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3. Karun River salinity increases from Gotvand to Ahvaz, due to agriculture & 
geology.

River Salinity Mapping through Machine Learning and Statistical 
Modeling using Landsat 8 OLI Imagery

This study uses Landsat 8 OLI imagery and 102 in situ salinity data points to 
investigate salinity mapping in the Karun River, southwestern Iran. A total of 24 
features, including salinity indices and Landsat 8 OLI spectral bands, were 
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assessed using the Random Forest Feature Importance Score (RFFIS), Sobol’ 
sensitivity analysis, and correlation with salinity to identify the most sensitive 
features for salinity estimation. These included the Red and Green bands, Salinity 
index 2–6, Normalized Suspended Material Index (NSMI), and Enhanced Green 
Ratio Index (EGRI). A total of 24 regression models, including statistical, kernel-
based, Neural Network (NN)-based, and Decision Tree (DT)-based models, were 
evaluated using statistical error metrics and global, as well as local, Moran’s I 
measures of residual spatial autocorrelation. The DT-based models, specifically 
Gradient Boosted DT (GBDT), outperformed other models, demonstrating low 
errors, bias, and non-significant residual spatial autocorrelation. Kernel-based 
models performed better than conventional linear models, while NN models 
tended to underfit. Residual spatial autocorrelation analysis indicated that models 
incorporating spatial information reduced residual autocorrelation. Landsat 8 OLI 
imagery effectively mapped salinity dynamics, revealing increased salinity from 
Gotvand to Ahvaz city due to agricultural activities and the Gachsaran formation 
within the reservoir.

Keywords: Water Salinity; Spatial Autocorrelation; Multispectral Imagery; 
Regression Analysis; Rivers and Estuaries; Machine Learning.

1. Introduction

The salinity of rivers and estuaries is an important water quality parameter (WQP) that 
influences freshwater supply and human well-being (Cañedo-Argüelles et al., 2016), the 
suitability of water for irrigation and agriculture (Tessema et al., 2022), the animal 
species survival (Jualaong et al., 2019), and the growth of aquatic vegetation (Sebilian 
Wittyngham et al., 2019). Salinity can vary across space and time due to fluctuations in 
precipitation and runoff in rivers (Sumner and Belaineh, 2005), water circulation 
(Bowden and Sharaf El Din, 1966), tidal and wind-driven mixing of water masses 
(Uncles and Stephens, 2011), as well as changes in the volume of freshwater discharge 
in estuaries (Jiang et al., 2024). Monitoring changes in salinity, therefore, has many 
practical applications for water management (Dasgupta et al., 2013; Fichez et al., 2017; 
James et al., 2003). Salinity is the concentration of dissolved salts in a volume of water. 
The most common salts in water include the cations sodium (Na+), potassium (K+), 
magnesium (Mg2+), and calcium (Ca2+), and the anions chloride (Cl–), sulfate (𝑆𝑂2―

4 ), 
and bicarbonate (𝐻𝐶𝑂―

3 ) (El-Swaify, 2000). These ions increase both the salinity and 
the Electrical Conductivity (EC) of the water, creating a close relationship between 
salinity and EC that allows salinity to be measured indirectly via EC measurements 
(Dahaan et al., 2016; El-Swaify, 2000; U.S. Geological Survey, 2019; Wagner et al., 
2006), an approach that is typically used instead of direct measurement of salinity 
(Khorram, 1985; Rusydi, 2018; Wagner et al., 2006). Measurement of EC does not 
require lab access and can be automated to acquire data at regular intervals, allowing for 
high-frequency monitoring. However, such tracking is spatially limited to the location at 
which probes are deployed; effort has therefore also gone into the development of 
methods to monitor salinity using satellite imagery that can provide less frequent but 
spatially complete coverage of an area of interest.

The absorption and scattering of light in water, and therefore water colour, is 
directly influenced by salinity (Röttgers et al., 2014; Zhang et al., 2009; Zhang and Hu, 
2021). However, for the salinity variations that are relevant to natural waters, this 
influence is relatively small compared to that of more optically active water constituents 
such as chlorophyll-a found in algal particles, coloured dissolved organic matter 
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(CDOM), and total suspended sediment (TSS) (Mishra et al., 2017). While knowledge 
of salinity can improve the retrieval of other water quality variables from optical 
satellite imagery (Werdell et al., 2013) by fine-tuning retrieval algorithms, direct 
mapping of salinity with inversion algorithms applied to optical satellite data is not 
currently possible, and direct mapping of salinity from space is limited to microwave 
instruments that operate at spatial resolutions too coarse to have value for rivers and 
estuaries (Kerr et al., 2010; Lagerloef et al., 2008). As a result, practical approaches to 
salinity mapping with optical data have relied on indirect associations between salinity 
and other water quality parameters that are i) empirically related to salinity and ii) easier 
to observe with satellite data. For example, many studies report a linear, inverse 
correlation between salinity and the CDOM absorption coefficient in coastal waters 
(Blough et al., 1993; Bowers et al., 2004; D’Sa et al., 2000; Hu et al., 2004; Siddorn et 
al., 2001). Several studies have also observed a relationship between salinity and TSS 
(Adjovu et al., 2023a, 2023b; Wang and Xu, 2008), noting that they are negatively 
correlated (Fang et al., 2010; Wang and Xu, 2008). The successful remote sensing of 
CDOM and TSS and their observed relationships with salinity suggests that salinity can 
be mapped indirectly using satellite data, either explicitly using TSS and CDOM as 
proxies or implicitly by using observations at wavelengths where water color is 
influenced by TSS and CDOM concentrations (Khadim et al., 2017; Nguyen et al., 
2018). From a practical perspective, mapping salinity via an explicit relationship with 
CDOM and/or TSS is demanding because it requires establishing an empirical 
relationship between salinity and CDOM and/or TSS, which in turn requires suitable 
data on those variables. The easier approach is to establish an empirical regression 
relationship directly between salinity and water colour, with the understanding that 
CDOM and/or TSS are an implicit link between the two.

Three important considerations involve using empirical regression models to 
monitor salinity in rivers and estuaries: i) Selecting appropriate satellite data. Due to 
the dynamic nature of rivers, salinity varies spatially and temporally. The spatial 
resolution of the satellite imagery must be sufficient to allow differentiation of salinity 
between different parts of the area of interest, the sensor should possess spectral bands 
sensitive to variations in CDOM and/or TSS, and the temporal resolution must be 
sufficient for specific monitoring requirements. ii) Feature engineering. Selecting 
spectral bands and indices sensitive to variations in CDOM and/or TSS is important to 
optimize model performance, but including an excessive number of variables can lead 
to model overfitting (Nguyen et al., 2018). iii) Model selection and parameter 
optimization. A finely tuned and flexible empirical model can help produce accurate 
salinity estimates because the spectral behavior of CDOM and/or TSS, and the 
relationships between CDOM/TSS and salinity, can be complex. Especially when in situ 
data are scarce, employing a regression method that prevents underfitting and avoids 
overfitting is important.

Previous salinity mapping studies have used sensors such as SeaWiFS (D’Sa et 
al., 2002), Aquarius (Kao et al., 2018), Visible Infrared Imaging Radiometer Suite 
(VIIRS) (Vandermeulen et al., 2014), and Moderate Resolution Imaging 
Spectroradiometer (MODIS) - Aqua (DeLuca et al., 2020). However, due to their low 
spatial resolution, these sensors are unsuitable for most inland waters, especially rivers 
(Priyadarshini et al., 2023). For salinity mapping of inland waters, previous studies have 
used the Landsat series of sensors as well as Sentinel-2 MSI and the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Table 1). These 
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sensors have bands suitable for detection of variations in CDOM absorption (Li et al., 
2023) and TSS concentration (Adjovu et al., 2023a), and thus indirectly salinity, and 
they also allow for the generation of spectral indices correlated with salinity (Mejía 
Ávila et al., 2022) including dedicated salinity indices (Adjovu et al., 2023a, 2022; 
Ferdous and Rahman, 2020; Maliki et al., 2020), NSMI (Montalvo, 2010), and the 
normalized difference suspended sediment index (NDSSI) (Hossain et al., 2010). While 
visible and NIR bands are used in many studies due to their association with absorption 
peaks of CDOM and/or TSS, the bands and spectral indices used in combination to 
study salinity differ between studies.

Table 1 lists statistical and Machine Learning (ML) models used to map salinity. 
These include Linear Regression (LR), Geographically Weighted Regression (GWR), 
Spatially Weighted Optimization Model (SWOM), Multiple Linear Regression (MLR), 
DT, Random Forest (RF), Support Vector Regression (SVR), Artificial Neural Network 
(ANN), Multilayer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), Adaptive Boosting (AdaBoost), Light Gradient Boosting Machine 
(LightGBM), and Extreme Gradient Boosting (XGBoost). LR and MLR are commonly 
used; however, a key limitation of these models is their inability to generalize across 
large spatial and temporal scales due to variability in atmospheric and water 
composition that affects the spectral signatures of WQPs, including CDOM/TSS (Topp 
et al., 2020). Specifically, riverine WQPs, including CDOM/TSS, vary within and 
between river catchments (Chang, 2008; Lintern et al., 2018), and a range of 
relationships exist between spectral signatures, CDOM/TSS, and salinity across 
different areas. This requires the development of site-specific empirical models and 
highlights salinity as a non-stationary variable (Xie et al., 2013) due to interactions 
between land and water, and most importantly saltwater intrusion into estuaries (Jiang et 
al., 2024). GWR (Xie et al., 2013) SWOM (Khadim et al., 2017) address this challenge 
by considering spatial dependencies in modeling salinity. While studies have identified 
geographical location as a crucial variable in some models (Khadim et al., 2017; 
Nguyen et al., 2018; Urquhart et al., 2012; Xie et al., 2013), such models often lack 
transferability to different locations.

ML models such as DT (Nguyen et al., 2018), SVR (Ansari and Akhoondzadeh, 
2020), and ensemble models like RF (Nguyen et al., 2018), AdaBoost (Borovskaya et 
al., 2022), LightGBM (Dai et al., 2023), and NN-based models like ANN (Bayati and 
Danesh-Yazdi, 2021), MLP (Ansari and Akhoondzadeh, 2020), and ANFIS (Bayati and 
Danesh-Yazdi, 2021) typically outperform the traditional linear and non-linear 
statistical approaches for modeling salinity  (Table 1). 

Drawing from Tobler's First Law of Geography (Tobler, 1970), the evaluation of 
spatial autocorrelation in regression residuals is essential in spatial regression modeling 
(Feng et al., 2021; Kelly, 2019; Lu et al., 2023; Mabula et al., 2023; Mahboobi et al., 
2023; Mainali et al., 2019; Moran, 1950; Peralta et al., 2016; Sotomayor et al., 2023). 
Firstly, spatial autocorrelation in residuals violates the independence assumption 
fundamental to regression analysis, leading to biased parameter estimates and incorrect 
inference. This undermines the reliability of regression results (Higazi et al., 2013). 
Secondly, detecting spatial patterns in residuals provides insights into the validity of the 
regression model by revealing whether it adequately captures all spatial dependencies in 
the data (Kelly, 2019). The presence of spatial autocorrelation in residuals suggests 
potential unmodeled spatial processes influencing the response variable, pointing to 
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areas for model refinement (Higazi et al., 2013; Kelly, 2019; Khorram, 1985; Metulini 
et al., 2018; Xie et al., 2013). However, despite its significance, the investigation of 
spatial autocorrelation in regression residuals from statistical and ML models remains 
underexplored, including in salinity modeling studies.

This study collected in situ water salinity data from 2013 to 2018 for the Karun 
River, Iran's longest and highest-discharge river. Agricultural effluents and industrial 
sewage, often linked to sugarcane development projects (Nahvi et al., 2018), combine 
with salt dissolution from the Gachsaran Formation within the reservoir behind the 
Upper Gotvand Dam (Jalali et al., 2019) to contribute to the salinity of the river, 
generally resulting in increased salinity downstream. Using these data, we modeled the 
river's salinity with Landsat 8 OLI imagery. Landsat 8 was selected due to its free 
availability, spatial resolution suitable for our case study, unlike Aquarius, VIIRS, and 
MODIS, and its full operational status during our field data collection, unlike Sentinel-
2, which became operational only after 2015. For this purpose, we leveraged 14 
established spectral indices and 24 predictive models from previous studies. Due to the 
limited number of matchups (102 samples), developing complex novel models, such as 
those based on NNs, was impractical. Instead, our efforts were directed toward 
improving input features to achieve better results with this suite of existing models. We 
comprehensively evaluated the statistical performance metrics associated with each 
model. Moreover, we investigated the presence of global and local spatial 
autocorrelation in the residuals of each model. Specifically, we addressed the following 
questions within the context of Landsat-based salinity modeling in the Karun River: i) 
Which predictive model performs best regarding statistical metrics and spatial 
autocorrelation of residuals? ii) What is the relationship between these two aspects of 
model performance? iii) How do the influences of the Gachsaran Formation versus 
other factors (e.g., sugar cane projects) contribute to downstream salinity increases?

2. Study area and data

2.1. Study area

The Karun River basin is located in southwestern Iran. It covers an area of ~67,000 km2 
(Shahraki et al., 2023) (Fig. 1). It runs through 16 cities (e.g., Gotvand, Shushtar, 
Ahvaz, Khorramshahr, and Abadan are shown in green in Fig. 1) and numerous villages 
and serves various industrial and agricultural purposes, irrigating over 380,000 hectares 
of the surrounding plains (Shahraki et al., 2023). The Karun River converges with the 
Arvand (or Shatt al-Arab) River at Khorramshahr before flowing into the Persian Gulf 
(Fig. 1). Saline discharges originating from arid land, irrigation practices, fish 
hatcheries, and urban sources (Adib and Javdan, 2015; Nouraki et al., 2021) contribute 
to elevated salinity levels in the Karun River. Pollution in the Karun River primarily 
stems from agricultural and industrial waste, often linked to sugar cane projects (Nahvi 
et al., 2018). Moreover, the construction of the Upper Gotvand Dam (located near 
Gotvand station in Fig. 1) has created a reservoir that includes the Gachsaran 
Formation, known for its deposits of gypsum and halite (rock salt) (Bahadori et al., 
2011). Since its completion in 2011, the dam has facilitated prolonged contact between 
the Gachsaran Formation and reservoir water, increasing salinity in the reservoir (Jalali 
et al., 2019) and hence in the Karun River. 



6

2.2. Landsat-8 OLI images

We used 37 Landsat 8 OLI L1 images that are cloud-free at the 8 stations shown in Fig. 
1, for the path/row combinations 165/38, 165/39, and 166/38, covering the period from 
June 2013 to May 2022. With Landsat 8 OLI's 30-meter spatial resolution, and 
considering the width of the Karun River at the 8 sampling stations (> 30 m) (refer to 
Fig. 1), the Karun River at these stations can be observed in at least one pixel on a 
Landsat 8 OLI image. All Landsat 8 OLI images were atmospherically corrected using 
the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
module (Cooley et al., 2002), and land, defined as pixels with positive Normalized 
Difference Vegetation Index (NDVI) values, was masked out. Fourteen indices, 
previously used for modeling soil/water salinity or TSS, were calculated for each pixel. 
These indices were selected because recent studies have demonstrated that they 
correlate with soil/water salinity or TSS (Adjovu et al., 2023a, 2022; Aksoy et al., 
2022). Although soil salinity differs from water salinity, indices related to soil salinity 
have been used in previous water salinity studies and have contributed to improving 
model performance (Adjovu et al., 2022; Ferdous and Rahman, 2020). While other 
salinity and TSS indices exist, this study focused on those listed by Adjovu et 
al.(2023a). The selected indices include Salinity indices 1-7, the Normalized Difference 
Salinity Index (NDSI), NSMI, NDSSI, the Green-Blue Band Ratio (BR), EGRI, the 
Water-Sediment Ratio Index (WSRI), and NDVI (Table 2).

2.3. In situ salinity data

In situ measurements conducted by the Iran Water and Power Resources Development 
Company (2023) were performed using a WTW - Portable conductivity meter ProfiLine 
Cond 3310, which is regularly calibrated to ensure accuracy. This device measures EC, 
which is temperature-dependent (Dahaan et al., 2016; Wagner et al., 2006), and adjusts 
readings to 25 °C to report specific conductance in µS/cm (U.S. Geological Survey, 
2019). Salinity was calculated in practical salinity units (psu) from specific conductance 
using equations from Schemel (2001) (see Eq. S1 and Eq. S2 in supplementary 
material); we did not correct for pressure because all measurements were conducted 
near the water surface (Wagner et al., 2006). 

In situ salinity data acquired within ± two days of a Landsat 8 OLI image (Table 
3) were extracted from each station for 102 matchups. It is worth mentioning that 
although Sentinel-2 has better spatial and spectral resolution compared to Landsat 8 
because it was non-operational before 2015 or due to a mismatch with the timing of the 
field data collection, its matchups would have been limited to only 21, which is 
insufficient for training machine learning models. As shown in Table 3, matchups were 
prepared for specific stations on each date, as cloud cover or the absence of field data on 
the target date limited availability. In 2013 and 2014, 31 and 30 matchups were 
prepared across various dates and stations, respectively, while in some years, such as 
2018 and 2015, the number of matchups decreased to 1 and 9, respectively. Given the 
extensive length of the Karun River and the five-year timeframe covered by the data, 
field data collection was economically constrained. Table 4 provides summary statistics 
for the salinity observed at each of the eight stations. To evaluate the performance of the 
salinity models, the matchups were randomly split, allocating ~70% (N = 72) for model 
training and ~30% (N = 30) for model testing (Shahin et al., 2004).
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3. Methodology

3.1. Feature Engineering

This study extracted and analyzed 21 features, including the Coastal Aerosol, visible, 
NIR, and SWRI spectral bands of Landsat 8 OLI and the 14 indices listed in Table 2. 
Three feature selection methods were employed to address potential overfitting and 
reduced interpretability from this large number of features (Bayati and Danesh-Yazdi, 
2021; Jiang et al., 2024): RFFIS, Sobol’ sensitivity analysis, and confusion matrix. 

To calculate the RFFIS, we first trained an RF model (Breiman, 2001) using the 
training dataset, considering all 21 features. The RF's hyperparameters were fine-tuned 
using a Genetic Algorithm (GA) from the PyGAD Python library (Gad, 2023); 
implementation details are available in Table S2 in the supplementary material. The RF 
model constructs multiple regression trees from random training data samples and 
averages their predictions. Model accuracy is assessed using data not used in building 
the trees. Feature importance is determined by measuring the increase in prediction 
error when the values of a feature are permuted, keeping others unchanged (Abdel-
Rahman et al., 2013; Menze et al., 2009). RFFIS scores, which range between 0 and 1 
and sum to 1 across all features, are then used to identify the most important features for 
the regression process. Our implementation of RF was carried out in Python using the 
Scikit-learn library.

Sobol’ is a global sensitivity analysis method that decomposes variance to 
quantify each feature's impact on the model output relative to others (Sobol’, 1993). The 
problem formulation is 𝑌 = 𝑓(𝑋) = 𝑓(𝑋1,…, 𝑋21), where 𝑌 is the model output (i.e., 
salinity) and 𝑋 = (𝑋1,…, 𝑋21)  is the feature set (Verrelst and Rivera, 2017). An 
Ordinary Least Squares (OLS) model with all 21 features and all matchups (N = 102) 
was used to establish the problem formulation using the statsmodels library in Python. 
In the Sobol’ method, the total unconditional variance of 𝑌,𝑉(𝑌), is decomposed into 𝑉𝑖
,𝑉𝑖𝑗, 𝑉𝑖𝑗𝑘, …𝑉1…21, representing contributions from individual factors 𝑋𝑖, interactions 𝑋𝑖 
and 𝑋𝑗, and higher-order interactions (Homma and Saltelli, 1996; Nossent et al., 2011). 
Variance is calculated using Monte Carlo integrals and Sobol’ quasi-random sampling 
(Homma and Saltelli, 1996; Nossent et al., 2011), for which 10,000 samples of 
independent random variables, uniformly distributed within the range of each feature, 
are generated. The total-order sensitivity indices, 𝑆𝑇𝑖= 1- 𝑉~𝑖

𝑉  where 𝑉~𝑖 is obtained from 
variation of all parameters, except 𝑋𝑖, ranging from 0 to 1 and sum to 1 across all 
features, measure the main effect and interactions of 𝑋𝑖 with other parameters, allowing 
for the ranking of feature importance (Nossent et al., 2011). Our implementation of 
Sobol’ sensitivity analysis was conducted in Python using the SALib library.  

The confusion matrix was generated by calculating the coefficient of 
determination (R2) values between all 21 features and salinity. The 21 features were 
then ranked based on their RFFIS, 𝑆𝑇 values, and R2 values with salinity, from 1 to 21, 
and the average of these three ranks was computed to determine the final rank. 
Subsequently, regression models were then trained using the feature with the best 
average rank, with its hyperparameters optimized by GA, and its R2 was calculated 
using the test dataset. This process was repeated, adding one top-ranked feature until all 
features were included. Finally, each model's features that resulted in the highest R2 
were selected. 
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3.2. Regression Methods

We tested 24 different regression methods for salinity modeling, including statistical, 
kernel-based, DT-based, and NN-based models. The hyperparameters of all methods, as 
detailed in Section S3 of the Supplementary Material, were tuned using a GA to ensure 
optimal performance. All regression models were implemented using Python. We 
utilized DT, GBDT, Gaussian Process Regression (GPR), Kernel Ridge Regression 
(KRR), MLP, Partial Least Squares Regression (PLSR), RF, Ridge Linear Regressor 
(RLR), and SVR from the Scikit-learn library (Buitinck et al., 2013), One-Dimensional 
Convolutional Neural Network (1D-CNN), ANN, Gated Recurrent Units (GRU), Long 
Short-Term Memory (LSTM), and Simple Recurrent Neural Network (RNN) from the 
Keras library (Chollet, 2015), OLS and Generalized Linear Model (GLM) from the 
statsmodels library (Seabold and Perktold, 2010), Spatial Lag Model (SLM) and Spatial 
Error Model (SEM) from the sperg library, GWR from the MGWR library (Oshan et al., 
2019), Generalized Additive Model (GAM) from the pyGAM library (Servén et al., 
2018), Cubist from the Cubist library (Kuhn et al., 2023), LightGBM from LightGBM 
library (Ke et al., 2017), XGBoost from XGBoost library (Chen and Guestrin, 2016), 
and ANFIS from Scikit-Fuzzy (Warner et al., 2019).  

3.2.1. Statistical Models

OLS assumes that the errors are independent and identically distributed, which may not 
be the case, especially for spatial data (Xie et al., 2013). To address this limitation, 
spatial regression methods such as the SLM and SEM (Anselin, 2001) account for 
spatial autocorrelation by incorporating spatially lagged variables or allowing for 
spatially correlated error terms (Mainali et al., 2019), respectively. A weight matrix is 
required to implement the SLM and SEM, reflecting each observation's influence on its 
neighbors. We calculate the weight matrix using the data's spatial coordinates, with 
closer observations receiving higher weights. Furthermore, the GWR method (Brunsdon 
et al., 1998) offers localized modeling capabilities by incorporating spatially varying 
coefficients based on spatial coordinates. A common challenge in linear modeling is 
multicollinearity, i.e., highly correlated predictor variables. Models like PLSR (Geladi 
and Kowalski, 1986) and RLR (Hoerl and Kennard, 1970) address multicollinearity by 
either performing dimensionality reduction or incorporating a regularization term into 
the OLS objective function. GAM (Hastie, 1992) and GLM (Gotway and Stroup, 1997) 
extend the traditional linear modeling framework by accommodating non-linear 
relationships between predictors and response variables.  

3.2.2. Kernel-Based Models

A key component of kernel-based models is the kernel function, which computes the 
similarity between pairs of data points in the original input space. We test the Radial 
Basis Function (RBF), linear, sigmoid, and second-degree polynomial kernels for all 
kernel-based methods, selecting the one that produces the best results. 

GPR (Williams and Rasmussen, 1995) adopts a non-parametric Bayesian 
approach to model the relationship between input variables and outputs as a distribution 
over functions. KRR (Vovk, 2013) is a regularized linear regression version, employing 
kernel functions to map input variables into high-dimensional feature spaces. SVR 
(Smola and Schölkopf, 2004) builds on support vector machines and seeks a hyperplane 
that maximizes the margin around the predicted values. 
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3.2.3. Decision Tree-Based Models

DT-based models recursively split the data into subsets based on features, resulting in a 
tree structure. Ensemble learning models like RF (Breiman, 2001), XGBoost (Chen and 
Guestrin, 2016), LightGBM (Ke et al., 2017), and GBDT (Friedman, 2001) try to 
increase predictive accuracy by using the collective outputs of multiple DTs. Cubist 
(Quinlan, 1992) builds a series of regression trees to partition the data into smaller 
subsets similar to the other tree-based models. Within each subset, it fits a linear model, 
allowing for the capture of local trends.

3.2.4. Neural Network-Based Models

Regarding NN-based models, the Adam optimizer was used universally, and the ReLU 
activation function was applied to the ANN, 1D-CNN, and MLP models, while the 
linear activation function was used for the GRU, LSTM, and SimpleRNN models, as 
determined through trial and error. The MLP (Atkinson and Tatnall, 1997) forms the 
foundation of NNs, consisting of Fully Connected (FC) layers where each neuron in a 
layer is connected to every neuron in the subsequent layer. The ANN (Paoletti et al., 
2019) builds upon the MLP structure but typically incorporates more layers, allowing 
them to learn increasingly complex data representations. The ANFIS (Jang, 1993) is a 
fuzzy logic-based ML model that combines fuzzy logic with an NN's structure. The 1D-
CNN (Albawi et al., 2017) consists of one-dimensional convolutional layers, enabling 
them to learn hierarchical features automatically. The RNN (Elman, 1990), LSTM 
(Hochreiter and Schmidhuber, 1997), and GRU (Cho et al., 2014) models use feedback 
loops to incorporate previous data as they process new input.

3.3. Model Evaluation

Model performance was assessed using i) evaluation metrics and box plots (range, 
quartiles, and median) of model estimates and observations and ii) examination of 
residual spatial autocorrelation globally and locally. The model with the best overall 
performance in evaluations (i) and (ii) was identified, retrained using all matchups (N = 
102), and applied to Landsat 8 OLI images on 19 June 2013; 01 February 2015; 05 
September 2018; and 11 May 2022. These dates were selected because there was no 
cloud cover in the Landsat 8 OLI images of the study area, in situ data were available 
on 19 June 2013 and 01 February  2015, at salinity sampling stations (Fig. 1) for 
validation, to allow comparison with salinity maps from previous studies (Ansari and 
Akhoondzadeh, 2021, 2020), and to evaluate the model across different years and 
seasons under varying weather conditions. A salinity map was generated in ESRI 
ArcGIS Pro 3.1.0 for each date. The average salinity within a 1 km buffer around five 
cities, shown in green in Fig. 1, was calculated. The cities were selected because 
Gotvand and Abadan are located far upstream and downstream, respectively, and the 
areas around Shushtar, Ahvaz, and Khorramshahr have sugarcane cultivation that may 
influence salinity in the Karun River (Moradi-Majd et al., 2022).

3.3.1. Evaluation Metrics

6 statistical metrics were employed as evaluation metrics: linear regression slope, R2, 
Root Mean Square Error (RMSE), Root Mean Squared Logarithmic Error (RMSLE), 
Median Symmetric Accuracy (ε) (Morley et al., 2018), and Symmetric Signed 
Percentage Bias (β) (Morley et al., 2018) (Eq. 1-5):



10

R2 = ∑N
i=1(Ei E)(Oi O)

∑N
i=1 (Ei E)2 ∑N

i=1 (Oi O)2

2

(1)

RMSE = 1
N

∑N
i=1 (Ei ― Oi)2 (2)

RMSLE = 1
N

∑N
i=1 ( log Ei ― log Oi )2 (3)

β = 100 × sign median log Ei

Oi
× e|median log Ei

Oi
| ― 1 (4)

ε = 100 × emedian |log Ei
Oi

| ― 1 (5)

𝑁 is the number of observations, and 𝑂, 𝐸, 𝑂, and 𝐸 are the observations, estimated 
values, the average, and the average of the estimated values, respectively. 

R², a metric ranging from 0 to 1, quantifies the proportion of variance explained 
by the model, with 1 indicating a perfect fit and values near 0 suggesting no correlation, 
as frequently used in previous studies in Table 1. RMSE measures the average 
magnitude of errors between predicted and actual values, with lower values indicating 
better performance. RMSLD, unlike RMSE, considers the logarithmic difference 
between predicted and actual values, which can be beneficial when dealing with non-
normally distributed errors or outliers as it scales down the impact of outliers (Morley et 
al., 2018). Additionally, ε represents a symmetric percentage error, penalizing over- and 
under-estimation equally. Lower values indicate superior performance, with perfect 
accuracy assigned a value of 0%. Similarly, β, akin to ε, represents a percentage bias 
that maintains symmetry between over- and under-estimation, with values closer to zero 
indicating better performance. Previous studies (Pahlevan et al., 2022; Smith et al., 
2021), have demonstrated that median measures, linear regression slopes, and RMSLD 
collectively provide a comprehensive framework for evaluating models. 

3.3.2. Residual Spatial Autocorrelation

Spatial autocorrelation (Tobler, 1970) occurs when neighboring data points influence 
each other or are influenced by the same spatially variable process, potentially leading 
to bias in predictions and a violation of the assumption of independence in standard 
statistical procedures (Mainali et al., 2019). Autocorrelated model residuals, stemming 
from this spatial dependence, can lead to overly optimistic conclusions about model 
performance (Kelly, 2019). Ensuring the validity of regression results, therefore, entails 
assessing whether residuals are independent and identically distributed (Anselin et al., 
2004; Lu et al., 2023; Mabula et al., 2023; Mahboobi et al., 2023; Sotomayor et al., 
2023). Moran's I (Moran, 1950) is commonly employed to analyze residual spatial 
autocorrelation (Mainali et al., 2019). Interpreting Moran's I involves calculating the 
associated p-value and Z-Score under the null hypothesis of no spatial autocorrelation. 
A non-significant p-value suggests the absence of significant spatial patterns in the 
residuals, indicating the model's success in capturing the relationship between the 
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dependent and spatial variables.

Conversely, a significant p-value indicates significant spatial patterns in the 
residuals. Positive Z-Scores indicate positive spatial autocorrelation of high and/or low 
values, while negative Z-Scores indicate negative spatial autocorrelation. Moran's I is 
calculated as follows:

Moran′s I =  
N ∑N

i=1 ∑N
j=1 wij(ri r)(rj r)

∑N
j=1 (rj r)2 ( ∑N

i=1 ∑N
j=1 wij ) (6)

where 𝑟 represents the residual values at locations 𝑖 and 𝑗, 𝑟 denotes the mean of 𝑟, and 
𝑤𝑖𝑗 is a matrix of spatial weights.

Calculating Moran's I requires the weight matrix to account for spatial 
dependence between sampling points. Each spatial weight represents the relative 
influence of different spatial units on the candidate spatial unit (Mainali et al., 2019). To 
calculate Moran's I, we created a weight matrix using the inverse of Haversine distance, 
giving higher values to closer neighbors. Moran's I values were obtained through 
1,000,000 random spatial permutations of the predicted values for each model under the 
null hypothesis of Complete Spatial Randomness (CSR). The reference distribution for 
each model, used to evaluate statistical significance, is provided in Fig. S1 in the 
supplementary material. We also calculated the local Moran's I (Anselin, 1995) to 
assess whether similar high or low values are located close to each other in geographical 
space. (Mainali et al., 2019). All spatial analyses were implemented using Python's 
PySAL library (Rey and Anselin, 2010). 

4.  Results

4.1. Feature Selection

Fig. 2 illustrates the confusion matrix for 21 features and salinity measurements. Table 
5 provides the values and ranks of RFFIS, 𝑆𝑇𝑖, and the correlation with salinity for 
Landsat 8 OLI spectral bands and indices from Table 2, sorted by mean rank. Details of 
the OLS model used in Sobol’ analysis and the tuned hyperparameters obtained through 
GA for the RF model are presented in Table S1. According to Table 5, the Red band is 
identified as the most sensitive feature to salinity. Consequently, all 24 regression 
models were trained using the Red band, with hyperparameters optimized via GA and 
R² values calculated on the test dataset. This process was repeated iteratively, adding 
the next top-ranked feature until all features were included. The R² values at each step 
for each model are shown in Fig. 3. Ultimately, the bands yielding the highest R² for 
each model were selected. Table S3 in the supplementary material lists the fine-tuned 
hyperparameters for each model using the best feature combination.

4.2. Performance Assessment

The RBF kernel achieved better R² than other kernels across all models. Hence, we use 
the RBF kernel for all kernel-based models (see Table S3 in the supplementary 
material). Fig. 4 shows that the Pearson correlation coefficients for all methods were 
statistically significant. Cubist, XGBoost, and GBDT had the lowest β values (~0%), 
with GBDT also having the lowest RMSE (0.10 psu) and ε (4.62%) and the highest R² 
(0.96). GWR had the slope closest to 1 (1.03), while XGBoost, GBDT, and LightGBM 
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had the lowest RMSLE (0.11). Fig. 5's box plot reveals that the GBDT, XGBoost, and 
Cubist models’ predictions are closest to the observations based on their median, 
quartiles, and range.

4.3. Spatial Analysis

 Fig. 6 presents the global Moran's I, which equals the average local Moran's I, Z-score, 
p-value, and the standardized local Moran's I scatter plot for each model. For 11 out of 
24 models, the null hypothesis of CSR was rejected (p < 0.05). Among these 11 models, 
the RF model had the lowest absolute global Moran's I and Z-score, at 0.44 and 2.14, 
respectively, while the RNN model had the highest absolute global Moran's I and Z-
score, at 0.71 and 4.79, respectively. The positive Z-scores for the KRR and RNN 
models and their standardized local Moran's I scatter plots indicate autocorrelated 
residuals for these models.  

For the remaining 13 models, the null hypothesis of CSR was not rejected, 
suggesting the absence of significant spatial patterns in the residuals. Among these 13 
models, the GWR model had the lowest absolute global Moran's I, at 0.12, and the GPR 
model had the lowest absolute Z-score, at 0.15. The ANFIS and GAM models had the 
highest absolute global Moran's I and Z-scores among these models, at 0.36 and 1.8, 
respectively.   

4.4. Salinity Maps

Fig. 7 shows salinity maps of the Karun River generated by GBDT. The GBDT was 
selected because, as discussed in Section 4.2, Cubist, XGBoost, and GBDT generally 
perform better than other models in terms of β, ε, slope, R², error, and box plot metrics 
(predictions’median, quartiles, and range). XGBoost and GBDT specifically outperform 
Cubist in ε, slope, R², error, and predictions’ median. Although both XGBoost and 
GBDT have uncorrelated residuals, the Z-Score and the slope of the OLS fit line 
between standardized local Moran's I and its spatial lag for GBDT are approximately 
one-sixth of those for XGBoost [see Fig. 6(n, o)]. We therefore chose GBDT to 
generate the salinity map. This model, trained on the entire dataset (N=102) and 
compared to the data from each station, achieved an RMSE of 0.11, ranging from 0.06 
at Ahvaz to 0.19 at Abadan (Table 6). Fig. 7(a, b) show the estimated and measured 
salinity at stations with available data. Table 7 presents the average salinity at 1 km 
buffers around five cities in the Karun River basin [Fig. 7(c)]. Table 7 shows salinity 
increases from Gotvand to Ahvaz city on all four dates.

5. Discussion

5.1. Key Indices and Band Combinations for Salinity Mapping

As shown in Table 5, three different feature selection approaches ranked the features 
differently: Sobol’ by variance analysis, RFFIS by permutation, and the confusion 
matrix by correlation with salinity. For example, NSMI is ranked first in both RFFIS 
and correlation but 10th in terms of 𝑆𝑇. Similarly, Salinity Index 5 is ranked 15th and 10th 
for 𝑆𝑇 and correlation with salinity, respectively, but 2nd in RFFIS. Therefore, sorting 
the features by their mean rank allows for identifying those most sensitive to salinity, 
considering the different criteria used by the three feature selection methods. As shown 
in Fig. 3, all models ultimately used features ranked 1 to 9, indicating that these are the 
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most sensitive features. Among these nine features, NSMI and EGRI have relatively 
low correlation with the others, as illustrated in Fig. 2.

Most of the indices in Table 2 rely on visible spectral bands, which respond to 
variations in CDOM absorption and TSS (Mishra et al., 2017). As CDOM moves 
through an estuary, its photochemical reactivity and optical properties may change 
based on salinity due to changes in CDOM conformation, iron CDOM photochemistry, 
or both (Minor et al., 2006). This might explain why the Red band was the most 
sensitive feature in our study (Table 5) and previous studies (Khorram, 1985; Mushtaq 
and Nee Lala, 2017). The NSMI index, also selected, estimates TSS (Hossain et al., 
2010; Malahlela, 2019), which is inversely correlated with salinity. Our study also used 
salinity indices 2-6, which highly correlate with each other (Fig. 2), consistent with 
previous studies (Adjovu et al., 2022; Chatterjee and Bhadra, 2023; Liu et al., 2023), 
indicating that the NIR band is valuable for salinity mapping, especially in turbid 
waters, where longer wavelengths are more sensitive and saturate at higher TSS 
concentrations than shorter wavelengths (Mishra et al., 2017). 

Previous studies of the Karun River using the same dataset (Ansari and 
Akhoondzadeh, 2021, 2020) used the Coastal Aerosol, Blue, and Green bands, but this 
study selected the EGRI index, which combines these bands. Therefore, it is 
recommended that future research consider both spectral bands and indices followed by 
feature selection to determine the best combination, as band combinations (i.e., indices) 
might have higher feature importance than individual bands. 

5.2. Performance Evaluation across Regression Models: Accuracy and Error 
Analysis

Regarding the statistical models, GAM showed good performance with higher R2 and 
nearly half the RMSE and RMSLD compared to other statistical models. However, the 
linear regression fit for predicted versus observed salinity relationships showed a closer-
to-unity slope for GWR (1.03), indicating superior fit across the entire range [Fig. 4 (c)] 
compared to other models. Scatterplots in Fig. 4 show a trend where, except for GAM, 
SLM, and GWR, other statistical models tended to overestimate salinity for values 
below one psu and underestimate it for values above 1.5 psu, consistent with their 
respective β values ranging from -6.87% (PLSR) to -4.33% (RLR).

While the performance of all kernel-based models was similar, SVR slightly 
outperformed the others across all six metrics. All three kernel-based models 
outperformed 5 out of 8 statistical models implemented in the study (except for GAM, 
GWR, and SLM). Notably, despite KRR being a linear model leveraging kernel 
methods, it improved R2 by ~50% on average over statistical models (except for GAM 
and GWR), demonstrating the effectiveness of kernel methods in practice.

The NN-based models exhibited weaker performance than other regression 
model types, characterized by large negative β values (on average -3.72%), indicating 
underfitting likely due to the scarce training dataset (N = 72). Reported slopes (on 
average 0.42) indicate poor performance of these models, particularly evident at the 
tails of data distributions (salinity < 0.5 psu and salinity > 1.5 psu). Due to the limited 
training dataset, which was insufficient for optimal performance of NN-based models, 
certain outcomes deviated from theoretical expectations. For instance, while LSTM is 
designed to address the gradient anomaly issue in RNN effectively and is theoretically 
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expected to outperform RNN, it performed slightly worse than RNN. Other models 
(e.g., DT-based models) were also anticipated to yield better results, as the available 
data was not ideal for effective NN training. It is worth noting that NN-based models 
like ANN performed better in a previous study (Dai et al., 2023), where a larger dataset 
of 2,000 matchups was available; their performance relative to other model types might 
also be improved for the Karun River with a larger dataset. Among the NN-based 
models implemented, MLP outperformed the others across all six metrics. 

Overall, DT-based models outperformed the other model classes. XGBoost and 
GBDT performed similarly, with negligible β, low ε (< 5.1%), slope values close to 
unity (0.9), R2 values > 0.93, and low error values (RMSE < 0.13 psu, and RMSLD = 
0.11). Scatterplots of XGBoost and GBDT in Fig. 4(n, o) indicate a good fit across the 
entire value range. LightGBM also had good accuracy with low error, though its median 
and range of predictions differed more from the observations than XGBoost and GBDT 
(Fig. 5). Interestingly, although XGBoost and GBDT improved R2 and nearly halved 
RMSE compared to Cubist, Cubist had the lowest possible bias (β = 0.00%), with its 
boxplot range and quartiles closely matching the observation boxplot (Fig. 5). Overall, 
XGBoost, GBDT, and Cubist outperformed other regression models in terms of 
statistical metrics.

5.3. Residual Spatial Autocorrelation Analysis

As shown in Fig. 6, the analysis of residual spatial autocorrelation offers additional 
insight into the performance of different regression models. Among the statistical 
models, GWR and SLM showed non-significant residual spatial autocorrelation, which 
was expected because these two models incorporate spatial location in modeling. 
Interestingly, SLM has a lower absolute Z-Score value (-0.8) than GAM (1.8) [Fig. 6 (a, 
g)] but performs worse than GAM in terms of all statistical metrics evaluated [Fig. 4 (a, 
g) and Fig. 5]. For kernel-based models, despite KRR having better accuracy and error 
performance than GPR [Fig. 4 (i, j)], its Z-score was nearly ten times higher than that of 
GPR [Fig. 6 (i, j)]. Regarding NN-based models, the ANFIS Z-Score is about half that 
of the CNN Z-Score, but CNN has better R2 and RMSE [Fig. 4 (r, t)]. 

The performance of LightGBM is notable, as shown in Fig. 4 (p), with good 
results in terms of accuracy (R2 = 0.94 and ε = 8.13%), bias (β = 0.7%), and error 
(RMSE and RMSLD < 0.13). However, its residuals are significantly autocorrelated (Z-
Score = 2.25) [Fig. 6 (p)]. Conversely, GPR shows the lowest non-significant absolute 
Z-Score value (0.15) [Fig. 6 (i)] despite not having the best accuracy and error 
performance compared to all models [Fig. 4 (i)]. XGBoost and GBDT perform similarly 
in accuracy and error [Fig. 4 (n, o)]. Although both have uncorrelated residuals [Fig. 6 
(n, o)], GBDT’s Z-Score is near one-sixth of XGBoost’s Z-Score, and there is no sign 
of residual spatial autocorrelation in GBDT's local Moran's I scatterplot. 

In summary, different models have different performances, and a model's good 
performance in terms of R2, slope, β, ε, RMSE, RMSLD, and box plot does not 
guarantee uncorrelated residuals and vice versa (e.g., GPR and LightGBM in this 
study). Therefore, checking statistical performance metrics and residual autocorrelation 
is essential when assessing models. Regression results should be cautiously approached 
if residual spatial autocorrelation statistics are not reported (Kelly, 2019), as failing to 
account for this autocorrelation in the evaluation can lead to overestimating the model's 
performance (Gray et al., 2024). If the residuals are autocorrelated, good statistical 
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performance can be misleading because the model might capture the autocorrelation 
structure rather than the true relationship between the independent and dependent 
variables. This can alter the gradient of the parameter of interest (in this case, salinity) 
globally and locally. 

5.4. Salinity Map Validation

The salinity maps in Fig. 7 (b, c) are consistent with previous observations, where 
Ansari and Akhoondzadeh (2021, 2020) demonstrated that the Karun River became 
increasingly saline from upstream to downstream on 01 February 2015, and 05 
September 2018. 

Considering that there is no sampling station in the reservoir and only one 
sampling station after the confluence with the Arvand River (i.e., Abadan), the lack of 
local validation renders the regression model output more uncertain in these areas. As 
shown in Table 6, the RMSE for Abadan (0.19 psu) is the highest of any station, 
illustrating the increased uncertainty in this area. However, from Gotvand to Ahvaz, 
given the six sampling stations and the good performance of GBDT in terms of 
statistical metrics and residual autocorrelation analysis, the salinity maps can be 
considered more reliable (RMSE < 0.13 psu). 

Based on Fig. 7, and especially Fig. 7 (d), a general increase in salinity is 
observed from the upstream end of the reservoir to the dam, suggesting that water 
becomes saltier due to prolonged contact with the Gachsaran formation, which is 
consistent with a previous study (Jalali et al., 2019). However, the Gachsaran formation 
is unlikely to be the sole cause of salinity in the Karun River because of the observed 
increase in salinity from Gotvand to Ahvaz city. According to Table 7, salinity 
increased on average by more than 34% from Gotvand to Ahvaz city across four 
different dates. The salinity increase from the reservoir to Gotvand across these dates is 
notably smaller than that observed from Gotvand to Ahvaz city, indicating that 
additional factors influence salinity levels in the river at Ahvaz. In this regard, the 
widespread cultivation of sugarcane in Shushtar and Ahvaz city (Moradi-Majd et al., 
2022), which produces agricultural waste, may also contribute to the increased salinity 
observed from Gotvand to Ahvaz. Specifically, sugarcane production in the Karun basin 
exacerbates salinity due to several interconnected factors (Ghadiri, 2016): the land 
selected for sugarcane cultivation is characterized by saline and shallow groundwater, 
which, when used for irrigation, introduces salt into the soil and eventually into the 
river. To manage these saline lands, a drainage system is employed, involving the 
leaching of salt from the soil by applying large volumes of water, which then drains into 
a collection system. This drainage water, containing both irrigation water and naturally 
saline groundwater, is subsequently pumped back into the Karun River, further 
increasing its salinity.

Regarding Khorramshahr city, as shown in Fig. 7 and Table 7, the salinity on 
four different dates is inconsistent compared to Ahvaz city. The average salinity in 
Khorramshahr was relatively similar to Ahvaz on 19 June 2013, was lower by over 56% 
on 01 February 2015, and 05 September 2018, and was higher on 11 May 2022. This 
variability could be due to the model's lack of calibration at downstream points or the 
influence of water inflow from the Arvand River (see Fig. 1) (Maliki et al., 2020) near 
Khorramshahr, affecting downstream WQP in the Karun River.
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6. Conclusion

ML models, especially DT-based models like GBDT, outperformed traditional 
statistical models for mapping salinity in the Karun River using Landsat 8 OLI imagery. 
The Red band, Green band, NSMI, EGRI, and Salinity indices 2-6 were the most 
important spectral features for salinity prediction.

Results show that models with good statistical performance cannot guarantee 
uncorrelated residuals and vice versa. Regression results should be cautiously 
approached if spatial autocorrelation statistics are not reported. Models like GWR and 
SLM, which incorporate spatial information, effectively addressed residual 
autocorrelation. 

Landsat 8 OLI imagery successfully mapped salinity dynamics in the Karun 
River. Salinity increased from Gotvand to Ahvaz city, likely due to agricultural and 
industrial activities such as sugarcane plantations. Future research should incorporate 
additional datasets to provide a more detailed examination of the influence of various 
natural (e.g., geology) and anthropogenic (e.g., land use) factors affecting salinity along 
the Karun River. 
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Table 1. Summary of studies that have used moderate spatial-resolution sensors to map 
salinity, in chronological order. NIR: near-infrared band, SWIR: shortwave infrared 
band, MSS: Landsat Multispectral Scanner, TM: Landsat Thematic Mapper, OLI: 
Landsat Operational Line Imager, ETM+: Landsat Enhanced Thematic Mapper Plus, 
and MSI: Sentinel-2 MSI. 

Sensor(s) Band(s) and Feature(s) Empirical 
Model(s) Reference

MSS Red and NIR 1 LR (Khorram, 1985)

TM NIR and SWIR 2 LR (Lavery et al., 1993)

MSS and 
TM Blue, NIR, and SWIR 2 LR (Vuille and Baumgartner, 

1993)

TM Blue, Green, Red, NIR, and 
SWIR 1

LR and ridge 
regression (Wang and Xu, 2008)

TM Blue, Red, and NIR LR (Zhang et al., 2012)
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TM First three principal component 
analysis components GWR (Xie et al., 2013)

TM Blue, Green, Red, NIR, SWIR 1, 
and SWIR 2 SWOM (Khadim et al., 2017)

OLI Coastal Aerosol, Blue, Green, and 
Red LR (Zhao et al., 2017)

OLI Red Non-linear 
Regression

(Mushtaq and Nee Lala, 
2017)

TM Blue, Red, and NIR LR and GWR (Nazeer and Bilal, 2018)

OLI Blue, Green, Red, and SWIR 2 MLR, DT, and RF (Nguyen et al., 2018)

ASTER Red, SWIR 2, and SWIR 4 LR (Abdelmalik, 2018)

OLI Coastal Aerosol, Blue, and Green SVR (Ansari and 
Akhoondzadeh, 2019)

MSI All Sentinel-2 bands and image 
properties ANN (Medina-Lopez and Ureña-

Fuentes, 2019)

OLI Blue, Green, and Red LR (Ferdous et al., 2019)

OLI Salinity index 2 LR (Maliki et al., 2020)

OLI Coastal Aerosol, Blue, and Green LR, SVR, and 
MLP

(Ansari and 
Akhoondzadeh, 2020)

TM and OLI Blue, Green, and Red MLR (Ferdous and Rahman, 
2020)

MSI All Sentinel-2 bands and image 
properties ANN (Medina-Lopez, 2020)

OLI Coastal Aerosol, Blue, and Green MLP and SVR (Ansari and 
Akhoondzadeh, 2021)
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OLI and 
MSI Blue, Green, and Red ANN, MLR, and 

ANFIS
(Bayati and Danesh-Yazdi, 

2021)

MSI Red edge 2, Red edge 3, NIR 1, 
NIR 2, SWIR 2, and SWIR 1

LR, RF and 
AdaBoost (Borovskaya et al., 2022)

OLI Salinity index 5 LR (Adjovu et al., 2022)

TM and OLI Blue, NIR, and SWIR 2 LR (Chatterjee and Bhadra, 
2023)

ETM+ and 
OLI

Blue, Green, Red, NIR, SWIR 1, 
and SWIR 2

LightGBM, RF, 
and ANN (Dai et al., 2023)

MSI All Sentinel-2 bands except from 
SWIR 3 and SWIR 4

DT, RF, XGBoost, 
AdaBoost (Jiang et al., 2024)

Table 2. Indices were used in this study. 𝜌 represents the surface reflectance.

indices Formula Reference

Salinity 
index 1 𝜌𝐵𝑙𝑢𝑒 × 𝜌𝑅𝑒𝑑 (Khan et al., 2001)

Salinity 
index 2 𝜌𝐵𝑙𝑢𝑒 × 𝜌𝐺𝑟𝑒𝑒𝑛 (Maliki et al., 2020)

Salinity 
index 3 𝜌𝐺𝑟𝑒𝑒𝑛2 + 𝜌𝑅𝑒𝑑2 (Douaoui et al., 2006)

Salinity 
index 4 𝜌𝐺𝑟𝑒𝑒𝑛2 + 𝜌𝑅𝑒𝑑2 + 𝜌𝑁𝐼𝑅2 (Douaoui et al., 2006)

Salinity 
index 5 𝜌𝑅𝑒𝑑 × 𝜌𝐺𝑟𝑒𝑒𝑛 (Maliki et al., 2020)
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Salinity 
index 6 𝜌𝐺𝑟𝑒𝑒𝑛2 × 𝜌𝑁𝐼𝑅2 (Bouaziz et al., 2011)

Salinity 
index 7 𝜌𝐵𝑙𝑢𝑒/𝜌𝐺𝑟𝑒𝑒𝑛

(Ferdous and Rahman, 
2020)

NDSI (𝜌𝑅𝑒𝑑 ― 𝜌𝑁𝐼𝑅) (𝜌𝑅𝑒𝑑 + 𝜌𝑁𝐼𝑅) (Khan et al., 2005)

NSMI (𝜌𝑅𝑒𝑑 + 𝜌𝐺𝑟𝑒𝑒𝑛 ― 𝜌𝐵𝑙𝑢𝑒) (𝜌𝑅𝑒𝑑 + 𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝐵𝑙𝑢𝑒) (Montalvo, 2010)

NDSSI (𝜌𝐵𝑙𝑢𝑒 ― 𝜌𝑁𝐼𝑅) (𝜌𝐵𝑙𝑢𝑒 + 𝜌𝑁𝐼𝑅) (Hossain et al., 2010)

BR 𝜌𝐺𝑟𝑒𝑒𝑛/𝜌𝐵𝑙𝑢𝑒 (Montalvo, 2010)

EGRI 𝜌𝐺𝑟𝑒𝑒𝑛 (𝜌𝐵𝑙𝑢𝑒 + 𝜌𝐶𝑜𝑎𝑠𝑡𝑎𝑙 𝐴𝑒𝑟𝑜𝑠𝑜𝑙) (Malahlela, 2019)

NDVI (𝜌𝑁𝐼𝑅 ― 𝜌𝑅𝑒𝑑) (𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑) (Rouse et al., 1974)

WSRI 1 ― [(𝜌𝑆𝑊𝑅𝐼1 ― 𝜌𝐵𝑙𝑢𝑒)/𝜌𝑅𝑒𝑑] (Malahlela, 2019)
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Table 3. Date of satellite image acquisition and in situ data collection. Matchups for 
each date are available at the stations listed in the Station(s) column. For other stations, 
either field data were not collected, or the data were masked due to cloud cover.

Date of satellite image 
acquisition

Date of in situ data 
collection Station(s)

19 June 2013 19 June 2013 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz

26 June 2013 25 June 2013 Alikale

12 July 2013 14 July 2013 Alikale

13 August 2013 13 August 2013 Alikale

22 August 2013 24 August 2013 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

23 September 2013 25 September 2013 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

25 October 2013 26 October 2013 Gotvand

28 December 2013 29 December 2013 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

02 March 2014 01 March 2014 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

03 April 2014 05 April 2014 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

26 April 2014 28 April 2014 Alikale

10 September 2014 08 September 2014 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

03 October 2014 04 October 2014 Alikale
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15 December 2014 14 December 2014 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

01 February 2015 01 February 2015 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

18 July 2015 16 July 2015 Alikale

04 September 2015 03 September 2015 Alikale

24 April 2016 26 April 2016 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz

29 July 2016 28 July 2016 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

01 October 2016 29 September 2016 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz

21 January 2017 23 January 2017 Abadan

13 May 2017 14 May 2017 Gotvand, Shushtar, Shoteyt, Gargar, Dez, 
Ahvaz, Abadan

07 December 2017 05 December 2017 Gotvand, Gargar, Ahvaz, Abadan

10 July 2018 12 July 2018 Alikale
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Table 4. Minimum, maximum, and average salinity values (psu) and number of 
observations (N) at the eight salinity measurement stations.

Station Min. Ave. Max. N

Alikale 0.19 0.22 0.28 8

Gotvand 0.38 0.57 0.76 15

Shushtar 0.42 0.66 0.85 13

Shoteyt 0.65 0.85 1.00 13

Gargar 1.13 1.56 1.93 14

Dez 0.36 1.11 1.64 13

Ahvaz 0.89 1.11 1.51 14

Abadan 1.28 1.50 1.90 12
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Table 5. Results of feature engineering. 

No. Feature 𝑺𝑻

𝑺𝑻

Rank
RFFIS

RFFIS

Rank
Correlation Correlation 

Rank

Mean

Rank

1 Red 2.77E-
01 1 9.20E-

02 3 1.79E-01 4 2.7

2 Salinity 
index 3

2.66E-
01 2 6.33E-

02 6 1.82E-01 2 3.3

3 Salinity 
index 4

1.86E-
01 3 7.13E-

02 4 1.43E-01 5 4.0

4 NSMI 1.85E-
03 10 1.38E-

01 1 2.36E-01 1 4.0

5 Salinity 
index 6

8.82E-
02 5 4.59E-

02 8 1.17E-01 7 6.7

6 Salinity 
index 2

1.93E-
03 9 5.17E-

02 7 8.85E-02 9 8.3

7 Green 3.79E-
03 8 3.17E-

02 14 1.80E-01 3 8.3
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8 Salinity 
index 5

2.64E-
04 15 1.20E-

01 2 8.24E-02 10 9.0

9 EGRI 7.13E-
04 12 6.75E-

02 5 3.15E-02 14 10.3

10 Salinity 
index 7

1.31E-
01 4 9.98E-

03 21 1.37E-01 6 10.3

11 Salinity 
index 1

1.53E-
02 7 2.23E-

02 17 1.07E-01 8 10.7

12 Blue 2.44E-
02 6 1.30E-

02 19 3.38E-02 13 12.7

13 SWIR 1 4.26E-
04 14 3.83E-

02 11 5.89E-03 18 14.3

14 SWIR 2 1.86E-
04 16 4.31E-

02 9 2.67E-03 20 15.0

15 NDVI 1.20E-
05 19 3.09E-

02 15 3.71E-02 11 15.0

16 BR 6.60E-
04 13 3.23E-

02 12 1.28E-03 21 15.3

17 NDSSI 1.35E-
04 17 4.01E-

02 10 3.50E-03 19 15.3

18 NDSI 1.20E-
05 19 2.52E-

02 16 3.71E-02 11 15.3

19 WSRI 1.03E-
04 18 3.17E-

02 13 2.40E-02 16 15.7

20 Coastal 
Aerosol

7.36E-
04 11 1.24E-

02 20 1.66E-02 17 16.0

21 NIR 1.00E-
06 21 1.91E-

02 18 2.94E-02 15 18.0
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Table 6. Number of observations (N) and RMSE for each station between measured 
and estimated salinity using GBDT trained on all dataset (N = 102).

Station RMSE (psu) N

Alikale 0.10 8

Gotvand 0.08 15

Shushtar 0.10 13

Shoteyt 0.13 13

Gargar 0.11 14

Dez 0.11 13

Ahvaz 0.06 14
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Abadan 0.19 12

Table 7. Average salinity (psu) within a 1 km buffer around 5 cities in the Karun River 
basin, derived from salinity maps generated by the GBDT model on 4 different dates.

City

Date

Gotvand Shushtar Ahvaz Khorramshahr Abadan
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19 June 2013 0.58 0.79 1.07 1.05 0.72

01 February 2015 0.47 0.51 1.08 0.69 0.97

05 September 2018 0.56 0.54 1.06 0.61 0.96

11 May 2022 0.79 0.91 1.06 1.13 0.93
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Fig. 1. Study area (Karun River, Khuzestan, Iran). Overview of 8 salinity sampling 
stations (red) along the Karun River. Google Earth Pro and Landsat 8 OLI images of 
each station are shown on the right side of the map. The yellow line on each image 
indicates the river's width at the respective station.

Fig. 2. Correlation of features with salinity measurements and within each other.

Fig. 3. R² values for each model using different feature combinations. The #Feature 
refers to the feature number in Table 5, indicating that the feature with this number, 
along with those with lower numbers, yields the highest R², as shown in the top-left 
corner of each panel

Fig. 4. Scatter plot illustrating the relationship between measured and estimated salinity 
using test data (N=30). Each point represents a model prediction, with the name and 
class of each model displayed at the bottom right corner. The top right and left corners 
display the statistical metrics: R2, RMSE, RMSLE, β, and ε. Asterisks denote Pearson 
correlations: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The bottom left 
corner shows the number of selected features in red. A dashed line represents the 1:1 
diagonal line for reference, while a solid-colored line depicts the fitted regression line. 
Contour lines, derived from kernel density estimates, show data distributions.

Fig. 5. Box plot depicting the distribution of test data (N = 30). Each box displays the 
median and interquartile range, while the whiskers represent values within 1.5 times the 
interquartile range from the lower and upper quartiles. White circles indicate outliers 
beyond this range.

Fig. 6. Scatter plot illustrating standardized local Moran's I, showcasing relationships 
between observations with high and low values and their respective neighbors: high-
high (HH), low-low (LL), high-low (HL), and low-high (LH). Dashed lines mark the 
origin axes at (0,0), while the solid black line represents the OLS fit line between 
standardized local Moran's I (dependent variable: y) and the spatial lag of standardized 
local Moran's I (independent variable: x). The OLS formula is displayed at the bottom. 
The global Moran's I value, the global Z-Score, and the p-value is shown at the top left. 
The p-value, indicating significance levels, is denoted by asterisks: * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001. Model names are presented at the bottom right.

Fig. 7. Karun River salinity maps generated by the GBDT model using the entire 
dataset (N=102) on (a) 13 June 2013, (b) 01 February 2015, (c) 05 September 2018, and 
(d) 11 May 2022. Measured salinity at stations with available data is shown in red, and 
estimated salinity is shown in blue.
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Fig. 1. Study area (Karun River, Khuzestan, Iran). Overview of 8 salinity sampling 
stations (red) along the Karun River. Google Earth Pro and Landsat 8 OLI images of 
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each station are shown on the right side of the map. The yellow line on each image 
indicates the river's width at the respective station. 

Fig. 2. Correlation of features with salinity measurements and within each other.
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Fig. 3. R² values for each model using different feature combinations. The #Feature 
refers to the feature number in Table 5, indicating that the feature with this number, 
along with those with lower numbers, yields the highest R², as shown in the top-left 
corner of each panel.
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Fig. 4. Scatter plot illustrating the relationship between measured and estimated salinity 
using test data (N=30). Each point represents a model prediction, with the name and 
class of each model displayed at the bottom right corner. The top right and left corners 
display the statistical metrics: R2, RMSE, RMSLE, β, and ε. Asterisks denote Pearson 
correlations: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. The bottom left 
corner shows the number of selected features in red. A dashed line represents the 1:1 
diagonal line for reference, while a solid-colored line depicts the fitted regression line. 
Contour lines, derived from kernel density estimates, show data distributions.
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Fig. 5. Box plot depicting the distribution of test data (N = 30). Each box displays the 
median and interquartile range, while the whiskers represent values within 1.5 times the 
interquartile range from the lower and upper quartiles. White circles indicate outliers 
beyond this range.
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Fig. 6. Scatter plot illustrating standardized local Moran's I, showcasing relationships 
between observations with high and low values and their respective neighbors: high-
high (HH), low-low (LL), high-low (HL), and low-high (LH). Dashed lines mark the 
origin axes at (0,0), while the solid black line represents the OLS fit line between 
standardized local Moran's I (dependent variable: y) and the spatial lag of standardized 
local Moran's I (independent variable: x). The OLS formula is displayed at the bottom. 
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The global Moran's I value, the global Z-Score, and the p-value is shown at the top left. 
The p-value, indicating significance levels, is denoted by asterisks: * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001. Model names are presented at the bottom right.
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Fig. 7. Karun River salinity maps generated by the GBDT model using the entire 
dataset (N=102) on (a) 13 June 2013, (b) 01 February 2015, (c) 05 September 2018, and 
(d) 11 May 2022. Measured salinity at stations with available data is shown in red, and 
estimated salinity is shown in blue.
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