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Abstract

With approximately 15 million ha burned, the 2023 wildfire season in Canada was exceptional. However, it remains unclear
whether such recent increases in burned areas exceed the range of variability observed over past centuries. The objective of
this study was to leverage available dendrochronological reconstructions of decadal burn rates to contextualize their recent
increase within their historical variability over the past two centuries. We compared decadal burn rate reconstructions based
on dendrochronological data (1800-2023) for five large eastern and western Canadian boreal forest zones to those of recent
decades up to 2023. The area burned in 2023 ranged from 0.76% to 32.5% among the five zones, which is unprecedented
compared to the proportion recorded since 1972 for four of the five zones analyzed. In contrast, the burn rates of the decade
ending in 2023 (i.e., 2014-2023) generally remained within the natural range of variability of the last two centuries. However,
burn rates in two zones were close to the highest decadal burn rates observed since the 1800s and exceeded historical variability
in one zone in western Canada. We discuss the historical and current trends in burn rates, their drivers and implications.
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Résumé

Avec environ 15 millions d’hectares brtilés, la saison des feux de forét de 2023 au Canada a été exceptionnelle. Cependant,
il reste a déterminer si cette récente augmentation des superficies briilées dépasse les limites de variabilité historiques des
deux derniers siécles. L’objectif de cette étude était de s’appuyer sur des reconstitutions dendrochronologiques des taux de
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briilage décennaux afin de contextualiser leur récente augmentation, en tenant compte de la variabilité historique des derniers
siecles. Nous avons comparé les reconstructions des taux de briilage décennaux, basés sur des données dendrochronologiques
couvrant la période 1800-2023, a celles des dernieres décennies jusqu'en 2023 pour cinq vastes régions de la forét boréale
situées dans l’est et I’ouest du Canada. Les superficies briilées en 2023 ont varié de 0,76% a 32,5% parmi les cinq zones, ce qui
apparait clairement sans précédent depuis 1970 pour quatre des cinq zones analysées. En revanche, les taux de brilage de
la décennie se terminant en 2023 (2014-2023) sont généralement restés dans la plage de variabilité historique depuis le XIXe
siecle. Cependant, les taux de briilage 2014-2023 dans deux zones étaient proches des taux de briilage décennaux les plus
élevés observés depuis les années 1800 et n’ont dépassé la variabilité historique que dans une seule zone de I’Ouest canadien.
Nous discutons les tendances historiques et actuelles des taux de briilage, leurs facteurs déterminants et leurs implications.

[Ceci est une traduction fournie par I'auteur du résumé en anglais.|

Mots-clés : histoire environnementale, histoire des feux, paléoécologie, changement climatique, Pyrocéne

Introduction

With approximately 15 million ha of area burned in
Canada, the 2023 wildfire was unprecedented since the start
of comprehensive national reporting in the 1970s (Jain et al.
2024). The spatial extent of uncontrolled fires confirmed the
recent decadal trend of increasing area burned, likely associ-
ated with a warming climate (Coogan et al. 2019; Hanes et al.
2019; Kirchmeier-Young et al. 2024) and related decrease in
relative humidity at northern latitudes (Parisien et al. 2023;
Jain et al. 2024). Yet, it remains unclear whether such re-
cent increases in burned areas exceed the range of variabil-
ity observed over past centuries (i.e., the range of decadal
area burned observed historically; Keane et al. 2009). The
answer to this question has important ecological implica-
tions, given that the historical range of variability represents
the variability of fire regimes to which ecosystems were ex-
posed over centuries, thereby implicitly reflecting the eco-
logical boundaries within which forest ecosystems are re-
silient to wildfire disturbances. Indeed, landscape mosaics—
their structure, composition, ecosystem functions, and ser-
vice provisioning—are largely the legacy of several centuries
of fire disturbances and subsequent successional processes
(McLauchlan et al. 2020).

The bounds of the historical range of variability depend
on the period under analysis. The Canadian National Fire
Database (CNFDB) and the National Burned Area Composite
(NBAC) are robust forest and grassland fire mapping and mon-
itoring systems that provide data on modern fires. Canada-
wide quasi-exhaustive data started being recorded in the
1960s for the CNFDB (Hanes et al. 2019) and accurate map-
ping started in 1972 with the advent of the Landsat satel-
lite missions for NBAC (Hall et al. 2020; Skakun et al. 2021,
2022). Although those datasets are among the most compre-
hensive worldwide regarding accuracy and temporal depth
(~50-60 years), the period covered remains limited in char-
acterizing the variability of a temporally fluctuating phe-
nomenon like wildfires (Girardin and Sauchyn 2008). Data
sources enabling the estimation of longer-term changes in bo-
real fire regimes include palaeoecological and dendrochrono-
logical records (Conedera et al. 2009; Aakala et al. 2023). Pa-
leoecological fire studies therein are generally based on sed-
iment charcoal accumulation rates from which components
of fire regimes like biomass burned, fire size, and severity,
and fire return intervals can be estimated over centennial
to millennial time scales (e.g., Ali et al. 2012; Blarquez et
al. 2013; Kelly et al. 2013; Gaboriau et al. 2020; Hennebelle

et al. 2020; Girardin et al. 2024). However, these reconstruc-
tions are of a semi-qualitative nature because the indica-
tor of the burning rate is most often based on charcoal in-
flux per time unit. This poses a significant challenge since
this metric is not directly comparable with modern measure-
ments of burned areas. Additionally, these reconstructions’
relatively low temporal resolution (most often >15 years)
further complicates comparisons with current fire regime
estimates.

Dendrochronology offers two main approaches for recon-
structing historical fire regimes. First, collecting and dating
samples of fire scars (i.e., wounds resulting from partial cam-
bium mortality on trees affected by high temperatures during
fires, observed on living trees and deadwood) allows the dat-
ing of fire events at annual to seasonal resolutions (Daniels
et al. 2017). In North America, this method was widely ap-
plied to seasonally dry forest ecosystems exposed to frequent
low- to moderate-intensity fires because it relies on trees that
are scarred but not killed by fires (Margolis et al. 2022). In
the North American boreal biome, wildfire regimes primar-
ily consist of very large crown fires driven by high soil or-
ganic matter and fuel continuity (Hanes et al. 2019; Guindon
et al. 2020; Wang et al. 2025), which contrasts with surface
fire regimes in the Eurasian boreal zone (de Groot et al. 2013;
Rogers et al. 2015; Magne et al. 2020). Paleoecological evi-
dence indicates that large and severe fires have accounted for
the majority of biomass burned in the North American boreal
biome over the past millennia (e.g., Ali et al. 2012; Gaboriau et
al. 2020; Girardin et al. 2024). However, the burn rates recon-
structions based on fire scars have also proven to be reliable
in North American boreal forests (Héon et al. 2014; Erni et al.
2017) since abundant fire scars can still be found within small
low-severity burn patches or at the periphery of large wild-
fires as they gradually die down. Moreover, many researchers
working in the boreal forest have used dendrochronology
and interpretation of historical aerial photography to map
the time-since-last-fire across the landscape by estimating
the age of post-fire tree cohorts at the stand level (e.g.,
Johnson and Gutsell 1994; Larsen 1997; Bergeron et al. 2004).
Time-since-last-fire datasets can be statistically analyzed to
reconstruct spatiotemporal changes in fire regimes (Cyr et
al. 2016). Whether based on tree-ring fire scars, time-since-
last-fire mapping, or both, dendrochronology-based studies
can estimate burn rates (i.e., the proportion of a landscape
burned by fire over a fixed period) over the last centuries
with a temporal resolution varying from annual to decadal.
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Fig. 1. Location of the five long-term fire history reconstructions presented in this study. Fires that occurred during the periods
1972-2013, 2014-2022, and 2023 are represented in varying shades of red. All fire history reconstructions are based on the
time-since-last-fire method, except for Northeastern James Bay, which is based on fire scars inventoried along two transects
(see the “Materials and methods” section for references for more details). The figure was created using R version 4.4.2 and
assembled from the following data sources: fire perimeters from the National Burned Area Composite database (Hall et al.
2020; https://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nbac), administrative boundaries from the Government of Canada Open
Data portal (https://open.canada.ca/), and fire history reconstruction shapefiles provided courtesy of co-authors holding the

rights.

These methodological approaches may support more reliable
comparisons between long-term reconstructions and modern
spatial wildfire atlases (i.e., CNFDB or NBAC; Chavardés et al.
2022).

The objective of this study was to leverage available den-
drochronological reconstructions of decadal burn rates in
Canadian boreal forests to contextualize the recent reported
increase in fire activity, including the 2023 fire season, within
their historical variability over the past two centuries. All
paleoecological, dendrochronological, and historical studies
highlight complex and nonstationary long-term trends in
burn rates and other fire regime characteristics (e.g., Ali et
al. 2012; Hanes et al. 2019; Chavardes et al. 2022; Girardin
et al. 2024). For example, recent regional meta-analyses have
suggested that the burn rates were generally high during the
Little Ice Age (LIA; roughly AD 1300-1850) and the early 20th
century in most North American boreal forests (Drobyshev
et al. 2017; Chavardeés et al. 2022). The burn rates subse-
quently declined during the second half of the 20th century
(i.e., the period partly covered by the modern Canadian fire
mapping and monitoring datasets). This reinforces the neces-
sity of comparing recent burn rates to long-term trends to
assess whether recent climate-driven increases are currently
pushing ecosystems beyond their historical variability. We
thus compared the reconstructed historical burn rates (1800-
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2020) to those of the decade ending in 2023 (i.e., 2014-2023).
Based on these analyses, we discuss the drivers of historical
and current trends in burn rates and discuss to what extent
future burn rates could exceed the historical range of vari-
ability.

Materials and methods

Spatial zones corresponding to historical

reconstructions of burn rates

Historical burn rates were reconstructed with den-
drochronological data for five large zones representative of
the Canadian boreal biome (Fig. 1). Four zones rely on 11
previously published time-since-last-fire data, which were re-
analyzed by Chavardes et al. (2022), and the fifth zone relies
on published and unpublished fire-scar data (Héon et al. 2014;
Erni et al. 2017; Shakeri 2024).

Our analyses of time-since-fire data build on over 50 years
of methodological development (see, for ex.: Arno and Sneck
1977; Wagner 1978; Johnson 1979; Yarie 1981; Bergeron 1991;
Johnson and Larsen 1991; Johnson and Gutsell 1994). Johnson
and Gutsell (1994) established the mathematical principles
and associated rigorous sampling methods crucial for apply-
ing the time-since-last-fire approach, which was carefully fol-
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lowed during data acquisition of the studies compiled for
this manuscript. The time-since-last-fire data come in their
raw form as randomly or regularly sampled plots across a
given landscape. During data collection, the dates of the last
fires were determined using historical archives for recent
fires (when available, typically covering fires from 1930 to
1950) and dendrochronological dating of initial stand estab-
lishment for older fires. For cases where no traces of past
fire events were detected or precisely dated (i.e., uneven-aged
stands where the oldest trees do not necessarily represent
the first post-fire cohort), a minimum time-since-last-fire was
estimated as the age of the oldest trees sampled; such esti-
mates were considered censored data for the subsequent sur-
vival analyses (Cyr et al. 2016). For all plots sampled across
the different studies, we obtained time-since-last-fire (cen-
sored or uncensored) values at a 10-year resolution (i.e., min-
imum temporal accuracy allowed by dendrochronological
dating).

Time-since-last-fire data from eastern Canada were com-
piled from nine independent studies (Kafka et al. 2001;
Lesieur et al. 2002; Lefort et al. 2003; Bergeron et al. 2004;
Cyr et al. 2007; Lauzon et al. 2007; Le Goff et al. 2007; Bélisle
et al. 2011; Portier et al. 2016). To simplify the analysis, we
aggregated those data within two large zones: Southeastern
James Bay (1057 plots) and North Atlantic (185 plots). These
two distinct zones were defined based on (1) the managed
boreal forests of eastern Canada and (2) the homogeneous
fire regime zonation defined by Boulanger et al. (2014). We
separated data by managed or unmanaged boreal forests be-
cause they experience significant differences in fire risk man-
agement and disturbance dynamics (Tymstra et al. 2020). In
the managed boreal forests to the south, fires systematically
generate a suppression response by fire protection agencies,
whereas, in unmanaged forests to the north, fires are mostly
left to burn unless they threaten communities or infrastruc-
tures.

The time-since-last-fire data from the two zones in western
Canada are from two independent studies: the Northwest-
ern Plains (Wallenius et al. 2011) and Wood Buffalo National
Park (Larsen 1997). Although their extents overlap (Fig. 1),
these two zones were analyzed independently because they
have substantial differences in sample density and distribu-
tion (85 plots randomly distributed within 1 km of the road
network for the Northwestern Plains, and 167 plots randomly
distributed across the whole area for the Wood Buffalo Na-
tional Park). In those two studies, no data were considered
censored (sensus Cyr et al. 2016) during data acquisition, as
the short fire cycles in these areas make it highly unlikely
that clear evidence of tree recruitment after the last fires
would be absent.

In addition to the above-described time-since-last-fire data
compiled by Chavardeés et al. (2022), we included a burn
rate reconstruction based on fire scars for the Northeastern
James Bay zone (Fig. 1; Héon et al. 2014; Erni et al. 2017;
Shakeri 2024). This region is predominantly shaped by stand-
replacing fires, which typically leave few fire scar (Carcaillet
et al. 2001). However, a meticulous search for fire scars on liv-
ing and dead trees along natural fire breaks such as streams,
lake shores, peatlands, and rocky outcrops combined with

jack pine establishment dates, can provide a reliable record
of past events (Héon et al. 2014). These data represent a quasi-
exhaustive inventory of fire events that occurred along two
transects extending over 300 and 340 km (640 km in total).
Each transect consists of a linear sequence of 1 km x 2 km
cells, within which multiple trees were sampled for fire-scar
analysis. Each cell that recorded a fire event (i.e., based on at
least two fire scars) for a given year was considered burned,
thus making it possible to compute the number of kilometers
burned each year since 1800.

Data analyses

Historical burn rates were reconstructed for the first four
large zones (Northwestern Plains, Wood Buffalo National
Park, Southeastern James Bay, and North Atlantic) with time-
since-last-fire data using the method described in Chavardes
et al. (2022). Specifically, we used Cox regression (Cox 1972),
a semi-parametric survival model, to estimate decadal mean
burn rates for each of the four landscapes. Cox models are
well-suited for our data compared to other types of survival
analysis because no assumption about the shape of the base-
line hazard function is necessary (Cyr et al. 2016). More-
over, Cyr et al. (2016) showed through simulations (i.e., fully
known theoretical fire history) that time-since-last-fire data
analyzed using Cox models offer an accurate and reliable es-
timate of burn rates, with the benefit of being minimally in-
fluenced by temporal variations in fire activity. Cox models
fit a baseline hazard curve corresponding to the probability
(or proportion) of area burned per decade, which is thus an
exact equivalent of burn rates. Cox models were fitted using
R’s “survival” package (Therneau 2020). We computed boot-
strapped confidence intervals (CIs) in burn rates from 1000
random samples with replacement in the original datasets
(i.e., 1000 bootstrapped burn rate curves). For the fifth zone
(Northeastern James Bay), the reconstructed proportions of
territory burned each year were calculated as the number of
cells burned each year divided by the total number of cells
sampled.

We calculated the recent annual proportion of burned ter-
ritories with the NBAC dataset (1972-2023; https://cwfis.cfs
.nrcan.gc.ca/datamart/metadata/nbac), which contains high-
resolution maps of wildland fires derived from 30 m res-
olution Landsat data (Hall et al. 2020; Skakun et al. 2021,
2022). The proportion of the area burned each year was de-
termined by dividing the annual burned area for each zone
by the fuel-covered area (e.g., excluding water and bare rock).
Fuel cover areas were derived from the Canadian Fire Be-
haviour Prediction Fuel Type Description map in 2019 (http
s:[|cwfis.cfs.nrcan.gc.ca/downloads/fuels), which was derived
from 250 m Moderate Resolution Imaging Spectroradiome-
ter imagery (MODIS; Beaudoin et al. 2014). Modern annual
burn proportions were averaged into decadal burn rates from
1980 to 2023 and then compared with reconstructed histori-
cal rates.

For the five zones, we defined two distinct historical ranges
of variability: conservative and extended. The baseline peri-
ods used to encompass historical ranges of variability were
1800-2020 for the eastern zones, 1860-2020 for the Wood
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Fig. 2. Proportions of area burned yearly since 1972 for four zones with fire history reconstructions from the National Burned
Area Composite database. The proportions for 2023 are shown as red bars with exact values on the left. Thin black lines show
decadal burn rates (1972-2020), and the red lines show burn rates over the decade ending in 2023 (2014-2023). The 1972-2022
burn rate values are displayed at the top left corner of each plot.
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Buffalo National Park, and 1870-2020 for the Northeastern
Plains. We started the baseline periods in 1860 and 1870 for
the western zones because, generally, higher burn rates re-
sulted in fewer old stand samples, making decadal burn rate
estimations before 1860-1870 too imprecise (Chavardes et
al. 2022). As most reconstructions are limited to a decadal
resolution, we compared them with the mean annual burn
rates over the decade ending in 2023 (i.e., 2014-2023) to
evaluate whether it remained within or beyond the histor-
ical ranges of variability. Considering this last point and
the high inter-annual variability in burned areas, we consid-
ered that comparing burn rates over 10 years rather than
a single year is more suitable for tracking recent against
historical trends. The boundaries of the conservative range
of variability were defined as the mean of decadal 5% and
95% bootstrapped CIs, corresponding to a 90% CI of the
long-term mean burn rate for each zone. Because no boot-
strapped CIs were computed for the Northeastern James Bay
reconstruction (i.e., fire-scar data), we simply defined the
conservative historical ranges of variability as the 25th and
75th percentiles of the mean decadal burn rate distribution
(1800-2020). For all reconstructions, the boundary of the ex-
tended historical range of variability was defined as the up-
per limit of the estimated decadal mean burn rates, thus cor-
responding to the highest mean decadal burn rates in each
reconstruction.

We performed a straightforward nonspatial simulation ex-
ercise to illustrate how many equivalents of the 2023 fire sea-
son area burned would be needed to exceed the historical
range of variability observed since the 1800s. For each fire-
reconstruction zone, we generated eight sets of independent
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theoretical periods of 10 years, assigning the burn rate that
would result from a recurrence every n years of the area that
burned during the 2023 fire season. Each of the eight sets
of independent 10-year periods corresponded to one of eight
simulated recurrence levels: n = 100, 50, 30, 20, 15, 10, 5,
and 3 years (e.g., n = 5, the area burned during the 2023 fire
season would happen twice in 10 years). Between the years
with 2023-equivalent extreme fire seasons, we attributed the
annual proportions of area burned randomly sampled within
the 1972-2022 period (Fig. 2) to the other years of the theoret-
ical 10-year period. For each fire history reconstruction zone,
we repeated the process 1000 times. We computed the me-
dian and 95% CI of theoretical burn rates obtained with a the-
oretical fire return period of n 2023 fire season area burned
per 10-year period.

Results

For the five zones analyzed, the proportion of area burned
in 2023 ranged from 0.6% to 32.5% (Figs. 2 and 3). Ex-
cept for the North Atlantic, these annual proportions sur-
passed those recorded since 1972, which did not exceed
10%-20% (Figs. 2 and 3). Burn rates of the decade ending
in 2023 (2014-2023) ranged from 0.07%-year—! (North At-
lantic) to 3.56%-year~! (Wood Buffalo National Park). In two
of the five zones, burn rates over 2014-2023 were below or
within the conservative historical range of variability (North
Atlantic: 0.15-0.82%-year™!, Southeastern James Bay: 0.39-
0.85%-year—!; Fig. 4). The 2014-2023 mean burn rates for
the remaining three zones were above the conservative his-
torical range of variability (Northeastern James Bay: 1.07-
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Fig. 3. Long-term burn rate reconstructions based on North-
eastern James Bay area fire scars. (A) Annual burn rates with
exceptional years highlighted (2023 is in red). (B) Mean an-
nual burn rate per decade and historical range of variability.
The conservative range is in blue (25th and 75th percentiles
of mean decadal burn rates distribution), and the extended
range is in red (maximum recorded mean decadal burn rates).
The red point with a crosshair and value indicates the burn
rate of the decade ending in 2023 (2014-2023).
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2.02%-year~!, Northwestern Plains: 1.02-1.78%.-year™!, and
Wood Buffalo National Park: 0.83-1.82%.year™!; Fig. 4). How-
ever, the 2014-2023 burn rates did not exceed the highest 10-
year average burn rates recorded over the last two centuries
in two of those zones (i.e., highest decadal mean burn rates
since the 1800s in Northeastern James Bay: 3.47%-year—!,
Northwestern Plains: 2.40%-year™?; Fig. 4), and thus remained
within the extended historical range of variability. The 2014—
2023 burn rates slightly exceeded the extended range of
variability only in the Wood Buffalo National Park zone
(3.56%-year! against 3.14%-year—!; Fig. 4).

Simulations of future burn rates showed the frequency of
2023-like fire seasons required to surpass each zone’s conser-
vative or extended estimates of natural variability (Fig. 5). For
example, in Northeastern James Bay, the equivalent of one
2023 fire season area burned every 50 years or less in the
future would remain within its conservative range, whereas
one 2023 fire season area burned every 15 years or less would
exceed the extended range. In the Northwestern Plains, one
2023 fire season area burned every 15-10 years or more would
remain within the conservative range, whereas one every 5
years or less would exceed the extended range. In Southeast-
ern James Bay, one 2023 fire season area burned every 10
years or more would remain within the conservative range,

and every 5 or 3 years would still remain within the extended
range.

Discussion

Our findings confirm that the area burned during 2023
in four of the five studied zones was unprecedented since
1972 (Jain et al. 2024). In contrast, the burn rates over the
decade ending in 2023 (i.e., 2014-2023) generally remained
within the natural range of variability observed since the
1800s, though some were close to the highest decadal burn
rates observed over the last two centuries (i.e., Northeastern
James Bay, Northwestern Plains). The 2014-2023 burn rates
slightly exceeded historical variability only in the Wood Buf-
falo National Park zone. These results underscore the signifi-
cant variability in fire regimes across Canadian boreal forests,
both in their spatial patterns (Boulanger et al. 2013, 2014) and
nonstationary temporal trends (Chavardes et al. 2022), which
we briefly discuss below.

Historical and current trends in burn rates and

their drivers

A large number of studies report high burn rates in North
American boreal forests over the last centuries, followed
by a subsequent decline throughout the 20th century (e.g.,
Johnson 1979; Yarie 1981; Larsen 1997; Bergeron et al. 2004;
Wallenius et al. 2011; Drobyshev et al. 2017). Although the
drivers of such changes have been discussed (e.g., Macias Fau-
ria and Johnson 2007; Chavardes et al. 2022), they remain
insufficiently understood. The main hypothesis is that de-
spite the generally low average temperatures characterizing
the LIA and the early 20th century (Gennaretti et al. 2014;
Wang et al. 2022), periods of particularly high climatic dry-
ness during fire seasons may have triggered large burned ar-
eas (Girardin et al. 2006, 2009; Macias Fauria and Johnson
2007; Drobyshev et al. 2017). During the ~1950-2000 period,
summer climate moisture generally increased with more pre-
cipitation, presumably explaining relatively low burn rates
over this period (Macias Fauria and Johnson 2007; Girardin et
al. 2009; Drobyshev et al. 2017). Other likely drivers are the ef-
fects of human land use, including changes to pre-colonial In-
digenous uses of fire (Lewis and Ferguson 1988; Christianson
et al. 2022), European colonization in the early 20th century,
and the subsequent era of fire suppression (Danneyrolles et
al. 2021; Chavardes et al. 2022). Disentangling the relative and
interactive roles of drivers of long-term past changes in burn
rates was beyond the scope of this study but should be inves-
tigated in follow-up research.

Over recent decades, anthropogenic climate change and its
influence over increasing global fire activity have received
growing attention (e.g., Flannigan et al. 2000; Moritz et al.
2012; Bakhshaii et al. 2020; Jones et al. 2022; Jain et al. 2024).
Numerous studies projected future increases in area burned
in Canada due to climate change (Flannigan and Wagner
1991; Flannigan et al. 2005, 2009; Boulanger et al. 2013, 2014;
Coogan et al. 2019), whereas some more recent studies partly
quantified the influence of climate change on observed area
burned of the last decades (Hanes et al. 2019; Kirchmeier-
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Fig. 4. Long-term historical range of variability reconstructed with time-since-last-fire data for four zones. Mean annual burn
rates per decade are shown with bootstrapped 90% confidence intervals (CIs). Blue lines show the conservative historical range
of variability (bootstrapped 90% CIs’ long-term mean), and red lines show the extended range (higher decadal burn rates
observed). Red points with a crosshair and their values indicate the burn rate of the decade ending in 2023 (2014-2023).

5A. Northwestern Plains

3
> 4 2
S I &
s 3 [T 1 X
T 2]
c 1]
>
@ O

1820 1860 1900 1940 1980 2020
. C. Southeastern James Bay
S 3.0
[
225
X 20
~—" o
o 15 %
e 10 b S e T O
€05
@ 0.0

1820 1860 1900 1940 1980 2020

Young et al. 2019, 2024; Parisien et al. 2023). Until 2023, these
increasing trends were more apparent in the western part of
Canada’s boreal forests (Coops et al. 2018; Kirchmeier-Young
et al. 2019; Whitman et al. 2022; Parisien et al. 2023). Our
study showed that the area burned over the 2023 fire sea-
son was larger by far than what had been experienced since
the 1970s for both the western and eastern zones analyzed in
this study, confirming these increasing trends may be spread-
ing eastward (Jain et al. 2024). In eastern Canada, anthro-
pogenic climate change has increased the likelihood of ex-
treme fire weather conditions such as those experienced in
2023 by more than seven times (Barnes et al. 2023).

We argue that the period of low fire activity during the sec-
ond half of the 20th century in several regions (e.g., North-
western Plains, Southeastern James Bay) may have promoted
fuel accumulation and continuity, making landscapes more
susceptible to large wildfires (Héon et al. 2014; Parks et al.
2015; Erni et al. 2017) and thus may have played a role in fu-
eling the exceptional 2023 fire season. Yet, it is noteworthy
that fuel loads have also been reduced due to wood harvest-
ing in some managed areas since the second half of the 20th
century (e.g., Boucher et al. 2017; Wulder et al. 2020). Stud-
ies in the United States highlighted that the transition from
widespread Indigenous cultural burns (e.g., Stephens et al.
2007; Roos 2020; Roos et al. 2022) to the current era of ac-
tive suppression has also largely contributed to a fire deficit
and increased current fire risks (e.g., Parks et al. 2015, 2025;
McClure et al. 2024). However, we argue that the human-
induced fire deficit may be less pronounced in Canadian bo-
real forests than in forests more to the south in the United
States. A recent comprehensive review emphasized that, al-
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though the extent of pre-colonial Indigenous cultural burn-
ings in North American boreal forests has not been accu-
rately estimated, they likely primarily consisted of small lo-
calized burns (Christianson et al. 2022). Despite having im-
portant implications in shaping boreal landscapes, such cul-
tural burns likely had less influence on the total burned
area compared to recurring, very large (>10000 ha), and un-
controlled lightning-caused fires (Hanes et al. 2019). Further-
more, the impacts of the subsequent active fire suppression
era are likely strongly limited, as more than half of the areas
analyzed are outside the active wildfire management zones
(i.e., fires are left to burn without any management response;
Tymstra et al. 2020).

Analytical limitations

Our study has some limitations originating mainly from
the data used in the analyses. First, most of our den-
drochronological data have a coarse temporal resolution.
Apart from the Northeastern James Bay reconstruction based
on fire scars, the burn rate reconstructions are at the decadal
scale (i.e., mean burn rates over a given decade) because the
precise dating of post-fire recruitment is almost impossible,
particularly for older fires (Cyr et al. 2016). The decadal res-
olution of our dendrochronological reconstructions limits
comparisons of burn rates between historical decades and the
most recent decade (2014-2023). This precludes direct com-
parisons with any individual year. It is, therefore, possible
that 2023 is unprecedented in terms of annual area burned
within a single fire season, as suggested by the Northeastern
James Bay reconstruction. Still, due to the decadal resolution,
we cannot determine if extensive areas burned in both west-
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Fig. 5. Comparison of theoretical future burn rates with
the natural range of variability of four zones. For each fire-
reconstruction zone, computed burn rates are equivalent to
arecurrence of the 2023 fire season area burned every n years
(n =100, 50, 30, 20, 15, 10, 5, and 3 years, x-axis; see the “Ma-
terials and methods” section for more details). Blue and red
lines represent the conservative and extended ranges of vari-
ability, respectively (see the “Materials and methods” section
for more details). Northwestern (NW) Plains, Wood Buffalo
National Park (NP), Northeastern (NE) James Bay, Southeast-
ern (SE) James Bay. Results obtained for the North Atlantic
zone are not shown due to the considerably lower burn rates
during 2023 than the four zones presented here.
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ern and eastern Canada during the same years before 1970.
Therefore, 2023 may also be unprecedented regarding the
large burned area recorded simultaneously (i.e., in the same
year) in western and eastern Canada.

A second limitation is the higher uncertainty in burn rate
estimates for the earliest decades analyzed due to the decreas-
ing sample size as reconstructions extend further back (i.e.,
fewer old stands). However, Cyr et al. (2016) showed through
simulations (i.e., fully known theoretical fire history) that
while uncertainty in estimating burn rates with time-since-
last-fire data and Cox models increase with decreasing sam-
ple size, the central tendency remains unbiased and accurate.
The sample size issue is particularly pronounced in western
Canada, where higher burn rates limit the availability of old
stand samples. To reduce this uncertainty, we confined ref-
erence periods to the 1860s-1870s in western zones, even
though pre-1860s estimates indicate burn rates may have
been as high as—or even exceeding—those of the 2014-2023
decade (Larsen 1997; Wallenius et al. 2011; Andison 2019).
Thus, we remain confident in our estimates of the historical
range of variability in burn rates.

A third limitation is that our historical and modern rates
estimates do not consider other key aspects of fire regimes,
such as fire size or burn severity (i.e., the degree to which
fires affect vegetation and soils; Keeley 2009). The fire regime
since the 1960s in boreal North American forests has been
dominated by large fires, with those >10000 ha and 500-
10000 ha each accounting for ~50% of the burned area, while
smaller fires are frequent but negligible in their contribu-
tion to total burned areas (Hanes et al. 2019). Large fires are
typically severe crown fires, fueled by abundant soil organic
matter, highly flammable and relatively short conifers, and
dense vertical and horizontal fuel connectivity (de Groot et
al. 2013; Rogers et al. 2015; Whitman et al. 2018; Guindon et
al. 2020). Paleoecological evidence suggests that even though
variations in fire size and severity have occurred during the
last two millennia, large severe crown fires have accounted
for most of the biomass burned (e.g., Ali et al. 2012; Girardin
et al. 2024; Nesbitt et al. 2025). We argue that large, severe
crown fires mainly drove the high burn rates in recent cen-
turies, though we cannot rule out the possibility that smaller
fires, including Indigenous cultural burns (Christianson et al.
2022), played a more significant role in the past. Nevertheless,
recent trends in fire size and burn severity vary across Canada
(Hanes et al. 2019; Guindon et al. 2020) and extreme fire
weather is known to increase fire size and severity (Whitman
et al. 2018; Parks and Abatzoglou 2020; Jain et al. 2024; Wang
et al. 2025). Excessive climate-driven increases in fire size and
severity may erode significant landscape elements such as
fire refugia (Ouarmim et al. 2016), even if burn rates remain
within their range of variability (Erni et al. 2017).

Finally, we would like to point out that the estimates pre-
sented in our work have been aggregated over extensive ar-
eas, within which significant spatial heterogeneity may ex-
ist regarding their fire regime (e.g., Larsen 1997; Girardin et
al. 2006; Drobyshev et al. 2017; Andison 2019). Therefore, we
caution against applying the estimates described in this arti-
cle for forest management recommendations, which should
rely on more locally specific studies.

Assessing future trends against the historical

range of variability

While the resurgence in current and future burned areas
due to climate change is undeniable (Boulanger et al. 2013,
2014; Kirchmeier-Young et al. 2019, 2024; Parisien et al. 2023;
Jain et al. 2024), whether future burning rates will surpass his-
torical variability is not a straightforward question. Indeed,
even if fire regimes are nonstationary over time, notably with
climate-driven increases in mean burn rates, such increases
may be strongly nonlinear due to potential negative ecosys-
tem feedback (Erni et al. 2017, 2018; Chaste et al. 2019). In-
creasing mean burn rates will naturally reduce fuel biomass
over short- to medium-term periods (Héon et al. 2014; Portier
et al. 2018; Wulder et al. 2020; Gaboriau et al. 2023). In some
areas, increased mean burn rates could also induce long-term
transitions from highly fire-prone conifer stands to more
fire-resistant mixed or deciduous stands (Baltzer et al. 2021;
Mack et al. 2021) or even quasi-permanent nonforested states
due to regeneration failure (Splawinski et al. 2019; Coop et
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al. 2020; Baltzer et al. 2021; Augustin et al. 2022). In some
managed forests, such negative feedback is amplified by for-
est management (e.g., Splawinski et al. 2019; Marchais et al.
2022). This implies that increases in the climatological fire
hazard would likely be constrained by fuel composition and
availability (Girardin et al. 2013; Terrier et al. 2013; Héon et
al. 2014; Girardin and Terrier 2015; Boulanger et al. 2017),
which should prevent burn rates from rising indefinitely. In
any event, tracking future changes in burn rates against the
historical range of variability will remain essential for under-
standing the impacts of climate change and ecological feed-
back on fire regimes.
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