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ABSTRACT
The RADARSAT Constellation Mission (RCM) Compact Polarimetry (CP) data has become a key 
asset in crop mapping and monitoring for diverse agricultural landscapes. This study utilizes 
the unique capabilities of the RCM CP data for crop mapping. It performs a detailed 
comparison between single-date and multi-date classification to underscore the prowess of 
multi-temporal CP data in crop mapping. The novelty of our approach is in the thorough 
investigation of real CP data, a significant advancement from previous studies that mainly 
relied on simulated CP data. The CP data used in this study were acquired on July 1, July 30, 
and August 27, 2021, over southern Quebec, Canada, including soy, corn, hay, and cereal 
classes. Various features were extracted from the CP data, and the Random Forest classifier 
was utilized for crop mapping. The experimental results demonstrated the superiority of 
multi-temporal CP data for crop classification. The Overall Accuracy (OA) for single-date 
classifications on July 1, July 30, and August 27 were 61.10%, 75.00%, and 86.45%, respectively. 
In contrast, the multi-date analysis showed a marked increase in OA (91.20%). This substantial 
improvement underscores the significant benefit of incorporating multi-date CP data, which 
delivers a robust and precise framework for crop mapping.

RÉSUMÉ
Les données radar à synthèse d’ouverture en mode polarimétrie compacte (PC) de la Mission 
Constellation RADARSAT (MCR) sont devenues un atout majeur pour la cartographie et la. 
surveillance des cultures dans divers paysages agricoles. Cette étude utilise les capacités 
uniques des données P C de la mission RCM pour la cartographie des cultures. Elle effectue 
une comparaison détaillée entre la classification à une date et la classification à plusieurs 
dates pour souligner la petinance des données PC multitemporelles dans la cartographie des 
cultures. La nouveauté de notre approche réside dans l’évaluation approfondi des données 
CP réelles, ce qui constitue une avancée significative par rapport aux études précédentes qui 
s’appuyaient principalement sur des données PC simulées. Les données de PC utilisées dans 
cette étude ont été acquises le 1er juillet, le 30 juillet et le 27 août 2021, dans une region au 
sud du Québec, Canada, et comprennent des classes de soja, de maïs, de foin et de céréales. 
Diverses caractéristiques ont été extraites des données P C, et le classificateur Forêt des arbes 
aléatoires (Random Forest) a été utilisé pour la cartographie des cultures. Les résultats 
expérimentaux ont démontré la supériorité des données PC multitemporelles pour la 
classification des cultures. La précision globale (Overaal Accuracy: OA) pour les classifications 
à une seule date, le 1er juillet, le 30 juillet et le 27 août, était respectivement de 61,10 %, 
75,00 % et 86,45 %. En revanche, l’analyse multi-dates a montré une nette augmentation de 
l’OA (91,20 %). Cette amélioration substantielle souligne l’avantage significatif de l’incorporation 
de données P C multi-dates, qui fournit un cadre robuste et précis pour la cartographie des 
cultures.
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Introduction

Agricultural monitoring is a cornerstone in assessing 
crop health and yields, which are pivotal in the agri-
cultural landscape (Omia et  al. 2023; Wu et  al. 2022). 
The primary objective of monitoring croplands is to 
streamline and enhance the profitability of farming 
practices. By facilitating in-depth analysis and sup-
plying crucial information about the status of agri-
cultural products, this process becomes an invaluable 
resource for analysts and decision-makers alike. While 
traditional monitoring methods may rely on human 
labor, the advent of crop monitoring through satellite 
Remote Sensing technology offers a reliable alternative 
to labor-intensive fieldwork. The benefits extend 
beyond the capabilities of the naked human eye, as 
satellite-based systems provide a comprehensive and 
real-time view of vast agricultural areas.

Various studies have comprehensively utilized opti-
cal satellite data for cropland monitoring (Yang et  al. 
2020; Kobayashi et  al. 2020). However, it is crucial 
to acknowledge optical Remote Sensing’s limitations, 
i.e., its sensitivity to severe weather conditions and 
impracticality in areas obscured by clouds or during 
nighttime observations. To overcome these challenges, 
the integration of Radar Remote Sensing, specifically 
Synthetic Aperture Radar (SAR), has emerged as a 
viable alternative (Shang et  al. 2022; Sishodia 
et  al. 2020).

One commonly accepted method of categorizing 
SAR data is by its polarization configurations, which 
include Single Polarized (SP), Dual Polarized (DP), 
and Full Polarimetric (FP) modes (Mahdianpari et  al. 
2019). Different configurations of SAR sensors provide 
varying levels of information content. The ability to 
distinguish between different crop types using SAR 
sensors is affected by the specific characteristics of 
the sensors. In this regard, DP SAR has been shown 
to outperform SP SAR, and FP SAR, in turn, typically 
surpasses DP SAR in precision (Mahdianpari 
et  al. 2019).

However, the advantages of FP SAR systems come 
with significant drawbacks. A notable limitation of FP 
SAR systems is the doubled Pulse Repetition Frequency 
(PRF) requirement compared to SP or DP SAR systems 
(Charbonneau et al. 2010). This increase in PRF results 
in a 50% reduction in coverage width, impacting sat-
ellite coverage and increasing revisit times (Mahdianpari 
et  al. 2019; Charbonneau et  al. 2010). This constraint 
limits the practical application of FP SAR for opera-
tional tasks over extensive geographical areas.

While DP SAR partially addresses some of these 
issues, such as a smaller swath width, it still faces 

challenges, notably the inability to maintain a relative 
phase between co- and cross-polarization channels 
(Dubois-Fernandez et  al. 2008). Compact Polarimetry 
(CP) SAR systems present a potential solution by 
emitting one polarization and receiving two coherent 
polarizations. Notably, CP systems can acquire data 
with a swath width twice as large, addressing some 
limitations associated with coverage width and revisit 
times (Charbonneau et  al. 2010). Additionally, CP 
systems preserve the relative phase between polariza-
tion channels, enhancing their utility in addressing 
the challenges faced by both DP and FP SAR systems.

RADARSAT Constellation Mission (RCM) was suc-
cessfully launched on June 12, 2019 using the SpaceX 
Falcon 9 rocket. This launch marked Canada’s latest 
step in Remote Sensing with SAR. RCM, Canada’s 
newest Earth-watching SAR satellite series, includes 
a quick 4-day return visit, a special CP mode, and 
broad area monitoring using ScanSAR mode 
(Thompson 2010; Canadian Space Agency 2023). The 
C-band RCM satellites orbit at an average height of 
593 km and are spaced 120° apart. Each satellite revis-
its every 12 days, ensuring a 4-day revisit cycle 
together.

A distinct feature of RCM compared to its prede-
cessor, FP RADARSAT-2, is the introduction of the 
CP mode (Canadian Space Agency 2023). In the RCM 
system, CP utilizes a right-handed circular (RHC) 
transmission while recording the H and V polariza-
tions coherently upon their return, termed 
circular-transmit and linear-receive (CL) (Dingle 
Robertson et  al. 2022). A circular transmission wave-
form occurs when the H and V polarizations operate 
together but with a 90° phase difference (Raney 2007). 
As previously mentioned, the coverage width of FP 
SAR systems is halved due to the increased PRF 
(Charbonneau et  al. 2010). For instance, in the RCM 
system, the FP mode typically covers an area of 
around 20 km in width. Even though this mode pro-
vides a comprehensive dataset, its limited coverage is 
unsuitable for national mapping. Alternatively, when 
developing the RCM, CP was introduced as a potential 
answer for those needing extensive coverage while 
preserving the depth of polarization data (Raney 2007).

Nearly all the published research regarding agri-
cultural land monitoring has been conducted on the 
simulated CP data due to the limited access to the 
actual CP data. Hence, researchers simulated the CP 
data from the FP SAR data. Charbonneau et  al. (2010) 
researched crop classification based on the simulated 
CP data in 2010. Four FP RADARSAT-2 images 
obtained over eastern Ontario, Canada, and during 
the growing season were used for simulation. Utilizing 
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the Decision Tree (DT) classifier and based on Stokes 
parameters extracted from the simulated CP images, 
the classification was done, and 91% accuracy was 
reached, which was higher than the classification 
using dual-polarization, i.e., HH  +  VV and HH  +  HV 
and Freeman-Durden decomposition parameters.

Brisco et  al. (2013) also used DP, FP, and simulated 
CP SAR data. The data used in this research was 
obtained from four RADARSAT-2 images in China. 
The Support Vector Machine (SVM) classifier was 
employed for classification. Using Stokes parameters 
and m-delta decomposition, the authors showed that 
simulated CP data with an accuracy of around 95% 
was more effective than DP data but was lower than 
FP data. Similarly, another research was done in the 
Leizhou Peninsula, southern China, by Xie et  al. 
(2015). A time-series TerraSAR-X data was used to 
simulate the CP data. The classification was done 
using a proposed unified classification framework. 
They compared the results with FP and coherent HH/
VV modes and showed that Overall Accuracy (OA) 
for data in the FP and coherent HH/VV modes was 
almost 95%, while it was around 91% for the CP data.

Three studies were conducted based on simulated 
CP data using RISAT-1 data in India. Uppala et  al. 
used single-date RISAT-1 data for maize crop dis-
crimination (Uppala et  al. 2016). The study area was 
located in Vemuru Mandal, Guntur district of Andhra 
Pradesh, India, and the Parallelepiped Minimum 
Distance classifier was adopted for the classification 
task. The results were also compared with Resourcesat-2 
LISS-III optical data, which was classified using the 
Maximum Likelihood classifier. The OA of LISS-III 
and RISAR-1 were 92% and 89%, respectively. In 2017, 
Chirakkal et  al. simulated CP data based on RISAT-1, 
obtained over the Hisar district of Haryana and 
Junagadh district of Gujrat, India, and employed the 
Maximum Likelihood classifier (Chirakkal et  al. 2017). 
In this study, the authors showed that the classifica-
tion based on the CP m-chi decomposition generally 
results in better crop separability. In 2018 (Dasari and 
Lokam 2018), the RISAT-1 datasets (simulated CP 
and DP data) obtained over the northern part of 
Telangana State in the Ghanpur Village, district of 
Warangal, India, were used by Dasari et  al. for land 
cover classification using SVM classifier and based 
on Radial Basis Function (RBF), Polynomial with 
degree 2 and linear kernels. The authors showed that 
SVM with RBF kernel has the highest OA of 92.34% 
and 76.83% for simulated CP and DP RISAT-1 data.

Pixel-based and object-based Random Forest (RF) clas-
sification was used by Mahdianpari et  al. (2019) for 
mid-season classification. The CP images were simulated 

using four RADARSAT-2 images obtained over agricul-
tural land in Manitoba, Canada. Different features derived 
from the FP, simulated DP, and CP SAR images were 
employed as the classifier’s input. 88.2%, 82.1%, and 77.3% 
accuracy were reported using the object-based RF classi-
fier for the FP, CP, and DP SAR images, respectively.

In 2019, Robertson et  al. (2019) employed simu-
lated CP data based on three RADARSAT-2 images 
acquired over southern Manitoba, Canada. Ten CP 
features were extracted for each image, and the RF 
classifier was used to classify this data stack. Some 
classes, such as canola and soybeans, had higher accu-
racies (canola of 71% and 72% and soybean of 72% 
and 78%, respectively), although the preliminary OA 
was poor (fewer than 65%).

In contrast to the previous research studies con-
ducted on simulated CP data, Dingle Robertson et  al. 
employed real RCM CP data in 2022 (Dingle 
Robertson et  al. 2022). Using the RF classifier, RCM 
CP images acquired over agricultural land in Kenaston 
within the province of Saskatchewan, Canada, were 
used for the crop mapping. An OA of 95% was 
achieved, about 2% lower than a classification using 
optical imagery with post-processing filtering.

Jafarzadeh et  al. (2024) recently used RCM CP SAR 
data from southern Quebec in Canada for crop mon-
itoring. In their study, they introduced three new 
analytical descriptors: the compact-polarimetric SAR 
signature (CPS), differential CPS (DCPS), and the 
geodesic distance (GD) between signatures to analyze 
crop-type scattering behaviors. Furthermore, the study 
extensively examined CP SAR data, extracting various 
parameters for crop classification using the RF clas-
sifier. Multiple classification runs were conducted 
across two scenarios, testing different combinations 
of CP inputs. The multi-date crop mapping approach 
achieved an impressive OA of 89.71%, demonstrating 
the effectiveness of integrating features from CP data.

Table 1 summarizes the research conducted on CP 
data for crop mapping, using either simulated or real 
data. Notably, the studies conducted before the launch 
of the RCM satellite in 2019 utilized simulated data 
to develop and test various classification algorithms, 
ranging from DT to more complex RF methods. 
Simulated CP data would help understand the poten-
tial of CP data for various classification tasks when 
the real data is unavailable. However, a pronounced 
research gap is evident in using real CP data, with 
only two studies conducted by Dingle Robertson et  al. 
in 2022 and Jafarzadeh et  al. in 2024 using real RCM 
CP data addressing this domain. The reliance on sim-
ulated CP data could pose limitations, as it may not 
fully capture the properties in real-world scenarios. 



4 R. FARHADIANI ET AL.

The performance of classification algorithms validated 
on simulated CP data may not necessarily translate 
to similar effectiveness when applied to real CP data. 
This gap underscores the need for further empirical 
studies employing real CP data to validate their 
robustness and reliability for practical applications in 
cropland monitoring. Such research would signifi-
cantly contribute to the existing body of knowledge 
by providing a more accurate assessment of the capa-
bilities and limitations of CP SAR data in real-world 
agricultural settings. Thus, the main objective of this 
study is to evaluate the effectiveness of RCM CP data 
for crop mapping. The research will specifically focus 
on two key questions. Firstly, we will evaluate how 
integrating multi-date CP data influences classification 
accuracy compared to single-date CP data. Secondly, 
we will identify the most critical CP features that 
contribute to the precision of crop classification.

Compact polarimetry: principles and features

At the level of an individual pixel in its single-look 
complex form, the system measures a representation 
of the complex scattering matrix (Cloude et  al. 2012),
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where the symbol + illustrates the left-hand circular 
(LHC) transmission and the − shows the right-hand 
circular (RHC) transmission (Cloude and Pottier 
1996). For CP RHC polarization, the − sign must be 
adopted. In contrast to the FP modes, which utilize 
a 3 × 3 covariance matrix, the scattering information 
in CP mode is represented using a 2 × 2 covariance 
matrix C2 (Dey et  al. 2021):
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where R means the signal is transmitted in the RHC 
form, and H and V represent the received backscat-
tered signal in horizontal or vertical polarization. The 
diagonal elements of the C2 matrix are equivalent to 
the backscattered coefficients in RH and RV polariza-
tion channels. The off-diagonal elements of the C2 
matrix represent the complex correlation of backscat-
tered information between RH and RV polarization 
channels.

Within the specialized domain of compact polarim-
etry, a collection of distinct features that are indispens-
able for advanced data interpretation has been 
developed. These features enable a complex understand-
ing of the data, facilitating the extraction of detailed 
insights from information gathered through this type 
of satellite imagery. In the rest of this section, we will 
briefly describe each CP decomposition.

• Stokes parameters: The Stokes parameters, con-
taining four components, derived from the C2 
matrix, define the polarization state of a partially 
polarized electromagnetic (EM) field (Raney 
et  al. 2021). The first Stokes parameter ( )S

0
 

demonstrates the total intensity of the radar’s 
backscatter signal, encompassing both polarized 
and unpolarized components, which is the sum 
of the powers of the two received waves with 
orthogonal polarizations. The three other param-
eters (S1, S2, and S3) indicate the characteristics 
of the EM field’s polarized portion (Dingle 
Robertson et  al. 2022). Specifically, S1 shows the 
dominance of linear horizontal polarization light 
over the vertical one. S2 illustrates the predom-
inance of linear +45° polarized light over linear 
−45° polarized light (Collett 2005). S3 depicts 
the dominance of right-handed circular polar-
ization compared to left-handed circular polar-
ization (Collett 2005). The determination of S1 
stems from the difference between the powers 

Table 1. Summary of research conducted on simulated and real CP data.
CP data 
type authors Year data Study area Classifier

Simulated Charbonneau et  al. 2010 radarSat-2 ontario, Canada decision tree
Brisco et  al. 2013 radarSat-2 China Support Vector machine
Xie et  al. 2015 terraSar-X leizhou Peninsula, China a unified framework
uppala et  al. 2016 riSat-1 Vemuru mandal, india Parallelepiped minimum distance
Chirakkal et  al. 2017 riSat-1 Hisar district of Haryana, india maximum likelihood
easari et  al. 2018 riSat-1 ghanpur Village, india Support Vector machine
dingle robertson et  al. 2019 radarSat-2 manitoba, Canada random forest
mahdianpari et  al. 2019 radarSat-2 manitoba, Canada Pixel- and object-based random 

forest
real dingle robertson et  al. 2022 rCm Compact 

Polarimetry
Saskatchewan, Canada random forest

Jafarzadeh et  al. 2024 rCm Compact 
Polarimetry

Quebec, Canada random forest
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of the received channels. Meanwhile, S2 and S3 
are extracted from the complex cross-products 
of the received EM waves (Raney 2006, 2019).

• Stokes child parameters: It is possible to derive 
other parameters referred to as the Stokes child 
parameters from the Stokes vector, which help 
extract more specific information from the 
Stokes parameters and have demonstrated their 
value in assisting image feature analysis 
(Mahdianpari et  al. 2019). The first Stokes child 
parameter is the degree of polarization (m), 
where the extreme values, either 0 or 1, corre-
spond to an EM field that is entirely unpolarized 
or completely polarized, respectively (Raney 
et  al. 2021). The degree of depolarization, i.e., 
1−m, points to randomly polarized backscatter, 
generally originating from materials nearly 
transparent to radar signals (Raney et  al. 2012).

The Stokes parameters, i.e., S1, S2, and S3, can be 
represented through the Poincaré variables (Brisco 
et  al. 2020), as demonstrated in Figure 1, where χ 
and δ denote the ellipticity and the orientation of the 
polarization ellipse’s long axis, and m represents the 
degree of polarization (Dingle Robertson et  al. 2022). 
These two parameters, i.e., the degree of circularity 
(χ) and relative phase angle (δ), can be considered 
Stokes child parameters.

Another set of parameters that can be computed 
based on the Stokes parameters is the Circular 
Polarization Ratio ( )µ

c
 and degree of linear 

polarization ( )m
L

 in the backscattered field. It should 
be noted that μc is less than unity for most single- or 
odd-bound backscatter situations, while it is greater 
than unity in other cases. Another Stokes child 
parameter is αs (i.e., the ellipticity of the compact 
scattered wave (Mahdianpari et  al. 2019), which is 
closely related to the ellipticity of the compact scat-
tered wave (Cloude 2009; Raney 2006).

• m-chi and m-delta decompositions: The m-chi 
decomposition (Raney et  al. 2012) can be com-
puted based on the first Stokes parameter ( )S

0
,  

degree of circularity ( )χ , and degree of polar-
ization (m), indicating single-bounce (mχ

Blue

), 
double-bounce (mχ

Red

), and randomly polarized 
constituent (or volume) backscattering (mχ

Green

), 
respectively. Like the m-chi decomposition, the 
m-delta decomposition (Charbonneau et  al. 
2010) utilizes the first Stokes component ( )S

0
 

and the degree of polarization (m), but it uses 
the relative phase angle ( )δ , where mδ

Blue

 can be 
related to the surface scattering, while the mδ

Red

 
and mδ

Green

 illustrate the double-bounce and vol-
ume scattering, respectively.

• H/A/Alpha: Like the FP H/A/Alpha decompo-
sition, in the case of CP data, H/A/Alpha 
decomposition contains three components, i.e., 
Entropy (H), Anisotropy (A), and Alpha (α ), 
computing based on the eigenvectors and 
eigenvalues (Zhang et  al. 2014). The Entropy 
measures the scattering randomness, with val-
ues between 0 and 1, which shifts from com-
pletely polarized to entirely random scattering. 
If H = 0, it indicates isotropic scattering under 
a completely polarized state. In contrast, H =1 
means anisotropic scattering with complete 
randomness, rendering polarization information 
unattainable. The Anisotropy complements 
Entropy and becomes less informative when H 
is exceptionally high or low. The Alpha, which 
varies from 0° to 90°, indicates different phys-
ical scattering mechanisms. Specifically, α = 0° 
indicates surface scattering, and α = °

90  is 
related to dihedral or helix scattering. As for 
0 45
° °< <α  and 45 90

° °< <α , it demonstrates 
dipole scattering and dihedral scattering, 
respectively (Lee and Pottier 2017; Van Beijma 
et  al. 2014; You et  al. 2014).

• RVOG-based decomposition: Random Volume 
Over Ground (RVOG) based CP decomposition 
has three components. It can be computed based 
on the first element of the Stokes vector ( )S

0
, 

degree of polarization (m), and ellipticity of the 
Figure 1. the geometrical relationship between Stokes and 
Poincaré parameters (Brisco et  al. 2020).
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compact scattered wave ( )α
s

 (Cloude et al. 2012), 
containing three components: surface scattering 
component (P

Blue
), dihedral component power 

(P
Red

), and volume power (P
Green

).
• Dey et  al. decomposition: The CP decomposi-

tion proposed by Dey et  al. (2021) contains 
four components: target characterization param-
eter (θ

CP
), as well as P P

Blue

CP

Red

CP
, , and P

Green

CP , which 
are related to the surface, double-bounce, and 
volume scattering. It should be noted that θ

CP
 

can take on any value between − °
45  and 45°, 

including the endpoints.
• Other decompositions: Some CP features are 

not categorized as either Stokes child parame-
ters or decompositions. Among them is the 
conformity coefficient (μ), which is Faraday 
Rotation independent, ranging from −1 to 1. 
Considering the reflection symmetry assump-
tion for the distributed targets, when positive 
μ values are near 1, surface scattering is pre-
dominant; when negative μ values approach –1, 
double-bounce scattering takes over; and for 
middle-range μ values, volume scattering is the 
most prominent (Truong-Loi et  al. 2009).

In total, 90 CP features were extracted from the 
multi-temporal CP SAR data (30 CP features for each 
date) and used for further analysis. The mathematical 
formulas for computing the discussed CP features are 
summarized in Table 2. It should be noted that in 
the H/A/Alpha decomposition, by applying eigen 
decomposition on the C2 covariance matrix, it can 
be expressed as a weighted sum of two matrices, i.e., 
C2]

1
 and C2]

2
. These matrices correspond to the two 

distinct scattering mechanisms occurring at the pixel 
level (Ioannidou et  al. 2022):

 C C C2
0

0
2 2
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where [ ]U  demonstrates the orthogonal, unitary 
matrix, as well as u

i



 and λi (i = 1,2) are the eigenvector 
and the corresponding eigenvalue. The eigenvector u

i



 
can also be parametrized using two angular variables, 

i.e., scattering mechanism ( )α
i

 and phase angle ( )δ
i

 as 
follows (Ioannidou et  al. 2022):

 

u e i
i i i

j
T

i=   =cos sinα α δ
, ,1 2 (5)

where pi and αi can be computed as (Zhang 
et  al. 2014):

 p i
i

i=
+

=
λ

λ λ
1 2

1 2, ,  (6)

 α
i i

u= ( )−
cos

1

1
 (7)

Furthermore, in the Dey et  al. decomposition, m
CP

 
(2D Barakat degree of polarization) can be com-
puted as:

 m
CP

C

Trace C
= −1

4 2

2
2

( ( ))
 (8)

Additionally, OC and SC can be computed based 
on the Stokes vector elements as follows:

 OC =
+S S

0 3

2
 (9)

 SC =
−S S

0 3

2
 (10)

Methodology

Study area

The study area, highlighted by a red rectangle in Figure 
2, covers an agricultural region in southern Quebec, 
Canada, and contains various crop types, such as soy, 
hay, oats, wheat, barley, corn, etc. The study area is 
geographically defined within the coordinates approxi-
mately bounded by 46° 2′N to the north, 45° 52′N to 
the south, 73° 7′W to the west, and 72° 46′W to the east.

CP multitemporal data processing

We utilized three ascending Single Look Complex 
(SLC) RCM CP images for crop monitoring between 
July 1 and August 27, 2021. These images were acquired 
with a spatial resolution of 5  m using the StripMap 
beam mode. Table 3 presents the details of this mul-
titemporal CP data employed in this paper. Figure 3 
also illustrates the RGB images of these three CP data.
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Table 2. Polarimetric features extracted from compact polarimetry Sar data.
feature name description formula references

intensity intensity values of C2 matrix E E
RH RV
| , |
2 2 –

Stokes vector parameters the first element
S E E

RH RV0

2 2= +| |
raney et  al.  2012

the second element
S E E

RH RV1

2 2= −| |

the third element
S E E

RH RV2
2= Re( )

*

the fourth element
S E E

RH RV3
2= − Im( )

*

Stokes child parameters degree of polarization

m
S S S

S
=

+ +
1

2

2

2

3

2

0

raney et  al.  2012

degree of depolarization 1−m raney et  al.  2012

degree of circularity
sin2 3

0

χ = −
S

mS

raney et  al.  2012

relative phase

δ =










−
tan

1 3

2

S

S

Charbonneau et  al.  2010

Circular polarization ratio
µ

c

S S

S S
=

+
−

0 3

0 3

Charbonneau et  al.  2010

degree of linear polarization

m
S S

S
L
=

+
1

2

2

2

0

raney et  al.  2021

alphas

α
s

S S

S
=

+











−1

2

1 1

2

2

2

3

tan

Cloude et  al. 2012

CP decompositions m-chi

m S mχ
χ

Blue

sin
=

−
0

1 2

2

( )
raney et  al.  2012

m S mχ
χ

Red

sin
=

+
0

1 2

2

( )

m S mχGreen
= −

0
1( )

m-delta

m S mδ
δ

Blue

sin
=

+
0

1

2

( ( ))
Charbonneau et  al.  2010

m S mδ
δ

Red

sin
=

−
0

1

2

( ( ))

m S mδGreen
= −

0
1( )

H/a/alpha
H p p p p= − −1 2 1 2 2 2log log Zhang et  al.  2014

A =
−
+

λ λ
λ λ
1 2

1 2

α α α= +p p
1 1 2 2

rVog-based
P S m

sBlue
cos= +

1

2
1 2

0
( )α

Charbonneau et  al.  2010

P S m
sRed

cos= −
1

2
1 2

0
( )α

P S m
Green

= −
0
1( )

(continued)
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Preprocessing of CP SAR data is essential for crop 
mapping and is crucial for precise land cover classifi-
cation. In our research, we preprocessed the CP images 
utilizing the freely available open-source SNAP software 
(European Space Agency 2024). The preprocessing 
workflow is illustrated in Figure 4. Initially, calibration 

was performed on the raw data, i.e., SLC data (RH 
and RV), to convert them into sigma-naught backscat-
tering coefficients. Subsequently, multilooking was per-
formed using a 2 × 2 window size in the azimuth and 
range direction. While multilooking reduces the speckle, 
it also leads to a reduction in spatial resolution. The 

Table 3. multi-temporal CP data description.

# Satellite acquisition date orbit pass Beam mode Swath width
Polarization, 

resolution

1 rCm1 July 1, 2021 asc. High res. Stripmap 30 km rH and rV, 5 m
2 rCm2 July 30, 2021
3 rCm3 august 27, 2021

Figure 2. Study area location: southern Quebec, Canada.

feature name description formula references

dey et  al.
P

m S

Blue

CP CP

CP
sin= +0

2
1 2( )θ

dey et  al.  2021

P
m S

Red

CP CP

CP
sin= −0

2
1 2( )θ

P S m
Green

CP

CP
= −

0
1( )

tan
OC SC

OC SC
CP

CP

CP

θ =
−

× +
m S

m S

0

2

0

2

( )

others Conformity coefficient

µ =
+

2Im S S

S S S S

RH RV

RH RH RV RV

*

* *

truong-loi et  al.  2009

Table 2. Continued.
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next step involved generating the 2 × 2 C2 covariance 
matrix and applying a 5 × 5 boxcar filter to mitigate 
the speckle further. Terrain correction was then applied 

to the elements of the C2 matrix. Next, all three CP 
images were subset and masked to achieve the area of 
interest. Next, the preprocessed datasets were 

Figure 3. rgB images based on m-chi decomposition, from top to down, July 1, July 30, and august 27, respectively.
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categorized and stacked together. The reference image 
was 1 July in coregistration, and the rest were consid-
ered secondary images. Various features were then 
extracted from the C2 matrix, listed in Figure 4 and 
Table 2. Finally, the preprocessed CP multitemporal 
stack was used as an input for the classifier.

Reference data

Collecting information as the ground truth covering 
large areas can be challenging. On-the-ground data 
collection can be expensive, especially involving spe-
cialized equipment, significant travel, or a large team 
of surveyors to collect first-hand and high-fidelity 
information. A practical alternative is to utilize estab-
lished official products, such as the BDPPAD (Base de 
données des parcelles et productions agricoles déclarées) 
provided by La Financière agricole du Québec (FADQ) 
as the ground truth data. BDPPAD is a database con-
sisting of vector-format polygons representing the con-
tours of crop fields. These field boundaries have been 
associated with the client files of FADQ since 2003 
(Government and Municipalities of Québec 2023; La 
Financière agricole du Québec 2023). Initially, the data-
base was focused on generalized crops, but over time, 
it evolved to encompass individual parcels and multiple 
crops per parcel. The data now includes geospatial 
information on agricultural parcels and data on 
declared agricultural productions, not just crop-related 
data. It is stored in a Shapefile format with geographic 
coordinates in the North American Datum 83 (NAD 
83) coordinate system. In this study, this data was 
adopted as the ground truth.

It should be noted that the reference data com-
prised various classes. However, some specific classes 
were excluded due to limited reference samples and 
minimal spatial coverage. Classes with similar crop 
yields were amalgamated into a single class to simplify 
the analysis, resulting in a four-class ground truth 
dataset. Hence, the focus is on the most relevant 
classes, optimizing processing efficiency.

Figure 5(a) illustrates four main crop types in the 
study area: soy, corn, hay, and cereal. The total pixel 
count for each class is also presented in Table 4. As 
shown in Figure 5 and Table 4, the soy and corn 
classes dominate the two other classes, leading to 
imbalanced ground truth data. For the classification 
task, we split the data into training ( %)70 , validation 
( %)15 , and test ( %)15  sets using stratified splitting. 
This splitting method is particularly indispensable 
when using imbalanced datasets, where one or more 
classes are present in much higher numbers than 
others. Stratified splitting preserves the original class 
distribution across the subsets, thereby mitigating 
the introduction of bias during the model training 
and evaluation phases. Stratified splitting is essential 
in scenarios, such as crop classification, where an 
imbalanced distribution could potentially skew the 
model’s leaning toward the dominant classes, adversely 
affecting the model’s generalization capability. 
Moreover, in the hyperparameters tuning phase, 
employing a validation set derived through stratified 
splitting provides a more accurate reflection of the 
model’s performance across all classes, thus facilitat-
ing a more informed and effective selection of 
hyperparameters.

Figure 4. Workflow of the CP data preprocessing.
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Figure 5. (a) ground truth, (b) the final crop map, and (c) postprocessed crop map.
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Random Forest classifier

In the Remote Sensing community, the effectiveness 
and robustness of the RF classifier (Breiman 2001) 
have been widely accepted across a range of applica-
tions (Sheykhmousa et  al. 2020), ranging from land 
use classification (Billah et  al. 2023) to crop mapping 
(Orynbaikyzy et  al. 2022). The RF classifier has var-
ious advantages over deep learning-based classifiers. 
The RF classifier does not require extensive compu-
tational resources, unlike deep learning models that 
often need powerful GPUs for training. They are 
much quicker to train and are suitable for tasks where 
interpretability is important since RF can provide 
insights into the importance of features. Additionally, 
RF classifiers are less prone to overfitting due to their 
ensemble nature. The RF model can also perform well 
with a smaller amount of data and require less hyper-
parameter tuning than deep learning models, which 
typically require large datasets and extensive training 
time to achieve high performance.

For the RF classification, the Scikit-learn module 
in Python is used in this research (Pedregosa et  al. 
2011). Regarding RF hyperparameter tuning, some 
parameters must be tuned, i.e., number of trees in 
the forest, maximum depth of the trees, minimum 
number of samples required to split an internal node, 
and maximum number of samples needed to be at a 
leaf node. For this purpose, the validation set was 
used to identify optimal hyperparameters of the RF 
classifier through grid search. The diverse parameters 
utilized in the grid search are presented in Table 5, 
with the best parameters indicated in bold. After 

tuning the optimal hyperparameters, the training and 
validation data are merged and used as the input data 
to train the RF model.

Experimental results

Figure 5(b) illustrates the final crop map derived from 
the classification of all 90 CP features discussed in 
section Compact polarimetry: principles and features. 
A post-classification refinement technique was also 
employed by assigning the most frequently occurring 
class within each polygon to the entire polygon to 
mitigate the salt-and-pepper noise typical of pixel-based 
classification and improve the thematic accuracy of 
the crop map. This majority voting approach harmo-
nized the classification output and better represented 
the predominant land cover within each surveyed 
polygon. Figure 5(c) showed the refined crop map. 
The visual analysis of Figure 5 highlights the signif-
icant potential of utilizing multi-temporal CP data for 
generating a crop map, as evidenced by the striking 
resemblance between the classified image and the 
ground truth. However, by meticulously visually 
inspecting the classified image against the ground 
truth, it becomes evident that the classification algo-
rithm has performed differently across various crop 
types. The soy and corn classes had a robust perfor-
mance, as indicated by the strong visual correlation 
between the colors representing these crops in the 
ground truth and the classified images, suggesting a 
high level of accuracy in classifying these crop types. 
At the same time, there were discrepancies where hay 
and cereal classes were either confused with each 
other or with other crop types.

However, a quantitative assessment of the classifi-
cation outcome is imperative to ensure a precise eval-
uation. For this purpose, several metrics were 
employed, including OA, the Kappa Coefficient, and 
the F1-score, as well as the Users’ and Producers’ 
accuracies (UA and PA, respectively). It should be 
noted that due to the imbalanced nature of the ref-
erence data that we used for the classification, relying 
solely on OA and Kappa Coefficient might be insuf-
ficient. The primary limitation of OA is that it can 
be misleading in the context of imbalanced datasets. 
If one class heavily outnumbers others, a classifier that 
always predicts this dominant class can still achieve 
high accuracy. While the Kappa Coefficient provides 
a more balanced measure than OA, it still has limita-
tions. In certain situations, if one class has very few 
instances, the Kappa Coefficient might still not fully 
capture the model’s inefficacy in identifying that class.

Table 4. number of train, validation, and test pixels for each 
crop.

Class train [70%]
Validation 

[15%] test [15%] total

Soy 1,125,448 241,168 241,167 1,607,783
Corn 1,924,920 412,484 412,483 2,749,887
Hay 156,689 33,576 33,577 223,842
Cereal 301,130 64,527 64,528 430,185
total 3,508,187 751,755 751,755 5,011,697

Table 5. grid-search parameters used in the rf model.
Parameters description grid search values

n_estimators number of trees in the 
forest

5, 10, 25, 50, 100

max_depth maximum depth of the 
trees

2, 3, 5, 8, 10

min_samples_split minimum number of 
samples required to 
split an internal 
node

2, 3, 5, 10

min_samples_leaf maximum number of 
samples required to 
be at a leaf node

1, 2, 3, 5, 10

the bold values indicate the best-performing parameters.
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On the other hand, the F1-score becomes partic-
ularly important in the context of imbalanced data. 
It is a harmonic mean of precision (i.e., UA) and 
recall (i.e., PA). Therefore, even if a model performs 
well in precision but poorly in recall (or vice versa), 
the F1-score will reflect this imbalance, making the 
F1-score a more comprehensive metric to evaluate the 
performance of minority classes in imbalanced 
datasets.

Single-date versus multi-data CP classification

To illustrate the potential of multitemporal CP data 
for crop classification, we performed the RF classifier 
on multi-date CP data and individual single-date CP 

data from three distinct dates: July 1, July 30, and 
August 27. Table 6 presents the classification results, 
indicating the OA, Kappa coefficient, and F1-score 
values for both single-date and multi-date CP classi-
fication scenarios. Figure 6 also illustrates the corre-
sponding confusion matrices resulting from the 
classification of single-date and multi-date CP data. 
From Table 6, it becomes evident that the multitem-
poral CP data offers superior classification perfor-
mance compared to any of the single-date data sets. 
In fact, for all three single-dates, the classification 
outcomes were lower. On July 1, the OA stood at 
67.10%, while the Kappa Coefficient was considerably 
lower, registering at 0.41. The F1-Score for this date 
was also 66.06%. By July 30, there was a marked 
improvement in OA, rising to 75.00%, while the 
Kappa Coefficient and F1-score increased to 0.55% 
and 73.91%, respectively. For August 27, the OA 
surged to an impressive 86.45%. The Kappa Coefficient 
also increased substantially to 0.76. The F1-Score for 
this date was even higher at 85.51%. When observing 
the multitemporal dataset, i.e., classification based on 
CP data obtained on July 1, July 30, and August 27 

Table 6. oa, kappa coefficient, and f1-score for single-date 
and multi-date CP data.
dates oa Kappa f1-score

July 1 61.10% 0.41 66.06%
July 30 75.00% 0.55 73.91%
august 27 86.45% 0.76 85.51%
July 1  +  July 

30  +  august 27
91.20% 0.85 91.04%

Figure 6. the confusion matrices for the final classification maps of single-date and multi-date CP data. (a) July 1, (b) July 30, (c) 
august 27, and (d) July 1  +  July 30  +  august 27.
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together, the OA peaks at 91.20%, with the Kappa 
Coefficient and F1-Score closely following at 0.84% 
and 91.04%, respectively, which suggests that leverag-
ing multitemporal CP data enhances the classification 
performance, yielding better results than any 
single-date CP data.

Table 7 also demonstrated the UA and PA in percent 
for single-date and multi-date CP data. Notably, both 
soy and corn classes demonstrated an upward trend in 
classification accuracy from July to August, with the 
highest accuracy observed in the multi-date CP data, 
i.e., 94.38% and 89.96%, as well as 91.20% and 96.42% 
for UA and PA of soy and corn classes, respectively. 
On the other hand, UA and PA of the hay and cereal 
classes fluctuated over the single-dates but saw a sub-
stantial boost when multi-date CP data was employed. 
Overall, the results underscored the effectiveness of 
using multi-date CP data in crop classification, as it 
consistently yields higher accuracy rates than single-date 
CP data, emphasizing the benefits of leveraging mul-
titemporal CP data for more precise assessments.

To further assess crop classification, we inde-
pendently classified each set of CP features. Table 8 
presents the calculated classification metric values 
derived from the multi-date CP data. As mentioned, 
classification accuracy will be notably high when all 
90 features are considered. The Stokes parameters 
stand out with a high OA of 90.94% and a Kappa of 
0.84, reflecting their reliability in classification tasks, 

further corroborated by a strong F1-score of 90.76%. 
In contrast, the Stokes child parameters and the 
Conformity coefficient exhibit lower performance met-
rics, with OAs of 70.62% and 58.32% and Kappa val-
ues of 0.46 and 0.16, respectively. Interestingly, while 
the m-chi and m-delta features boast high OAs above 
88%, the m-chi feature demonstrates a marginally 
superior performance. The RVOG-based and Dey 
et  al. features also display comparable efficacy, achiev-
ing OAs exceeding 89% and Kappa values of 0.82.

Feature importance

Feature importance in the RF classifier provides a 
clear understanding of which feature brings the most 
insight into the predictions made by the model. By 
evaluating the contribution of each feature to the 
decision trees within the ensemble, RF quantifies the 
importance based on the improvement each feature 
provides to the overall prediction accuracy. Essential 
features significantly improve the model’s performance, 
driving it toward accurate predictions. On the other 
hand, features with low importance may not signifi-
cantly impact the model’s accuracy or might even be 
redundant. Since the number of CP features we used 
for the classification task is relatively high, i.e., 90 
features, we only demonstrated the top 30 features in 
Figure 7. The feature importance analysis derived 
from the RF classification for crop mapping shows 

Table 8. Classification results for each CP feature obtained from multi-date CP data.

features oa Kappa f1-score

Soy Corn Hay Cereal

ua Pa ua Pa ua Pa ua Pa

intensities 84.88 0.73 84.52 88.30 81.85 85.40 92.86 66.07 48.68 75.17 64.05
Stokes parameters 90.94 0.84 90.76 94.88 89.27 90.75 96.62 75.60 60.20 84.16 76.87
Stokes child 

parameters
70.62 0.46 68.61 68.57 58.87 71.27 86.08 55.67 4.71 73.80 49.98

m-chi 89.63 0.82 89.45 92.59 87.32 89.68 95.42 73.62 60.76 85.25 76.29
m-delta 88.91 0.81 88.71 92.17 86.42 89.06 95.11 71.57 58.98 83.27 74.13
H/a/alpha 77.62 0.59 74.98 79.11 77.62 77.06 90.45 92.00 0.07 75.02 35.96
rVog-based 89.63 0.82 89.45 92.59 87.31 89.67 95.42 73.63 60.83 85.30 76.28
dey et  al. 89.53 0.82 89.32 92.63 87.25 89.32 95.54 74.67 59.41 85.69 75.25
Conformity 

coefficient
58.32 0.16 52.23 54.60 25.54 58.81 88.82 100.0 0.01 65.45 16.25

all 90 CP features 91.20 0.85 91.04 94.38 89.96 91.20 96.42 75.18 62.30 86.31 77.51
Selected CP 

features
91.14 0.85 90.97 94.59 89.79 91.06 96.49 75.31 62.21 85.68 77.08

Table 7. user’s and producer’s accuracies for single-date and multi-date CP data in percent.

dates

Soy Corn Hay Cereal

ua Pa ua Pa ua Pa ua Pa

July 1 59.64 48.39 70.75 82.34 50.67 34.69 68.64 56.43
July 30 76.94 69.13 76.67 87.89 56.41 38.77 54.99 33.31
august 27 91.98 86.77 87.02 94.93 50.25 18.87 69.33 66.26
July 1  +  July 30  +  august 

27
94.38 89.96 91.20 96.42 75.18 62.30 86.31 77.51
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significant insights into the utility of various features 
extracted from multi-date CP SAR data. The first 
element of the Stokes parameter, i.e., S0 August 27, 
stands out as the most crucial feature, indicating its 
significant role in differentiating between crops.

Additionally, features from the m-chi and m-delta 
decomposition play a vital role in the classification, 
underscoring their potential to extract meaningful 
information crucial for crop differentiation. In con-
trast, the RVOG-based and Dey et  al. decompositions 
features seem less critical, suggesting they might be 
less influential for this classification task. The intensity 
features also moderately influence the importance 
scale, signifying their moderate contribution to the 
crop mapping process. Additionally, even though the 
Stokes child parameters were not among the most 
prominent features, they remain essential. Their recur-
ring appearance over various dates highlights their 
significance in providing valuable information along-
side the primary influential features.

Correlation assessment of CP features

The Spearman correlation coefficient is a nonpara-
metric measure of rank correlation that assesses the 
strength and direction of the monotonic relationship 
between two variables without making any assump-
tions about their distribution. The coefficient’s values 
range from −1 to +1, where +1 denotes a perfect 
positive monotonic relationship, 0 no monotonic rela-
tionship, and −1 a perfect negative monotonic rela-
tionship. The Spearman correlation coefficient is an 
invaluable statistical tool for measuring the degree of 
correlation between different remotely sensed vari-
ables, e.g., each pair of CP features. Here, we use the 
absolute value of the Spearman correlation coefficient 
since we are interested in measuring the strength of 
the relationship between various CP features, regard-
less of whether the relationship is positive or negative. 
This approach allows us to focus on how closely 
related the variables are without considering the 

Figure 7. the top 30 important CP features.
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direction of their relationship, and it can help identify 
strong correlations among the features.

We only indicate the Spearman correlation for 
August 27, 2021 since it was the most crucial date in 
the crop classification. Figure 8 illustrates the absolute 
value of the Spearman correlation between various 
extracted CP features. Upon visual inspection of this 
figure, it is evident that several CP features exhibit 
strong correlations with each other. Features related 
to the volume scattering (i.e., mχ

Green

, m Pδ
Green

Green
, , and 

P
Green

CP  in the m-chi, m-delta, RVOG-based, and Dey 
et  al. decompositions respectively) is an example of 
this correlation. We can also see that these features 
are correlated in many cases. Hence, it is plausible 
that they could be capturing similar information about 
the scattering mechanisms present within the observed 
scene. As a result, this could imply that one feature 
could be used as a substitute for the others, reducing 

the dimensionality of the feature set without signifi-
cant loss of information. Additionally, we can see a 
high degree of correlation between the Stokes child 
parameters in most cases.

Crop classification based on selected CP features

In this subsection, we select CP features exhibiting 
low correlation to classify multi-date CP data. 
Specifically, we opt for intensities, all Stokes param-
eters, and three Stokes child parameters: m, sin2χ, 
and δ. Furthermore, We solely utilize the m-chi 
decomposition. In total, 27 CP features were employed 
for the multi-date crop classification. Table 8 summa-
rizes the classification results using these selected CP 
features. Remarkably, the OA, Kappa coefficient, 
F1-score, UA, and PA were nearly identical to the 
results obtained when all 90 CP features were utilized. 

Figure 8. the absolute value of the Spearman correlation computed between various CP features.
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This observation proves a high correlation among 
many CP features, providing redundant information 
as discussed in subsections Feature importance and 
Correlation assessment of CP features. Consequently, 
we can still achieve better classification results by 
discarding these correlated features and focusing solely 
on the selected CP features.

Conclusion

This research aimed to underscore the potential of 
multitemporal CP data provided by the RCM for crop 
classification. The study area was located in southern 
Quebec, Canada, and three ascending RCM CP data-
sets acquired on July 1, July 30, and August 27, 2021 
were used in this study. These datasets have a 5-m 
resolution and were obtained in StripMap mode. The 
dataset also comprises four distinct classes: soy, corn, 
hay, and cereal. The CP data was processed to derive 
the 2 × 2 C2 covariance matrix. A diverse set of CP 
features, including Stokes parameters, Stokes child 
parameters, m m H A Alpha− −χ δ, , / / , RVOG-based, 
and Dey et  al. decompositions, were stacked together 
with intensity values, resulting in a stack containing 
90 features.

Utilizing the RF classifier, a notable machine learn-
ing model recognized for its efficacy in classification 
tasks, the multitemporal CP data yielded an OA, 
Kappa Coefficient, and F1-score of ~91, 0.84, and 
91%, respectively. The experimental results indicated 
that the multi-date CP data classification performance 
significantly surpassed that of single-date analysis (i.e., 
classification of July 1, July 30, and August 27 dates 
individually), affirming that multi-date observations 
provide a more comprehensive reflection of crop sta-
tus over time. The superiority of multi-date over 
single-date classification was further corroborated by 
the progressive improvement in User’s and Producer’s 
accuracies across the timeline of data acquisition, with 
the multi-date analysis providing the most reliable 
results. Moreover, analyzing the importance of each 
feature showed that the feature derived from the data 
collected on August 27 played a pivotal role in the 
efficacy of the RF classifier.

The Spearman correlation coefficient was utilized 
to assess CP feature correlations. The analysis revealed 
significant correlations between the m-chi, m-delta, 
RVOG-based, and Dey et  al. decompositions. A nota-
ble correlation was also observed among the Stokes 
child parameters. When employing intensities, Stokes 
parameters, selected Stokes child parameters, and the 
m-chi decomposition for classification, the results 
indicated that nearly the same level of classification 

accuracy could be achieved when all available CP 
features were utilized.

It is important to acknowledge certain limitations. 
Our analysis was constrained by the availability of CP 
data, so we used only three dates spaced approxi-
mately a month apart. While these data points were 
selected to capture key phenological stages, they do 
not fully exploit the RCM’s impressive 4-day revisit 
capability, potentially limiting our temporal analysis’s 
depth. To address this limitation, we plan to incor-
porate a more comprehensive dataset in our future 
work that spans more frequent temporal intervals, 
leveraging the full capabilities of the RCM. 
Furthermore, the challenge of spatial autocorrelation, 
which optimistically increases classification accuracy, 
highlights the need for advanced methodological 
approaches to ensure the robustness of classification 
results. Thus, we aim to explore sophisticated Deep 
Learning models in our future work to mitigate issues 
related to spatial autocorrelation and enhance the reli-
ability of our classification outcomes. These steps will 
be crucial in advancing our understanding of crop 
dynamics and improving the accuracy and applicabil-
ity of CP data for agricultural monitoring.
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