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ABSTRACT This paper presents a Spatial-Temporal Diagram (STD) algorithm for real-time vehicle
counting and speed estimation in camera-based traffic surveillance. The algorithm consists of four main
steps: STD graph generation highlighting vehicles as peaks, graph refinement using Gaussian Mixture
Model likelihood optimization, peak detection through RANdom SAmple Consensus model fitting, and
traffic parameter computation. Testing on over 11 million video frames from diverse sources, including
511 highway cameras, NVIDIA AI City Challenge, and Next Generation Simulation datasets, demonstrated
the algorithm’s robustness across varying illumination, weather conditions, and road infrastructures. The
algorithm achieved average accuracies of 95.4%, 96.9%, and 96.1% for Precision, Recall, and F1-Score,
respectively, outperforming traditional deep learning methods while requiring less computational resources.

INDEX TERMS Spatial-temporal diagram (STD), intelligent transportation system (ITS), vehicle counting,
speed estimation, traffic flow, radiometric camera.

I. INTRODUCTION
Smart City technologies are essential for addressing the
challenges of urbanization, with 70% of the global population
projected to live in cities by 2050 [1]. Transportation
improvements are a major focus of smart city initiatives, such
as the US DOT’s ‘‘Smart City Challenge’’ in 2015, which
encouraged innovative solutions to urban transportation
issues [2]. Data collection methods in smart cities are
categorized into sensor-based methods, like LiDAR and
radar, and vision-based methods using cameras [3], [4], [5].
Cameras are preferred due to their flexibility, contextual
data capture, and wide coverage, enabling applications like
vehicle counting, speed estimation, and traffic flow moni-
toring [6]. This study utilizes highway video observations to
estimate traffic parameters such as volume, density, and flow,
but challenges like lighting, weather conditions, and camera
quality complicate this task. While high-resolution cameras
offer superior data quality, their cost and computational
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demands pose practical limitations. Therefore, an effective
algorithm must optimize cost, accuracy, and adaptability to
varying conditions [7].

Since numerous organizations already have low-resolution
camera networks formanual trafficmonitoring, creating com-
puter vision techniques that can use these existing resources
makes economic sense. We can extract fresh data from these
installed resources by applying centralized computer vision
systems to these established camera networks. This approach
allows us to continue using thousands of cameras that were
deployed in the past, thereby saving on replacement expenses.
Moreover, such a system reduces dependence on camera
suppliers, ensuring consistent data collection regardless of
the camera types used. For example, ‘‘511 highway camera’’
is a free traffic information service available in the United
States and Canada [8]. It started in 1995 at the University
of North Dakota, initially covering North and South Dakota
highways. Over time, it expanded and received support from
the Federal Highway Administration. As of 2021, 37 states
have implemented 511 public traffic cameras. These cameras
vary in number, quality, and location, mainly in high-traffic
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areas. They are valuable for traffic data analysis, but most
are used for monitoring and information sharing rather than
innovative data collection.

Previous research on vehicle counting and speed estima-
tion is categorized into three phases: detection, tracking, and
speed estimation. Detection focuses on identifying vehicles
within video frames, while tracking ensures the same vehicle
is consistently followed across consecutive frames. Speed
estimation maps image space to real-world coordinates.
Advanced deep-learning methods like Single Shot Detector
(SSD), You Look Only Once (YOLO), and Region-based
Convolutional Neural Networks (RCNN) have significantly
improved vehicle detection by using bounding boxes to
identify vehicles [9], [10]. One-step methods like SSD and
YOLO are faster but less precise than two-step approaches
like RCNN, which offer better classification but require more
computation time [11]. Studies on highway videos evaluated
these algorithms under various conditions, including low
light, adverse weather, and diverse camera angles [12].
YOLOv7 demonstrated superior performance in detection
and localization, while YOLOv8 excelled in processing
speed. However, real-time applications remain challenging
without GPUs. The study also revealed that RCNN and
SSD are less effective in highway scenarios unless trained
on extensive datasets. YOLO versions perform best with
high-resolution videos (e.g., 4k) or cameras closer to traffic.
Customizing deep learning models for vehicle detection
requires large-scale training, which is time-intensive.

Vehicle counting, essential in many fields, involves
estimating the number of objects in still images or video
frames. Recent machine learning solutions, particularly
supervised methods, are categorized into regression-based
and detection-based approaches [26], [26]. Regression-based
methods map image features to object counts or density
maps without detecting individual instances. While effective
in crowded scenes with unclear object boundaries, they
struggle with perspective distortion and large objects, pro-
viding only general object locations. In contrast, detection-
based methods like DeepSORT excel in tracking objects.
DeepSORT builds on the SORT algorithm by integrating
motion and appearance features for accurate tracking,
assigning unique identifiers to vehicles, and minimizing
identity errors [32]. The tracking process requires the
vehicle’s travel distance to calculate velocity, obtained
through paired cameras or two known-distance lines [27].
The two-line method is faster and more cost-effective than
photogrammetry, which demands overlapping cameras and is
impractical for single-camera systems like 511. Additionally,
the two-line method enables speed estimation and vehicle
counting separately for each lane, enhancing efficiency and
accuracy.

As previously discussed, an effective algorithm needs
to strike a balance between factors like cost, accuracy,
computational time, and adaptability to various conditions.
Based on previous research, Table 1 summarizes the key
criteria directly impacting these aspects.

Researchers have proposed practical vehicle detection,
tracking, and speed estimation approaches to enhance
traffic monitoring with radiometric cameras. However, there
remains a gap in developing algorithms that perform effi-
ciently under different lighting conditions, such as day and
night transitions. Furthermore, limited research has addressed
the challenges posed by varying illumination during sunset,
which is the most changing illumination period. Many
previous approaches also require time-consuming training
data to adapt to specific cameras. Although GPU processors
can reduce computation time, it comes at a cost. The expense
of employing a dedicated GPU for each camera in systems
like 511 is substantial. Moreover, there is a lack of focus
on developing algorithms that can function effectively under
diverse weather conditions. Hence, the primary contributions
of our algorithm in this study are as follows:

• We present a robust spatial-temporal graph to repre-
sent the road environment. Additionally, a likelihood
optimization with a normalization stage is developed
to improve the quality of the generated graph. Sub-
sequently, we fit a polynomial model using Random
Sample Consensus (RANSAC) to this enhanced graph
for desirable parameter extraction.

• Our proposed algorithm is capable of vehicle counting
and speed estimation without requiring training datasets.
Additionally, the algorithm does not necessitate the
implementation of high-performance GPUs. Signifi-
cantly, there is no need to install specific cameras;
they operate efficiently on existing highway cameras,
spanning from low-resolution cameras (e.g., 511) to
high-resolution ones.

• Despite not utilizing GPU processors, our algorithmwill
process video sequences in real time and can handle
multiple cameras simultaneously using an ordinary
computer system.

• The algorithm will be evaluated using millions of video
frames under various weather conditions, including
rainy, snowy, and windy days, which may result in the
camera recording blurred images. The analysis encom-
passes lighting scenarios with darker environments,
such as daytime, nighttime, and sunset. Diverse road
infrastructures, from the USA to Canada, have been
chosen to assess the algorithm’s performance in varying
environments.

II. PROBLEM DEFINITION
Highway cameras are fixed above the ground, capturing
static road infrastructures with vehicles as the only moving
elements, enabling a focus on road sections with vehicle
motion. By placing a selection point (red star) on each lane
(Fig. 1), vehicle movement is tracked. When a vehicle passes
the point (e.g., Frame = 782), the value at the point peaks
compared to when no vehicle is present (e.g., Frame =

686). This generates the Spatial-Temporal Diagram (STD),
with the horizontal axis representing frame numbers and
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TABLE 1. Summary of the previous works.

the vertical axis showing the output aggregation value for
the selected point. The STD must accommodate various
challenging scenarios, including diverse weather conditions
and illumination changes, from day to night, ensuring that
vehicle peaks remain identifiable even in adverse weather.

The generation of the STD must account for changing
illumination throughout the day and seasonal variations, par-
ticularly in winter, when cloud cover affects the light levels.
Accurate offset detection is essential to avoid misidentifying
the road surface as vehicles. Additionally, a line fitting model
is crucial for aligning with the STD, helping to accurately
identify vehicle peaks, which are counted to estimate traffic
flow. The algorithm must also handle multiple peaks per
vehicle, especially with larger vehicles like trucks, and
assign unique identifiers to ensure reliable vehicle tracking.
Moreover, the STD must allow for speed estimation by using
two known-distance points on each lane, with time and
distance data allowing for accurate speed calculation.

III. METHODOLOGY
Our algorithm works in four main steps. First, it creates
an STD diagram where peaks show vehicle presence. Then,
it refines this diagram usingGaussianMixtureModel (GMM)
likelihood optimization. Next, it uses Random Sample
Consensus (RANSAC) to fit an equation and detect peaks,
aiding in vehicle counting and speed estimation. Finally,
it calculates traffic parameters like flow and volume. Fig. 2
displays the flowchart, with a detailed discussion of each step.

FIGURE 1. Displaying Spatial-Temporal Diagram (STD) of a point selection
on the roadway.

A. SPATIAL-TEMPORAL DIAGRAM (STD) GENERATION
The process of generating an STD graph involves three steps:
point selection, spatial pyramid feature extraction, and output
aggregation, each of which is detailed below. Two steps of
road detection and road marking extraction can do the point
selection process. Regarding road detection, vision trans-
formers (ViT) have recently had a noticeable performance in
semantic segmentation or object classification [33]. Currently
leading in various image recognition tasks within computer
vision, Convolutional Neural Networks (CNNs) face a
compelling rival in Vision Transformers (ViT). ViT models
surpass the prevailing state-of-the-art (CNN) by nearly
fourfold in accuracy and computational efficiency [34].
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FIGURE 2. Flowchart of the proposed methodology.

A notable ViT-based model in computer vision is the
Segment Anything Model (SAM) [35]. SAM transforms
the input image into semantic segments, as illustrated in
Fig. 3-b. Notably, distinct colors, such as road surfaces,
are assigned to each object. SAM effectively separates
two distinct roadways, facilitating counting of vehicles on
different road infrastructures. In the next step, segments
of roads are detected by applying this [19] method. If the
camera has high resolution and a near part of the road area
is going to be analyzed, the road markings are extracted
from the next step by the SAM. The road markings are
the linear segments seen in Fig.3-c. Finally, the middle
point is a selection between the two adjacent road markings.
Since separating road markings is somewhat challenging,
particularly for cameras far away from the road surfaces, the
point selection is manually updated on each side of the lanes.
Fig. 3-d illustrates the six selected points in the regions. This
point selection is done once per camera and can be done, for
example, 100 cameras in less than 2 hours of a working day.

After selecting the points, kernels of odd sizes are
employed, with the center pixel being the selected point. For
instance, a k×k kernel contains pixel values of Pci,j (where C
is the number of image channels, typically 3 for RGB). Four
kernel sizes, namely 1, 3, 5, and 7, were chosen through trial
and error. Notably, this pyramid feature extraction method
enhances the significance of central pixels, as they are part
of all kernels. Subsequently, the obtained kernels are merged
and flattened into a single layer. This layer has 84×C values
and is called a fully connected layer. Following this, three
parameters (Equ. 1, 2, 3)—average, skewness, and standard
deviation of the fully connected layer—are calculated and
incorporated into the subsequent layer. It is expected that

FIGURE 3. The processes of point selection: (a) a sample roadway image;
(b) segmentation of the image by SAM methodology; (c) road marking
detection on the road segments; (d) point selection between each two
road markings and updating the point selection process manually.

when a vehicle is in the region of kernels, for example, in the
frame of t , the two values of mean and standard deviation
will be a large value in comparison to when the vehicle does
not exist (frame of t + n, where n is some next frames which
the vehicle is passed the selected point). Also, the skewness
should be near zero when a vehicle is not in the pyramid
sections. Finally, the aggregation output is determined based
on these three values. Initially, the probabilities of these three
values are calculated based on the SoftMax algorithm (Eq.
4). The probability value of the mean is expected to be near
1 when a vehicle is not in the kernels or pyramid sections
because the values of standard deviation and skewness will
be near zero. Therefore, the Output Aggregation equals the
sum of the multiple of the obtained probabilities to their
corresponding values. As seen in Fig. 1, for each selected
point, an STD can be obtained in which the peaks indicate
the location of the vehicles.

µ =
1
N

N∑
i=1

xi (1)

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (2)

γ =
1

Nσ 3

N∑
i=1

(xi − µ)3 (3)

pi =
exi∑3
j=1 e

xj
(4)

where xi the value of the flatted fully connected layer. N the
number of the fully connected layer where it equals 84 × C .
pi is three values of mean, skewness, and standard deviation,
i ∈ {1, 2, 3}.

B. STD MODIFICATION
Since our algorithm will finally be implemented on 24/7
cameras, the STD graph has more than 30 × 60 × 60 ×

24 = 2, 592, 000 frames in a single day if we consider
the camera record 30 frames per Second (FPS). Indeed,
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FIGURE 4. Displaying Spatial-Temporal Diagram (STD) steps.

finding a universal model fitting on this STD graph for peak
detection is somewhat challenging; therefore, we propose a
patching scenario and work separately on each created patch.
In addition, abrupt illumination changes that result in an
offset on the STD graph may occur due to, for example,
switching on the pole lights at sunset or appearing darker
clouds in winter seasons. Thus, this abruption also should

be found and updated in the patching step. Finally, a GMM
likelihood optimization and normalization between zero and
one are applied on each created patch to modify the STD
graph. This modification better represents the peaks and
simplifies the model fitting step to count vehicles by peak
detection.

1) PATCHING
Signal patching (Fig. 5-a, b) involves segmenting a contin-
uous signal into smaller sections or frames called patches.
These patches allow localized analysis and processing of
specific signal segments, facilitating various signal process-
ing tasks such as feature extraction, denoising, spectral
analysis, and pattern recognition. More importantly, finding
a robust and fitted equation line between each patch is much
more possible than a universal curve function on a lengthy
STD figure. There are primarily two approaches to signal
patching. The first method divides the signal into distinct,
non-overlapping segments with a fixed duration 1T . The
number of these patches is denoted as Npatches within the
signal and is determined by Npatches = T/1T , ensuring
equal-duration segments. The second approach involves
overlapping patches, where segments of the signal share a
portion, resulting in patches that have overlapping regions.
In this study, we have used non-overlapping patching with
4000 frames per patch.

The offset detectionmethod identifies signal offsets in each
patch by dividing them into two segments and analyzing their
statistical properties, such as mean and variance. The mean
of a segment, defined in Equation 5, is calculated as the
average value of all points within the range [xm, xn], where
xm and xn represent the start and end indices of the segment,
respectively. This is mathematically expressed as:

mean([xm . . . xn]) =
1

n− m+ 1

n∑
r=m

xr (5)

The variance, as shown in Equation 6, measures the extent
to which the values deviate from the mean. It is calculated
by summing the squared differences between each data point
xr in the segment and the segment’s mean. The variance is
normalized by dividing the sum of squared deviations by the
total number of points in the segment, (n− m+ 1):

Svar ([xm . . . xn]) =
1

n− m+ 1

n∑
r=m

(xr − mean([xm . . . xn]))2

=
Sxx |nm

n− m+ 1
(6)

In this context, Sxx is defined in Equation 7 as the
cumulative deviation for all points in the segment. It is
computed by summing the product of deviations for xr and
yr from their respective means:

Sxx |nm=

n∑
r=m

(xr − mean([xm . . . xn]))(yr − mean([ym . . . yn]))

(7)
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FIGURE 5. STD graph in which a pole light caused offset; (b) displaying
the patching process by colorization; (c) offset detection where the red
line represents the position of the occurred offset.

The offset detection method iteratively adjusts the division
point to minimize the total residual error. The process
involves finding the optimal horizontal level for each patch
by evaluating changes in mean and variance and identifying
the division point that results in the smallest residual error
across all sections.

The patching and offset detection process is illustrated in
Fig. 5. Fig. 5-c displays the red line, which indicates the
detected offset’s location on the STD graph. In this graph, the
offset was due to switching on the pole lights. Subsequently,
the patch with an identified offset is split into distinct patches.
For STD graphs without offsets, the red line sits at the
boundary of each patch.

2) GAUSSIAN MIXTURE MODEL (GMM) LIKELIHOOD
OPTIMIZATION
This step is going to modify the STD graph on each
patch. The GMM is a probabilistic model representing a
probability distribution over a dataset [35]. It assumes that

the data is generated from a mixture of several Gaussian
distributions, each with its mean and covariance. The GMM
aims to estimate the parameters of these Gaussians to fit
the observed data best. Let us delve into the likelihood
optimization process for a GMM,which involves maximizing
the likelihood function to determine the model’s parameters.

This procedure typically involves an Expectation-
Maximization (EM) algorithm [36]. Consider a dataset X =

{x1, x2, . . . , xN } containing N observations inD-dimensional
space. Here, X is the STD graph with one dimension. The
GMM is represented as a weighted sum of K Gaussian
distributions:

p(x|θ ) =

K∑
k=1

πkN (x|µk , 6k ) (8)

where θ represents the parameters of the GMM: θ =

{πk , µk , 6k}
K
k=1.

• πk is the mixing coefficient for the kth Gaussian
(
∑K

k=1 πk = 1)
• µk is the mean vector of the kth Gaussian
• 6k is the covariance vector of the kth Gaussian
• N (x|µk , 6k ) denotes the Gaussian probability density
function

The goal is to maximize the log-likelihood function to
estimate the optimal parameters θ :

θ∗
=

N∑
n=1

log p(xn|θ ) (9)

The EM algorithm iteratively maximizes the likelihood
function in the E-step (Expectation) and the M-step (Maxi-
mization).

E-step (Expectation): Initialize the parameters θ randomly.
Calculate the posterior probabilities (responsibilities) using
Bayes’ theorem:

γ (znk ) =
πkN (xn|µk , 6k )∑K
j=1 πkN (xj|µj, 6j)

(10)

M-step (Maximization): Update the model parameters
using the responsibilities:

Mean Update:

µk =

∑N
n=1 γ (znk )xn∑N
n=1 γ (znk )

(11)

Covariance Update:

6k =

∑N
n=1 γ (znk )(xn − µk )(xn − µk )T∑N

n=1 γ (znk )
(12)

Mixing coefficient Update:

πk =

∑N
n=1 γ (znk )
N

(13)

The GMM likelihood optimization via the EM algorithm
involves iteratively updating parameters based on the data’s
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latent structure, allowing the model to converge to a con-
figuration that best represents the observed data distribution.
Finally, the Gaussian model, its parameters of the mean (µ)
and standard deviation (σ ) were obtained and applied on the
STD graph patches:

Gaussian Model =
e−0.5( x−µ

σ
)2

σ
√
2π

(14)

Next, it is necessary to normalize the data within the range
of 0 to 1:

Normalization =
|x − µ|

max(Modified STD)
(15)

Figure 6 illustrates the modified STD and normalization
on a sample STD graph, where the peaks still indicate the
presence of vehicles. In the original STD graph (Figure 6-
a), vehicles appearing across consecutive frames caused
fluctuating values, posing a challenge for accurate vehicle
counting. However, in the modified STD graph, each vehicle
frame value shows a consistent positive peak value.

FIGURE 6. Processes of STD modification: (a) a sample STD graph; (b) a
modified STD graph.

C. VEHICLE COUNTING AND SPEED ESTIMATION
On the modified STD graph, the peaks are vehicles, and
others are generally called background locations. A model
fitting based on Random Sample Consensus (RANSAC) is
considered to model the background pattern. RANSAC can
find and model a robust equation on the modified STD graph.
Afterwards, we will use this model to count the vehicle and
speed estimation.

1) RANSAC MODEL FITTING
RANSAC is an iterative algorithm used in computer vision
and robust estimation tasks to estimate model parameters

from data [37]. It starts by selecting random subsets from
the data, initializing parameters like the minimum required
data points, a threshold to distinguish inliers from outliers,
and either a maximum iteration count or a stopping criterion.
The algorithm iterates by selecting subsets, fitting a model,
and evaluating the number of inliers (points consistent with
the model). The model with the largest consensus set, or the
highest number of inliers, is chosen. Afterward, model
parameters are recalculated using all inliers, and refinement
techniques like least squares may be applied to enhance
accuracy. RANSAC’s strength lies in its ability to mitigate
the impact of outliers, ensuring robust model fitting.

In this study, polynomial fitting is employed to
model signal data, where the algorithm receives modified
Spatial-Temporal Diagram (STD) values (xi, yi) and uses
the polynomial degree M specified by the user. Initially,
polynomial coefficients are randomly initialized, and the
algorithm performs polynomial fitting using least squares
regression. The polynomial function is optimized tominimize
the error between the fitted polynomial and the data points.
This is done by reducing the sum of squared errors (SSE),
with the residual errors of each data point calculated. Poly-
nomial coefficients are refined using optimization techniques
like Gradient Descent [38]. The iterative process continues
until convergence, ensuring that the fitted polynomial best
represents the relationships in the modified STD data. Tests
on over 214 STD graphs identified optimal parameter ranges
for the stopping criterion and random sample.

Error =

N∑
i=1

(yi − (aMxMi + aM−1x
M−1
i + · · · + a1xi + a0))2

(16)

at+1
j = atj − α

∂Error
∂aj

(17)

2) VEHICLE COUNTING
In Fig. 6-b, the vehicles are evident as peaks. Hence,
we employ a local maximum point detection method to
locate these peaks and subsequently recognize and count
the vehicles between them. Finding local maxima in signal
processing is like looking for the highest points in a data
landscape. Imagine a graph representing your data; local
maxima are those peaks with higher values than their
neighboring points. Here, we consider the neighborhood
points equal to the random sample (10). It works here: every
point is checked as it moves along the data. A point whose
value is greater than that of the points immediately preceding
and following it is a candidate for a local maximum. This
method helps identify significant spikes or high points within
the modified STD.

In Fig. 7-b, the outcome of the local maxima process on
the modified STD graph is illustrated. It reveals numerous
identified local maxima points, including irrelevant points
within the background values. Based on the RANSAC model
fitting (depicted by the blue line in Fig. 7), a candidate peak
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selection stage is introduced to refine this. Local maxima
points within a distance lower than the stopping criterion
(0.1) are eliminated, while the rest are deemed candidate
peaks (Fig. 7-c). Indeed, we used the inlier points of the
RANSAC model fitting points from the candidate peaks
selection to remove useless peaks. Ultimately, consecutive
candidate peaks are treated as a single vehicle, given that
a vehicle might span several continuous frames. Therefore,
those candidate peaks in consecutive manners are selected
as one class, the maximum one remains, and others are
deleted. Fig. 7-d showcases the final output of the vehicle’s
counting. This example shows 11 vehicles passed through a
point selection within 1000 recorded frames.

D. SPEED ESTIMATION
Speed measures how quickly something moves or the rate at
which an object changes its position over a certain period.
Indeed, the speed is the distance traveled per unit of time. It is
typically expressed in units such as meters per second (m/s),
kilometers per hour (km/h), or miles per hour (mph). Speed is
a scalar quantity, representing only how fast an object moves,
regardless of its direction. This step aims to estimate the speed
of vehicles by the modified STD graph and vehicle counting
step. The modified STD graph gives the number of vehicles
that passed a point selection region and the exact timeline.
Thismeans that if we consider two points of Point A and Point
B as the point selection where their distance (DistanceAB) is
known, and the time of the VehicleX which passed the two
points, can be obtained.

Since cameras record the time of frames, the passing time t
between the two points is equal to dividing the subtraction of
the number of frames in which the vehicle passed two points
to the camera’s FPS. Each camera has a specific and known
FPS. Fig. 8 shows the modified STD graphs of Point A and
Point B. The vehicle’s counting step is shown in black on each
graph. At Point A, for example, Vehicle9 has passed on the
frame of 508 while it goes on the frame of 534 on Point B.
As the FPS of cameras was 10, the traveled time equals t =

(534 − 508)/10 = 2.6 seconds. Since the distance of two
points was 20 meters, the speed of Vehicle9 was estimated to
Speed = 20/2.6 = 7.69 m/s or 7.69 × 3.6 = 27.68 km/h.
The speed of Vehicle10 was estimated to equal 37.89 km/h.

E. TRAFFIC PARAMETERS
Traffic parameters are essential for understanding and
managing traffic flow and behavior on roadways. Traffic
flow, defined as the number of vehicles passing a specific
point over a set period, can be calculated by counting
the vehicles that appear in a certain number of frames,
VehiclesCount, during a given period t . For instance, with a
camera recording at 30 FPS over one hour (3600 seconds),
the number of frames would be 3600 × 30 = 108, 000. The
traffic flow is then calculated as:

traffic flow =
VehiclesCount

t

FIGURE 7. Process of vehicle counting: (a) a fitted model based on
RANSAC on the modified STD; (b) local maxima detection; (c) candidate
peaks detection; and (d) vehicle counting.

Volume variation, which captures fluctuations in traffic
volume, can be measured through parameters like the Aver-
age Annual Daily Traffic (AADT), Average AnnualWeekday
Traffic (AAWT), Average Daily Traffic (ADT), and Average
Weekday Traffic (AWT). These values provide insights into
traffic distribution and help guide highway design decisions.
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FIGURE 8. Speed estimation of vehicles by generating two modified STD
graphs on two points of a lane road.

Time headway, the gap between consecutive vehicles in the
same lane, is another critical parameter. It is measured in
seconds and is essential for understanding traffic flow dynam-
ics, congestion, and safety. Shorter headways often result
in congestion and reduced efficiency. In comparison, longer
headways improve traffic flow and safety. These parameters,
including traffic flow and time headway, are fundamental for
traffic analysis, allowing engineers to optimize infrastructure
and improve overall traffic management and safety.

IV. DATASETS AND RESULTS
A. DATASETS
In preparing our algorithm for an industrial environment,
we have prepared challenging video datasets to assess its
performance thoroughly under diverse conditions. Table 2
outlines the crucial parameters of these datasets. The dataset
comprises 11.438 million frames, encompassing various illu-
mination changes and weather conditions. These challenging
video datasets aim to cover almost all conceivable scenarios,
ensuring a comprehensive evaluation of our algorithm’s
capabilities.

This study also used 511 highway cameras in Quebec City,
New York, Montreal, and Edmonton, with 367,870 frames.
This data was recorded between 2021 and 2023 in various
weather conditions. Some of them are real-time, like the
511 highway cameras of Edmonton, Canada, and some are
updated every 5 seconds, like Quebec City, which, after a
while, is updating. These kinds of cameras generally have a
resolution of around 352 × 240 pixels.
Also, several shared videos have been considered through-

out two platforms, YouTube and Istockphoto. The keywords
were used: ‘‘Traffic Jam’’, ‘‘Highway Road’’, ‘‘Night City
Traffic’’, ‘‘Highway City Traffic Sounds’’, ‘‘Highway Traffic
Relax’’, ‘‘Los Angeles Freeway’’, and ‘‘Highway Roadside
Ground View’’. The other two datasets of Next Genera-
tion Simulation (NGSIM) Program I-80 Videos [39], and
Nvidia AI (www.aicitychallenge.org) are publicly available
for traffic monitoring. These datasets have covered more
than 7.5 million frames in various weather conditions and
diverse camera quality ranging from low resolution to high
resolution.

B. RESULTS
1) ACCURACY ASSESSMENT
Metrics of Equ. (18) to (23) are crucial in evaluating
algorithms’ performance, including our vehicle counting
algorithm. Precision accuracy estimates the accuracy of
positive predictions, calculating the ratio of true positive
predictions to all positive predictions. Recall accuracy, also
known as sensitivity, measures themodel’s ability to correctly
identify all positive instances by considering true positive
predictions against the total actual positives. The False
Negative Rate (FNR) indicates the proportion of actual
positive instances incorrectly predicted as negative. At the
same time, the False Discovery Rate (FDR) determines
the ratio of false positives to the total positive predictions
made by the model. The Critical Success Index (CSI),
or Threat Score, assesses the agreement between predicted
and observed outcomes, encompassing event and non-event
detections. Lastly, the F1-Score balances precision and recall,
representing the harmonic mean of the two metrics, ensuring
a comprehensive evaluation of false positives and negatives
in the model’s predictions. Collectively, these metrics offer
insights into the model’s predictive accuracy, highlighting its
strengths and areas for improvement in various classification
scenarios. Notably, the optimal value of FNR and FDR is
zero, while the others are 100%.

Precision =
TP

TP + FP
× 100 (18)

Recall =
TP

TP + FN
× 100 (19)

False Negative Rate (FNR) =
FN

FN + TP
× 100 (20)

False Discovery Rate (FDR) =
FP

FP + TP
× 100 (21)

Critical Success Index (CSI) =
TP

TP + FN + FP
× 100

(22)

F1-score =
2 × (Precision × Recall)

Precision + Recall
× 100 (23)

where TP, FP and FN are True Positive, False Positive, and
False Negative, respectively.

2) STD RESULTS
This section presents a comparative evaluation of multiple
accuracy metrics across various datasets. It assesses the
performance of our algorithm on different datasets collected
from distinct sources. The precision values range from 67.2%
to 99.7%, averaging 95.4%. The NGSIM dataset showcases
the highest precision, while lower values are observed in the
YouTube and NVIDIA AI datasets. Recall values range from
94.1% to 99.7%, averaging 96.9%, with the NGSIM dataset
exhibiting the highest recall. The False Negative Rate (FNR)
spans from 1.5% to 5.3%, averaging at 3.1%, showcasing
the lowest rate in the NGSIM dataset. False Discovery
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TABLE 2. Summary of the used datasets specifications.

Rate (FDR) ranges from 2.3% to 7.5%, with an average of
4.6%, where the YouTube dataset displays the highest FDR.
Critical Success Index (CSI) varies from 88.6% to 96.6%,
averaging 92.6%, with the NGSIM dataset demonstrating the
highest CSI values. The F1 score fluctuates between 94.0%
and 98.2%, averaging 96.1%, with NGSIM showcasing the
highest F1 score among the datasets.

Across most metrics, the NGSIM dataset consistently
demonstrates superior performance, while the YouTube and
NVIDIA AI datasets exhibit comparatively lower accuracy in
certain areas. The average values indicate reasonably good
overall performance, particularly in precision, recall, and
F1-Score metrics. Vehicle occlusion and shadows primarily
affected the precision and recall accuracies negatively.
Regarding the traffic parameters, the time frame differ-
ence between the two consecutive detected vehicles is
equivalent to time headway. Also, the number of counted
vehicles directly gives the volume traffic parameters, which,
depending on the video times, measure the corresponding
parameters. These parameters were not measured since we
did not have a long time frame for a region from this study.
Nevertheless, they can be obtained if these video datasets are
recorded.

3) COMPUTATIONAL TIME
This study used a computer with a 12th Gen Intel(R)
Core(TM) i7-4700HQ CPU running at 2.4GHz and 16.0 GB
of RAM. The average time to process each frame was
between 0.003 and 0.008 seconds. Each video frame was
analyzed within this time range. Considering a video
recording at 30 frames per second (FPS), our algorithm
can analyze one-second frames in about 0.003 × 30 =

0.09 seconds. Our algorithm is approximately ten times faster
in real-time vehicle counting and speed estimation.

V. DISCUSSION
A. CHALLENGING DATASETS
Selecting cameras for highway surveillance poses chal-
lenges based on several critical criteria that significantly
impact their effectiveness in monitoring traffic flow and
incidents. One primary criterion is camera resolution,
where the choice between high-resolution, such as 4K, and
low-resolution cameras greatly influences the quality and

clarity of the captured images. The resolution choice is
pivotal as high-resolution cameras offer sharper visuals,
aiding in detailed object recognition. However, integrating
low-resolution cameras might compromise detection accu-
racy due to limited image clarity. Another crucial factor
is the diversity of weather conditions the cameras must
withstand, including rain, snow, fog, and varying light
intensities. Ensuring the cameras’ functionality in diverse
weather situations is essential for maintaining consistent
surveillance efficacy.

Additionally, the field of view provided by the cameras,
whether oblique or vertical, impacts the angles and scopes of
the road captured, each presenting its advantages and limita-
tions regarding coverage and depth for vehicle identification
and tracking. The distance between the cameras and the road
infrastructure is also significant. Cameras placed at varying
distances may affect the size and contextual information of
vehicles captured, influencing detection and classification
accuracy. Lastly, adaptability to illumination changes, such
as transitioning between day, night, and sunset lighting
conditions, is vital for seamless and accurate surveillance
throughout the day. Each criterion plays a crucial role in
the dataset selection process, aiming to address challenges
and create a robust and comprehensive surveillance sys-
tem tailored for efficient highway monitoring. A balanced
consideration of these factors was key to ensuring optimal
performance and reliability in traffic surveillance.

B. SAM AND POINT SELECTION EVALUATION
The Segment Anything Model (SAM) presents a range
of advantages in computer vision and object segmentation
tasks. Its versatility allows for identifying and distinguishing
various objects within images or videos, not limited to
specific types. SAM excels in semantic segmentation by
assigning specific labels or categories to individual pixels,
facilitating detailed object identification and classification.
This model adapts well to diverse scenarios and environ-
mental conditions, effectively handling variations in lighting,
weather, and other challenges. Even in complex environments
with multiple objects, varying shapes, and occlusions,
SAM can accurately segment objects, making it highly
reliable. Its efficiency contributes to accurate segmentation
results, enhancing the robustness of object detection and
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tracking systems. SAM’s ability to differentiate between
different roadways and objects enables precise tracking of
vehicles in urban traffic surveillance systems. This versatility
finds applications across various domains, including traffic
surveillance, image recognition, and object tracking, owing
to its adaptability and effectiveness in segmenting diverse
objects.

In the development of SAM, about 11 million images with
more than 1 billion masks have been used. Fig. 9 showcases
ten SAM results across diverse road infrastructures. SAM
effectively detects both road segments and vehicles, offering
potential for vehicle detection. However, it shows sensitivity
to changes in illumination, especially at night. Also, the
computational time is challenging due to processing all image
pixels. At the point selection step, manually checking the
selected points is required because we should ensure the
selected points are located on the road lanes and cover the
all-road lanes. The advantage of this process is that it is done
only once per camera.

FIGURE 9. Performance of the SAM in road detection.

C. THE MODIFIED STD ANALYZING
Creating the modified STD graph is a crucial step in
our algorithm; therefore, this graph should perform highly
in diverse, challenging scenarios. Highlighting vehicles
through peaks is the primary aim of the modified STD.
We chose the most challenging videos to test our approach.
For instance, the first graph in Fig. 10 illustrates the
modified STD during nighttime, where peaks still represent
vehicles. However, our algorithm exhibited its lowest Recall
accuracy during instances when vehicle lights were on,
which negatively impacted the modified STD graph. Future
work might focus on implementing filters to minimize this
effect.

Additionally, the second graph depicts the sunset, showing
the modified STD’s resilience in darker weather. In this
scenario, the patching stage is key in avoiding an offset on
the modified STD. Subsequent graphs illustrate snowy, rainy,
and windy conditions, where the modified STD effectively
reflects the vehicles as peaks.

FIGURE 10. Displaying the modified STD on diverse, challenging
situations like sunset and snowy days.

D. MODEL FITTING ASSESSMENT
The model fitting for the modified STD (Spatial-Temporal
Data) graph aims to optimize a mathematical model, ensuring
it effectively captures the inherent patterns within the
modified STD graph. This designed model is a valuable tool,
facilitating comprehensive analysis, aiding in insightful inter-
pretation, and enabling accurate counting of vehicles within
the modified STD graph. Through iterative adjustments and
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fine-tuning, the model aligns itself more closely with the
background values in the STD data, enhancing its capability
to recognize and clarify patterns. Ultimately, this refined
model acts as a robust framework for understanding the com-
plexities and dynamics embedded within the modified STD
graph, thereby empowering more informed decision-making
and deeper insights into spatial-temporal data trends.

In this section, we have chosen a particularly challenging
modified STD graph showing vehicles passing a point
selection region at close intervals, with roughly one vehicle
passing per second. This scenario leads to fewer recorded
values for the background section, posing a challenge during
the model fitting stage. Fig. 11 illustrates the polynomial
fitting process on a modified STD graph using degrees (M )
ranging from one to five. Two scenarios were evaluated:
one incorporated RANSAC for coefficient calculation, and
the other excluded RANSAC. In Fig. 11-a, the polynomials
fitted via RANSAC demonstrate that the model fitting for
the background values becomes inaccurate as M increases.
Among the polynomial models calculated using RANSAC,
the one with a degree of one (M = 1), representing a linear
equation, exhibits the best performance. Fig. 11-b shows
the polynomial fitting stage without RANSAC, indicating
that none of the calculated polynomials are suitable for
accurate fitting. This highlights the critical role of RANSAC,
even when the modified STD graph contains numerous
vehicles. For future works, various model fitting algorithms
ranging from machine learning algorithms such as Support
Vector Machine (SVM), Random Forest (RF), and Long
short-term memory (LSTM) to mathematical methods like
Autoregressive Integrated Moving Average (ARIMA) can be
suggested.

E. COMPARISON WITH THE STATE-OF-THE-ART
METHODOLOGIES
Previous work in this domain typically falls into two
categories: Deep Learning algorithms and image/video pro-
cessing techniques. Our evaluation compares our algorithm
against these groups based on cost-effectiveness, real-time
processing, and generality. As summarized in Table 2, our
algorithm was tested on approximately 283 different road
infrastructures, mainly in Canada and the USA, achieving
over 96.1% accuracy across 11 million frames. This is
significantly higher than previous methods evaluated on
much smaller datasets (Table 1). Notably, our method
operates without needing high-performance GPUs, a major
advantage over deep learning-based methods. While our
algorithm does not include vehicle classification, it has been
tested under diverse weather and lighting conditions, unlike
previous methods focused on clear weather scenarios.

Previous studies, such as [12], have compared deep
learning models, including YOLOv7 and FasterRCNN, and
concluded that YOLOv7 exhibits the best performance for
vehicle detection in highway camera footage. Based on
this study, we evaluated our algorithm using the provided
datasets and methods. The results showed that our algorithm

FIGURE 11. The model fitting assessment by various polynomials
calculates the coefficients with (a) RANSAC and (b) not RANSAC.

and YOLOv7 achieved good accuracy when vehicles were
recorded with high-quality, high-resolution cameras. How-
ever, YOLO models struggled to maintain performance for
remote areas of the road, which are typically covered by
cameras due to their wide field of view. In contrast, our
algorithm achieved 67% to 85% accuracy in vehicle counting
under these challenging conditions.

Real-time processing is a key advantage of our approach,
allowing for immediate analysis and decision-making. Our
algorithm processes data with minimal latency, running
between 0.003s and 0.008s per frame, making it suitable
for applications like vehicle counting and surveillance.
In comparison, deep learning models such as YOLOv8,
YOLOv7, and FasterRCNNneeds GPUs processors to handle
data in a real time situations.

F. APPLICATIONS IN ADVANCED TRANSPORTATION
SYSTEMS
Our algorithm demonstrates significant potential for inte-
gration with emerging Intelligent Transportation Systems
(ITS) technologies. In the context of unmanned vehicles and
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intelligent traffic control, our approach offers several key
advantages:

First, regarding autonomous vehicle systems, our algo-
rithm’s ability to accurately detect and track vehicles in real-
time (0.003-0.008 seconds per frame) provides crucial input
for navigation and path planning. The spatial-temporal data
generated by our system can help autonomous vehicles better
understand traffic flow patterns and make more informed
decisions. Since our algorithm performs effectively under
various weather and lighting conditions, it offers reliable
environmental perception that complements autonomous
vehicles’ existing sensor systems.

Our algorithm’s capabilities align well with modern rein-
forcement learning approaches regarding intelligent traffic
signal control. The real-time vehicle counting and speed
estimation data can be direct input for reinforcement learning
models managing traffic signals. For instance, our system’s
traffic flow measurements and speed estimations can help
optimize signal timing patterns. The algorithm’s ability to
process multiple lanes simultaneously makes it particularly
valuable for heterogeneous traffic conditions, where different
vehicle types and varying traffic densities must be considered
for optimal signal control.

Furthermore, our algorithm’s cost-effectiveness and com-
patibility with existing camera infrastructure make it par-
ticularly valuable for large-scale ITS deployment. Unlike
methods requiring specialized sensors or high-performance
computing resources, our approach can be implemented using
existing traffic cameras and standard computing hardware.
This makes it an economically viable solution for widespread
adoption in smart city initiatives.

VI. CONCLUSION
This research introduces a novel Spatial-Temporal Diagram
(STD) algorithm for real-time vehicle counting and speed
estimation in traffic surveillance. Our algorithm demon-
strated robust performance across varying conditions by
evaluating over 11 million frames from diverse sources,
including 511 highway cameras in the USA and Canada. Key
methodological contributions include:

1. A cost-effective approach that performs exceptionally
well with existing low-resolution cameras, eliminating the
need for expensive equipment upgrades

2. Superior accuracy compared to state-of-the-art deep
learning methods, achieving over 96% accuracy while
YOLOv8 and Faster RCNN achieved only 60% on identical
datasets

3. Real-time processing capabilities of 0.003-0.008 sec-
onds per frame without requiring GPU support

Our experimental results validate the algorithm’s effec-
tiveness across diverse weather conditions and illumi-
nation changes while maintaining high precision and
recall accuracies. Future work will address current limita-
tions in vehicle occlusion handling and complex scenario
management.
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