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Abstract 

Accurately determining the position of pith and accessing tree-ring density profiles, 

including intra-ring variations, is important for both the forest industry and 

dendroclimatology. Although several available methods exist for acquiring this 

information, such as X-ray computed tomography (CT), micro-CT, and X-ray films, 

the availability of open-source programs for extracting data remains limited. The 

CTRing package in the R environment integrates a series of functions to detect 

precisely the pith and tree-ring boundaries and generate tree-ring density profiles 

using CT images of tree cross sections. Before processing, grey values are 

transformed into density using a calibration function. Pith position is then detected 

by combining an adapted Hough Transform method and a one-dimensional edge 

detector. Tree-ring profiles along the pith-to-bark path of interest are inspected 

visually, and tree-ring boundaries can be easily added or removed manually via a 

graphical user interface. After correcting for tree-ring boundaries, the inflection 

points of a 3rd-degree polynomial obtained from density profiles are used to delimit 

the earlywood–latewood transition. We tested this package using 60 CT-scanned 

images of white spruce (Picea glauca (Moench) Voss) discs collected at various 

tree heights (0%, 25%, 50% and 75% of the total tree height as well as at 1.3 m). 

The pith detection function had an average mean error of 0.72 mm with 95% of the 

automatically detected pith locations that differed by less than 2 mm from their 

manually located positions. Error decreased toward the apex of the tree. The 

functions of the CTRing package are flexible and can be easily implemented or 
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adapted. The package could also be used with simple images of discs to obtain 

ring-width time series; however, this use must be evaluated further. Future work 

with this package involves assessing the use of low-quality images and ring-porous 

species. 

Key-words: Automatic detection, computed tomography, EW–LW transition, pith, 

tree-ring profile 

1. Background 

Tree rings are commonly used to understand tree growth dynamics and their 

response to climate. These growth rings hold information related to the 

surrounding biotic and abiotic conditions. Cell formation in the rings is first 

determined by the genetic features of the species and the age of the cambial cells 

(Harold, 1990; Vaganov et al., 2006; Rathgeber et al., 2016). The number of cells 

produced in the apical and secondary meristems of a tree is nevertheless regulated 

by a series of complex interactions between biotic and abiotic factors, including 

competition, geographic location (e.g., solar radiation, growing season length), 

wind speed, soil nutrition, soil moisture and climate  (Bradley, 1985; Fritts, 2012; 

Ford et al., 2017; Abedi, 2021; Wu et al., 2022). Temperature and precipitation 

often limit cell formation and, hence, tree growth (Kozlowski & Pallardy, 1997; 

Żywiec et al., 2017; Gauli et al., 2022). Thus, tree-ring growth patterns can provide 

important information about past climatic conditions and indicate whether the trees 
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have experienced favourable or unfavourable conditions over their lifetime (Fritts, 

2012; Koprowski, 2013; De Micco et al., 2016; Visser, 2021) 

Over the last few decades, interest has shifted from ring width to ring density 

profiles for several reasons. Wood density is important for the forest industry and 

is frequently linked to other wood properties such as the modulus of elasticity and 

the modulus of rupture (Zobel & Van Buijtenen, 2012; Schneider et al., 2008; Baar 

et al., 2015; Morel et al., 2018). Wood density, especially when scaled to the entire 

tree, plays a crucial role in assessing tree and stand biomass and effectively 

evaluating forest carbon sequestration (Baker et al., 2004; Babst et al., 2014; 

Pothong et al., 2022). Use of ring density has also increased in dendrochronology 

primarily because this trait appears more closely correlated with climatic variables 

than ring width alone. Density-based dendroclimatology relies heavily on the 

density of latewood (LW), which is formed at the end of the growing season. LW 

contains a more pronounced climate signal than earlywood (EW, formed at the 

beginning of the growing season) as it is particularly sensitive to summer climate 

factors, including temperature and precipitation (Bouriaud et al., 2005; Li et al., 

2018; Deng et al., 2022). 

Various approaches have been proposed in the literature to measure wood density 

at both ring and intra-tree ring levels. These methods include the use of beta rays 

(Phillips, 1960), gamma rays (Woods & Lawhon, 1974), X-rays (Polge, 1966), high-

frequency densiometry (Boden et al., 2012), optical method (Dolgova, 2016), and 
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neutron imaging (Mannes et al., 2007). X-ray-based methods stand out as the most 

widely employed technique for measuring wood density. Often, radiograph films 

are employed, providing a 2D representation of a 3D object and thereby forfeiting 

depth information. This approach relies on samples with a defined thickness, and 

to minimize biases, sample preparation is important. Hounsfield (1973) addressed 

this issue through tomography: capturing projections from varied angles with a 

subsequent 3D reconstruction of an object. Since then, X-ray tomography has 

revolutionized wood imaging, especially for dendrochronological studies or for 

assessing internal features of tree logs. 

The automatic measuring of tree rings is important for obtaining high sample 

throughputs. The first step is to identify the location of the pith. Although this is the 

first step in generating radial profiles (Norell, 2009), pith position provides 

information related to the inner structure of logs, helps detect longitudinal gradients 

as well as knots and cracks in the wood and allows determining growth-ring 

eccentricity (Saint-André & Leban, 2001). Numerous techniques have been 

proposed to facilitate the automated or semi-automated detection of pith position 

from various image sources, including X-ray tomography, ultrasonic tomography 

(UT), inexpensive cameras and surface laser scans of tree cross sections. Among 

these approaches, the Hough Transform (HT) method is commonly applied 

(Bhandarkar et al., 1999; Andreu & Rinnhofer, 2001; Longuetaud et al., 2004; Norell 

& Borgefors, 2008; Boukadida et al., 2012). In the HT-based method, growth rings 

are conceptualized as concentric circles centred around the pith. Some studies 
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have also used the biological or morphological properties of trees to locate the pith 

(Jaeger et al., 1999; Flood et al., 2003). Wei et al. (2011) and Beaulieu & Dutilleul 

(2019) provide comprehensive reviews of different pith detection approaches. HT-

based methods work very well for small-sized and fast-growing tree species, as 

they have relatively regular, circular and wide annual rings. However, HT-based 

methods can produce inaccurate pith locations when the annual rings contain 

irregularities, defects and decay. 

After the pith’s location is identified, the following step involves identifying tree-ring 

edges within the pith-to-bark profile. Most studies have adopted an edge detection 

approach, in which annual rings are tracked by locating the sharp transition and 

abrupt changes in the pixel intensity of the image (Cerda et al., 2007; Kalle et al., 

2009; Entacher et al., 2007; Sundari & Kumar, 2014). These discontinuities in pixel 

intensity result from the density change between the dark-coloured LW and the 

light-coloured EW. Many commercial and freely available tools (e.g., ImageJ, 

WinDENDROTM, CooRecorder, LignoVisionTM) can detect and measure tree rings. 

Several research groups have developed R packages and algorithms for tree-ring 

analyses. Hietz (2011) linked the commercial image analysis program SigmaScan 

with Excel and R code to analyse tree rings. Lara et al. (2015) delineated rings 

through variations in greyscale values using the measuRing R package through a 

visual interface. Moreover, Campelo et al. (2019) developed the xRing package, 

designed specifically for analysing micro-densitometry data, to automatically 
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detect tree-ring boundaries, and this package also provided a graphical user 

interface (GUI) for manual correction. More recently, Poláček et al. (2023) applied 

deep learning to detect and measure tree rings automatically, and Martinez-Garcia 

et al. (2021) developed a new algorithm to visualize the 3D structure of tree rings. 

To the best of our knowledge, there exists no R package that encompasses 

functions for automatically identifying pith location, ring segmentation, and 

computing average ring density for processing the CT-scan data of tree discs and 

logs. Moreover, these techniques use increment cores or wood samples of fixed 

thickness to detect and measure tree rings. In contrast, our method can provide a 

detailed map of tree-ring variations across the entire disc, allowing for the 

recording of complete growth rings, more accurate estimation of ring areas, and 

measurement of ring density along several pith-to-bark paths. 

In this manuscript, we present CTRing, a new R package that extends the 

capabilities of the XRing package to X-ray medical CT images; this novel package 

includes functions to automatically detect pith, produce a tree-ring density profile, 

delineate the EW–LW transition and allow for manual corrections. Pith detection is 

based on the HT method, which uses multiple arc segments; this approach should 

be robust when encountering defects found within a tree disc. Finally, we present 

results from samples collected from two plantation-grown white spruce (Picea 

glauca (Moench) Voss) trees. 

2. Materials and methods 
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2.1. Computerized tomography (CT) 

CT scans produce a series of X-ray images collected at different angles to enable 

visualizing an object’s internal structures. These images, called projections, are 

then used to produce a 3D view of the volume using a filtered back projection 

(Hendee & Ritenour, 2003). The object is described by voxels (e.g., 100 × 100 × 

400 µm; in a 3D grid) that contain the attenuation of the X-ray signal. The 

attenuation is expressed in Hounsfield units (HU) and is calculated as the ratio of 

X-ray attenuation differences (Kalender, 2011)(Vock, 2001) (Eq. 1). 

𝐻𝑈 = 1000
µ𝑥−µ𝑤𝑎𝑡𝑒𝑟

µ𝑤𝑎𝑡𝑒𝑟−µ𝑎𝑖𝑟
                                                                                                            [1] 

where µx, µwater and µair are the linear attenuation coefficients for the tested 

specimen (length·unit−1), water (length·unit−1) and air (length·unit−1), respectively. 

HU is represented by grey levels (recorded at 8, 12 or 16 bits), as shown in Figure 

1, and its values fluctuate with wood density, as the attenuation coefficient is 

directly related to density (Macedo et al., 2002). To obtain density values, we 

selected middle slice from all the images in the z-direction, such that the voxels 

become pixels. Any slice can be used, or the slices can be averaged over the z-

direction. The number of pixels per slice is always constant (512 × 512). . Thus, the 

size of the pixel or the image resolution varies with specimen size (between 0.15 

and 0.51 mm·pixel−1 for our sample discs). 

INSERT FIGURE 1 HERE 
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2.2. Method overview 

The pith-to-bark profile for a path of interest is obtained by: 

1. Rescaling the HU values (i.e., grey values between 0 and 255); 

2. Applying a calibration curve to obtain density values for each voxel; 

3. Identifying the pith of the disc; 

4. Selecting the pixels along the pith-to-bark path of interest; 

5. Delineating the rings, EW and LW along the path and averaging the density. 

All steps were coded in R (R Core Team, 2021) and are presented in the CTRing 

package. The package is available under the GPL-3 licensing. Each step is detailed 

in the following subsections. 

2.2.1. Rescaling the HU values  

CT scanners store HU values as 8-bit (256 levels), 12-bit (4096 levels), or 16-bit 

(65 536 levels). To ensure portability and homogenize the workflow irrespective of 

CT scanner capacities, we rescale the grey values (GVi, where i is the number of 

bits) between 0 and 255 (GV8, Eq. 2). The values were not rounded to the integer 

value (i.e. all the decimals in the converted grayscale representation are kept). The 

downscaling to the 0-255 range is more convenient than rounding up to 12-bit or 

16-bit grey levels, especially for CT scanners that store values in a lower-bit format. 

𝐺𝑉8 = 𝐺𝑉𝑖 ∙
28

2𝑖             [2] 
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2.2.2. Density values 

Using the 8-bit grey values of samples of known density (acetal, heatglue, mosa, 

teflon and ultra-high molecular weight [UHMW] plastic), we developed a linear 

calibration equation (Figure 2, intercept = −0.14, slope = 0.018). As X-ray 

absorption relies on atomic composition, we used calibration materials having 

composition closely resembling that of wood. All samples were passed through a 

medical X-ray CT scanner (Siemens SOMATOM Definition AS+ 128) at INRS-ETE 

in Quebec City, Quebec. The X-ray tube of the CT scanner was operated at an 

energy level between 70 and 140 kV and a current of 300 to 700 mA. The 

equipment was controlled by a workstation running Syngo CT VA48A software, 

which was originally designed for medical applications. 

INSERT FIGURE 2 HERE 

2.2.3. Pith identification 

The location of the pith was found by iterating over several steps. 

Step a: From a given point having coordinates x1, y1 (the starting value is the 

centre of the image and is updated at the end of each iteration), n number of line 

segments are traced from the centre to the tree-ring limits of the image (Figure 

3a). The length of each line segment is less than half of the smallest dimension of 

the input image, and two adjacent line segments form an angle of 360/n between 

them. 
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A density profile for each individual segment is then obtained using a rotated 

rectangle between two points. The rotated rectangle serves as a moving window, 

extracting pixel values along the length and width of the rectangle and thus forms 

a matrix of profiles from the n segments. The length of this rectangle corresponds 

to the distance between two points. 

INSERT FIGURE 3 HERE 

Step b: The n profiles in the form of a matrix formed in the previous step are used 

as input for this step. Then, from density profiles, tree-ring edges were detected 

by adapting the “getBorders()” function from the xRing package (Campelo et al., 

2019), which calculates the difference between the local k-point maximum and 

minimum and compares it to a threshold value, explicitly defined by the user, to 

identify the tree-ring boundaries (> threshold). The function simulates the kernel of 

the edge detectors, albeit in a horizontal 1D form. The argument k provides the 

length of the moving window used to calculate the local extreme values. 

Step c: A new estimate of pith location is then obtained by using tree-ring edges. 

Our proposed technique is a modification of the original HT method. In the HT 

approach, the algorithm considers tree rings as a set of concentric circles, whereas 

our technique focuses on identifying the closest pairs of points from two adjacent 

segments (Figure 3b). We hypothesized that the closest points between two 

adjacent segments likely belong to the same tree-ring border. Thus, these pairs of 

points generate numerous arcs that should have the same centre, i.e., the tree pith. 
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Geometrically, the perpendicular line that bisects the line segment connecting two 

endpoints of an arc passes from the center of the circle, of which that arc is a 

segment (Figure 3c). Thus, the pith is then estimated as the intersection of all the 

lines obtained by the bisections of arcs (Figure 3d). The pith is assumed to be at 

the centroid of the intersections of all possible pairs of bisectors after outliers have 

been discarded by removing intersecting points outside the main cloud of points 

(Figure 3e). 

Steps a to c are repeated (using the new estimate of pith location) until the previous 

coordinates are found or the maximum number of iterations (30) is reached. 

2.2.4. Selecting the pixels along the pith-to-bark path of interest 

The path corresponding to n-pixels wide is defined by the coordinates of the pith 

and an endpoint selected by the user (Figure 4a). The width of the line is set, and 

an average density perpendicular to the path is calculated to obtain the pith-to-

bark density profile (Figure 4b).  

INSERT FIGURE 4 HERE 

2.2.5. Delineating the rings, earlywood and latewood along the path and 

averaging the density 

Segmenting the profile path to rings relies on using a modified version of the 

“getBorders()” function from the xRing package, as discussed above. After the 
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profile is segmented, the delineation of rings is confirmed visually. The ring count 

calculated using the “getBorders()” function is subsequently compared with the 

manually counted rings on the disc or DICOM image. Rings are then added or 

removed accordingly using a graphical user interface (GUI).  

The EW–LW transition is obtained using a 3rd-degree polynomial that is fitted to the 

density profile of each ring (Eq. 3). 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑎 + 𝑏 ∙ 𝑑𝑖𝑠𝑡 + 𝑐 ∙ 𝑑𝑖𝑠𝑡2 + 𝑑 ∙ 𝑑𝑖𝑠𝑡3 + 𝜀     [3] 

where a, b, c and d are the parameters estimated by the regression, dist represents 

the distance from the pith (in mm) and 𝜀 is the residual error. 

The inflection point (e.g., −2𝑐 6𝑑⁄ ) of the polynomial is assumed to correspond to 

the transition point between the EW and LW in the case that the polynomial is of 

the convex–concave form (Figure 5a).  If the polynomial method fails, for instance, 

in cases with a low number of points within the ring, or when the minimum and 

maximum values fall outside the expected range, or when the inflection point is 

close to the minimum or maximum density of the ring, we use the mid-point 

method. In mid-point method, the EW-LW transition is established as the distance 

to the midway point between the minimum and maximum density of the ring (Figure 

5b). Similarly, for the concave-convex polynomial form, the transition is determined 

as the distance to the midpoint between the minimum and maximum density of the 
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ring (Figure 5c). Table 1 provides the approximate rates at which each transition 

type is encountered. 

INSERT FIGURE 5 HERE 

INSERT TABLE 1 HERE 

Furthermore, the pixel size enables the determination of ring width. Thus, the final 

data frame for the selected path contains information about the age of the rings, 

average ring density, ring width, and the densities and widths for both EW and LW. 

2.3. CT scan data 

We destructively sampled 140 white spruce trees from two plantations established 

in the year 1990. Within each tree, five 2 cm thick discs were extracted at 0%, 25%, 

50% and 75% of the total height, as well as at a fixed height of 1.3 m. These discs 

were preserved in a freezer until processing. Before undergoing scanning, the 

discs were placed in a conditioning room at a temperature of 20 to 22 °C and 65% 

relative humidity until constant weight was reached, implying a 12% moisture 

content (ISO 554, 2002). The samples were scanned in the same CT scanner using 

the same settings as those used for obtaining the calibration curve data set.  

2.3.1. Validation of pith location 

To assess the pith location functions, we randomly selected 60 sample discs 

representing all heights (0%, 25%, 50%, and 75% of the total height, as well as at 
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1.3 m) and social classes. The sample trees had an average diameter, height and 

age of 18.37 cm, 13.35 m and 31 years, respectively. The automatically identified 

pith (x1, y1) was compared against the actual pith position (x0, y0), the latter obtained 

by manual inspection of the CT images. We then calculated discrepancies (i.e., 

errors or distance from the actual pith (0, 0) in arbitrary x- and y-axes) and the 

Euclidean distance between the actual pith and automatically located pith (ED, Eq. 

4): 

𝐸𝐷 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2      [4] 

3. Results 

The largest errors were observed for samples collected at the tree base—0% 

height—1.4 mm and 3.5 mm in the x- and y-directions, respectively  (Fig. 6a). 

Figure 6b shows that more than two-thirds of the automatically detected pith was 

less than 1 mm from their manually located position and that the ED of 95% of the 

discs was less than 2 mm. Notably, the three sample discs featuring an ED above 

the 2 mm threshold exhibited more pronounced irregularities within the ring 

structures. In regard to ED variation with height within the tree (Fig. 6c), pith 

detection accuracy increased from the stump to the apex of the tree. The average 

ED of the discs at 75% was 0.42 mm, compared with 1.26 mm at 0%. 

INSERT FIGURE 6 HERE 

4. Discussion 
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The CTRing package integrates three main steps to extract the tree-ring 

information from the CT-scan images: automatic detection of the pith, automatic 

delineation of tree rings and a graphical user interface (GUI) to correct the pith 

location and tree-ring edges. The good predictive performance, user-friendly 

interface and relatively fast processing times make CTRing package a reliable 

alternative for CT-image analysis in dendrochronology and forest ecology. 

We demonstrated that the developed algorithm located efficaciously the pith of 

various tree sizes and at different heights within the tree. Detection accuracy was 

lowest for discs collected closest to the stem base, as these samples exhibited 

more irregularities and “defects” in the tree-ring edges. Moreover, the number of 

pixels of an image is constant; thus, the pixels cover larger areas for the larger 

discs. Furthermore, in the upper stem of the tree, the annual rings become wider 

and more regular, and it is easier to obtain defect-free discs in the upper stem. 

Boukadida et al. (2012) reported errors in pith detection for hardwood species 

related to secondary pith produced by forking at the top of the tree. This scenario 

may not be true for most softwood species, as they tend to have a single, dominant 

straight trunk with small side branches. 

Overall, our mean discrepancy was 0.72 mm compared to 4.19 mm in Andreu & 

Rinnhofer (2001), 0.75 mm in Longuetaud et al. (2004), 1.69 mm in Boukadida et 

al. (2012) and 4.18 mm in Gazo et al. (2020), all using the HT method run on 

medical CT-scan data. Furthermore, in a related study, Habite et al. (2020) 

Jo
ur

na
l P

re
-p

ro
of



18 
 

reported a mean error of 2.6 mm along the x-axis and 3.2 mm along the y-axis 

whereas, Perlin et al. (2018) observed an overall error of 5 mm when using images 

acquired through optical surface scanning and ultrasonic measurements, 

respectively. By using arcs rather than the complete ring, our method reduces the 

effect of possible abnormalities on estimates of pith location, thereby increasing 

the accuracy for the images with defects, broken rings or where the ring direction 

changes rapidly and/or frequently. The accuracy of our method could be further 

improved by changing the settings or discarding those discs with obvious defects. 

We applied a third-degree polynomial to delimit the EW–LW transition. The most 

widely used methods for identifying this zone are threshold densities, Mork’s Index 

(MI) and the inflection-point method. Threshold density relies on an arbitrary 

threshold value of wood density used to delimit EW and LW (Kumar, 2002). For 

example, Cown & Ball (2001) applied a threshold density of 400 kg·m−3 to define 

the EW–LW transition in Monterey (radiata) pine (Pinus radiata D. Don). Other 

studies have defined the EW–LW transition as the point where the density 

surpasses the halfway point between the minimum and maximum density values 

of a ring (Polge, 1978; Campelo et al., 2019). The first method is a more static 

approach, as it is based on a single predefined value for all rings, whereas the 

second method uses two density values (minimum and maximum) that vary from 

ring to ring and can lead to an EL–LW transition at quite different density values. 

On the other hand, MI is an anatomically based approach (Mork, 1928), which 

considers the wall thickness of the tracheid to define both types of wood. MI 
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involves identifying the features (cell lumen diameter and cell wall thickness) of 

individual tracheids within a tree ring, thereby producing comprehensive 

anatomical data sets (Samusevich et al., 2020). When within-ring density varies 

substantially, both the threshold and MI approaches often misidentify the transition 

point (Björklund et al., 2017). Also, it was found that both methods tended to 

overestimate the proportion of EW, particularly for rings near the pith (Koubaa et 

al., 2002; Antony et al., 2012). All methods can erroneously identify the EW–LW 

transition when intra-annual density fluctuations (IADFs) are present. 

Inflection-point methods, also known as derivative methods, rely on identifying 

points where the density vs. distance from the pith exhibits a change in slope for 

each individual ring. The inflection point is defined as the maximum of the 

derivative function that describes the variability of intra-ring density (Koubaa et al., 

2002). This point can be established by a polynomial or smooth function (Barbour 

et al., 1997; Koubaa et al., 2002) or through segmented regression (Nocetti et al., 

2011; Franceschini et al., 2013). In our study, we opted for a third-degree 

polynomial rather than segmented regression because of the substantially lower 

number of measurements per ring compared with those obtained through micro-

densitometry. 

The profile is segmented into rings by comparing a threshold value with the 

minimum and maximum local k-points. The sensitivity can thus be adjusted but 

rarely permits identifying all the rings, by either over- or underdetecting ring 
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transitions. Narrow rings or wide rings having minimal LW (as in juvenile wood) are 

harder to segment because of the low contrast between the LW and EW of adjacent 

rings. IADFs or false rings—where short-term climate events cause tracheids 

having larger cell walls to be produced during EW forming (Palakit et al., 2012)—

or cracks produced because of conditioning constraints can be inadequately 

detected. Therefore, correcting these possible errors in tree-ring edges and EW–

LW transitions requires visually verifying these areas and then correcting manually; 

our package can perform these adjustments. 

Further work should include improving the tree-ring detection accuracy of the 

CTRing package by controlling for multiple sources of noise. Moreover, noise that 

may arise from complex anatomical features could be reduced through image 

filtering, and thresholding could be applied to segment those images having a poor 

resolution (Sauvola & Pietikäinen, 2000). Threshold-based segmentation acts as a 

selective filter by isolating tree-ring features from the background, thus allowing 

for precise analysis even when using distorted images with noise. 

CTRing works well for white spruce, with the estimated pith location differing 

minimally from the observed position. It would be interesting to validate the 

package on species that lack distinct ring transitions, i.e., diffuse-porous species 

such as sugar maple (Acer saccharum) and trembling aspen (Populus 

tremuloides), or for species having less stable edges, such as European ash 

(Fraxinus excelsior) (Fabijańska et al., 2017).  
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Figure 1. An X-ray computed tomography image of the cross section of a white 

spruce log in which the densities at different positions in the object are shown in a 

greyscale format. The darker zones indicate earlywood, and the lighter ones indi-

cate latewood. 

 

 

Figure 2. Calibration curve relating density to 8-bit grey values of known materials. 
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Figure 3. (a) Initial estimate of the pith location and segmentation of the image from 

pith location; (b) the location of two ring-edge points from adjacent segments; (c) 

estimation of the new pith based on the principal that the perpendicular bisector of 

any arc of a circle passes through the centre of the circle; (d) number of bisectors 

along which the pith should be located; and (e) positions for the pith estimated as 

the intersection of two bisectors (blue points are considered as outliers, and red 

points are used to estimate pith location; the intersection of the green dotted lines 

indicates the estimated pith location.) 
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Figure 4. Profile path on the raster image, highlighting (a) the pixels through which 

the profile passes and (b) the plot of the profile from pith to the bark of the selected 

path. 
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Figure 5. Earlywood-latewood transition (a) established by polynomial method, (b) 

established by mid-point method when there are a low number of points within the 

ring, or when the minimum and maximum values fall outside the expected range, 

or when the inflection point is close to the minimum or maximum density of the ring 

and (c) established by mid-point method when the polynomial is concave-convex 

form. The black line is the fitted 3rd degree polynomial function; the red and blue 

solid lines indicate the minimum and the maximum density points, respectively and 

the black dashed line indicates the transition point between earlywood-latewood. 
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Figure 6. (a) Distances between the automatically and manually detected locations 

of pith in the x- and y-direction in terms of error (we considered all manually de-

tected pith locations as 0, 0); (b) histograms showing the Euclidean distance be-

tween manually and automatically determined pith locations. The blue dashed line 

denotes the mean value (0.72 mm). (c) Boxplots presenting the Euclidean dis-

tances between manually and automatically determined pith locations for different 

disc heights. 
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Table 1: Earlywood-latewood Transition types of the annual rings in percentage for 

the 60-disc samples representing different heights. 

Disc height Transition type (in percentage) 

1 2 3 4 5 

0% 14.8 47.9 5.9 29.0 2.4 

1.3m 4.1 78.2 4.8 12.9 0 

25% 1.7 77.4 7.8 13.1 0 

50% 1.1 86.0 4.3 8.6 0 

75% 4.6 92.3 1.5 1.6 0 

Transition types: 1 denotes a low number of points in the ring; 2 denotes the inflection point esti-

mated by polynomial; 3 denotes minimum or maximum out of range; 4 denotes inflection point close 

to minimum or maximum; 5 denotes convex to concave. The disc samples used here are the same 

ones used to validate the pith location.  
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