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ABSTRACT
This study evaluates deep learning (DL) models, particularly ResU-Net with attention 
mechanisms, for mapping landslides in Quebec, Canada, utilizing high-resolution digital 
elevation model (HRDEM) data and its seven derivatives (slope, aspect, hillshade, curvature, 
ruggedness, surface area ratio, and max difference from mean). Three scenarios were 
considered to assess the effectiveness of various features in landslide segmentation: training 
the model on all features, each feature individually, and on slope and hillshade. Model 
performance on individual features was significantly poor, while the model trained with 
hillshade and slope outperformed the model using all seven features, particularly in F1-score 
(improved by 8% for rotational landslides and 11% for retrogressive landslides) during 
validation. Furthermore, for the test dataset, model performance on all seven features was 
compared against slope and hillshade. As a result, for rotational landslides, slope and hillshade 
achieved F1-scores of 0.68 and 0.93 for rotational and retrogressive landslides, respectively, 
while the same metrics using all features were 0.61 and 0.83, respectively. This suggests 
hillshade and slope provide the most relevant information and reduce computational 
complexity. Overall, the findings enhance our understanding of HRDEM derivatives and 
emphasize the importance of feature selection in optimizing model performance and reducing 
computational complexity.

Introduction

A landslide involves the downward sliding of a large 
number of rocks, debris, or soil along a slope. It is 
a type of natural hazard that poses a significant threat 
to human life, natural resources, infrastructure, and 
properties in various forms (Guzzetti, 2000; Shahabi 
et  al., 2021; Varnes, 1978). In Canada, thousands of 
landslides occur each year, and those that are small 
or occur in remote areas remain mostly unnoticed. 
Since 1771, landslides and avalanches have killed more 
than 700 people and have cost Canadians billions of 
dollars – with annual costs reaching approximately 
$200 - 400 million (Blais-Stevens et  al., 2018; Chapuis, 
2016). In Quebec province, large destructive landslides 
have mostly occurred in sensitive clay soils, and their 
spatial extent ranges from a few meters to hundreds 
of meters (Locat et  al., 2011; Poulin Leboeuf, 2020). 
Such large landslides, also known as Retrogressive 

landslides, occur in the clayey soils deposited in the 
postglacial seas of Québec, and the province is sig-
nificantly exposed to this type of hazard. Any efforts 
to mitigate landslide risks must start with an inventory 
(Guzzetti et  al., 2012). In this regard, visually inter-
preting aerial or very high-resolution (VHR) satellite 
images is still the most common procedure for land-
slide mapping. However, several drawbacks are asso-
ciated with this approach: multi-temporal analysis of 
large areas is time-consuming and difficult to imple-
ment. Moreover, the effectiveness of the produced 
landslide maps is influenced by factors such as the 
expertise of the researcher, the intended use of the 
maps, their scale, and the data employed in their 
creation.

In contrast, remote sensing (RS) techniques have 
opened a new era, particularly for mapping natural 
hazards in difficult-access or remote areas (Hölbling 
et  al., 2016). However, for images with intricate 
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textures and intensive spectral heterogeneity, conven-
tional models such as Parallelepiped and Maximum 
Likelihood fail for image classification; thus, advanced 
ML models, including Logistic Regression (LG), 
Decision Tree (DT), K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Artificial Neural 
Network (ANN), Random Forest (RF) and extreme 
gradient boosting (XGBoost) are applied to address 
these issues (Ma et  al., 2019; Shih et  al., 2019). 
Object-based image analysis (OBIA) has emerged as a 
new paradigm for addressing issues associated with 
the pixel-based approach. OBIA is a knowledge-driven 
approach that imitates human perception to group a 
set of similar pixels into meaningful objects through 
an image segmentation procedure that fairly represents 
corresponding features in the real world (Shahabi et al., 
2019; Tavakkoli Piralilou et  al., 2019). In this regard, 
several studies (Azhand et  al., 2024; Ghorbanzadeh 
et  al., 2022, 2023; Hölbling et  al., 2015; Ju et  al., 2022; 
Keyport et  al., 2018; Saba et  al., 2023; Shahabi et  al., 
2019; Tavakkoli Piralilou et  al., 2019) have shown that 
using OBIA to automatically extract landslide inventory 
scars is superior to pixel-based. Advancements in the 
field of computer vision and graphics processing units 
(GPUs) have provided researchers with opportunities 
to explore Deep Learning (DL) techniques for many 
intricate tasks, particularly natural language processing 
(NLP) and computer vision applications like image 
classification and object detection (Ghorbanzadeh 
et  al., 2021, 2022, 2024; Lu et  al., 2023; Mohan et  al., 
2021; Prakash et  al., 2020; Shahabi et  al., 2024).

In computer vision, specialized models like 
AlexNet, VGG Net, GoogleNet, ResNet, and DenseNet 
have been specifically designed to address challenges 
in image classification (Mohan et  al., 2021). However, 
within remote sensing (RS), particularly for tasks 
like image classification, the objective is to assign 
labels to every pixel in an image. Deep Learning 
semantic segmentation techniques such as the Fully 
Convolutional Network (FCN) are applied (Maggiori 
et  al., 2016). The U-net model (Ronneberger et  al., 
2015), an enhancement over FCN utilizing 
encoder-decoder architectures, has gained wide-
spread popularity in tasks like image segmentation 
and object detection despite its initial design for 
medical image segmentation (Ghorbanzadeh et  al., 
2021). Additionally, region-based models like Faster 
R-CNN (Tanatipuknon et  al., 2021) and Mask 
R-CNN (He et  al., 2017; Ullo et  al., 2021) have been 
developed for object detection and segmentation. 
More recently, transformers have demonstrated suc-
cess in remote sensing applications (Aleissaee et  al., 
2023), notably in tasks like landslide inventory (Tang 

et  al., 2022; Wang et  al., 2022). Nevertheless, the 
prevailing trend involves implementing such algo-
rithms primarily on multispectral RS data. In con-
trast, our situation relies solely on an elevation 
dataset, and models tailored for such specific sce-
narios are not widely available (Chen et  al., 2014; 
Fang et  al., 2022; Li et  al., 2015; Mezaal et  al., 2018; 
Pawłuszek et  al., 2019).

To the best of our knowledge, there is a dearth of 
studies exploring the use of DL models for mapping 
landslides in the Quebec province, particularly in 
leveraging elevation data and its derivatives. 
Consequently, the objectives of this study are to pio-
neer the development and assessment of a DL model 
tailored for mapping complex landslide scars across 
selected sites in the southern regions of Quebec and 
find the suitable high-resolution digital elevation 
model (HRDEM) derivatives to detect landslide scars 
using DL. This endeavor is grounded in utilizing pub-
licly accessible elevation data provided by the provin-
cial government (Natural Resources Canada 2019).

Study area and data

Study area

This research focuses on the southern region of 
Quebec, Canada, which is particularly susceptible to 
landslides due to its unique geological, geomorpho-
logical, and climatic characteristics. This area, encom-
passing the St. Lawrence Lowlands, Saguenay– 
Lac-Saint-Jean region, and the Ottawa Valley, is char-
acterized by the presence of sensitive clay soils, which 
can rapidly transform from a solid to a fluid state 
when disturbed (L’Heureux et  al., 2014). The region’s 
topography varies from gentle slopes to more pro-
nounced elevations, creating diverse conditions for 
landslide occurrence such as Retrogressive landslides 
in sensitive clays. Such landslides are most generally 
located along river or stream valleys and can start 
with an initial Rotational slide along a slope, which 
may be triggered by factors like riverbank erosion, 
excavation at the base of the slope, excess weight at 
or near the top of the slope, rising porewater pres-
sures due to rainfall or snowmelt, or seismic activity 
(Locat et  al., 2011; Perret et  al., 2019). Retrogressive 
landslides can be grouped into two main types 
depending on the failure mode: spreads and flows 
(Perret et  al., 2019), which are particularly dangerous 
because they can occur very rapidly, in a few minutes, 
often without obvious warning signs and can travel 
significant distances, sometimes exceeding a few hun-
dred meters.
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Rotational landslides, another type of landslide 
observed in the region (Poulin Leboeuf, 2020), involve 
the downward and outward movement of soil along 
a concave-upward failure surface. These landslides 
typically occur in homogeneous materials and are 
characterized by a Rotational movement around an 
axis parallel to the slope (Azañón et  al., 2005; Ma 
et  al., 2023). The combination of sensitive clay soils 
and the region’s topography makes southern Quebec 
particularly vulnerable to both Retrogressive and 
Rotational landslides since most of Quebec’s popula-
tion resides within the marine limits of the ancient 
Champlain, Laflamme, and Goldthwaite seas necessi-
tating comprehensive risk assessment and management 
strategies to mitigate their impact (Figure 1).

Figure 2 shows the four selected sites for 
Retrogressive and Rotational landslide detection: two 
for training, one for validation and one for testing.

Topographic and LiDAR dataset

The dataset used in this study comes from HRDEM 
product generated from airborne LiDAR data, pre-
dominantly in the southern regions. The Digital 
Terrain Model (DTM) and Digital Surface Model 
(DSM) are the main products derived from LiDAR 
data. Regarding DTM datasets, the associated infor-
mation includes a slope, aspect, shaded relief, color 

relief, and color-shaded relief maps, while for DSM 
datasets, the derived data consists of shaded relief, 
color relief, and color-shaded relief maps. In the 
southern region, DTM and DSM datasets are available 
at 1-meter or 2-meter resolutions and are projected 
onto the UTM NAD83 (CSRS) coordinate system, 
aligning with the respective zones. Notably, datasets 
with a 1-meter resolution cover a spatial extent of 10 
by 10 km, while datasets with a 2-meter resolution 
encompass an area of 20 by 20 km. Since the dataset 
with a 2-meter resolution covered our entire study 
area, we decided to use a 2-meter HRDEM product. 
Based on visual Inspection features including Hillshade, 
Slope, Geomorphon, Total Curvature, Terrain 
Ruggedness Index (TRI), Surface Area Ratio (SAR), 
and Max Difference From Mean (MDFM) were the 
best ones, the display landslides boundary and texture 
in different setting and regions. Hillshading is a 
method used to depict terrain by simulating illumi-
nation based on the elevation surface’s slope and ori-
entation (Gallant, 2000). Using this technique, the 
three-dimensional appearance of the terrain can be 
enhanced and generate a 3D representation of the 
surface, making it easier to identify landscape features. 
At the same time, the slope is steepness in degrees, 
radians, or percent for each grid cell in an input 
digital elevation model (DEM). Geomorphon is a use-
ful technique for representing and classifying land-
forms based on elevation differences of a grid cell in 

Figure 1. T he population heat map (Demers et  al., 2017) in southern Quebec’s residential areas overlaid on the marine limit. Black 
dots represent landslide scars.
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a DEM. Line-of-sight analysis for the eight topo-
graphic profiles in the cardinal directions surrounding 
each grid cell in the input DEM is the main concept 
of Geomporphon. It classifies landforms into 1 to 10 
classes, including lat, peak, ridge, shoulder, spur, slope, 
hollow, footslope, valley, and pit, respectively (Jasiewicz 
and Stepinski, 2013). Total curvature combines profile 
and plan curvature, which comprehensively measures 
how the terrain surface changes in both profile and 
plan directions (Florinsky, 2016). The curvature value 
may be positive or negative, and a curvature of zero 
shows that the surface is either flat or that any con-
vexity in one direction is offset by concavity in 
another. Total curvature is expressed in units of m -1.

Furthermore, TRI can be applied to highlight the 
elevation difference between neighboring cells of a 
DEM (Florinsky, 2016). TRI is calculated by consid-
ering the elevation deviations of each pixel from the 
mean elevation within a defined neighborhood or 
window. Higher values of TRI indicate more rugged 
terrain and vice versa. However, SAR estimates the 
ratio between the surface area and planar area on a 
terrain or landscape, providing insight into the degree 
of complexity or irregularity in the land surface 
(Jenness, 2004). SAR is calculated by considering the 
terrain’s total surface area relative to the same area’s 
horizontal projection. Finally, MDFM is applied to 
quantify the maximum variation or difference between 

elevation values within a given terrain (Lindsay, 2005). 
This index calculates the largest discrepancy between 
a specific point’s elevation and the surrounding area’s 
mean elevation, often within a defined neighborhood 
or window. Figure 3 shows an inventory of 
Retrogressive and Rotational landslide polygons over-
laid on topographic features extracted from the DEM.

Methodology

U-Net

U-Net, a FCN model introduced by Ronneberger et  al. 
(2015), has become a standard for image segmentation 
tasks, particularly in medical image analysis for appli-
cations like cell segmentation and tumor detection 
(Ghorbanzadeh et  al., 2021; Kariminejad et  al., 2024; 
Zhang et  al., 2018). Its architecture is composed of 
two main parts: an encoder network that extracts 
features from the input image through a series of 
convolutional and max-pooling layers, and a decoder 
network that reconstructs the segmentation map using 
upsampling and convolutional layers (Ronneberger 
et  al., 2015). A key feature of U-Net is the use of 
skip connections that link corresponding layers in the 
encoder and decoder networks, allowing the decoder 
to access high-resolution feature maps from the 
encoder (Ronneberger et  al., 2015; Su et  al., 2022). 

Figure 2.  Sites affected by landslide in the southern part of the Quebec province. Yellow and Brown polygons overlaid over 
Hillshade are selected samples of Rotational and Retrogressive landslides.
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This design helps maintain spatial information, sig-
nificantly enhancing segmentation accuracy. While 
U-Net has been successfully adapted for other fields, 
such as remote sensing image classification, it is not 
without limitations, including the potential for the 
vanishing gradient problem, which can hinder its per-
formance in some scenarios.

ResU-Net

In deep learning models, particularly those with sig-
nificant depth, vanishing gradient problems arise as 
gradients diminish exponentially during backpropa-
gation, making it challenging for the network to learn 
meaningful feature representations. This issue is evi-
dent in models like U-Net, where training becomes 
difficult due to minimal updates in the earlier layers. 
To combat this issue (He et  al., 2016) introduced 
Residual Networks (ResNets), which use residual 
blocks to overcome the vanishing gradient problem. 
The core idea behind ResNets is the use of skip or 
shortcut connections that bypass one or more layers, 
allowing gradients to flow more effectively from later 
layers back to the initial layers (He et  al., 2016; Yang 
et  al. 2022). Each ResNet layer is composed of mul-
tiple blocks, featuring convolution, batch normaliza-
tion, and ReLU activation functions, which enable the 

construction of deeper networks without suffering 
from gradient issues. Various ResNet variants, such 
as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and 
ResNet-152, have been developed, with ResNet-50 
being particularly popular in remote sensing applica-
tions as a backbone or feature extractor (Alsabhan 
and Alotaiby, 2022; Ghorbanzadeh et  al., 2021; Li 
et  al., 2021; Reale et  al., 2022; Shabbir et  al., 2021; 
Ullo et  al., 2021; Zuo et  al., 2021). A single residual 
unit can be defined as follows:

	 y h x F x Wi i i i� � � � � �, 	 (1)

	 x f yi i+ = ( )1
	 (2)

whereby x
i
 and x

i+1 refer to the input and output of 
the ith residual unit; f yi( ) and f .( ) are the activation 
and the residual functions, respectively; and h .( ) is 
the identity mapping h x x

i i( ) = .

Attention mechanism

In image segmentation tasks, where capturing subtle 
details and spatial relationships is crucial, a deep 
learning model needs to focus on the most relevant 
information within an image. The attention mecha-
nism, introduced by Vaswani et al. (2017), significantly 

Figure 3.  Visual representation of features extracted from DEM. Plots from A to G stand for TRI, MDFM, Hillshade, Slope, SAR, Total 
Curvature, and Geomorphon features, respectively.
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aids in this by enabling a neural network to selectively 
concentrate on specific parts of the input data. This 
mechanism assigns varying weights to input elements 
based on their relevance, allowing the model to high-
light important details and disregard irrelevant ones 
(John and Zhang, 2022; Shahabi and Ghorbanzadeh, 
2022). By incorporating attention mechanisms, a 
U-Net model becomes more adaptive and responsive 
to the varying significance of different image regions, 
enhancing segmentation accuracy. This adaptability is 
especially valuable when dealing with complex remote 
sensing datasets, enabling the U-Net to manage diverse 
image characteristics effectively (Li et  al., 2021).

Model implementation

To develop and implement the Attention ResU-Net 
model specifically for our study, we employed the 
GeoPatch Python package (Shahabi, 2022) to prepro-
cess the dataset. The dataset, comprising train, vali-
dation, and test areas, was divided into 256 × 256 
patches, as illustrated in Figure 4, which displays the 
distribution of features extracted from the DEM. One 
of the critical challenges in this study was the imbal-
anced dataset, particularly between the Retrogressive 
and Rotational classes. The Retrogressive class had a 
significantly higher number of pixels compared to the 
Rotational class. To address this issue, we applied class 
weighting during the training process. By assigning 
higher weights to the minority class (Rotational), we 
increased the penalty for misclassifying this class, 
which helped the model to be more sensitive and 
improve its accuracy in identifying the minority class. 
Additionally, Attention gates (Figure 5) were added to 
the skip connections between the encoder and decoder, 
allowing the model to focus on important features and 
improve segmentation accuracy. The model was imple-
mented in PyTorch with ResNet-50 as feature extractor, 
Adam optimizer (learning rate of 0.001), batch size of 
64, and data augmentation techniques like rotation 
and flip to enhance generalization. Training was con-
ducted over 1000 epochs on an NVIDIA RTX 6000 
GPU. Finally, the performance of these experiments 
was evaluated using Precision, Recall, and F1-score 
metrics, focusing on both the majority (retrogressive) 
and minority (Rotational) classes.

Results and accuracy assessment

Model performance on training and validation 
dataset

The best model selection criteria were based on the 
highest F1-score achieved on the validation dataset. 

Experiments were carried out in this study to achieve 
the best possible result. In the first experiment, all 
features were fed to the model; in the second exper-
iment, the model was trained on each feature, and in 
the final experiment, all single features that had the 
best performance were combined as a new dataset to 
train the model. Figure 6 shows the loss curves for 
the training and validation dataset. Over the course 
of 1000 epochs, we selected the model with the 
weights and parameters that achieved the lowest val-
idation loss.

The model’s performance on the validation dataset 
was evaluated using the F1-score. For the Rotational 
landslide class, the F1-score was 0.63, while for the 
Retrogressive class, it was 0.85, indicating a superior 
prediction capability. Table 1 provides a thorough 
overview of the accuracy assessment for the validation 
dataset. Figure 7 illustrates the loss curves for the 
model trained on each feature. It is evident from the 
figure that the model achieved its best performance 
with the Hillshade and Slope features, while other 
features exhibited underfitting issues. When consid-
ering the F1-score for the validation dataset, a pre-
cision of 0.60 and 0.70 was attained for Rotational 
and Retrogressive classes, respectively, when the 
model was trained on the Hillshade feature. On the 
other hand, training the model on the Slope feature 
resulted in F1-scores of 0.62 and 0.81 for Rotational 
and Retrogressive classes, respectively. Conversely, the 
Total Curvature feature exhibited the weakest perfor-
mance, with F1-scores of 0.12 for the Rotational class 
and 0.55 for the Retrogressive class. Table 1 details 
information on each feature performance based on 
the validation dataset. According to graphs 1 and 2 
of Figure 4, the best performance was achieved using 
slope and hillshade features. In contrast, the total 
curvature offers the weakest performance in the train-
ing of the model. In the third experiment, both 
Hillshade and Slope were utilized as input features 
for the model, employing identical training parame-
ters (Figure 8). Remarkably, the resulting F1-score 
values for the Rotational and Retrogressive classes 
were 0.71 and 0.96, respectively. This finding signifies 
a substantial enhancement in predictive performance, 
particularly for the Retrogressive class, where the 
achieved F1-score of 0.96 stands out prominently. 
Notably, the model trained on Hillshade and Slope 
features exhibited superior accuracy compared to 
other models. For instance, it achieved an impressive 
F1-score of 0.96 for the Retrogressive class, surpassing 
the maximum F1-score of 0.86 attained by the same 
class in other models. Table 1 presents the detailed 
accuracy assessments of all models using the valida-
tion dataset.
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Model performance on the test dataset

During the validation dataset accuracy assessment, it 
became evident that models trained using all features 
and the combination of Hillshade and Slope demon-
strated the highest performance, particularly regarding 
the F1-score. Consequently, we exclusively employed 
models trained on these two datasets for the 

subsequent testing phase, recognizing their superior 
ability to capture and utilize relevant information for 
landslide segmentation effectively. In comparing two 
scenarios of landslide segmentation using deep learn-
ing models, it is evident that focusing solely on 
Hillshade and Slope features yields competitive or 
improved results compared to utilizing all six features 
(Table 2). Specifically, for Rotational landslides, 

Figure 4.  Visual presentation of features extracted from LiDAR data for landslide detection. Sky blue, green, and orange represent 
train, validation, and test data. For the geomorphons dataset (categorical), there were no features such as shoulder and footslopes. 
The box on the fourth row, the second column, shows the labeled pixels for Rotational and Retrogressive landslides.
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precision (7%), recall (11%), and F1-score (7%) show 
improvement with the reduced feature set, suggesting 
that the additional features in the first scenario might 
introduce noise or redundancy. Furthermore, a similar 

trend is observed for Retrogressive landslides; for 
instance, utilizing Hillshade and Slope features led to 
notable enhancements in metrics such as recall (16%), 
precision (4%), and F1-score (10%), indicating a 

Figure 5. G raphical representation of the ResU-Net architecture with attention mechanism applied in this study.
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commendable balance between precision and recall. 
Finally, this implies that these two features might 
capture the most relevant information for accurately 
identifying landslides, potentially simplifying the 
model input and reducing computational complexity 
without sacrificing accuracy. Figures 9 and 10 show 
prediction results for Rotational and Retrogressive 
landslides in some random locations.

Discussion

This study explored the application of DL models, 
specifically ResU-Net, along with attention mecha-
nisms, which helps the model to focus on subtle 

details and spatial relationships for mapping landslides 
in the Quebec province using HRDEM data and its 
derivatives that include hill-shade, slope, total curva-
ture, TRI, SAR, and MDFM. Three scenarios were 
conducted to evaluate the effectiveness of the derived 
features in mapping landslides. In the first scenario, 
all features were fed to the model. In the second 
scenario, training was done on all features separately, 
and for the final scenario, only features (hillshade and 
slope) with the highest performance were stacked 
together as the input to feed to our model. The results 
obtained from the model performance on both vali-
dation and test datasets provide valuable insights into 
the effectiveness of different features in accurately 
identifying landslides, such as Rotational and retro-
gressive. Among these features, hillshade and slope 
together demonstrated superior performance in cap-
turing relevant information for landslide segmentation, 
as evidenced by higher F1-scores for both validation 
and test datasets. The precision, recall, and F1-score 
results indicated that focusing solely on hillshade and 
slope features yielded competitive or improved per-
formance compared to utilizing all six features. This 
fact highlights the importance of feature selection in 
optimizing model performance and reducing compu-
tational complexity. The results of the experiments 
offer intriguing insights into the efficacy of feature 
selection and model performance. While DL models 
are renowned for their ability to extract meaningful 
features from raw data autonomously, the findings of 
this study suggest a nuanced perspective on their 
effectiveness in certain contexts.

Figure 6. L oss curves for training and validation for the model training of the dataset with six features. The red dot on the graph 
shows the minimum loss for the validation dataset.

Table 1. A ccuracy assessment metrics for trained models eval-
uated on the validation dataset.
Model trained 
on Class Precision Recall F1-score

All features Rotational 0.6 0.67 0.63
Retrogressive 0.82 0.89 0.85

Geomorphons Rotational 0.1 0.91 0.18
Retrogressive 0.72 0.55 0.63

Hillshade Rotational 0.61 0.57 0.6
Retrogressive 0.56 0.88 70

MDFM Rotational 0.12 0.69 0.21
Retrogressive 0.55 0.44 0.49

Slope Rotational 0.61 0.62 0.62
Retrogressive 0.79 0.84 0.81

SAR Rotational 0.1 0.97 0.18
Retrogressive 0.9 0.82 0.86

Total curvature Rotational 0.18 0.09 0.12
Retrogressive 0.38 0.99 0.55

TRI Rotational 0.08 0.82 0.14
Retrogressive 0.51 0.71 0.59

Hillshade and 
slope

Rotational 0.67 0.76 0.71
Retrogressive 0.98 0.95 0.96
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Typically, DL models leverage their inherent capac-
ity to discern intricate patterns and relationships 
within input data, making them a promising tool for 
tasks like landslide mapping. However, this study 

presents a scenario where relying solely on the auto-
matic extraction of features from a plethora of input 
data—such as hillshade, slope, total curvature, TRI, 
SAR, and MDFM—does not necessarily yield optimal 

Figure 7. T raining and Loss curves of the proposed model based on each feature separately.
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results, which underscores the importance of feature 
selection in optimizing model performance, particu-
larly in scenarios where certain features might over-
shadow or dilute the predictive power of others. The 
success of hillshade and slopes as discriminative fea-
tures for landslide segmentation highlights their inher-
ent relevance and significance in capturing key 
information in detecting landslides. Their superior 
performance compared to a comprehensive set of fea-
tures suggests that, in this specific context, the DL 
model benefits more from targeted, domain-specific 
inputs rather than a broad array of variables. In other 
studies, regarding using high-resolution LiDAR data, 
for example, Van Den Eeckhaut et  al. (2012) applied 
OBIA for mapping Rotational landslide in densely 
vegetated areas using features such as DTM, slope, 
plan, and profile curvature derived from LiDAR data 
at 2-meter resolution.

Our assessment showed they achieved 70% accu-
racy using image segmentation and rule-based clas-
sification. While the achieved accuracy may appear 
satisfactory, it is crucial to acknowledge the two sig-
nificant shortcomings in their approach. Firstly, the 
absence of evaluation or utilization of standard meth-
ods to verify segmentation accuracy is concerning, 
particularly in OBIA, where incorrect segmentation 

can greatly influence classification accuracy. Secondly, 
opting for subjective expert knowledge over an objec-
tive method, such as training a machine learning 
model, introduces bias. In addition, Görüm (2019) 
carried out the same approach for the tasks in dif-
ferent geographical locations. In another study, 
Pradhan et al. (2020) presented a novel semi-automated 
technique for landslide detection using Saliency 
Feature Enhancement (SFE) on LiDAR data. While 
the method offers simplicity and does not rely on 
extensive training datasets, its accuracy, as indicated 
by the prediction accuracy, falls short of providing 
reliable results, which needs further refinement may 
be necessary to enhance its reliability in practical 
applications. In a similar study, Fang et  al. (2022) 
employed a lightweight attention U-Net model to map 
historical landslides of a single type using LiDAR data 
in densely vegetated mountainous regions of the 
Jiuzhaigou area in China. The authors trained their 
models on aerial images and various features derived 
from LiDAR data. Their accuracy assessment revealed 
that the RRIM (Red Relief Image Map) and hillshade 
data type yielded the highest performance, achieving 
an F1-score of 87%, surpassing optical images, raw 
LiDAR DEM, and hillshade derivatives.

In contrast to our study, where we addressed two 
types of landslides, adding complexity to the model, 
our dataset had a resolution of 2 meters, while theirs 
boasted a higher resolution of 1-meter. Additionally, 
our inventory data covered a wide range of slopes, 
whereas landslides in the Jiuzhaigou region predom-
inantly occurred on steep slopes. Another issue we 

Figure 8. T raining and loss curves of the trained model based on hillshade and slope features.

Table 2. A ccuracy assessment metrics for the test dataset.
Model trained on Class Precision Recall F1-score

All features Rotational 0.60 0.62 0.61
Retrogressive 0.79 0.88 0.83

Hillshade and Slope Rotational 0.67 0.73 0.68
Retrogressive 0.95 0.92 0.93
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were dealing with was the smoothing of landslide 
topography by earthworks. Additionally, our study 
contended with challenges posed by agricultural rec-
lamation in study areas, where farmers often smooth 
landslide topography, complicating detection efforts. 
In some cases, only a subtle change in topography 
remains, making identifying a landslide scar particu-
larly difficult, even for a trained eye. In addition, 
natural weathering processes can significantly alter 
landslide topography over millennia. The superior 
performance of hand-picked features in this study 
emphasizes the complementary roles of domain exper-
tise and automated techniques in geospatial analysis. 
While DL models hold immense potential for feature 
extraction and pattern recognition, their performance 

can be significantly optimized through judicious fea-
ture selection. This nuanced approach demonstrates 
that combining domain-specific knowledge with 
advanced DL techniques can lead to more robust and 
effective solutions in landslide mapping and beyond.

Conclusion

This study demonstrates the effectiveness of convolu-
tional DL models, specifically ResU-Net with attention 
mechanisms, in mapping landslide inventory in 
Quebec, Canada, using HRDEM data and its deriva-
tives. A series of experiments found that hillshade 
and slope features outperformed other variables in 
accurately identifying landslides, showcasing higher 

Figure 9. T he prediction results for random, sometimes coalescing, Rotational landslides in the test area are depicted here. TP, FP, 
and FN denote true positives, false positives, and false negatives, respectively. Landslide inventory polygons are overlaid on 
Hillshade and Google Earth imagery to enhance the visualization.
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F1 scores and improved precision and recall metrics. 
Notably, focusing solely on these features yielded com-
petitive or enhanced performance compared to uti-
lizing all six features, emphasizing the importance of 
feature selection in optimizing model performance 
and reducing computational complexity. The study 
highlights the significance of targeted, domain-specific 
inputs in DL model training for landslide mapping 
tasks, offering valuable insights for future research in 
this field. The next phase of this research aims to 
enhance detection accuracy further. By incorporating 
high-resolution aerial images and leveraging effective 
features such as hillshade and slope, the authors 
intend to improve the precision and recall of landslide 
identification. Additionally, the study will explore 
using OBIA approach with a stronger emphasis on 

better segmentation to delineate the boundaries of 
different landslides. This strategy is anticipated to 
provide more detailed and accurate mapping results, 
offering a promising avenue for advancing landslide 
inventory mapping methodologies.
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