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Abstract

In bivariate Frequency Analysis (BFA) of hydrological etgnthe study and quantification of the
dependence between several variables of interest is comrmamied out through Pearson’s correlation
(r), Kendall's tau {) or Spearman’s rhqj. These measures provide an overall evaluation of the depen
dence. However, in BFA, the focus is on the extreme eventstwiccur on the tail of the distribution.
Therefore, these measures are not appropriate to quahéfgependence in the tail distribution. To
guantify such a risk, in Extreme Value Analysis (EVA), a nianbf concepts and methods are available
but are not appropriately employed in hydrological BFA. e present paper, we study the tail depen-
dence measures with their non-parametric estimationstderdo cover a wide range of possible cases,
applications dealing with flood characteristics is cared on three gauging sites. Results show that
r, T andp are inadequate to quantify the extreme risk and to reflectépendence characteristics in
the tail. In addition, the upper tail dependence measuready employed in hydrology, is shown not to
be always appropriate especially when considered alonexetdre, it is recommended to employ more

than one tail dependence measure.
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1 Introduction

Given economic, social and scientific issues related to fpsiwrms and droughts, no serious debate on
these notions can be conducted without a reflection on threragt nature of these eventsd. Cont
2009 Leking 2010. They require an accurate modelling and an appropriatysisaln order to evalu-
ate hydrological risk, some studies advocate univariattyais based mainly on flood pealksd. Bobée
and Ashkar1991). Nevertheless, hydrological processes are charaatiebigseveral variables. For in-
stance, floods are mainly described with three variableak(flew, flood volume and event duration)
obtained from the hydrograpte.g. Shiay 2003 Yue et al, 1999. Thus, an effective risk assessment
cannot be conducted by studying each variable separatalyg giis does not take into account the depen-
dence between variables and can lead to an overestimatiomderestimation of the risle(g. Chebana
and Ouarda2011a Dupuis 2007 Ouarda et a).200Q Raynal-Villasenor and Sala$987. In such a
situation, copulae are widely employeeld. Zhang and Singh2006. In hydrology, quantifying the
dependence between different underlying variables, whiokides an indicator value summarizing the

overall dependence structure, in a scalar format is fundéahéalvadori et a].2007).

During the last years, the study of the dependence of hydemrmogical variables has gained in-
creasing attention in hydrological risk assessméiepana and Ouard2011a and references therein).
In order to quantify the dependence, hydrologists have contyrused the measures such that Pearson’s
correlationr, Kendall’'sT and Spearman’s. However, these indicators are not always appropriate for
a proper understanding of dependencies in Bivariate Freyu&nalysis (BFA) of extreme events (see
e.g. Embrechts et 812002 for a study in financial markets) since they cover the whagitution with-
out focusing on the tail of the distribution where extrenmsksicould occur. In addition, the coefficient
r is based on the notions of linearity, normality and mean tviie not appropriate when dealing with
extreme events. The use of this indicator can lead to uniifmagson of the risk Embrechts et a(1999
showed that the Gaussian model is inadequate to quantifgxineme risks and indicated that the co-
variance gives incomplete information of joint extremdsisThe non-parametric dependence measures,
Spearman’y and Kendall'sr, do not assume linearity and are not based on normality. Pearghan’s
p can be seen as the Pearson correlation coefficient betweeartked variablese(g. Rohatgj 1979.

Kendall's 7 is also based on the ranks of the observatidgtenflall 1938. These coefficients do not
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attribute sufficient weight to the extreme values. They aadgoverall indicators but are not appropriate

when the focus is on the extremes and the distribution tail.

To study the dependence in the BFA of extreme events, a “lbepéndence measure” is required
since the interest is in the “distribution tails”. In ExtreriWalue Analysis (EVA), a number of relevant
concepts and methods are developed to locally study thendepee in a joint distributione(g. Gef-
froy, 1958 1959. These concepts are commonly used in actuarial scienckreamce é.g. Ané and
Kharoubj 2003 Bouchouicha201Q Embrechts et al.2002 Malevergne and Sorneft2004. For in-
stance, the upper tail dependence parameter is introducéddi{1997, p. 33). However, to the best
knowledge of the authors, there are no hydrological ingatibns of such methods for hydrological
BFA except the upper tail dependence parameter which isnétance, briefly presented Balvadori
et al.(2007) andLee et al.(2012. Nevertheless, this parameter is not always appropriadeshould be

combined with other complementary measures.

The aim of the present paper is to introduce and study difféedl dependence measures for bivariate
random variableg X,Y") in hydrological BFA. The paper is organized as follows. Irct8m 2, we
present the recent and significant tail dependence medslE®®. In Section3, we focus on the special
case of Bivariate Extreme Value (BEV) distributions duelteit importance in EVA. Non-parametric
estimators of the presented tail dependence measuresigitg developed in Sectiod. Section5 is

devoted to the applications and Sectibpresents the conclusions.

2 Tail dependence measures for bivariate distributions

Let (X1,Y2), ...,(Xy,Y,) be independent random vectorsi? with joint cumulative distribution
function (CDF)F(.,.). We denote the marginal distributions Bf.,.) as Fi(.) and F,(.) respectively
for X andY and byC'(., .) the copula function associated&d., .). A copula is a cumulative distribution
function (CDF) whose margins are uniformly distributed[onl]. The joint distribution function can be

written in the form Gklar, 1959:

F(I’,y) :C(Fl(w)7F2(y)) for z,y € R. (1)
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A copula function represents the dependence structure ofildavariate random vector. It contains
complete information about the joint distribution apadrfrits margins. In this sense, a copula describes
the association betweeki andY in a form that is invariant to marginal transformatiori3o(es et al.
1999. The marginal distributiong” (.) and F»(.) are assumed to be continuous, which is the case for
hydrological series. Therefore the copuld.,.) is unique. The reader is referred felsen (2006

or Joe (1997 for further details on the theory of copulae. In the remamdf the Section, three tail
dependence measures are briefly presented. The first abbogveup together the distributions into two
classes whereas the second provides a complementary atfornto that provided by the first. The third

links the first measure with the second and allows also tdawia the findings given by the first two.
2.1 Tail dependence measurg,,

The first concepts were discussed as far badkeffroy (1958 1959 and the following formal definition

has been given byoe(1997, p. 33) :
X = lim P(F(X) > u|Fa(Y) > u). 2)

The limit x,, is called theupper tail dependence parametddTDP). It roughly corresponds to the
probability that one margin exceeds a large threshaldder the condition that the other margin exceeds
u as well Frahm et al.2005. In other words, it is the probability that if one variab&eextreme, then

the other is also extreme.

The formulation in @) is of interest for hydrological processes, since it is baseF; (X ) andF»(Y)
and not directly onX andY and therefore, the variables describing the hydrologieahtdo not need
to have the same scale and are not of the same nature. The YT BRlefined as the limiting value of

x(u) asu — 1 where

logP(F1(X) < u, Fa(Y) < u) —9_ log C'(u, u)

x(u) =2 - P(F(X) < u) log u

, 0<u <1, 3)

Note that in EVA, the statistical study of the tail or the extre risk is always established under asymp-
totic considerations. In the remainder of the paper, tha tassymptotic” refers ta: — 1. The function

x(u) can be interpreted as a quantile-dependent measure ofdpenColes et al.1999. Its upper
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and lower bounds are given by :

_ log (max(2u — 1,0))

2
log u

<x(uw) <1, 0<u<l (4)

The left and right hand sides i) correspond respectively to perfect negative and perfesitipe
dependenceBgirlant et al, 2004 p.344). The functiony(u) provides an insight to the dependence
structure at lower quantile levels. The c&$@u, ) = u? corresponds to exact independende) = 1.
Wheny,, € (0, 1], thenX andY are said to be asymptotically dependant, whereas whe# 0, these
variables are said to be asymptotically independent.

In general,x(u) is a non-trivial function ofu and does not have explicit formula. As illustrated in
Figurela, Coles et al(1999 showed that for a pair of Gaussian variables with corretatioefficientp,
x(u) increases witlp, but asu — 1 the effect of dependence diminishes ay@) — 0 for all p < 1.
For an intermediate value af, x(u) is reasonably linear with distinctly different values fdr a. For
p > 0, x(u) converges very slowly and ultimately abruptly. An impottéinding from this Figure is that
the dependence in the center is clearly not maintained iextremes. It is possible to pass from high
dependence to independence. On the other hand, this meatritsishpossible to conclude erroneously
that the extremes are asymptotically dependent simplyusecthe extreme independence is not easily
detectable. This indicates that the bivariate extreme isaate not adapted in the case of asymptotic
independence. Therefore, although these models cledidgtréhe behaviour of extremes in the case of
asymptotic dependence, in the case of asymptotic indepeadhbe result is very mixed.

In summary, in the extremes context, althoughis better than overall dependence measurgs
andr, it is not always sufficient to quantify the dependence apately in all situations. It could fail to
discriminate between the degrees of relative strength pémgence for asymptomatically independent
variables. Thus, it is important to overcome this limitatioy introducing another characterization or
a complementary dependence measure. Notexthas the only measure employed in hydrological

applications and it is only considered in few studiBsifuis 2007 Ghosh 201Q Lee et al, 2012.

2.2 Tail dependence measurg,
The functiony(.) given in 8) as a tail dependence measure is useful in the case wherartables are

asymptotically dependent. It is not appropriate for dimimating asymptotic independence for which
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data exhibit positive or negative associatiog, correlation, that only gradually disappears at more and
more extreme levels. A complementary measurg(of, denotedy(.), has been introduced tyedford
and Tawn(1996 1997 and developed bgoles et al(1999. The functiony(.) measures the strength
of dependence within the class of asymptomatically inddpendistributions. In a similar way to the

function x(u) given in @), x(u) is defined as follows

2log P(F1(X) > u) | = 2log(1l —u)

x(u) = - 1= = -1, 0<u<l. 5
X(w) log P(F1(X) > u, F5(Y) > u) log C'(u,u) B ®)

The functiony () is also bounded from below and above as
2logl = u) 4 _ gy <1, 0<u<l. (6)

log(max(1 — 2u,0))

x(u) has the following propertied3@crg 2005 Beirlant et al, 2004 Coles et al.1999 :

¢ If an exact independence occurs beyandheny(u) = 0;

e If there is a perfect dependence beyaendheny(u) = 1;

o If x(u) € (0,1), thenP [F1(X) > u|F2(Y) > u] > P[F»(Y) > u] and the extremes are positively
associatedie. observations for which both; (X)) > wandF»(Y') > w for large threshold: occur
more frequently than under exact independence betweandY’;

o If x(u) € (—1,0), thenP [F}(X) > u|F5(Y) > u] < P[F2(Y) > u] and we say that the extremes
are negatively associateid. observations for which both} (X) > « and F»(Y) > w for a large
thresholdu occur less frequently than under exact independence betWendY’;

¢ |x(u)| increases with the tail dependence.

To focus on extremal characteristics, by analogy to one defineg,, as the limiting value of¢(u)

asu — 1 for which—1 < y, < 1. This limit has the following properties :

e X, = 1 corresponds to the asymptotic dependence of extremes. iFéugake Gumbel-logistic

extreme value distribution is an example where this casarecc

e X, < 1 corresponds to the asymptotic independence of extremesarmtovides a limiting

measure that increases with relative dependence streriitiin this class;
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e Y, allows to better characterize a possible asymptotic ingegece and it provides a complemen-
tary information to that provided by,,. For instance, as illustrated in Figutb, in the case of a
Gaussian pair, we havg, = p andy(u) is approximately linear fod.5 < u < 1. Therefore, one
concludes an asymptotic independence, despite what miggest a direct interpretation gfu)

in Figurela (Coles et al.1999.
In summary, the quantitieg;, andy,, allow to characterize the dependence of extremes as follows

e X, € [0,1] with the set(0, 1] corresponds tasymptotic dependence

® X, € [—1,1] with the set—1, 1) corresponds tasymptotic independence
As aresult, the paify,, x,, ) can be used as a summary of extreme dependence :

o If (x, > 0,x, = 1), the variables arasymptotically dependeandy, determines a measure of

strength of dependence within the class of asymptoticadfyeddent distributions;

e The casgx, = 0,x, < 1) corresponds tasymptotic independendetween variables ang,

measures the strength of dependence within the class opéstyoally independent distributions.

2.3 Coefficient of tail dependencey

In this subsection, we assume that a joint distributioJ6fY") has unit Fréchet marginie.

Fi(x) = exp(—1/z), z > 0andFy(y) = exp(—1/y), y > 0. (7)

This restrictive assumption is without loss of generalitycs, if necessaryf(.) and F»(.) can be
transformed into unit Fréchet margins (seg. Ledford and Tawn1996. In order to analyse the
asymptomatic dependence structure between the Fréchginsiand to linky,, with x,,, Ledford and

Tawn (1996 1997 introduced the following model on the tail of the joint sival function of (X, Y") :

P(X > 2Y > 2) ~ 2 L(2), asz — oo, (8)

wherelL is aunivariate slowly varying function at infiniffBingham et al.1987, Theorem 1.5.12),e.

L(\z)/L(z) — lasz — oo forall A > 0. 9)
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The rate of decay ingj is primarily controlled byn. The coefficienty describes the type of limiting
dependence betweeXi andY’, and L is its relative strength given a particular valuerof By putting
T = min(X,Y), it follows thatP(X > 2, Y > 2) = P(T > z) ~ 2~ '/7L(z) andy is identified as the
tail index of the variablg’. Hence, the usual univariate techniques can be used tca¢wal(Hill , 1975

Pickands1975. One can show that

and the estimate of,, can be obtained from that gf which is more developed and studied since it is
related to the tail index. As a consequence, we h@&ads et al. 1999 Heffernan 200Q Ledford and
Tawn 1996 1999 :

e X andY are asymptomatically dependent if and only i= 1 andL(z) — ¢ € (0,1] asz — oc.
In this situation, we havéy, = ¢, x, = 1). The constant denotes the dependence degree where

¢ = 1 corresponds to the perfect dependence in tail;
e The case; — 0 andL(z) = 1 corresponds tperfect negative dependenge tail);

In addition, within the class of asymptotically independeariables,i.e.0 < n < 1, three types of

independence can be identified :

e The case) = 1/2 corresponds to near independence between the extremdésaoflY. These

extremes are exactly independent when 1;

e If 1/2 <np < landc> 0, o0rn=1andec = 0, then the marginal variables are said tgiositively

associated
e If 0 < n < 1/2, then the marginal variables are said torlegativity associated

To summarize, the degree of dependence between large vdl&eéchet margins is determined by
with increasing values of corresponding to stonger association. For a giyethe relative dependence
strength is characterized by the slowly varying functio(Beirlant et al, 2004 p.346). For instance, for
the Gaussian dependence model with correlation 1 illustrated in Figurel, we haven = (1 + p)/2
andL(z) = ¢, (log z) /0 wherec, = (1 + p)¥2(1 — p)~1/2(4x)~#/(+0) (Heffernan 2000. In

that case, positive association, negative associatiorexext independence arise respectively as 0,
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p < 0andp = 0. Theperfectpositive and negative associations are reached as1 andp — —1
respectively.

Figure2 summarizes in a diagram the presented tail dependence rasdsuhighlighting the con-
cepts of the asymptotic independence/dependence. Fiygiees also additional information which
is developed in the following Section. In Figuge the circle denotes the starting point, with several

possible paths that can be followed. This Figure will be dbed later, at the end of Secti@n

3 Particular case of the BEV distributions

The BEYV distributions are a particular case of bivariatdritistions. They are characterized by some
specific dependence functions which can be expressed titbagprevious tail dependence measures. In
this Section, we briefly present the relevant measures dathéependence for these distributions since
they play a prominent role in the studies of bivariate extawents. In order to carry out a meaningful
study about tail dependence in the BFA, we assumeftiat) belongs to the domain of attraction of a
BEV distribution G, i.e. there exist standardizing sequenegs ¢, > 0 andb,, d, € R such that for

all z andy (Galambos1978 Resnick 1987
Xi,....X,) = b, Yi,....Y,) —d,
g p [22X e Xn) b max e Yn) mdn NGy

n—o00 an Cn, -

It is shown in the literature that all BEV distributions amymptotically dependent, otherwise, in the
case of an asymptotic independence, the only possibldisituia the exact independence.d. Bacrq
2005 Coles et al.1999. For the lattery,, = 1 andy,, > 0, and in practicey,, is all the closer td that
the dependence is strong. Besides, the tail dependendiofurg.) is constant. Figuré illustrates the
behaviour of the tail dependence functiops) and x(.) for the bivariate Gumbel-logistic distribution
with dependence parametér< ¢ < 1 which is a BEV distribution. Notice that, for the bivariate
Gumbel-logistic distribution, the parametemeasures the strength of the dependence and the limiting
cases = 1 andé = 0 correspond respectively to independence and perfect depea. Figuresa
shows thaty(.) is positive, constant and close tavhend is close to0. In Figure3b, for large values of
6, x(.) converges slowly td asu — 1.

An estimation ofy(.) significantly non-constant reflects an inadequacy of the BEWibution to the
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data. This situation arises whéX, Y") are asymptotically independent andthe block size maxima,
is not large enough to meet the condition i) (Coles et al.1999. In hydrological BFA, since the
peak flows are extracted as block maxima, hydrologists tenoiritly model flood characteristics with
the component-wise maximae. a BEV distribution, without always checking firstif, = 1. The

dependence structure 6f(., .) in (11) is characterized by quantities given in the following sdi®ns.

3.1 Pickands dependence function

The representation of dependence structure discoverdeidands(1981) turned out to be far more

convenient than its predecessdBgiflant et al, 2004 p. 270) such that :

G(z,y) = exp [— (%—Fé)A(w—i]—y)]’ z,y >0, (12)

where A : [0,1] — [1/2,1], known asPickands dependence functjde a convex function such that
A(0) = A(1) = 1. The independence case correspondd (0 = 1 whereas A(w) = max(w,1 — w)

leads to the perfect dependence. The copula of extremedahaed by(., .) is expressed a¥(u, v) =

exp [log(uv)A (1252 and foru = v = 2, it follows that

C(z,2) = 224072, (13)
Definition (13) implies the following relationship between, andA(.) :
Xo =2 — 24A(1/2). (14)

Thus, estimatingy,, is a particular case of estimating(.). The Pickands dependence functidx.)

and the extreme value copuld., .) allow to check whether a sample comes from a BEV distribution
G(.,.) or at least ifF'(.,.) belongs to the domain of attraction of a BEV distributiéGh To this end,
three statistical tests can be us€@ the bivariate test of extreme-value dependence based ateken
process Ghoudi et al, 19998 or (ii) the one based on the Pickands dependence fundfiojadinovic

and Yan 2010 or (iii) the goodness-of-fit tests for bivariate extreme-value la@pGenest et al2010).
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3.2 Stable tail dependence function
A bivariate CDFF(.,.) with continuous marging’ (.) and F;(.) is said to have &table dependence
function(STDF)/(., .) if the following limit exists Huang 1992 :

%in(l)t_llP’(l —Fi(X) <tzorl—Fy(Y) <ty) ={(x,y), forz,y>0. (15)
e

Referring toDrees and Huan@l999, F'(.,.) is equivalent to 1) if and only if (i) F;(.) andFy(.) are
in the max-domains of attractions of extreme value distidins G (.) and Gy (.) respectively, andii)

F(.,.) has a STDF(., .) defined by

M1 g2 — 1
E(‘T,y) = —IOgG <‘T " 7y Yo ) ) (16)

where~v; and~ are real constants called thearginal extreme value indicehe STDF/(.,.) can be
seen as a starting point to construct non-parametric madd&V distributions. For instance, one can

cite the Gumbel-logistic model for which
0
Uz,y; 0) = (xw + yl/(’) , z,y>0and0 <6 < 1. (17)

The STDF/(.,.) and the Pickands dependence functiéf) are related byA(t) = ¢(1 — t,t) for

t € [0,1] (seeBeirlant et al, 2004 p.267). It follows thaty,, and/(.,.) are related as
Xg =2—£(1,1) =2 —26(1/2,1/2) > 0. (18)
Recall that for BEV distributiong, = 1.

3.3 Tail copula function

The tail copula is a function that describes the dependetnaetsre in the tail of a joint CDR(., .).

Similar to (L5), for all non-negativer andy, the quantity

A(z,y) = lim t7IP (1 — F(X) < trzandl — F(Y) < ty), (19)
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is called thetail copula function(TCF) of (X,Y), provided the limit exists. The relationship between

A(.,.) and/(.,.) is given by

Az, y) =z +y—l(z,y), forallz,y > 0. (20)

The quantityA(1, 1) is the UTDPy,, of (X,Y") (e.g. Einmahl et al. 200§. Schmidt and Stadtmuller
(2009 proposedA(.,.) as a starting point to construct a multivariate distributmf extreme values.
In addition, the TCF function is considered as an intuitivel straightforward generalization of the
tail dependence functiog(.) via a function describing the dependence structure in thefta distribu-
tion (Schmidt and Stadtmulle2006. To summarize, in these particular casesjs expressed explicitly

with A(.,.), £(.,.) and A(.) as follows :

Xo = A(1,1) =2 —£(1,1) = 2 — 2A(1/2) > 0. (21)

These relation are useful for estimatigg since the established properties of the functiags.), ¢(., .)
andA(.) are well developed.

Figure2, summarizes in a diagram all presented tail dependenceunesag,, X, 7, A(.,.), £(.,.)
and A(.), by highlighting the concepts of the asymptotic indepedesnd asymptotic dependence. In
Figure2, from the starting point circle, there are several posgblhs (A), (B'), (B") and(C)) which
can be followed. The choice of which path to take depends eratailable information and the goal.
However we recommend to follow the patH). It can be seen as a procedure starting from data to

obtain the tail behaviour via the presented measures. Tthg Aa describes as follows :

(i) From the bivariate dat&(X;,Y;), i« = 1,...,n} with joint distribution functionF'(.,.), evaluate
the tail coefficientsy,, andy,, respectively given by 3) and €). If (x, > 0,x, = 1), we are
within the class of asymptotically dependent distribusiootherwise if(x,, = 0, x, < 1), we are

within the class of asymptotically independent distribns.
(i) Consider model &) and evaluate :
(1) Within the class of asymptotically independent disttibns, depending on the valuesgffour

cases are possible : negative association, positive asisoginear independence or exact indepen-
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dence.

(2) Within the class of asymptotically dependent distridfms, according to), three types of depen-
dence are possible : perfect negative dependence, pedsitive dependence and asymptotic

dependence.

(i) Except for the exact independence, all BEV distributs are asymptotically dependant.

4 Non-parametric estimation of tail dependence

Depending on the level of available information about thetrthution of the data, there exist several
approaches to estimate the tail dependence functions afficents. First, the bivariate distribution
F(.,.) could be either knownEmbrechts et 812002 or belongs to a class of distributionSdhmids

2002 Schmidt and Stadtmulle00§. Second, the tail dependence can be estimated by using a spe
cific copula (ongin and Solnik 2001, Patton 2006 or a class of copulael(ri, 2002. Finally, non-
parametric estimation methods can be employed when nofigpkeecm is known or constrained on the
copula or on the marginal distributions. In the presentiseciwe focus on non-parametric methods.
The tail dependence estimates are obtained from the emlpiopula or based on the transformation of

original data to Fréchet variables becai&e, .) or C(., .) are generally unknowrPoon 2004).

4.1 Estimators of tail dependence parametey,

As shown implicitly in Sectior?, the tail dependence parameggr can be estimated by using the copula,
the Pickands dependence function, the STDF or the TCF. Ifotlesving, one shows how an estimator

of x,, is obtained by using the latter functions.

4.1.1 Estimation via the empirical copula

An estimator ofy(.) is obtained via the empirical copulaloe et al(1992 introduced the following

estimator

XSEC(”__k) :2_[1—(3*,1("_]{:,”_]“)]/{1—”_%] L0<k<n, (22)
n n n n
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wherek denotes a threshold, that is a sample fraction, to be chosiaé‘,a(., .) is the empirical copula

defined by Deheuvels1979 Genest and Segel2009

A 1

C’n(u, ’U) = E Z H{Rg(/(n-i-l)fu, R}’/(n+1)§v}v u,v € [0, 1], (23)
=1

wherel y is the indicator function, while?;* and R}, respectively, stand for the ranks &f among
X;, ..., X, andY; amongY;,...,Y,. Coles et al(1999 introduced, on the basis oB), the following

estimator of the tail dependence function

_ A —k —k —
XLOG <—m k) =92 [log <Cm (m—7m—>) /10g <m—k:)] ,0<k<m<n, (24
m m m m

whereém(., .) is an empirical copula computed from block maximaX;; andY;;

I =1...m, and

where each block contairis= n/m elements of the original data. The estimatgf§'“ andx.°¢ are
deduced respectively froC(.) and x“©%(.) by noting thatu = (n — k)/n is close tol whenk is
small.

The coefficienty,, can also be estimated by the least-square method suclbihiati¢ and Schmid

2005 Fischer and Dorflingei2009 :

k o o o 2\ 2
)ZED:XE%:argminZ Ch (n Z,n Z) — <n Z) , 0 <k <n, (25)
’ Ae0,1] =y n n n

wherearg min,¢[o 17 2()) gives an argument at whidk(.) is minimized over the domait, 1]. Dobric
and Schmiq2009 showed thak: ~ /n can be an appropriate choice to built the estimafgfs’, {-O¢
and P, Frahm et al(2009 suggested to deduge’™* andx:° by choosing a thresholid based on
the property of tail copula homogeneity as state@ammidt and Stadtmull§200G§ Theorem 1). This
approach consists in identifying a plateau, which is indumgthe homogeneity, on the graplis x*(.)).
Nevertheless, the plateau-finding algorithm developderahm et al(2009 requires a prior definition

of some parameters.

4.1.2 Estimation via Pickands dependence functiod(.)
As mentioned in subsectiof.1, estimatingy,, can be obtained by estimating(.) via (14). Since

the marginsF; (.) and F»(.) are rarely known in practice, a natural way to proceed is thezstimate
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them empirically byF} ,,(.) and F3,,(.). This leads to estimating the copul.,.) on the basis of
the transformed observatiof$F, ,,(X;), F»..(Yi)), i = 1,...,n}. However, it is more convenient to

consider scaled variables defined®gnest and Segef2009:

. N 1 n N N
Uy=U,= " j:1]l{xjgxi} andV; =V, , =

1

n+14
J

Liyy<viys (26)
=1

The scaled pair§(U;, V;), i = 1,...,n} are called thggseudo-observatiorfsom copulaC(.,.). They
allow to avoid dealing with points at the boundary of the wmjtiare. Genest and Sege(2009 pro-
posed the two following estimators of(.) which are the rank-based versions of the estimators given

respectively byPickandg1981) andCapéraa et a(1997) :

N 1K~ N 1 & N
p _ Z CFG (1) _ Z
An,r(t) =1 /{E pt gz(t)} andAn,r (t) = exXp <_CE - E Pt IOg gz(ﬂ) ) (27)
wherecg ~ 0.57721 is the Euler's constant while, fare {1,...,n}, the function(.) is defined as

&(0) = —log U;, &(1) = —log V; and for allt € (0,1) &(t) = min {%gf]i, ﬂ} The estimators

in (27) lead tox® . = 2 — 24F (1/2) and{“5C¢ = 2 — 245¥G(1/2).

U,r U,T

Another estimator of the UTDP, motivated I@apéraa et al(1997 and studied byrrahm et al.
(2009, is given by

. 1 1 L\ =
XE =2-—2exp <E glog { (log Fi(X;) tog FZ(Yi)> /log max (£ (X;). Fy(Y;))? }> e

The latter estimator relies on the hypothesis that the Uyidgrempirical copula can be approximated
by an extreme value copula. As the margins are unknown, ttipesone can replack, (X;) andF»(Y;)

by the scaled variable{%i andf/i. Note that, in some situations, the Pickands and the CF@aisirs can
be altered to meet the endpoint constraia{e) = A(1) = 0. Therefore, for alt € [0, 1], Segerg2007)
suggested endpoint-correction versions of the Pickand<C&G estimatorsGenest and Sege(2009
showed that the endpoint correction to estimat@m@ bas no impact on their limiting distributions.. In
addition, they showed that that the CFG estimator is gelyguedferable to the Pickands one when the

endpoint corrections are applied to both of them.
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4.1.3 Estimation via stable tail dependence functio#., .)

A natural non-parametric estimator of the STHF, .) based o (X;,Y;), i = 1,...,n} is obtained by
replacing in (5) t by k/n with k € {1,...,n} andP, F} andF5 by their empirical counterpart$i(ang
1992. Then, the empirical STDF is defined by :

M (z,y) le{x > X kopin OF YixVa_gyiin}s 0 S Ty < n/k, (29)
i=1

whereX;, < ... < X, ,andY;, < ... <Y, are respectively the order statistics ¥f, ..., X,,
andYy, ..., Y,. The distribution o@f(., .) is independent of the continuous margibs€es and Huang
1998. Einmahl et al(2008 proposed the following estimator that usually performigtgly better than
/1., ) for finite samples :
ZEKS(

Y) Z]I{Rx>n kz+1/2 OF RY >n—ky+1/2} (30)
i=1

where RX and R} as in @¢3). Definitions @9) and @0) lead to estimators of the UTDP given by
oH _ JH CEKS _ JEKS i
v =2-20,;(1,1) andx "t = 2 — 2£,%°(1, 1) respectively.

4.2 Estimators of tail dependence parameteg,,
Estimator ofy,, can be obtained on the basis of the copula or the tail coettigie

The functiony(.) can be estimated by substituting ) the empirical estimate of survival copula
function én(., .) given byé’n(u, v) =1—u—v+ Cph(u,v) forallu,v € [0,1] whereC,,(u, v) is given

in (23). Thus, a non-parametric estimatorygf.) is given by Coles et al.1999

i —k —k s n—k n—k
COLES (_n ) = [2log (1 — n_) /logCn (n 2 )} -1, 0<k<n. (31)
n n n n

On the other hand, according tb0j an estimation of leads to an estimation of,,. Sincen is

identified as the tail index of the univariate variallle= min(X,Y’), one can estimatg with the

estimator called Zipfi{ratz and Resnickl996 Schultze and Steinebactf96

L Z log k+1 log Th—j+1, 1 log A1 K logTh_ji1
e vt~ (3 X los 431) (# Sy ow Ty ’”),1§k<n—1.(32)

o (o) — (bt 1)
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whereT , < ... < T, , denote the order statistics of the random varialfledt can also be estimated

with the Hill (1975 estimator given by :

nl = %ijlong_me —log Tytm, 1 <hk<n-—1 (33)
j=1
The two latter estimating procedures require the knowlexdlee marginsty (.) and F»(.) since the
model ofLedford and Tawrf1996 1997 assumes thdtX, Y') has unit Fréchet margins. However, when
the margins are not identical or not Fréchet distributee atiginal variables can be transformed to stan-
dard Fréchet margins defined B, = —1/1og F1 (Xoriginal) @NdYnew = —1/ 10g Fo(Yoriginal) (Led-
ford and Tawn19969. However, these transformations could induce an unceytam the estimates of
n (Beirlant et al, 2004 p.351). ThereforeReng(1999 andDraisma et al(2004) respectively proposed
non-parametric alternative84) and @5) based directly on the empirical distributions of the orai

observations given respectively by :

i = log(2) /log [Sn(2k)/Sn (k)] , (34)
k
M= Su(j) / (k-sm) -> snu)) : (35)
j=1 j=1

whereS,, (k) = 3511 Lix,> X, i1, YVis Vo pirn} Withk =0,...,n — 1. For the choice of the thresh-

old k, the reader is referred teekina et al.(2012 and references therein.

5 Application to floods

In this Section, the presented estimators of the tail degrecwl are applied to a particular hydrological
event, namely floods. Flood events are mainly describedreg tbharacteristics that are flood peél,(

flood volume {) and flood duration.p).

5.1 Data description

The data used in this case study consists in daily natuedrsiilow measurements from three stations in
the province of Quebec (Canada). The basin reference nsrab&50301, 080101 and050119 and the

gauging stations are respectively denotedStyso301, STogo101 andSTos0119. Maximum annual flood
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events are described by their flood peaks, durations andnesas extracted from the daily streamflow
data. Gauging statiofTy50301 iS located on the Batiscan River and the corresponding datavailable
from 1932 to 1990 with missing values i1989-1983, 1979-1976 and1972. StationSTyso101 IS located
on the Harricana Rive3.4 km downstream from the Rould 1 bridge in Amos. Corresponding data are
available from1934 to 2002 with missing values 1998 and1999. The third gauging statioS750119
is located on the Matawin River0 km downstream from the pont-rout81 in Saint-Michel-des-Saints.
Data are available fromh932-2001 with missing values in940, 1941, 1943 and1972. These gauging
stations are selected in order to cover a wide range of dessdises dealing with the combination of the
floods characteristics. In Table gauging station coordinates and record lengths are suizedar

The hydrological literature has highlighted issues comiogrthe correlation between the three char-
acteristics of flood events. Due to space limitations, treugowill be made on the study ¢€),V)
whereas brief results will be provided concernifig D) and(Q, D). The couple(Q, V) is generally
highly correlated and represents the most studied in thi@titre (see.g. Chebana and Ouard2011a
Shiay 2003 Yue et al, 1999 Zhang and Singh2006. The tail dependence of the couplgg, V),
(D,V) and(V, D) are studied according to the procedure in FigireThis step is a prerequisite for
any modelling of the bivariate tail of the distribution. Sian to the bivariate descriptive statistics based
on the depth function investigated @hebana and Ouarq2011h where the focus was on the overall

features, the present study focuses solely on tail depeeden

5.2 Tail dependence measures

Since the distributions of the serigg, V'), (Q, D) and(V, D) are unknown, the tail dependence function
x(.) and its complementary functioyy(.) are directly evaluated via the empirical copula. This afides
assess the strength of tail dependence.

The estimatorg>t©(.) (with m = n), “°¢(.) and{EP, defined respectively ir2g), (24) and @5),
are evaluated. Firsg>"C and{1°% are deduced respectively from the functiogfid*(.) and ~9¢(.)
by noting thatu is close tol for small k. Second, the UTDP estimatofg™“, {.°¢ and {F" are
obtained by fixingk = \/n.

The coefficienty,, is deduced from the functiof(.) which is estimated via the empirical survival

copula as well as via the coefficient of tail dependencédence, one uses respectively the estimator
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A

XUOLES defined in 1) and the estimatog® , = 27 — 1 wheren} is defined in 82), (33) or (35).
The symbole denotes one of the indices Z, H or D. Since the margins areamknthe estimators,%
andﬁ}j, given in 32) and @33) respectively, are computed by first transforming the nmergp standard
Fréchet margins. The threshaldis chosen in the simultaneous stability range of the esdmaitlj,k,
ﬁgk and )?E,k and the corresponding estimator is denof%d This technique is commonly used for
the estimation of the tail index or extreme quantile in EN( Leking 2010. The overall estimated

dependence coefficients of Pearson’s, Kendall's and S@eesrare denoted respectively by, 7,, and

pn are evaluated for comparison purposes.

Tail dependence for the series@, V)

In the remainder of the Section, the analysis is presentstidocording to gauging stations and then
according to the measures of dependence. Figdrasd 5 illustrate the different estimators of tall
dependence functiong(.) and x(.) respectively. Generally, Figureshows that the estimators f.)
are not too close té whenuw is large enough. Therefore the tail dependence is not sirotige three
considered stations. At first sight, this means that we cbaldestricting the analysis to the univariate

case.

For STos0301, (Figureda), all estimators of(u) are considerably larger thanfor v < 0.9. When
u is close tol, i.e. u > 0.9, the estimatorg™©% (u), {°*¢(u) and the estimated UTDRY converge
to 0 abruptly with respect ta or £ and the difference between these estimatorsﬁﬁ‘ﬂ is large. It
would have been possible to conclude erroneously that thele6Q, V') is asymptotically dependent
in stationSTy50301. Similar results are obtained liyoles et al(1999 for other data. In addition, for
u = 1—k/n ~ 0.854, the UTDP estimators arg-0% = 0.309, x3¢ = 0.395 and 0¥ = 0.170.
Figure 5a indicates that all estimators gf, are significantly different fromi. For instance, they are
almost stable around the intervial233, 0.458] for u € (0.40,0.57) whereasy O™ = 0.399 for u =
1 — k/n =~ 0.854. Indeed, according to the properties of the coefficigntgiven in subsectior?.2
and summarized in Figur the peak flow and the flood volume 850301 can not be described by
BEYV distributions since there is no asymptotic dependerceindicated by the path§A) or (B”) in
Figure2, we recall that inSTps50301, an analysis based only on the estimatorg gfdoes not guarantee

that the couplé@, V') is asymptomatically independent. Figure indicates that (i) ;?; ~ 0.456 and
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XSOMES = 0.399, (ii) {PF € [0,0.170), XXO¢ € [0,0.309) and xSFC € [0,0.395) for 0.854 < u < 1.
This leads to conclude that the extremes are positivelycegsdl,i.e. in STy50301 the observations for
which bothF;(Q) > w and F5(V') > w for large thresholds occur more frequently than under exact

independence betweénandV’.

For SToso101, (Figure4b), for v € [0.7,1) all estimators ofy(.) are considerably larger thah
More precisely, forl — k/n ~ 0.878 < u < 1, we havex©% ¢ (0,0.624], ¥°F€ € (0,0.656] and
PY € (0,0.522]. Accordingly, with respect to pathA) in Figure 2, the couple(Q, V) seems to be
asymptotically dependent. On the other hand, Figbrndicates that the estimatog$ , andy* , have
a regular behavior and are almost stable for large threshdlis indicates more accurate evaluation of
X. In other respects, the tail dependence estimat6f¥-“ andx® , are non-negative fob < u < 1
and1l < k < n respectively. More precisely O™ = 0.620 for u ~ 0.878 whereas the estimators
ﬁ;k are located in the rang@.327, 1]. In particular, >?5,k fluctuates slightly around ~ 1 and the
estimatorsy'! , andy? ; are almost stable and approximately equall.t¥his suggests that’, ~ 1 and
one can then conclude that the couplg V) is asymptotically dependent, see p&fB') in Figure 2.

In additionx,, € [0.502,0.656] denotes the strength of this dependen@ethis dependence is slightly

high.

For STos0119, Figure4c suggests thap andV are asymptotically dependent since the estimators of
T it oSEC _ cLOG _ oDF _ oF _ ~
x(.) are insidg(0, 1) with x°>** = 0.400, X~ = 0.330, X/~ = 0.265 andy;, = 0.407 for u =~ 0.877.
Nevertheless, Figurec invalidates clearly these finding sin;%%:,,‘C are located in the rande.345, 1]. On
the other hand, fronySOMES andig,k, one deduces that! = 0.345 # 1. In fact, according Figuré,
for the couple(@, V'), Figures5c and4c do not allow to conclude since the tail dependence estiato

A

do not satisfy(y, € [~1,1), X, = 0) or (X, = 1, %, € (0,1]).

The estimated overall dependence coefficients, the egtihtail dependence parameters and the
estimated tail dependence functionsdog (1 — k/n,1) are summarized in Tabiz Table2 shows that,
in all three stations, the overall coefficients lead to codelthat there are significant correlations which
are not very high. Nevertheless, as concluded previouslherbasis of tail dependence measures, in
STos0301 the extremes are asymptomatically independent. Thus, bsernges that an analysis solely

based on the overall dependence coefficients does not giwegkrinformation to reflect the nature of
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the relationship between extremes of the cod@leV') in STos0301, SToso101 and.STops0119-

As previously mentioned (see Sectign all BEV distributions are asymptotically dependent.cgin
it was concluded that the coupl€), V') in STyso101 iS asymptotically dependent, one of the BEV dis-
tributions could be a candidate for the samplg@f V'), for instance, an extreme value-copula or the
Gumbel-Hougaard family. The bivariate tests presentedilisection3.1 are used to check this. Re-
sults are provided in Tablé The Gumbel-Hougaard copula family is commonly used forbldjical
FA (e.g. Ghosh 2010. Notice that for a given degree of dependence, the mostl@opxtreme-value
copulae are strikingly similare(g. Genest et al.2010. The tests require estimating the Pickands de-

pendence functioni(.).

For theGhoudi et al.(1998 bivariate test, the approximative p-values obtained lokkaife, the
finite sample plug-in and the asymptotic plug-in are ngtegac, pv.fsa andpv.asy respectively. For the
Kojadinovic and Yar(2010 bivariate test, the p-value is denotedayky. For theGenest et al(2010
goodness-of-fit testpp.mpl, pv.itau andpv.irho are the approximative p-values obtained respegtivel
using parametric bootstrap combined with the maximum psdikdlihood, the method of the inversion
of Kendall's tau and the method of the inversion of Spearsam. In Figures, we present fot € [0, 1]
the rank-based estimato%’,r(t) andASEG(t) defined in £7), and the corresponding corrected endpoint
estimators notedi’, .(t) and ASES(¢) (Segers2007). The estimated UTDRY and xS which are
related, via {4), to the dependence functiofi(.) and the obtaineg@-values of all bivariate statistical
tests of extreme value dependence are summarized in Fallgtice that an analysis based on Pickands

dependence function or the UTDP estimators lead to the sawtiads.

The analysis on tail dependence functjgn) and its complementary functiog(.) allow to conclude
that the coupleg(@, V') is asymptotically independent fd#7y50301. To consolidate this finding, the
function A(.) is estimated and the p-values of the bivariate tests use@psty are computed. Figuia
suggests that ib7Ty50301 the couple(Q, V') is asymptotically dependent since vibd) we havef(l; €
0.570,0.610] andx S € [0.471,0.516] which are lower than. Nevertheless, as shown in the previous
analysis based on tail dependence funcii¢n and its complementary functioy(.), this represents only
a graphical indication. In fact, the bivariate statistitsgts in Table3 confirm that we can not model the

couple(Q, V) by a BEV distribution and especially by the Gumbel-Hougdandily copula sincewv.jac,
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pv.fsa,pv.asy,pv.Ky, pv.mpl andpv.itau are lower tha.05.

Figure 6b indicates that in6Tpg0101, @ andV are asymptotically dependant since via the relation-
ship (14) we havex? € [0.468,0.503] and S € [0.503,0.538] which are lower than. The p-values
of all bivariate tests of extreme value dependence sumsgthiiz Table3 are higher thar).05 which
confirms a good fit with the BEV distributions. Then, f8fug0101, the dependence df), V') can
be modelled with the Gumbel-Hougaard family copula. In tiddj from ¥ and xS, one deduces
that the degree of dependence betwéeandV is within the interval[0.468, 0.503]. Notice that even
though this degree of dependence is slightly lower than teeigus valuesi.e. x,, € [0.502,0.656],
where no assumption on the model was made, the same comcigigibtained i.e. there is asymptotic
dependence.

In Figure6c, the indication graph suggests an asymptotic dependataedn) andV in STys0119
since? € [0.387,0.426] and{ "¢ € [0.419,0.456] are lower tharl. Moreover the bivariate statistical
tests in Table3 confirm this graphical indication since the obtained p-galare higher thaf.05. How-
ever, this finding is not compatible with this resﬁ[} = 0.345 # 1 which means that there is asymptotic
independence. This could be explained on the basis of cmtisin of the tests used. Indeed, the tests
used are based only on the functidi.) and not on the tail-dependence measyfg. In addition, the
p-value is a measure of the evidence against the null hypisthéhe smaller the p-value, the stronger the
evidence against the null hypothesis. A large p-value istrong evidence in favour of null hypothesis.
A large p-value can occur for two reason@): null hypothesis is true ofii) null hypothesis is false but
the test has low power. The p-value is not the probability e null hypothesis is true (s&asserman

2003 p.157).

Tail dependence for the serie$@, D) and (V, D)
In Figures7 and8, we respectively present the estimators of tail dependmegionsy(.) andy(.) for

the pairs(Q, D) and(V, D) for each station. The estimated tail dependence paranugdrged from
Figures7 and8 and the estimated overall correlation coefficients are sarized in Tablel.

Figures7a, b, Figures3a, b and Tablel show that() and D are asymptotically independent in both
STos0301 and STpso101- More precisely, inSTys0301 We observe near independence sirjce: 0 and
X ~ 0 whereasy“OL8 ~ 0 for 0 < u < 0.854 andx YO = —1 for 0.854 < u < 1. Figures7c

and 8c indicate that) and D are asymptotically independent 850119 Sincey ~ 0. Based on
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the estimatorsy” , and Y“OMFS, one can deduce that the association betw@eand D is negative.
U,
Otherwise, one can deduce a positive association when gigsais only based on the estimatg?r?,,k

andy? .

Nevertheless following Figurg, an analysis of Figuread and8d does not allow to conclude for an
asymptotic independence betwerand D in STys0301 Since the estimators of(.) are clearly inside
(0,1) (see also Tablé). In addition, the estimators f(.) are non-negative witRy, ~ 0.5 andy“OL=S
is in the rangeg(0.220,0.250) for 0.854 < u < 1. Figures7e, 8e and Tablet suggest that” and D
are asymptotically dependent #Vg9101- Figures7f and 8f do not allow to conclude for an asymptotic
dependence betweédnandD in STys0119 Since the estimators of(.) converge to values arourid340
foru <1-—k/n =~ 0.877 whereas, the estimators gf.) are clearly unstable and significantly different
from 1 with x©OHE5 ~ 0.355 and P, ~ 0.220 for u ~ 0.877. Whenu > 0.877, the estimators of(.)
converge abruptly t6. In addition, as the UTDP estimators is in the rag@e 82, 0.400) for v ~ 0.877
(see Tablel), one might conclude at best for an asymptotic independaitbepositive association since

the estimators of(.) are non-negative fou € (0.2,0.95).

In Table 4, the obtained estimated overall coefficieffs, 7,,, o) lead simply to conclude that a
significant overall correlation exists in all cases. Thisvgs once again that the hydrological analyses
based on overall coefficients are inadequate to quantifyextreme risks that occur at the tail of the
distribution. Moreover, this case study shows that the omeag(.) alone is not always sufficient to
exhibit the relationship between the extremes. Noticetti@bverall coefficients for the coup(€), D)
in STyhs0119 are negative. This could indicate that the coufle D) is in fact negatively associated
which is not in accordance with the last finding based on &ilethdence measures where the sign of the

association was not clear.

The summarized results Tabeshow that the couplé®, V') is asymptomatically independent and
positively associated in the Bastican RivéfT{s50301). In STos0301, Similar to Gaussian dependence
model studied byColes et al(1999, one can not conclude using onfy,. On the other hand, the overall
coefficient values indicate that (Q,V) are relatively higbbrrelated. However, the conclusion on the tail
is not the same where it is shown that the couple (Q,V) forgtdation are asymptotically independent.

In the Harricana River{Tyso101), (@, V) are asymptomatically dependent and can be fitted with a BEV
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distribution such as the Gumbel-Hougaard copula familythi Mattawin River §7550119) One can
not conclude on the tail dependence whereas, the overdfiaieets indicate that@, V') are relatively
highly correlated. In the Batiscan River, the cou@g D) is near independent. In the Harricana River,
the couple(D, V) is asymptotically independent whereas in the Mattawin Rivés asymptotically
dependent with negative association. The coypleD) is shown to be asymptotically dependant in
the Harricana River. In the Bastican River, it is difficult ¢onclude since the estimated UTDP are
approximately in the rang®.130, 0.255] whereas its complementary coefficients are approximately i

[0.220, 0.500]. In the Mattawin River, it seems asymptotically indeperideith positive association.

6 Conclusions

In the present paper, we introduced in the hydrological Bfedyiework, a number of dependence mea-
sures which are more adapted to the treatment of bivaridtere® events. These measures focus on the
tail of bivariate distributions. The statistical propegiof these measures are reviewed and associated

non-parametric estimations are provided.

The overall coefficients Kendall’s, Spearman’e and Pearson’s do not give enough information
to reflect the nature of the relationship between extremésy Ho not allow to study the concomitant
occurrence of extreme values since they do not attributeinfdance, sufficient weight to the extreme
values. They are more adapted to the center body of theldistmn. Furthermore, the tail dependence
measurey,, employed solely in some hydrological studies, does natatb conclude in all cases.
For instance, it is not appropriate for discriminating ahtes that are asymptomatically independent.
Hence, it is recommended to consider the complementaryureegs. This one quantifies the strength

of dependence within the class of asymptotically indepenhdariables in bivariate extremes.

An application of the presented tail dependence measurtied out on three gauging stations
located in the province of Quebec (Canada). The applicatiats with flood peak®), volume(V') and
duration(D). Itis concluded that the coupl&), D) is near independent in the Batiscan River whereas
in the Harricana River, it is asymptotically independertisTfinding can not be obtained on the basis of

the overall coefficients Kendall’s, Spearman’g and Pearson’s or using only the measurg, .
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\Station Localisation Latitude Longitude  Observation }ze}ar

050301 Batiscan River 46°35'8"  —72°24'17" 1932 — 1990

080101 Harricana River 48°35'52"” —78°6'33" 1934 — 2002

050119 Matawin River 46°41'10" —73°54'49" 1932 — 2001
Table 1: Station description.

i sSEC ~sLOG s =COLES 3 Sx ~ ~ ~ ~
Station  {°" " OF Y OLE XL 0 Po P Pn
050301 [0,0.395] [0,0.309] [0,0.170] [—1,0.399] 0.471 0.30 0.65  0.455 0.418 0.547
080101 (0,0.656] (0,0.624] (0,0.522] (—1,0.620] 0.503 1.00 1.00 0.660 0.403 0.562
050119 [0,0.400] [0,0.330] [0,0.265] (0,0.354] 0.407 0.345 0.673 0.521 0.360 0.511

Table 2: Couplg@, V). Estimated tail dependence measufs®, {106, {PF, YCOLES for ¢ € [1 —
Vn/n, 1) andxg, i; and7. Estimated overall correlation coefficierts 7,, andp,,.

oP

cCFG

‘ StationH X X H pv.jac pv.fsa pv.asyH pu.Ky H pv.mpl pv.ir pv.ip ‘
050301 || [0.570,0.610] [0.471,0.516] || 0.010 0.004 0.001 | 0.011 | 0.006 0.039 0.127
080101 || [0.468,0.503] [0.503,0.538] || 0.863 0.850 0.834 | 0.372 | 0.277 0.309 0.356
050119 || [0.387,0.426] [0.419,0.456] || 0.526 0.498 0.467 | 0.294 || 0.898 0.826 0.811

Table 3: Couplé@, V). Estimators based on the Pickands dependence fungtiandy“¥“. The p-values
of the bivariate tests of extreme-value dependence bas@l Kkendall's processyv.jac, pv.fsa, pv.asy),
(ii) the Pickands dependence functign ky), (iii) of the p-values goodness-of-fit test for extrewedue
copulae pv.mpl, pv.iT, pv.ip).

| Station Couple 5FC  gLOG  ¢bF 4+ Y COLES P T fn |
050301 (Q,D) —0.041 —0.150 0 0 —1  —0.256 —0.112 —0.164
(V,D) 0249 0.30 0255 0.5 (—1,0.250)  0.507 0.301  0.460
080101 (Q,D) —0.045 —0.094 0 —0.13 —1  —0.389 —0.239 —0.334
(V,D)  0.045 —0.094 0 0 —1 0364 0.335  0.468
050119 (Q,D)  0.092 0 0 0.050 [-1,0) 0361 0259 0.373
(V,D) 0400 0330 0.182 0.220 [-1,0.355) —0.450 —0.302 —0.445

. ; ; cLOG ¢DF _ ZCOLES
Table 4: Estlmatele tail dependence parameféfs’, {L°¢, {PF for u = 1 — /n/n, x for u €
[1—+/n/n,1) andx? . Estimated overall correlation coefficierits 7., andp,,.
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\Station Couple Overall correlation (sign) Tail dependence

050301 (Q,V) relatively high (+) asymptotic independence & positivecasstion
(Q,D) verylow (-) near independence
(V,D) moderate (+) no conclusion *

080101 (@,V) high (+) asymptotic dependence
(Q,D) low (-) asymptotic independence & negative association
(V,D) low (+) asymptotic dependence

050119 (Q,V) relatively high (+) no conclusion *
(Q,D) moderate (-) asymptotic independence & negative assogigti
(V,D) low (+) asymptotic independence & positive associatjon

Table 5: Summary of all the results. The case * means thaerith, ¢ [-1,1),x, = 0) or

(X, = 1, xy € (0,1]) is not fulfilled.

1.0

W
\

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Tail dependence function(u), u € (0,1) (b) Tail dependence functiop(u), u € (0, 1)

Figure 1. Tail dependence functions for the Gaussian dege@dmodel. The curves (bottom to top)
correspond to correlation coefficiept= —0.95, —0.90, —0.85,...,0.90,0.95. In dotted blue line, the
upper and lower bounds of(.) andy(.).
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Bivariate tests of extreme-value dependence (a)|and

BEV distributions and Domain of Attractionsy,, =
2 -2A(1/2) =2 —£(1,1) = A(1,1).

(b) or g.o.f. test (c) for bivariate extreme-value coppel-- »-

lae presented in end-subsectidni.

------- v \
AT 5

P e v

: — X andY are asymptotically dependent of degree

. ’ Perfect negative dependence. ‘ " . .

: 1 Perfect positive dependencenif— 1 with L(z) = 1.

. 4
[n%OWith L(z):l.} [n:landL(z)%c>O.]
... y\
_____ Consider modelq) and evaluate;.
The class of asymptotically
/ dependent variables
@ ~(B)

Asymptotic dependencey,; € (0, 1] andyx, = 1.

A

Bivariate

Evaluate the tail coefficientg,; andx,

data

respectively via Eqs3) and £).

v

Asymptotic independencey,; € [—1,1) andx = 0.

“(B") .
The class of asymptotically
’ independent variables
""""" Consider model§) and evaluate;.
PRt Yo e A
[ne(m/z) andL(z)ﬁc>0.] [ne(1/2,1) andL(z)%c>Oorn:1andc:0.] [n:1/2andL(z)ac>0.]

Y Y A ;
Negative association : observations for whigh| | Positive association : observations for whigh ’ Extremes ofX andY are near independent. ‘
andY exceed a large thresholdoccur less fre{| andY exceed a large threshotdoccur more fre-| V 7
quently than under exact independence. guently than under exact independence. ’ There is exact independence whe(z) = 1. ‘

Figure 2: Diagram of the study of the tail dependence in arfrequency analysis. The circle denotes
the starting point. We can follow the pati), (B’), (B”) or (C), however we recommend to follow the
path(A).
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Tail dependence function(u), u € (0, 1) (b) Tail dependence functiop(u), u € (0, 1)

Figure 3: Tail dependence functions for the Gumbel-logidistribution. The curves (top to bottom) corre-
spond to parameter of dependerice 0.025,0.050,0.075, ...,0.950,0.975. In dotted blue line, the upper
and lower bounds og(.) andy(.).
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2 . T 77/\\/"’
; X_PH_K'_“_H_“_“_’ R D A G
(a) Station 050301
— \\7\ |
(b) Station 080101
T

(c) Station 050119

Figure 4: Estimators of the tail dependence functigr of the pair(Q, V). The vertical axis corresponds

to {(u) with {99(- - - -) (blue)and {*"“(——) (red), {%,.(-x-x-) (magentajand

) while

the horizontal axis corresponds to threshalds 1/n,2/n,3/n,...,1—1/nandk =n —1,n—2,..., 1.
In horizontal dotted line, the upper and lower bounds¢n. In vertical dotted line, the chosen threshold.
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0.0

1.0

T
0.0 0.2 0.4 0.6 0.8 10

(b) Station 080101

0.0 0.2 0.4 0.6 0.8 1.0

(c) Station 050119

Figure 5: Estimators of the tail dependence functigr of the pair(Q, V). The vertical axis corresponds
to y () with y“OLFS(- - - -) (blue), )\ (++-+-) (magentapndy? ,(-o-o-) (black), while
the horizontal axis corresponds to thresheld k/n with k = 1,...,n — 1. In horizontal dotted line, the
upper and lower bounds of.).
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0.0 0.2 0.4 0.6

(c) Station 050119

0.7

0.6

0.5

0.4 0.6 0.8 1.0

(b) Station 080101

Figure 6: Estimators of the Pickands dependence function for ¢ € [0,1] : corrected endpoint es-
timators A\ (1) (---) (green) AJTC(t) (—) (red) and rank-based estimators, (/) (- - - -) (green)and

n,c\-J/

ACFG(#) (... (red).
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L0
L0

0.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(b) Station 050301 (V, D)

1.0

1.0

0.0

0.0

T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(c) Station 080101 (Q, D) (d) Station 080101 (V, D)

L0
L0

0.0

0.0

(e) Station 050119 (Q, D) (f) Station 050119 (V, D)

Figure 7: Estimators of the tail dependence functigf) of the pairs(Q, D) and(V, D). The vertical axis corre-
sponds tog(u) with {“%(- - - -) (blue) and {°*“(——) (red), ¥, (-x-x-) (magentajand ) while
the horizontal axis corresponds to threshalds 1/n,2/n,3/n,...,1—1/nandk =n —1,n —2,...,1. In hori-
zontal dotted line, the upper and lower boundsy¢r). In vertical dotted line, the chosen threshold.
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(a) Station 050301 (@, D) (b) Station 050301 (V, D)
(c) Station 080101 (Q, D) (d) Station 080101 (V, D)

L0
L0

0.0
0.0

(e) Station 050119 (Q, D) (f) Station 050119 (V, D)

Figure 8: Estimators of the tail dependence functigf) of the pairs(Q, D) and(V, D). The vertical axis corre-
sponds toy () with YCOLES(- - - 1) (blue), ) X . (++-+-) (magentajandxZ , (-o-o-) (black), while
the horizontal axis corresponds to threshole: k& /n with k = 1,...,n — 1. In horizontal dotted line, the upper and
lower bounds orx(.).
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