Projet IRENE : Imagerie Radar pour l'Estimation des Niveaux d'Eau

Rapport d'étape 1

R2228

Chercheur principal : Karem Chokmani Institut National de la Recherche Scientifique Centre Eau Terre Environnement <u>karem.chokmani@inrs.ca</u>

Financement OURANOS-InfoCrue

Le 27 octobre 2022

© INRS, Centre - Eau Terre Environnement, 2022 Tous droits réservés

ISBN : 978-2-89146-990-6 (version numérique)

Dépôt légal - Bibliothèque et Archives nationales du Québec, 2025 Dépôt légal - Bibliothèque et Archives Canada, 2025

Table des matières

Mise er	n contexte	6
Métho	dologie	6
Activité	és réalisées	7
1.	Mise en place de la base de données	7
2.	Classification de la probabilité d'eau	10
3.	Estimation des hauteurs sur toute la plaine inondable	17
Activité	és à venir	22
4.	Calcul de l'incertitude	22
5.	Validation des résultats	22
6.	Codage	23
Plan de	travail et calendrier	
Annexe	e A	25
Bibliog	raphie / référence	

Liste des figures

Liste des tableaux

Tableau 1 : Caractéristiques de Sentinel-1	8
Tableau 2 : Autres données pertinentes au projet	. 10
Tableau 3 : Calendrier de réalisation révisé des activités du projet	. 24
Tableau 4 : Statistiques des données de niveau d'eau pour les 105 stations retenues	. 25
Tableau 5 : Statistiques des données de niveau d'eau correspondant aux images S1, pour les 1	105
stations retenues	. 32

Liste des acronymes

- API : Application Programming Interface
- CSV : Comma Separated Values
- DEH : Direction de l'Expertise Hydrique
- FDP : Fonction de Densité de Probabilité
- GEE : Google Earth Engine
- HAND : Height Above Nearest Drainage
- INRS : Institut National de la Recherche Scientifique
- IRENE : Imagerie Radar pour l'Estimation du Niveau d'Eau
- LIDAR : LIght Detection And Ranging
- MELCC : Ministère de l'environnement et de la Lutte contre les Changements Climatiques
- MNT : Modèle Numérique de Terrain

Mise en contexte

Le projet IRENE vise développer une approche satellitaire opérationnelle permettant de créer des stations virtuelles de niveau d'eau. Il s'agit d'obtenir, sans intervention sur le terrain, le niveau d'eau en différents points de la plaine inondable pour une section de rivière non jaugée et ce, pour une résolution spatiale qui se rapproche de celle du modèle numérique de terrain LIDAR (~1 m). La méthode vise à utiliser des images radar disponibles gratuitement et en temps quasiréel.

Afin d'atteindre l'objectif général, les objectifs spécifiques sont :

- Pour une image radar satellitaire donnée, fournir les estimations du niveau d'eau/profondeurs de submersion sur une série de points jugés optimaux, avec la meilleure qualité possible et avec les incertitudes qui s'y rattachent;
- Identifier la portée spatiale d'application (conditions optimales et secteurs prometteurs) et détailler les limitations techniques de la méthode ;
- Indiquer la démarche nécessaire pour appliquer la méthode sur de nouveaux bassins.
- Développer un prototype d'outil automatisé pour appliquer la méthode développée;

Le but de ce rapport d'étape est de présenter une mise à jour de l'avancement du projet, des activités réalisées et de discuter des problèmes rencontrés s'il y a lieu. Il sera suivi d'une rencontre avec le comité de suivi ce qui permettra de recueillir les commentaires et suggestions des membres de ce comité.

Méthodologie

La figure 1 présente le processus méthodologique proposé pour atteindre les objectifs. Il est basé sur l'application de concepts connus et sur l'intégration innovante de divers travaux déjà menés à l'INRS. La première étape consiste à estimer la probabilité d'eau libre en zone dégagée à partir de l'image radar, la seconde combine ce produit avec un modèle HAND (Height Above Nearest Drainage) afin de produire une carte de l'eau libre à 1m de résolution et la troisième étape estime la profondeur de submersion sur différents points d'eau libre sur la plaine inondable. La méthode inclut le calcul de l'incertitude sur les résultats et l'évaluation des limites d'application. Les différentes étapes sont décrites ci-après à travers les activités à réaliser.

Figure 1 : Processus méthodologique pour le développement d'IRENE

Activités réalisées

1. Mise en place de la base de données

La première activité fut de mettre en place la base de données utilisables dans le cadre du projet. Pour se faire, nous avons défini la zone d'étude comme étant la partie méridionale du Québec, limité à l'ouest par la rivière des Outaouais, au sud par la frontière canado-américaine et à l'est aux environs de la rivière Chaudière (Figure 2). Quant à la limite nord, elle a été fixée arbitrairement aux environ de la latitude 46.3°N afin d'inclure le sud des bassins versants situés au nord du fleuve Saint-Laurent, sans pour autant s'étendre trop au nord où les enjeux des inondations sont moins présents. C'est à l'intérieur de cette zone que s'est effectuée la recherche des données nécessaires au développement et à la validation de la méthode.

Figure 2 : Zone d'intérêt

Pour le développement de la méthode IRENE, les quatre principaux jeux de données utilisés sont les suivants : données sur les **niveaux d'eau**, **données satellites** radar, **modèle numérique de terrain** et représentation cartographique des **cours d'eau**. Une description sommaire des jeux de données est présentée plus bas mais une version plus détaillée est présente dans le rapport du livrable 1 (Chokmani, 2022).

Données satellites radar

L'imagerie utilisée pour le développement de la méthode est celle issue des satellites de la série Sentinel-1 (Tableau 2). Les données couvrent régulièrement le sud du Québec depuis 2015.

Propriétaire	Satellites	Fréquence	Opération	Résolution spatiale	Couverture en mode IW	Polarisations en mode IW	Répétitivité
Agence spatiale européenne (ESA)	Sentinel 1A Sentinel 1B	Bande C (5.4GHz)	2014- aujourd'hui 2016- aujourd'hui	5m x 20m	250 km	VV + VH et HH + HV	6 jours

Les données de Sentinel-1 sont gratuites et accessibles en ligne, via plusieurs applications. Dans le cadre du projet, nous utiliserons Google Earth Engine (<u>https://developers.google.com/earth-engine</u>). Il s'agit d'une plateforme infonuagique qui permet le traitement à grande échelle d'images satellites pour détecter les changements, cartographier les tendances et quantifier les différences à la surface de la Terre. Pour les données Sentinel-1 disponibles sur GEE, un certain nombre de prétraitements ont déjà été appliqués (https://developers.google.com/earth-engine/guides/sentinel1). Ainsi, nous n'avons pas à télécharger chaque image pour appliquer ces prétraitements et pouvons utiliser la plateforme pour effectuer un certain nombre de traitements supplémentaires, entre autres, l'application de filtres et de masques, le découpage sur les zones d'intérêt ainsi que le calcul de statistiques.

Données de niveau d'eau

Pour les données de niveau d'eau, nous avons regardé les données disponibles du côté du gouvernement du Québec et de celui du Canada. De ces données, nous avons conservé les stations satisfaisant les critères suivants :

- Stations situées à l'intérieure de la zone d'étude
- Stations diffusant les niveaux d'eau dans un système géodésique
- Stations en opération après 2015

À ces stations, nous avons ajouté une dizaine de stations du système de surveillance de la rivière Chaudière et gérées par le COBARIC. L'information sur les stations présenté dans le rapport accompagnant la livraison de la base de données est reprise à l'annexe A.

Modèle numérique de terrain

Afin d'évaluer le niveau d'eau à l'intérieur d'une plaine inondable, un modèle numérique de terrain (MNT) de grande précision est souhaitable. Pour le projet IRENE, nous utiliserons les MNTs dérivés du LiDAR générés dans le cadre du projet d'acquisition de données par le capteur LiDAR à l'échelle provinciale (Leboeuf, 2015). Ces données possèdent une résolution spatiale de 1 m et sont diffusées gratuitement sur le site de données Québec (https://www.donneesquebec.ca/recherche/dataset/produits-derives-de-base-du-lidar). Le modèle numérique de terrain servira à la fois au calcul du modèle HAND et à la détermination du niveau d'eau. Le modèle HAND est un modèle numérique de terrain normalisé où la valeur de chaque pixel correspond à la différence d'élévation entre ce pixel et le pixel du réseau hydrographique vers lequel il s'écoule. Les valeurs HAND en amont d'une rivière peuvent ainsi se comparer avec celles en aval, et les valeurs HAND de différentes rivières peuvent se comparer entre elles.

Représentation cartographique des cours d'eau

Certaines des activités à réaliser dans le cadre du projet nécessitent une représentation cartographique du réseau hydrographique. Nous avons donc choisi d'utiliser la Géobase du réseau hydrographique du Québec (GRHQ) qui est le référentiel commun de l'hydrographie au Québec. Ces données sont également disponibles sur le site de données Québec (https://www.donneesquebec.ca/recherche/dataset/grhq). Les polygones représentant les cours d'eau serviront plus particulièrement comme masque pour déterminer la distribution des valeurs de rétrodiffusion de l'imagerie radar dans les zones couvertes par l'eau et comme valeur de départ pour la méthode HAND (soit HAND = 0).

Autres données

Le développement et la validation de la méthode IRENE nécessitera aussi d'autres données spécifiques (Tableau 6). Les données d'occupation du sol seront utilisées pour évaluer l'efficacité de la méthode en fonction de l'occupation du sol présente sur les berges. Les photographies aériennes issues des survols aéroportés du gouvernement réalisés en période d'inondation pourront être utilisées pour comparer les étendues inondées générées à partir de la méthode IRENE avec les étendues réelles.

Les niveaux d'eau ponctuels lors d'inondation, seront utilisés pour la validation des niveaux calculés dans le projet. Il s'agit ici de mesures ponctuelles réalisées par des équipes d'arpentage lors d'évènements extrêmes.

Ces données seront utilisées plus tard dans le projet et se retrouveront davantage dans le rapport final.

Tableau 2 : Autres données pertinentes au projet

Туре	Source	Format
Couverture des terre	Gouvernement ouvert, https://open.canada.ca/data/fr/dataset/4e615eae-b90c-420b- adee-2ca35896caf6	.tif
Étendue des inondations	MSP	.wms
Niveaux d'eau inondation 2019	CEHQ, MSP	.shp

2. Classification de la probabilité d'eau

Plusieurs éléments influencent la valeur de rétrodiffusion du signal radar en présence d'eau (angle d'incidence du signal, rugosité de l'eau, etc.). Il n'est donc pas possible de déterminer un seuil fixe au niveau des valeurs de rétrodiffusion séparant efficacement les pixels d'eau et ceux de terre. C'est pourquoi nous avons décidé d'intégrer la logique floue dans le processus de classification. Ainsi, selon différents scénarios, la probabilité d'eau sur une image radar s'effectue en faisant correspondre à chaque valeur de rétrodiffusion, une probabilité que cette valeur soit de l'eau.

Étape 1: Estimation de la distribution statistique des rétrodiffusions des objets d'eau libre

Compilation d'un ensemble de valeurs de pixels d'eau et de terre

Tel que mentionné, la valeur de rétrodiffusion du signal radar en présence d'eau peut varier en raison de plusieurs éléments. Afin de couvrir le plus de scénario possible et ainsi d'avoir une gamme de valeurs de rétrodiffusion la plus exhaustive possible, nous avons procédé comme suit.

À l'aide d'ArcGIS et du langage de programmation Python, nous avons sélectionné au hasard dans chacun des bassins versants faisant partie de notre zone d'étude, 10 lacs et 10 cours d'eau dont la superficie était comprise entre 5000 m² et 10 000 000 m² (10 km²). Le seuil inférieur était pour s'assurer qu'un minimum de 50 pixels radar allait être couvert dans les étapes suivantes, un pixel Sentinel-1 couvrant 100 m². Le seuil supérieur était pour éviter d'avoir à gérer de trop grand plan d'eau, Google Earth Engine ayant également une limitation sur le nombre de valeurs de pixels que l'on peut extraire. Cette étape nous a permis de sélectionner 473 plans d'eau (certains bassins versants n'étant couverts qu'en partie dans la zone d'étude, le nombre de 20 plans d'eau n'a pas été atteint partout).

Ces plans d'eau nous servirons de masque afin d'extraire, sur les images radar, la valeur des pixels représentant de l'eau. Dans le but d'avoir un nombre équivalent de pixels représentant la terre (ou autre chose que de l'eau), nous avons créé des zones tampons (buffer) autour des plans d'eau. Pour chacun des plans d'eau, nous avons généré automatiquement à l'aide du langage Python, 22 zones tampons de largeur différente. Nous avons ensuite conservé, pour chaque plan d'eau, la zone tampon ayant la superficie la plus proche de celle du plan d'eau. Par exemple, pour un cours d'eau d'une largeur de 30 m, la largeur de la zone tampon sélectionnée serait de 15 m de part et d'autre. Nous avons également décidé de limiter la taille de la zone tampon à un maximum de 200 m. L'histogramme des largeurs de zone tampon est présenté à la Figure 3.

Figure 3 : Histogramme des largeurs de zones tampon. À noter que pour une largeur de zone tampon, la rivière correspondante a une largeur équivalente au double.

Par la suite, nous avons utilisé les nouveaux polygones générés (473 plan d'eau + zone tampon) comme masque afin d'extraire les valeurs de rétrodiffusion pour chacune des images Sentinel-1 acquise depuis l'été 2015. L'opération se faisant en utilisant Google Earth Engine par l'entremise d'un API Python, il n'a pas été nécessaire de télécharger et traiter chacune des images Sentinel-1 pour réaliser cette tâche. Cela représente un gain de temps important car près de 1500 images Sentinel-1 ont été utilisées ce qui a permis d'extraire 81235 ensembles de pixels (combinaison des polygones générés et des images). Il est à noter que chaque image Sentinel-1 couvre un nombre variable de stations.

Extraction des paramètres pour la classification

Chacun de ces ensembles de pixels (ie les pixels d'une image Sentinel-1 situés sous un polygone de plan d'eau avec une zone tampon) représente un nombre approximativement équivalent de pixels correspondant à de l'eau et de pixels correspondant à de la terre. Des pixels mixtes sont également présents. Ces derniers sont les pixels couvrant les rives du cours d'eau et dans lesquels il y a à la fois de l'eau et de la terre. Ils seront traités plus loin. Les valeurs de rétrodiffusion des classes *eau* et *terre* étant significativement différentes, l'histogramme de chacun des ensembles devrait idéalement être bi-modal. Nous avons donc considéré chaque histogramme comme étant le mélange des histogrammes de deux composantes et avons tenté de les séparer en utilisant des fonctions de mélanges de modèle gamma (Matgen, 2011). Pour chaque ensemble, nous avons considéré en premier lieu les valeurs comme une seule composante (ou population) et l'avons modélisée. Ensuite, nous avons tenté de les représenter par deux modèles gamma. Nous avons calculé le critère d'information bayésien (BIC) (Schwarz, 1978) à chaque étape (une composante, deux composantes). Le modèle avec le plus faible BIC étant généralement préférable, cela nous a

permis de déterminer si l'ensemble de pixels pouvait être efficacement séparé en deux composants. Le critère d'information d'Akaike (AIC) (Akaike, 1974) aurait également pu être utilisé. La Figure 4 présente des exemples de situation où les distributions sont bi-modales et uni-modales. Lorsque la distribution est bi-modale (Figure 4-A), le graphique de droite représente la probabilité que la valeur de rétrodiffusion *x* appartienne à la classe *p* (eau, terre).

Figure 4 : Exemples d'histogramme de valeurs de rétrodiffusion sous les polygones de plans d'eau et leur zone tampon. A) Distribution pouvant être modélisée par la somme de deux composantes. B) Distribution ne pouvant être séparée en deux composantes

Ensuite, pour les distributions se modélisant efficacement comme la somme de deux composantes (57 177 distributions), nous avons extrait les valeurs du mode et du 99^e percentile de la composante *eau*. Nous avons également extrait les valeurs du 1^{er} percentile et du mode de la composante *terre*. Les valeurs extraites pour la composante eau et la composante terre forme à leur tour de nouvelles distributions. La Figure 5 montre un histogramme des valeurs du mode de la classe *eau* pour les 57 177 distributions. Cet histogramme est de nouveau bi-modal. La raison est que les distributions sont formées des valeurs de pixels extraites sur des cours d'eau de différentes tailles. Pour les plus petits cours d'eau, soit ceux dont la largeur équivaut à 4-5 pixels de l'image Sentinel-1, soit 40-50 m, la proportion de pixels mixtes est très importante. Si les distributions sont séparées par taille de cours d'eau et que seuls ceux dont la taille est plus grande que 50 m sont conservés, nous remarquons que la distribution devient unimodale (Figure 6) et peut être plus efficacement modélisé par un modèle gaussien.

Figure 5 : histogramme des valeurs du mode de la classe eau pour toutes les distributions bi-modales (57 177 distributions)

Figure 6 : histogramme des valeurs du mode de la classe eau pour les distributions bi-modales dont la taille de la zone tampon est plus grande ou égale à 50 m (19 448 distributions)

Si nous faisons l'exercice de représenter par un modèle gaussien les distributions de valeurs du mode de l'eau pour des cours d'eau de taille plus grande ou égale à un seuil, nous remarquons que les modèles convergent vers une moyenne autour de -20 dB à partir d'un seuil de 50 m (Figure 7). Pour le mode de la classe *eau*, nous utiliserons les paramètres du modèle gaussien calculé à partir de ce seuil pour la classification. Pour le 99^e percentile de la classe *eau*, nous utiliserons le même seuil. En comparaison de la Figure 7, la Figure 8 montre que les valeurs de mode de la classe *terre* ne sont pas affectées par la taille de la rivière, la moyenne du mode de la *terre* se situant toujours entre -10 et -9 dB.

Le seuil de 50 m utilisé à cette étape ne sert qu'à sélectionner des rivières et lacs qui donneront des distributions de pixels d'eau « les plus purs possible » afin de calculer les paramètres à utiliser lors de la classification des images Sentinel-1. Le seuil n'est pas un indicateur, pour le moment, de la taille des plans d'eau sur lesquels la méthode développée pourra être appliquée.

Figure 7 : Modèle gaussien représentant les distributions des valeurs de mode pour la classe eau en fonction d'un seuil de taille de zone tampon. Les tailles plus grandes ou égales aux seuils sont considérées dans le modèle.

Figure 8 : Modèle gaussien représentant les distributions des valeurs de mode pour la classe terre en fonction d'un seuil de taille de zone tampon. Les tailles plus grandes ou égales aux seuils sont considérées dans le modèle.

Étape 2: Classification par logique floue des objets d'eau libre

Afin de tenir compte de la superposition quasi-systématique d'une partie des valeurs de rétrodiffusion des plans d'eau et des valeurs de rétrodiffusion d'autres types de couvertures du sol, une approche de classification suivant les règles de la logique floue a été utilisée. L'intérêt des théories des ensembles flous est qu'elles permettent d'estimer le degré d'appartenance de chaque élément d'un ensemble à une classe donnée, selon la valeur de rétrodiffusion de cet élément à l'intérieur des limites de l'ensemble. Une fonction d'appartenance standard de forme Z (MathWorks, 2022) a été utilisée pour estimer la probabilité d'appartenance à la classe eau de chaque pixel (Figure 9). D'après cette fonction, plus la valeur moyenne de rétrodiffusion des objets de l'image est faible, plus fort sera son degré d'appartenance à la classe eau. Elle est ainsi adaptée à l'évaluation du degré d'appartenance des objets représentant de l'eau libre, généralement caractérisés par de très faibles valeurs de rétrodiffusion.

Figure 9 : Fonction d'appartenance de forme Z

Les deux paramètres important de la fonction d'appartenance en Z sont les seuils σ_a et σ_b entre lesquels la fonction est décroissante. Dans notre cas, ces seuils correspondent au mode et au 99^e percentile de la classe *eau* extraits à l'étape précédente sur les 19 448 distributions de pixels conservés. Afin de tenir compte de la variabilité des valeurs de mode et du 99^e percentile dans l'application de la fonction d'appartenance en Z, nous avons sélectionné trois valeurs stratégiques pour chaque distribution, soit la valeur moyenne (mode), ainsi que la valeur moyenne plus ou moins la racine de 3 multiplié par l'écart-type. En combinant ces six valeurs, il est possible de générer neuf scénarios, ou fonctions d'appartenance différentes. Comme les valeurs de mode et de 99^e percentile utilisées n'ont pas toutes la même probabilité d'occurrence à l'intérieur de leur distribution, un poids différent a été utilisé pour chacune d'elles. Ainsi, dans chaque distribution (mode et 99^e percentile), la valeur du mode étant la plus fréquente, un poids de 2/3 lui a été assigné. Pour obtenir un poids total égal à un, Les deux autres valeurs ont reçu un poids de 1/6. Ces poids ont ensuite servi à pondérer chacune des neuf fonctions d'appartenance, lesquelles ont été combinées pour calculer la probabilité finale en utilisant l'équation 1.

$$P_{eau} = \frac{1}{6} \cdot \frac{1}{6} \cdot F(x; \sigma_{a-}, \sigma_{b-}) + \frac{1}{6} \cdot \frac{2}{3} \cdot F(x; \sigma_{a-}, \sigma_{b}) + \frac{1}{6} \cdot \frac{1}{6} \cdot F(x; \sigma_{a-}, \sigma_{b+}) + \frac{2}{3} \cdot \frac{1}{6} + F(x; \sigma_{a-}, \sigma_{b-}) + \frac{2}{3} \cdot \frac{2}{3} \cdot F(x; \sigma_{a}, \sigma_{b}) + \frac{2}{3} \cdot \frac{1}{6} \cdot F(x; \sigma_{a}, \sigma_{b+}) + \frac{1}{6} \cdot \frac{1}{6} + F(x; \sigma_{a+}, \sigma_{b-}) + \frac{1}{6} \cdot \frac{2}{3} \cdot F(x; \sigma_{a+}, \sigma_{b}) + \frac{1}{6} \cdot \frac{1}{6} \cdot F(x; \sigma_{a+}, \sigma_{b+})$$
(1)

Où

 σ_a et σ_b représente les valeurs du mode de chaque distribution,

 $\sigma_{a-}, \sigma_{a+}, \sigma_{b-}$ et σ_{b+} représente les valeurs du mode de chaque distribution plus ou moins $\sqrt{3} \times$ l'écart-type

L'application de l'équation 1 sur une image Sentinel-1 permet d'obtenir une probabilité d'appartenance à la classe *eau* pour chaque pixel (Figure 10).

Figure 10 : Classification de la probabilité d'occurrence de l'eau à partir de l'image Sentinel-1. Gauche : Image visible du cours d'eau (date indéterminée). Milieu : Image Sentinel-1 du 1^{er} juin 2019. Droite : Probabilité d'occurrence de l'eau d'après l'image Sentinel-1 (noir = 0%, blanc = 100%)

3. Estimation des hauteurs sur toute la plaine inondable

Étape 3: Désagrégation de la classification de l'eau libre

Pour ramener les résultats de la classification de l'eau (probabilité de présence de l'eau dans le pixel) issue de l'image radar (10 m) à la même résolution que celle du modèle numérique de terrain (1 m), une désagrégation spatiale est faite à l'aide du modèle HAND.

Le modèle HAND, pour Height Above the Nearest Drainage, consiste en un modèle numérique d'élévation normalisé à l'altitude de la rivière. Chaque pixel du modèle représente la différence de hauteur entre l'altitude en ce point et l'altitude du pixel sur la rivière dans lequel il s'écoule (Figure 11). Pour générer le modèle HAND, des prétraitements doivent être effectués sur le modèle numérique de terrain pour assurer un écoulement cohérent, soit une correction des élévations sur la surface de la rivière pour enlever les artefacts liés à l'interpolation, le remplissage des cuvettes et l'intégration des ponceaux dans le modèle numérique de terrain. Le modèle de direction d'écoulement est ensuite calculé et le modèle HAND est généré pour la partie du plan d'eau à l'étude.

Figure 11 : Approche HAND (tirée de Nobre et al., 2011).

À partir du modèle HAND créé sur la plaine inondable, la carte de probabilité d'eau à 10 m peut être désagrégée à une résolution de 1 m. Un pixel de 10 m (par 10 m) correspond alors à 100 pixels de 1 m². La désagrégation est effectuée sur les pixels dont la probabilité d'appartenance à la classe d'eau est > 0% et < 100%. Pour ces pixels, la probabilité d'appartenance à la classe eau agit comme un seuil et est interprété comme un centile. Les pixels du HAND dont la valeur est inférieure à ce centile sont considérés comme de l'eau. Par exemple, si un pixel de la carte de probabilité produite à partir de l'image Sentinel-1 a une valeur de 40%, nous supposons qu'il devrait être composé de 40% d'eau. Ainsi, nous considérons que parmi les 100 pixels du modèle HAND couvert par ce pixel Sentinel-1, les 40 pixels ayant les valeurs de HAND les plus faibles sont ceux qui devraient être de l'eau (Figure 12). Nous pouvons ainsi dire que le niveau de l'eau se situe aux environs du 40^e percentile de ce groupe de pixels. En procédant pixel par pixel au niveau de la carte de probabilité, cela peut occasionner des discontinuités à l'échelle du modèle

Figure 12 : Schématisation du processus de désagrégation spatiale en utilisant les probabilités déterminées par l'imagerie Sentinel-1 et les élévations du modèle HAND

HAND lors du passage d'un pixel de probabilité à un autre. Afin d'uniformiser la valeur de HAND utilisée, la valeur (moyenne) de toutes les valeurs extraites du HAND par les centiles est utilisée comme seuil final à appliquer à l'ensemble de la plaine inondable.

La matrice de surface mouillée résultante n'est donc plus une carte de probabilité mais une matrice binaire (Eau libre, Non-Eau) à une résolution spatiale de 1 m x 1 m. La Figure 13 montre l'application de cette méthode. Il est possible de remarquer sur le modèle HAND deux petits affluents au nord-est de la rivière principale. Ces affluents, dont les rives sont végétalisées, n'apparaissent pas sur la matrice de probabilité d'occurrence de l'eau. En combinant les deux jeux de données, il est possible de mieux représenter la région submergée.

Seuil à 2,91 m

Figure 13 : Désagrégation spatiale en combinant les probabilités d'occurrence de l'eau à une résolution de 10 m et un modèle HAND à une résolution de 1 m. (Note : les couleurs du modèle HAND ont été rehaussée pour montrer le détail des zones de basse valeur. Les couleurs ne correspondent pas avec la disposition linéaire montrée dans la légende)

Étape 4: Estimation des hauteurs d'eau sur les secteurs d'eau libre

La profondeur de submersion est obtenue en prenant la valeur du seuil déterminé par les centiles et en soustrayant les valeurs du HAND en tout point de la zone *eau* (Figure 14 et Figure 15). Le niveau d'eau absolu peut également être calculé en ajoutant les profondeurs de submersions au niveau du modèle numérique de terrain.

Figure 14 : Calcul de la profondeur de submersion

Figure 15 : Profondeur de submersion obtenue en soustrayant les valeurs du HAND d'une surface d'élévation constante (par rapport au HAND)

La Figure 16 montre le résultat des différentes étapes réalisées pour un tronçon de 7 km de la rivière Chaudière lors de l'inondation de 2019.

Figure 16 : Processus de classification des zones submergées (Rivière Chaudière, 26 avril 2019, zone de 3 km x 6 km). A) image Sentinel-1, B) probabilité d'appartenance à la classe eau, C) modèle HAND dérivé du MNT, D) image du secteur (date indéterminée), E) étendu de la surface submergée, et F) profondeur de submersion de la zone inondée

Activités à venir

4. Calcul de l'incertitude

Comme tout modèle, le modèle IRENE n'est qu'une simplification plus ou moins représentative du système physique auquel il est rattaché. Par conséquent, le modèle est entaché d'un niveau plus ou moins élevé d'incertitude ou d'erreur qui affecte la qualité de ses prédictions. L'incertitude dans un modèle provient de plusieurs sources soit au niveau de sa structure mathématique, des données qui ont servi à le bâtir et à le calibrer ainsi que des paramètres et des données d'entrée qui sont utilisées. Ici, les données d'entrée sont le MNT et l'image Radar. L'erreur sur les sorties ainsi que les différentes contributions sont souvent décrites par leurs moments statistiques (moyenne, variance, coefficient d'asymétrie, etc.).

Pour les estimer, nous utiliserons dans la présente étude, la méthode proposée par Torvi et Hertzberg (1997). Cette méthode ne traite pas la propagation de l'incertitude des entrées vers les sorties d'un modèle comme étant un problème de variables aléatoires mais plutôt comme un problème d'intégration, dont les techniques de résolution numérique sont précises et approuvées. Cette approche a été testée avec succès par Chokmani et al. (2001) dans un contexte de modélisation bioclimatique et plus récemment par El Alem et al. (2019), dans le suivi des fleurs d'eau d'algues par imagerie satellitaire ou encore par Oubennaceur et al. (2018, 2019) en modélisation hydrodynamique.

5. Validation des résultats

La méthode sera développée et validée en fonction des données de débits, de niveaux et de lignes d'eau disponibles (stations hydrométriques, relevés et sondes du MELCC, survols aériens du MSP) ainsi que des données LIDAR disponibles. Sur chaque secteur choisi, nous définirons un ou plusieurs tronçons où les données complètes sont disponibles.

Ainsi, dans un premier temps, la validation à partir des niveaux d'eau mesurés par les stations de la DEH ou du COBARIC permettra d'identifier les secteurs où la cartographie radar des zones d'eau libre est la plus efficace (occupation du sol, relief, forme du chenal). Nous évaluerons également la qualité de la mesure estimée par l'approche IRENE. Dans un deuxième temps, nous raffinerons l'approche sur les secteurs prometteurs préalablement identifiés et nous y ferons l'acquisitions de mesures ponctuelles de niveaux d'eau, simultanément à l'acquisition de nouvelles images radar. Il est proposé que lors de crues à venir, le MELCC avisera l'INRS qui enclenchera alors un survol de drone équipé d'un capteur optique afin de documenter la limite de l'inondation sur un secteur d'intérêt afin de pouvoir comparer les résultats de l'approche IRENE avec une méthode alternative mesurée sur le terrain. Des mesures ponctuelles de niveaux d'eau pourraient également être prises à ce moment. Un minimum de deux personnes seraient nécessaires pour ces travaux. Cela permettra de préciser la qualité des estimations sur plusieurs secteurs et d'établir les meilleurs sites de stations virtuelles. Au fil du projet, des sites d'application potentielle pourraient s'ajouter selon les crues à venir et les données disponibles.

Il est à noter que l'utilisation d'images radar en polarisation horizontale (HH) est généralement préférée à celle de données acquises en polarisation verticale (VV), car elle permet généralement d'obtenir un meilleur contraste entre l'eau libre et le reste de l'occupation du sol. Les données Sentinel-1 sont en polarisation VV. Par contre, dans un futur rapproché, des données en polarisation HH de la constellation RADARSAT, de l'agence spatiale canadienne seront également disponibles gratuitement en temps quasi-réel. Il est donc prévu de tester la méthode sur ces données en fin de projet.

6. Codage

Chaque étape de la méthodologie sera d'abord codée et automatisée individuellement durant la phase de développement afin de permettre différentes itérations et tests de la méthode et des paramètres utilisés. Le travail est échelonné tout au long du projet. Nous envisageons ici une série de scripts en Python qui permettent de réaliser automatiquement toutes les étapes de l'approche. De tels scripts pourraient ensuite être intégrés tels quels ou traduits, dans les outils du MELCC. À la fin de la deuxième phase, les modules seront intégrés pour créer un prototype d'outil qui reproduit toute la séquence. Dans cet outil, les images Sentinel-1 seront récupérées automatiquement via Google Earth Engine, une API qui permet d'avoir un accès facile aux données satellitaires gratuites, dans un format déjà corrigé géométriquement et radiométriquement. La procédure avec les images de la constellation Radarsat n'est pas encore connue. Les étapes subséquentes pourront être intégrées à l'intérieur d'un exécutable développé en langage Python, lequel utilisera certaines librairies d'ArcGIS et de l'API pour Google Earth Engine. Le programme pourra ainsi fonctionner en continu et donc mettre à jour les niveaux d'eau lorsque de nouvelles images satellites seront acquises. Les niveaux d'eau seront inscrits dans des fichiers textes (CSV) avec leur incertitude associée. D'autres résultats seront également conservés sous la forme matricielle : profondeurs de submersions, niveau d'eau absolu, surface mouillée raffinée avec le modèle HAND (1 m x 1 m) et la carte de probabilité issue de l'imagerie radar (10 m x 10 m). Un guide d'utilisation sera produit.

Plan de travail et calendrier

Selon le calendrier du projet (Tableau 1), les activités 1, 2 et 3 sont terminées ou en voie de l'être. Les activités 4 et 5 ne sont pas débutées à ce jour mais seront les prochaines étapes à être réalisées. L'activité 6 est quant à elle en cours de réalisation car la tâche d'automatisation est essentielle à chacune des activités du projet. L'intégration dans un prototype ou une application existante se fera plus tard.

Un changement de personnel et des problèmes informatiques (cyber-attaque contre l'INRS) ont fait en sorte qu'un certain retard a été pris dans le projet. Les problèmes informatiques n'étant toujours pas complètement résolus après 2 mois et demi, nous ne sommes pas confiants qu'ils le seront sous peu. Le retard occasionné par ces éléments nous pousse à demander un report de la date de fin du projet prévue pour juillet 2023. Un report de trois mois serait souhaitable.

		2021								2022					2023							
Titre de l'activité	Principales tâches	A	s	o	N	DJ	F	м	A	м	J	J	A	S (o I	N	DJ	F	M	A	MJ	
 Mise en place de la base de données 	 Choix des zones d'étude Collecte des données Structuration des données 																				·	
2. Classification de la probabilité d'eau	 Prétraitement images radar Calcul FDP Détermination de la fonction Z et des seuils Classification par logique floue des objets d'eau libre 																					
 Estimation des hauteurs sur toute la plaine inondable 	 Création du modèle HAND Désagrégation de la carte d'eau à 1m Calcul des profondeurs de submersion 																					
4. Calcul de l'incertitude	- Calcul propagation d'erreur																					
5. Validation des résultats	 Validation zone inondée Choix des sites optimaux Survols de drone avec un capteur optique Mesures de niveaux Validation niveaux estimés 																					
6. Codage	 Automatisation Intégration dans prototype 																					

Tableau 3 : Calendrier de réalisation révisé des activités du projet

Annexe A

Tableau 4 : Statistiques des données de niveau d'eau pour les 105 stations retenues

Station	Latitude	Longitude	Nom	Description	Nb_jours	Début	Min	Max	Moy	SD	Étendue
					avec niveau quotidien	extraites	m	m	m	m	m
023402			Chaudiere	au pont-route 218 a	2572	2015-01-01					
				Saint-Lambert-de-							
	46,58694	-71,21361		Lauzon			111,98	116,78	112,64	0,56	4,8
023409			Barrage Megantic	au lac Megantic a Lac-	2577	2015-01-01					
000446	45,57310	-70,88040	Dama an Castinan	Megantic	2500	2015 01 01	393,95	395,61	394,38	0,18	1,66
023446	46.00504	70 65074	Barrage Sartigan	a 0,2 km en amont du	2580	2015-01-01	172 46	176.01	172.00	0.41	2 5 5
023450	40,09394	-70,03074	Beaurivage	au nont-route Saint-	/29	2020-11-18	172,40	170,01	175,50	0,41	3,33
023430			Dedunvage	Charles a Saint-Patrice-	425	2020 11 10					
	46,41147	-71,24427		de-Beaurivage			47,82	48,77	48,25	0,11	0,95
023451			Bras Saint-Victor	a 3,5 km en aval de La	531	2020-08-11					
	45,99822	-70,91796		Guadeloupe			47,04	48,1	47,24	0,18	1,06
024004			Bourbon	a 02 km en amont du	430	2020-11-20					
	46 24000	74 77700		pont de la rue Savoie a			40.00	40.50	10	0.1	0.7
021 0015	46,21990	-/1,///00		Plessisville	2515	2014 02 01	48,89	49,59	49,	0,1	0,7
UZLAUIS	45 43140	-75 70620			2515	2014-02-01	10 97	45 17	11 95	0.69	12
02LA027	+3,+31+0	73,70020	RIDEAU RIVER ABOVE		2460	2014-02-01	40,57	-3,17	+1,55	0,05	7,2
	45,43990	-75,69290	RIDEAU FALLS		2.00		3,98	5,49	4,75	0,21	1,51
02LB033			BECKETTS CREEK NEAR		1928	2014-02-01					
	45,52070	-75,35830	BECKETTS CREEK				9,46	11,82	9,69	0,34	2,36
02MC005			SAINT-LAURENT (FLEUVE)		2526	2014-02-01					
	45,33440	-73,96210	A POINTE-DES-CASCADES				20,78	22,64	21,66	0,41	1,86
02OA003	45 66200	70 75 220	MILLE ILES (RIVIERE DES) A		2526	2014-02-01	0.0	2.01	1 42	0.4	2.01
0204012	45,66290	-73,75220	BUIS-DES-FILION		2526	2014 02 01	0,6	2,61	1,42	0,4	2,01
020A013			Δ SΔINTE-ΔNNE-DE-		2320	2014-02-01					
	45,40470	-73,95660	BELLEVUE				21,34	24,66	22,21	0,58	3,32

02OA016			SAINT-LAURENT (FLEUVE)		2526	2014-02-01					
	45,41500	-73,62320	A LASALLE				0,68	2,23	1,4	0,35	1,55
02OA033			OUTAOUAIS (RIVIERE DES)		2526	2014-02-01					
			A LA MARINA DE SAINTE-								
	45,40250	-73,94880	ANNE-DE-BELLEVUE				20,73	22,69	21,6	0,42	1,96
02OA039			SAINT-LOUIS (LAC) A		2524	2014-02-01					
	45,42770	-73,82070	POINTE-CLAIRE				20,7	22,56	21,55	0,42	1,85
02OA041			SAINT-LAURENT (FLEUVE)		2158	2014-08-27					
	45,46490	-73,50590	A LA PRAIRIE				9,65	11,28	10,29	0,36	1,63
02OA107			OUTAOUAIS (RIVIERE DES)		2526	2014-02-01					
	45,38910	-73,99810	A TERRASSE-VAUDREUIL				21,32	24,62	22,2	0,58	3,3
02OB011			SAINT-LAURENT (FLEUVE)		2526	2014-02-01					
	45,95940	-73,21460	A LANORAIE				3,82	7,56	5,21	0,68	3,75
02OE012			MEMPHREMAGOG (LAC) A		2526	2014-02-01					
	45,26750	-72,16150	MAGOG				207,07	208,58	207,7	0,23	1,5
02OH001			CHAMPLAIN (LAC) A		2526	2014-02-01					
	45,03980	-73,07970	PHILIPSBURG				3,98	6,29	4,84	0,49	2,31
02OJ007			RICHELIEU (RIVIERE) AUX		2526	2014-02-01					
	45,39850	-73,25840	RAPIDES FRYERS				0,53	2,22	1,18	0,38	1,69
02OJ016			RICHELIEU (RIVIERE) A LA		2525	2014-02-01					
	45,30230	-73,25010	MARINA DE SAINT-JEAN				-0,02	1,86	0,69	0,39	1,88
030118			Barrage Beaudet	au reservoir Beaudet a	2577	2015-01-01					
	46,06914	-71,97661		Victoriaville			128,68	129,94	128,98	0,14	1,26
030120			Nicolet	a 6,5 km en aval de	780	2019-12-05					
	45,98269	-72,16338		Saint-Albert			99,17	100,79	99,5	0,26	1,62
030201			Barrage Jules-Allard	au lac Saint-Francois a	2577	2015-01-01					
				Saint-Joseph-de-							e
	45,95092	-/1,2/406		Coleraine		2015 01 01	283,73	290,22	288,32	1,33	6,49
030202	45 30043	74 40646	Barrage Aylmer	au lac Aylmer a	2577	2015-01-01	245.04	240.62	247.64	0.40	2 74
	45,76047	-71,40616		Weedon			245,91	248,62	247,64	0,48	2,71
030234	45 46303	74 65 407	Eaton	a 06 km de la riviere	2577	2015-01-01	25.45	20.45	25.00	0.04	
	45,46797	-/1,6549/		Saint-Francois	2566	2015 01 01	25,15	28,45	25,68	0,34	3,3
030241	45 27624	74 07250	Lac Massawippi	au quai passerelle a	2566	2015-01-01	4 60 42	4 6 4 . 0 2	100.00	0.25	47
	45,27631	-/1,9/350		North-Hatley	700	2010 11 55	160,13	161,83	160,66	0,25	1,/
030242	45 0 4050	74 5 6 7 6 6	Eaton	en aval du pont-route	/93	2019-11-20	252.66	055.40	252.02		4.46
	45,34059	-/1,56/29		210 a Sawyerville			253,66	255,12	253,92	0,2	1,46

030247	45 47081	-72 12152	Barrage Bombardier	au lac Brompton a Saint-Denis-de- Brompton	2577	2015-01-01	238.00	228.7	228 12	0.08	0.61
030268	45,39397	-72,22606	Barrage Stukely	au lac Stukely a Orford	2577	2015-01-01	284.23	238,7	238,43	0.07	0.46
030283	45,27919	-71,89147	Barrage de Waterville	sur la riviere Coaticook a Waterville	2577	2015-01-01	188,19	189,71	188,76	0,11	1,52
030289	45,73811	-71,42192	Lac Louise	a Weedon	2577	2015-01-01	242,6	245,04	242,96	0,27	2,44
030296	45 80625	71 22600	Lac Aylmer	au quai de la municapalite de Stratford	2578	2015-01-01	246.26	248 75	247.7	0.42	2 20
030297	45,80025	71 01176	Barrage Lyster	a Coaticook	2578	2015-01-01	470.61	240,73 471 27	470.09	0,43	2,39
0302A1	45,05055	-/1,911/0	Aux Saumons	a 13 km de son	424	2020-11-23	470,01	4/1,2/	470,98	0,11	0,00
	45,34239	-71,85632		embouchure dans la riviere Massawipi			46,18	47,47	46,44	0,18	1,29
030302			Yamaska	a 06 km en amont du pont-route de la 235 a	2555	2015-01-01					
000014	45,28267	-72,96622		Farnham	2554	2045 04 04	62,63	63,99	62,86	0,2	1,37
030314	45,20622	-72,74758	Yamaska Sud-Est	au pont-route 202 a Cowansville	2551	2015-01-01	29,93	31,53	30,31	0,22	1,6
030326	45,41736	-72,60960	Barrage Choiniere	sur la riviere Yamaska Nord a Roxton Pond	2577	2015-01-01	139,83	143,68	142,1	0,92	3,85
030332	45,33833	-72,51601	Lac Waterloo	au lac Waterloo a Waterloo	2577	2015-01-01	207,86	208,47	208,08	0,07	0,61
030342	45,35013	-72,51542	Barrage de Waterloo	a Waterloo	2577	2015-01-01	207,74	208,23	208,01	0,07	0,49
030345			Yamaska	a 18 km en aval du	2575	2015-01-01					
	45.62886	-72.93908		barrage a Saint- Hvacinthe			18.77	23.25	19.58	0.69	4.48
030350		,	Lac Brome	a la plage municipale	2579	2015-01-01		_, _		-,	, -
	15 22620	72 50404		de la ville de Lac- Bromo			106.02	107.2	106.69	0.26	1 17
030354	45,22055	-72,30494	Yamaska	au pont de la rue de	1186	2018-10-25	190,03	197,2	190,08	0,20	1,17
	45,30000	-72,70125		Soulanges a Bromont			104,32	106,05	104,65	0,25	1,73
030430			Richelieu	au centre de plein air	2578	2015-01-01					
	45,07719	-73,32556		de-l'Île-aux-Noix			28,37	30,57	29,14	0,44	2,2
030905	45 32024	-73 76772	Châteauguay	a 2 km en amont du	2577	2015-01-01	28 52	27 21	29 12	0.55	3 70
	-5,55034	13,10223		pont-route 152			20,52	52,51	29,12	0,00	5,15

040101			Barrage de la Montagne-	au lac de la Montagne	2577	2015-01-01					
	46,18256	-74,27667	Noire	Noire a Lantier			453,08	453,69	453,38	0,1	0,61
040102			Barrage Papineau	au lac Papineau a	2577	2015-01-01					
				Sainte-Agathe-des-							
	46,12708	-74,30672		Monts			375,17	376,23	375,66	0,13	1,06
040103			Barrage Ludger	au lac Ludger a Sainte-	2577	2015-01-01					
	46,11898	-74,27535		Agathe-des-Monts			374,87	375,71	375,36	0,12	0,84
040104	16 00010	74 27074	Barrage Brule	au lac Brule a Sainte-	2577	2015-01-01	266.40	267.64	267.05	0.45	4.40
040105	46,08318	-74,27974	Dermone Consul	Agathe-des-Monts	2577	2015 01 01	366,48	367,61	367,05	0,15	1,13
040105	46 00007	74 42602	Barrage Cornu	au lac Cornu a Saint-	2577	2015-01-01	200 27	200.05	200.62	0.00	0.50
040106	40,09097	-74,42092	Parrago Manitou	raustinLac-Carre	2577	2015 01 01	389,27	389,85	389,02	0,09	0,58
040100			Ballage Maintou	au iac ivialillou a Sainte-Agathe-des-	2377	2013-01-01					
	46 07442	-74 33600		Monts			389 33	389 9	389 57	0.07	0 57
040107		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Barrage des Sables	au lac des Sables a	2577	2015-01-01	000,00	000,0	000,01	0,01	0,07
				Sainte-Agathe-des-							
	46,05303	-74,30800		Monts			376,17	377,18	376,77	0,15	1,01
040108			Barrage Masson	au lac Masson a Sainte-	2577	2015-01-01					
	46,03069	-74,05572		MargueriteEsterel			334,67	335,33	335,13	0,11	0,66
040109			Barrage Theodore	au lac Theodore a Val-	2577	2015-01-01					
	45,96169	-74,24767		Morin			365,29	366,48	365,89	0,19	1,19
040134			Bonniebrook	en amont du pont de la	651	2019-11-19					
	45,76693	-74,13730		rue du Mont Castel			45,9	47,61	46,46	0,32	1,71
040135			Du Nord	a 8 km de	/82	2019-12-03					
	15 50117	74 26046		Andro d'Argontouil			16.92	10.05	17 1	0.46	2 22
040238	43,36142	-74,30040	Du Diable	a 100 metres en amont	2578	2015-01-01	40,82	49,03	47,4	0,40	2,23
040238	46 11469	-74 60169		du pont de la route 117	2578	2013-01-01	194 62	198.05	195 19	05	3 43
040239	.0,22.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Barrage Chapleau	au lac Chapleau a La	2573	2015-01-01	10 .701	100,00	100/10	0,0	0,10
	46,21078	-74,94681	8	Minerve			266,26	266,92	266,47	0,07	0,66
040240			Maskinonge	1 km en amont de	496	2020-08-14					
	45,91108	-74,77000	_	Boileau			47,1	49,13	47,78	0,38	2,03
040241			Rouge	a 8 km en aval de la	414	2020-12-02					
	46,36480	-74,81680		ville de Riviere-Rouge			44,17	46,2	44,88	0,41	2,03
040407	45,87675	-75,08336	Lac Barriere	au barrage	527	2020-08-13	197,75	198,6	198,12	0,16	0,85
040602			Barrage des Rapides-des-	au lac du Poisson Blanc	2577	2015-01-01					
	46,10124	-75,64807	Cedres	a Notre-Dame-du-Laus			192,66	201,7	199,31	2,34	9,04

040605	46,54842	-75,41889	Lac des ecorces	a Mont-Laurier	2577	2015-01-01	229,46	230,56	229,69	0,11	1,1
040608			Barrage Kiamika	au reservoir Kiamika a	2578	2015-01-01					
	46,62977	-75,12223		Chute-Saint-Philippe			264,04	270,08	267,54	1,26	6,04
040609			Barrage Mitchinamecus	au reservoir	2577	2015-01-01					
	47,21475	-75,17561		Oscar			376.28	382.47	379.36	1.34	6.19
040629	46 50758	-75 38939	Barrage Reno	au lac des ecorces	2571	2015-01-01	228.62	229 79	229 38	0.23	1 17
040829	10,507.50	, 3,30333	Barrage Hubert-Tremblay	au lac des Trente et Un	2577	2015-01-01	220,02	223,73	223,30	0,20	_,_,
			с ,	Milles a Sainte-							
				Therese-de-la-							
	46,27642	-75,80331		Gatineau			161,76	162,6	162,08	0,14	0,84
040830			Gatineau	a la tete des Rapides	2451	2015-01-01					
	47,08325	-75,75353		Ceizur	2570	2045 04 04	25,73	29,5	26,59	0,61	3,77
040841			Desert	sur le chemin Lytton en	2578	2015-01-01					
	16 58992	-76 0/136					185 9/	188.8	186 61	0 / 9	2.86
043108	45,0000	70,04130	Lac des Deux Montagnes	a Pointe-Calumet	2576	2015-01-01	24.2	24.77	22.2	0,45	2,00
042205	45,48900	-73,97808	Barrage du Grand Moulin	sur la riviere des Mille	2575	2015 01 01	21,3	24,77	22,2	0,58	3,47
043203			Barrage un Grand-Moulin	Îles a Deux-Montagnes	2575	2013-01-01					
	45,53319	-73,88236		niveau amont			21,18	24,66	22,03	0,57	3,48
043206	,	,	Des Mille-Îles	en aval du barrage du	2574	2015-01-01	,	,	,	,	,
				Grand-Moulin a Deux-							
	45,53319	-73,88236		Montagnes			21,18	23,59	21,92	0,39	2,41
043208			Barrage des Moulins	sur la riviere des Mille-	2577	2015-01-01				o	
040040	45,69281	-73,64000	Des Mille Îlea	lles a Terrebonne	620	2015 01 01	13,58	14,72	13,99	0,17	1,14
043212	15 52001	-73 88572	Des Mille-lies	de Deux-Montagnes	629	2015-01-01	10/5	22 12	20.72	0 71	2 97
043301	43,33334	-75,00572	Des Prairies	a la tete du rapide du	2571	2015-01-01	19,45	22,42	20,73	0,71	2,57
				Cheval Blanc chenal	2072						
	45,52161	-73,84563		sud			19,1	22,63	20,1	0,63	3,53
046404			Mascouche	a 500 m en amont de	475	2020-10-06					
	45,72147	-73,58247		l'autoroute 640			45,03	47,69	45,4	0,34	2,66
050119			Matawin	a 750 m en amont du	2568	2015-01-01					
				reservoir laureau a							
	46 68411	-73 91480		Saint-Michel-des-			26 35	29.42	26.9	0 44	3 07
	46,68411	-73,91480		Saint-Michel-des- Saints			26,35	29,42	26,9	0,44	3,07

050147			Lac des Piles	a 50 metres en amont	2302	2015-01-01					
	46,65939	-72,77408		du barrage			165,85	166,34	166,08	0,08	0,48
050409			Bras du Nord	a 45 km en amont de la	2577	2015-01-01					
	46,97658	-71,84736		Mauvaise			27,97	30,18	28,37	0,33	2,21
050805			Barrage de Duchesnay	au lac Saint-Joseph a	2577	2015-01-01					
	46.06750	74 60700		Sainte-Catherine-de-			457.07	450.04	450.00	0.00	
050017	46,86750	-/1,63/22	le.uee	la-Jacques-Cartier	420	2020 11 12	157,97	159,21	158,68	0,23	1,24
050917			Jaune	a 1,5 km en amont de	436	2020-11-12					
	46 91762	-71 32182		l auronoule			46.04	48.04	46.33	0.26	2
050918	40,51702	71,52102	Du Berger	au Parc Duberger a 1	437	2020-11-11	40,04	40,04	+0,00	0,20	۷,
000010			Duberger	km de la confluence	107	2020 11 11					
				avec la riviere Saint-							
	46,81550	-71,29460		Charles			47,4	48,69	47,53	0,13	1,29
052212			Ouareau	a la tete des chutes	867	2015-01-01					
	46,03069	-73,70494		Dorwin			27,79	30,77	28,45	0,47	2,98
052228			Noire	a 26 km en amont du	2577	2015-01-01					
				pont-route a Sainte-							
	46,34061	-73,65428		emelie-de-l'energie			26,91	28,57	27,23	0,26	1,66
052233	45 04610	72 40252	De l'Achigan	au pont-route 341a	2578	2015-01-01	20.01	21.11	20.22	0.22	2.2
052227	45,84619	-73,49253	Las Paudan	L'epipnanie	440	2020 11 00	28,91	31,11	29,32	0,32	Ζ,Ζ
032237	46 04493	-73 69727		a nawuun pres uu nont-harrage	440	2020-11-09	11 59	46.18	15 31	0.26	1 59
052401	40,04455	73,03727	Bayonne	a Saint-Felix-de-Valois	2546	2015-01-01	20.26	40,10		0,20	1,55
052601	46,15709	-73,39080	Maskinonga	an amont du nont da	2010	2015 01 01	28,36	29,58	28,62	0,15	1,22
052601			waskinonge	en amont du pont de	2574	2015-01-01					
	46 30117	-73 09619		Sainte-Ursule			26 94	30.02	27 51	0 54	3 08
052603	40,30117	73,05015	Lac Maskinonge	a Saint-Gabriel-de-	2577	2015-01-01	20,34	30,02	27,31	0,04	3,00
	46,30414	-73,39686		Brandon	2077	2010 01 01	141,6	144,98	142,53	0,41	3,38
052604			Barrage Saint-Didace	sur la riviere	2577	2015-01-01					
				Maskinonge a Saint-							
	46,32703	-73,27819		Didace			141,12	143,87	142,35	0,34	2,75
052606			Mastigouche	a 01 km en aval du lac	2577	2015-01-01					
	46,44167	-73,46189		Sainte-Rose			29,35	30,67	29,68	0,21	1,32
052811	16 16262	70 4 404 0	Lac Saint-Alexis	a l'eglise de Saint-	415	2020-12-01	46.47	46.00	16 50	0.07	0.04
CORADIC 1	46,46383	-/3,14318	Las Mágantia /CEUO	Alexis-des-Monts	2240	2015 01 01	46,17	46,98	46,58	0,27	0,81
COBARIC_1	AE E7214	70 00061		Barrage au Lac-	2346	2015-01-01	202.25	205.6	201 20	0.10	2.26
	43,37314	-70,88001	025427)	wegantic			393,23	393,0	394,38	0,19	2,30

COBARIC_10			Nord du pont route 171 /	Nord du pont de la	588	2015-03-09					
	46,50397	-71,07165	Scott	route 171 à Scott			138,	144,83	140,15	1,28	6,83
COBARIC_11			St-Lambert (CEHQ 023402)	Rivière Chaudière à	2326	2015-01-01					
				Saint-Lambert-de-							
	46,58578	-71,21584		Lauzon			111,98	116,8	112,66	0,58	4,82
COBARIC_12			Barrage Innergex	Rivière Chaudière à	685	2016-07-27					
	46,71490	-71,28337		Charny			54,6	56 <i>,</i> 87	55 <i>,</i> 03	0,39	2,27
COBARIC_13			Beaurivage (CEHQ 023401)	Rivière Beaurivage à	2188	2015-01-01					
				Saint-étienne de							
	46,66054	-71,28634		Lauzon			25,61	29,11	26,16	0,44	3,49
COBARIC_3			Ront route 271 / St-	Pont de la route 271 à	1793	2015-01-01					
	46,11999	-70,67332	Georges	Saint-Georges			158,96	164,57	161,61	0,83	5,62
COBARIC_4			Rivière Famine	Rivière Famine à Saint-	2051	2015-01-01					
	46,18459	-70,61601		Georges			26,86	30,05	27,34	0,37	3,19
COBARIC_5			Pont couvert / Notre-	Pont couvert de Notre-	37	2015-04-15					
	46,18146	-70,71785	Dame-des-Pins	Dame-des-Pins			155,5	175,17	159,14	4,98	19,67
COBARIC_6			Pont route 108 /	Pont de la route 108 à	1934	2015-01-01					
	46,21026	-70,77699	Beauceville	Beauceville			145,31	152,7	146,87	1,2	7,39
COBARIC_7			Pont route 276 / Saint-	Pont de la route 276 à	2059	2015-01-01					
			Joseph-de-Beauce	Saint-Joseph-de-							
	46,30821	-70,88469		Beauce			141,99	150,88	145,16	1,16	8,89
COBARIC_8			Pont route 112 / Vallée-	Pont de la route 112 à	1521	2015-01-07					
	46,37451	-70,92835	Jonction	Vallée-Jonction			142,96	150,06	143,57	1,	7,1
COBARIC_9			Pont route 216 / Ste-Marie	Pont de la route 216 à	2468	2015-01-01					
	46,43671	-71,02178		Sainte-Marie			140,06	147,46	141,31	0,99	7,4

*Note : Ces valeurs réfèrent aux statistiques (minimum, maximum, moyenne et écart-type) sur les niveaux quotidiens enregistrés à la station depuis la date de début. L'étendue est la différence entre le niveau maximum et le niveau minimum.

Station	Nom	Nb images	Date	Min	Max	Moy	SD	Étendue	% de
		sur ia station	image	m	m	m	m m	niveau*	r etendue couvert*
023402	Chaudiere	92	2015-08-17	112,01	116,26	112,6	0,8	4,25	89
023409	Barrage Megantic	167	2015-08-17	393,97	395,49	394,41	0,19	1,52	92
023446	Barrage Sartigan	167	2015-08-17	173,03	175,36	173,93	0,41	2,33	66
023450	Beaurivage	13	2021-04-11	48,12	48,43	48,21	0,09	0,31	33
023451	Bras Saint-Victor	40	2020-08-14	47,04	48,05	47,21	0,19	1,01	95
024004	Bourbon	35	2021-04-03	48,9	49,15	48,97	0,07	0,25	36
02LA015	OUTAOUAIS (RIVIERE DES) A HULL	164	2015-07-22	41,05	45,12	41,97	0,99	4,07	97
02LA027	RIDEAU RIVER ABOVE RIDEAU FALLS	164	2015-07-22	4,1	5,2	4,69	0,2	1,1	73
02LB033	BECKETTS CREEK NEAR BECKETTS CREEK	116	2015-07-22	9,47	11,79	9,72	0,51	2,32	98
02MC005	SAINT-LAURENT (FLEUVE) A POINTE-DES-CASCADES	151	2015-07-22	20,88	22,6	21,83	0,43	1,73	93
02OA003	MILLE ILES (RIVIERE DES) A BOIS-DES-FILION	147	2015-07-22	0,61	2,54	1,4	0,5	1,93	96
02OA013	OUTAOUAIS (RIVIERE DES) A SAINTE-ANNE-DE-BELLEVUE	146	2015-07-22	21,34	24,59	22,26	0,8	3,25	98
02OA016	SAINT-LAURENT (FLEUVE) A LASALLE	158	2015-07-22	0,74	2,21	1,53	0,37	1,47	95
02OA033	OUTAOUAIS (RIVIERE DES) A LA MARINA DE SAINTE-ANNE-DE- BELLEVUE	146	2015-07-22	20,76	22,68	21,75	0,47	1,92	98
02OA039	SAINT-LOUIS (LAC) A POINTE- CLAIRE	147	2015-07-22	20,74	22,53	21,72	0,45	1,79	97
02OA041	SAINT-LAURENT (FLEUVE) A LA PRAIRIE	213	2015-07-22	9,65	11,28	10,41	0,37	1,63	100
02OA107	OUTAOUAIS (RIVIERE DES) A TERRASSE-VAUDREUIL	146	2015-07-22	21,32	24,56	22,25	0,79	3,24	98
02OB011	SAINT-LAURENT (FLEUVE) A LANORAIE	133	2016-04-06	3,95	7,5	5,31	0,82	3,56	95

Tableau 5 : Statistiques des données de niveau d'eau correspondant aux images S1, pour les 105 stations retenues

02OE012	MEMPHREMAGOG (LAC) A	203	2015-08-17						
	MAGOG			207,29	208,53	207,68	0,19	1,23	82
02OH001	CHAMPLAIN (LAC) A	138	2016-04-06	4.05	6.28	4.00	0.01	2.22	07
0201007		218	2015-07-22	4,05	6,28	4,82	0,61	2,23	97
0203007	RAPIDES FRYERS	210	2013 07 22	0,55	2,21	1,14	0,46	1,66	98
02OJ016	RICHELIEU (RIVIERE) A LA	218	2015-07-22						
	MARINA DE SAINT-JEAN			0,	1,85	0,68	0,48	1,85	99
030118	Barrage Beaudet	233	2015-08-17	128,69	129,48	128,96	0,14	0,79	63
030120	Nicolet	78	2020-04-04	99,17	100,35	99,44	0,26	1,18	73
030201	Barrage Jules-Allard	233	2015-08-17	284,09	290,11	288,86	0,84	6,02	93
030202	Barrage Aylmer	239	2015-08-17	246,52	248,59	247,88	0,28	2,07	76
030234	Eaton	239	2015-08-17	25,16	26,8	25,6	0,33	1,64	50
030241	Lac Massawippi	239	2015-08-17	160,3	161,83	160,66	0,25	1,53	90
030242	Eaton	84	2020-04-04	253,66	254,64	253,86	0,19	0,98	67
030247	Barrage Bombardier	239	2015-08-17	238,18	238,63	238,45	0,07	0,46	75
030268	Barrage Stukely	239	2015-08-17	284,3	284,59	284,44	0,05	0,29	63
030283	Barrage de Waterville	239	2015-08-17	188,61	189,22	188,73	0,09	0,61	40
030289	Lac Louise	239	2015-08-17	242,6	244,68	242,91	0,31	2,08	85
030296	Lac Aylmer	239	2015-08-17	246,71	248,66	247,91	0,27	1,95	82
030297	Barrage Lyster	239	2015-08-17	470,64	471,25	470,93	0,12	0,61	92
0302A1	Aux Saumons	36	2021-04-03	46,18	46,68	46,34	0,14	0,5	39
030302	Yamaska	159	2016-04-06	62,63	63,49	62,79	0,17	0,86	63
030314	Yamaska Sud-Est	159	2016-04-06	29,94	31,02	30,25	0,2	1,08	68
030326	Barrage Choiniere	158	2016-04-06	139,92	143,48	142,14	0,95	3,56	92
030332	Lac Waterloo	156	2016-04-06	207,96	208,26	208,1	0,05	0,3	49
030342	Barrage de Waterloo	156	2016-04-06	207,89	208,18	208,03	0,05	0,29	59
030345	Yamaska	155	2016-04-06	18,81	21,66	19,36	0,54	2,85	64
030350	Lac Brome	156	2016-04-06	196,32	197,05	196,85	0,12	0,73	62
030354	Yamaska	83	2018-10-28	104,33	105,43	104,57	0,24	1,1	64

030430	Richelieu	254	2015-07-22	28,38	30,53	29,15	0,54	2,15	98
030905	Châteauguay	176	2015-07-22	28,52	31,66	28,99	0,52	3,14	83
040101	Barrage de la Montagne-Noire	168	2015-07-22	453,09	453,62	453,42	0,1	0,53	87
040102	Barrage Papineau	168	2015-07-22	375,28	376,1	375,71	0,12	0,82	77
040103	Barrage Ludger	168	2015-07-22	374,91	375,58	375,39	0,12	0,67	80
040104	Barrage Brûle	168	2015-07-22	366,6	367,6	367,1	0,15	1,	88
040105	Barrage Cornu	167	2015-07-22	389,3	389,82	389,63	0,09	0,52	90
040106	Barrage Manitou	168	2015-07-22	389,33	389,86	389,6	0,07	0,53	93
040107	Barrage des Sables	168	2015-07-22	376,21	377,12	376,81	0,15	0,91	90
040108	Barrage Masson	166	2015-07-22	334,74	335,31	335,15	0,11	0,57	86
040109	Barrage Theodore	166	2015-07-22	365,45	366,42	365,97	0,14	0,97	82
040134	Bonniebrook	45	2020-04-02	45,94	47,61	46,45	0,4	1,67	98
040135	Du Nord	45	2020-04-02	46,83	48,96	47,34	0,51	2,13	96
040238	Du Diable	104	2015-07-22	194,69	198,02	195,31	0,72	3,33	97
040239	Barrage Chapleau	100	2015-07-22	266,33	266,92	266,5	0,09	0,59	89
040240	Maskinonge	14	2020-08-24	47,23	48,35	47,73	0,41	1,12	55
040241	Rouge	11	2021-04-09	44,36	45,63	44,79	0,39	1,27	63
040407	Lac Barriere	17	2020-08-24	198,1	198,59	198,23	0,14	0,49	58
040602	Barrage des Rapides-des-Cedres	186	2015-07-22	192,86	201,69	199,93	1,97	8,83	98
040605	Lac des ecorces	90	2015-08-15	229,56	230,5	229,72	0,16	0,94	85
040608	Barrage Kiamika	91	2015-08-15	264,58	270,07	268,1	1,21	5,49	91
040609	Barrage Mitchinamecus	89	2015-08-15	376,45	382,46	379,75	1,48	6,01	97
040629	Barrage Reno	95	2015-08-15	228,7	229,73	229,39	0,23	1,03	88
040829	Barrage Hubert-Tremblay	262	2015-08-15	161,76	162,6	162,12	0,17	0,84	100
040830	Gatineau	173	2015-08-15	25,79	29,5	26,78	0,77	3,71	98
040841	Desert	177	2015-08-15	185,97	188,8	186,72	0,65	2,83	99
043108	Lac des Deux Montagnes	167	2015-07-22	21,36	24,71	22,23	0,79	3,35	97
043205	Barrage du Grand-Moulin	167	2015-07-22	21,22	24,6	22,08	0,78	3,38	97

043206	Des Mille-Îles	167	2015-07-22	21,22	23,49	21,92	0,51	2,27	94
043208	Barrage des Moulins	172	2015-07-22	13,69	14,38	13,96	0,17	0,69	61
043212	Des Mille-Îles	16	2015-07-22	19,57	22,11	20,21	0,76	2,54	86
043301	Des Prairies	166	2015-07-22	19,12	22,56	20,07	0,8	3,44	97
046404	Mascouche	26	2020-10-06	45,05	46,23	45,4	0,3	1,18	44
050119	Matawin	157	2015-08-15	26,4	29,34	26,97	0,63	2,94	96
050147	Lac des Piles	72	2015-09-27	165,88	166,29	166,09	0,1	0,41	85
050409	Bras du Nord	157	2015-08-17	27,98	29,99	28,43	0,38	2,01	91
050805	Barrage de Duchesnay	158	2015-08-17	158,	159,08	158,73	0,22	1,08	87
050917	Jaune	13	2021-04-11	46,07	46,82	46,32	0,23	0,75	38
050918	Du Berger	13	2021-04-11	47,42	47,67	47,5	0,08	0,25	19
052212	Ouareau	35	2015-07-22	27,79	30,3	28,55	0,74	2,51	84
052228	Noire	168	2015-07-22	26,93	28,34	27,22	0,33	1,41	85
052233	De l'Achigan	212	2015-07-22	28,91	30,94	29,27	0,36	2,03	92
052237	Lac Rawdon	20	2021-04-04	44,89	45,85	45,28	0,27	0,96	60
052401	Bayonne	246	2015-07-22	28,47	29,58	28,62	0,17	1,11	91
052601	Maskinonge	155	2016-04-06	26,98	29,89	27,54	0,7	2,91	94
052603	Lac Maskinonge	172	2015-07-22	141,84	144,89	142,74	0,51	3,05	90
052604	Barrage Saint-Didace	155	2016-04-06	141,45	143,81	142,52	0,3	2,36	86
052606	Mastigouche	168	2015-07-22	29,4	30,5	29,69	0,27	1,1	83
052811	Lac Saint-Alexis	9	2021-04-04	46,3	46,96	46,76	0,19	0,66	81
COBARIC_1	Lac-Mégantic (CEHQ 023427)	141	2015-08-17	393,96	395,48	394,41	0,2	1,52	64
COBARIC_10	Nord du pont route 171 / Scott	30	2016-10-22	138,81	144,24	140,42	1,51	5,43	79
COBARIC_11	St-Lambert (CEHQ 023402)	79	2015-08-17	112,	116,32	112,64	0,84	4,31	90
COBARIC_12	Barrage Innergex	30	2016-08-08	54,84	56,87	55,19	0,51	2,03	90
COBARIC_13	Beaurivage (CEHQ 023401)	76	2015-08-17	25,65	28,53	26,17	0,64	2,88	82
COBARIC_3	Ront route 271 / St-Georges	104	2015-08-17	158,96	164,57	161,52	1,05	5,62	100
COBARIC_4	Rivière Famine	70	2015-08-17	26,87	29,34	27,39	0,54	2,47	77

COBARIC_5	Pont couvert / Notre-Dame-des-	3	2018-04-27						
	Pins			158,	171,	162,33	7,51	13,	66
COBARIC_6	Pont route 108 / Beauceville	70	2015-08-17	145,5	151,76	146,67	1,44	6,27	85
COBARIC_7	Pont route 276 / Saint-Joseph-	67	2015-08-17						
	de-Beauce			142,11	150,88	145,11	1,59	8,77	99
COBARIC_8	Pont route 112 / Vallée-	59	2016-07-22						
	Jonction			142,96	150,06	143,78	1,44	7,1	100
COBARIC_9	Pont route 216 / Ste-Marie	88	2015-08-17	140,12	146,44	141,21	1,25	6,32	85

*Note : Ces valeurs réfèrent aux statistiques (minimum, maximum, moyenne et écart-type) sur les niveaux quotidiens enregistrés à la station pour les jours où une image radar est disponible. L'étendue est la différence entre le niveau maximum et le niveau minimum. Le % est le rapport entre l'étendue à la station du tableau 4 (tous les jours) et l'étendue à la station du tableau 5 (jours d'images).

Bibliographie / référence

Akaike, Hirotogu (1973), "Information theory and an extension of the maximum likelihood principle", in Petrov, B. N.; Csáki, F. (eds.), 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, Budapest: Akadémiai Kiadó, pp. 267–281. Republished in Kotz, S.; Johnson, N. L., eds. (1992), Breakthroughs in Statistics, vol. I, Springer-Verlag, pp. 610–624.

Chokmani, Karem (2022) Livrable 1 - Mise en place de la base de données. 17 p.

Chokmani K., Viau A. A., Bourgeois G., (2001) Analyse de l'incertitude de quatre modèles de phytoprotection relative à l'erreur des mesures des variables agrométéorologiques d'entrée. Agronomie, 21, 147-167.

El-Alem, A., Chokmani, K., Laurion, I., El-Adlouni, S.E., Raymond, S., Ratte-Fortin, C. (2019) Ensemble-Based Systems to Monitor Algal Bloom with Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 57 (10), art. no. 8736492, pp. 7955-7971.

Leboeuf, Antoine (2015) Projet d'acquisition de données par le capteur LiDAR à l'échelle provinciale - Analyse des retombées et recommandations. Ministère des forêts, de la faune et des parcs (MFFP) du Québec, Direction des inventaires forestiers. Québec (Québec)

Matgen P, Hostache R, Schumann G, Pfister L, Hoffmann L & Savenije HHG (2011) Towards an automated SARbased flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth 36(7-8):241-252.

MathWorks (2022). Z-shaped membership function. Consulté le 13 décembre 2022. https://www.mathworks.com/help/fuzzy/zmf.html

Oubennaceur, K., Chokmani, K., Nastev, M., Gauthier, Y., Poulin, J., Tanguy, M., Raymond, S., Lhissou, R. (2019) New sensitivity indices of a 2D flood inundation model using gauss quadrature sampling. Geosciences (Switzerland), 9 (5), art. no. 220,DOI: 10.3390/geosciences9050220

Oubennaceur, K., Chokmani, K., Nastev, M., Tanguy, M., Raymond, S. (2018) Uncertainty analysis of a twodimensional hydraulic model. Water (Switzerland), 10 (3), art. no. 272 DOI: 10.3390/w10030272

Schwarz, Gideon (1978) Estimating the dimension of a model. Ann. Statist. 6, no. 2, 461–464.

Torvi H., Hertzberg T., (1997) Estimation of uncertainty in dynamic simulation results. Comput. Chem. Eng. 21 (Suppl.) S181–S185.