matrice de covariance V; est obtenue en prenant I'inverse de la Hessienne de Q(w),

évaluée au point p, :
~1

V= |ViQw)] (2.31)

W=pby

“Le MAP (Maximum A Posteriori) est une méthode d’estimation qui maximise la probabilité a posteriori basée
sur les données observées et les connaissances a priori [21}24].
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Ainsi, la densité approchée f (w¢|y,) peut étre projetée sur la famille des distributions normales

N sous la forme :

Plf(wily,)] = N (wi; gy, V). (2.32)
En remplacant £(-;y;) par £(-;y;) dans Q(w), le mode p; est obtenu en annulant le gradient :

VuQW)|,_,, - = gt + hww! (i — wo) + Vi (1 — By _y) = 0. (2.33)

L’équation est résolue par :

=V, [wt (g(xtTwo; ye) + (@] wo; ;) w;rwo) + VZtlﬂlit—J ; (2.34)

~1
V= [h(m;rwo;yt)xtm;r + thtl_l} , (2.35)

ce qui, en utilisant le lemme d’inversion de matrice [20, Sec. 4.11], donne :

h(z/ wo; yr)

Vi=Vi1—Viaa Vi : 2.36
t tt—1 tt—1T¢Ty Vg ll—i-h(:c;'wo;yt)wt (2.36)
En combinant (2.34]) avec (2.36)), on obtient :
gt + huzy (wo — py_
B =pi_1 — Vig1xy et ey ( t 1). (2.37)

1+ h(z] wo; yt)w

Une amélioration supplémentaire peut étre envisagée en alternant 1’équation (2.37)) avec la réinitial-
isation wq < p,. Néanmoins, une seule itération avec wg = p,_; permet d’obtenir une mise a jour
explicite de la moyenne et de la covariance des parametres, constituant ainsi l’estimateur du filtre

de Kalman. Donc, les mises a jour de la moyenne p, et de la covariance V', s’écrivent :

gt

2.38
1+ hwy’ ( )

B = — Vi1

hy

T
V= Vt,t—l - Vt,t—ll'tﬂ?t Vtt—liu
1 + htwt

(2.39)
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ou Wt = a::Vt’t,lsct.

Etant donné w et ay, la vraisemblance d’observer y; sous ’hypothése d’un bruit gaussien est :
pye | w,me) = N(ye | wTae, vy), (2.40)

ou la distribution normale A est définie par :

Py | w, ) =

exp <—(yt_“w) . (2.41)

2oy 2vy

En prenant le logarithme de la fonction de likelihood (2.41]) et en utilisant la forme standard de la
distribution gaussienne uni-variée, la fonction de perte ¢(z,y;) est alors donnée par :

(Wi — y,)*

g(zayt) = 2% 9 (242)
n

ou y; représente les cibles (sorties), x; sont les données d’entrée, et w sont les poids du modele

linéaire.

o Premiere dérivée de la fonction scalaire £(z,y;)

0 (zt—y)  —e
_ /¢ S U L7 2.43
gt 8Zt ( (Z7yt)) Un Un ) ( )

ou l'erreur de prédiction définie par e; = y; — xywi_1.
o Deuxiéme dérivée de la fonction scalaire £(z, y;)
0? 1

hi=— (¢ = —. 2.44
= g () = (244)
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Algorithme 2.1. Filtre de Kalman : Modele a covariance matricielle (KF)

1: Imitialisation: py =0, Vo < VoI

2: fort=1a7T do

3: Vite1 < Vi +ed (Mise a jour de la covariance de transition)
4: we  x] Vi x (Mise & jour de oméga w;)
5: Wy < Py + % (Mise & jour de la moyenne)
6: Vi Vi — %ﬁi‘/”’l (Mise a jour de la covariance)
7: end for

8: return p

2.3 Différentes variantes du filtre de Kalman

2.3.1 Filtre de Kalman : modéle a covariance vectorielle

Les lignes 2 a 7 de l'algorithme de Kalman a covariance matricielle peuvent étre reformulées
sous I’hypothése que la matrice de covariance V; est diagonale. Cette simplification consiste a
représenter la covariance non plus comme une matrice pleine, mais comme un vecteur contenant

uniquement les éléments diagonaux.

Cette hypothese de diagonalité permet de remplacer toutes les opérations matricielles cotiteuses
(produits, inversions, etc.) par des opérations élément par élément (Hadamard), réduisant ainsi
considérablement la complexité algorithmique et la charge de calcul. Pour rappel :

o vy = diag. (V) ott vy € RM regroupe les variances de chaque composante de w; ;

o diag, . (v;) désigne la matrice diagonale formée a partir du vecteur vy.

Le tableau ci-dessous présente les équations clés du modele vectoriel (I’Algorithme 2.2)) obtenues a

partir du modele matriciel (I’Algorithme 2.1).
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Note :

L’initialisation s’effectue selon : vg < vg - 1.
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Formule vectorielle

Passage matriciel

V-1 = Vi1 + &l

diag, . (vi—1 + &:1) = diag ¢ (vi—1) + &1

W = ’U;El,—t—l(m%)

m;r ’ diagmat (,Ut,tfl) :

-y 2
Utt 15”1:

Vip—1 O Tt - €
My = py_q+

diagmat(’vt,t—l) “ Ty = V-1 O Ty

Up + Wi
Vit O T2 . dia, vy 1)z, dia Vig—
Vi =V 1 O (1_ t,t—1 t) ldlagmat<vt,t—l)_ mat ( tt )T, Smat ( tt 1)
Uy + wy Uy + Wy
2
W Ut(Jt) 1x£j)
ti-1 U77 —+ wy

(3)

© désigne le produit élément par élément (Hadamard),

x? le vecteur des carrés des composantes de

Ty, vy le j-ieme élément de vy 1.

Table 2.1: Passage du modéle matriciel au modéle vectoriel diagonal.

Algorithme 2.2. filtre de Kalman : modeéle & covariance vectorielle (vKF)

1
2
3:
4
5

: Initialisation: vo < vp-1;e4¢e-1; pug<+ 0
:fort=1aT do
Vg1 & V-1 T &1
w =], 1 (xF)
o = By F V1 O @ - S
Vi V1 O (1 — 7”““1@'%')
end for e
return u

(Mise a jour de la covariance de transition

(Mise a jour de oméga w
(Mise a jour de la moyenne

)
)
)
)

(Mise a jour de la covariance

En remplacant la matrice V'; par un vecteur v, on obtient une version simplifiée du filtre de Kalman,

qui :

o réduit la complexité de O(M?) & O(M

o facilite 'implémentation numérique.

),

e permet une interprétation élément par élément de la mise a jour des incertitudes.

JJ
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L’algorithme vectoriel ainsi obtenu (voir [Algo 2.2)) offre un compromis efficace entre précision de
I’estimation et colit computationnel, tout en conservant 1’essentiel des propriétés du filtre matriciel.

Cet algorithme est exactement équivalent a celui proposé dans [18].

2.3.2 Filtre de Kalman : modéle a covariance scalaire

Nous passons d’'un modele a covariance vectorielle vy = diag.(V+) & un modele scalaire en
supposant que toutes les composantes de la variance sont identiques et égales a une moyenne vy.

Celle-ci est définie comme la moyenne des éléments diagonaux de la matrice Vy :

Tr(V 1
Ewt) = 71T (2.45)

Ve =

On suppose que la covariance diagonale est homogene, c’est-a-dire que chaque composante de v
est identique :

vgj) = pourtoutj=1,..., M (2.46)

Alors, la moyenne des composantes de v; est :

L) L 1 _
sz::lvt —M;Ut—M-M-vt—vt. (2.47)

Ce résultat justifie la supposition :

1
Ve = Ml—rvt, (248)

ou 1 est un vecteur de M uns. Cette moyenne permet de remplacer le vecteur v; par le scalaire v

dans les équations du filtre.

Ainsi, dans les équations du filtre de Kalman a covariance vectorielle, on remplace chaque vecteur
de variances vy —1 par un vecteur homogene vy ;1 - 1, en supposant que toutes les composantes de
la variance sont égales. Cette simplification permet de dériver les équations du modele & covariance
scalaire a partir de la version vectorielle.

Le tableau suivant résume les principales étapes de cette transition, en détaillant les équivalences

formelles entre les deux modéles :
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Formule scalaire Passage depuis le modele vectoriel
1_+ . .
v = Ml vy On approxime v; = diag, (V) par une

moyenne : v; = 15 Tr(V) [13]

Vi1 = V-1 1 Supposition d’homogénéité de la variance

sur toutes les dimensions

_ 2 T 2 _ (4)?
wi = vt - ||| Vi 1 Tf = Vg1 D5 T
— [& —
My =y + Vpp 1t vnﬁwt Vi1 Oy = Vg1 Ty
_ 1w () : 4 N
Vg = Vg1 (1 M oo +Wt> Moyenne des v;”’ si tous égaux a v

1 .
v =u
J

Table 2.2: Justification de la transition vers le modeéle a covariance scalaire.

En appliquant ces équations, on obtient ’algorithme du filtre de Kalman & covariance scalaire
suivant, qui repose uniquement sur une mise a jour scalaire de la variance commune a toutes les

dimensions :

Algorithme 2.3. filtre de Kalman : modeéle a covariance scalaire (SKF)

1: Initialisation : p < 0, vy ;1 < vp

2: fort=1a7T do

3: Vg1 ¢ Vg1 + € (Mise a jour de la covariance de transition)
4 w = ||z ||Pve 1 (Mise & jour de oméga w)
5 My < py_q V1T vniwt (Mise & jour de la moyenne)
6: Vp 4= Vpp—1 (1 — ﬁ . 'un{jfwt) (Mise a jour de la covariance)
7: end for

8: return pu

2.3.3 Filtre de kalman simplifié & variance fixe

Une autre simplification est obtenue si I'on suppose que la variance v;;—1 est constante dans le

temps ¢, c’est-a-dire v;;—1 = v. Nous obtenons alors ’algorithme du filtre de Kalman simplifié a
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variance fixe (fSKF) :

_ (&7
= : , 2.49
By =My + 0T Uy + Gt (2.49)
Ou l'initialisation nécessite de définir v.
Algorithme 2.4. Filtre de Kalman Simplifié & Variance Fixe (fSKF)
1: Initialisation : <+ 0, v = cte
2: fort=1a7T do
3: Wy + ||z||?v (Calcul de oméga w)
4: My < Py +0Tp - vﬁ@ (Mise & jour de la moyenne)
5: end for
6: return p
2.3.4 Descente de gradient stochastique
Enfin, en supposant que h; = 0, (2.49)) puisse étre réécrit comme
Ut — [g—1 — VTG (250)

ce qui est équivalent & I’algorithme de gradient stochastique (SGD)E] avec un pas d’adaptation égal

a la variance a posteriori v.

Algorithme 2.5. Stochastic Gradient Descent (SGD)

1: Initialisation : Pas d’adaptation v

2: fort=1a7T do

3: Py Mg T 0Tt (Mise & jour de la moyenne)
4: end for

5: return p (Estimation finale du parameétre)

®Dans 'approche du gradient stochastique (SGD), le gradient de £(u]_,x¢;v:) est calculé, multiplié par ’étape
d’adaptation et soustrait de la solution disponible actuellement g1 ( [24] Ch. 3.1.); c’est ce qui est fait dans m
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2.4 Expériences numériques

2.4.1 Identification de la réponse impulsionnelle

Dans ce mémoire, nous nous intéressons a la problématique du filtrage linéaire appliqué a
I'identification des systémes acoustiques [10]. Contrairement aux méthodes traditionnelles qui visent
sur la reconstruction directe du signal de sortie y; € R, notre approche se concentre sur I’estimation
de la réponse impulsionnelle du systeme h. Cette réponse constitue une description fondamen-
tale du systéme, puisqu’elle encode la maniére dont celui-ci réagit & un signal d’entrée x; € RM a
travers un vecteur de paramétres optimaux w € RM™. Autrement dit, elle permet de caractériser
dynamiquement le systeme en modélisant la relation linéaire entre les entrées et les sorties dans un
cadre bruité.

Cette estimation repose sur des méthodes adaptatives permettant de suivre ’évolution temporelle
des parametres du systéme. En effet, dans un contexte acoustique, les propriétés du canal peuvent
varier au cours du temps. L’identification de la réponse impulsionnelle s’inscrit alors dans une ap-
proche paramétrique, ou les poids w sont ajustés en temps réel a partir des observations disponibles,
tout en tenant compte du bruit présent dans les données. Cette stratégie permet d’optimiser la pré-
cision des estimations et de mieux comprendre le comportement du systéme dans un environnement
réel. Cette approche s’inspire de travaux classiques en filtrage adaptatif [16] [15] et en estimation
bayésienne appliquée a l'identification acoustique [26], tout en intégrant des formulations récentes

basées sur le filtre de Kalman [13] |15].

Plus précisément, nous considérons le probléme de 'identification de la réponse impulsionnelle
acoustique, visant a caractériser la réponse d’un systeme acoustique. Dans ce contexte, le signal

d’entrée x; est généré selon le processus auto-régressif suivant :
Ty = QTy—1 + Ug, (2.51)

ol « est le coefficient d’atténuation, fixé & 0.9, et u; représente un bruit blanc gaussien de moyenne

nulle et de variance unitaire.

La réponse impulsionnelle h = [hg, h1 ..., hpr—1]T avec une longueur M = 600, montrée dans la

Fig est calculée a l'aide du logiciel "audiolabs/rir-generator" [27] pour une piece de dimensions
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(5, 4, 6) m, la source étant en position (2, 3.5, 2) m, le récepteur en position (2, 1.5, 1) m, avec
une fréquence d’échantillonnage de 8 kHz et un temps de réverbération de 225 ms [28]. La sortie

désirée est obtenue comme

ye = hTzy + e, (2.52)
ou 7 est un bruit gaussien de moyenne nulle avec une variance vy, et
T
Ty = [Cﬂt7£€t1, ey Tt—MA+1
Nous définissons le rapport signal sur bruit (SNR) comme
E [|hTa|?
SNR = 10log; ([m]) [dB], (2.53)
v
n

ou E[-] désigne I’espérance prise par rapport a la distribution de @;. Dés lors, pour une valeur donnée

du SNR et de I'espérance E[|/hTx;|?], il est possible de déterminer v, en inversant 1’équation (2.53)

Notre objectif est d’identifier la réponse impulsionnelle h.Comme 1’équation d’observation (2.2))
correspond exactement au modele (2.52), nous interprétons le résultat du filtrage adaptatif w;
comme une estimation de h, sous 'hypothése que les dimensions de h et de w sont identiques.

La qualité de cette estimation est mesurée par une erreur quadratique moyenne :
my = ———-—, (2.54)
ou par sa moyenne :
my = E[my], (2.55)

olu, en pratique, I’espérance est calculée en moyennant m; sur IV réalisations indépendantes du bruit

n: et du signal d’entrée x; ; et || - ||? désigne la norme euclidienne au carré

Comme indiqué dans I’équation (2.1]), 'ensemble des algorithmes étudiés vise a estimer ’évolution
temporelle de ’état w;. Dans notre contexte, la réponse impulsionnelle h est supposée constante,
c’est-a-dire invariante dans le temps, de sorte que h; = h pour tout t. Ainsi, pour des choix de

parametres appropriés, 'erreur quadratique moyenne converge vers une valeur faible, notée M.
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Le choix des parametres des algorithmes implique un compromis entre la rapidité de convergence
et la valeur limite de 'erreur quadratique moyenne, .. Afin de comparer objectivement les dif-
férentes méthodes, la convergence est évaluée en fixant un seuil cible pour l'erreur quadratique
moyenne. Plus précisément, nous réalisons des simulations sur une grille de parametres et sélec-
tionnons ceux permettant d’atteindre la cible fixée, My, = —15 dB.

Enfin, si I'on considére w; comme une estimation de h, on a alors Ejw] = h

Signal d'entrée

5 —— Signal d'entrée (x)
]
=
2
£
_5 .
T T T T T T
0 200 400 600 800 1000
Echantillons
Réponse impulsionnelle
—— Réponse impulsionnelle (h)
0.02 4 P P
7]
=
2 0.0l
=y
g 0.00 +
-0.01
T T T T T T T
0 100 200 300 400 500 600
Echantillons
Signal convolué
0.2 1 Signal convolué (s)
L 0.1
2
E:. 0.0 1
-0.1 4
_0‘2 1 T T T T T T
0 200 400 600 800 1000
Echantillons
Signal bruité
0.2 1
L |
S 0.0 | L . A
a |
=
g —0.2 1
—— Signal bruité (d)
T T T T T T
0 200 400 600 800 1000
Echantillons

Figure 2.2: Signal d’entrée, réponse impulsionnelle, signal bruité et signal convolué.
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2.4.2 Meéthodologie et résultats

Dans cette étude, nous avons appliqué les différentes variantes du filtre de Kalman pour estimer
la réponse impulsionnelle dans un modele linéaire avec un bruit gaussien.
L’efficacité du filtre a été évaluée dans un premier temps en fonction des parametres principaux
propres a chaque algorithme, du coefficient d’atténuation a défini a ’équation (2.50), de lerreur
quadratique moyenne, du rapport signal sur bruit (SNR) et du nombre d’échantillons (7). Les sim-
ulations sont réalisées initialement avec un rapport signal sur bruit (SNR) fixé a 5 dB, un coefficient
d’atténuation a = 0.9 et une erreur quadratique moyenne cible 7, = —15 dB. Chaque méthode

est étudiée sous différents scénarios en variant systématiquement ses parametres spécifiques.

1. Filtre de Kalman (KF)
Dans cette analyse, nous évaluons l'impact de la variation des parameétres ¢ et vy (vari-
ance initiale) sur la performance d’un filtre de Kalman appliqué a l'estimation de la réponse

impulsionnelle dans un modele linéaire.

00 —— KF:vy=107% g=10"11

KF: vo=107%,¢=2.9-10"1
KF: vo=10"%,£=5.0-10"1!
5.0 —— KF:vp=1076, =101
---- Cible M, = — 15 [dB]

—2.54

—7.5 1

¢ [dB]

IE —10.0 A

—12.5 1

—15.0

—17.5 1

0 20600 40(I)00 60(I)00 80(I)00 100I000
T [échantillons]

Figure 2.3: Erreur quadratique moyenne m: en fonction des hyperparameétres ¢ et vy du filtre de

Kalman (KF, |Algorithme 2.1)), pour M. = —15dB, SNR =5dB, a = 0.9 et N = 1 réalisation.
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2. Filtre de Kalman Simplifié (SKF)

Ensuite, nous analysons l'effet des variations des parameétres et vy (variance initiale)
sur les performances d’un filtre de Kalman simplifié utilisé pour l’estimation de la réponse

impulsionnelle dans un modele linéaire.

007 —— SKF:vy=8.0-10"%, e=10"°

SKF: vg=8.0-10"%, £=5.0-10"10
—— SKF:vy=8.0-107% ¢=2.4-10"10
5.0 —— SKF:vp=8.0-10"% £=10"10
---- Cible M, = — 15 [dB]

—2.5 1

—7.54

—10.0 A

me [dB]

—12.5 1

—15.0

—17.5 1

0 20600 40(I)00 60600 80600 100I000
T [échantillons]

Figure 2.4: erreur quadratique moyenne m; du filtre de Kalman simplifié¢ SKF (|Algorithme 2.3|) pour
différents réglages de et vy, avec mo = —15dB, SNR = 5dB, « = 0.9 et N =1 réalisation..

3. Filtre de Kalman Simplifié & Variance Fixe (fSKF)

Nous analysons ensuite l'effet des variations du parametre v (variance fixe) sur les perfor-
mances d’un filtre de Kalman simplifié a variance fixe utilisé pour ’estimation de la réponse

impulsionnelle dans un modele linéaire.
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0.0 — fSKF:v=2.4-10""7
—— fSKF:v=4.0-10""
—251 —— fSKF:v=10"°6
—  fSKF:v=5.0-10"6
—>07 ---- Cible M. = — 15 [dB]
E‘ —7.51
S,
IE —10.0 1
150 fF——— 2hnd &., — e ——— ——————
-17.5 T T T T T T
0 20000 40000 60000 80000 100000

T [échantillons]

Figure 2.5: Performance du filtre de Kalman simplifié & variance fixe fSKF (|Algorithme 2.4) en termes
d’erreur quadratique moyenne m;, mesurée pour plusieurs combinaisons de et vy, dans un scénario

défini par m. = —15dB, SNR =5dB, a = 0.9 et N = 1 réalisation.

4. Descente de Gradient Stochastique (SGD)

Cette section évalue I'impact des variations du parametre 7 = pu sur lefficacité de la
descente de gradient stochastique appliquée a I'estimation de la réponse impulsionnelle pour

un modele linéaire.
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07 —— SGD: p=1.7-10"7
] SGD: u=2.5-10""7
' —— SGD: u=4.0-10"7
eol —— SGD: u=5.0-10""7
Cible M., = — 15 [dB]
g 75
IE —10.0 A
—12.5 1
—15.0 fF——mmm e o S e e e e —

0 20600 40(I)00 60600 80CI)00 100I000
T [échantillons]

Figure 2.6: Erreur quadratique moyenne m; obtenue avec la descente de gradient stochastique, SGD
( |Algorithme 2.5)) pour différentes valeurs de u, avec M. = —15dB, SNR = 5dB, a =09 et N =1
réalisation.

Les résultats pour les différents algorithmes sont illustrés dans la Fig. Ainsi que, les

parametres utilisés pour obtenir ces courbes sont indiqués dans le Tableau [2.3] & des fins de re-

productibilité.
Algorithmes Parameétres
SGD p=25-10"7
KF £=29-10""1 ¢yy=1.10"6
SKF e=24-10710 ¢y5=1.10"6
fSKF T=4-10"7

Table 2.3: Parameétres des algorithme que nous avons utilisé pour obtenir les résultats présentés dans

la figure @



30

La figure illustre la convergence des différents algorithmes en fonction de I’évolution de

Ierreur quadratique moyenne 7.

—12 1

—14

-16 1

0 20(I)00 40(I)00 60600 80(I)00 100|000
T [échantillons]

Figure 2.7: Convergence des algorithmes : KF, SKF, fSKF et SGD pour un (SNR) = 5 dB, o = 0.9
et erreur quadratique moyenne cible M~ = —15 dB pour 25 réalisations dans la moyenne.

Les analyses sont réalisées avec un nombre d’échantillons fixé a T'= 100 000 pour 1’ensemble des
méthodes, et une réponse impulsionnelle de taille M = 600, ou T' désigne le nombre d’échantillons
et M la longueur mémoire du systéme. Le rapport signal sur bruit (SNR) est fixé a 5dB, avec un
coefficient d’atténuation a = 0.9, et une erreur quadratique moyenne cible de my, = —15dB. Les

résultats présentés correspondent a une moyenne calculée sur N = 25 réalisations indépendantes.

2.4.3 Analyse comparative des scénarios simulés

A la suite des expérimentations initiales, nous avons réalisé une série supplémentaire de simula-
tions afin d’analyser rigoureusement ’effet de la variation de certains parameétres environnementaux
clés sur les performances des algorithmes étudiés. Ces parametres incluent notamment le coefficient
d’atténuation «, signal sur bruit (SNR) et 'erreur quadratique moyenne cible T,. L’objectif prin-

cipal de ces simulations est d’évaluer I'impact de ces variations sur les métriques de performance
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considérées.

Les simulations initiales, précédemment définies dans la section [2.4.2] avaient été effectuées en util-
isant les valeurs suivantes : un coefficient d’atténuation o = 0.9, signal sur bruit (SNR) de 5 dB et
une erreur quadratique moyenne cible de —15 dB. Dans cette nouvelle phase, notre étude se focalise

sur la maniere dont la modification de ces parametres influence le comportement global du systeme.

Afin d’approfondir notre compréhension des réactions des différents algorithmes sous des con-
ditions variées, nous proposons une analyse comparative structurée autour de trois scénarios spéci-

fiques :

e Le premier scénario étudie les effets induits par la variation du coefficient d’atténuation .

o Le deuxieéme scénario se concentre sur ’'analyse des impacts du rapport signal sur bruit (SNR)

sur les performances globales des algorithmes.

e Le troisieme scénario examine l'influence d’une modification de la cible d’erreur quadratique

moyenne Ty, sur les résultats obtenus.

Cette méthodologie comparative permettra d’obtenir une vision compleéte et détaillée de I'influence

de ces parametres sur les performances des algorithmes étudiés.

2.4.3.1 Impact de la variation du coefficient «

En faisant varier le coeflicient, initialement fixé a 0.9 dans I’équation , nous procédons
a une nouvelle série de simulations pour ajuster les parameétres de chaque algorithme. La valeur
testée dans cette étude est de 0.99, afin d’observer précisément son influence sur la convergence et
la stabilité des algorithmes.
Nous suivons le processus méthodologique décrit dans la section précédente, qui consiste a déter-
miner les ensembles de parametres permettant aux algorithmes d’atteindre l'erreur quadratique
moyenne cible de -15 dB avec un SNR fixé a 5 dB. Une fois ces parametres identifiés, nous com-

parons la vitesse de convergence afin d’évaluer les performances respectives des algorithmes.

Lors du lancement des simulations utilisant ’algorithme SGD, nous n’avons pas réussi a atteindre

lerreur quadratique moyenne cible de —15dB. Cette dynamique est illustrée dans la figure 2.8
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—— SGD: u=1078
n | SGD: u=2.0-10"8
SGD: u=3.0-10"8
o — SGD:pu=3.3-10"%
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'E \
T I U b G e e e St ——————————— e
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_20- N
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Figure 2.8: Analyse de la sensibilité de ’erreur quadratique moyenne m; de la descente de Gradient
Stochastique aux variations de pas adaptation u, pour un cas d’étude ou M~ = —15dB, SNR = 5dB,
et a =0.99.

Nous observons que la convergence est atteinte pour une erreur instantanée avoisinant -25 dB.
Cependant, il n’a pas été possible d’obtenir une convergence pour des erreurs plus faibles ( T, =
—15dB). Cela est di au fait qu'en augmentant le pas d’adaptation (step size u), l'algorithme
devient instable et diverge, comme le montre la courbe verte. Ce comportement met en évidence

un compromis entre la rapidité de convergence et la stabilité de ’algorithme utilisé.

Les résultats pour les différents algorithmes sont illustrés dans la Fig. Les parametres
optimaux identifiés sont regroupés dans le tableau [2.4] assurant ainsi la reproductibilité de nos

résultats.
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Algorithmes Parameétres
KF e=15-10""1 4y =1.10"°
SKF £=3-1077 vp=8.10"6
fSKF v=14-10"°
Table 2.4: Parameétres des algorithme que nous avons utilisé pour obtenir les résultats présentés dans
la figure
1 —e— KF
, SKF
fSKF

_4 -

— 61
m
S,

o —8 A
'€

-10 -

-12

_14 -

S TP Nl S g %
_16 .
0 50000 100000 150000 200000 250000 300000

T [échantillons]

Figure 2.9: Convergence moyenne des algorithmes KF, SKF et SGD sur 25 trajectoires, pour un SNR
de 5dB, un coefficient o = 0.99 et une erreur cible de m. = —15dB.

La figure présente la convergence des différents algorithmes a travers I’évolution de ;. Pour
garantir la stabilité des résultats, les simulations ont été effectuées sur 7' = 300000 échantillons, en
considérant une réponse impulsionnelle de longueur M = 600. Le rapport signal sur bruit (SNR)
est fixé a 5 dB, avec un coefficient d’atténuation a = 0.99 et une cible d’erreur quadratique moyenne

Moo = —15dB. Les résultats sont moyennés sur N = 25 réalisations indépendantes.
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2.4.3.2 Impact du changement de SNR

Dans cette série de simulations, nous examinons ’effet d’une augmentation du rapport signal
sur bruit (SNR) de 5 dB & 10 dB sur les performances des différents algorithmes étudiés. L’objectif
principal est d’évaluer comment cette amélioration du SNR influence la précision et la convergence
vers une erreur quadratique moyenne cible de -15 dB.

Afin de garantir la cohérence des résultats, nous conservons les parameétres environnementaux
précédemment définis dans la section initialement calibrés pour un rapport signal sur bruit
(SNR) de 5 dB, a = 0.9 et M = —15dB.

Les résultats obtenus sont présentés a la figure tandis que les parameétres utilisés pour chaque

algorithme figurent dans le tableau

Algorithmes Parameétres
SGD pw=18-10"7
KF e=11-1071 y5=1.10"6
SKF £=1.68-10"? vy =810
fSKF 7=1-10"6

Table 2.5: Parameétres des algorithmes que nous avons utilisé pour obtenir les résultats présentés dans

la figure [2.10}

La figure illustre la convergence des différents algorithmes en fonction de I’évolution de 77,
pour un rapport signal sur bruit (SNR) fixé & 10dB et un coefficient d’autocorrélation o = 0.9.
L’erreur quadratique moyenne cible est de My = —15dB, moyennée sur N = 25 réalisations
indépendantes. Pour garantir la convergence tout en limitant le cotit computationnel, le nombre

d’échantillons a été restreint a 7" = 60000.
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Figure 2.10: Comparaison de la convergence des filtres KF, SKF, fSKF et SGD dans un cadre expéri-
mental ot SNR = 10dB, m. = —15dB et a = 0.9, avec des résultats moyens sur 25 simulations.

L’amélioration observée s’explique par le fait qu'une augmentation du rapport signal sur bruit (SNR)
réduit I'incertitude des mesures, ce qui accélere la convergence du filtre vers 'erreur quadratique
moyenne cible. Cette rapidité de convergence est particulierement manifeste pour SNR = 10 dB, ou
les filtres atteignent le méme niveau d’erreur quadratique moyenne en un nombre d’itérations plus
faible. Cela illustre clairement l’influence bénéfique d’un environnement moins bruité sur la vitesse

d’adaptation des filtres.

2.4.3.3 Impact du changement de ’erreur quadratique moyenne

Cette série d’expériences vise a analyser I'impact d’un renforcement des exigences de perfor-
mance, en abaissant la cible d’erreur quadratique moyenne de —15 dB a —25 dB. L’objectif est
d’évaluer la capacité des différents algorithmes a converger vers un seuil de précision plus strict,
sans modification des parametres d’apprentissage environnementaux précédemment identifiés dans
la section [2.4.2] & savoir un SNR de 15 dB, un coefficient d’atténuation o = 0.9 et une erreur

quadratique moyenne cible de —15 dB. . Pour assurer la comparabilité des résultats, les simula-
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tions ont été réalisées en conservant les parametres o = 0.9 et un rapport signal sur bruit (SNR)
de 5dB, initialement calibrés pour une erreur cible m,, = —15dB..
Les performances obtenues sont présentées dans la figure tandis que les valeurs des parametres

utilisés figurent dans le tableau

Algorithmes Parametres
SGD w=233-10"8
KF e=27-1078 yy=1-10"6
SKF £=3-10712 yy=8-10"°
fSKF 7=35-10"8%
Table 2.6: Paramétres utilisés pour la simulation avec une cible d’erreur M., = —25dB.

La figure illustre la convergence des différents algorithmes en fonction de I’évolution de ;.

~10 1

mt [dB]

—15

-20 1

—25

0.0 0.2 0.4 0.6 0.8 1.0
T [échantillon]

le6

Figure 2.11: Convergence moyenne de m; pour KF, SKF, fSKF et SGD, avec SNR = 5dB, a = 0.9, et
cible M. = —25dB sur 25 trajectoires.
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L’interprétation de cette amélioration réside dans l'ajustement des parametres d’apprentissage
afin de répondre a une exigence de précision plus stricte. En particulier, I'utilisation de valeurs
d’varepsilon (¢) plus faibles permet de réduire lintensité du bruit de processus. En addition,
I’augmentation du nombre d’échantillons 7" sur lesquels la moyenne est effectuée améliore la ro-
bustesse des estimations instantanées. Ces ajustements favorisent ainsi une convergence plus pro-
gressive mais plus fiable vers une erreur moyenne cible de —25dB. Ils illustrent la nécessité de
configurations paramétriques adaptées pour maintenir la stabilité et la performance dans des con-

ditions d’exigence accrues.

2.5 Conclusion

Ce chapitre a posé les fondements théoriques du filtre de Kalman appliqué aux modeles linéaires
a bruit gaussien, en détaillant sa formulation probabiliste, son interprétation bayésienne, et ses dif-
férentes variantes selon la structure de la matrice de covariance [13]. A partir d’une modélisation
autorégressive des poids, nous avons vu comment le filtre permet une estimation récursive et opti-
male de ces derniers, tout en intégrant I'information issue des observations successives.
L’approche a posteriori adoptée repose sur une représentation gaussienne paramétrique, projetée
a chaque instant dans ’espace des distributions normales via la minimisation de la divergence de
Kullback-Leibler [25]. Cette projection donne lieu a différentes implémentations du filtre, du modeéle
complet a covariance matricielle jusqu’aux versions simplifiées vectorielles et scalaires, voire fixes.
En parallele, nous avons montré comment le filtre de Kalman s’apparente a la descente de gradient

stochastique (SGD), avec une interprétation bayésienne du pas d’apprentissage.

Les formulations introduites ici fournissent un cadre rigoureux et modulaire pour l'estimation
en ligne dans des environnements bruités. Le chapitre suivant s’attarde sur I'estimation des hyper-
parametres du modele. qui constituent des leviers essentiels pour optimiser la qualité des prédictions

et assurer la robustesse du filtrage dans des environnements dynamiques.






Chapitre 3

Estimation des hyper-parametres du

modele

A la suite de la présentation théorique du filtre de Kalman et de ses fondements probabilistes, ce
chapitre s’attache a I’étude empirique de ses performances dans un contexte applicatif d’identification
de réponse impulsionnelle acoustique. En particulier, ’accent est mis sur I’estimation des hyper-
parametres du modele, notamment la variance du bruit de processus ¢; et celle du bruit de mesure v,
qui conditionnent fortement la qualité des prédictions. Plusieurs stratégies d’estimation sont ainsi
comparées afin d’évaluer leur impact sur la convergence, la précision des estimations et la robustesse
face aux variations dynamiques. Ces investigations visent a déterminer les configurations optimales
pour un suivi adaptatif précis, tout en mettant en évidence les limites des approches classiques a
parametres fixes.

Afin de guider cette analyse, il est essentiel de comprendre le role structurel de ces hyper-parameétres
au sein des équations du filtre de Kalman. Leur estimation conditionne directement la qualité du

processus de prédiction et de mise a jour, qui constitue le coeur du filtrage bayésien séquentiel.

Dans le cadre des filtres de Kalman, ’estimation des hyper-parameétres, a savoir la variance du
bruit de processus ; et celle du bruit de mesure v,, joue un role crucial dans la performance du
modele. Une estimation incorrecte de ces parametres peut nuire a la convergence et a la précision
du modele. Ces hyper-parametres régulent les deux étapes fondamentales des modeles de Kalman :

(i) la prédiction de 'état du systéme basée sur son évolution dynamique (2.1)) et (7) la mise & jour
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de cet état en fonction des observations bruitées .

L’équation modélise la dynamique du systeme, en supposant que ’état actuel w; dépend de
I’état précédent wy_1 avec une perturbation aléatoire contrélée par €;. En parallele, I’équation
relie les observations y; aux entrées x; via une combinaison linéaire avec 1’état wy, et est perturbée

par le bruit d’observation ;.

3.1 Principe général de ’estimation par Maximum Likelihood

Cette section expose le principe fondamental de I’estimation par maximum de vraisemblance
(MLE) dans le cadre spécifique du filtre de Kalman adaptatif. L’objectif central consiste a déter-
miner les valeurs optimales des parametres de variance de transition € et du bruit d’observation v,
en maximisant la vraisemblance associée aux observations yi.7, compte tenu du modele dynamique

considéré [14].

3.1.1 Formulation du probléme

Le probléme d’estimation consiste a identifier les valeurs de ¢ et v, qui maximisent la vraisem-
blance des données observées. Formellement, cela revient & minimiser la log-vraisemblance négative

définie comme suit :

€, 0y = arg rglgxp(ylzﬂs,vn) (3.1)
yUn
T
=argmin » /. 3.2
gmin )l (3.2
gt = _lng(yt|y1:t717€7’U?7)a (33)

ol p(y¢|y1:4—1, €, vy) désigne la densité prédictive de I'observation y;, conditionnée aux observations

précédentes et aux parametres € et vy,.
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3.1.2 Calcul récursif de la densité prédictive

Afin d’obtenir une formulation opérationnelle, il est nécessaire d’établir explicitement la densité

prédictive. Celle-ci se calcule récursivement selon :

p(Yelyre—1) = /p(yt\wt)p(wt|y1:t—1)d’wt, (3.4)
= /./\/'(yt; x wy, )N (we; py_q, (vi—1 + &) I )dwy, (3.5)
= /./\/(yt;zt,vn)./\/'(zt;azjut_l,wt)dzt, (3.6)
= N(ys; @/ py_y,wi + vy), (3.7)
ott wy = |l@e]|?(vi—1 + €4)-

Cette expression permet ainsi d’expliciter la log-vraisemblance négative instantanée :

2

1
G + = log(w; + v,) + Const, (3.8)

b= —logp(ye|yr—1) = 2w +vy) 2
n

ot1 Perreur de prédiction e; est définie par e; = y; — =/ p;_; et Const = %log(27r) désigne un terme

constant indépendant de ¢, issu de la normalisation de la densité gaussienne..

3.1.3 Motivation pour I’adoption du modele dynamique

Dans de nombreuses applications pratiques, il est irréaliste de supposer que les parameétres du
modele restent constants au cours du temps. Des phénomenes tels que les changements structurels,
I’évolution du systéme ou la présence de dynamiques non observées exigent une approche plus flexi-
ble. Ainsi, bien que le modele statique présenté précédemment parte du principe que les coefficients
demeurent fixes durant toute la période d’observation, cette hypothése peut s’avérer trop restrictive
face a des données réelles, dont les relations statistiques évoluent dans le temps.

Cependant, cette hypothese empéche le modele de s’ajuster a de nouveaux schémas et limite sa
capacité a saisir les vraies variations du systeme. En se basant sur ces constats, il est naturel
de généraliser le probléme en considérant un cadre plus large ou les parametres du filtre évoluent

dynamiquement, comme cela sera exposé dans ce qui suit.
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3.1.4 Dynamique stochastique des parametres du filtre

Dans ce modele, les coefficients du filtre (h;) sont autorisés & évoluer au cours du temps selon un
processus de marche aléatoire. Plus précisément, & chaque instant ¢, le vecteur des poids h, € RM

est mis & jour selon la relation suivante :
hy = Bhi—1 + uVe*, (3.9)

ou u; est un vecteur de variables aléatoires gaussiennes indépendantes, de moyenne nulle et de
variance unitaire, €* représente la variance du bruit de processus qui contréle 'ampleur des fluc-
tuations aléatoires des coefficients entre deux instants successifs. Et, 0 < 8 < 1 est un parametre

d’auto-régression qui module la mémoire du systéme:

e lorsque 8 = 1, le modele correspond a une marche aléatoire classique, sans perte d’information,

comme souvent supposé dans la littérature [15];

e en revanche, pour 5 < 1, le modele introduit une décroissance progressive des coefficients,

reflétant une éventuelle perte ou évolution des parameters au fil du temps [29].

Cette formulation permet de modéliser les variations des parametres du systéme dues a des dy-
namiques ou a des incertitudes de modélisation.

L’observation associée a chaque instant ¢, notée y; € R, est alors donnée par :
_ T
yr = @y by + e, (3.10)

ot x; € RM désigne le vecteur d’entrée & l'instant ¢, et 7; correspond & un bruit d’observation
gaussien, de moyenne nulle et de variance v;. Cette variance est déterminée en fonction du rapport
signal-sur-bruit (SNR).

Cette équation traduit la mesure bruitée de la sortie du systeme & partir de 1’état courant des

coefficients du filtre.

Ce cadre évolutif permet au filtre de suivre et d’ajuster continuellement les parametres au fur
et a mesure de l'arrivée de nouvelles données, ce qui s’avere particulierement pertinent dans un

environnement dynamique.
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Intérét du modele dynamique

Le recours au modele dynamique présente plusieurs avantages majeurs :

e Adaptation aux changements : Il permet au filtre de s’ajuster en temps réel a des données
dont les propriétés évoluent, ce qui est fondamental pour garantir des prédictions fiables dans

un environnement non stationnaire.

e Généralisation : Le modele dynamique englobe le modele statique comme cas particulier

(e*=0et B =1), tout en offrant une plus grande flexibilité de modélisation.

Ce choix est particulierement pertinent des lors que ’on cherche a estimer de maniere optimale
la variance du bruit de processus € ainsi que celle du bruit d’observation v, par maximisation de la

vraisemblance des données observées.

3.1.5 Analyse préliminaire et sensibilité aux parametres

Avant d’aborder 'optimisation des parametres, il est pertinent d’examiner la sensibilité du mod-
ele a différents choix de ¢ et v,. Une premiere étape consiste a analyser la moyenne glissante de la

log-vraisemblance, définie par :

B 1 L-1
==l (3.11)
L =0

Cette exploration préliminaire permet d’appréhender qualitativement I'impact de € et v, sur la per-
formance prédictive du modele, et de mieux comprendre leur réle avant 'introduction de stratégies

adaptatives.

Afin de compléter cette étude, nous menons une série de simulations visant & évaluer 'influence

de ces parameétres sur l'erreur quadratique moyen my et sur la log-vraisemblance moyenne #;. Notons
. . N g . : . TN

que le cas du modele statique (¢*=0) s’inscrit naturellement comme une situation particuliere de ce

cadre dynamique, et fera 'objet d’une comparaison dédiée en fin de section.
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3.1.5.1 Performance du filtre selon différents scénarios de paramétrisation

Pour illustrer et approfondir ces analyses, nous présentons ci-apres des visualisations graphiques
des principales métriques de performance du filtre. Ces représentations permettent de saisir la dy-
namique d’apprentissage et la capacité d’adaptation de ce dernier face aux variations des parametres

du systéme.

Les figures suivantes synthétisent ces résultats et apportent un éclairage visuel sur le comporte-

ment du filtre selon les différents scénarios étudiés:

1. Effet de la variation de v, (bruit d’observation)

Ces deux figures examinent l'influence de différents niveaux de bruit d’observation sur la

performance du filtre :

0 20(')00 40('JOO 60('JOO 80('JOO
T [échantillons]

Figure 3.1: Courbe d’évolution de la moyenne glissante de la log-vraisemblance ¢; obtenue pour dif-
férentes valeurs du bruit d’observation v, dans le cadre du SKF, avec des parameétres initiaux du filtre
fixés & g9 = 1071° et vg = 8- 107%. L’évaluation temporelle de h; est réalisée en considérant ¢* = 10717,
vy =21-10"% et B =1.
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La ﬁguremontre que la perte atteint son minimum lorsque v, est fixé a 1073, valeur proche

de vy = 2.1 x 1073, Un écart important entre la valeur initiale et la valeur réelle dégrade les

performances, confirmant I'intérét de choisir v;, initial au plus pres de vy.
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Figure 3.2: Evolution temporelle de ’erreur quadratique moyenne m; pour différentes valeurs du
bruit d’observation v, dans le cadre du SKF, avec des paramétres initiaux du filtre fixés a o = 107'°
et vo = 8-107%. L’évaluation temporelle de h; est réalisée en considérant ¢* = 10710, vy =2.1- 1073 et

B=1.
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Figure 3.3: Evolution de ’erreur de prédiction au carré e? au cours du temps pour différents v, dans
le cadre du SKF, avec des paramétres initiaux du filtre fixés 4 o = 107'% et vp = 8- 107°. L’évaluation
temporelle de h; est réalisée en considérant ¢* = 10719, vy =21 1072 et B=1.

2. Effet de la variation de ¢ (variance de transition) :

Les deux figures suivantes mettent en évidence l'effet de la variance de transition € sur la

dynamique d’apprentissage du filtre.
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Figure 3.4: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différentes valeurs de la
variance de transition ¢, lors de I’évaluation temporelle de h; avec ¢* = 1071, vy, =2.1- 1073 et 8 =1,
dans le cadre de P’application du filtre SKF.
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Figure 3.5: Evolution de I’erreur quadratique moyenne m; pour différentes valeurs de la variance de
transition ¢, illustrant ’impact de ce parameétre sur la performance du filtre SKF, lors de ’évaluation
temporelle de h; avec ¢* = 10719, vy =2.1- 1072 et B =1.
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Figure 3.6: Evolution de ’erreur de prédiction au carré e? au cours du temps pour différentes valeurs
de ¢, lors de ’évaluation temporelle de h, avec ¢* = 107'°, v, = 2.1- 1072 et 8 = 1, dans le cadre de
I’application du filtre SKF'.

L’analyse des résultats montre que lorsque la valeur estimée de € est proche de la valeur réelle

e* = 10710 (courbe verte), la log-vraisemblance moyenne ¢; atteint un minimum plus prononcé

que pour les autres valeurs testées. Ce résultat souligne la sensibilité de cette métrique a un

réglage précis et réaliste de €. En revanche, les deux autres métriques considérées, a savoir
2

lerreur quadratique moyenne m; et 'erreur instantanée e;, ne révelent pas de différences

significatives permettant de discriminer clairement les valeurs de € dans ce contexte.

3.1.5.2 Performance du filtre pour ¢* =1-10"2 et g =1

Afin de compléter I’étude, nous considérons un nouveau scénario ot I’ensemble des simulations
est exécuté en fixant la variance de transition & e* = 1-107!2 (au lieu de ¢* = 1- 10710 dans les
analyses précédentes). Ce choix permet d’évaluer la robustesse et la sensibilité du filtre face a une
variance de transition tres faible. Les indicateurs de performance sont présentés et comparés a ceux

obtenus précédemment en analysant les deux scénarios suivants :
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1. Effet de la variation de v, (bruit d’observation)
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Figure 3.7: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différentes valeurs du
bruit d’observation v, dans le cadre du SKF, avec des parameétres initiaux du filtre fixés a ¢g = 10712
et vo = 8-107%. L’évaluation temporelle de h; est réalisée en considérant ¢* = 10712, vy =2.1- 1073 et

B =1.



50

— vp,=107"1
— = -2
0.0 vp=107° |
— vp,=1073
— vp,=10"%

[dB]

-2.5 \ V= 105 .
\ —_— VU — 10—6
\
-5.0 v, =10"7

-7.5

me

:12:5 WWMM?\W

-15.0 WWWW‘"‘"W

0 20000 40000 60000 80000 100000
T [échantillons]

Figure 3.8: Evolution temporelle de lerreur quadratique moyenne m: pour différentes valeurs du
bruit d’observation v, dans le cadre du SKF, avec des paramétres initiaux du filtre fixés & g = 1072
et vg = 8-107%. L’évaluation temporelle de h; est réalisée en considérant ¢* = 1072, vy =2.1- 1073 et

B=1.
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Figure 3.9: Evolution de ’erreur de prédiction au carré e? au cours du temps pour différents v, dans
le cadre du SKF, avec des paramétres initiaux du filtre fixés a4 ep = 107! et 1o = 8 - 10~%. L’évaluation
temporelle de h; est réalisée en considérant ¢* = 1072, vy, =21 1073 et B8 = 1.
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2. Effet de la variation de ¢ (variance de transition)
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Figure 3.10: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différentes valeurs de
la variance de transition ¢, lors de 1’évaluation temporelle de h; avec £ = 1-107'2, v, = 2.1- 1073 et
5 =1, dans le cadre de P’application du filtre SKF.



52

0.0 —— SKF:vg=8.0-107%,=10"9
SKF: vg=8.0-107%, £=10"10
-25 SKF: vg=8.0-10"%, e=10"11
\\ —— SKF:vg=8.0-10"%, =101
_5.0 \ —— SKF:vg=8.0-107%,£=10"13 |
x
o \ ——
E 7.5 \\ \ \
IE \

-12.5 —- NN N N f —ef o,

-15.0

0 20000 40000 60000 80000 100000
T [échantillons]

Figure 3.11: Effet de la variance de transition ¢ sur /m; lors de I’estimation temporelle de h; (¢* = 107'2,
vy, =2.1- 107 % et B = 1), dans le contexte d’utilisation du filtre SKF.
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Figure 3.12: Evolution de I’erreur de prédiction au carré e? au cours du temps pour différents ¢, lors
de I’évaluation temporelle de h; avec ¢* = 107", vy, =2.1- 107% et 8 =1, dans le cadre de I’application
du filtre SKF.
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Ces résultats sont comparés au cas statique, présenté dans la section suivante, ou * = 0,

correspondant a une réponse impulsionnelle constante.

3.1.5.3 Performance du filtre avec le modéle statique (¢*=0et §=1)

Dans cette section, nous examinons le comportement du filtre dans un contexte statique, ou la
variance de transition est fixée a zéro (¢* = 0). En reprenant la méme méthodologie de simulation

et de comparaison présente précédemment.

0 20(')00 40('JOO 60('JOO 80(')00
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Figure 3.13: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différents v, dans le
cadre du SKF, avec des paramétres initiaux du filtre fixés & o = 1071° et vp = 8-107°, avec des données
issues d’un modéele statique (¢* =0 et §=1).
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Figure 3.14: Evolution temporelle de lerreur quadratique moyenne m; pour différentes valeurs du
bruit d’observation v, dans le cadre du SKF, avec des paramétres initiaux du filtre fixés & g = 10710
et v9 = 8-107°%, avec des données issues d’un modele statique (¢* =0 et 8 = 1).
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Figure 3.15: Evolution de ’erreur de prédiction au carré e? au cours du temps pour différents v, dans
le cadre du SKF, avec des paramétres initiaux du filtre fixés & o = 107!° et v9 = 8- 107, avec des
données issues d’un modéle statique (¢* =0 et 8 =1).
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Cette comparaison montre que les parametres optimaux selon cette approche ne correspondent
pas nécessairement a la solution la plus rapide en termes de convergence de I'erreur quadratique
moyenne. Autrement dit, si cette analyse permet une adaptation optimale au sens de la vraisem-
blance, elle n’assure pas toujours la stabilité ou la rapidité de convergence du filtre.

Les résultats numériques illustrent clairement cette distinction: une optimisation fondée unique-
ment sur la vraisemblance n’est pas toujours suffisante pour garantir la performance du filtre. Cela
souligne la nécessité d’évaluer le filtre selon plusieurs critéres complémentaires, au-dela du seul cadre

statistique.

L’ensemble des figures présentées dans cette section montre que la perte est minimale lorsque
vy est fixé a 1073, valeur proche de la référence vy =2.1x 1073. Dans tous les cas étudiés, un écart
important entre la valeur initiale et la valeur réelle de v, entraine une diminution notable de la
perte et de 'erreur quadratique moyenne, confirmant I'intérét de choisir une valeur initiale au plus
pres de vy. On constate également que l'erreur quadratique moyenne reste systématiquement plus

faible pour la configuration ou vy est proche de vy, illustrée par la courbe verte dans I'ensemble des

figures.

3.1.6 Optimisation de la variance de transition par descente de gradient

Dans cette section, nous présentons une méthode d’optimisation de la variance de transition
€ par descente de gradient, appliquée & la minimisation de la log-vraisemblance négative. Cette
approche est fondée sur le calcul explicite du gradient de la fonction de cofit par rapport a €. La

démarche se structure comme suit :

1. Expression du gradient de la log-vraisemblance négative.
La fonction de cotit (log-vraisemblance négative) au temps t est notée ¢;. Le gradient de ¢,

par rapport a & s’écrit :

o —__ ¢ x) Oy i O + 1 %7 (3.12)
Oe Wy + vy Oe 2w +vy)? 0 2(wy +vy) Oe
1 1Oy | 2] *(we + vy — €f) v
= 1 3.13
wy + vy T he + (wi + vyy)? ( de il (3:13)

oit ey = y; — ] p,_; désigne I'erreur de prédiction.
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2. Calcul des dérivées récursives.

Les dérivées nécessaires a la mise & jour du gradient s’obtiennent par récurrence:

rovi—1,t—2

Oet_1

Opy_1  Opy_o e el U120 Vi—1,t-261-1 Owi1
= t—1 -
Oe Oe I Wi—1 + vy (we—1 +vy)? Oe
Ovi_2 T Owy_o
aut,g T 6t—1( 55 + 1) - 111:—1,1&—2~’13t—173t6 Ut—1,t—2€¢—1
= t—1 -
Oe wi—1 + vy (wi—1 + vy)?
[ T Ope_s
_ Opy_o by —Ut—1,t—2%4_1 5, €t—1VUp (avt—Q n 1)
Oe Wi—1 + vy (w1 +vy)2 \ Oe ’
et
oy Ov_q Owy

== (11— —
Oe ( Oe + )( M wi + vy,

Wt ) U1 Uy
M wi+wv, Oe’

Ovs_q 1wy Vtt—1 Uy
= 1)(1 - =
( +1) ( ) M wi+ vy,

iwt(l + ”n))

Oe
Ovg_q
1)1 1-—
Os ) ( M wi + vy,

B th—l-vn

= (

avec les dérivées intermédiaires :

8Ut,t—1 _ Ovi_1
Oe Oe
0
o =l

3. Algorithme d’estimation MLE

+ 1.

Oy
o

o Initialiser eg > 0 et les parametres du filtre.

e Pour chaquet=1,...,T:

(a) Calculer p, et v; via le filtre de Kalman.

(b) Calculer le gradient :

TOp

+1).

el

|| (we + vy — €f)

Ovi_q

Ovg 1

3&’ 1
Zleme, , = €L
0e T wi oy BT 9e

(wt + UU)Q

Oe

|

Ovi_2

+1).,

(3.14)

e

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

+ 1)) . (3.22)

).
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(c) Mettre a jour :

ot
€t = Et—1 — /1/587;|5:5t_1- (323)

4. Reparamétrisation exponentielle Afin de garantir que ¢4 > 0 a chaque instant, nous

introduisons une reparamétrisation exponentielle. On pose :

gt = exp(ft) = % = exp({t) = &¢, (324)
0

ou & € R, cette transformation permet d’effectuer la mise a jour dans un espace non contraint
(R), tout en s’assurant que &, reste strictement positif

Ainsi, la dérivée de la log-vraisemblance par rapport a & est donnée par la régle de chaine :

or ol  Oe or
— = — =& —. 2
& ey 04 °t Oey (3 5)

5. Mise a jour de &. L’estimation adaptative suit une descente de gradient classique:

or
§tr1 =& — pe - &t 87; e=es_1- (3.26)

6. Résumé final.

§t1 =6 — pe - e (3.27)

Wy + vy Oe (wy + vp)? Oe

ou pg > 0 est le pas d’adaptation dans I'espace log-transformé. Cette approche permet
une estimation positive de la variance de transition au fil du temps. Cette stratégie est

particulierement utile pour assurer la stabilité numérique lors de la mise & jour adaptative |12}

21].

Nous procédons ainsi a une série d’expérimentations numériques pour analyser, d’une part, le com-
portement de ’erreur quadratique moyenne my;, log-vraisemblance #; et d’autre part, I’évolution
temporelle de ¢; selon différentes valeurs de pe. Cette analyse permet d’évaluer a la fois I'impact
du pas d’adaptation sur la précision du filtre et sur la stabilité dynamique du parametre ¢, en

s’appuyant sur ’équation ([3.27)).
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3.1.6.1 Expérimentation numérique

Cette section présente les résultats obtenus a partir de simulations numériques réalisées avec
diverses valeurs du parametre d’adaptation pe. L’objectif est d’évaluer la capacité du filtre SKF a
estimer dynamiquement la variance de transition ¢, et de mettre en évidence 'effet de 'initialisation
de I’état sur la stabilité et la convergence du filtre.

Ces simulations ont été effectuées a partir d’'un modele dynamique en fixant la variance de transition
ae* = 1-1071° Dans le but d’examiner I'influence de I'initialisation sur la trajectoire de convergence
et la robustesse du filtre SKF, trois valeurs initiales pour g ont été considérées, avec vy constant a
81075, ot chaque style de ligne représente un scénario d’initialisation distinct, ce qui permet de

comparer directement la sensibilité du filtre au choix des parametres initiaux et au pas d’adaptation

-
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Figure 3.16: Erreur quadratique moyenne m; pour différentes valeurs de y¢ lors de ’évaluation tem-
porelle de h; avec ¢* = 1071° et 3 = 1, selon trois scénarios initiaux ¢ € {10_9, 10710, 10_11} et vp =8-1075,
dans le cadre de P’application du filtre SKF.
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Figure 3.17: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différentes valeurs de
e lors de ’évaluation temporelle de h; avec ¢* = 107'°, selon deux scénarios initiaux ¢, € {1072, 107!}
et vo=8-107°.
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Figure 3.18: Evolution temporelle de &; pour différentes valeurs de te lors de I’évaluation temporelle
de h; avec ¢* = 1071, selon trois scénarios initiaux ey € {10_9, 10710, 10_11} et vp =8-107°.
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Figure 3.19: Evolution temporelle de ¢; pour différentes valeurs de te lors de I’évaluation temporelle
de h; avec ¢* = 107'%, selon trois scénarios initiaux g9 € {107°,107'°,3-107"'} et vo = 8-107°.

L’analyse des Figures présentes dans cette section met en évidence que ’algorithme d’estimation
adaptative de la variance de transition (Eq. guide systématiquement e; vers la valeur cible
e* = 10719 et ce pour des jeux d’initialisation (¢q) avec vg fixé. On observe en paralléle une baisse
de la log-vraisemblance négative et une stabilisation de m;. Le pas d’adaptation j¢ module le com-
promis vitesse/stabilité : des valeurs plus élevées accélérent la convergence mais peuvent induire
des oscillations transitoires, tandis que des valeurs plus faibles accroissent la stabilité au prix d’une
convergence plus lente. Globalement, ces résultats attestent de la capacité du schéma adaptatif a

identifier la variance de transition et a améliorer la performance du filtre.
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3.2 Estimation adaptative des hyper-parametres par lissage tem-

porel.

Dans cette étude, nous avons commencé par estimer le parameétre € a chaque itération en utilisant
I'équation (3.28)) qui permet d’adapter dynamiquement e en fonction des variations instantanées

entre les états successifs.

La variance du bruit de processus e;, qui reflete les changements dynamiques des états, est

calculée comme suit :
R 1
e =gzl — o, (3.28)

ott M est la taille de la réponse impulsionnelle et la dimension du vecteur d’état, et || - || désigne
la norme euclidienne au carré. Cette formulation permet de quantifier les fluctuations des états
estimés entre deux instants consécutifs, comme détaillé dans [18, Sec. VIII].

Le hyper-parametre &; doit étre ajusté pour équilibrer une précision de suivi optimale et une minimi-
sation de l'erreur quadratique moyenne. Les variations du systeme dynamique rendent 1'utilisation
de valeurs constantes pour ces parametres ne permettent pas de garantir un compromis satisfaisant.
Sur la base de cette motivation, ’estimation donnée par 1’équation est concue pour atteindre
cet objectif. Lorsque 'algorithme commence a converger ou lorsqu’il y a un changement brusque
dans le systeme, la différence entre p, et p, ; devient significative. Dans ce cas, le parametre
é; prend des valeurs élevées, permettant ainsi une convergence rapide et un suivi efficace. En re-
vanche, lorsque ’algorithme commence a atteindre son régime permanent, la différence entre p, et
p;_; diminue, ce qui entraine de faibles valeurs de é; et, par conséquent, une faible erreur quadra-
tique moyenne.

Ces hyper-parametres doivent étre ajustés finement pour garantir des estimations cohérentes et
minimiser I'erreur globale.

Cette relation permet de mettre a jour dynamiquement I’hyper-parameétre ¢; améliorant ainsi

Pefficacité et la robustesse des prédictions du filtre de Kalman simplifié (SKF). Cette approche

a été comparée a des algorithmes ol ¢ est maintenu constant pour différentes valeurs fixes.
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Figure 3.20: Erreur quadratique moyenne m;, en comparant SKF avec différentes valeurs ¢ fixe et SKF
avec ¢ estimée temporellement (SKF__temp) suivant ’équation (3.28)), lors de I’évaluation temporelle
de h, avec e* =107 et S =1
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Figure 3.21: Evolution de la moyenne glissante de la log-vraisemblance /; pour différentes valeurs de ¢
fixe et SKF avec ¢ estimée temporellement (SKF_ temp) suivant ’équation (|3.28]), lors de ’évaluation
temporelle de h; avec e* =107 et 3 =1
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Afin d’améliorer la robustesse de I'estimation de &, nous proposons une autre stratégie basée
sur le lissage temporel. En suivant [18], nous reprenons 'estimateur instantané de la variance de
transition, Eq.(3.28)) . Par extension, nous proposons une version lissée sur une fenétre temporelle,

donnée par

J-1
. 1 2
& = M ]221 ([T T/ | (3.29)

ou J correspond & la taille de la fenétre de moyennage. Cette méthode vise & réduire I'impact des

variations locales tout en conservant les tendances globales.

Les résultats obtenus en appliquant cette méthode de lissage temporel sont présentés dans les
figures ci-dessous, ou une comparaison entre 'approche classique avec € constant et celle avec ¢
estimé temporellement est effectuée. Ces figures mettent en évidence les différences de performances

en termes de rapidité de convergence de ’erreur quadratique moyenne m;,

0- —— SKF:v=8.0-10"% e=10"°
SKF: vo=8.0-107"%,£=2.4-10710
21 —— SKF:vy=8.0-1075, £=10"10
— SKF:v,=8.0-10"5,e=10"1!
-4 \ _temp: vg=10"%,e=10""*
m 61
S,
|E —84
_10-

—-12 4

—14

0 20600 40600 60600 80600 100I000
T [échantillons]

Figure 3.22: Erreur quadratique moyenne m; obtenue en comparant le SKF avec ¢ constant a une
version ol ¢ est estimé par lissage temporel (SKF__temp : équation (3.29)), fenétre J = 10), lors de
I’évaluation temporelle de h; avec ¢* =107 et =1
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Figure 3.23: Erreur quadratique moyenne m:, en comparant le SKF avec ¢ constant & une version
de SKF avec ¢ estimé par lissage temporel (SKF_temp) selon ’équation (3.29)), avec une fenétre de
lissage de taille J = 100, dans le cadre du modeéle dynamique (¢* = 107'% et 5 = 1).

Ces comparaisons permettent d’évaluer 'impact de la stratégie de lissage temporel sur les per-
formances du filtre dans différentes réalisations, en variant la taille de la fenétre de moyennage
J. Cette analyse met en lumiere comment cette approche influence la capacité de la méthode a
réduire les fluctuations locales tout en préservant les tendances globales. Les mémes simulations
seront reprises dans la section suivante pour le modele statistique ou €* = 0, afin de comparer les

performances obtenues dans ce cadre particulier.

3.2.1 Analyse comparative avec le modele statique (¢* =0 et §=1)

Dans cette section, nous examinons le comportement du filtre dans un contexte statique, ou la
variance de transition est fixée a zéro (¢* = 0). En reprenant la méme méthodologie de simulation
et de comparaison présentée précédemment. Cette analyse vise a déterminer si les avantages ob-
servés avec le lissage temporel se maintiennent également lorsque les parametres du systeme restent

constants.
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Figure 3.24: Erreur quadratique moyenne m;, en comparant SKF avec différentes valeurs ¢ fixe et SKF
avec ¢ estimée temporellement (SKF__temp) suivant I’équation (3.28)). avec des données issues d’un
modéle statique (¢* =0et §=1)
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Figure 3.26: Erreur quadratique moyenne m; obtenue en comparant SKF avec ¢ constant & une version
ou ¢ est estimé par lissage temporel (SKF__temp : équation , fenétre J = 10), avec des données
issues d’un modéle statique (¢* =0 et §=1).
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Figure 3.25: Evolution de la moyenne glissante de la log-vraisemblance ¢; pour différentes valeurs de

¢ fixe et SKF avec ¢ estimée temporellement (SKF__temp) suivant ’équation (3.28)), avec des données
issues d’un modele statique (¢*=0et §=1)
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Figure 3.27: Erreur quadratique moyenne m: comparant le SKF a ¢ constant et une estimation par
lissage temporel SKF__temp (J = 100) selon (3.29)), pour un modeéle statique (¢* =0 et § =1).
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Les résultats illustrés par les figures montrent que, contrairement a I’hypotheése initiale, I’estimation
adaptative de ¢; selon les équations et (3.29) n’assure pas systématiquement une convergence
plus rapide que 'estimation fixe. On observe que l’estimation temporelle (représentée par la courbe
violette avec marqueurs) atteint un niveau de perte minimal plus bas et une erreur quadratique

moyenne plus faible en moyenne.

3.3 Observations

Dans ce chapitre, nous avons examiné deux approches adaptatives d’estimation en ligne des
hyper-parameétres du filtre de Kalman. Ces approches jouent un role crucial pour améliorer la
précision et l'efficacité des estimations fournies par le filtre.

A partir des résultats présentés, plusieurs observations peuvent étre faites :

1. La log-vraisemblance a posteriori constitue un critére robuste pour déterminer les hyper-
parameétres optimaux du modele. Comme montré explicitement dans la Section cette

métrique fournit une indication fiable et facilite I'identification des hyper-parametres(e et vy,).

2. Cependant, il est important de noter que la log-vraisemblance n’est pas directement aux deux
autres métriques telles que 'erreur de prédiction e; ou l'erreur quadratique moyenne m;. En
conséquence, la maximisation directe de cette log-vraisemblance ne permet pas nécessairement
d’accélérer la convergence du filtre. Cette limitation est mise en évidence dans la Section [3.1.6]
ou les méthodes heuristiques d’adaptation dynamique I’hyper-parametre (), fondées sur des
critéres empiriques, surpassent les approches bayésiennes en termes de vitesse et de perfor-

mance de convergence.

3. L’analyse révele également une sensibilité importante des méthodes d’adaptation en ligne
a linitialisation des hyper-parametres. Ces méthodes est fortement affectée par le choix
initial des valeurs de ces parametres. Cette étude, bien qu’instructive, n’est pas entierement
conclusive a ce stade et nécessiterait des recherches supplémentaires afin d’approfondir la

compréhension des résultats obtenus.

En résumé, ces approches adaptatives d’estimation en ligne étudiées ici démontrent leur capac-

ité a s’ajuster efficacement aux variations dynamiques du systéme analysé. Elles permettent une
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réduction significative de I'erreur quadratique moyenne m; et de la log-vraisemblance moyenne /;
ainsi que de l'erreur de prédiction e;. En comparaison avec les approches statiques traditionnelles,
ces méthodes offrent une alternative robuste et prometteuse, a condition d’un réglage attentif et

adapté des hyper-parameétres.

3.4 Conclusion

Ce chapitre a présenté deux approches pour l'estimation des hyper-parametres du Kalman via (i)
une MLE avec descente de gradient (positivité assurée) et (ii) une estimation en ligne lissée de e;
fondée sur les écarts d’états. Les expériences, en régimes statique et dynamique, montrent que

I'adaptation de £; améliore le suivi mais reste sensible au pas p¢ et a I'initialisation.



Chapitre 4

Conclusion

Dans ce mémoire, nous avons proposé et analysé une approche unifiée pour l'estimation dy-
namique dans les modeles linéaires, en nous appuyant sur le filtre de Kalman et ses variantes.
Nous avons d’abord rappelé les fondements théoriques du filtrage de Kalman dans un cadre bayésien.
Cette section a détaillé la formulation probabiliste du filtre, son implémentation récursive, ainsi
que différentes simplifications possibles : covariance matricielle, vectorielle, scalaire et & variance
fixe [13]. Nous avons également mis en évidence 1’équivalence, sous certaines hypotheses, entre la
mise a jour bayésienne du filtre et des méthodes classiques comme la descente de gradient stochas-
tique (SGD) [19].

Les simulations menées pour 'identification de la réponse impulsionnelle dans un contexte acous-
tique ont validé 'efficacité des méthodes proposées. Les différents scénarios ont mis en évidence les
compromis entre vitesse de convergence, précision asymptotique et robustesse au bruit.

Et puis, nous avons proposé et analysé différentes stratégies pour 'estimation des hyper-parametres

du filtre de Kalman appliqué a I'identification dynamique de la réponse impulsionnelle acoustique.

Nous avons porté une attention particuliére a l’analyse comparative des principales stratégies

d’estimation des hyper-parametres, a savoir:

o l'optimisation par maximisation de la vraisemblance (MLE) [14];

o l'estimation adaptative basée sur I’évolution temporelle des états;
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e l’introduction d’un lissage temporel afin d’atténuer les fluctuations locales des parameétres

estimés [1§].

Ces résultats mettent en évidence plusieurs axes d’amélioration et de recherche, tant sur 'optimisation
des hyper-parametres que sur ’extension du cadre méthodologique. Ainsi, plusieurs pistes d’amélioration

et d’exploration peuvent étre envisagées pour les travaux futurs :

1. Optimisation avancée des hyper-parameétres

o Etudier des méthodes d’apprentissage automatique (ex. Bayesian Optimization) pour
sélectionner dynamiquement les valeurs optimales des hyper-parameteres du modele.

[30].

o Explorer des techniques de régularisation adaptative pour stabiliser encore plus I’estimation

des poids [16,31].
2. Généralisation aux modéles non linéaires

o Etendre la méthodologie &4 des modéles de Kalman non linéaires, comme le filtre de

Kalman étendu (EKF) ou le filtre de Kalman unscented (UKF) [4,32].

e Intégrer des méthodes a base de filtre particulaire pour les cas fortement non linéaires

ou non gaussiens [23].
3. Comparaison avec des méthodes d’apprentissage profond

o Comparer le filtre de Kalman adaptatif aux approches récentes, telles que les RNN et

transformers pour séries temporelles [24}33].

o Explorer des approches hybrides combinant filtre de Kalman et réseaux neuronaux, no-
tamment par la fusion bayésienne des prédictions afin de tirer parti des forces respectives

de chaque méthode.

En conclusion, cette étude met en évidence le potentiel du filtrage de Kalman adaptatif pour
I’estimation dynamique des parametres. Cependant, plusieurs défis restent a relever, notamment
I'optimisation des hyper-parametres et 'adaptation du modele & des contextes plus complexes.
Les perspectives identifiées permettront d’améliorer davantage ces techniques et d’en élargir les

applications & des domaines variés.
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