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ABSTRACT Segregation and mixing shape the structure and functioning of aquatic
microbial communities, but their respective roles are challenging to disentangle in
field studies. We explored the hypothesis that functional differences and beta diver-
sity among stochastically assembled communities would increase in the absence of
dispersal. Contrariwise, we expected biotic selection during homogenizing dispersal
to reduce beta and gamma diversity as well as functional variability. This was exper-
imentally addressed by examining the compositional and functional changes of 20
freshwater bacterial assemblages maintained at identical conditions over seven growth
cycles for 34 days and subjected to two consecutive dispersal regimes. Initial disper-
sal limitation generated high beta diversity and led to the repeated emergence of
community types that were dominated by particular taxa. Compositional stability and
evenness of the community types varied over successive growth cycles, reflecting
differences in functional properties. Carbon use efficiency increased during cultivation,
with some communities of unique composition outperforming the replicate community
types. Homogenizing dispersal led to high compositional similarity and reduced gamma
diversity. While a neutral and a competition-based (Elo-rating) model together largely
explained community assembly, a pseudomonad disproportionally dominated across
communities, possibly due to interaction-related genomic traits. In conclusion, microbial
assemblages stochastically generated by dispersal limitation can be gradually “refined”
into distinct community types by subsequent deterministic processes. Segregation of
communities represented an insurance mechanism for highly productive but competi-
tively weak microbial taxa that were excluded during community coalescence.

IMPORTANCE We experimentally assessed the compositional and functional responses
of freshwater bacterial assemblages exposed to two consecutive dispersal-related events
(dispersal limitation and homogenizing dispersal) under identical growth conditions.
While segregation led to a decreased local diversity, high beta diversity sustained
regional diversity and functional variability. In contrast, homogenizing dispersal reduced
the species pool and functional variability of the metacommunity. Our findings highlight
the role of dispersal in regulating both diversity and functional variability of aquatic
microbial metacommunities, thereby providing crucial insight to predict changes in
ecosystem functioning.

KEYWORDS assembly processes, coexistence, carbon use efficiency, community
functioning, Elo-rating, dispersal limitation, homogenizing dispersal

icrobial community assembly involves stochastic processes like passive dispersal,
drift, and diversification, leading to random fluctuations in species abundances
(1), and deterministic, niche-related phenomena that affect species through abiotic
and biotic selection (2). The relative importance of different assembly processes may
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shift during succession, from predominantly stochastic during initial colonization to
increasingly deterministic in mature communities (3-5).

This transition is disrupted if extremely low and high dispersal rates override
deterministic abiotic selection (6). For instance, dispersal limitation promoted the
emergence of distinct microbial assemblages in identical bioreactor habitats (7) and
lake water microcosms (8). Conversely, homogenizing dispersal mitigated the effects of
abiotic selection and increased community similarity (9—-11). Moreover, dispersal need
not be a continuous process but also encompasses extremes like transient isolation or
total coalescence (12). While the interplay of dispersal and biotic selection is not fully
understood, evidence suggests that antagonistic and facilitative interspecific interac-
tions, modified by historical contingency (13, 14), shape community dynamics upon
habitat colonization (6). Moreover, similar climax communities may emerge despite
moderate dispersal (15), indicating that biotic interactions may act as stabilizing filters for
community structure.

Metacommunities are networks of local communities interconnected by source-sink
dynamics (9). The spatial insurance hypothesis predicts that dispersal mitigates the
negative effect of suboptimal local (abiotic or biotic) conditions (16). Neighboring
communities may rescue depleted ones via dispersal to circumvent local extinction and
preserve metacommunity diversity. However, connectivity is a double-edged sword, as
the isolation of local communities may protect species from superior competitors (17—
19). Such competitively weak rare species may promote functional diversity (20), and
thus possibly affect community performance.

We experimentally investigated the interplay between dispersal-related processes
and biotic interactions in shaping bacterial community structure and functioning.
Dispersal limitation served to generate parallel bacterial assemblages with contrasting
composition and functioning at identical environmental conditions (8). We hypothe-
sized (i) that functional differences and beta diversity among stochastically assembled
communities would increase during semi-continuous cultivation in the absence of
dispersal, but (ii) that subsequent homogenizing dispersal would cause a decrease in
beta and gamma diversity, as well as a reduction in functional variability due to biotic
selection of disproportionally competitive populations from the metacommunity. Finally,
we assessed the implications of species interactions on the observed decrease in beta
and gamma diversity, and functional variability, following homogenizing dispersal (i.e.,
mixing of all communities).

RESULTS

Initial colonization and compositional changes during semi-continuous
growth cycles

We conducted a 34-day culture experiment in artificial lake water using 20 parallel
freshwater bacterial assemblages over six semi-continuous growth cycles (Fig. 1a).
The putative 16S reads represented 0.04% =+ 0.04% (mean + standard deviation)
of total metagenomic reads per sample (Table S1). Altogether, 118 bacterial genera
were identified, with Pseudomonas (10.9%), Flavobacterium (9.2%), Aeromonas (6.7%),
Acidovorax (5.9%), and Limnohabitans (5.9%) being the most abundant ones (Table S2).

Experimentally induced dispersal limitation (growth cycle 0, CO) resulted in communi-
ties with distinct structures (Fig. 1). Acidovorax, Aeromonas, and Pseudomonas were both,
abundant (>30% of reads) and prevalent (present in 20, 15, and 15 microcosms, respec-
tively). CO was also characterized by genera that were only abundant in single micro-
cosms, such as Rhodoferax, Caulobacter, Rheinheimera, and Deefgea (Fig. 1b).

Initially prevalent taxa like Acidovorax and Pseudomonas persisted from the growth
cycle 1 to 6 (C1-C6). Some rarer taxa, such as Pelomonas, Cellvibrio, Paucibacter, and
Duganella, also increased in abundance over the growth cycles but remained restricted
to few microcosms (Fig. 1b). In C6, half of the communities were dominated by Acido-
vorax, Pseudomonas, or Aeromonas (i.e., >40% of total read numbers), while the other half
were unique with respect to the most abundant taxon.
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FIG 1 (a) Schematic depiction of the experimental design, simulating dispersal limitation (left panel), biological interactions in semi-continuous cultures (center
panel), and a homogenizing dispersal event (right panel) over seven consecutive growth cycles (CO-C7). (b) Proportions of reads of 16S rRNA genes affiliated with
the 10 most abundant genera in metagenomes from the experimental communities at C0, C1, C4, C6, and C7.

Local operational taxonomic unit (OTU) richness per microcosm significantly
decreased throughout the cultivation cycles, from 111 + 33 OTUs at CO to 78 + 38 OTUs
at C6 (linear mixed model, P < 0.001). By contrast, the total number of OTUs in all
microcosms tended to remain stable from CO to C6 (CV = 5.1%, Fig. 2a). Most CO com-
munities were more dissimilar than expected by chance (Brc > 0.95). The proportion of
community pairs more dissimilar than expected by chance gradually decreased over the
cycles (from 73% to 46% of the pairwise comparisons). By contrast, pairs more similar
than by chance (Brc < —0.95) increased, from 11% at CO to 19% at C6 (Fig. 2b).

Community type affects changes in composition and bulk parameters

We categorized communities according to dominant taxon. Acidovorax-type communi-
ties transitioned from predominantly dissimilar pairs at CO (Bgrc > 0.95) to increasingly
more similar in subsequent cycles (Fig. 2c). An even steeper decrease of Brc was
observed for Pseudomonas-type communities, with all pairwise comparisons
being <—0.95 by growth cycle 4 (C4). Aeromonas-type communities were already highly
similar (Brc < —0.95) at CO and remained stable over the growth cycles (Fig. 2¢).

The three community types together harbored 82% of all genera detected at C6 (Fig.
3a). The three dominant genera only co-occurred during the early growth cycles (Fig. 3b).
The community types exhibited similar OTU richness (repeated measurement analysis of
variance [ANOVA], P > 0.05), but Aeromonas-type communities were less even (Pielou’s
evenness) than the other two types and the unique communities (repeated measure-
ment ANOVA, P < 0.001) (Fig. 3c). Twice as many genera were exclusive to the Acidovorax-
type communities than to those of the other two types (Fig. 3d).

Bacterial abundance per microcosm did not correlate with biomass (Fig. S2): bacterial
abundance decreased over the growth cycles (Fig. 4a and b), whereas communities
produced increasingly more biomass, i.e., larger cells (Fig. 4c and d). Cellobiose consump-
tion in the microcosms did not significantly change over cycles (cycle, repeated
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FIG 2 (a) OTU richness per microcosm (left axis) and total OTU richness across all the microcosms (right axis) over the cycles. (b) Percentage of Raup-Crick (BRC)

pairwise dissimilarities among the 20 microcosms per cycle according to whether they are less (BRC > 0.95)/more (BRC < —0.95) similar than expected by chance,

or they do not differ from stochastic assembly processes BRC < |0.95]. (c) Pairwise BRC index computed for microcosms belonging to the same community type

over the growth cycles. Dashed lines represent BRC values of 0.95 and —0.95.

measurement ANOVA, P = 0.126, Table S3; Fig. 4e and f), but carbon use efficiency (CUE)
increased 1.5-fold. (Fig. 4g and h).

Community type affected both, magnitude and temporal changes of some commun-
ity bulk parameters (Fig. 4). Acidovorax-type communities had higher bacterial abundan-
ces than Pseudomonas and Aeromonas types (Fig. 4a). Bacterial abundances decreased
over the growth cycles in Acidovorax- and Pseudomonas-type communities but increased
in the Aeromonas-type ones (Fig. 4b). The overall increase in biomass was mainly driven
by the steep rise in the Acidovorax-type communities (Fig. 4c and d). By contrast, the rate
of CUE increases only slightly varied between community types (Fig. 4g and h). Commun-
ities of unique composition showed high variability in bulk parameters amongst each
other: some unique communities had more than three times higher biomasses and
cellobiose consumption rates than the average of the common community types (Fig. 4c
and e).
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FIG 3 (a) Specific and shared genera in community types, i.e., communities dominated by Acidovorax (n = 5), Pseudomonas (n = 3), or Aeromonas (n = 3) at

C6. (b) Relative abundance of the three representative genera in their community type (% reads number). (c) OTU richness and Pielou evenness indices per

community type in the experimental cycles. (d) Relative abundances of genera in the three community types.

Changes in genus-level competitiveness over time (Elo-rating)

We used Elo-rating (originally developed to rank chess players across multiple tourna-
ments [21]) as an index to assess the overall performance of individual taxa within the
metacommunity over time, i.e, how often they occurred in the microcosms, and their
relative abundances in these communities.

The Elo-rating was used to generate rank distributions of genera with >0.1% relative
abundances in at least one microcosm between CO and C6 (Fig. 5). Several successful
primary colonizers (rating above 75th percentile at C0), such as Flavobacterium, Pseudar-
cicella, and Aquabacterium, significantly declined in their Elo-rating, whereas Rhodoferax
became more competitive (Fig. 5). While most of the initially less competitive genera did
not significantly change or even decreased in Elo-rating (e.g., Polaromonas, Rheinhei-
mera, and Methylibium), several others, such as Paucibacter, Duganella, Variovorax, Bosea,
and Pelomonas significantly improved in competitive performance over the cycles
(Spearman rank correlation, P < 0.05; Fig. 5).

The Elo-rating of Acidovorax, Aeromonas, and Pseudomonas were all above the
median. While the ratings of the former two did not change over the cycles, Pseudomo-
nas slightly but significantly decreased (from 1,039 to 996, Spearman rank correlation, P
< 0.05; Fig. 5), reflecting its increasingly restricted occurrence across microcosms.
Acidovorax had the third-highest Elo-rating in CO, and the highest one by a large margin
in C6.

Homogenizing dispersal event

We experimentally induced a homogenizing dispersal event (growth cycle 7, C7) using
the 20 parallel microbial communities from C6 (Fig. 1a). Homogenizing dispersal
produced highly similar microbial assemblages (Brc < —0.95; Fig. 2b) dominated by the
genera that already formed the highest abundances in 50% of the C6 microcosms
(Pseudomonas, Acidovorax, and Aeromonas, Fig. 1b). Moreover, 20% of genera from C6
were not detected in C7, including some that represented a sizable fraction of the C7
inoculum (e.g., Caulobacter, Fig. 6a).

A neutral and a competitive model were compared in their power to predict the
community composition after the homogenizing dispersal event (C7, Fig. 6a). The neutral
model was based on the principle of mass effects (9, 22), i.e., the respective abundances
of each genus in C6 microcosms explained their abundances in C7. It successfully
predicted 20% of the genera, representing ~44.8% + 9.9% of abundances (Fig. 6b and c).
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FIG 4 Left panels: (a) cell abundances, (c) biomass, (e) cellobiose consumption, and (g) CUE over the six cycles of semi-continuous growth (C1 to C6) and the

homogenizing dispersal event (C7) in the three microcosms community types and the set of other assemblages. Right panels: slopes derived from the mixed

linear model for (b) cell abundances, (d) biomass, (f) cellobiose consumption, and (h) CUE. The dashed lines indicate slope = 0. Asterisks: *, P < 0.05; **, P < 0.01;

***, P<0.001.

The competitiveness model, based on genus-specific Elo-ratings from C6, most accu-
rately predicted the C7 abundances of three of the top 10 most abundant genera
(Pelomonas, Bosea, and Cellvibrio), accounting for 11.2% * 2.3% of abundances. Only
Pseudomonas outperformed both predictors, whereas many rare genera performed
worse than predicted by either model (Fig. 6¢).

Bulk community parameters of the C7 communities were highly similar (Fig. 4).
Biomass and CUE in C7 matched the average values of the C6 communities (Table S3),
while total cell abundances and cellobiose consumption were ~13% and ~10% lower
than before homogenizing dispersal (Table S3).
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We processed the metagenomes from C6 and C7 to retrieve metagenome-assembled
genomes (MAGs) that defined the C6 “community types,” which were affiliated with the
most abundant taxa across the microcosms. From the dominant genera Pseudomonas,
Acidovorax, and Aeromonas, we obtained 4, 15, and 4 MAGs from C6 and 4, 19, and 21
from C7, respectively (Table S4). Additionally, we retrieved nearly single MAGs from the
most abundant taxa in microcosms of unique composition at C6, including the genera
Caulobacter, Cellvibrio, Dugannella, and Pararheinheimera (Table S4).

Based on the ANI distance of the MAGs, a single Pseudomonas genotype, P. azotofor-
mans, dominated in C7 communities (Table S5). Acidovorax and Aeromonas were each
represented by two mutually exclusive genotypes, A. temperans or A. soli, and A. hydro-
phila or A. bestiarum, respectively (Tables S6 and S7).

Genomic traits of dominant community members

We assessed genes for secretion systems, amino acid biosynthesis, and cellobiose
degradation in the dominant genera at C7 and genera dominating at least one C6
microcosm (Fig. 6d). Type 2 secretion systems (T2SS) were found in all MAGs. Only MAGs
affiliated with Pseudomonas, Aeromonas, and Acidovorax featured T3SS, T5SS, and T6SS,
indicating strong competitive traits (23).
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Of the studied taxa, only A. hydrophila was prototrophic for amino acids. Pseudomonas
and Acidovorax MAGs each lacked synthesis pathways for specific amino acids (Fig. 6d).
Aeromonas MAGs and P. azotoformans MAGs contained genes involved in cellobiose
consumption (bgl-B and bgl-X, respectively), whereas Acidovorax MAGs did not. All MAGs
dominating single microcosms at C6 were prototrophic for amino acids and featured
genes coding for 3-glucosidases (Fig. 6d).

DISCUSSION
Compositional and functional variability in the absence of dispersal

Dispersal limitation during initial colonization of the microcosms (Cycle 0) led to a set
of stochastically assembled communities with high B-diversity (Fig. 1b) (8). Subsequent
semi-continuous cultivation (i.e., zero dispersal rates) revealed contrasting effects of
local isolation on different levels of diversity (24, 25) (Fig. 2a and b). Our findings align
with observations in anaerobic bioreactors, where stochastically assembled communities
decreased in richness during the transition to a deterministic regime (26). They also
experimentally support microbial metacommunity models predicting that the absence
of dispersal will strengthen local biotic selection (11). Other experimental systems, such
as freshwater nematode metacommunities, maintained stable diversity levels despite
prolonged local isolation (27). This difference in our findings is probably due to resource
availability: our experimental system relied on a limited number of resources (cello-
biose and glucose), thereby promoting biotic selection and diversity loss. By contrast,
nematodes could exploit a wide range of resources, including bacteria, microphytoben-
thos, protists, meiofauna, or organic debris (28). This likely led to reduced substrate
competition and niche separation, which in turn stabilized diversity during segregation.
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Interestingly, total compartmentalization rarely resulted in the extinction of OTUs (or
their decrease below the detection level of our method) at the metacommunity level,
as illustrated by stable y-diversity over the growth cycles (Fig. 2a). Instead, it led to a
decline in OTU occurrence or even to “endemism” within single microcosms, illustrating
both their redundant roles in most local assemblages and their likely dependence on
positive biotic interactions to circumvent elimination (29). This gradual “purging” of OTUs
from microcosm communities during their transition to more deterministic assembly
processes was also the main driver of increasing B-diversity (Fig. 2b).

The simultaneous increase in biomass and CUE of microcosm communities during
growth cycles contrasted with stable cellobiose consumption rates (Fig. 4). This suggests
that their improved performance was not directly driven by specialized taxa that could
degrade the primary resource, but is best attributed to increasing efficiency of using
the “common good,” cellobiose-derived glucose. Other biotic interactions might have
also contributed to reduced energy waste, e.g., enhanced cross-feeding on secreted
metabolites (30), or energy reallocation from metabolically costly competitive traits to
growth yield due to reduced interspecific competition (decrease in a-diversity; Fig. 2a)
(31). Our findings also speak for MacArthur’s minimization principle in communities
developing under competition at stable conditions: unutilized resources decreased
with community maturity due to niche complementarity among species (32). While
this concept has received little attention (33), an experimental study using synthetic
phytoplankton communities confirmed its predictions regarding biomass production
(34). Our results extend these findings by showing that cellobiose-derived carbon was
increasingly fixed into microbial biomass across growth cycles, irrespective of community
structure (Fig. 4g and h). Finally, microevolutionary adaptation toward more efficient
glucose consumption (35) could also explain the increasing efficiency.

Originally designed for assessing dyadic interactions within game tournaments (21),
Elo-rating has been used in biology to assess the social structure in primates (36).
Our implementation demonstrated suitability for metacommunity analysis by clearly
highlighting Acidovorax as the overall “winner” across multiple communities (Fig. 1b).
More importantly, it gave insight into subtle community re-arrangements during growth
cycles that would have been challenging to detect without context-dependent measure,
e.g., the increasing importance of Paucibacter, Bosea, or Pelomonas, and the concomitant
decline of Flavobacterium, Pseudodarcicella, or Aquabacterium (Fig. 2 and 5). Additionally,
it was the best predictor for the performance of three of the top ten most abundant
genera after metacommunity mixing (Fig. 6). Thus, Elo-rating could be an additional tool
to assess the overall success of taxa in metacommunities based on their competitive
performance within and among local assemblages.

Community types

Stochastic assembly processes can generate compositional and functionally distinct
communities (7). We show that dispersal limitation within metacommunities may
produce recurrent community types with different carrying capacities (Fig. 4a and d),
evenness (Fig. 3c), and subsets of exclusively associated taxa (Fig. 3d). We defined
types from genera dominating three or more microcosms (Acidovorax, Pseudomonas,
and Aeromonas) (Fig. 1b and 3). These genera are typically members of the rare aquatic
biosphere that proliferate upon input of organic matter or in substrate-rich microniches
(37, 38). Acidovorax was initially seeded into all microcosms, and all local populations
survived over the growth cycles. Since these bacteria lack a known cellobiose degrada-
tion mechanism (Fig. 6d), cellobiose-derived glucose must have been available to them
as a “common good.” By contrast, both Pseudomonas and Aeromonas were dispersal-limi-
ted and more vulnerable to biotic selection. In general, the community types self-stabi-
lized: while initial stochastic dispersal established the state for subsequent development
(Fig. 1B, C0), the biological interaction cycles resulted in their deterministic “purification”
This led to stable or increasing within-type similarity against a background of increasing
metacommunity-level B-diversity (Fig. 2a and c).
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Effects of homogenizing dispersal on the metacommunity

Experimental homogenizing dispersal increased a-diversity and similarity (lower
B-diversity) of local microcosm communities but led to a reduction of total metacom-
munity (y) diversity (Fig. 2a and b). These observations do not align with the theoretical
predictions for a fully connected metacommunity subjected to high dispersal rates (9,
39). Thus, the effects of a singular coalescence event differ from the source-sink dynamics
resulting from a continuous process of connectivity. Moderate local species sorting in
post-coalescence microcosms was suggested by the large proportion of abundances of
individual genera explained by the parent communities (i.e., by the neutral model, Fig.
6¢). The appearance of novel positive interactions among previously allopatric popula-
tions may also have contributed to the increased local diversity (40). Since our experi-
ment was limited to a single growth cycle after coalescence, we cannot assess if this high
initial diversity was only temporary. A gradual loss of diversity over a 6-week period was
demonstrated in an experimental study of mixed soil and carcass communities (41).

Upon coalescence, the heterogeneous assemblages transitioned to novel, more
uniform communities that differed from all source communities (Fig. 1b). Homogeniza-
tion of synthetic bacterial communities has been observed already at low dispersal
rates (42). Comparable findings have been reported from long-term field observations
at the landscape scale: the anthropogenic connection of freshwater bodies (related to
the construction of a reservoir) led to the homogenization of the zooplankton metacom-
munity (43).

Coalescence also led to functional uniformity (Fig. 4): community performance didn’t
improve after mixing but instead stabilized around the median value of the parent
communities (Table S3). This contrasts with previous observations where the best-per-
forming parent community dictated both, the structure and function of post-coales-
cence methanogenic assemblages (44). The loss of functional variability most likely
resulted from the disproportional decline or extinction of functionally distinct taxa
(Fig. 6d) that dominated in single C6 communities and significantly contributed to this
variability (Fig. 4c and e). These “endemic” populations, Rheinheimera, Duganella, and
Caulobacter (Fig. 1b), proved to be extremely vulnerable to competitive exclusion (45—
47). Thus, our experimental observations shed light on how homogenizing dispersal
can affect species trait distributions and lead to a loss of functional variability at
the metacommunity level (Fig. 4), thereby potentially altering ecosystem functioning
through the replacement of specialists at the expense of generalists (48) and functionally
inefficient species (49).

The post-coalescence dominance of one genotype of Pseudomonas from a single
isolated microcosm, P. azotoformans, conspicuously exceeded our predictions (Fig. 1 and
6; Table S5). The analysis of the corresponding MAGs revealed that P. azotoformans was
the only abundant community member that featured T5SS and T6SS. These secretion
systems confer competitive advantages to pseudomonads by delivering effectors such
as nucleases, amidases, hydrolases, or phospholipases to neighboring bacterial cells and
the external milieu (50, 51).

Taken together, our findings suggest that dispersal limitation may play a key role
in defining community performance, by stochastically segregating highly efficient
“bottom-up” specialists from taxa that outcompete them via negative biotic interactions
(52, 53). This holds relevance for a rational selection of stable microbial assemblages for
both industrial and ecosystem restoration purposes (54). Specifically, we demonstrate
the feasibility of a “top-down” design approach to optimize degradation efficiency in
synthetic communities by producing rare variants that outperform the more common
types: the highest levels of cellobiose degradation occurred in a unique dominated
community stable over the six growth cycles (i.e., Caulobacter; Fig. 1b) but did not survive
community coalescence (Fig. 6a). Our findings thus provide a potential alternative to
classical bottom-up approaches (55), by allowing for intrinsic biotic relationships from
initial stochastic assembly to serve as stabilizing force during deterministic selection (56).
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MATERIALS AND METHODS
Sampling site and experimental design

Water for the inoculum of the experiment was collected at 5 m depth from the preal-
pine oligo-mesotrophic Lake Zurich (Switzerland) on 4 October 2019. It was prefiltered
using 0.8 um pore size filters (polycarbonate membrane, Whatman, Maidstone, UK) via
a peristaltic pump (Ismatec, Wertheim, Germany) to exclude potential grazers and other
eukaryotes from the microcosms.

The experiment comprised three phases: initial colonization of sterile microcosm
environments, six growth cycles in semi-continuous culture, and a final “coalescence
event” (Fig. 1a). Bacterial communities were grown in artificial lake water (ALW) (8)
supplemented with glucose (10 umol L™") and its dimer, cellobiose (100 umol L™). This
setup aimed to mimic the natural pool of dissolved organic carbon in aquatic systems,
i.e, low concentrations of labile and higher concentrations of recalcitrant compounds
(57). Microcosms consisted of 200 mL Erlenmeyer flasks incubated at 20°C in dark
conditions. At the end of each growth cycle, samples for substrate utilization, bacterial
growth, and biomass were collected.

For the initial colonization phase (growth cycle 0, hereafter C0), the filtered lake water
was inoculated into ALW (1:100), homogenized, and distributed over 20 microcosms.
This procedure promotes the dispersal limitation of rare lake bacteria that thrive in
the provided environmental conditions (8). Microcosms were incubated for 6 days until
bacteria reached the stationary phase. For the semi-continuous cultivation phase, 20 mL
from each microcosm was transferred into 180 mL of substrate-supplemented ALW in a
new microcosm. These cultures were incubated for 4 days between subsequent transfers,
for altogether six growth cycles (C1 to C6; Fig. 1a). In the final phase, 20 mL from each of
the 20 communities were mixed to simulate homogenizing dispersal, diluted with ALW
(1:10), homogenized, and distributed across 20 microcosms. These microcosms were
incubated for 4 days (C7; Fig. 1a).

Bacterial abundances and biomass

For bacterial enumeration, 1 mL portions were fixed with formaldehyde (2% final
concentration), stored at 4°C, and measured within 24 h. Fixed samples were stained with
SYBR Green and analyzed on a CytoFLEX flow cytometer (Beckman Coulter, Indianapolis,
IN, USA). For biomass determination, 50 mL aliquots were filtered onto precombusted
0.22 um pore size GF/F filters (Tisch Scientific, 450°C for 6 h) and stored in small
aluminum containers at —20°C until analysis. The total organic carbon was quantified
on a dry combustion module cavity ring-down spectrometer (Picarro Inc, Santa Clara, CA,
USA). Filters were combusted at 950°C, and the resulting CO, was quantified. Standards
with a known C-content (Miscanthus) served as the reference for calibration.

Substrate quantification

Glucose and cellobiose concentrations were determined by high-performance liquid
chromatography (1260 Infinity series, Agilent Technologies, Santa Clara, CA, USA)
coupled with mass spectrometry (APl 5000 triple quadrupole, AB Sciex, Baden, Swit-
zerland; HPLC-MS). Aliquots (1.5 mL) were filtered through 0.1 um membrane filters
(Polyethersulfone, Infochroma AG, Goldau, Switzerland) and stored at —20°C until
analysis. Measurements were conducted as described (58), using sucralose (2 umol L") as
the internal standard. Data were acquired using Analyst v1.6.1 software (AB Sciex), and
chromatograms were analyzed via MultiQuant v2.1 (AB Sciex).

Carbon use efficiency

CUE was calculated as the ratio between the biomass produced and the correspond-
ing amount of carbon (combined concentrations of glucose and cellobiose) consumed
during each cycle.
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DNA extraction

At the end of cycles CO, C1, C4, C6, and C7, 100 mL from each microcosm were filtered
onto a 0.22 pum pore size filter (GPWP, Millipore, Darmstadt, Germany), stored at —20°C
until DNA extraction with the DNeasy PowerBiofilm Kit (Qiagen, Germany). Metagenomic
DNA was sequenced using the Illlumina shotgun NovaSeq 6000 platform (2 x 150 pb,
NOVOGENE, Cambridge, United Kingdom).

16S rRNA genotyping

For bacterial community structure analysis, we retrieved reads from the CO, C1, C4,
C6, and C7 metagenome sequences mapped to the 16S rRNA gene using published
pipelines (59, 60). Forward and reverse reads were merged using BBmerge v38.86 (61)
at default settings and filtered by length (>200 bp) using BBduck v38.86 (61). These
pre-processed reads were queried against the SILVA SSU database using MMseqs2
(e-value 1e7) (62) to identify RNA-like sequences. Bona fide 165 rRNA sequences were
further compared by blastn (e-value 1e7®) with SSU-ALIGN v0.1 (http://eddylab.org/soft-
ware/ssu-align/) against the SILVA 99NR database v138.1 (63). OTUs were constructed
by BLAST (v2.9.0) analysis of the identified 16S rRNA sequences against SILVA that
simultaneously had identity values >97% and alignment lengths >80% (64). Reads were
rarefied to the read count of the lowest sample (2,911; Table S1).

Genome assembly and functional annotation

Raw Illumina reads were quality and adapter trimmed using BBduck v38.86 (61) (qtrim=rl
trimg=30). Reads were assembled per sample using MEGAHIT v1.2.9 (defaults settings,
k-mer 29, 39, 49, 59, 69, 79, 89, 99). The metagenomic reads were mapped using BBmap
v38.86 (61) against the assembled contigs. The abundance profile of assembled contigs
was used for binning with MetaBAT2 (65). Completeness and contamination were
assessed by CheckM v1.2.2 (66). Bins with contamination <5% were considered MAGs
for further analysis (Table S4). MAGs were taxonomically classified with GTDB-tk v1.4.0
software (67) against the GTBD database release R07-RS207. Coding sequences were
predicted via Prokka v1.12 (68) and annotated using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (69). Metabolic reconstruction and genomic traits analysis were
conducted with the KEGG mapping tools (https://www.genome.jp/kegg/mapper/recon-
struct.html) using the previously annotated KO numbers. Proteins involved in cellobiose
degradation (beta-glucosidases and cellobiose phosphorylases) we identified using the
UniProtKB/Swiss-Prot protein database (release 2024_02 v1).

Genomic traits associated with biological interactions

We searched for genomic traits associated with positive and negative biological
interactions. Amino acid biosynthesis pathways were analyzed to detect auxotrophic
taxa. Auxotrophies for essential metabolites increase metabolic interdependencies
within microbial communities, thereby promoting positive interactions (70). Genes
associated with bacterial secretion systems were assessed as proxies for competitive
advantages (23). Since some secretion systems can be associated with positive interac-
tion (i.e., cell-cell communication), we operationally classified them into weak or strong
competitive traits. Weak competitive traits comprised type |, Il, and IV secretion systems
(T1SS, T2SS, T4SS) that relate to host-pathogen interactions, and participate in bacterial
genetic exchange (23). In contrast, strong competitive traits encompassed type lll, V,
and VI secretion systems (T3SS, T5SS, T6SS), which can provide a direct competitive
advantage by enhancing survival and invasion capacity through the release of toxins and
effectors into the environment or neighboring cells (71).
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Assessment of competitiveness and predictions for the homogenizing
dispersal event

Competition among genera in our low-complexity communities at C0, C1, C4, and C6
was assessed by a multiplayer version of the Elo-rating index used to compare the
performance of players across multiple matches in gaming (72). For calculations, we
used the multielo-package v0.4.0 implemented in Python (https://github.com/djcun-
ningham0/multielo). Elo-ratings rely on the accuracy of a scoring function, for which
we fitted an exponential decay function to the distribution of bacterial read numbers
from cycle CO to C6 (R* = 0.90, P < 0.001; Fig. S1a). Each genus obtained a score (Sog)
based on its ranking in the community. Subsequently, the Elo rating per genus (Elog) in
each microcosm was calculated as

EIOG’n = EIOG’n 1+ K(N - 1)(SOG - SeG), (1)

where K (default = 32) corresponds to the sum of points per microcosm after all
pairwise “matches,” N is the number of bacterial genera, and Seg is the per genus
expected score if all community members have the same winning probability. Elo-rating
was calculated per cycle and sequentially updated through the 20 microcosms. Because
the order of the microcosms can influence Elo-rating results, we randomized the order of
microcosms (n = 1,000), and the average Elo-rating was reported.

The effects of the homogenizing dispersal event at the genus level were assessed
by comparing whether the final proportions of genera in C7 were better predicted by
competitiveness (their Elo-ratings in C6) or neutral processes (their respective abundan-
ces in the inoculum for C7). To calculate the competitive scenario, we first scaled the
Elo-ratings in C6 by subtracting the minimum rating:

Elog = Elog — min (Elog) 2

The scaled Elo-rating was normalized from 0 to 1 for further comparison with the
observed abundances:

ElOGf
2 (Elog)

Elo.normgy = x median(Cell countscg), 3)

where Elo.normg’ represents the expected abundance of the individual genus after
the homogenizing dispersal event according to their competitiveness.

The expected abundance of the individual genus according to the neutral scenario
was estimated by multiplying the relative read number per genus (G) with cell abundan-
ces per microcosm (i) from the C6. These results were summed up across microcosms (n),
as follows:

n
Abundance . neutralg = Z (relative read numbersg ; X cell countg ;) 4
7

Abundance.neutralg was normalized by the sum of cell counts across microcosms (n =
20).

Statistical analysis

Statistical analyses were conducted using R (73). The modified Raup-Crick index (Brc)
was used to assess the importance of community assembly processes using the Bray—
Curtis distance (74) at the OTU level with the R package NST (75). The Brc performs
a pairwise evaluation of community turnover based on a null model in which taxa
are randomly shuffled among all communities. It indicates whether community pairs
are more (Brc<—0.95) or less (Brc > 0.95) similar than expected by chance, or if
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turnover does not differ from the stochastic assembly (|Brc| < 0.95). Community pairs
more similar than by chance are expected to be influenced by either homogenizing
dispersal or homogeneous selection, while community pairs less similar than by chance
are influenced by dispersal limitation.

Distinct community types were defined by genera that were both, abundant and
prevalent (76), i.e., that had the highest read proportions of all genera at C6 in at least
three microcosms. The average community composition of these types was derived
from C6 microcosms. One-way repeated-measurement ANOVAs were performed to
evaluate if community type affected alpha diversity (Richness, Pielou’s evenness) and
bulk properties (bacterial abundance, biomass, and CUE). Normality and homoscedastic-
ity were tested by Kolmogorov—Smirnov and Levene tests, respectively. Linear mixed
models were fitted to the bulk property values of community types from CO to C6
to assess potential in or decrease during the semi-continuous cultivation phase (“Ime”
function, R package nlm). Spearman rank correlations of Elo-rating scores versus cycle
number were used to test if the competitive performance of individual genera signifi-
cantly changed between C0 and Cé6.

One-sample Wilcoxon or one-sample t-tests (depending on data distribution) were
performed to assess if the abundances of individual genera after the homogenizing
dispersal event in the C7 microcosms (n = 20) were more accurately predicted by the
neutral or the competitive model (or by neither). The abundances predicted by either
model were considered null hypotheses (hg). If neither predictor deviated from hg, the
model yielding the higher P-value was selected. Genera with significantly higher or lower
abundances than predicted by both models were classified as over- or underperforming,
respectively. Multiple testing was adjusted for by the Benjamini-Hochberg method.
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