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Abstract   

Drought, a recurring meteorological event, can potentially cause devastating consequences for human populations, 

and its attributes vary significantly across diverse geographic areas. Therefore, recognizing drought events is 

paramount for strategically planning and managing water resource systems. In this study, the Temperature Vegetation 

Dryness Index (TVDI), derived using Moderate-Resolution Imaging Spectroradiometer (MODIS) data spanning from 

2003 to 2022 in the Middle East, was used as the foundation for both trend and spectral analyses. To assess TVDI 

trends, the Mann-Kendall test and Sen’s slope estimator were utilized, and harmonic analysis was conducted for 

spectral analyses. These methods were applied to a dataset comprising 258,087 pixels within the specified region, 

covering various time scales, including monthly and seasonal analyses. The monthly analyses indicated significant 

growth in March and April, with September showing the least significant increase, suggesting stability or decline. 

Geographically, upward trends were predominant in the northern Middle East, including Turkey, Syria, Iraq, western 

Iran, and eastern Jordan. Significant downward trends were observed in the southern Middle East during the warmer 

months. Seasonal assessments showed no significant TVDI trends in winter, but upward trends in the south, west, and 

northwest were identified during spring. The annual trend map indicates a long-term declining trend in TVDI for most 

regions within specific latitudes, particularly those below 34 degrees. The results of harmonic analysis revealed the 

presence of multiple cycles at a 95% confidence level. Notably, there was a heightened prevalence of significant 

sinusoidal cycles, especially the 2-3-year cycles. This cycle was widespread in countries such as Iran, Oman, Yemen, 

and Turkey, as well as in the southern regions of Saudi Arabia and Egypt.  

Keywords: Temperature-Vegetation Dryness Index (TVDI), Trends, Spectral Analysis, Middle East, Teleconnection, 

Drought.  
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1. Introduction 

Drought has had significant spatial and temporal extents, influencing the amount, quality, and distribution of water, 

food availability, and the stability of natural ecosystems through various heterogeneous environmental processes (Li 

et al., 2019; Piao et al., 2010; Vicente-Serrano et al., 2012). This phenomenon is influenced by various factors, such 

as climate change, vegetation degradation, human activities, etc. (Lazzarini et al., 2015; Zhu et al., 2024). The rapid 

intensification of drought can significantly affect ecosystems by impositioning excessive evaporative stress on the 

environment (McEvoy et al., 2016; Otkin et al., 2013). Moreover, it can contribute to compound extreme events, 

resulting in cascading impacts, such as an elevated risk of wildfire occurrence, depletion of water resources, 

deterioration of air quality, and a reduction in food security (Christian et al., 2020; Gerken et al., 2018; Laz et al., 

2023b; Yuan et al., 2019). Numerous recent studies have shown a clear relationship between climate change and the 

increasing frequency and severity of droughts around the world (Behifar et al., 2023; Dai, 2011; Trenberth et al., 2014) 

Large land areas have experienced physical changes in precipitation patterns and increased temperatures accompanied 

by a decrease in soil moisture, leading to aggravation of drought intensity (Lian et al., 2021). Severe droughts, 

heatwaves, sandstorms, and vegetation degradation caused by extreme weather are more frequently occurring, further 

negatively impacting ecological environments and human populations (Basha, Ouarda, & Marpu, 2015; Hamdi et al., 

2021; Ouarda et al., 2019). Understanding how these droughts unfold in space and time is crucial for developing more 

effective mitigation strategies and building resilient water management practices. In this regard, the Middle East stands 

out as one of the regions consistently subjected to the impacts of widespread droughts (Karakani et al., 2021), primarily 

driven by its arid climate, high population growth, and intense agricultural activities. This situation has a profound 

impact on the lives of millions of individuals (Shetty, 2006).    

Over the past few decades, drought assessment techniques have undergone significant evolution. Drought assessment 

can be achieved through contemporary remote sensing techniques or conventional climatic drought indices (Khosravi 

et al., 2024) . Ensuring precise and timely drought monitoring is vital in global environmental transformations (Chen 

et al., 2015). Numerous climate indices such as the standardized precipitation index (SPI) (McKee et al., 1993), rainfall 

anomaly index (RAI) (Huete et al., 1999), Palmer Drought Severity Index (PDSI) (Palmer, 1968), drought area index 

(DAI) (Bhalme & Mooley, 1980), Vegetation condition index (VCI) (Kogan, 1995), SEPI (Vicente-Serrano et al., 

2010), effective drought index (EDI) (Ali et al., 2011; Byun & Wilhite, 1999), reconnaissance drought index (RDI) 

(Tsakiris et al., 2007), and soil moisture deficit index (SMDI) (Narasimhan & Srinivasan, 2005) have been proposed 

and widely used to monitor drought. Indices reliant on meteorological data frequently prove insufficient or 
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inaccessible, particularly in regions with limited weather stations or marked spatial variability (Khosravi & Abbasi, 

2016; Zormand et al., 2017). This limitation has necessitated the adoption of satellite-based remote sensing techniques, 

which provide continuous spatial coverage, especially in areas where ground observations are sparse. Remote sensing 

offers valuable tools for capturing drought conditions’ onset, extent, and severity (Hao et al., 2015; Mokarram & 

Zarei, 2023). By utilizing these data, drought processes can be monitored continuously, enabling the observation of 

changes over both time and space. Since 1980, various drought indices have been suggested for the monitoring of 

drought, utilizing remote sensing data in the visible (VIS), shortwave infrared (SWIR), near-infrared (NIR), and 

thermal infrared (TIR) (Chaerle & Van Der Straeten, 2000; Gerhards et al., 2019). 

Currently, remote sensing data sources for drought assessment primarily encompass Landsat TM (Thematic Mapper), 

ETM+ (Enhanced Thematic Mapper), OLI (Operational Land Imager) (Ghaleb et al., 2015; Ozelkan et al., 2016), 

Sentinel SAR (Synthetic Aperture Radar), MSI (Multispectral Imager) (Puletti et al., 2019), and MODIS (Moderate 

Resolution Imaging Spectroradiometer) (Klisch & Atzberger, 2016; Wan et al., 2004). Landsat and Sentinel datasets 

boast impressive spatial resolutions (30 m and 10 m). However, their extended revisit cycles pose challenges when 

encompassing the entire study area. Consequently, Landsat and Sentinel data are the most effective for small-scale 

regional drought monitoring efforts. In contrast, MODIS exhibits a short revisit period, occurring twice daily, and 

features a wealth of remote sensing images with a moderate spatial resolution of 500 meters. This suits it for extensive 

large-scale drought monitoring research (Puletti et al., 2019). In this context, MODIS data have been widely employed 

to derive vegetation and temperature-based drought indices, which are crucial in capturing large-scale drought 

dynamics (Wei et al., 2021; Wu et al., 2015). 

Remote sensing technology is instrumental in extensively monitoring drought, employing techniques classified into 

vegetation indices and temperature-based approaches. Nevertheless, there are constraints in using soil temperature 

and vegetation indices for soil moisture monitoring, stemming from factors like incomplete vegetation coverage and 

temporal lag. In response to this challenge, Sandholt et al. (2002) introduced the Temperature Vegetation Dryness 

Index (TVDI), a method founded on the interplay between vegetation and land surface temperature. Following Carlson 

et al. (1990), the scatter diagram depicting the relationship between NDVI (Normalized Difference Vegetation Index) 

and LST (Land Surface Temperature) assumes a trapezoidal shape. Sandholt et al. (2002) introduced the TVDI based 

on the LST-NDVI triangle model, where the warm edge is treated as a parallel line. NDVI and LST exhibit a robust 

correlation, typically resulting in a negative curve corresponding to the warm edge (Guo et al., 2023; Liu et al., 2018; 

Tang et al., 2010; Wan et al., 2021). However, Ehrlich and Lambin (1996) observed a positive relationship where 
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vegetation conditions evolve with surface temperature over time. This positive correlation is susceptible to shifts, 

particularly as seasons progress into drier months due to climate change. This dynamic could increase the uncertainty 

of TVDI for larger areas and higher NDVI values (Guo et al., 2023). Overall, numerous researchers (Bian et al., 2023; 

Li et al., 2008; Sandholt et al., 2002; Son et al., 2012; Sun et al., 2008; Wan et al., 2004; Wang et al., 2010) have 

employed the TVDI to evaluate surface moisture conditions and drought monitoring.  

The arid and semi-arid regions of the Middle East rely heavily on fragile rain-fed or irrigated agricultural systems, 

making them particularly vulnerable to periodic climate fluctuations and changes in hydrological conditions 

(Kaniewski et al., 2012). Over the past four decades, many eastern dryland countries, including Iran, Jordan, the UAE, 

and Turkey, have experienced rising temperatures coupled with declining precipitation levels (Basha, Marpu, & 

Ouarda, 2015; Kafle & Bruins, 2009; Ouarda et al., 2014; Soltani et al., 2012; Tayanç et al., 2009). Drought periods 

have recurred irregularly and spatially heterogeneously, with the most severe, prolonged, and widespread events 

occurring in the past decade (Al-Qinna et al., 2011). Moreover, the Middle East has exceeded the water resource 

capacity needed to sustain its population for extended periods. In response, the region has sought to expand its water 

distribution and storage infrastructure, primarily through dam and canal construction. However, it faces critical 

challenges due to recurring droughts and declining aquifer levels (De Chatel, 2017; De Châtel, 2007; Gonzalez et al., 

2016; Morris, 1997). The confluence of factors, including water scarcity (Oki & Kanae, 2006) and the recurring 

incidence of drought in the Middle East (Mishra & Singh, 2010), exerts a notable influence on crop yields and the 

regional economy (Kaniewski et al., 2012). According to the United Nations World Water Development Report, 

several districts in the Middle East are experiencing ‘extremely high’ water scarcity (UNESCO, 2021). These 

circumstances increase the risk of both human and property losses (Agrawala et al., 2001). Consequently, when 

assessing drought impacts, this region emerges as particularly significant due to factors such as population density, 

susceptibility, the severity of drought events, and the potential for increased aridity due to climate change (Barlow et 

al., 2016).  

Exploring the spatial and temporal variations of climatic parameters provides valuable insights into understanding the 

dynamics influencing their time series. A comprehensive examination of trends, oscillations, and cycles governing 

these time series is particularly important in this context. Significant efforts have been dedicated to the analysis of 

drought frequency and trends in recent years, with notable contributions from Karabörk (2007), Zeleke et al. (2017), 

Khanmohammadi et al. (2022), Laz et al. (2023a), Hamdi et al. (2016), Modarres and Ouarda (2014), etc. In 

meteorological investigation, harmonic analysis is a commonly employed technique for comprehending the dynamics 
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and evaluating periodic patterns (Raczyński & Dyer, 2023; Rouault et al., 2013). This technique is frequently applied 

to assess the influence of teleconnections, such as ENSO and QBO, on seasonal variations in meteorological variables, 

including global precipitation (Chandran et al., 2016; Lee & Julien, 2017; Tarawneh & Kadıoğlu, 2003; Tase, 1976). 

The harmonic analysis captures temporal fluctuations in time series by modeling sinusoidal patterns at various 

frequencies, accounting for the diverse frequencies and wavelengths within the data (Asakereh & Razmi, 2012a). 

Researchers have used this technique to investigate cycles related to both large- and small-scale atmospheric 

circulation patterns (Dorvlo & Ampratwum, 2000; Kirkyla & Hameed, 1989; Niedźwiedź et al., 2009; Rodriguez et 

al., 1994). It has been applied across various meteorological parameters, including precipitation (Fetene et al., 2018; 

Horn & Bryson, 1960; Immerzeel et al., 2005), temperature (Liakatas, 1994; Wang et al., 2018), and precipitable water 

(Asakereh et al., 2015). 

Despite the growing body of research on drought assessment using various methods, there remains a critical gap in 

understanding long-term spatial and temporal drought variations in the Middle East, especially using high-resolution 

remote sensing data. Most previous studies have focused on short-term or localized assessments, leaving a lack of 

comprehensive regional analysis that integrates the impacts of large-scale climatic phenomena. In this study, we utilize 

the Temperature Vegetation Dryness Index (TVDI) and high-resolution MODIS satellite data to provide a more 

detailed analysis of drought patterns in the Middle East. Unlike many previous studies, this research investigates the 

effects of large-scale atmospheric oscillations, such as the El Niño-Southern Oscillation (ENSO) and the Quasi-

Biennial Oscillation (QBO), on drought patterns. Additionally, the application of spectral analysis in this study enables 

the exploration of long-term drought cycles and the identification of more complex climate change patterns, which 

have been largely overlooked in previous research on the Middle East. Therefore, the primary aim of this research is 

to conduct a comprehensive spatio-temporal assessment of drought across the Middle East using the Temperature 

Vegetation Dryness Index (TVDI) derived from MODIS data. This study focuses on providing an in-depth regional 

drought analysis over a long-term period (2003–2022), examining seasonal, monthly, and annual trends. 

Furthermore, it seeks to explore the intricate relationship between land surface temperature and vegetation cover to 

enhance our understanding of drought dynamics in this region. The research also integrates spectral analysis to detect 

cyclic drought patterns and investigates their associations with global climatic phenomena such as ENSO and QBO. 

In sum, this study’s novelty lies in its approach to combining high-resolution remote sensing data with TVDI and 

spectral analysis to unravel complex drought patterns across the Middle East over a substantial timeframe. The 
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findings of this research could provide new insights for policymakers, environmentalists, and researchers in devising 

strategies to mitigate drought impacts and adapt to the evolving climate conditions in arid and semi-arid regions.  

This paper is organized as follows: Section 2 presents the materials and methods, including a detailed description of 

the study area and a review of TVDI, the Mann-Kendall test, Sen’s slope estimator, and harmonic analysis. The results 

from the extensive assessment of the various approaches are detailed in Section 3. The discussion is presented in 

Section 4, and Section 5 provides the study’s conclusions. 

 

2. Materials and methods 

2.1. Study area  

The study area focuses on the Middle East, encompassing sixteen countries: the Arabian Peninsula (Oman, United 

Arab Emirates, Bahrain, Saudi Arabia, Kuwait, Yemen, and Qatar), Syria, Iran, Palestine, Iraq, Turkey, and Lebanon 

(Fig. 1a). Situated at the intersection of western Asia and northeastern Africa, the Middle East spans an extensive area 

of approximately 6,928,000 km² and is home to an estimated population of 320 million. According to land use data 

and classifications from the International Institute for Applied Systems Analysis (IIASA) and the Food and 

Agriculture Organization (FAO), the Middle East is largely dominated by bare ground and extensive rangelands, 

which are indicative of the region’s arid and semi-arid landscapes (Fig. 1b). Nevertheless, there are notable exceptions 

where land cover is more diverse. Specifically, regions such as northeastern Iraq, western Syria, northwestern Iran, 

Turkey, Lebanon, and the Nile River basin in Egypt display a variety of land uses, including trees, crops, and 

rangelands (Hameed et al., 2020). These areas benefit from relatively higher precipitation and favorable climatic 

conditions that foster vegetation growth and sustain agricultural practices. Forested regions, particularly in northern 

Turkey and Iran, contribute significantly to the land cover diversity in the Middle East (Fallahchai, 2011). Dense 

vegetation in these areas serves as a vital reservoir of biodiversity and plays an essential role in retaining soil moisture 

(Croitoru & Liagre, 2013). 

Furthermore, regions with substantial water bodies, such as the Tigris and Euphrates river systems, are crucial in 

supporting adjacent croplands and natural vegetation. In stark contrast, much of the Arabian Peninsula, along with 

southern Iraq and areas outside the Nile basin in Egypt, is dominated by bare ground and built-up areas. These 

landscapes are characterized by minimal vegetation cover, resulting from extreme aridity and high temperatures that 

inhibit plant growth. 
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The Middle East’s climatic conditions range from semi-arid to extremely arid, with vast desert landscapes. Despite 

this, some areas receive substantial rainfall, particularly in the eastern Mediterranean region and along several 

mountainous slopes, where annual precipitation can exceed 60 cm (Shoshany & Mozhaeva, 2023). Certain localized 

areas, such as the southern coast of the Caspian Sea, experience even higher precipitation, reaching up to 180 cm 

annually (Ghozat et al., 2022). Most of this region's precipitation occurs during the cold season, spanning from 

November to April, primarily driven by synoptic storm systems. Given the critical role of cold-season precipitation in 

the region, this study focuses primarily on drought variability associated with these weather phenomena. 

  
Fig. 1. Study Area Location (a) and Land Use Classification (b) in the Middle East 

2.2. Datasets 

To accurately monitor and assess drought conditions in the Middle East, this study utilizes satellite-based datasets 

widely recognized for their reliability in remote sensing applications. This study utilized two data products: LST from 

MODIS-Aqua and NDVI from MODIS-Terra, both at a spatial resolution of 0.05° (approximately 5.6 km2) and 

acquired from 2003 to 2022. These MODIS data products have a well-established track record in assessing drought 

dynamics (Savtchenko et al., 2004). The Giovanni software (version 4.38) facilitated the data retrieval, an integral 

component of the NASA Earth Data system, known for its user-friendly interface for accessing geophysical parameters 

for visualization and analysis (Ganguly, 2016). Additionally, the NDVI data from MODIS is frequently the preferred 

data source for evaluating vegetation status (Wei et al., 2020). Table 1 provides a detailed overview of the remote 

sensing data employed in this research 
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2.3. Methodology 

A series of remote sensing techniques and statistical analyses were employed to analyze drought conditions in the 

Middle East. Figure 2 provides a flowchart summarizing the methodology. Subsequent sections will provide a detailed 

discussion of each step. The application of the Temperature Vegetation Dryness Index (TVDI), which is central to 

this study, relies on the assumption of homogeneity in climate and land cover conditions across the study area based 

on the LST-NDVI triangle model. Given the environmental diversity in the Middle East, this study incorporates 

monthly and seasonal data at various spatial levels (e.g., pixel level). It applies precise statistical techniques, including 

the Mann-Kendall test and harmonic analysis, to account for regional heterogeneity and ensure the accuracy of TVDI 

in detecting drought patterns. Additionally, studies conducted in other heterogeneous regions have demonstrated that 

TVDI performs effectively under such conditions (e.g.,(Du et al., 2017; Tagesson et al., 2018)) 

 Table 1 Satellite remote sensing products used in this research 

 

Production/title Time Unit Spatial 

Resolution 

Temporal  

Resolution 

Source 

LST (MOD11C3) 2003  ̴

2022 

K 0.05 ̊ (5.6 km) Monthly MODIS-Aqua 

NDVI (MOD13C2) 2003  ̴

2022 

- 0.05 ̊ (5.6 km) Monthly MODIS-Terra 

GPM 

(IMERGV07) 

2003  ̴

2022 

mm 0.1 ̊ (10 km) Monthly NASA GPM 

Soil Moisture 2003  ̴

2022 

m^3 m-

3 

0.1 ̊ (10 km) Monthly FLDAS_NOAH01 

EVI (MOD13A2) 2003  ̴

2022 

- 0.1 ̊ (10 km) Monthly MODIS-Terra 
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Fig. 2. Flowchart of the proposed methodology 

2.3.1. Temperature vegetation dryness index (TVDI) 

TVDI utilizes the spatial correlation between Land Surface Temperature (LST) and NDVI to provide insights into 

drought conditions. The rationale behind using TVDI lies in its ability to represent surface water content through LST 

variations influenced by vegetation coverage. In areas with bare soil or sparse vegetation, LST responds more acutely 

to changes in soil moisture, whereas in densely vegetated regions, this response is more gradual, as indicated by higher 

NDVI values. The TVDI calculation relies on scatterplots illustrating the relationship between LST and NDVI values 

across pixels, forming a triangular pattern (Sandholt et al., 2002) or a trapezoid (Moran et al., 1994). Figure 3 depicts 

the typical LST-NDVI triangle, which helps categorize drought conditions across different regions. As illustrated in 

Fig. 3, the base edge of the triangle, aligned parallel to the NDVI axis, signifies pixels associated with maximum 

evapotranspiration. 

Conversely, the top edge (hypotenuse) indicates pixels exhibiting zero evapotranspiration, representing LSTmax 

within the research area. The space between the triangle’s upper and lower edges encompasses diverse 

evapotranspiration levels linked to varying degrees of drought conditions (Dhorde & Patel, 2016). As the NDVI value 

increases along the X-axis, the maximum LST proportionally decreases, and this relationship can be characterized by 

a negative slope using the least squares method, which is performed for each pixel to estimate the coefficients that 

define the dry edge. In contrast, the wet edge encompasses multiple data points forming horizontal or inclined lines, 
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indicating various degrees of surface vegetation coverage. Vertically, within the triangular domain where NDVI 

remains constant, LST gradually increases due to water stress in the surface soil. As observed in previous studies, this 

transition spans from the minimum LST value (LSTmin) at the wet edge to the maximum (LSTmax) at the dry edge 

(Du et al., 2017). Simultaneously, the content of surface soil water experiences a corresponding decrease from its 

maximum to minimum values, as indicated in (Sun et al., 2012). This increases the TVDI from zero to one, marking 

the shift from extreme wetness to extreme drought in the land surface condition. The formula presented below is 

employed for the calculation of TVDI (Sandholt et al., 2002): 

𝑇𝑉𝐷𝐼 =  
𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑖𝑛

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
 (1) 

Where LST is the land surface temperature of each pixel, LSTmin is the lower horizontal line of the triangle/trapezoid, 

defining the wet edge; LSTmax is the maximum surface temperature, defining the dry edge:  

LSTmin = a+b×NDVI 

 
(2) 

LSTmax = c+d×NDVI (3) 

Equations 2 and 3 help identify each pixel’s wettest and driest conditions, which is crucial for understanding soil 

moisture variations and drought intensity. These equations, established through pixel-wise linear regression analysis, 

represent the wet and dry edges. The regression analysis is conducted for each pixel independently to account for local 

variations in the relationship between NDVI and LST, ensuring precise estimation of LSTmin and LSTmax at the 

pixel level. The coefficients a, b, c, and d within these equations are derived from the least squares regression fitting 

method, which is applied to the scatterplot of LST and NDVI for each pixel. The scatterplots are divided into specific 

NDVI intervals, calculated in increments of 0.01, to accurately deduce each interval’s maximum and minimum LST 

values. Such an approach ensures the accurate estimation of drought conditions at the pixel level. The five intensity 

categories for TVDI are outlined in Table 2. 

Table 2 The intensity of drought based on TVDI (Sandholt et al., 2002) 

 

 

 

 

Drought category Values 

Non-drought TVDI ≤ 0.2 

Mild drought 0.21 < TVDI < 0.4 

Moderate drought 0.41 < TVDI < 0.6 

Severe drought 0.61 < TVDI < 0.8 

Extreme drought 0.81 ≤ TVDI < 1 
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Fig. 3. Simplified LST and NDVI triangle. 

 

2.3.2. Enhanced Vegetation Index (EVI) 

EVI was developed to offer an improved monitoring of vegetation health and dynamics. Unlike NDVI, which is 

sometimes interfered with by atmospheric conditions or even interference from the Earth's surface beneath the 

vegetation cover, EVI includes adjustments that reduce these effects (Schnur et al., 2010). This makes EVI a strong 

tool for monitoring vegetation health in various environments, even in areas comprising densely richly vegetated 

regions (Huete et al., 2002). 

This study employed the MOD13A2 product from MODIS, which provides EVI values every 16 days at a resolution 

of 1 km. This data product represents stable, global-scale measurements and is appropriate for monitoring vegetation 

patterns over large areas such as the Middle East. Specifically, the high temporal and spatial resolution is suitable for 

studying green vegetation's response to climatic variation, particularly in semi-arid and arid regions (Chen et al., 2024). 

The EVI calculation used in this study is described by the following formula (Mokarram & Zarei, 2023): 

𝐸𝑉𝐼 =  𝐺 ×
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝐶1 × 𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸 + 𝐿)
 (4) 

In this formula, NIR, RED, and BLUE represent the reflectance values in each of these wavebands; G is a gain factor 

that scales the index; L is a term that corrects for reflectance from the soil background; and C₁ and C₂ are coefficients 

that correct for atmospheric interference. 
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2.3.3. Mann-Kendall Test 

The Mann-Kendall (MK) test was employed to detect trends in time series data. This non-parametric statistical test, 

originally introduced separately by Mann (1945) and Kendall (1975), is widely recognized as a standard method for 

analyzing trends in time series data (Demirgül et al., 2022; Fiala et al., 2010; Gebremicael et al., 2017; Ghaderpour et 

al., 2024; Ouarda et al., 2021; Páscoa et al., 2020; Shawky et al., 2023). This test offers several advantages: 1) The 

analysis does not require data to follow a specific distribution, making it amenable to datasets containing extreme 

values (Hirsch et al., 1992), 2) Missing values are permissible within the analysis (Yu et al., 1993), 3) The test relies 

on the relative magnitudes (ranking) of data points rather than their numerical values. This feature accommodates 

“trace” or “below detection limit” data by assigning them values less than the smallest measured value (Zhai & Feng, 

2009), and 4) MK analysis for time series does not necessitate the assumption of linearity in the trend, making it a 

versatile tool for trend assessment (da Silva, 2004; Sneyers, 1990). The MK test is given as:  

S = ∑ ∑ sgn(xj − xi)

n

j=i+1

n−1

i=1 

 (4) 

The trend test is applied to a time series, denoted as xi, where i ranges from 1 to n-1. For each data point, xi is taken 

as a reference point and compared with the remaining data points, xj, where j ranges from i+1,2,...,n. This process is 

performed as follows:  

sgn(x) = {

+1        if    (xj − xk) > 0

 0        if   (xj − xk) = 0

−1        if    (xj − xk) < 0

 (5) 

It has been established that when n is greater than or equal to 8, the statistic S approximately follows a normal 

distribution with a mean. The variance of this statistic is given by: 

Var (s) =
n(n − 1)(2n + 5) − ∑ t(t − 1)(2t + 5)n

i=1

18
 (6) 

Where 𝑡𝑖 represents the number of tied values up to sample i. The test statistic 𝑍𝑐 is calculated as: 

𝑍𝑀𝐾 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑠)
   𝑖𝑓   𝑆 > 0

     0            𝑖𝑓  𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑠)
  𝑖𝑓   𝑆 < 0

 (7) 

Positive values of 𝑍𝑀𝐾 indicate increasing trends, whereas negative 𝑍𝑀𝐾 values indicate decreasing trends in the time 

series. When |𝑍𝑀𝐾| > 𝑍1−𝛼/2, the null hypothesis is rejected, signifying the presence of a significant trend in the time 
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series. For a 5% significance level, the critical value 𝑍1−𝛼/2 is 1.96. In this study, the MK test was computed using 

the MATLAB software.  

  

2.3.4. Sen’s slope estimator 

Sen’s slope estimator is used to quantify the magnitude of the trend. This involves calculating the slope (𝑇𝑖) for each 

pair of data points, and it follows the methodology introduced by Sen (1968). 

𝑇𝑖 =
𝑋𝑗 − 𝑋𝑘

𝑗 − 𝑘
                  𝑓𝑜𝑟 𝑖 = 1,2, …… . , 𝑁 (8) 

In this context, 𝑋𝑗 and 𝑋𝑘 refer to the data values at times j and k, with j being greater than k. The median of the N 

values of 𝑇𝑖  is defined as Sen’s estimator of the slope, and it is expressed as: 

𝑄𝑖 {

𝑇𝑁+1
2
 
                 𝑁 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑇𝑁

2
+
𝑇𝑁+2

2
)    𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 (9) 

Sen’s estimator is calculated as 𝑄𝑚𝑒𝑑 =
𝑇(𝑁1)

2
 when N is an odd value. In the case of an even N, it is computed as 

𝑄𝑚𝑒𝑑 = [𝑇𝑛
2
+ 𝑇𝑛+2

2

] /2. Subsequently, Qmed is determined using a two-sided test at a 100 (1- α) % confidence level, 

allowing us to establish the true slope through a non-parametric test. A positive Qi value signifies an upward or 

increasing trend, while a negative Qi value indicates a downward or decreasing trend within the time series.  According 

to Ahani et al. (2012), if a time series presents a linear trend, the true slope (change per unit time) can be estimated by 

using a simple non-parametric procedure developed by Sen (1968). All Sen’s slope estimator calculations have been 

done using MATLAB software. 

 

 

 

2.3.5. Spectral Analysis 

Spectral analysis is a powerful tool for identifying the periodic components within a time series, offering valuable 

insights into the cyclical patterns of drought occurrences. This technique first transforms the time series data into a 

frequency domain, represented as periodic functions characterized by their amplitudes and frequencies. This method 

provides a deeper understanding of the dominant cycles influencing drought variability in the Middle East. The initial 

step in spectral analysis is decomposing the time series into its constituent waveforms. In this context, “frequency” 

corresponds to the number of cycles occurring per unit of time, while “amplitude” indicates the magnitude of variation 
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at each frequency. In the process of spectral analysis, all constituent waves are initially isolated. Following this, the 

individual contributions of each wave to the total variance are determined, and subsequently, the statistical significance 

of each wave is evaluated (Ghaemi et al., 2017). To compute the harmonics effectively, it is imperative to assess the 

following two crucial parameters (Chatfield, 2013):  

𝑎𝑖 =
2

𝑛
∑𝑋𝑡cos (

2𝜋𝑞

𝑛
𝑡)

𝑛

𝑡=1

 q=1,2,…,
𝑛

2
 (10) 

𝑏𝑖 =
2

𝑛
∑𝑋𝑡sin (

2𝜋𝑞

𝑛
𝑡)

𝑛

𝑡=1

 t=1,2,…,n (11) 

In the context of our study, the variable “q” signifies the count of harmonics being examined. The quantity of 

harmonics differs based on whether the time series is even or odd. In the case of an even time series, the number of 

harmonics, denoted as “q,” can be expressed as q = (n-1) / 2, whereas for an odd time series, q = n / 2 harmonics. 

Subsequently, the dispersion of variance for each of these harmonics is computed through the following mathematical 

formulation: 

𝐼(𝑓𝑖) =
𝑛

2
  (𝑎𝑖

2 + 𝑏𝑖
2)           𝑖 = 1,2, …… . , 𝑞 (12) 

The significance test of the spectral is performed using the chi-square (χ²) test with degrees of freedom, as expressed 

in the following relationship: 

𝑑𝑓 =
2𝑛 −

𝑞
2

𝑞
  (13) 

A critical aspect of the spectral analysis technique entails the examination of the null hypothesis. For the spectral 

analysis, the null hypothesis posits the absence of a significant deviation from zero at a particular frequency. To 

address this, it is recommended to compute the first-order autocorrelation for the time series data, denoted as “r1” 

(Torres & Warde, 2017). Should the first-order autocorrelation fail to exhibit a statistically significant departure from 

zero, it becomes necessary to consider a time series devoid of any discernible trend. In such instances, the null 

hypothesis of white noise is deemed appropriate (Asakereh et al., 2014). However, given that the first-order 

autocorrelation, “r1,” in climatic time series data often demonstrates a significant deviation from zero, indicating a 

null hypothesis of red noise, the evaluation of “r1” is imperative based on the correlation coefficient and harmonics (i 

≤ 0 ≤ q) employing the subsequent approximation, as outlined by Mitchell Jr (1966): 

λk = S̅ [
1 − r2

1 + r1
2 − 2ricos

πk
q

]  (14) 
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Within the presented equation, the variable “S” denotes the mean of all unprocessed spectral estimates, considering 

the statistical significance of “r1.” To assess the significance of the spectral, an initial step involves considering a 

confidence interval, typically set at 95%. Subsequently, the evaluation of the spectral’s significance is performed 

utilizing the subsequent formula (Schickedanz & Bowen, 1977):  

λk
Xv
2(0.95)

v
≤ Î(f) ≤ λk

Xv
2(0.05)

v
 (15) 

Therefore, any frequencies within the spectra of the time series that extend beyond the confines of the confidence 

interval may be considered statistically significant at the predetermined confidence level and the corresponding 

frequency. A commonly utilized technique for visualizing spectral fluctuations, the frequencies of cyclical 

occurrences, and the significance of time series in the spectral analysis methodology is the application of a 

periodogram. 

 

3. Results  

3.1 Trend analysis of TVDI 

The Mann-Kendall test and Sen’s slope estimator were applied to assess TVDI trends using monthly, seasonal, and 

annual data for 258,087 pixels in the Middle East. Interpolated maps were generated using the kriging method in 

ArcGIS 10.6, with selection based on error assessment criteria, including cross-validation, root mean square error 

(RMSE), and R². As outlined in Figs. 4 to 9, the trend and slope maps for TVDI at various temporal scales identify 

areas exhibiting increasing, decreasing, or no significant trends at a 95% confidence level, along with the magnitude 

of the TVDI slope changes. The monthly trend maps (Fig. 4) offer a comprehensive view of the spatial distribution of 

TVDI trends across the Middle East. In January, upward trends are primarily concentrated in the north, covering areas 

like Turkey, western Iran, and Syria, while the southern regions, notably Egypt and Saudi Arabia, display stable or 

downward trends. February reveals an intensification of upward trends in northern areas, extending into northern Iraq 

and parts of Jordan. At the same time, southwestern regions, particularly Egypt and Yemen, show increased downward 

trends. 

The most pronounced upward trends appear in March, concentrated in Turkey, Iraq, and western Iran, contrasting with 

the generally stable or slightly downward trends in central and southern parts. April maintains strong upward trends 

in northern areas, notably Turkey, Syria, and Iraq, with the south continuing to exhibit stable or downward trends. A 

shift begins in May, as extensive downward trends emerge across southern and central parts of the Middle East, 

affecting areas like Saudi Arabia, Egypt, and Oman, while upward trends remain persistent in the northern areas, 
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especially Turkey and northwestern Iran. By June, a significant shift sees downward trends dominating most of the 

Middle East, leaving only isolated northern areas with slight upward trends. The strongest downward trends across 

the region occur in July, particularly in Saudi Arabia, Oman, and parts of the UAE, although minor upward trends 

linger in Turkey and northern Iran. In August, the dominance of downward trends continues, with slight upward trends 

in northern Turkey and parts of Iran, suggesting a relative stabilization in soil moisture. Downward trends prevail in 

September, showing minimal upward trend intensity, particularly in regions like Saudi Arabia, Egypt, and the UAE. 

Upward trends reappearance occurs in northern regions in October, especially Turkey and Iraq, while minimal 

downward trends are noted in the southern and central areas. November sees a renewed concentration of upward trends 

in Turkey and northwestern Iran, whereas the southern areas, including Oman and Yemen, mostly experience stable 

or slightly downward trends. Finally, in December, upward trends continue in northern areas like Turkey and parts of 

Iran, while southern regions, particularly Egypt, Saudi Arabia, and Yemen, maintain a pattern of stable or downward 

trends. 
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Fig. 4. Spatial distribution of monthly TVDI trend in the Middle East 

The seasonal analysis of TVDI trend maps reveals distinctive patterns across the Middle East (Fig. 5). During the 

winter season, most parts of the region show no significant TVDI trends, indicating stable moisture conditions. Some 

isolated areas in the northern regions, such as Turkey and northwestern Iran, show slight upward trends, reflecting a 

mild increase in dryness levels. As the region transitions from winter to spring, the southern, western, and northwestern 

areas display significant downward trends in TVDI, suggesting improved soil moisture. In contrast, certain central 

areas, particularly northwestern Iran and western Iraq exhibit upward trends, indicating increased dryness in these 

regions. In the summer, a dominant pattern of significant downward trends appears across much of the Middle East, 

indicating improved soil moisture conditions despite the extreme heat. This pattern is observed in areas like Saudi 

Arabia, Iraq, and southeastern Iran. During the autumn, the extent of areas with downward trends diminishes, while 

upward trends become more concentrated, especially in Turkey and western Iran, where dryness intensifies as rainfall 

decreases. 
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Fig. 5. Spatial distribution of seasonal TVDI trend in the Middle East 

The annual TVDI trend map (Fig. 6) highlights that, over the study period, most regions in the Middle East, particularly 

those between latitudes 13° and 26°, have experienced a declining trend in TVDI. This downward trend is evident in 

the monthly trend change maps as well. In contrast, only the northern parts of the Middle East, including northwestern 

Iran and western Turkey, exhibit an upward trend in TVDI. The annual trend map thus indicates a long-term declining 

trend in TVDI for most regions below latitude 34°. 
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Fig. 6. Spatial distribution of annual TVDI trend in the Middle East 

The monthly Sen's slope maps (Figs. 7 to 9) demonstrate notable variations in the slope values of TVDI trends across 

different seasons, with significant upward and downward trends observed depending on the month and geographic 

location. January displays moderate upward slopes across northern areas, particularly in Turkey, Syria, and parts of 

Iraq, while most Saudi Arabia, Oman, and southern regions exhibit modest downward slopes. February shows a slight 

intensification in the upward slopes in the north, with Turkey and northwestern Iran experiencing increased dryness. 

Meanwhile, Egypt and Yemen display downward slopes, suggesting some moisture retention. In March, upward slope 

trends become more pronounced, especially across northwestern Iraq and parts of Syria, reflecting the gradual onset 

of drier conditions as the region transitions into spring. Central areas, including southern Saudi Arabia and Yemen, 

continue to display downward slopes, indicating persistent moisture levels in these regions. April shows the highest 

upward slopes overall, reaching up to 0.22 in areas of Turkey and northern Iraq, marking the peak of aridity in these 

regions as temperatures rise. During May, slope values indicate a shift, with downward slopes dominating southern 

regions, such as Egypt and the Arabian Peninsula, while upward trends persist in northern territories like Turkey and 

northwestern Iran, where dryness remains prevalent. June features predominantly downward trends across the Middle 

East, though notable upward slopes remain in isolated northern areas, including northern Iraq and Syria. July presents 

the steepest downward slopes across the Middle East, particularly in southern regions such as Saudi Arabia, Oman, 

and the UAE, where increased heat and aridity dominate. August reveals a slight moderation in the downward slopes 

across southern regions, while upward trends remain minimal but continue in northern areas, indicating a relative 

stabilization in dryness. In September, the downward slopes were widespread across the Middle East, particularly in 
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central Saudi Arabia, the center of Iran, and Egypt, where notable moisture improvement was observed. Upward trends 

remain largely absent. October shows the reemergence of upward slopes, particularly in Turkey and western Iraq, as 

cooler temperatures begin to set in, while southern regions display stable or minimal downward slopes, indicating 

residual moisture from the warmer months. By November, upward slopes intensify significantly in Turkey and 

northwestern Iran, signifying increased dryness in these regions. Downward slopes, however, continue to dominate 

the southern half of the Middle East, reflecting retained soil moisture in response to cooling temperatures. Finally, 

December shows the lowest slopes for both upward and downward trends, with only slight upward slopes in the 

northern areas and minimal downward trends in the southern parts, suggesting overall moisture stability across the 

region as winter begins. 
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Fig. 7. Spatial distribution of slope changes in the TVDI monthly trend in the Middle East 

The seasonal analysis of Sen's slope maps reveals distinct patterns across the Middle East (Fig. 8). In spring, the 

highest positive slope values are observed, reaching up to 0.0209 in central regions such as western Iran, Iraq, Syria, 

eastern Turkey, and northern Saudi Arabia, indicating a notable upward trend in TVDI in these areas. The seasonal 

analysis of Sen's slope maps reveals distinct patterns across the Middle East. In spring, the highest positive slope 

values are observed, reaching up to 0.0209 in central regions such as western Iran, Iraq, Syria, eastern Turkey, and 

northern Saudi Arabia, indicating a notable upward trend in TVDI. During summer, significant negative slope values 

dominate the southern and central parts of the region, particularly in areas like southern Iran, southern Saudi Arabia, 

and southern Egypt, with values dropping as low as -0.0205. In autumn, positive slope values remain high in certain 

northern and central areas, including parts of Turkey, Iraq, and western Iran, while moderate negative slopes continue 

to appear in southern regions. Winter displays the mildest downward trend, with negative slope values as low as -

0.0104 across the southern and central regions, including Egypt, the Arabian Peninsula, and southern Iran, reflecting 

a reduction in negative slope intensity compared to the warmer seasons. This seasonal analysis highlights the spatial 

and temporal variability in TVDI trends across the Middle East, with pronounced shifts in slope intensity between 

warmer and cooler seasons. 
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Fig. 8. Spatial distribution of slope changes in the TVDI seasonal trend in the Middle East 

The annual slope maps (Fig. 9) divide the study region into two distinct segments. The southern, eastern, and western 

parts of the Middle East exhibit negative slope variations, while the central and northern regions (except for western 

Turkey) show positive slope trends. 
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Fig. 9. Spatial distribution of slope changes in the TVDI annually trend in the Middle East. 

3.2 Spectral analysis of TVDI 

By applying spectral analysis to the TVDI values of 26 selected stations in the Middle East, the significance of each 

cycle at a 95% confidence level was assessed by plotting TVDI periodograms for each station individually. Fig. 10 

presents the spectra and confidence intervals for the TVDI time series at the selected stations. In these figures, the 

lower horizontal axis represents frequency (or harmonic), the upper horizontal axis shows the return period for each 

frequency, and the vertical axis represents the variance of each cycle. The solid and dashed lines above indicate the 

significance boundary for the 95% confidence level. When a cycle crosses the significance boundary, it indicates the 

non-randomness of that cycle, while failure to cross the boundary suggests that the cycle is random. 

The results reveal multiple cycles with varying return periods at most stations (Table 3). Significant cycles indicate 

the emergence of specific patterns that demonstrate coherent TVDI values in cyclic forms. In particular, when a cycle 

crosses the significance boundary, it signifies a periodic pattern that holds statistical relevance, confirming that the 

observed behavior is not due to random variation. However, stations such as Al Basra, Al Riyadh, Baghdad, Istanbul, 

Mosul, and Shiraz do not show distinct cycles. In these cases, the spectral variances across all harmonics are 

approximately equally distributed, and at the 95% confidence level, no significant cycles are detected. This lack of 

significant cycles suggests a random data distribution, indicating that these stations do not exhibit dominant or 

synchronous TVDI behaviors, and the variance does not correlate with any regular period. 
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In contrast, periodograms for other stations, such as Adana, Al Kuwayt, Al Madinah, Amman, Cairo, and Tehran, 

display non-sinusoidal cycles with return periods equal to the length of the statistical period. For instance, stations like 

Abu Dhabi and Masqat reveal periodic patterns with shorter return periods, specifically around 2.6 years, indicating a 

frequent cyclic behavior at these locations. Moreover, the periodograms for stations such as Cairo, Amman, and 

several others, including Adana, Al Kuwayt, Doha, and Tehran, reveal significant cycles with moderate return periods 

of around 20 years. These cycles might be influenced by broader climatic patterns rather than short-term seasonal 

variability, suggesting a regional climatic influence across these locations. This contrasts with patterns in places like 

Esfahan, which also shows a significant 20-year cycle, potentially reflecting longer-term climatic variability related 

to soil moisture conditions. In contrast, Tabriz displays low variance across all frequencies, indicating less-defined 

cyclic behaviors and an absence of a strong periodic structure. 

 

Table 3 The statistical characteristics of the annual TVDI cycles in selected stations 

Station 
Significant 

harmonic(s) 
Probability 

Return 

period 
Station 

Significant 

harmonic(s) 
Probability 

Return 

period 

AbuZaby 7 0.35 2.6 Baghdad - - - 

Adana 1 0.06 20 Beirut 9 0.47 2.1 

Al Basra - - - Cairo 1 0.06 20 

Al Kuwayt 1 0.06 20 
Doha 

1 0.06 20 

Zahedan 8 0.42 2.3 9 0.47 2.1 

Al 

Madinah 
1 0.06 20 Erzurum 5 0.26 3.7 

Al Riyadh - - - Ankara 4 0.23 5 

Amman 1 0.06 20 
Esfahan 

1 0.06 20 

Tehran 1 0.06 20 8 0.42 2.3 

Jiddah 2 0.12 9 Mosul - - - 

Aswan 
1 0.06 20 Homes 3 0.17 5.5 

4 0.23 5 Shiraz - - - 

Istanbul - - - Masqat 7 0.35 2.6 

Mashhad 1 0.06 20 
Tabriz 

1 0.06 20 

Sanaa - - - 9 0.47 2.1 
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Fig. 10. The periodograms, spectra, and significant boundaries of the TVDI time series in selected pixels 

 

4. Discussion 

In this study, the Mann-Kendall (MK) test was employed to analyze drought trends, as it is a widely used method for 

identifying temporal trends in climatic data. However, the MK test is known to be sensitive to seasonality and serial 

correlation within the data (Hirsch & Slack, 1984). To overcome this challenge and improve the accuracy of the 

analysis, the MK test was applied separately for each calendar month. This monthly approach naturally mitigates the 

effects of seasonality, making the MK test more suitable for detecting changes in this study. By applying the MK test, 

we more precisely examined seasonal fluctuations in drought trends (Yilmaz, 2019). Additionally, the research 

employs spectral analysis to identify cyclic drought patterns and investigate their association with large-scale climatic 

phenomena.  

The TVDI trends analysis across the Middle East uncovered distinct spatial and temporal patterns, highlighting the 

region's complex drought dynamics. Notably, the northern half of the Middle East, including areas in Turkey, Syria, 

Iraq, western Iran, and eastern Jordan, exhibits prominent upward TVDI trends, particularly during colder months like 

March and April. These observations indicate an increasing trend in dryness and stress on vegetation in these regions. 

In contrast, the southern regions, encompassing countries such as Saudi Arabia, Egypt, Oman, and the UAE, show 

significant downward trends in TVDI, especially during the warmer months (May to September), suggesting improved 

soil moisture conditions. Seasonal analysis further indicates that northern areas transition from upward to downward 

trends as winter shifts to spring, while widespread downward trends characterize the summer months across the Middle 

East. Therefore, the observed trends in the Temperature Vegetation Dryness Index (TVDI) across the Middle East 

indicate changing climate patterns consistent with previous studies’ findings. 
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For instance, Asakereh et al. (2023) identified significant changes in Iran’s precipitation patterns, specifically the 

shifting of the rainy season. Such a shift has resulted in an alteration in the moisture availability in different months, 

where traditionally dry months are becoming more humid while some historically wet months are experiencing drier 

conditions. Our study’s detection of significant downward TVDI trends in southern Iran supports these observations, 

suggesting that shifts in precipitation patterns may directly impact vegetation dryness and drought occurrences. 

Similarly, the trend patterns observed in the United Arab Emirates are consistent with the findings of Ouarda et al. 

(2014). Their study indicated a shift in the timing of annual maximum precipitation events across various stations in 

the country, with peak rainfall now occurring earlier in the winter (December to February) rather than in the later 

winter months (February to March). Such a seasonal shift may explain the significant upward TVDI trends detected 

in our analysis for months like March and April, where an earlier end to the rainy season leaves the vegetation more 

susceptible to dryness during these transitional periods. Such shifts from spring to summer across much of the Middle 

East suggest that these precipitation timing changes are not isolated seasonal variations but part of a broader regional 

climatic transformation. The seasonal dynamics of the TVDI trends in our study, characterized by upward trends in 

higher latitudes during colder months and downward trends during warmer months, appear to be linked to regional 

climate variations and land-use changes. Previous research has demonstrated that changes in land cover, such as 

deforestation and agricultural expansion, combined with shifting rainfall patterns, can significantly impact soil 

moisture and vegetation health (Meher-Homji, 1991). Therefore, the prevalence of significant downward trends during 

warmer months in countries like Saudi Arabia, Yemen, and the United Arab Emirates may indicate both climatic 

drivers and human-induced factors contributing to increased aridity. Moreover, the spatial analysis reveals that regions 

with significant upward TVDI trends, such as northern Middle Eastern areas (northwestern Iran and Turkey), might 

be experiencing increased dryness and stress on vegetation due to changing precipitation patterns. This observation 

aligns with studies suggesting that global climate change can have heterogeneous impacts, leading to increased 

drought conditions in some areas while potentially enhancing vegetation growth in others (Wei et al., 2021). 

Understanding the relationship between precipitation patterns and vegetation dryness is crucial for effective water 

resource management, especially in the arid and semi-arid regions of the Middle East. While the results mainly focus 

on the temporal and spatial patterns of the Temperature Vegetation Dryness Index (TVDI), exploring how these 

patterns relate to regional precipitation data provides a more comprehensive view of drought dynamics. 

Understanding how precipitation patterns, soil moisture levels, land use, and vegetation indices (such as EVI) correlate 

with vegetation dryness is essential for managing water resources effectively, particularly in the arid and semi-arid 
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regions of the Middle East. While our analysis primarily focuses on TVDI's spatial and temporal patterns, examining 

these patterns about the parameters above provides a more nuanced perspective on drought dynamics. 

A comparative analysis using annual precipitation data from the GPM (Global Precipitation Measurement) data and 

TVDI trends reveals significant spatial patterns in the Middle East. Northern areas, such as Turkey and northern Iran, 

which have higher annual precipitation (Fig. 11a), show lower TVDI values (Fig. 11b), indicating increased soil 

moisture and reduced drought severity. This inverse relationship aligns with previous studies showing that increased 

precipitation enhances soil moisture and reduces dryness (Cong et al., 2017; Du et al., 2023). Conversely, southern 

and central regions, including the Arabian Peninsula and Egypt, experience lower precipitation levels and higher TVDI 

values, indicating intensified drought conditions and diminished soil moisture. This observation is consistent with 

studies on arid climates and water scarcity in these areas (Al Zawad & Aksakal, 2010; Elasha, 2010). These patterns 

emphasize the need for effective drought mitigation strategies to address the region’s vulnerability to climatic 

variability. 

The study shows that the annual average TVDI is affected by the total amount of precipitation and its seasonal and 

temporal distribution. Regions with moderate annual precipitation may have high TVDI values due to uneven yearly 

rainfall, causing soil moisture deficits (Koster et al., 2004). These findings suggest that regional climate changes and 

local factors, such as vegetation cover, influence surface moisture dynamics. Similar patterns are observed outside the 

Middle East; for example, in Italy, LST and local vegetation changes significantly affect surface dryness (Ghaderpour 

et al., 2024). Such evidence indicates that regional and global climate changes and local factors are crucial in shaping 

surface moisture conditions across ecosystems. 

The Mann-Kendall trend test indicates that the southern and central regions, such as the Arabian Peninsula, Iraq, and 

Egypt, exhibit decreasing trends in TVDI, signifying improved soil moisture conditions due to increased precipitation 

(Fig. 6 and 12b). These results indicate that enhanced rainfall mitigates drought conditions, creating more favorable 

hydrological environments. Conversely, northern regions, including Turkey and northern Iraq, show increasing TVDI 

trends, indicating deteriorating drought conditions. Such an increase corresponds to a consistent decrease or lack of 

change in precipitation in these areas, aligning with previous studies linking reduced rainfall to heightened aridity 

(Dhorde & Patel, 2016). Regions with no significant trends in TVDI or precipitation are likely influenced by localized 

factors like soil type, vegetation cover, and topography, which can buffer the impacts of climatic changes (Khosravi 

et al., 2024). This observation echoes South Asian findings, where regional climate changes and local factors 

significantly shape surface dryness (Shawky et al., 2023). Sen’s slope analysis further confirms that northern regions, 
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including Turkey and northern Iraq, show positive slopes, indicating worsening drought conditions due to a consistent 

decrease in precipitation (Fig 9 and 12b). 

Conversely, southern regions, like the Arabian Peninsula, exhibit positive slopes in precipitation and a corresponding 

decrease in TVDI slope, reflecting improved moisture conditions. These findings are supported by recent studies 

linking increased precipitation in these areas to climatic oscillations (Almazroui, 2020). The findings of this study 

underscore the need to incorporate both quantitative and temporal precipitation data in TVDI analyses to enhance 

water resource management and drought mitigation strategies across the Middle East. Adopting a holistic approach 

that integrates precipitation quantity, seasonal distribution, and soil moisture dynamics can greatly enhance the 

effectiveness of strategies to mitigate drought impacts. This, in turn, bolsters water security, supports sustainable 

agricultural practices, and strengthens ecosystem resilience in the region’s arid and semi-arid landscapes (World 

Health Organization, 2019). 

Moreover, the study illustrates the effectiveness of combining remote sensing tools, such as GPM and TVDI, for 

monitoring and predicting drought conditions. This integration facilitates proactive water resource management and 

enables better-informed agricultural planning. Advanced monitoring techniques are especially critical in the Middle 

East, where water scarcity presents significant socioeconomic and environmental challenges. By deepening our 

understanding of drought behavior, these insights can guide the development of effective water management practices, 

thereby supporting sustainable agriculture and ensuring water security  (Dai et al., 2023; Zhang et al., 2011).  

A spatial comparison between the soil moisture map (Fig. 13a)  and the Middle East's annual average TVDI (Fig. 11b) 

reveals critical information regarding the region's water dynamics and drought patterns. Areas exhibiting elevated soil 

moisture levels, particularly in the northern Middle East, including Turkey, upper Iraq, and portions of northern Iran, 

consistently demonstrate lower annual TVDI readings (Fig. 11b). This correlation underscores these regions' superior 

capacity to maintain soil moisture, suggesting that abundant vegetation, encompassing forests and agricultural lands, 

significantly enhances water retention in the soil and mitigates drought intensity. These zones, characterized by higher 

precipitation and more favorable climate conditions, exhibit an increased capacity to absorb and retain water, directly 

contributing to lower TVDI measurements. Furthermore, topographical factors such as elevation and proximity to 

water sources can influence soil moisture patterns in these regions. 

Land use and TVDI maps (Fig. 1b) further confirm that the northern Middle East, including Turkey, northern Iraq, 

and parts of Iran, generally exhibits lower TVDI values due to dense vegetation cover, such as trees and crops, which 

indicate better moisture conditions and reduced drought severity (Fathi-Taperasht et al., 2023). Agricultural lands and 
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rangelands also tend to have lower TVDI values, attributed to their vegetation's ability to retain moisture, resulting in 

greater drought resilience (Martin-Sotoca et al., 2023). In contrast, the southern and central regions of the Middle East, 

such as the Arabian Peninsula and Egypt, predominantly consist of bare ground and rangeland, displaying higher 

TVDI values, which reflect more severe dryness and reduced soil moisture (Sahour et al., 2020). The lack of sufficient 

vegetation cover in these areas diminishes their capacity to retain soil moisture, increasing their susceptibility to 

moisture fluctuations. Bare lands and urban areas, due to their impermeable surfaces and absence of vegetation, also 

exhibit high TVDI values, indicating greater dryness and heightened vulnerability to drought.  

Building on the insights from soil moisture and land use patterns, the relationship between vegetation density and 

drought intensity was further examined using the Enhanced Vegetation Index (EVI) (Fig. 13b). This approach 

highlights that areas with denser vegetation cover, particularly in the northern Middle East, including regions such as 

Turkey, northern Iraq, and parts of northern Iran, exhibit higher EVI values. These regions, primarily consisting of 

forests and agricultural lands, show lower Temperature Vegetation Dryness Index (TVDI) values, which signify 

reduced drought severity and improved moisture conditions. This pattern underscores the positive impact of vegetation 

cover on soil moisture retention and drought mitigation, a role previously highlighted in studies focused on moisture 

balance maintenance (García-Leoz et al., 2018; He et al., 2024).  

In contrast, areas such as the Arabian Peninsula and parts of southern Iraq, Yemen, Oman, and Egypt, with sparse 

vegetation and lower EVI values, correspond with higher TVDI values, reflecting more severe dryness and reduced 

soil moisture retention. The absence of sufficient vegetation in these regions not only limits their ability to retain soil 

moisture but also heightens their sensitivity to climatic variability and moisture fluctuations, further stressing the 

critical role of vegetation in stabilizing soil moisture and mitigating drought impacts (Li et al., 2022). 
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Fig. 11. Spatial distribution of annual TVDI (a) and annual precipitation (b) in the Middle East 

  

Fig. 12. Spatial distribution of the annual TVDI trend (a) and its slope changes (b) in the Middle East 

  

Fig. 13. Spatial distribution of annual soil moisture (a) and EVI (b) in the Middle East. 
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A careful examination of the spatial distribution of TVDI cycles across the Middle East revealed inter-annual 

fluctuations in TVDI values with varying return periods (Fig. 13). The data in the table corroborate that the 2-3-year 

cycles significantly influence TVDI values within the Middle East, encompassing more than 68.77% of the study area. 

This cycle exhibits a widespread presence in countries such as Iran, Oman, Yemen, and Turkey, as well as the southern 

regions of Saudi Arabia and Egypt. Numerous researchers have linked these cycles to phenomena like the El Niño-

Southern Oscillation (ENSO) and the Quasi-Biennial Oscillation (QBO), which are present in large-scale atmospheric 

circulation patterns. For example, Selvam and Joshi (1995) identified a linkage between the 2-3-year variations and 

surface temperature and (Lamb, 1972) correlated these 2-3-year cycles with rainfall patterns in northwestern Iran, 

attributing them to the Quasi-Biennial Oscillation (QBO). Recent studies, such as (Niranjan Kumar & Ouarda, 2014), 

have explored how ENSO modulates the precipitation variability in the United Arab Emirates and surrounding regions, 

revealing significant teleconnections between UAE precipitation and global sea surface temperatures (SSTs). The shift 

of the subtropical jet stream (STJ) due to ENSO-related Rossby wave propagation is a key factor influencing regional 

weather patterns. This is consistent with the findings in our study, where ENSO plays a crucial role in shaping the 

drought cycles observed across the Middle East. 

Similarly, (Niranjan Kumar et al., 2016) emphasized the impact of Rossby waves on precipitation variability in the 

Arabian Peninsula, further supporting the connection between large-scale atmospheric phenomena and regional 

climate patterns. In South Asia, Shawky et al. (2023) identified similar patterns of increasing and decreasing LST 

influenced by atmospheric oscillations such as ENSO, reinforcing the connection between seasonal variations in LST 

and large-scale climate changes. Alongside the prevalent 2-3-year cycle, there is evidence of a 4-year cycle in the 

region, which many researchers attribute to the ENSO phenomenon. 

Azad et al. (2010) ascribed the 3-5-year cycles to seasonal rainfall patterns in India, citing their connection to the 

ENSO phenomenon. Similarly, (Kalayci et al., 2004) linked the 2-6-year cycles with precipitation occurrences in 

Turkey, specifically associating them with El Niño. Furthermore (Asakereh & Razmi, 2012b) provided evidence of 

the significant impact of 3-5-year cycles on precipitation in northwestern Iran, attributing them to the ENSO 

phenomenon. According to Fig. 11, these cycles are discernible in the northern and southern regions of Iran, in eastern 

Oman and eastern areas of Turkey, and sporadically in smaller regions within central Saudi Arabia. In the central parts 

of the Middle East (Saudi Arabia, Iraq, and Egypt), 7-15-year cycles are evident. The presence of cycles with these 

return periods is commonly attributed to solar activity by many researchers, such as Mitchell Jr et al. (1979) and 

Jahanbakhsh and Edalatdoust (2008). Furthermore, non-sinusoidal cycles with return periods matching the length of 
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the statistical period are observable in the same geographical areas, albeit with smaller spatial coverage. These cycles 

are associated with underlying trends in the data. 

 
Fig. 13. Spatial Distribution of TVDI Cycles in the Middle East 

5. Conclusions 

The TVDI, which integrates data from the NDVI and LST, provides a comprehensive method for analyzing soil 

moisture levels across terrestrial landscapes. Due to its ability to offer a detailed perspective on drought conditions, 

the TVDI index has gained widespread recognition and is extensively used in various ecosystems worldwide. It is an 

indispensable tool for monitoring and assessing aridity and drought patterns. 

This study aimed to analyze the trends and spectral characteristics of TVDI for 258,087 pixels across the Middle East, 

covering the period from 2003 to 2022. According to the Mann-Kendall test, significant upward trends in TVDI are 

most prominent in March and April, while September shows the least significant upward trend. This seasonal variation 

reflects the influence of temperature and precipitation on vegetation dynamics. Notably, upward TVDI trends are more 

prevalent in the northern half of the Middle East, whereas the southern half experiences significant downward trends, 

particularly during the warmer months. 

A seasonal analysis reveals that winter generally lacks significant TVDI trends, whereas spring and summer exhibit 

notable downward trends, especially in the southern and western regions. The annual trend map suggests a long-term 

declining trend in TVDI for most latitudinal bands. The steepest upward TVDI slope values occur during the warmer 
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months, with April showing the highest slope. Conversely, the downward trend slopes are steepest in July, indicating 

increased dryness. 

Spatially, significant downward slope values are concentrated in the southern and western regions of the Middle East. 

The seasonal slope analysis further reveals that the most pronounced upward slope values align with the spring season, 

while the most significant downward slopes occur during the warmer months. The annual slope maps divide the region 

into two segments: the southern, eastern, and western Middle East exhibit negative slopes, while the central and 

northern regions display positive slope trends, except for western Turkey. Furthermore, comparing GPM data with 

TVDI trends revealed a clear connection between precipitation and drought conditions in the region. In northern areas 

such as Turkey and northern Iran, which receive more rainfall, lower TVDI values are generally observed, indicating 

better soil moisture and less severe droughts. In contrast, southern and central regions, including the Arabian Peninsula 

and Egypt, exhibit higher TVDI values due to lower rainfall, signifying more intense drought conditions. These 

findings highlight the need for targeted drought mitigation strategies to address the region’s sensitivity to changing 

climate patterns. 

In the second phase, periodograms of TVDI time series were plotted for 26 individual stations to assess the significance 

of cycles at a 95% confidence level. Most stations observed significant cycles, indicating the emergence of specific 

patterns and coherent TVDI values in cyclic behavior. However, certain stations, including Al Basra, Al Riyadh, 

Baghdad, Istanbul, Mosul, and Shiraz, did not display distinct cycles, suggesting random behavior. Non-sinusoidal 

cycles with a return period equal to the length of the statistical period were evident at stations such as Adana, Al 

Kuwayt, Al Madinah, Amman, Cairo, and Tehran. A significant first harmonic in these periodograms indicated a trend 

within the data. 

The spatial distribution of TVDI cycles across the Middle East revealed inter-annual fluctuations with varying return 

periods. The most prominent cycle, with a 2-3-year return period, was observed in over 68.77% of the study area, 

including Iran, Oman, Yemen, Turkey, and the southern regions of Saudi Arabia and Egypt. This cycle has been 

associated with large-scale atmospheric phenomena such as the El Niño-Southern Oscillation (ENSO) and the Quasi-

Biennial Oscillation (QBO). Additionally, a 4-year cycle was linked to ENSO activity in the region. Cycles with 7 to 

15 years return periods were observed in central parts of the Middle East, attributed to solar activity. Non-sinusoidal 

cycles matching the length of the statistical period were also found in various geographical areas, suggesting 

underlying trends in the TVDI data. 
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Highlights 

 Significant seasonal TVDI trends: upward in northern, downward in southern Middle East. 

 Seasons show varied TVDI trends: steep spring ups, notable summer downs. 

 Annual TVDI trend map shows long-term decline, especially below 34 degrees latitude. 

 Periodograms reveal cyclic TVDI patterns linked to ENSO and atmospheric factors. 


