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Very High Resolution Imagery

Apprentissage profond auto-supervisé pour la classification de la 
couverture terrestre urbaine à partir d’images à très haute résolution 
spatiale

Kaushik Roya, Saeid Homayounia, and Ying Zhangb

aEau Terre Environment (ETE), Institut National de la Recherche Scientifique (INRS), Quebec City, Canada; bDepartment of Geology, 
Natural Resources Canada (NRCan), Ottawa, Canada

ABSTRACT
Accurate mapping of land cover and land use at very high spatial resolution (VHR) is crucial 
for studying urban development and human-environment interactions. Deep learning 
techniques, particularly semantic segmentation models, have emerged as powerful tools for 
this task. However, their widespread application is hindered by the substantial demand for 
annotated VHR datasets. Existing studies have primarily employed low- to medium-resolution 
imagery and a few bands, which limits their downstream applicability. To our knowledge, this 
is the first attempt to study urban areas in Canada at such spatial resolution using 
self-supervised deep learning techniques. The objective of this study is to classify Worldview 3 
multispectral imagery into eight urban land cover categories. The primary challenges are 
preparing analysis-ready data, addressing class imbalance, and having a limited amount of 
labelled data. To address these challenges, we introduce an innovative deep learning framework 
designed to enhance spectral-spatial consistency while leveraging the wealth of available 
unlabelled data for more effective learning and easily applying pre-trained representations to 
downstream tasks. We perform super-resolution using deep learning pansharpening, then 
latent feature extraction without labels and knowledge distillation using a small amount of 
labelled data. The proposed workflow is applied to Worldview 3 imagery patches of size 256 
x 256 at a 1m spatial resolution. The methodology was applied to two UNet variants: a simple 
UNet and an attention-gated UNet with a ResNet-50 encoder. The results show that while the 
simple UNet could not adequately capture the complexity of the data, unlike the complex 
model. Self-supervised pretraining improved the overall accuracy (OA) of the prediction in 
both cases. For simple UNet, the accuracy was improved from 69% to 74%, and for complex 
UNet, the OA improved from 80% to 88%. In conclusion, we demonstrate the effectiveness of 
multi-view self-supervised semantic segmentation on multispectral Worldview 3 images, 
creating a land cover product for future research. The code for the proposed architecture is 
publicly available at https://github.com/kaushikCanada/landcover-ssl.

RÉSUMÉ
Une cartographie précise de la couverture et de l’utilisation du territoire à très haute résolution 
spatiale (THR) est essentielle à l’étude du développement urbain et des interactions entre 
l’homme et l’environnement. Les techniques d’apprentissage profond, en particulier les 
modèles de segmentation sémantique, se sont révélées être des outils puissants pour cette 
tâche. Cependant, leur application généralisée est entravée par le besoin de nombreux jeux 
de données annotées à THR. Les études existantes ont principalement utilisé des images à 
basse et moyenne résolution spatiale et un nombre réduit de bandes, ce qui limite leur 
applicabilité. À notre connaissance, il s’agit de la première étude des zones urbaines au 
Canada à une telle résolution spatiale à l’aide de techniques d’apprentissage profond 
auto-supervisé. L’objectif de cette étude est de classifier l’imagerie multispectrale Worldview 3 
en huit classes composant le milieu urbain. Les principaux défis étaient la préparation de 
données pour l’analyse, et une solution au déséquilibre des classes et à la limite du nombre 
de données étiquetées. Pour y remédier, nous avons introduit un cadre innovant 
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d’apprentissage profond conçu pour améliorer la cohérence spectrale-spatiale, tout en 
optimisant l’usage des données non étiquetées disponibles pour permettre un apprentissage 
efficace et faciliter l’application des représentations pré-entraînées dans les étapes 
subséquentes. Nous avons produit une image en super-résolution par pansharpening à l’aide 
de l’apprentissage profond. Ensuite nous avons extrait les caractéristiques latentes à l’aide 
d’un faible nombre de données étiquetées. Le flux de travail proposé a été appliqué à des 
imagettes Worldview 3 de taille 256 x 256 à une résolution spatiale de 1 m. La méthodologie 
a été appliquée à deux variantes d’UNet  : un UNet simple et un UNet à accès contrôlée 
composé d’un encodeur ResNet-50. Les résultats montrent que, si l’UNet simple ne pouvait 
pas saisir toute la complexité des données, contrairement au modèle complexe. Le 
pré-entraînement auto-supervisé a amélioré la précision globale (PG) de la prédiction dans les 
deux cas. Pour les UNet simples, la précision est passée de 69 % à 74 %, et pour les UNet 
complexes, la PG est passée de 80 % à 88 %. En conclusion, nous démontrons l’efficacité de 
la segmentation sémantique auto-supervisée multi-vues sur des images multispectrales 
Worldview 3, créant ainsi une carte de la couverture terrestre pour les recherches futures. Le 
code de l’architecture utilisée dans cette étude est disponible à https://github.com/
kaushikCanada/landcover-ssl.

Introduction

Urban land cover classification (ULC) is crucial for 
policymakers and planners of all countries. In Canada, 
where diverse climates and terrains pose unique chal-
lenges, accurate land cover classification aids in under-
standing urban sprawl, assessing environmental 
impacts, planning for resilient infrastructure, and 
reduction of urban natural disasters (Conway et  al., 
2020). The rapid urbanization observed in many 
Canadian cities increases risks of natural hazards such 
as flooding, landslides, heat island effects, and wild-
fires. Creating high-resolution ULC is labor-intensive, 
time-consuming, and costly, making it challenging and 
impractical for large areas, especially Canadian urban 
settings. In Canadian cities like Toronto, Vancouver, 
and Montreal, collecting ground reference data requires 
extensive fieldwork, often involving teams of research-
ers and technicians with high labor costs. Remote 
sensing is a viable alternative widely used to create 
such products. The rapid development of sensor tech-
nology has significantly enhanced the availability and 
quality of very high-resolution (VHR) satellite imagery, 
making it an essential tool for monitoring urban envi-
ronments. Satellites such as WorldView-2, WorldView-3, 
and WorldView-4, as well as GaoFen-1 and GaoFen-2, 
provide imagery with a ground sampling distance 
(GSD) of less than 5 meters, capturing intricate spatial 
details that are valuable for urban land use and land 
cover classification. The ability to distinguish fine-scale 
features in urban landscapes has led to increased 
research interest in leveraging Very High Resolution 
(VHR) imagery for detailed classification tasks (Qin 
and Liu, 2022). Effectively distinguishing urban land 
cover in VHR imagery is challenging due to the het-
erogeneous nature of urban landscapes. Approaches 

to classification generally fall into two categories: 
pixel-based and object-based analysis. In pixel-based 
classification, each pixel is analyzed individually, with 
labels assigned based only on its spectral characteris-
tics, without considering spatial relationships with 
neighboring pixels. While this approach has been 
widely used, its effectiveness is often compromised in 
high-resolution imagery due to the “salt-and-pepper” 
effect, where variations in spectral responses at the 
pixel level lead to fragmented and noisy classification 
results (Saboori et  al., 2022). This issue arises because 
individual pixels do not always correspond to distinct 
real-world objects, especially in urban settings where 
materials, shadows, and mixed pixels introduce spec-
tral inconsistencies.

To address the research gap mentioned above, this 
study employs a novel deep learning-based workflow 
that generates accurate land cover maps for urban areas 
in Canada using Very High Resolution (VHR) data. 
The study exploits the availability of panchromatic and 
multispectral bands and fuses them using deep learning 
pansharpening. Following this, a novel analysis-ready 
dataset is created and labeled with one of eight urban 
land cover classes. Four models are compared – a) 
Unet – a simple UNet model, b) Unet + SSL - an Unet 
with a pretrained SSL backbone, and c) Resnet50_
AttUnet – an attention-gated Unet with a pretrained 
Resnet50 backbone, and d) Resnet50_AttUnet + SSL - 
model c but with SSL pretrained Resnet50 backbone. 
The research demonstrates that Resnet50_AttUnet + SSL 
outperforms models a,b, and c for urban land cover 
classification. This is one of the first studies to apply 
modern deep learning approaches such as 
super-resolution and self-supervised learning (SSL) to 
Worldview 3 imagery of a Canadian urban area. The 
key contributions of this paper are as follows:

https://github.com/kaushikCanada/landcover-ssl
https://github.com/kaushikCanada/landcover-ssl
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•	 A novel satellite imagery dataset unique to 
Canadian urban database is used for generation 
of high resolution land cover information.

•	 The issue of scarce labeled data in remote sens-
ing is tackled by generating multiple invariant 
views using data augmentations and pre-training 
a normal Unet encoder and a Resnet50 encoder 
in a customized Barlow Twins strategy.

•	 The pretrained SSL encoders are frozen, and 
two U-Net variants, a basic U-Net, and an 
Attention Gated Unet, are trained as decoders. 
The study shows SSL pre-training improves 
baseline accuracy in both variants of U-Net.

The remainder of the paper is divided into several 
sections, where Sect. 2 presents the literature review 
of the recent developments in the self-supervised seg-
mentation approaches. Sections 3 and 4 provide an 
overview, while Sections 5 and 6 detail the proposed 
methodology and experimental results, respectively. 
Lastly, Section 7 offers the concluding remarks.

Existing research

Recent advancements in remote sensing have sparked 
growing interest in applying self-supervised learning 
techniques to extract meaningful representations from 
satellite imagery. For instance, generative adversarial 
networks in Lin et  al., (2017) leveraged multiple-layer 
feature-matching to derive scale-specific spatial char-
acteristics from VHR data, which were then employed 
for land cover classification tasks. Similarly, (Walter 
et  al., 2020) introduced a novel pretext task that uti-
lizes high-frequency channel information to predict 
RGB values, thereby facilitating feature learning in a 
self-supervised manner. Further extending this para-
digm, (Moore and Hester, 2023) incorporated nominal 
pretext tasks such as image colorization, coordinates 
prediction, and sample discrimination—to extract 
domain-specific representations from Pleiades Neo 
imagery. The effectiveness of the pretraining was eval-
uated through transfer learning, demonstrating 
improved performance on LULC with very few labeled 
samples. In another study, (Wang et al., 2022) modified 
the MoCov2 framework by integrating a location-aware 
cost function to enhance spectral feature extraction 
from satellite images. Unlike conventional contrastive 
learning approaches that rely on standard data aug-
mentation techniques to generate positive pairs, their 
method utilized geographic location information from 
frequently observed satellite paths to establish mean-
ingful positive samples. Additionally, research has 
shown that successive pre-training on natural image 

datasets and on remote sensing imagery can enhance 
model accuracy on downstream tasks. For example, 
(Jung et  al., 2022) systematically analyzed the impact 
of various data augmentation techniques in contrastive 
self-supervised learning applied to remote sensing data-
sets. Meanwhile, (Ayush et  al., 2020) proposed a 
self-supervised pre-training strategy that leverages the 
relationship between satellite imagery and geo-tagged 
sound recordings simultaneously. By incorporating 
both visual and auditory information, this approach 
facilitated a more robust pre-training process, enabling 
improved feature learning from multimodal remote 
sensing data.

Among all the available techniques, contrastive 
learning is the most widely used approach. Contrastive 
learning methods are designed to train models by dis-
tinguishing between similar and dissimilar samples in 
the representation space. Specifically, these approaches 
encourage representations of semantically related inputs, 
such as different augmented versions of the same 
image, to be mapped closely together. Due to this fun-
damental principle, contrastive learning typically 
employs a Siamese-style architecture, where paired 
inputs undergo simultaneous processing to learn mean-
ingful feature representations. Although self-supervised 
contrastive learning has gained prominence in recent 
years, the application of contrastive loss in remote sens-
ing has a longer history. A notable early example is 
the work of Cheng et  al., (2018), which incorporated 
a supervised contrastive regularization term into con-
volutional neural network (CNN) features to enhance 
remote sensing scene classification. The first application 
of contrastive learning in a self-supervised remote sens-
ing context was introduced by Jean et  al. in their 
Tile2Vec framework (Jean et  al., 2018). This method 
was conceptually influenced by word2vec (Mikolov 
et  al., 2013) and bore similarities to Contrastive 
Predictive Coding (CPC) (van den Oord et  al., 2018). 
However, a significant challenge in contrastive learning 
arises from the tendency of models to collapse into 
trivial solutions when they are solely optimized for 
similarity between paired inputs. To mitigate this issue, 
researchers have explored various strategies, including 
alternative contrastive loss formulations, negative sam-
pling techniques, and architectural modifications that 
promote more diverse and informative feature repre-
sentations. SimCLR (Chen et  al., 2020) and MoCo (He 
et  al., 2019) use many negative samples in a single 
batch to learn proper representations. Although these 
models have been applied to remote sensing, they require high- 
performance computing clusters to train in a practical 
time. BYOL (Grill et  al., 2020) and SimSiam (Chen 
and He, 2020) are two other classes of contrastive SSL 
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techniques that learn latent representations through 
knowledge distillation and have been successfully 
applied in remote sensing. Barlow Twins model 

(Zbontar et  al., 2021) is a recent proposal in computer 
vision SSL and uses a novel loss function to reduce 
redundancy between learned representations. Although 

Figure 1. M ap of the Study Area.
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this model has been applied in the medical field, it is 
well-suited for remote sensing applications and does 
not require large batch sizes or high-performance clus-
ters to train. Hence, exploring the effect of Barlow 
Twins training in remote sensing is interesting.

Study area

The study focuses on the Greater Toronto Area (GTA) 
(Figure 1). Over the past five decades, GTA has expe-
rienced substantial growth due to international and 
domestic migration, leading to its development as a 
major multicultural urban center characterized by sig-
nificant social, cultural, and economic diversity. In 
the GTA, the built-up environment features a mix of 
high-density urban cores, such as Toronto’s downtown, 
with its iconic skyline dominated by skyscrapers and 
mixed-use developments, and expansive low-density 
suburban neighborhoods characterized by detached 
homes and cul-de-sacs. The Greater Toronto Area 
(GTA), includes the city of Toronto, and is home to 
near about 6.5 million people. Toronto itself has a 

population of 2,794,356, ranking as the most populous 
city in Canada and the fourth-largest in North 
America (Statistics Canada, 2021).

Remote sensing data

This study utilizes high-resolution (VHR) remote sens-
ing imagery to classify urban land cover, with a focus 
on high-resolution satellite data. The imagery used in 
this research is obtained from WorldView-3, an advanced 
satellite originally launched by DigitalGlobe, which is 
now a part of Maxar Technologies. WorldView-3, which 
became operational following its launch on August 13, 
2014, represents a significant advancement in commer-
cial satellite imagery technology. This cutting-edge Earth 
observation platform provides VHR imagery that has 
revolutionized the classification and analysis of urban 
land cover. The exceptional spatial and spectral prop-
erties of WorldView-3 make it an invaluable data source 
for researchers and urban planners alike, offering 
unprecedented capabilities for detailed urban mapping 
and monitoring.

Figure 2.  Worldview 3 data for study area.
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WorldView-3 sets a new standard for commercial 
satellites in terms of spatial resolution. The panchro-
matic band offers an impressive 0.31 m resolution at 
nadir, increasing slightly to 0.34 m at 20° off-nadir. 
The multispectral bands provide 1.24 m resolution at 
nadir and 1.38 m at 20° off-nadir. The spectral capa-
bilities of WorldView-3 are equally impressive and 
play a crucial role in mapping urban land. The sat-
ellite features a panchromatic band covering the 
450-800 nm range, providing high-resolution grayscale 
imagery. The multispectral sensor includes eight 
bands: Coastal (400-450 nm), Blue (450-510 nm), 
Green (510-580 nm), Yellow (585-625 nm), Red 
(630-690 nm), Red Edge (705-745 nm), Near-IR1 
(770-895 nm), and Near-IR2 (860-1040 nm). This com-
prehensive spectral coverage allows for sophisticated 
differentiation between urban materials and land 
cover types (Figure 2).

Methodology

This paper proposes a deep learning-based end-to-end 
workflow (Figure 3) to achieve the research goals.

The proposed methodology (Figure 3) begins by 
combining a one-band panchromatic image with an 
8-band multispectral image through deep learning 
pansharpening using LambdaPNN (Section 5.1). 
Following this, an analysis-ready dataset is created 
using ground reference labels with 8 classes (Section 
5.2). Multiple views are generated using data augmen-
tation and fed into a self-supervised pretraining using 
the Barlow Twins approach (Section 5.3), which gen-
erates a latent representation. Finally, supervised fine-
tuning (Section 5.4) is used to compare different deep 
learning models and report results.

Deep learning pansharpening

Pansharpening is a technique used to enhance the spatial 
resolution of multispectral images by fuzing them with 
a higher-resolution panchromatic image. Traditionally, 
non-machine learning-based methods like component 
substitution, multi-resolution analysis, and optimization 
have been taxonomy mainstays since Wald (Wald et  al., 
1997) introduced this specific preprocessing technique. 
Recent research has focused on developing robust algo-
rithms that utilize universal approximators, such as con-
volutional neural networks (CNNs), for image fusion 
tasks. These approaches demonstrate superior capabilities 
in capturing intricate, non-linear relationships, providing 
a high signal-to-noise ratio, and producing visually 
appealing, fused images.

The original pan-sharpening neural network PNN 
(Masi et  al., 2016) inspired by SRCNN (Dong et  al., 
2015), has since been used as a basis for various inno-
vative solutions like PanNet, DiCNN, SRPNN (Deng 
et  al., 2022). The main challenge in this field is the 
quality assessment of the final output and the design of 
metrics for it. It suffers from a major problem: lack of 
ground reference data. In this study, a state-of-the-art 
deep learning model LambdaPNN (Figure 4) (Ciotola 
et  al., 2023) is applied on the data. LambdaPNN uses 
ResNet blocks and CBAM modules to map low to 
high-resolution information. To visually compare with 
the DL output, the Gram-Schmidt pan-sharpening 
method (Maurer, 2013) was applied to the Blue, Green, 
Red, and NIR1 bands. The Gram-Schmidt pan-sharpening 
method Eq.(1) creates a synthetic panchromatic image 
Psyn by linearly combining selected multispectral bands:

	 P w M

i

N

i isyn =
=
∑

1

	 (1)

Figure 3.  Complete Self Supervised Learning Workflow.
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The multispectral bands are orthogonalized relative 
to Psyn, the PAN replaces Psyn, and an inverse trans-
formation reconstructs the pan-sharpened output.

Analysis ready dataset preparation

To conduct land cover classification, an analysis-ready 
dataset was prepared using WorldView-3 imagery 
acquired over the City of Toronto in July 2021. The 
imagery was pansharped and resampled to a final spa-
tial resolution of 1 m to maintain consistency across 
all processing steps and to match the granularity of 
the target land cover classes. The target labels for this 
study were derived from the City of Toronto’s 2022 
Urban Land Cover dataset (City of Toronto, 2022), 
which offers a high-quality manually annotated vector 
layer consisting of eight semantic classes: other imper-
vious surfaces, road, bare soil, trees, shrubs, grass, 
water, and building. The use of NDVI Eq.(2) (Rouse 
et  al., 1974) and NDWI Eq.(3) (McFeeters, 1996) are 
widely recognized in remote sensing literature as an 
effective strategy to augment raw spectral bands for 
land cover classification tasks (Yaloveha et  al., 2023), 
particularly when dealing with complex urban mosaics. 
The data was preprocessed to generate 256 × 256 

non-overlapping patches with 10 input channels per 
patch. The split ratio was set at 70% for training, 15% 
for validation, and 15% for testing. The data prepara-
tion pipeline ensured that the imagery was precisely 
georegistered, spectrally enriched with derived indices, 
and accurately annotated with high quality reference 
labels. Table 1 shows the steps of the above process.

	 NDVI =
−
+

NIR R

NIR R
	 (2)

	 NDWI =
−
+

G NIR

G NIR
	 (3)

Figure 4. L ambdaPNN network (Ciotola et  al., 2023).

Table 1.  Processing steps to obtain analysis ready dataset 
(ARD).
Algorithm 1

1: Input: Pansharpened WorldView-3 multispectral imagery
2: Input: City of Toronto land cover data
3: Output: ARD ready for deep learning semantic segmentation
4: Rasterize the city of Toronto land cover data at 1 m to create masks
5: Create a composite of Worldview 3 data and land cover masks for 

labeled areas
6: Validate metadata to check extent, spatial reference, and cell size
7: Create non-overlapping patches of 256 × 256 with the stride of 256
8: Remove all patches with no data pixels
9: Add NDVI and NDWI spectral indices to the data
10: Create random data splits for training, validation, and test
11: Visualize patches to confirm and attach metadata file for 

dissemination
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Self-Supervised learning

Images often contain a lot of information that is irrel-
evant for further downstream tasks. A representation 
of an image ideally extracts the relevant parts of it 
(Figure 5). The goal of representation learning is to 
learn an encoder network fθ with learnable parameters 
θ that maps an input image x to a lower-dimensional 
representation (embedding) y f x= θ ( ).

In a nutshell, such methods build an encoder by 
performing the following two distinct steps:

i.	 Formulate a supervised learning task by gen-
erating an output t corresponding to each input 
image x.

ii.	 Train the model using supervised learning to 
map inputs x to their associated targets t.

Given a dataset of images, we write

	 X x x
n

= …[ ]1
, , 	 (4)

for a randomly sampled batch of images. Every rep-
resentation learning method trains an encoder net-
work fθ, where θ are the learnable parameters. This 
encoder network computes a representation

	 Y y y f x f x f Xn n= … =  …  =1 1
, , ( ), , ( ) ( )θ θ θ 	 (5)

of the images in X. Some methods additionally train 
a projection network gφ, with parameters φ, that com-
putes projections

	 Z z z g y g y g Y
n n

= … =] [ …  =1 1
, , ( ), , ( ) ( )φ φ φ 	 (6)

of the representations in Y. Some methods also train 
a prediction network qψ, with parameters ψ , that com-
putes a prediction based on z or y. Both projections 
and predictions are only used to train the network 
and after training the projection and prediction net-
works are discarded, and only the encoder fθ is used 
for downstream tasks.

Figure 5. T raining data with land cover classes.
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Multiple views of data using augmentation
The invariance principle in self-supervised learning 
posits that an effective model should learn represen-
tations that remain consistent under various transfor-
mations of the input data. This principle is critical 
in tasks such as image classification, object detection, 
and land cover segmentation, where the goal is to 
extract meaningful features robust to input changes. 
For this purpose, we use our unlabeled data. We arti-
ficially create noisy versions (views) of our data using 
dif ferent spatial,  spectral,  and geometric 
transformations.

Mathematically, the invariance principle can be 
expressed as follows:

	 Z X Z T X( ) ( ( ))≈ 	 (7)

where:

•	 Z X( ) is the representation learned from the 
original input X,

•	 T X( ) represents a transformation (or augmen-
tation) applied to X, such as rotation, scaling, 
cropping, or color jittering,

•	 The approximation symbol ≈ indicates that the 
representations for the original and augmented 
inputs should be similar.

Table 2 below shows a list of augmentations used 
in this study compared to the original Barlow twins 
implementation (Zbontar et  al., 2021). Some opera-
tions are only applicable to 3-channel data, so we 
replaced them with more meaningful transformations 
for multispectral data. Figure 6 shows the original 
patch and its multiple views generated using different 
transformations.

Barlow Twins model on unlabeled data
In this work, we create a new SSL4EO model using 
a new paradigm called Barlow Twins (Figure 7). The 
central idea behind this framework is the principle 
of redundancy reduction (Zbontar et  al., 2021). This 
principle states that reducing redundancy is crucial 
for organizing sensory messages in the brain. To 
implement this redundancy reduction principle, our 
approach takes a batch of images X and creates two 

Table 2. A ugmentations compared with original paper and ours.
View # Name Original Ours

1 Random resized crop Yes Yes
2 Random rotation Yes Yes
3 Random horizontal flip Yes Yes
4 Random vertical flip Yes Yes
5 Random box blur Yes Yes
6 Random contrast Yes No
7 Random solarization effect Yes No
8 Random brightness change Yes No
9 Random color jitter Yes No
10 Random grayscale effect Yes No
11 Random view of angle No Yes
12 Random shuffling of channels No Yes
13 Random shuffling of patches No Yes

Figure 6.  Visualizing multiple views generated from data augmentation.
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views X t X
( ) ( )

( )
1 1=  and X t X

( ) ( )
( )

2 2=  of these images, 
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( ) ( )
,

1 2 ∼ T  are transformations randomly sam-
pled from T  for every image of the batch. A Siamese 
encoder fθ computes representations
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for both views. Figure 7 below shows the Barlow Twins 
architecture.

Following this we regularize the cross-correlation 
matrix between the projections of both views. The 
cross-correlation matrix is calculated as
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where µ ( )j  and σ ( )j  are the mean and standard devi-
ation over the batch of projections of the j-th view, 
calculated as
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The key steps in implementing the Barlow Twins 
are as follows:

1.	 Data Augmentation: Apply random augmen-
tations (e.g., random cropping, color jittering) 

to the input images to create two distorted 
views.

2.	 Embedding Network: Use a neural network 
(e.g., ResNet) to encode the distorted views 
into feature vectors.

3.	 Cross-Correlation Matrix: Compute the 
cross-correlation matrix between the feature 
vectors of the two views.

4.	 Loss Function: Minimize the Barlow Twins loss, 
which consists of two terms: the invariance term 
that encourages the diagonal elements of the 
cross-correlation matrix to be close to 1, and the 
redundancy reduction term that encourages the 
off-diagonal elements to be close to 0.

The Barlow Twins loss function is defined as:

	 L
BT
= − [ ] + [ ]′

= = ≠′
∑ ∑∑
k

d

k

d

k k

C k k C k k

1

2

1

2

1( , ) , ,λ 	 (11)

where d is the number of dimensions of the pro-
jection and λ > 0 is a hyperparameter. The first term 
promotes invariance about the applied transforma-
tions, and the second term decorrelates the learned 
embeddings, i.e., reduces redundancy. By using this 
loss, the encoder fθ is encouraged to predict embed-
dings that are decorrelated and thereby non-redundant.

Downstream supervised learning

Attention Gated U-net
The Attention Gated U-Net (Oktay and Schlemper, 
2018) (Figure 8) is an extension of the traditional 
U-Net architecture that incorporates attention 
mechanisms to improve segmentation performance. 
The key components of the Attention Gated 
U-Net are:

Figure 7.  Barlow Twins strategy (Zbontar et  al., 2021).
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1.	 Encoder: The encoder part of the U-Net, which 
consists of convolutional layers followed by 
max-pooling layers, is used to extract features 
from the input image.

2.	 Attention Gates: Attention gates are introduced 
at each skip connection between the encoder and 
decoder. These gates compute a gating signal that 
modulates the feature maps from the encoder, 
focusing on the relevant regions of the image.

3.	 Decoder: The decoder part of the U-Net, 
which consists of up-convolutional layers, is 
used to reconstruct the segmentation map from 
the encoded features.

The attention gate α is computed as:

	 α σ= ∗ + ∗ +( )W g W x bg x 	 (12)

where g is the gating signal from the decoder, x is 
the feature map from the encoder, W

g
 and W

x
 are 

learnable weights, b is a bias term, and σ  is the sig-
moid function. The modulated feature map xɶ is then 
computed as:

	 x xɶ = ⋅α 	 (13)

Finetuning U-Nets on labeled data
Fine-tuning the model is achieved through super-
vised learning. The pretraining process was guided 
by the Barlow Twins loss function (Equation 11). 
However, the U-Net models are subsequently 
fine-tuned using a segmentation loss function, L, 
which is computed as the mean of the binary 
cross-entropy loss.

The binary cross-entropy loss for semantic segmen-
tation is defined as:

L
N

y p y p
BCE

i

N

c

C

i c i c i c i c
= − + − −( )

= =
∑∑1

1 1
1 1

, , , ,( ) ( ) ( )log log 	(14)

where:

•	 N is the total number of pixels,
•	 C is the number of classes (land cover types),
•	 y

i c,
 is the true binary label for pixel i belonging 

to class c,
•	 p

i c,
 is the predicted probability of pixel i being 

in class c.

Figure 8. A ttention Gated Unet (Oktay and Schlemper, 2018).
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Mean IoU for semantic segmentation is defined as:

	 IoU =
+ +=

∑1
1C

TP

TP FP FN
c

C

c

c c c

	 (15)

where:

•	 C is the number of classes (land cover types),
•	 TP

c
 is the number of true positives for class c,

•	 FP
c
 is the number of false positives for class c,

•	 FN
c
 is the number of false negatives for class c.

The F1 score for semantic segmentation is defined as:

	 F1 2= ⋅
⋅
+

Precision Recall

Precision Recall
	 (16)

where:

•	 Precision is defined as TP

TP FP+
,

•	 Recall is defined as TP

TP FN+
.

The overall accuracy (OA) is a common metric 
used in classification problems to measure the pro-
portion of correctly classified samples among the total 
number of samples. It can be expressed as:

	 OA
TP

N

i

C

i= =∑ 1 	 (17)

where:

•	 TP
i
 is the number of true positives for class i,

•	 C is the total number of classes,
•	 N is the total number of samples.

Table 3.  Qualitative comparison of deep learning and Gram-Schmidt pansharpening.
Multispectral Panchromatic Gram-Schmidt Deep Learning
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In this equation, the numerator represents the sum 
of correctly classified samples for all classes, and the 
denominator is the total number of samples.

Results and discussion

Experimental setup

In our experimental setup, we leveraged a high-performance 
computing environment to facilitate the training and eval-
uation of our deep learning models. The hardware con-
figuration consisted of an Intel Xeon E5 10 cores CPU, 
128 GB RAM, and two NVIDIA RTX 6000 graphics 
processing units (GPUs), each equipped with 24 GB of 
VRAM, providing ample computational power for parallel 
processing of large-scale geospatial datasets.

Our software stack was built on the PyTorch deep 
learning framework, specifically utilizing PyTorch 
Lightning for streamlined model training and exper-
iment management. To address geospatial data’s unique 
challenges, we incorporated TorchGeo (Stewart et  al., 
2022), a specialized library for processing and ana-
lyzing Earth observation datasets within the PyTorch 
ecosystem. Additionally, we employed Kornia, a com-
puter vision library, to implement advanced image 
augmentation techniques and geometric transforma-
tions on GPUs instead of CPUs.

Pansharpening

The results from the pansharpening phase are pre-
sented in Table 3. The multispectral and panchromatic 
data, as well as the outputs from Gram-Schmidt and 
deep learning-based pansharpening, are shown here. 
Visual inspection reveals the output from deep learn-
ing is more vibrant and sharper than classically 
pan-sharpened products. This is mainly because we 
can leverage information from all eight bands and 
apply a state-of-the-art model, such as LambdaPNN. 
The output shows that while fine objects, such as 
swimming pools, boats, and cars, appear hazy in the 

Gram-Schmidt output, these objects are clearer in the 
new deep learning pansharpened product.

Land cover classification

The proposed framework generates a segmentation 
mask for a given multispectral image. Table 4 enumer-
ates the encoder and decoder configurations for the 
two Unet variants used in experiments. The dataset 
consisted of 8,800 labeled image patches, each of size 
256 256× , with 10 spectral bands and corresponding 
single-channel land cover masks, comprising 8 classes. 
The dataset was randomly divided into training, vali-
dation, and test sets using a stratified approach to 
ensure class balance across splits. 70% of the data 
(6,160 images) was used for training, 15% (1,320 
images) for validation, and 15% (1,320 images) for 
testing. All splits were mutually exclusive and fixed 
across all experiments. To optimize the model’s per-
formance, the Adam optimizer is used in all experi-
ments, with a learning rate initialized at 1 10

3× − . This 
learning rate is reduced whenever training stagnates, 
thereby enhancing segmentation performance. Moreover, 
early stopping is implemented to prevent overfitting, 
ensuring that training halts once the loss function stops 
improving. Tables 5 and 6 present the qualitative com-
parison of the segmentation performance. Moreover, 
the quantitative results of both U-Net models with and 
without the Barlow Twins-based pre-training are pre-
sented in Tables 7 and 8. The models were trained for 
100 epochs, and inference was performed on the 
test set.

It is observed that initially, the simple Unet models 
(32 M parameters) were unable to learn the complexity 
of the data. Unet and Unet + SSL models predict 
impervious classes as either road, water, or building. 
A more complex model such as Resnet50 + AttUnet 
(43 M parameters) can better classify the impervious 
area mostly due to the Resnet50 encoder and the 
attention-gating mechanism. However, the output still 
contains some noise. Nevertheless, after performing 
SSL pre-training, Resnet50AttUnet + SSL can properly 
delineate the impervious area compared to the true 
area. For road classification, the Unet model com-
pletely misses the intersection and the side roads, as 
shown below. Unet + SSL can improve the result by 
correctly classifying the side roads and a part of the 
road further away from the intersection but not the 
actual intersection itself. Resnet50AttUnet can predict 
the intersection better, but it cannot properly delineate 
the road. This is accomplished through SSL training, 
as Resnet50AttUnet + SSL can capture finer details and 
extract precise road networks, along with more 

Table 4.  Comparison of U-Net and Attention U-Net with 
ResNet50 backbone.
Stage Standard U-Net Attention U-Net (ResNet50)

Encoder 1 64 64
Encoder 2 128 256
Encoder 3 256 512
Encoder 4 512 1024
Bottleneck 1024 2048
Decoder 1 512 1024
Decoder 2 256 512
Decoder 3 128 256
Decoder 4 64 64
Skip Conn. Direct concat. Attention gate + concat.
Attention None At each skip conn.
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Table 5.  Qualitative comparison of model outputs.
ULC Color Input Ground Reference Unet Unet + SSL Resnet50 +AttUnet Resnet50 +AttUnet + SSL

Other

Road

Bare

Trees

Shrubs

Grass

Water



Canadian Journal of Remote Sensing 15

prominent buildings in the background. For the bare 
class, the Unet model cannot differentiate between 
grass and bare soil, as shown below. Hence, it over-
classifies grass and shrubs while incorrectly predicting 
that the impervious running track around the bare 
field is the road. Here, SSL training helps the model 
Unet + SSL differentiate between grass and bare soil, 
while identifying the running track as impervious 
rather than a road. Resnet50AttUnet is shown to 
remove the misclassified grass pixels completely, but 
it overestimates the amount of bare soil while com-
pletely missing the thin running track. SSL training 
is helpful in this case, and Resnet50AttUnet + SSL can 
accurately estimate the amount of bare soil and the 
prominent running track. The example for tree clas-
sification shown below is a classic example of the 
benefits of SSL pre-training. This is because of the 
cloud cover present in the Worldview 3 imagery. 
Although providers try to remove as many clouds as 
possible before dissemination, clouds frequently occur 
in optical remote sensing data, and Worldview 3 is 
no exception. As the study shows, the vanilla Unet 
model fails to recognize the tree canopy beneath the 
cloud and incorrectly classifies it as bare soil. 

Unet + SSL can understand that it is probably vegeta-
tion but cannot distinguish between trees and grass. 
Renet50AttUnet, on the other hand, can understand 
the tree canopy correctly but fails in places where the 
cloud casts a shadow. Finally, the Resnet50AttUnet + SSL 
model can delineate the trees and the fine roads going 
through them. While the initial Unets struggle with 
grasses and shrubs, our methodology eventually 
enables the model to learn to differentiate between 
the two. For water classification, the model correctly 
identifies water pixels for the most part, but later 
models are also able to get finer details, such as 
impervious embankments and boat wharves. Classifying 
buildings in densely populated or commercial areas 
has been challenging, even with high-resolution imag-
ery. The spectral signature of buildings varies a lot in 
commercial zones like downtown Toronto. The exam-
ple below demonstrates the proposed methodology’s 
usefulness in extracting building footprints. Unet 
model considers buildings to be impervious surfaces 
and the shadows to be water pixels. Tall buildings cast 
many shadows, and a simple encoder is not enough 
to represent this. Unet + SSL improves by detecting 
more buildings, but it still overestimates the footprint, 
and some spurious water pixels remain instead of 
shadows. Resnet50AttUnet can delineate the buildings 
much better, but some shadow pixels are still consid-
ered to be water. However, the final model, 
Resnet50AttUnet + SSL, can finally eliminate the 

Table 7.  Validation metrics.

Table 6.  Qualitative comparison of model outputs.
ULC Color Input Ground Reference Unet Unet + SSL Resnet50 +AttUnet Resnet50 +AttUnet + SSL

Building

Table 8.  Quantitative comparison of model outputs.
Model Name IoU F1 Score OA

Unet 0.56 0.61 0.69
Unet + SSL 0.65 0.69 0.74
Resnet50AttUnet 0.71 0.74 0.80
Resnet50AttUnet + SSL 0.76 0.83 0.88
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shadow pixels and properly classify them as either 
buildings or roads (Figure 9).

The table above compares the performance of four 
models on land cover segmentation tasks, quantified 
by Intersection over Union (IoU), F1 Score, and 
Overall Accuracy (OA). The baseline U-Net model 
demonstrates relatively low performance across all 
metrics, with an IoU of 0.56, an F1 score of 0.61, 
and an overall accuracy (OA) of 0.69. These results 
indicate the challenges posed by limited labeled data 
and the simplicity of U-Net’s encoding architecture. 
The encoder in the basic U-Net is not powerful 
enough to capture the rich spatial patterns required 
for high-quality land cover segmentation, especially 
when the availability of labeled samples is constrained. 

Introducing self-supervised pre-training using Barlow 
Twins significantly boosts the performance of the 
U-Net, as evidenced by the metrics of U-Net + SSL 
(IoU = 0.65, F1 = 0.69, OA = 0.74). The substantial 
improvements across all validation metrics underline 
the efficacy of self-supervised learning (SSL) in 
addressing data scarcity. By leveraging SSL pre-training, 
the encoder learns more robust and generalized fea-
tures from the data, thereby enhancing the down-
stream segmentation task without requiring extensive 
labeled samples. Moreover, the ResNet50AttU-Net 
model, which incorporates a ResNet50 backbone and 
attention mechanisms, outperforms the U-Net and 
U-Net + SSL models. The IoU improves to 0.71, the 
F1 score to 0.74, and the OA to 0.80. This superior 

Figure 9. F inal land cover output.
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performance can be attributed to the more powerful 
and deeper ResNet50 encoder, which facilitates better 
feature extraction. Additionally, the attention gates 
integrated into this architecture allow the model to 
focus on the most relevant spatial information, further 
refining segmentation accuracy. Finally, the 
ResNet50AttU-Net + SSL model achieves the highest 
performance, with an IoU of 0.76, an F1 score of 
0.83, and an overall accuracy (OA) of 0.88. This indi-
cates the positive synergy between the attention-gated 
ResNet50 architecture and SSL pre-training. The 
sophisticated encoder, attention mechanisms, and SSL 
enable this model to extract and utilize feature rep-
resentations more effectively, particularly in scenarios 
with limited labeled data, culminating in the best 
overall segmentation results.

These results highlight the significant advantages 
of integrating SSL pre-training into encoder-decoder 
segmentation models and the utility of attention 
mechanisms in improving the precision and accuracy 
of land cover segmentation tasks.

Conclusion

This study investigated the application of Barlow 
Twins, a self-supervised learning (SSL) framework, to 
enhance high-resolution land cover classification accu-
racies when labeled data is limited. By leveraging 
Barlow Twins’ capacity to learn meaningful feature 
representations from vast amounts of unlabeled remote 
sensing data, we have demonstrated significant 
improvements in classification performance, specifi-
cally in scenarios where labeled samples are scarce. 
Adopting this method addresses a critical challenge 
in land cover classification: the costly and labor- 
intensive nature of acquiring labeled datasets for 
remote sensing tasks. Our approach employed a 
three-stage training pipeline, with deep learning pan-
sharpening Barlow Twins pre-training on a large unla-
beled dataset, followed by fine-tuning a small subset 
of labeled data for supervised classification. This pipe-
line allowed the model to learn useful representations 
of diverse land cover types during the pre-training 
stage, thereby improving the effectiveness of the 
supervised fine-tuning phase. Our experiments 
revealed that the model trained with SSL using Barlow 
Twins outperformed conventional supervised models 
in terms of overall accuracy and F1 score. This is 
likely due to the design of Barlow Twins, which 
enforces redundancy reduction, encouraging the model 
to capture complementary features without relying on 
specific supervised signals. This characteristic is espe-
cially beneficial for remote sensing imagery, where 

variations in seasonal, atmospheric, and lighting con-
ditions demand robust feature learning. In addition 
to improving classification performance, the Barlow 
Twins framework is highly adaptable and computa-
tionally efficient, making it a viable approach for land 
cover mapping projects with constrained resources. 
Efficient usage of unlabeled data opens the possibility 
of applying land cover classification to new regions 
and periods with minimal manual labeling. However, 
we find that the most frequent sources of misclassi-
fication in our LULC map are: (1) shadow artifacts, 
where areas shaded by tall buildings or dense tree 
canopies exhibit spectral signatures similar to water 
or impervious surfaces; (2) mixed-pixel effects, which 
occur along boundaries between built and natural 
covers (e.g., roof–vegetation edges) and lead to ambig-
uous class assignments; and (3) spectral confusion 
between spectrally similar materials—most notably 
bare soil and concrete or asphalt; and (4) cloud con-
tamination. Addressing these issues will require 
improved shadow‐compensation algorithms, sub-pixel 
classification techniques, and the incorporation of 
additional spectral or contextual features in future 
model iterations.

In conclusion, Barlow Twins-based SSL presents a 
promising approach for land cover classification with 
limited labeled data. This study is a foundation for future 
work exploring hybrid SSL and supervised methods tai-
lored to various remote sensing domains. Expanding this 
work to include other modalities of remote sensing data, 
such as multispectral or SAR, can further validate the 
scalability and versatility of SSL frameworks in geospatial 
applications. The insights gained from our findings 
encourage continued exploration into self-supervised 
techniques, which hold the potential to revolutionize 
remote sensing analytics by overcoming the traditional 
reliance on large labeled datasets.
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