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Abstract

In bivariate Frequency Analysis (BFA) of hydrological events, the study and quantification of the

dependence between several variables of interest is commonly carried out through Pearson’s correlation

(r), Kendall’s tau (τ ) or Spearman’s rho (ρ). These measures provide an overall evaluation of the depen-

dence. However, in BFA, the focus is on the extreme events which occur on the tail of the distribution.

Therefore, these measures are not appropriate to quantify the dependence in the tail distribution. To

quantify such a risk, in Extreme Value Analysis (EVA), a number of concepts and methods are available

but are not appropriately employed in hydrological BFA. In the present paper, we study the tail depen-

dence measures with their non-parametric estimations. In order to cover a wide range of possible cases,

applications dealing with flood characteristics is carriedout on three gauging sites. Results show that

r, τ andρ are inadequate to quantify the extreme risk and to reflect thedependence characteristics in

the tail. In addition, the upper tail dependence measure, already employed in hydrology, is shown not to

be always appropriate especially when considered alone. Therefore, it is recommended to employ more

than one tail dependence measure.
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1 Introduction

Given economic, social and scientific issues related to floods, storms and droughts, no serious debate on

these notions can be conducted without a reflection on the extreme nature of these events (e.g. Cont,

2009; Lekina, 2010). They require an accurate modelling and an appropriate analysis. In order to evalu-

ate hydrological risk, some studies advocate univariate analysis based mainly on flood peaks (e.g. Bobée

and Ashkar, 1991). Nevertheless, hydrological processes are characterized by several variables. For in-

stance, floods are mainly described with three variables (peak flow, flood volume and event duration)

obtained from the hydrograph (e.g. Shiau, 2003; Yue et al., 1999). Thus, an effective risk assessment

cannot be conducted by studying each variable separately since this does not take into account the depen-

dence between variables and can lead to an overestimation orunderestimation of the risk (e.g. Chebana

and Ouarda, 2011a; Dupuis, 2007; Ouarda et al., 2000; Raynal-Villasenor and Salas, 1987). In such a

situation, copulae are widely employed (e.g. Zhang and Singh, 2006). In hydrology, quantifying the

dependence between different underlying variables, whichprovides an indicator value summarizing the

overall dependence structure, in a scalar format is fundamental (Salvadori et al., 2007).

During the last years, the study of the dependence of hydrometeorological variables has gained in-

creasing attention in hydrological risk assessment (Chebana and Ouarda, 2011a, and references therein).

In order to quantify the dependence, hydrologists have commonly used the measures such that Pearson’s

correlationr, Kendall’sτ and Spearman’sρ. However, these indicators are not always appropriate for

a proper understanding of dependencies in Bivariate Frequency Analysis (BFA) of extreme events (see

e.g. Embrechts et al., 2002, for a study in financial markets) since they cover the whole distribution with-

out focusing on the tail of the distribution where extreme risks could occur. In addition, the coefficient

r is based on the notions of linearity, normality and mean which are not appropriate when dealing with

extreme events. The use of this indicator can lead to underestimation of the risk.Embrechts et al.(1999)

showed that the Gaussian model is inadequate to quantify theextreme risks and indicated that the co-

variance gives incomplete information of joint extreme risks. The non-parametric dependence measures,

Spearman’sρ and Kendall’sτ , do not assume linearity and are not based on normality. The Spearman’s

ρ can be seen as the Pearson correlation coefficient between the ranked variables (e.g. Rohatgi, 1976).

Kendall’s τ is also based on the ranks of the observations (Kendall, 1938). These coefficients do not
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attribute sufficient weight to the extreme values. They are good overall indicators but are not appropriate

when the focus is on the extremes and the distribution tail.

To study the dependence in the BFA of extreme events, a “localdependence measure” is required

since the interest is in the “distribution tails”. In Extreme Value Analysis (EVA), a number of relevant

concepts and methods are developed to locally study the dependence in a joint distribution (e.g. Gef-

froy, 1958, 1959). These concepts are commonly used in actuarial sciences and finance (e.g. Ané and

Kharoubi, 2003; Bouchouicha, 2010; Embrechts et al., 2002; Malevergne and Sornette, 2004). For in-

stance, the upper tail dependence parameter is introduced by Joe(1997, p. 33). However, to the best

knowledge of the authors, there are no hydrological investigations of such methods for hydrological

BFA except the upper tail dependence parameter which is, forinstance, briefly presented inSalvadori

et al.(2007) andLee et al.(2012). Nevertheless, this parameter is not always appropriate and should be

combined with other complementary measures.

The aim of the present paper is to introduce and study different tail dependence measures for bivariate

random variables(X, Y ) in hydrological BFA. The paper is organized as follows. In Section 2, we

present the recent and significant tail dependence measuresin EVA. In Section3, we focus on the special

case of Bivariate Extreme Value (BEV) distributions due to their importance in EVA. Non-parametric

estimators of the presented tail dependence measures are briefly developed in Section4. Section5 is

devoted to the applications and Section6 presents the conclusions.

2 Tail dependence measures for bivariate distributions

Let (X1, Y2), . . . , (Xn, Yn) be independent random vectors inR2 with joint cumulative distribution

function (CDF)F (., .). We denote the marginal distributions ofF (., .) asF1(.) andF2(.) respectively

for X andY and byC(., .) the copula function associated toF (., .). A copula is a cumulative distribution

function (CDF) whose margins are uniformly distributed on[0, 1]. The joint distribution function can be

written in the form (Sklar, 1959):

F (x, y) = C (F1(x), F2(y)) for x, y ∈ R. (1)
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A copula function represents the dependence structure of a multivariate random vector. It contains

complete information about the joint distribution apart from its margins. In this sense, a copula describes

the association betweenX andY in a form that is invariant to marginal transformations (Coles et al.,

1999). The marginal distributionsF1(.) andF2(.) are assumed to be continuous, which is the case for

hydrological series. Therefore the copulaC(., .) is unique. The reader is referred toNelsen(2006)

or Joe(1997) for further details on the theory of copulae. In the remainder of the Section, three tail

dependence measures are briefly presented. The first allows to group together the distributions into two

classes whereas the second provides a complementary information to that provided by the first. The third

links the first measure with the second and allows also to reinforce the findings given by the first two.

2.1 Tail dependence measureχ
U

The first concepts were discussed as far back asGeffroy(1958, 1959) and the following formal definition

has been given byJoe(1997, p. 33) :

χ
U

= lim
u→1

P(F1(X) > u|F2(Y ) > u). (2)

The limit χ
U

is called theupper tail dependence parameter(UTDP). It roughly corresponds to the

probability that one margin exceeds a large thresholdu under the condition that the other margin exceeds

u as well (Frahm et al., 2005). In other words, it is the probability that if one variable is extreme, then

the other is also extreme.

The formulation in (2) is of interest for hydrological processes, since it is based onF1(X) andF2(Y )

and not directly onX andY and therefore, the variables describing the hydrological event do not need

to have the same scale and are not of the same nature. The UTDPχ
U

is defined as the limiting value of

χ(u) asu → 1 where

χ(u) = 2 − logP(F1(X) < u, F2(Y ) < u)

P(F1(X) < u)
≡ 2 − log C(u, u)

log u
, 0 < u < 1. (3)

Note that in EVA, the statistical study of the tail or the extreme risk is always established under asymp-

totic considerations. In the remainder of the paper, the term “asymptotic” refers tou → 1. The function

χ(u) can be interpreted as a quantile-dependent measure of dependence (Coles et al., 1999). Its upper
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and lower bounds are given by :

2 − log (max(2u − 1, 0))

log u
≤ χ(u) ≤ 1, 0 < u < 1. (4)

The left and right hand sides in (4) correspond respectively to perfect negative and perfect positive

dependence (Beirlant et al., 2004, p.344). The functionχ(u) provides an insight to the dependence

structure at lower quantile levels. The caseC(u, u) = u2 corresponds to exact independenceχ(u) ≡ 1.

Whenχ
U

∈ (0, 1], thenX andY are said to be asymptotically dependant, whereas whenχ
U

= 0, these

variables are said to be asymptotically independent.

In general,χ(u) is a non-trivial function ofu and does not have explicit formula. As illustrated in

Figure1a,Coles et al.(1999) showed that for a pair of Gaussian variables with correlation coefficientρ,

χ(u) increases withρ, but asu → 1 the effect of dependence diminishes andχ(u) → 0 for all ρ < 1.

For an intermediate value ofu, χ(u) is reasonably linear with distinctly different values for all ρ. For

ρ > 0, χ(u) converges very slowly and ultimately abruptly. An important finding from this Figure is that

the dependence in the center is clearly not maintained in theextremes. It is possible to pass from high

dependence to independence. On the other hand, this means that it is possible to conclude erroneously

that the extremes are asymptotically dependent simply because the extreme independence is not easily

detectable. This indicates that the bivariate extreme models are not adapted in the case of asymptotic

independence. Therefore, although these models clearly reflect the behaviour of extremes in the case of

asymptotic dependence, in the case of asymptotic independence the result is very mixed.

In summary, in the extremes context, althoughχ
U

is better than overall dependence measuresr, ρ

andτ , it is not always sufficient to quantify the dependence appropriately in all situations. It could fail to

discriminate between the degrees of relative strength of dependence for asymptomatically independent

variables. Thus, it is important to overcome this limitation by introducing another characterization or

a complementary dependence measure. Note thatχ
U

is the only measure employed in hydrological

applications and it is only considered in few studies (Dupuis, 2007; Ghosh, 2010; Lee et al., 2012).

2.2 Tail dependence measurēχ
U

The functionχ(.) given in (3) as a tail dependence measure is useful in the case where the variables are

asymptotically dependent. It is not appropriate for discriminating asymptotic independence for which
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data exhibit positive or negative association,i.e. correlation, that only gradually disappears at more and

more extreme levels. A complementary measure ofχ(.), denotedχ̄(.), has been introduced byLedford

and Tawn(1996, 1997) and developed byColes et al.(1999). The functionχ̄(.) measures the strength

of dependence within the class of asymptomatically independent distributions. In a similar way to the

functionχ(u) given in (3), χ̄(u) is defined as follows

χ̄(u) =
2 log P(F1(X) > u)

log P(F1(X) > u, F2(Y ) > u)
− 1 ≡ 2 log(1 − u)

log C̄(u, u)
− 1, 0 < u < 1. (5)

The functionχ̄(u) is also bounded from below and above as

2 log(1 − u)

log(max(1 − 2u, 0))
− 1 ≤ χ̄(u) ≤ 1, 0 < u < 1. (6)

χ̄(u) has the following properties (Bacro, 2005; Beirlant et al., 2004; Coles et al., 1999) :

• If an exact independence occurs beyondu, thenχ̄(u) = 0;

• If there is a perfect dependence beyondu, thenχ̄(u) = 1;

• If χ̄(u) ∈ (0, 1), thenP [F1(X) > u|F2(Y ) > u] > P [F2(Y ) > u] and the extremes are positively

associated;i.e.observations for which bothF1(X) > u andF2(Y ) > u for large thresholdu occur

more frequently than under exact independence betweenX andY ;

• If χ̄(u) ∈ (−1, 0), thenP [F1(X) > u|F2(Y ) > u] < P [F2(Y ) > u] and we say that the extremes

are negatively associated,i.e. observations for which bothF1(X) > u andF2(Y ) > u for a large

thresholdu occur less frequently than under exact independence between X andY ;

• |χ̄(u)| increases with the tail dependence.

To focus on extremal characteristics, by analogy toχ
U

, one defines̄χ
U

as the limiting value of̄χ(u)

asu → 1 for which −1 ≤ χ̄
U

≤ 1. This limit has the following properties :

• χ̄
U

= 1 corresponds to the asymptotic dependence of extremes. The bivariate Gumbel-logistic

extreme value distribution is an example where this case occurs;

• χ̄
U

< 1 corresponds to the asymptotic independence of extremes andχ̄
U

provides a limiting

measure that increases with relative dependence strength within this class;
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• χ̄
U

allows to better characterize a possible asymptotic independence and it provides a complemen-

tary information to that provided byχ
U

. For instance, as illustrated in Figure1b, in the case of a

Gaussian pair, we havēχ
U

= ρ andχ̄(u) is approximately linear for0.5 < u < 1. Therefore, one

concludes an asymptotic independence, despite what might suggest a direct interpretation ofχ(u)

in Figure1a (Coles et al., 1999).

In summary, the quantitiesχ
U

andχ̄
U

allow to characterize the dependence of extremes as follows:

• χ
U

∈ [0, 1] with the set(0, 1] corresponds toasymptotic dependence;

• χ̄
U

∈ [−1, 1] with the set[−1, 1) corresponds toasymptotic independence.

As a result, the pair(χ
U

, χ̄
U

) can be used as a summary of extreme dependence :

• If (χ
U

> 0, χ̄
U

= 1), the variables areasymptotically dependentandχ
U

determines a measure of

strength of dependence within the class of asymptotically dependent distributions;

• The case(χ
U

= 0, χ̄
U

< 1) corresponds toasymptotic independencebetween variables and̄χ
U

measures the strength of dependence within the class of asymptotically independent distributions.

2.3 Coefficient of tail dependenceη

In this subsection, we assume that a joint distribution of(X, Y ) has unit Fréchet margins,i.e.

F1(x) = exp(−1/x), x > 0 andF2(y) = exp(−1/y), y > 0. (7)

This restrictive assumption is without loss of generality since, if necessary,F1(.) and F2(.) can be

transformed into unit Fréchet margins (seee.g. Ledford and Tawn, 1996). In order to analyse the

asymptomatic dependence structure between the Fréchet margins and to linkχ
U

with χ̄
U

, Ledford and

Tawn(1996, 1997) introduced the following model on the tail of the joint survival function of(X, Y ) :

P(X > z, Y > z) ∼ z−1/ηL(z), asz → ∞, (8)

whereL is aunivariate slowly varying function at infinity(Bingham et al., 1987, Theorem 1.5.12),i.e.

L(λz)/L(z) → 1 asz → ∞ for all λ > 0. (9)
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The rate of decay in (8) is primarily controlled byη. The coefficientη describes the type of limiting

dependence betweenX andY , andL is its relative strength given a particular value ofη. By putting

T = min(X, Y ), it follows thatP(X > z, Y > z) = P(T > z) ∼ z−1/ηL(z) andη is identified as the

tail index of the variableT . Hence, the usual univariate techniques can be used to evaluateη (Hill , 1975;

Pickands, 1975). One can show that

χ̄
U

= 2η − 1, (10)

and the estimate of̄χ
U

can be obtained from that ofη which is more developed and studied since it is

related to the tail index. As a consequence, we have (Coles et al., 1999; Heffernan, 2000; Ledford and

Tawn, 1996, 1998) :

• X andY are asymptomatically dependent if and only ifη = 1 andL(z) → c ∈ (0, 1] asz → ∞.

In this situation, we have(χ
U

= c, χ̄
U

= 1). The constantc denotes the dependence degree where

c = 1 corresponds to the perfect dependence in tail;

• The caseη → 0 andL(z) = 1 corresponds toperfect negative dependence(in tail);

In addition, within the class of asymptotically independent variables,i.e. 0 < η < 1, three types of

independence can be identified :

• The caseη = 1/2 corresponds to near independence between the extremes ofX andY . These

extremes are exactly independent whenc = 1;

• If 1/2 < η < 1 andc > 0, or η = 1 andc = 0, then the marginal variables are said to bepositively

associated;

• If 0 < η < 1/2, then the marginal variables are said to benegativity associated.

To summarize, the degree of dependence between large valuesof Fréchet margins is determined byη,

with increasing values ofη corresponding to stonger association. For a givenη, the relative dependence

strength is characterized by the slowly varying functionL (Beirlant et al., 2004, p.346). For instance, for

the Gaussian dependence model with correlationρ < 1 illustrated in Figure1, we haveη = (1 + ρ)/2

andL(z) = cρ (log z)−ρ/(1+ρ) wherecρ = (1 + ρ)3/2(1 − ρ)−1/2(4π)−ρ/(1+ρ) (Heffernan, 2000). In

that case, positive association, negative association andexact independence arise respectively asρ > 0,
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ρ < 0 andρ = 0. Theperfectpositive and negative associations are reached asρ → 1 andρ → −1

respectively.

Figure2 summarizes in a diagram the presented tail dependence measures by highlighting the con-

cepts of the asymptotic independence/dependence. Figure2 gives also additional information which

is developed in the following Section. In Figure2, the circle denotes the starting point, with several

possible paths that can be followed. This Figure will be described later, at the end of Section3.

3 Particular case of the BEV distributions

The BEV distributions are a particular case of bivariate distributions. They are characterized by some

specific dependence functions which can be expressed through the previous tail dependence measures. In

this Section, we briefly present the relevant measures of thetail dependence for these distributions since

they play a prominent role in the studies of bivariate extreme events. In order to carry out a meaningful

study about tail dependence in the BFA, we assume thatF (., .) belongs to the domain of attraction of a

BEV distributionG, i.e. there exist standardizing sequencesan, cn > 0 andbn, dn ∈ R such that for

all x andy (Galambos, 1978; Resnick, 1987)

lim
n→∞

P

[

max(X1, . . . , Xn) − bn

an
≤ x,

max(Y1, . . . , Yn) − dn

cn
≤ y

]

= G(x, y). (11)

It is shown in the literature that all BEV distributions are asymptotically dependent, otherwise, in the

case of an asymptotic independence, the only possible situation is the exact independence (e.g. Bacro,

2005; Coles et al., 1999). For the latter,̄χ
U

= 1 andχ
U

> 0, and in practiceχ
U

is all the closer to1 that

the dependence is strong. Besides, the tail dependence function χ(.) is constant. Figure3 illustrates the

behaviour of the tail dependence functionsχ(.) andχ̄(.) for the bivariate Gumbel-logistic distribution

with dependence parameter0 < θ ≤ 1 which is a BEV distribution. Notice that, for the bivariate

Gumbel-logistic distribution, the parameterθ measures the strength of the dependence and the limiting

casesθ = 1 andθ = 0 correspond respectively to independence and perfect dependence. Figure3a

shows thatχ(.) is positive, constant and close to1 whenθ is close to0. In Figure3b, for large values of

θ, χ̄(.) converges slowly to1 asu → 1.

An estimation ofχ(.) significantly non-constant reflects an inadequacy of the BEVdistribution to the
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data. This situation arises when(X, Y ) are asymptotically independent andn, the block size maxima,

is not large enough to meet the condition in (11) (Coles et al., 1999). In hydrological BFA, since the

peak flows are extracted as block maxima, hydrologists tend to jointly model flood characteristics with

the component-wise maxima,i.e. a BEV distribution, without always checking first if̄χ
U

= 1. The

dependence structure ofG(., .) in (11) is characterized by quantities given in the following subsections.

3.1 Pickands dependence function

The representation of dependence structure discovered byPickands(1981) turned out to be far more

convenient than its predecessors (Beirlant et al., 2004, p. 270) such that :

G(x, y) = exp

[

−
(

1

x
+

1

y

)

A

(

y

x + y

)]

, x, y > 0, (12)

whereA : [0, 1] → [1/2, 1], known asPickands dependence function, is a convex function such that

A(0) = A(1) = 1. The independence case corresponds toA(.) ≡ 1 whereas,A(w) = max(w, 1 − w)

leads to the perfect dependence. The copula of extreme valuedenoted byC(., .) is expressed asC(u, v) =

exp
[

log(uv)A
(

log(v)
log(uv)

)]

and foru = v = z, it follows that

C(z, z) = z2A(1/2). (13)

Definition (13) implies the following relationship betweenχ
U

andA(.) :

χ
U

= 2 − 2A(1/2). (14)

Thus, estimatingχ
U

is a particular case of estimatingA(.). The Pickands dependence functionA(.)

and the extreme value copulaC(., .) allow to check whether a sample comes from a BEV distribution

G(., .) or at least ifF (., .) belongs to the domain of attraction of a BEV distributionG. To this end,

three statistical tests can be used :(i) the bivariate test of extreme-value dependence based on Kendall’s

process (Ghoudi et al., 1998) or (ii) the one based on the Pickands dependence function (Kojadinovic

and Yan, 2010) or (iii) the goodness-of-fit tests for bivariate extreme-value copulae (Genest et al., 2010).
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3.2 Stable tail dependence function

A bivariate CDFF (., .) with continuous marginsF1(.) andF2(.) is said to have astable dependence

function(STDF)ℓ(., .) if the following limit exists (Huang, 1992) :

lim
t→0

t−1
P (1 − F1(X) ≤ tx or 1 − F2(Y ) ≤ ty) = ℓ(x, y), for x, y ≥ 0. (15)

Referring toDrees and Huang(1998), F (., .) is equivalent to (11) if and only if (i) F1(.) andF2(.) are

in the max-domains of attractions of extreme value distributions G1(.) andG2(.) respectively, and(ii)

F (., .) has a STDFℓ(., .) defined by

ℓ(x, y) = − log G

(

x−γ1 − 1

γ1
,
y−γ2 − 1

γ2

)

, (16)

whereγ1 andγ2 are real constants called themarginal extreme value indices. The STDFℓ(., .) can be

seen as a starting point to construct non-parametric modelsor BEV distributions. For instance, one can

cite the Gumbel-logistic model for which

ℓ(x, y; θ) =
(

x1/θ + y1/θ
)θ

, x, y ≥ 0 and0 < θ ≤ 1. (17)

The STDFℓ(., .) and the Pickands dependence functionA(.) are related byA(t) = ℓ(1 − t, t) for

t ∈ [0, 1] (seeBeirlant et al., 2004, p.267). It follows thatχ
U

andℓ(., .) are related as

χ
U

= 2 − ℓ(1, 1) = 2 − 2ℓ(1/2, 1/2) > 0. (18)

Recall that for BEV distributions̄χ
U

= 1.

3.3 Tail copula function

The tail copula is a function that describes the dependence structure in the tail of a joint CDFF (., .).

Similar to (15), for all non-negativex andy, the quantity

Λ(x, y) = lim
t→0

t−1
P (1 − F1(X) ≤ tx and1 − F2(Y ) ≤ ty) , (19)
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is called thetail copula function(TCF) of (X, Y ), provided the limit exists. The relationship between

Λ(., .) andℓ(., .) is given by

Λ(x, y) = x + y − ℓ(x, y), for all x, y ≥ 0. (20)

The quantityΛ(1, 1) is the UTDPχ
U

of (X, Y ) (e.g. Einmahl et al., 2008). Schmidt and Stadtmuller

(2006) proposedΛ(., .) as a starting point to construct a multivariate distribution of extreme values.

In addition, the TCF function is considered as an intuitive and straightforward generalization of the

tail dependence functionχ(.) via a function describing the dependence structure in the tail of a distribu-

tion (Schmidt and Stadtmuller, 2006). To summarize, in these particular cases,χ
U

is expressed explicitly

with Λ(., .), ℓ(., .) andA(.) as follows :

χ
U

= Λ(1, 1) = 2 − ℓ(1, 1) = 2 − 2A(1/2) > 0. (21)

These relation are useful for estimatingχ
U

since the established properties of the functionsΛ(., .), ℓ(., .)

andA(.) are well developed.

Figure2, summarizes in a diagram all presented tail dependence measures,χ
U

, χ̄
U

, η, Λ(., .), ℓ(., .)

andA(.), by highlighting the concepts of the asymptotic independence and asymptotic dependence. In

Figure2, from the starting point circle, there are several possiblepaths ((A), (B′), (B′′) and(C)) which

can be followed. The choice of which path to take depends on the available information and the goal.

However we recommend to follow the path(A). It can be seen as a procedure starting from data to

obtain the tail behaviour via the presented measures. The path (A) describes as follows :

(i) From the bivariate data{(Xi, Yi), i = 1, . . . , n} with joint distribution functionF (., .), evaluate

the tail coefficientsχ
U

and χ̄
U

respectively given by (3) and (5). If (χ
U

> 0, χ̄
U

= 1), we are

within the class of asymptotically dependent distributions; otherwise if(χ
U

= 0, χ̄
U

< 1), we are

within the class of asymptotically independent distributions.

(ii) Consider model (8) and evaluateη :

(1) Within the class of asymptotically independent distributions, depending on the values ofη, four

cases are possible : negative association, positive association, near independence or exact indepen-
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dence.

(2) Within the class of asymptotically dependent distributions, according toη, three types of depen-

dence are possible : perfect negative dependence, perfect positive dependence and asymptotic

dependence.

(iii) Except for the exact independence, all BEV distributions are asymptotically dependant.

4 Non-parametric estimation of tail dependence

Depending on the level of available information about the distribution of the data, there exist several

approaches to estimate the tail dependence functions and coefficients. First, the bivariate distribution

F (., .) could be either known (Embrechts et al., 2002) or belongs to a class of distributions (Schmidt,

2002; Schmidt and Stadtmuller, 2006). Second, the tail dependence can be estimated by using a spe-

cific copula (Longin and Solnik, 2001; Patton, 2006) or a class of copulae (Juri, 2002). Finally, non-

parametric estimation methods can be employed when no specific form is known or constrained on the

copula or on the marginal distributions. In the present section, we focus on non-parametric methods.

The tail dependence estimates are obtained from the empirical copula or based on the transformation of

original data to Fréchet variables becauseF (., .) or C(., .) are generally unknown (Poon, 2004).

4.1 Estimators of tail dependence parameterχ
U

As shown implicitly in Section2, the tail dependence parameterχ
U

can be estimated by using the copula,

the Pickands dependence function, the STDF or the TCF. In thefollowing, one shows how an estimator

of χ
U

is obtained by using the latter functions.

4.1.1 Estimation via the empirical copula

An estimator ofχ(.) is obtained via the empirical copula.Joe et al.(1992) introduced the following

estimator

χ̂SEC
(

n − k

n

)

= 2 −
[

1 − Ĉn

(

n − k

n
,

n − k

n

)]/[

1 − n − k

n

]

, 0 < k < n, (22)
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wherek denotes a threshold, that is a sample fraction, to be chosen and Ĉn(., .) is the empirical copula

defined by (Deheuvels, 1979; Genest and Segers, 2009)

Ĉn(u, v) =
1

n

n
∑

i=1

1{RX
i

/(n+1)≤u, RY
i

/(n+1)≤v}, u, v ∈ [0, 1], (23)

where1{.} is the indicator function, whileRX
i andRY

i , respectively, stand for the ranks ofXi among

Xi, . . . , Xn andYi amongYi, . . . , Yn. Coles et al.(1999) introduced, on the basis of (3), the following

estimator of the tail dependence function

χ̂LOG
(

m − k

m

)

= 2 −
[

log

(

Ĉm

(

m − k

m
,

m − k

m

))/

log

(

m − k

m

)]

, 0 < k < m ≤ n, (24)

whereĈm(., .) is an empirical copula computed fromm block maximaX∗
lj andY ∗

lj , j = 1, . . . , m, and

where each block containsl = n/m elements of the original data. The estimatorsχ̂SEC
U

andχ̂LOG
U

are

deduced respectively from̂χSEC(.) andχ̂LOG(.) by noting thatu = (n − k)/n is close to1 whenk is

small.

The coefficientχ
U

can also be estimated by the least-square method such that (Dobric and Schmid,

2005; Fischer and Dörflinger, 2006) :

χ̂FD
U

= χ̂FD
U,k = arg min

λ∈[0,1]

k
∑

i=1

(

Ĉn

(

n − i

n
,
n − i

n

)

−
(

n − i

n

)2−λ
)2

, 0 < k < n, (25)

wherearg minλ∈[0,1] h(λ) gives an argument at whichh(.) is minimized over the domain[0, 1]. Dobric

and Schmid(2005) showed thatk ≈ √
n can be an appropriate choice to built the estimatorsχ̂SEC

U
, χ̂LOG

U

andχ̂FD
U

. Frahm et al.(2005) suggested to deducêχSEC
U

andχ̂LOG
U

by choosing a thresholdk based on

the property of tail copula homogeneity as stated inSchmidt and Stadtmuller(2006, Theorem 1). This

approach consists in identifying a plateau, which is induced by the homogeneity, on the graphs(k, χ̂•(.)).

Nevertheless, the plateau-finding algorithm developed inFrahm et al.(2005) requires a prior definition

of some parameters.

4.1.2 Estimation via Pickands dependence functionA(.)

As mentioned in subsection3.1, estimatingχ
U

can be obtained by estimatingA(.) via (14). Since

the marginsF1(.) andF2(.) are rarely known in practice, a natural way to proceed is thento estimate

14



them empirically byF̂1,n(.) and F̂2,n(.). This leads to estimating the copulaC(., .) on the basis of

the transformed observations{(F̂1,n(Xi), F̂2,n(Yi)), i = 1, . . . , n}. However, it is more convenient to

consider scaled variables defined byGenest and Segers(2009):

Ûi = Ûi,n =
1

n + 1

n
∑

j=1

1{Xj≤Xi} andV̂i = V̂i,n =
1

n + 1

n
∑

j=1

1{Yj≤Yi}, (26)

The scaled pairs{(Ûi, V̂i), i = 1, . . . , n} are called thepseudo-observationsfrom copulaC(., .). They

allow to avoid dealing with points at the boundary of the unitsquare.Genest and Segers(2009) pro-

posed the two following estimators ofA(.) which are the rank-based versions of the estimators given

respectively byPickands(1981) andCapéraà et al.(1997) :

ÂP
n,r(t) = 1

/{

1

n

n
∑

i=1

ξ̂i(t)

}

andÂCFG
n,r (t) = exp

(

−cE − 1

n

n
∑

i=1

log ξ̂i(t)

)

, (27)

wherecE ≈ 0.57721 is the Euler’s constant while, fori ∈ {1, . . . , n}, the functionξ̂(.) is defined as

ξ̂i(0) = − log Ûi, ξ̂i(1) = − log V̂i and for allt ∈ (0, 1) ξ̂i(t) = min
{

− log Ûi

1−t , − log V̂i

t

}

. The estimators

in (27) lead toχ̂P
U,r = 2 − 2ÂP

n,r(1/2) andχ̂CFG
U,r = 2 − 2ÂCFG

n,r (1/2).

Another estimator of the UTDP, motivated byCapéraà et al.(1997) and studied byFrahm et al.

(2005), is given by

χ̂F
U

= 2 − 2 exp

(

1

n

n
∑

i=1

log

{

(

log
1

F1(Xi)
log

1

F2(Yi)

)1/2/

log
1

max(F1(Xi).F2(Yi))2

})

. (28)

The latter estimator relies on the hypothesis that the underlying empirical copula can be approximated

by an extreme value copula. As the margins are unknown, in practice one can replaceF1(Xi) andF2(Yi)

by the scaled variableŝUi andV̂i. Note that, in some situations, the Pickands and the CFG estimators can

be altered to meet the endpoint constraintsA(0) = A(1) = 0. Therefore, for allt ∈ [0, 1], Segers(2007)

suggested endpoint-correction versions of the Pickands and CFG estimators.Genest and Segers(2009)

showed that the endpoint correction to estimators (27) has no impact on their limiting distributions.. In

addition, they showed that that the CFG estimator is generally preferable to the Pickands one when the

endpoint corrections are applied to both of them.
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4.1.3 Estimation via stable tail dependence functionℓ(., .)

A natural non-parametric estimator of the STDFℓ(., .) based on{(Xi, Yi), i = 1, . . . , n} is obtained by

replacing in (15) t by k/n with k ∈ {1, . . . , n} andP, F1 andF2 by their empirical counterparts (Huang,

1992). Then, the empirical STDF is defined by :

ℓ̂H
n (x, y) =

1

k

n
∑

i=1

1{Xi≥Xn−kx+1,n or Yi≥Yn−ky+1,n}, 0 ≤ x, y ≤ n/k, (29)

whereX1,n ≤ . . . ≤ Xn,n andY1,n ≤ . . . ≤ Yn,n are respectively the order statistics ofX1, . . . , Xn

andY1, . . . , Yn. The distribution of̂ℓH
n (., .) is independent of the continuous margins (Drees and Huang,

1998). Einmahl et al.(2008) proposed the following estimator that usually performs slightly better than

ℓ̂H
n (., .) for finite samples :

ℓ̂EKS
n (x, y) =

1

k

n
∑

i=1

1{RX
i

>n−kx+1/2 or RY
i

>n−ky+1/2}, (30)

whereRX
i and RY

i as in (23). Definitions (29) and (30) lead to estimators of the UTDP given by

χ̂H
U

= 2 − 2ℓ̂H
n (1, 1) andχ̂EKS

U
= 2 − 2ℓ̂EKS

n (1, 1) respectively.

4.2 Estimators of tail dependence parameter̄χ
U

Estimator ofχ̄
U

can be obtained on the basis of the copula or the tail coefficient η.

The functionχ̄(.) can be estimated by substituting in (5) the empirical estimate of survival copula

function ˆ̄Cn(., .) given by ˆ̄Cn(u, v) = 1 − u − v + Ĉn(u, v) for all u, v ∈ [0, 1] whereĈn(u, v) is given

in (23). Thus, a non-parametric estimator ofχ̄(.) is given by (Coles et al., 1999)

ˆ̄χCOLES
(

n − k

n

)

=

[

2 log

(

1 − n − k

n

)/

log ˆ̄Cn

(

n − k

n
,
n − k

n

)]

− 1, 0 < k < n. (31)

On the other hand, according to (10) an estimation ofη leads to an estimation of̄χ
U

. Sinceη is

identified as the tail index of the univariate variableT = min(X, Y ), one can estimateη with the

estimator called Zipf (Kratz and Resnick, 1996; Schultze and Steinebach, 1996)

ηZ
k =

1
k

∑k
j=1 log k+1

j log Tn−j+1,n −
(

1
k

∑k
j=1 log k+1

j

) (

1
k

∑k
j=1 log Tn−j+1,n

)

1
k

∑k
j=1

(

log k+1
j

)2
−
(

1
k

∑k
j=1 log k+1

j

)2 , 1 ≤ k < n − 1. (32)

16



whereT1,n ≤ . . . ≤ Tn,n denote the order statistics of the random variablesTi. It can also be estimated

with theHill (1975) estimator given by :

ηH
k =

1

k

k
∑

j=1

log Tn−j+1,n − log Tn−k,n, 1 ≤ k < n − 1. (33)

The two latter estimating procedures require the knowledgeof the marginsF1(.) andF2(.) since the

model ofLedford and Tawn(1996, 1997) assumes that(X, Y ) has unit Fréchet margins. However, when

the margins are not identical or not Fréchet distributed, the original variables can be transformed to stan-

dard Fréchet margins defined byXnew = −1/ log F̂1(Xoriginal) andYnew = −1/ log F̂2(Yoriginal) (Led-

ford and Tawn, 1996). However, these transformations could induce an uncertainty in the estimates of

η (Beirlant et al., 2004, p.351). Therefore,Peng(1999) andDraisma et al.(2004) respectively proposed

non-parametric alternatives (34) and (35) based directly on the empirical distributions of the original

observations given respectively by :

η̂P
k = log(2) /log [Sn(2k)/Sn(k)] , (34)

η̂D
k =

k
∑

j=1

Sn(j)

/



kSn(k) −
k
∑

j=1

Sn(j)



 , (35)

whereSn(k) =
∑n

i=1 1{Xi>Xn−k+1,n, Yi>Yn−k+1,n} with k = 0, . . . , n − 1. For the choice of the thresh-

old k, the reader is referred toLekina et al.(2012) and references therein.

5 Application to floods

In this Section, the presented estimators of the tail dependence are applied to a particular hydrological

event, namely floods. Flood events are mainly described by three characteristics that are flood peak (Q),

flood volume (V ) and flood duration (D).

5.1 Data description

The data used in this case study consists in daily natural streamflow measurements from three stations in

the province of Quebec (Canada). The basin reference numbers are050301, 080101 and050119 and the

gauging stations are respectively denoted byST050301, ST080101 andST050119. Maximum annual flood
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events are described by their flood peaks, durations and volumes as extracted from the daily streamflow

data. Gauging stationST050301 is located on the Batiscan River and the corresponding data are available

from 1932 to 1990 with missing values in1989-1983, 1979-1976 and1972. StationST080101 is located

on the Harricana River3.4 km downstream from the Route111 bridge in Amos. Corresponding data are

available from1934 to 2002 with missing values in1998 and1999. The third gauging stationST050119

is located on the Matawin River4.0 km downstream from the pont-route131 in Saint-Michel-des-Saints.

Data are available from1932-2001 with missing values in1940, 1941, 1943 and1972. These gauging

stations are selected in order to cover a wide range of possible cases dealing with the combination of the

floods characteristics. In Table1, gauging station coordinates and record lengths are summarized.

The hydrological literature has highlighted issues concerning the correlation between the three char-

acteristics of flood events. Due to space limitations, the focus will be made on the study of(Q, V )

whereas brief results will be provided concerning(V, D) and(Q, D). The couple(Q, V ) is generally

highly correlated and represents the most studied in the literature (seee.g. Chebana and Ouarda, 2011a;

Shiau, 2003; Yue et al., 1999; Zhang and Singh, 2006). The tail dependence of the couples(Q, V ),

(D, V ) and (V, D) are studied according to the procedure in Figure2. This step is a prerequisite for

any modelling of the bivariate tail of the distribution. Similar to the bivariate descriptive statistics based

on the depth function investigated inChebana and Ouarda(2011b) where the focus was on the overall

features, the present study focuses solely on tail dependence.

5.2 Tail dependence measures

Since the distributions of the series(Q, V ), (Q, D) and(V, D) are unknown, the tail dependence function

χ(.) and its complementary function̄χ(.) are directly evaluated via the empirical copula. This allows to

assess the strength of tail dependence.

The estimatorŝχSEC(.) (with m = n), χ̂LOG(.) andχ̂FD
U

, defined respectively in (22), (24) and (25),

are evaluated. First,̂χSEC
U

andχ̂LOG
U

are deduced respectively from the functionsχ̂SEC(.) andχ̂LOG(.)

by noting thatu is close to1 for small k. Second, the UTDP estimatorŝχSEC
U

, χ̂LOG
U

and χ̂FD
U

are

obtained by fixingk =
√

n.

The coefficientχ̄
U

is deduced from the function̄χ(.) which is estimated via the empirical survival

copula as well as via the coefficient of tail dependenceη. Hence, one uses respectively the estimator
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ˆ̄χCOLES defined in (31) and the estimator̂̄χ•
U,k = 2η̂•

k − 1 whereη̂•
k is defined in (32), (33) or (35).

The symbol• denotes one of the indices Z, H or D. Since the margins are unknown, the estimatorŝηZ
k

andη̂H
k , given in (32) and (33) respectively, are computed by first transforming the margins to standard

Fréchet margins. The thresholdk is chosen in the simultaneous stability range of the estimators ˆ̄χH
U,k,

ˆ̄χZ
U,k and ˆ̄χD

U,k and the corresponding estimator is denotedˆ̄χ∗
U

. This technique is commonly used for

the estimation of the tail index or extreme quantile in EVA (e.g. Lekina, 2010). The overall estimated

dependence coefficients of Pearson’s, Kendall’s and Spearman’s are denoted respectively byr̂n, τ̂n and

ρ̂n are evaluated for comparison purposes.

Tail dependence for the series(Q, V )

In the remainder of the Section, the analysis is presented first according to gauging stations and then

according to the measures of dependence. Figures4 and 5 illustrate the different estimators of tail

dependence functionsχ(.) andχ̄(.) respectively. Generally, Figure4 shows that the estimators ofχ(.)

are not too close to1 whenu is large enough. Therefore the tail dependence is not strongin the three

considered stations. At first sight, this means that we couldbe restricting the analysis to the univariate

case.

For ST050301, (Figure4a), all estimators ofχ(u) are considerably larger than0 for u < 0.9. When

u is close to1, i.e. u > 0.9, the estimatorŝχLOG(u), χ̂SEC(u) and the estimated UTDP̂χDF
U

converge

to 0 abruptly with respect tou or k and the difference between these estimators andχ̂DF
U

is large. It

would have been possible to conclude erroneously that the couple (Q, V ) is asymptotically dependent

in stationST050301. Similar results are obtained byColes et al.(1999) for other data. In addition, for

u = 1 − k/n ≈ 0.854, the UTDP estimators arêχLOG
U

= 0.309, χ̂SEC
U

= 0.395 and χ̂DF
U

= 0.170.

Figure5a indicates that all estimators of̄χ
U

are significantly different from1. For instance, they are

almost stable around the interval[0.233, 0.458] for u ∈ (0.40, 0.57) whereaŝ̄χCOLES
U

= 0.399 for u =

1 − k/n ≈ 0.854. Indeed, according to the properties of the coefficientχ̄
U

given in subsection2.2

and summarized in Figure2, the peak flow and the flood volume ofST050301 can not be described by

BEV distributions since there is no asymptotic dependence.As indicated by the paths(A) or (B′′) in

Figure2, we recall that inST050301, an analysis based only on the estimators ofχ
U

does not guarantee

that the couple(Q, V ) is asymptomatically independent. Figure5a indicates that :(i) ˆ̄χ∗
U

≈ 0.456 and
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ˆ̄χCOLES
U

= 0.399, (ii) χ̂DF ∈ [0, 0.170), χ̂LOG ∈ [0, 0.309) andχ̂SEC ∈ [0, 0.395) for 0.854 < u < 1.

This leads to conclude that the extremes are positively associated,i.e. in ST050301 the observations for

which bothF1(Q) > u andF2(V ) > u for large thresholdsu occur more frequently than under exact

independence betweenQ andV .

For ST080101, (Figure4b), for u ∈ [0.7, 1) all estimators ofχ(.) are considerably larger than0.

More precisely, for1 − k/n ≈ 0.878 ≤ u < 1, we haveχ̂LOG ∈ (0, 0.624], χ̂SEC ∈ (0, 0.656] and

χ̂DF ∈ (0, 0.522]. Accordingly, with respect to path(A) in Figure2, the couple(Q, V ) seems to be

asymptotically dependent. On the other hand, Figure5b indicates that the estimators̄̂χH
U,k and ˆ̄χZ

U,k have

a regular behavior and are almost stable for large thresholds. This indicates more accurate evaluation of

χ̄. In other respects, the tail dependence estimatorsˆ̄χCOLES and ˆ̄χ•
U,k are non-negative for0 < u < 1

and1 < k < n respectively. More precisely,̄̂χCOLES
U

= 0.620 for u ≈ 0.878 whereas the estimators

ˆ̄χ•
U,k are located in the range[0.327, 1]. In particular, ˆ̄χD

U,k fluctuates slightly aroundu ≈ 1 and the

estimatorŝ̄χH
U,k and ˆ̄χZ

U,k are almost stable and approximately equal to1. This suggests that̄̂χ∗
U

≈ 1 and

one can then conclude that the couple(Q, V ) is asymptotically dependent, see path(B′) in Figure2.

In additionχ̂
U

∈ [0.502, 0.656] denotes the strength of this dependence,i.e. this dependence is slightly

high.

ForST050119, Figure4c suggests thatQ andV are asymptotically dependent since the estimators of

χ(.) are inside(0, 1) with χ̂SEC
U

= 0.400, χ̂LOG
U

= 0.330, χ̂DF
U

= 0.265 andχ̂F
U

= 0.407 for u ≈ 0.877.

Nevertheless, Figure5c invalidates clearly these finding sinceˆ̄χ•
U,k are located in the range[0.345, 1]. On

the other hand, from̂̄χCOLES
U

and ˆ̄χD
U,k, one deduces that̄̂χ∗

U
= 0.345 6= 1. In fact, according Figure2,

for the couple(Q, V ), Figures5c and4c do not allow to conclude since the tail dependence estimators

do not satisfy( ˆ̄χ
U

∈ [−1, 1), χ̂
U

= 0) or ( ˆ̄χ
U

= 1, χ̂
U

∈ (0, 1]).

The estimated overall dependence coefficients, the estimated tail dependence parameters and the

estimated tail dependence functions foru ∈ (1− k/n, 1) are summarized in Table2. Table2 shows that,

in all three stations, the overall coefficients lead to conclude that there are significant correlations which

are not very high. Nevertheless, as concluded previously onthe basis of tail dependence measures, in

ST050301 the extremes are asymptomatically independent. Thus, one observes that an analysis solely

based on the overall dependence coefficients does not give enough information to reflect the nature of
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the relationship between extremes of the couple(Q, V ) in ST050301, ST080101 andST050119.

As previously mentioned (see Section3), all BEV distributions are asymptotically dependent. Since

it was concluded that the couple(Q, V ) in ST080101 is asymptotically dependent, one of the BEV dis-

tributions could be a candidate for the sample of(Q, V ), for instance, an extreme value-copula or the

Gumbel-Hougaard family. The bivariate tests presented in subsection3.1 are used to check this. Re-

sults are provided in Table3. The Gumbel-Hougaard copula family is commonly used for hydrological

FA (e.g. Ghosh, 2010). Notice that for a given degree of dependence, the most popular extreme-value

copulae are strikingly similar (e.g. Genest et al., 2010). The tests require estimating the Pickands de-

pendence functionA(.).

For theGhoudi et al.(1998) bivariate test, the approximative p-values obtained by jackknife, the

finite sample plug-in and the asymptotic plug-in are notedpv.jac,pv.fsa andpv.asy respectively. For the

Kojadinovic and Yan(2010) bivariate test, the p-value is denoted bypv.ky. For theGenest et al.(2010)

goodness-of-fit tests,pv.mpl,pv.itau andpv.irho are the approximative p-values obtained respectively by

using parametric bootstrap combined with the maximum pseudo-likelihood, the method of the inversion

of Kendall’s tau and the method of the inversion of Spearman’s rho. In Figure6, we present fort ∈ [0, 1]

the rank-based estimatorŝAP
n,r(t) andÂCFG

n,r (t) defined in (27), and the corresponding corrected endpoint

estimators noted̂AP
n,c(t) andÂCFG

n,c (t) (Segers, 2007). The estimated UTDP̂χP
U

and χ̂CFG
U

which are

related, via (14), to the dependence functionA(.) and the obtainedp-values of all bivariate statistical

tests of extreme value dependence are summarized in Table3. Notice that an analysis based on Pickands

dependence function or the UTDP estimators lead to the same findings.

The analysis on tail dependence functionχ(.) and its complementary function̄χ(.) allow to conclude

that the couple(Q, V ) is asymptotically independent forST050301. To consolidate this finding, the

functionA(.) is estimated and the p-values of the bivariate tests used previously are computed. Figure6a

suggests that inST050301 the couple(Q, V ) is asymptotically dependent since via (14) we haveχ̂P
U

∈

[0.570, 0.610] andχ̂CFG
U

∈ [0.471, 0.516] which are lower than1. Nevertheless, as shown in the previous

analysis based on tail dependence functionχ(.) and its complementary function̄χ(.), this represents only

a graphical indication. In fact, the bivariate statisticaltests in Table3 confirm that we can not model the

couple(Q, V ) by a BEV distribution and especially by the Gumbel-Hougaardfamily copula sincepv.jac,
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pv.fsa,pv.asy,pv.ky, pv.mpl andpv.itau are lower than0.05.

Figure6b indicates that inST080101, Q andV are asymptotically dependant since via the relation-

ship (14) we haveχ̂P
U

∈ [0.468, 0.503] andχ̂CFG
U

∈ [0.503, 0.538] which are lower than1. The p-values

of all bivariate tests of extreme value dependence summarized in Table3 are higher than0.05 which

confirms a good fit with the BEV distributions. Then, forST080101, the dependence of(Q, V ) can

be modelled with the Gumbel-Hougaard family copula. In addition, from χ̂P
U

and χ̂CFG
U

, one deduces

that the degree of dependence betweenQ andV is within the interval[0.468, 0.503]. Notice that even

though this degree of dependence is slightly lower than the previous values,i.e. χ̂
U

∈ [0.502, 0.656],

where no assumption on the model was made, the same conclusion is obtained :i.e. there is asymptotic

dependence.

In Figure6c, the indication graph suggests an asymptotic dependence betweenQ andV in ST050119

sinceχ̂P
U

∈ [0.387, 0.426] andχ̂CFG
U

∈ [0.419, 0.456] are lower than1. Moreover the bivariate statistical

tests in Table3 confirm this graphical indication since the obtained p-values are higher than0.05. How-

ever, this finding is not compatible with this resultˆ̄χ∗
U

= 0.345 6= 1 which means that there is asymptotic

independence. This could be explained on the basis of construction of the tests used. Indeed, the tests

used are based only on the functionA(.) and not on the tail-dependence measureχ̄(.). In addition, the

p-value is a measure of the evidence against the null hypothesis : the smaller the p-value, the stronger the

evidence against the null hypothesis. A large p-value is notstrong evidence in favour of null hypothesis.

A large p-value can occur for two reasons :(i) null hypothesis is true or(ii) null hypothesis is false but

the test has low power. The p-value is not the probability that the null hypothesis is true (seeWasserman,

2003, p.157).

Tail dependence for the series(Q, D) and (V, D)

In Figures7 and8, we respectively present the estimators of tail dependencefunctionsχ(.) andχ̄(.) for

the pairs(Q, D) and(V, D) for each station. The estimated tail dependence parametersdeduced from

Figures7 and8 and the estimated overall correlation coefficients are summarized in Table4.

Figures7a, b, Figures8a, b and Table4 show thatQ andD are asymptotically independent in both

ST050301 andST080101. More precisely, inST050301 we observe near independence sinceχ̂ ≈ 0 and

ˆ̄χ∗
U

≈ 0 whereaŝ̄χCOLES ≈ 0 for 0 < u < 0.854 and ˆ̄χCOLES = −1 for 0.854 ≤ u < 1. Figures7c

and 8c indicate thatQ and D are asymptotically independent inST050119 since χ̂ ≈ 0. Based on
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the estimatorŝ̄χD
U,k and ˆ̄χCOLES, one can deduce that the association betweenQ and D is negative.

Otherwise, one can deduce a positive association when the analysis is only based on the estimatorsˆ̄χH
U,k

and ˆ̄χZ
U,k.

Nevertheless following Figure2, an analysis of Figures7d and8d does not allow to conclude for an

asymptotic independence betweenV andD in ST050301 since the estimators ofχ(.) are clearly inside

(0, 1) (see also Table4). In addition, the estimators of̄χ(.) are non-negative witĥ̄χ∗
U

≈ 0.5 and ˆ̄χCOLES

is in the range(0.220, 0.250) for 0.854 ≤ u < 1. Figures7e, 8e and Table4 suggest thatV andD

are asymptotically dependent inST080101. Figures7f and8f do not allow to conclude for an asymptotic

dependence betweenV andD in ST050119 since the estimators ofχ(.) converge to values around0.340

for u ≤ 1 − k/n ≈ 0.877 whereas, the estimators ofχ̄(.) are clearly unstable and significantly different

from 1 with ˆ̄χCOLES ≈ 0.355 and ˆ̄χD
U,k ≈ 0.220 for u ≈ 0.877. Whenu > 0.877, the estimators ofχ(.)

converge abruptly to0. In addition, as the UTDP estimators is in the range(0.182, 0.400) for u ≈ 0.877

(see Table4), one might conclude at best for an asymptotic independencewith positive association since

the estimators of̄χ(.) are non-negative foru ∈ (0.2, 0.95).

In Table4, the obtained estimated overall coefficients(r̂n, τ̂n, ρ̂n) lead simply to conclude that a

significant overall correlation exists in all cases. This shows once again that the hydrological analyses

based on overall coefficients are inadequate to quantify theextreme risks that occur at the tail of the

distribution. Moreover, this case study shows that the measure χ(.) alone is not always sufficient to

exhibit the relationship between the extremes. Notice thatthe overall coefficients for the couple(Q, D)

in ST050119 are negative. This could indicate that the couple(Q, D) is in fact negatively associated

which is not in accordance with the last finding based on tail dependence measures where the sign of the

association was not clear.

The summarized results Table5 show that the couple(Q, V ) is asymptomatically independent and

positively associated in the Bastican River (ST050301). In ST050301, similar to Gaussian dependence

model studied byColes et al.(1999), one can not conclude using onlyχ
U

. On the other hand, the overall

coefficient values indicate that (Q,V) are relatively highly correlated. However, the conclusion on the tail

is not the same where it is shown that the couple (Q,V) for thisstation are asymptotically independent.

In the Harricana River (ST080101), (Q, V ) are asymptomatically dependent and can be fitted with a BEV
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distribution such as the Gumbel-Hougaard copula family. Inthe Mattawin River (ST050119) one can

not conclude on the tail dependence whereas, the overall coefficients indicate that(Q, V ) are relatively

highly correlated. In the Batiscan River, the couple(Q, D) is near independent. In the Harricana River,

the couple(D, V ) is asymptotically independent whereas in the Mattawin River it is asymptotically

dependent with negative association. The couple(V, D) is shown to be asymptotically dependant in

the Harricana River. In the Bastican River, it is difficult toconclude since the estimated UTDP are

approximately in the range[0.130, 0.255] whereas its complementary coefficients are approximately in

[0.220, 0.500]. In the Mattawin River, it seems asymptotically independent with positive association.

6 Conclusions

In the present paper, we introduced in the hydrological BFA framework, a number of dependence mea-

sures which are more adapted to the treatment of bivariate extreme events. These measures focus on the

tail of bivariate distributions. The statistical properties of these measures are reviewed and associated

non-parametric estimations are provided.

The overall coefficients Kendall’sτ , Spearman’sρ and Pearson’sr do not give enough information

to reflect the nature of the relationship between extremes. They do not allow to study the concomitant

occurrence of extreme values since they do not attribute, for instance, sufficient weight to the extreme

values. They are more adapted to the center body of the distribution. Furthermore, the tail dependence

measureχ
U

, employed solely in some hydrological studies, does not allow to conclude in all cases.

For instance, it is not appropriate for discriminating variables that are asymptomatically independent.

Hence, it is recommended to consider the complementary measure χ̄
U

. This one quantifies the strength

of dependence within the class of asymptotically independent variables in bivariate extremes.

An application of the presented tail dependence measures iscarried out on three gauging stations

located in the province of Quebec (Canada). The applicationdeals with flood peak(Q), volume(V ) and

duration(D). It is concluded that the couple(Q, D) is near independent in the Batiscan River whereas

in the Harricana River, it is asymptotically independent. This finding can not be obtained on the basis of

the overall coefficients Kendall’sτ , Spearman’sρ and Pearson’sr or using only the measureχ
U

.
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Station Localisation Latitude Longitude Observation years

050301 Batiscan River 46◦35′8′′ −72◦24′17′′ 1932 − 1990
080101 Harricana River 48◦35′52′′ −78◦6′33′′ 1934 − 2002
050119 Matawin River 46◦41′10′′ −73◦54′49′′ 1932 − 2001

Table 1: Station description.

Station χ̂SEC χ̂LOG χ̂DF
U

ˆ̄χCOLES χ̂F
U

ˆ̄χ∗
U

η̂ r̂n τ̂n ρ̂n

050301 [0, 0.395] [0, 0.309] [0, 0.170] [−1, 0.399] 0.471 0.30 0.65 0.455 0.418 0.547
080101 (0, 0.656] (0, 0.624] (0, 0.522] (−1, 0.620] 0.503 1.00 1.00 0.660 0.403 0.562
050119 [0, 0.400] [0, 0.330] [0, 0.265] (0, 0.354] 0.407 0.345 0.673 0.521 0.360 0.511

Table 2: Couple(Q, V ). Estimated tail dependence measuresχ̂SEC, χ̂LOG, χ̂DF
U

, ˆ̄χCOLES for u ∈ [1 −√
n/n, 1) andχ̂F

U
, ˆ̄χ∗

U
andη̂. Estimated overall correlation coefficientsr̂n, τ̂n andρ̂n.

Station χ̂P χ̂CFG pv.jac pv.fsa pv.asy pv.ky pv.mpl pv.iτ pv.iρ

050301 [0.570, 0.610] [0.471, 0.516] 0.010 0.004 0.001 0.011 0.006 0.039 0.127
080101 [0.468, 0.503] [0.503, 0.538] 0.863 0.850 0.834 0.372 0.277 0.309 0.356
050119 [0.387, 0.426] [0.419, 0.456] 0.526 0.498 0.467 0.294 0.898 0.826 0.811

Table 3: Couple(Q, V ). Estimators based on the Pickands dependence functionχ̂P andχ̂CFG. The p-values
of the bivariate tests of extreme-value dependence based on(i) Kendall’s process (pv.jac, pv.fsa,pv.asy),
(ii) the Pickands dependence function (pv.ky), (iii) of the p-values goodness-of-fit test for extreme-value
copulae (pv.mpl, pv.iτ , pv.iρ).

Station Couple χ̂SEC
U

χ̂LOG
U

χ̂DF
U

ˆ̄χ∗
U

ˆ̄χCOLES r̂n τ̂n ρ̂n

050301 (Q, D) −0.041 −0.150 0 0 −1 −0.256 −0.112 −0.164
(V, D) 0.249 0.130 0.255 0.5 (−1, 0.250) 0.507 0.301 0.460

080101 (Q, D) −0.045 −0.094 0 −0.13 −1 −0.389 −0.239 −0.334
(V, D) 0.045 −0.094 0 0 −1 0.364 0.335 0.468

050119 (Q, D) 0.092 0 0 0.050 [−1, 0) 0.361 0.259 0.373
(V, D) 0.400 0.330 0.182 0.220 [−1, 0.355) −0.450 −0.302 −0.445

Table 4: Estimated tail dependence parametersχ̂SEC
U

, χ̂LOG
U

, χ̂DF
U

for u = 1 − √
n/n, ˆ̄χCOLES for u ∈

[1 − √
n/n, 1) and ˆ̄χ∗

U
. Estimated overall correlation coefficientsr̂n, τ̂n andρ̂n.
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Station Couple Overall correlation (sign) Tail dependence

050301 (Q, V ) relatively high (+) asymptotic independence & positive association
(Q, D) very low (-) near independence
(V, D) moderate (+) no conclusion *

080101 (Q, V ) high (+) asymptotic dependence
(Q, D) low (-) asymptotic independence & negative association
(V, D) low (+) asymptotic dependence

050119 (Q, V ) relatively high (+) no conclusion *
(Q, D) moderate (-) asymptotic independence & negative association
(V, D) low (+) asymptotic independence & positive association

Table 5: Summary of all the results. The case * means that either (χ̄
U

∈ [−1, 1), χ
U

= 0) or
(χ̄

U
= 1, χ

U
∈ (0, 1]) is not fulfilled.
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(a) Tail dependence functionχ(u), u ∈ (0, 1) (b) Tail dependence function̄χ(u), u ∈ (0, 1)

Figure 1: Tail dependence functions for the Gaussian dependence model. The curves (bottom to top)
correspond to correlation coefficientρ = −0.95, −0.90, −0.85, . . . , 0.90, 0.95. In dotted blue line, the
upper and lower bounds onχ(.) andχ̄(.).
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Bivariate tests of extreme-value dependence (a) and

(b) or g.o.f. test (c) for bivariate extreme-value copu-

lae presented in end-subsection3.1.

BEV distributions and Domain of Attractions :χ
U

=

2 − 2A(1/2) = 2 − ℓ(1, 1) = ∧(1, 1).

X andY are asymptotically dependent of degreec.

Perfect positive dependence ifη → 1 with L(z) = 1.
Perfect negative dependence.

η = 1 andL(z) → c > 0.η → 0 with L(z) = 1.

The class of asymptotically

dependent variables

Consider model (8) and evaluateη.

Asymptotic dependence :χ
U

∈ (0, 1] andχ̄
U

= 1.

Evaluate the tail coefficientsχ
U

andχ̄
U

respectively via Eqs. (3) and (5).

Bivariate

data

(A)

(B′)

(B′′)

(C)

Asymptotic independence :̄χ
U

∈ [−1, 1) andχ
U

= 0.

The class of asymptotically

independent variables

Consider model (8) and evaluateη.

η ∈ (0, 1/2) andL(z) → c > 0. η ∈ (1/2, 1) andL(z) → c > 0 or η = 1 andc = 0. η = 1/2 andL(z) → c > 0.

Negative association : observations for whichX

andY exceed a large thresholdz occur less fre-

quently than under exact independence.

Positive association : observations for whichX

andY exceed a large thresholdz occur more fre-

quently than under exact independence.

Extremes ofX andY are near independent.

There is exact independence whenL(z) = 1.

Figure 2: Diagram of the study of the tail dependence in bivariate frequency analysis. The circle denotes
the starting point. We can follow the path(A), (B′), (B′′) or (C), however we recommend to follow the
path(A).
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(a) Tail dependence functionχ(u), u ∈ (0, 1) (b) Tail dependence function̄χ(u), u ∈ (0, 1)

Figure 3: Tail dependence functions for the Gumbel-logistic distribution. The curves (top to bottom) corre-
spond to parameter of dependenceθ = 0.025, 0.050, 0.075, . . . , 0.950, 0.975. In dotted blue line, the upper
and lower bounds onχ(.) andχ̄(.).
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(c) Station 050119

Figure 4: Estimators of the tail dependence functionχ(.) of the pair(Q, V ). The vertical axis corresponds
to χ̂(u) with χ̂LOG(- - - -) (blue)andχ̂SEC(——) (red), χ̂DF

U,k(-×-×-) (magenta)andχ̂F
U
(-·-·-) (green), while

the horizontal axis corresponds to thresholdsu = 1/n, 2/n, 3/n, . . . , 1 − 1/n andk = n − 1, n − 2, . . . , 1.
In horizontal dotted line, the upper and lower bounds onχ(.). In vertical dotted line, the chosen threshold.
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(c) Station 050119

Figure 5: Estimators of the tail dependence functionχ̄(.) of the pair(Q, V ). The vertical axis corresponds
to ˆ̄χ(u) with ˆ̄χCOLES(- - - -) (blue), ˆ̄χD

U,k(——) (green), ˆ̄χH
U,k(-+-+-) (magenta)and ˆ̄χZ

U,k(-◦-◦-) (black), while
the horizontal axis corresponds to thresholdu = k/n with k = 1, . . . , n − 1. In horizontal dotted line, the
upper and lower bounds on̄χ(.).
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(c) Station 050119

Figure 6: Estimators of the Pickands dependence functionA(t) for t ∈ [0, 1] : corrected endpoint es-
timatorsÂP

n,c(t) (-·-·-) (green), ÂCFG
n,c (t) (—) (red) and rank-based estimatorŝAP

n,r(t) (- - - -) (green)and

ÂCFG
n,r (t) (. . . ) (red).
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Figure 7: Estimators of the tail dependence functionχ(.) of the pairs(Q, D) and(V, D). The vertical axis corre-
sponds tôχ(u) with χ̂LOG(- - - -) (blue) andχ̂SEC(——) (red), χ̂DF

U,k(-×-×-) (magenta)andχ̂F
U

(-·-·-) (green), while
the horizontal axis corresponds to thresholdsu = 1/n, 2/n, 3/n, . . . , 1 − 1/n andk = n − 1, n − 2, . . . , 1. In hori-
zontal dotted line, the upper and lower bounds onχ(.). In vertical dotted line, the chosen threshold.
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Figure 8: Estimators of the tail dependence functionχ̄(.) of the pairs(Q, D) and(V, D). The vertical axis corre-
sponds tô̄χ(u) with ˆ̄χCOLES(- - - -) (blue), ˆ̄χD

U,k(——) (green), ˆ̄χH
U,k(-+-+-) (magenta)and ˆ̄χZ

U,k(-◦-◦-) (black), while
the horizontal axis corresponds to thresholdu = k/n with k = 1, . . . , n − 1. In horizontal dotted line, the upper and
lower bounds on̄χ(.).
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